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Abstract  

In the present research work, different types of biodiesel were produced by a homogeneous 

alkali transesterification reaction using soybean oil, pork lard, and castor bean oil as raw materials, 

to evaluate how their different compositions may affect the biodegradability, namely, in the 

presence of benzene. Biodiesel was characterized according to the European standard EN 14214. 

The anaerobic biodegradation of the different types of biodiesel was examined as well as its 

influence on the biodegradation of benzene. Analyses were performed to determine the volume 

of methane (directly related to the anaerobic biodegradation of bio- diesel), the concentration of 

benzene over time, and the production of organic acids. The results showed methane production 

resulting from the anaerobic degradation of all biodiesel  types.  The  differences  between the 

degradation behavior of each fuel were negligible, contrary to what was expected; however, the 

amount of methane produced was low due to nutrient limitations. This fact was confirmed by the 

organic acid analysis as well as by the addition of new media. Anaerobic benzene biodegradation 

was found to be negatively impacted by the presence of all biodiesel types on average; therefore, 

the results of this study may impact management of sites that contain biodiesel and fuel hydrocarbon 

contamination. 
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1 Introduction 

 

In the current energy context, there is a large energy dependence on fossil fuels; the major source 

of energy production worldwide is oil, being mostly consumed on the transport sector (Moreira et 

al. 2010). The high dependence on this non-renewable fuel leads to the urgent need to create 

alternatives that should be focused on renewable energy sources, promoted by legal obligations for 
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their use. 

In Portugal, the dependency on oil is high with the aggravating circumstance of being a non-

endogenous resource of this country. Although renewable energy production takes place in 

Portugal, most is related to electricity production and there is still a minor production of biofuels 

for the transport sector (OECD 2013) that should substantially increase in the next years. 

Within the context of biofuels, biodiesel—alkyl esters—produced from different triglyceride 

sources (e.g., vegetable oils, animal fats, or waste frying oils) might be used as an alternative 

automotive fuel to replace fossil diesel (Dias et al. 2013b). The common method for its production 

(implemented in most industrial plants), due to the associated low cost and simplicity, is 

transesterification, which consists on the reaction of triglycerides with an alcohol (usually 

methanol), in the presence of a catalyst, to produce fatty acid esters (biodiesel) and glycerol 

(Demirbas 2008; Gerpen et al. 2004). Amongst other methods that might be used for the 

production of alternative fuels to diesel are, more traditionally, biomass pyrolysis and 

microemulsification (Knothe et al. 2005; Mittelbach and Remschmidt 2004) and more recently non-

catalytic transesterification (supercritical), Fischer-Tropsch synthesis, and hydrogenation (Dias et 

al. 2013a). The more advanced technologies are still less explored mostly due to high associated 

costs. 

The most important factors affecting the transesterification reaction, which impact fuel 

quality (by affecting product conversion), are temperature (usually close to the boiling point of the 

alcohol used), time (from 1 to 24 h depending on raw material and type of catalyst), molar ratio of 

alcohol to raw material (alcohol in excess is required and 6:1 molar ratio is usually used), mixing 

intensity (as high as possible to promote mixture of the oil and alcohol phases), and amount and type 

of catalyst (common catalysts used are sodium and potassium hydroxides; amount of catalyst used 

might vary from 0.2 to 2 wt%, the typical value being 1 wt%) (Dias et al. 2008a; 2013b); the reaction 

can be either in batch or continuous (Dias et al. 2008a; 2013b; Gerpen et al. 2004; Knothe et al. 

2005; Mittelbach and Remschmidt 2004). The optimization of the production process should take 

into account such parameters as well as the type of feedstock used (Ferrari et al. 2011). 

The main advantages of biodiesel produced by transesterification are its ease of mixture with 

conventional diesel (completely miscible), without affecting engine characteristics, as well as its 

high biodegradability, low toxicity, and low emission profile compared to fossil diesel (Gerpen et 

al. 2004). Biodiesel might be used alone, with minor vehicle adaptations, but is mostly used in 

blends up to 20 % of biodiesel (B20) (Moreira et al. 2010). As with any other fuel, accidental spills 

of biodiesel or diesel/biodiesel blends into the subsurface may occur which can potentially lead to 

impacts on the environment and health. Therefore, a variety of studies have examined the aerobic 

biodegradation of biodiesel (DeMello et al. 2007; Lutz et al. 2006; Mariano et al. 2008; Owsianiak 

et al. 2009; Pasqualino et al. 2006; Sendzikiene et al. 2007). However, depending on the 

characteristics of the site and the amount spilled, anaerobic conditions may prevail over the aerobic 

ones. Al- though this is the case, few studies exist on the anaerobic biodegradation of biodiesel 

(Aktas et al. 2010; Corseuil et al. 2011b; Lapinskienne and Martinkus 2007; Ramos et al. 2013; 

Sorensen et al. 2011). 

On the few existing studies on anaerobic conditions (Aktas et al. 2010; Corseuil et al. 2011b; 

Lapinskienne and Martinkus 2007; Ramos et al. 2013; Sorensen et al. 2011), some focused on 

evaluating the degradation in terms of LCFA (long-chain fatty acids), nitrates, and sulfates 

(Corseuil et al. 2011b; Liu and Suflita 1994), and also on biodiesel impacts, for example, on metal 

corrosion (Aktas et al. 2010). One recent study examined the efficacy of ammonium acetate for 

the biostimulation of anaerobic BTEX removal in the field at a B20 contaminated site (Ramos et al. 
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2013). Corseuil et al. (2011b) studied the use of soybean and castor bean oil biodiesel and found 

that unsaturated/less viscous bio- diesel tends to be more easily degraded; however, it is not known 

whether other types of biodiesel will show similar behavior. In addition, limited research has been 

done to examine the impact of biodiesel on the anaerobic biodegradation of benzene. Previous 

work on the influence of biodiesel on anaerobic benzene biodegradation showed the negative 

impact of one type of bio- diesel (soybean biodiesel) but did not monitor for methane production or 

test other biodiesel sources (Corseuil et al. 2011b). Another work monitored for methane 

production but did not identify the source of biodiesel in the B20 blend (Ramos et al. 2013). 

Anaerobic benzene degradation is important due to its presence in fuel hydrocarbons, toxicity, and 

the difficulty in its degradation under methanogenic conditions (Da Silva and Alvarez 2004; 

Edwards et al. 1992; Grbic-Galic and Vogel 1987). It is, however, expected, that the anaerobic bio- 

degradation of different types of biodiesel and the resulting impact on benzene degradation 

presents a high degree of complexity (Corseuil et al. 2011b; Sorensen et al. 2011). 

Therefore, the aims of the study were to perform anaerobic biodegradation of the different types 

of bio- diesel in the presence and absence of benzene while monitoring  methane  production  

and determining organic acid production, and evaluate how different biodiesel compositions 

affect the biodegradability, namely in the presence of benzene. 

 

 

2 Materials and Methods 

 

2.1 Materials 

 

The vegetable oils and animal fat used were commercial. The soybean oil used was from the 

brand OliSoja, the pork lard was from the brand Monteiro Carnes and the castor bean oil was from 

Fagron. The reagents used during biodiesel synthesis and purification procedures were methanol 

99.5 % (analytical grade, Fisher Scientific), sodium hydroxide 97 % powder (reagent grade, 

Aldrich), potassium hydroxide >99 % (ACS, P.A., Merck), and hydrochloric acid 37 % (ACS 

reagent, Aldrich). Benzene standard used during anaerobic degradation studies was ≥99.5 % 

(Panreac Química SAU) and Methane standard for GC analysis was 99.9995 % (Linde). All other 

chemicals used were of reagent grade. Sediment samples used were collected from a lagoon 

downgradient from the Estarreja Chemical Complex (NW Portugal), with the following 

coordinates: 40° 46′ 34.6″ N, 8° 36′ 68.4″ W. The site has a long history of contamination, 

including benzene and other hydrocarbons (Ordens 2008). 

 

2.2 Biodiesel Production 

 

Biodiesel was produced by a homogeneous alkali transesterification reaction, followed by 

purification steps. The conditions used varied depending upon the raw material, being selected 

based on previous work (Dias et al. 2008a; 2008b; 2013b). 

Biodiesel was produced in duplicates and the results regarding the properties are mean values 

with relative percentage differences always less than 5 % of the mean. 
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2.3 Analytical Methods 

 

2.3.1 Raw Materials and Biodiesel Characterization 

 

The acid value of the raw materials was determined by volumetric titration according to the 

standard NP EN ISO 660 (2002). Other properties of such raw materials might be inferred from 

previous studies (Dias et al. 2008a;  Dias  et  al.  2008b;  Dias  et  al. 2013b). 

Composition derives from the methyl ester analysis in the GC according to EN 14103 (2003). 

The biodiesel quality was evaluated according to the European biodiesel standard EN 14214. The 

following properties were determined: (i) acid value, by volumetric titration according to the 

standard EN 14104 (2003); (ii) kinematic viscosity, determined at 40 °C using glass capillary 

viscometers according to the standard ISO 3104 (1994); (iii) flash point, using a rapid equilibrium 

closed cup method, according to the standard ISO 3679 (2004); (iv) ester and linolenic acid methyl 

ester con- tents, by gas chromatography (GC) according to the standard EN 14103 (2003); (v) 

iodine value, determined from ester content according to annex B of EN 14214 (2003); and, 

oxidation stability, determined at 110 °C, according to the standard EN 14112 (2003), using a 

Rancimat  equipment (Metrohm). 

GC analyses were conducted on a Dani GC 1000 DPC gas chromatograph (DANI Instruments 

S.p.A.) with an AT-WAX (Heliflex capillary, Alltech) column according to (Dias et al. 2008a, 

2013b). 

 

2.3.2 Determination of Methane, Benzene, and Organic Acids 

 

Methane and benzene were analyzed using headspace samples (0.1 or 0.5 mL collected using a 

Pressure-Lok® analytical syringe (VICI)) by gas chromatography. A Shimadzu GC-2014 

equipment was used, being equipped with a flame ionization detector and a 1 % SP-1000 on a 

60/80 Carbopack B packed column (Supelco). The following temperature program was used: 60 

°C for 3 min, 20 °C /min rate until 200 °C, followed by an 8 min hold. The injector and detector 

temperatures are as previously described (Freedman and Gossett 1989). The concentrations of the 

aqueous substrate solutions were determined from headspace samples using Henry’s constants, as 

previously described (USEPA 2005). 

Organic acids (acetate, propionate, formate, pyruvate, valerate, malonate, maleate, oxalate, and 

citrate) were analyzed by ion chromatography using a Dionex IonPac AS11-HC 4×250 mm, a 

suppressor (ASRS®300 4 mm), and an eluent generator cartridge (Dionex, RFICTM). The 

conditions were as follows: pre-run of 8 min followed by 20 min with 30 mM NaOH and 

finally 10 min with 60 mM NaOH; the flow rate used was 1.5 mL min−1, as previously described 

(Pereira et al.2013). 

 

2.3.3 Microcosm Preparation 

 

Microcosms were prepared and sealed (Teflon-lined septa with aluminum crimp caps) in an anaerobic 

glove box (Bactron Anaerobic Chamber model II) with 20 g of wet sediment and 80 mL of synthetic 

groundwater in 125 mL serum bottles. The synthetic groundwater contained the following 

compounds: NaCO3 (410 mg/L), KH2PO4 (531  mg/L),  K2SO4  (40  mg/L),  NH4Cl  (16 mg/L), 

MgCl2·6H2O (12 mg/L), and CaCl2  (6.7 mg/L) as previously described (Da Silva et al. 2005; Von 
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Gunten and Zobrist 1993) and supplemented with resazurin (0.5 mg/L) as redox indicator. The bottles 

were subsequently removed from the chamber and purged with N2 followed by the addition of 1.5 

mL of CO2. The initial pH of the microcosms was approximately 7.5. 

Microcosms were amended with each type of biodiesel alone (soybean B100 (100 % biodiesel), 

pork lard B100, and castor bean oil B100), benzene, or biodiesel of each type plus benzene, as follows: 

set 1 (60 mg/L B100 soybean), set 2 (60 mg/L B100 pork lard), and set 3  (60 mg/L B100 castor bean 

oil) were prepared in duplicate; sets 4 (3–4 mg/L benzene), 5, 6, and 7 (3–4 mg/L benzene+60 mg/L 

soybean, pork lard, or castor bean oil B100, respectively) were prepared in triplicate. Controls were 

also prepared in duplicate without the addition of biodiesel or benzene (‘As Is’). In addition, 

microcosms were setup in duplicate using lactate (150 mg/L) as a readily degradable substrate. 

Estarreja sediment was effective in producing methane from lactate (Danko et al. 2012). The 

concentration used for lactate was the same amount of COD as for the biodiesel. Abiotic controls 

were prepared by autoclaving (20 min, 121 °C). The incubation period was approximately 200 days. 

Microcosms were quiescently incubated at room temperature (20–25 °C), upside down and in the 

dark. Methane production was evaluated over time. 

 

 

3 Results and Discussion 

 

3.1 Raw Material and Biodiesel Properties 

 

The most relevant properties of the raw materials used are presented in Table 1. The soybean oil 

composition (inferred  from  the  methyl  ester  profile)  shows that 15.4 wt% is saturated fatty 

acids and, mostly, linoleic acid is present, which agrees with the reported values for this type of oil 

(Dias et al. 2008a; Rossel 1986), being the only oil between the studied ones with around 4 wt% of 

a polyunsaturated fatty acid (C18:3) although with a slightly lower value of C18:3, compared with 

the literature (between 5.5 and 9.5 wt%) (Rossel 1986), which might indicate some degree of 

degradation, also reflected by the acid value, that is also slightly higher than the value reported 

for soybean virgin oil (Dias et al. 2008a). It should be emphasized that such differences should not 

affect the behavior of the fuel, since it is still high-quality oil. The lard biodiesel presented a similar 

composition as others reported in the literature with 34.5 wt% of saturated methyl esters and 

relatively low acid value (Dias et al. 2008b; 2013a). The castor oil presents a unique composition, 

with around 90 wt% of ricinoleic acid. The composition values agree with range reported in the 

literature (Rossel 1986) and the acid value is relatively low, which would be expected for refined 

oil. The iodine values clearly reflect the degree of unsaturation of the raw materials and agree with 

previous studies (Dias et al. 2008a, b; 2013b). 

The key quality parameters of the biodiesel produced are presented in Table 2. The flash point was 

similar between the different biodiesel types and it is an indicator of the fuel safety for handling and 

storage (values higher than 101 °C are demanded by EN 14214). The other measured properties 

clearly distinguish the three types of fuels. Biodiesel from pork lard presented the lowest oxidation 

stability, indicating that it might be more prone to degradation whereas the ricin oil present- ed 

clearly the highest oxidation stability, even though the acid value was found to be high in this 

product. In addition, the kinematic viscosity of castor oil biodiesel is more than five times higher 

than that of the other types of biodiesel, which might also interfere with the biodegradation of this 

type of biodiesel (decreasing its bioavailability). The low oxidation stability of the soybean oil 

biodiesel might be related to what was previously refereed in terms of the C18:3 content and 
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might also be reflected in the ability of this oil to biodegrade. In general, biodiesel properties are 

within the range of values found in previous studies (Dias et al. 2008a; Dias et al. 2008b; Dias et al. 

2013b). 

 

3.2 Anaerobic Biodegradation of Biodiesel (B100) from Soybean Oil, Pork Lard, and Castor Oil 

 

Experiments were conducted to examine the impact of the different characteristics of biodiesel on 

its anaerobic biodegradation. For  that, the  amount  of  methane produced from the anaerobic 

degradation of the different biodiesel types in each microcosm (soybean oil biodiesel microcosm 

(MSO), pork lard biodiesel microcosm (MPL) and castor oil biodiesel microcosm (BCO)) was 

measured. All microcosms contained sediment, groundwater, and resazurin. The different 

biodiesel types were added to each bottle (approximately 60 mg/L) and, in addition, lactate-only 

bottles were used (approximately 150 mg/L) to serve as a control and to gauge microbial activity, 

as previously referred. All batch experiments were initially pink, indicating that the incubations 

were not anaerobic. After a period be- tween 3 weeks and 1 month, all of the batch reactors for all  

of  the  different  types of  tests,  except for the autoclaved controls, turned clear, indicating that 

anaerobic conditions were present. Soon afterwards, methane production was observed in the live 

incubations (Fig. 1). Similar behavior was observed for the lactate controls (data is further 

analyzed in section 3.3). 

Previous work with soybean oil-based biodiesel indicated that both nitrate and sulfate were 

completely consumed after 35 days (Corseuil et al. 2011b). The autoclaved bottles remained pink 

and methane production was not observed; therefore, the degradation of the different types of 

biodiesel must have occurred via biological processes and primarily under anaerobic conditions. 

Even though the specific characteristics of each type of biodiesel are different (Tables 1 and 2), 

Fig. 1 shows little differences in methane production between them. Due to the different 

composition of each biodiesel and specifically, the unique composition of castor bean oil (with a 

very high percentage of methyl ricinoleate and also a very high viscosity), it would be expected that 

the biodegradation would show a different trend compared to the other types of biodiesel, due to 

lower bioavailability, as observed in previous studies (Corseuil et al. 2011b). However, the 

biodegradation rates based on methane production between the three biodiesel types in this study 

were very similar. The reason why this behavior was observed is further explored in the next 

section. 

 

3.3 Effects of the Presence of Biodiesel in the Anaerobic Degradation of Benzene 

 

Experiments were conducted to evaluate the impact of the three different biodiesel types on 

benzene biodegradation. This is important since benzene is often the contaminant of concern at 

hydrocarbon contaminated sites and previous work on the influence of biodiesel on anaerobic 

benzene biodegradation showed the negative impact of soybean oil biodiesel (Corseuil et al. 

2011b). This study aims to present further information, namely considering the behavior of other 

types of bio- diesel and also by measuring the methane produced during degradation. The results 

of the biodiesel impact on benzene biodegradation are shown in Table 3. Over the 150-day period 

of monitoring, approximately 18 % of the initial amount of benzene was removed through 

biodegradation. Such removal is not surprising considering that the anaerobic biodegradation of 

benzene is notoriously difficult and may require very long periods of time for total removal (Da 

Silva and Alvarez 2004; Edwards et al. 1992; Grbic-Galic and Vogel 1987). On the other hand, 



7 

less biodegradation on average was observed for benzene with biodiesel made from pork lard, 

castor oil, or soybean oil. This suggests that the presence of biodiesel negatively impacted benzene 

degradation, which agrees with previous results using soy- bean oil biodiesel (Corseuil et al. 2011b). 

Adding to that previous study, this work also demonstrates these negative effects with two additional 

types of biodiesel (pork lard and castor oil). Taking into account the different types of biodiesel, 

there were differences observed be- tween the amounts of benzene removed, with the highest 

removal being observed in the presence of pork lard and the lowest for castor oil. This might have 

been caused by the higher viscosity and lower bioavailability of castor oil biodiesel compared to 

the other biodiesel types. 

The negative influence of biodiesel in benzene bio- degradation may have been caused by a 

variety of mechanisms, as suggested by Corseuil et al. (2011b). Biodegradation of aromatics, such 

as benzene and toluene, is known to be negatively impacted by the presence of ethanol and other 

compounds (Ma et al. 2013; Osterreicher-Cunha et al. 2009). For example, enzymes involved in 

aromatic biodegradation could be repressed (catabolic repression) or feedback inhibition (metabolic 

flux dilution) could occur in the presence of other compounds such as acetate, ethanol, or phenol 

(Duetz et al. 1994; Lovanh and Alvarez 2004; Lovanh et al. 2002; Ma et al. 2013). These 

compounds can be groundwater contaminants and/or products of anaerobic processes. Also, the 

biodegradation of ethanol has been shown to rapidly deplete electron acceptors, which could have 

been used for benzene, toluene, and xylene biodegradation (Da Silva and Alvarez 2002). In addition, 

the thermodynamics of the system could interfere with benzene biodegradation. For example, 

acetate concentrations above 64 mg/L (Corseuil et al. 2011a) and 75 mg/L (Ramos et al. 2013) 

were found to be responsible for the inhibition of anaerobic biodegradation of benzene. Also, 

ethanol has been shown to decrease the relative abundance of benzene, toluene, and xylene 

degrading bacteria (Cápiro et al. 2008). 

The amount of methane produced in this study from microcosms was much lower than expected 

based on the amount of biodiesel added to the microcosms since the expected amount was between 

approximately 4000 and 5000 μL. Therefore, different reasons for the low activity were explored. 

After approximately day 190, aliquots from the microcosms were removed and the pH was 

checked. The values for pH for all the bottles ranged from 7.2 to 7.4, which is within the normal 

range for microbial activity. Next, organic acids were determined since they, along with methane, 

can be products of the anaerobic biodegradation of biodiesel. The results indicate that several acids 

were produced, including acetate, propionate, formate, and malonate; however, at low 

concentrations, of less than 100 mg/L (Table 4). An electron balance was performed based on the 

amounts of biodiesel added and on the amounts of methane and organic acids produced. 

Accordingly, the estimated COD recovery of the products was 40.3 %, 28.9 %, and 29.4 % for 

BCO, BSO, and BPL, respectively. Since little methane and organic acids were produced, the 

results retained from the analysis of this study cannot draw definite conclusions on why this 

behavior occurred, although possible reasons are explored in the following paragraphs. 

One possible explanation for the relatively low recovery is due to the presence of long-chain 

fatty acids (LCFA), which are biodiesel and lipid biodegradation products. LCFA overloading has 

been shown to lead to volatile fatty acid (VFA) and LCFA accumulation that may significantly 

reduce methane production due to imbalances between acid consuming and methane producing 

microorganisms (Alves et al. 2009; Angelidaki and Ahring 1992; Eiroa et al. 2012; Rinzema et al. 

1994). Overloading of LCFA can cause concentrations of total volatile acids to be above 2000 mg 

COD/L or more and/or acetate concentrations above 500 mg COD/ L (Cavaleiro et al. 2001; 

Cavaleiro et al. 2009; Eiroa et al. 2012). As the total calculated amounts of COD (<55 mg COD/L) 
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and acetate (<15 mg COD/L) produced in this study for microcosms containing biodiesel are much 

less, they should not be inhibitory. 

Results of VFA analysis, methane produced, and the COD balance suggested that some micro- or 

macronutrient(s) limitation was affecting microbial activity. To evaluate this fact, approximately 

8 mL of media  (10 vol%) was removed from the microcosms containing lactate. Subsequently, 

the same volume of O2  free synthetic groundwater as described in the materials and methods  

(prepared  in  an  anaerobic  glove box) was added back to these bottles and purged with N2 

followed by an addition of CO2 (as described in Section 2). 

After 3 days of incubation, methane concentrations were checked and although the two 

microcosms reached different maximum values of methane production, there is no doubt that a 

very significant increase in methane production occurred in both cases (Fig. 2). The differences 

observed may be due to the heterogeneity of the soil. Production continued thereafter for 

approximately a total of 70 days. The  amount of methane produced was approximately 35 times 

higher (on average) than the amount produced prior to the introduction of new media. This 

suggests that the microbial activity was, in fact, limited by some macro- or micronutrient(s) 

deficiency rather than inhibition by LCFA. Nutrient limitation is known to affect biodegradation 

and microbial community development and the addition of nutrients was found to increase 

anaerobic activity by as much as 50 % or more in different studies (Feng  et al.  2010; Jansen et 

a l . 2007 ; Kay ha n ian a nd R ich 1995 ; Monanakrishna et al. 2010). This is expected since 

micro- and macronutrients are key components of enzymes, proteins, etc. (Takashima and Speece 

1990). These results may also help to explain the differences observed in this study, namely the 

apparent low level of biodiesel biodegradation and the non-existent differences between the 

different biodiesel types, compared to other studies (Corseuil et al. 2011b) on the anaerobic 

biodegradation  of biodiesel. 

 

 

4 Conclusion 

 

This study showed the anaerobic degradation of different types of biodiesel (from soybean oil, 

pork lard, and castor oil) through methane production and also by the production of several 

organic acids, including acetate. The differences between the degradation behavior of each fuel 

were negligible, contrary to what was expected; however, the amount of methane produced during 

biodegradation from the microcosms was low, apparently due to micro- and/ or macronutrient 

limitation that was confirmed upon the addition of new media. Nevertheless, the results showed 

that under the examined conditions, the different types of biodiesel negatively impacted benzene 

biodegradation. This suggests that sites containing mixtures of these compounds may need active 

steps  to ensure that benzene does not migrate away from these areas. In addition, this study 

suggests that the comparison between biodiesel from different raw materials under anaerobic 

degradation is even more complex than expected, and, therefore, it is important to find other ways 

to obtain further information on  the relationships between different properties of bio- diesel and 

its anaerobic  degradation. 
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Fig. 1 Methane production during anaerobic degradation of the different types of biodiesel; MSO 

soybean oil biodiesel microcosm, MPL pork lard biodiesel microcosm, MCO castor oil bio- diesel 

microcosm 

 

 

 
Fig. 2 Methane production from lactate-containing microcosms (MC1 and MC2) after the 

addition of new media. Bottles were purged of residual methane concentrations at day 190 and 
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given new groundwater 

Table 1 Raw material properties 

 
 

 

 

Table 2 Quality properties of soybean oil biodiesel (BSO), pork lard biodiesel (BPL), and castor 

oil biodiesel (BCO) 
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Table 3 Benzene biodegradation in the presence of biodiesel 

 
 

Table 4  Organic acid 

analysis 

 

 


