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Abstract 

The work described here has the goal of providing mathematical models for important 

spatial information processing mechanisms in the brain. Two original models were 

developed targeting two core mechanisms: one dedicated to the phase precession effect 

and the other to the formation of hexagonal firing patterns of grid cells. Both mechanisms 

are embedded on the general problem of spatial information coding in the animal brain 

and, possibly in the human brain. The models were constructed in close relation with the 

known biophysical details of the brain areas being modeled. 

Phase precession is one of the most well-known examples within the temporal coding 

hypothesis. Here we present a biophysical spiking model for phase precession in 

hippocampal CA1 which focuses on the interaction between place cells and local 

inhibitory interneurons. The model's functional block is composed by a place cell (PC) 

connected with a local inhibitory cell (IC) which is modulated by the population theta 

rhythm. Both cells receive excitatory inputs from the entorhinal cortex (EC). These inputs 

are both theta modulated and space modulated. The dynamics of the two neuron types are 

described by integrate-and-fire models with conductance synapses. The EC inputs are 

described using non homogeneous Poisson processes. Phase precession in our model is 

caused by increased drive to specific PC/IC pairs when the animal is in their place field. 

The excitation increases the IC's firing rate, and this modulates the PC's firing rate such 

that both cells precess relative to theta. Our model implies that phase coding in place cells 

may not be independent from rate coding. The absence of restrictive connectivity 

constraints in this model predicts the generation of phase precession in any network with 

similar architecture and subject to a clocking rhythm, independently of the involvement 

in spatial tasks. 

The second model addresses grid field formation. Grid cells (GCs) in the medial 

entorhinal cortex (mEC) share the property of having their firing activity spatially tuned 

to a regular triangular lattice. Several theoretical models for grid fields formation have 

been proposed but most of them fail to account for important biological constraints such 

as the lack of high recurrence levels and absence of topographic organization in mEC. As 

such, models for grid fields’ formation are still under active improvement. In this thesis 

we present an original model for the formation of grid like firing patterns supported on 
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two key hypothesis: i) spatial information in GCs is directly linked to place cells (PCs) 

rate activity and ii) grid hexagonal fields result from a combined synaptic plasticity rule 

involving inhibitory and excitatory units mediating the connections between PCs and 

GCs. Depending to the location of its receptive field, each PC can affect the activity of 

the GC with excitatory inputs or inhibitory inputs. Besides its nature, the magnitude 

attributed to the PC input is a function of the distance to the place field center, which is 

inferred from rate decoding. A biologically plausible learning rule drives the evolution of 

the connections strengths from PCs to a GC. In this model, place cells compete for grid 

cell activation and the plasticity rule favors efficient packing of the space representation. 

This leads to grid like firing patterns, while not requiring a topographic organization. In 

a new environment grid cells continuously recruit new place cells to cover the entire 

space. The model described here can represent the feed-forward connections from 

hippocampus CA1 towards deeper mEC layers. 
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Resumo 

O trabalho desenvolvido para esta tese consiste na proposta e implementação de modelos 

matemáticos e biofísicos capazes de reproduzir importantes mecanismos de 

processamento de informação espacial atribuídos ao hipocampo e ao córtex cerebral. Dois 

modelos originais foram criados: um dedicado à reprodução do mecanismo de phase 

precession e outro à formação dos campos recetivos hexagonalmente distribuídos, 

característicos das células grid. Os dois processos referidos fazem parte de um problema 

geral, o da aprendizagem e formação da memória espacial em mamíferos. 

A phase precession é um dos exemplos mais conhecidos dentro da hipótese de codificação 

temporal. Nesta tese apresenta-se um modelo biofísico do tipo spiking para a precessão 

de fase na região CA1 do hipocampo baseado na interação existente entre place cells e os 

interneurónios inibitórios. O bloco funcional deste modelo é composto por uma place cell 

(PC) ligada a uma célula inibitória local (IC) que é modulada pelo ritmo theta 

(característico da população de células inibitórias). Ambas as células recebem inputs 

excitatórios do córtex entorrinal (EC) modelados espacialmente e pelo ritmo theta. A 

dinâmica dos dois neurónios é descrita por modelos do tipo integrate-and-fire com 

sinapses condutoras. Os inputs provenientes do EC são gerados usando processos de 

Poisson não homogéneos. No nosso modelo, o efeito de precessão de fase é conseguido 

através de um aumento do input que chega a pares específicos de PC/IC quando o animal 

atravessa os seus campos recetivos. A excitação aumenta a taxa de disparo do IC afetando 

por sua vez a taxa de disparo do PC. Consequentemente ambas a células mostram um 

avanço no disparo relativamente à fase do ciclo theta. A implicação mais importante que 

se obtém deste modelo é que a codificação em fase nas place cells pode não ser 

independente da codificação em taxa. Adicionalmente, a ausência de condições restritivas 

relativamente à conectividade entre as células envolvidas, torna este modelo capaz de 

gerar precessão de fase em qualquer rede com uma arquitetura similar e sujeita a um 

ritmo, independentemente do seu envolvimento em tarefas espaciais.  

As grid cells (GCs) do córtex entorrinal médio (mEC) possuem tipicamente uma 

atividade de disparo espacialmente distribuída sob os vértices de uma malha triangular 

regular. Vários modelos teóricos/computacionais para a formação deste tipo de padrões 

de disparo já foram propostos. No entanto, na sua maioria, não entram em consideração 

com importantes condicionantes do mEC tais como a falta de elevados níveis de 
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recorrência e a ausência de uma organização topográfica das suas células espaciais. Desta 

forma, a criação de modelos robustos para a formação dos campos recetivos das grid cells 

está ainda sob estudo. Nesta tese apresenta-se um modelo original para a génese de 

padrões de disparo do tipo grid que assenta em duas hipóteses chave: i) a informação 

espacial das GCs está diretamente relacionada com a atividade das PCs e ii) os campos 

recetivos grid resultam de um mecanismo de plasticidade sináptica combinado que 

envolve neurónios inibitórios e excitatórios intermediando as ligações entre PCs e GCs. 

Dependendo da sua localização espacial, cada PC contribui com inputs excitatórios ou 

inibitórios para a atividade da GC. A natureza e a força do input de cada PC é função da 

distância ao centro do seu campo recetivo que é inferido por descodificação da sua taxa 

de disparo. Uma regra de aprendizagem fundamentada em pressupostos biológicos gere 

a evolução da força das ligações de várias PCs para uma GC. Neste modelo, as place cells 

competem pela ativação da GC e a regra de plasticidade favorece um empacotamento 

eficiente da representação do espaço. Como consequência, padrões de disparo do tipo 

grid são formados sem necessidade de impor uma organização topográfica às células. 

Quando expostas a um novo recinto, as grid cells continuam a recrutar novas place cells 

de forma a cobrirem por completo o espaço disponível. O modelo descrito pode ser 

considerado como representativo das ligações feed-forward da região CA1 do hipocampo 

às camadas mais profundas do mEC. 
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Preface 

 

 

 

 

The work developed and described in this thesis fits in an interdisciplinary field 

combining neuroscience, computer science, physics and mathematics - computational 

neuroscience. In this field of study, qualitative elements and quantitative data extracted 

from the animal (or human) nervous system are ingredients for computational models 

aimed at representing behavior features. Researchers in this relatively new area address 

problems that can go from synaptic, neural, networks to systems of networks, through 

one or a combination of several gates. Psychology, physiology, physics, mathematics, 

engineering sciences and neurobiology are examples of entries into the broad field of 

computational neuroscience. Interdisciplinary groups employ quantitative and modeling 

methodologies to enlarge the current knowledge of the nervous system function, for 

example by developing synthetic models to replicate animal and human behavior.  

The term neural networks has been used to describe networks of biological neurons from 

the nervous system of animals. Nowadays, this term refers to a parallel computation field 

receiving inspiration from brain units. Generally, in neural networks, modeling is pursued 

disregarding most of the biological constraints of neurons. In contrast, computational 

neuroscience keeps a close contact with biological systems throughout all the steps, 

contributing in great extent to the development of brain theory. 

Computational neuroscience involves several subfields, from which memory encoding 

and spatial navigation are two topics of relevance since (at least the second one) the first 

cells with spatial specificity were reported, in 1971. Thanks to the improvement of 

recording techniques allied with predictions extracted from theoretical models, the 

discovery of more spatial neural units has proceed and, nowadays, several are reported in 

the literature. Personally, the idea that a spatial map of our house, city or place of work 

could be engraved in networks of neurons in our brain (or in their connections, to be more 

precise) was enough motivation to proceed studies in this area. 

If the human brain were so simple that we 

could understand it, we would be so simple 

that we couldn’t. 

Emerson M. Pugh (Quoted by George E. Pugh in The 

Biological Origin of Human Values, p. 154, 1977) 
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Mostly relevant for the appropriate approach in any branch of theoretical neuroscience, 

is the acquaintance with the underlying neurobiology. Accordingly, a previous 

background study was necessary to assure a close relation of the models developed with 

the related biophysical features.  

The first chapter of this thesis provides a general introduction, where the basis of the 

developed work are described. Though not extensive, this chapter intends to elucidate the 

readers less acquainted with the field, covering the main experimental findings on the 

spatial brain context, together with the mathematical tools used in the computational 

models developed. In chapter 2 a review of proposed models for the phase precession 

effect and grid cell formation (more extensively) is presented. Chapter 3 is dedicated 

solely to the phase precession mechanism with our contribution to the area consisting on 

an original model. In chapter 4, focusing on the characteristic grid cell firing pattern, an 

original model for this pattern formation is described. The last two chapters correspond 

to a summary of main conclusions regarding each of the models created together with 

suggestions for further work which naturally flow from the thesis accomplishments. 
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1. Background 

The modeling developed in this thesis was done in close relation with neurobiological 

mechanisms, therefore, a detailed introduction to the neurobiology involved becomes 

essential.  

It is known, since Darwin studies, that most animals possess extraordinary abilities in 

learning suboptimal trajectories and keeping track of their location relative to a reference 

point. Rats, in particular, are capable of latent learning, i.e., learning during exploration 

in the absence of motivation or goals (such as food, predators …). For example, female 

rodents are able to reach pups that have been removed from their nests. Some species 

have shown to be able to follow a direct line into the original location of their “home”, 

even in cases where the nest has been displaced (McNaughton et al. 2006). 

Unravelling the mechanisms behind space representation in the rat’s brain is a major step 

towards the understanding of how these processes occur in the human brain. Moreover, 

finding efficient solutions to navigation as those used by neural systems, adds new tools 

to navigation challenges, faced for example in autonomous robots development. Hence, 

in this thesis, the focus is given to space information encoding in neural populations of 

rodents. 

Space representation in the rat’s brain is a short expression for a complex procedure, 

played at distinct neural locations at different time scales. In this introductory chapter, 

this concept will be addressed in some detail, starting with the anatomic framework about 

where, in the rat’s brain, this representation takes place. 

1.1 Anatomical and cellular framework 

Hippocampus has received growing attention from diverse neuroscience researchers 

involved in human amnesia, Alzheimer’s disease and, of most importance in this study, 

in learning processes and in memory formation in mammals (Burgess and O'Keefe 1998). 

The volume of humans (monkeys) hippocampus is about 100 (10) times larger than the 

rat’s hippocampus. In humans the organization of the different areas is more complex and 

some of them are more developed than in animals’ brain. Nevertheless, the basic structure 
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of hippocampus, its regions and connectivity, is common to all three species (see Figure 

1.1 for the rat and human examples) (Amaral and Lavenex 2006). 

The hippocampal formation in rats comprehends several regions which differ in the 

anatomical and physiological properties of their cells and their connectivity: dentate gyrus 

(DG), cornus ammonis 1 (CA1), cornus ammonis 2 (CA2), cornus ammonis 3 (CA3), 

subiculum, presubiculum, parasubiculum and entorhinal cortex (EC). Within 

hippocampus formation, connections are essentially made in a feed-forward fashion along 

the transversal axis, where DG is the most proximal region and EC is the most distal one 

(see Figure 1.1) (Amaral and Lavenex 2006; Freund and Kali 2008). 

 

Figure 1.1 Diagram of the hippocampus and related structures in the rat (left panel) and in humans (right panel). In the 

top of the head is the dorsal = septal = superior region; more close to the neck is the ventral = temporal = inferior region; 

in the frontal side of the head is the rostral = anterior region; in the back of the head is the caudal region, where dorsal 

and ventral hippocampal regions merge originating the posterior region. Rat drawing adapted from (Cheung and 

Cardinal 2005) and human illustration adapted from (Kandel and Squire 2002). 

Typically organized by morphology clusters, distinct types of neuron cells fill up the 

hippocampal formation areas, such as granule cells (the rat’s DG has approximately 

1.2×106 granule cells), pyramidal cells (CA1 and CA3 contain roughly 0.5×106 pyramidal 

cells), mossy cells (responsible for the recurrence in some fields like DG) and inhibitory 

interneurons of various types (basket cells, axo-axonic or chandelier cells, bistratified 

cells and many others). 

Neurons have different names according to their morphology (stellate or granular), the 

file:///C:/Users/Luisa/Desktop/Thesis/Figures/BothBrains_panels_flat.tif
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nature of their activity profile (neuron cells either excite or inhibit the cells they project 

to) and their baseline firing rate. Nevertheless, they all participate in the nervous 

transmission roughly by the same biophysical mechanisms. According to Ramon & 

Cajal’s doctrine, the neuron is the signaling unit of the brain. It was in the beginning of 

the 20th century that he and other neuroanatomists found that nervous cells have four 

distinct components: a cell body or soma, a certain number of dendrites, an axon (together 

with its collaterals) and a set of axons terminals, called synapses (or presynaptic 

terminals) (see Figure 1.2). Through the dendrites the neurons receive signals from other 

cells (presynaptic), signals follow into the soma and affect the membrane potential of the 

soma component. When firing threshold is reached, the soma fires an action potential 

(spike) which follows through the axon and is “delivered” to other cells (postsynaptic 

cells) through synapses. 

 

Figure 1.2 Anatomy of the typical neuron and zoom of its synaptic connection onto a postsynaptic neuron. Through the 

dendrites the neurons receive signals from other cells (presynaptic) which follow into the soma or cell body affecting 

its membrane potential. When firing threshold is reached, the soma produces an action potential (spike) which follows 

through the axon and is delivered to other cells (postsynaptic cells) through synapses. Scheme of the neurotransmitter 

release from the presynaptic cell onto the synaptic cleft, and binding to the postsynaptic neuron receptor sites (adapted 

from (Wade and Tavris 2000)). 

Granule cells are the only principal cell in the DG, meaning that only granule cells in DG 

innervate to other hippocampal regions. In general, principal cells are neurons that have 

axons connecting to other cells populations further than where their cell bodies and 

file:///C:/Users/Luisa/Desktop/Thesis/Figures/neuron&synapse_flat.tif
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dendrites are located. Principal cells are mainly excitatory in nature. Interneurons are 

commonly inhibitory and their local axons are responsible for maintaining the population 

in controlled levels of excitability. These are distinguishable from principal cells for 

having high rates of spontaneous activity, moreover they also show a particular 

modulation which will be addressed later. Principal cells are often complex spike cells, 

being characterized by a much lower baseline activity than interneurons, by occasional 

short bursts (complex spike patterns) of action potentials with successive decreasing 

amplitudes and experiencing long periods of no activity at all. In hippocampus proper 

(CA1, CA2 and CA3), principal cells are pyramidal; interneurons, as in DG, populate this 

region throughout its extent. Cells in CA2, CA3 and DG are also innervated by collaterals 

of their own axons, meaning that recurrence is a prevailing feature of this regions (Amaral 

and Lavenex 2006). The hippocampal formation is located in an advantage brain position, 

receiving sensory information through entorhinal cortex (EC) which in turn retrieves the 

processed data to neocortex (see Figure 1.3).  

 

Figure 1.3 The entorhinal cortex and the hippocampal formation. Neurons in layer III from EC project to CA1 field by 

the perforant path to temporal CA1 and alvear path to septal CA1. Neurons in layer II from EC project to the dentate 

gyrus (DG) and to the CA3 fields via the perforant pathways. Cells in the DG project to the CA3 field via mossy fibers. 

Double sided arrows represent recurrent connections within the respective regions. Colors indicate presence of place 

cells (green), grid cells (orange) and head-direction cells (blue) (adapted from (Amaral and Lavenex 2006)).  

EC is divided in two regions, the lateral entorhinal cortex, lEC, at a rostro-lateral position 

and the medial entorhinal cortex, mEC, at a caudal-medial position. They both project to 

the same cells in DG and CA3, while connecting to different groups of cells in CA1 and 

file:///C:/Users/Luisa/Desktop/Thesis/Figures/fig1_1_HCFORM_Tese.tif
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subiculum (Witter 2011). Most important to this study is the subdivision of EC (both 

medial and lateral regions) into 6 layers, each constituted essentially by one cell type. 

Information regarding EC typical neurons and enervating projections is summarized in 

Table 1.1.  

Table 1.1 Characterization of entorhinal cortex layers regarding the existent cells and projections within layers, between 

layers and with the remaining hippocampal areas.  

EC 

Layers 

Contents Projections 

I Fibers and few cells. The few cells project to layer II. 

II Stellate cells (big and medium size 

cells) and pyramidal cells (small and 

clustered in groups, especially in 

lEC). 

Both project to CA3 and DG. 

III Essentially pyramidal cells. Pyramidal cells project to CA1 and 

subiculum; intralaminar connections exist 

between principal neurons. 

IV Lamina dissecans (Scattered fusiform 

or pyramidal cells, although generally 

referred as having no cells). 

Project to the white matter and their 

dendrites extend up to layer I. 

V Pyramidal cells, small spherical cells 

and fusiform neurons. 

Axons collaterals reach layers V 

(intralaminar) and VI and occasionally 

layer II; their dendrites extend up to layer I 

and II.  

VI Cells with different shapes and sizes. Project essentially to V and VI layers; 

collateralized axons also influence layers I, 

II, III, DG and hippocampus proper. 

 

As to interneurons, essentially inhibitory, they are found throughout all EC being more 

abundant in superficial layers. Moreover, non local inhibitory cells have been found in 

layers II and III that project to DG (Amaral and Lavenex 2006). A remark for Table 1.1, 
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is that intralaminar excitatory connections within layers III and V of EC have been 

reported to be around 10% and inexistent for layer II, where the existing connections are 

thought to be between principal neurons and interneurons (Dhillon and Jones 2000). 

Adding to the unidirectional flow of information in the hippocampus formation is the 

topographic organization of the connections. This means that septal (temporal) parts of 

the hippocampus receive projections from the lateral (medial) EC (see Figure 1.1) 

whereas the same scheme is maintained in the main projections from subiculum and CA1 

back to EC (Amaral and Lavenex 2006). This organized connectivity regime allows for 

an information flow, that follows along the loop, being updated whenever extra input is 

provided by cortical areas or as signals are processed by inner ones. 

Although information is already spatially modulated at the entrance, the capacity of 

generating a structure able to support spatial memory and navigation is commonly 

attributed to the hippocampus. Each one of these processes incorporates complex 

mechanisms of information integration and processing (Fyhn et al. 2004), two of which 

are the focus of the work developed for this thesis described in chapters 3 and 4. 

1.2 Spatial cells 

Some of the most remarkable results obtained by measuring cells activity in rat’s 

hippocampus and entorhinal cortex regions during foraging are that some cells play 

distinct and complementary tasks in the spatial orientation process. The most important 

spatial cells reported in the literature are described in this section: place cells, grid cells, 

head-direction cells and border cells. Particular emphasis is given to the first two as they 

are crucial elements in the models created for this thesis. No grid cells or other spatial 

related activity neurons were found in the lateral lobe of EC, so it is commonly assumed 

that from the entorhinal cortex, only mEC is involved in navigation (Moser and Moser 

2008).  

1.2.1 Place cells 

More than 40 years ago O’ Keefe and Dostrovsky reported the existence of a cell type 

with consistent (across trials) activity confined to a certain place of the environment – the 

place cell (O'Keefe and Dostrovsky 1971). This particular firing pattern can be found in 
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DG granule cells, in pyramidal cells from layers CA1 and CA3 of the hippocampus and 

also in subiculum (see green fields in Figure 1.3). Experimentally, for the purpose of 

recording cells’ activity, micro-electrodes are implanted in the rats’ brain in an adequate 

position (during a surgery). With this micro-electrodes experimentalists are able to record 

single-neuron activity in the awake animal.  

As the rat runs in a one way maze or in a two dimensional maze, the place cell’s firing 

map obtained is characterized by one limited region of high activity (red) – the place field 

– on a silent background (see Figure 1.4 a). The maximum firing rate achieved by a place 

cell is variable throughout different regions, reaching 20 Hz in hippocampus versus 15 

Hz in subiculum. 

 

Figure 1.4 Representative firing profiles of the canonical spatial cells. a – Place cell’s spikes position (red squares) 

superimposed on the rat trajectory (black path) in a square maze with 60×60 cm. The firing activity of this cell is tuned 

to the northeast region of the maze. b – Polar plot indicating a head-direction cell’s strong directional tuning for the 

southwest of the maze (the rate correspondent to the longer radius length is indicated below). c – Grid cell’s spikes 

position (red squares) superimposed on the rat trajectory (black path) in a square maze with 120×120 cm. d – Border 

cell’s spikes position (red squares) superimposed on the rat trajectory (black path) in a square maze with 100×100 cm. 

The firing activity of the cell is tuned to the north wall of the maze (adapted from (Marozzi and Jeffery 2012)). 

Cells’ firing maps are obtained by recording simultaneously the rat trajectory (monitoring 

a light placed in the rat’s head or abdominal region) and the times at which the cell spiked. 

To compute the firing rate, the maze is subdivided into small adjacent bins (e.g. 2 × 2 

cm2) and in each bin the number of spikes is divided by the time the rat spent in that same 

bin. Frequently this data is space averaged and smoothed. As a result, a place cell firing 

rate map commonly resembles a two dimensional Gaussian profile (O'Keefe 2006). 

At each hippocampal location, all portions of the environment are represented by local 

place cells, with ventral cells exhibiting broader fields than dorsal ones throughout the 

hippocampal layers (Kjelstrup et al. 2008). However, place cells coding for nearby 

positions in an environment are not found in neural neighboring locations, providing no 

evidence of a topographic mapping of hippocampus neural tissue onto physical space. On 

the other hand, distinct environments are coded by different assemblies of place cells, 

file:///C:/Users/Luisa/Desktop/Thesis/Figures/Cap1_Space_cells_flat.tif
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thus a place cell may be silent in one environment as it could be active in two distinct 

environments. Normally, the animal runs searching for food spread throughout the 

available maze and this could induce the idea that place cell firing is correlated to food 

location. However experiences have provided evidence that place cell firing is 

uncorrelated to goal location (Quirk et al. 1992). 

In the search for factors that affect place cell shape, several experiences have been made 

where the rat is placed to forage in diverse shaped mazes. One of the first reported 

experiments regarded the behavior in linear versus open field apparatus. In one 

dimensional mazes, place fields seem to be directional i.e., the place field of a cell is not 

at the same maze position as the path is crossed in the two possible directions. In contrast, 

when placed in a maze where the animal can chose its running direction, the cell’s 

receptive field reveals no direction correlation (O'Keefe 2006). Some authors attribute 

this directionality in linear mazes to the ability of some cells to code for future/past 

positions of the rat, which is known as prospective coding and retrospective coding, 

respectively. Besides the knowledge of current position, the capacity to program the next 

move or to recall the last ones is prone to be critical in solving spatial tasks (Frank et al. 

2000). 

The act of squeezing or enlarging mazes also has an effect on place fields shape, but in 

general it is not consistent between reports. In circular mazes, when the diameter doubles, 

less than half of the place fields suffer size increase while in general, receptive fields 

remap to unpredictable positions and shapes. When square mazes are enlarged into 

rectangles by sliding one of the walls, place fields in the square maze remain intact while 

in the new areas, new fields are created from cells that were silent in the square region 

(O'Keefe 2006). However other reports conclude that fields expand or split during 

experiences where the sides of rectangular boxes are extended (Moser et al. 2008). Recent 

trials with rat pups reveal that early cells’ place fields also change after environment shape 

modifications (Langston et al. 2010). 

Another relevant experience was made with a square maze that was progressively 

modified into a circular one, across an octagonal series of intermediate shapes, with the 

rat placed inside the maze. Almost all of the place cells, recorded simultaneously, 

switched abruptly in one of the intermediary mazes (roughly the same for all cells). Some 

cells lost/gain a field in the maze while others had their locations changed (Wills et al. 

2005). 
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Place cells have also been recorded as the rat forages in the hairpin maze, which is a one 

dimensional maze with enforced changes in direction. Each arm of the maze is coded as 

a distinct one dimensional maze, thus suggesting that some internal mechanism resets the 

special code at each turn of the hairpin (Derdikman et al. 2009). 

Rotation of the box or rotation of a cue card on the box wall, usually originates rotation 

of the field (relative to the box) in the same angle. If the lights are switched off when the 

animal is in the box, place fields are likely to remain intact. However, if the rat is moved 

and then placed back on the apparatus in the dark, then about half of the fields are changed 

(O'Keefe 2006). In contrast, experiences where the cue card is completely removed, 

produce no effect on shape, size, intensity and radial position on the majority of place 

fields. The maintenance of place fields’ position after removal of cues provides support 

that something more complex than simple sensory information is responsible for the 

receptive fields of these cells (Quirk et al. 1992). Nevertheless, a common result 

throughout place fields’ recordings is that they are more sensitive to changes in distal 

sensory clues than in proximal ones (Moser et al. 2008).  

Independent studies have conveyed the notion that place cells are able to represent 

simultaneously information about not only place but also content of a trial. Concerning 

this finding, a relevant observation of firing patterns of place cells during experiences is 

that the receptive fields of a unit can change in rate and/or preferred space position when 

something in the environmental configuration or in the experience context is modified. 

This concept, known as remapping, is often divided in two separable items. Rate 

remapping corresponds to a change, relatively to a previous configuration, in the rate 

distribution along the receptive field. Global remapping corresponds to a more radical 

effect, such as the disappearance/appearance of the place field or its change in position 

and rate. The softer remapping is verified after slight modifications of the cues 

arrangement in a single location while global remapping occurs in situations where the 

animal moves between different scenarios or sometimes when environmental cues are 

markedly changed (McNaughton et al. 2006). 

Subiculum has not been subject to the same scrutiny as other hippocampal regions. 

Interestingly, a recent report has found multi-peaked cells in this hippocampal region but 

more studies on subiculum neurons are needed to establish a reasonable description of 

their cellular properties (Kim et al. 2012). Place cells found in subiculum region have 

particular features, not shared with regular place cells from CA1, CA3 and DG. In the 
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subiculum, fields of spatial cells are broader (some occupy an entire maze with 74 cm in 

diameter) and their responses to environmental changes resemble those of grid cells more 

closely (Sharp 2006). 

In conclusion, a widely accepted strategy for the neurons to code rat’s position is through 

their Gaussian shaped receptive field which is consistently locked to certain regions of 

the environment – rate coding. Place cells and possibly grid cells, are considered as the 

neurons in charge for providing this spatial information to the rest of the brain. 

1.2.2 Grid cells 

Medial entorhinal cortex grid cells were reported by the first time in 2005, although some 

experimentalists had already suggested the presence of multi place fields in mEC cells 

(see (Fyhn et al. 2004) for a previous work which did not explored the cells hexagonal 

pattern). Grid cells are named after the firing pattern some mEC cells exhibit when the 

rodent forages for food in a maze. These particular cells are characterized by multi-peaked 

firing rate maps whose nodes are the vertices of a geometrically regular, triangular virtual 

lattice which tiles the entire recording maze (see Figure 1.4 c). Each grid map is 

characterized by three parameters (see Figure 1.5): phase or position of the grid vertices 

in the plane; spacing between the centers of activity and orientation defined by the lines 

that intersect the grid nodes (Hafting et al. 2005).  

 

Figure 1.5 Grid cell parameters extracted from a typical firing map. a – Spatial phase: Cartesian coordinates of the grid 

vertices. In red (real data) and white (imaginary) are examples of the sets of phases from two grid cells. b – Spacing: 

average of the distances from any vertex to the six alternative adjacent ones. c – Orientation: smallest positive angle 

between the horizontal line crossing one vertex (dashed line) and the 3 lines passing through that vertex and the each 

one of other vertices (γ) (adapted from (Moser and Moser 2008)). 

Grid cells in rodents have been found essentially in mEC, throughout all principal cell 

layers (II, III, V, VI) intermingled with other navigation related activity cells (Sargolini et 

al. 2006). More recently the same hexagonal firing patterns have been found in cells 

recorded from pre and parasubiculum (Boccara et al. 2010) (see orange regions in Figure 

file:///C:/Users/Luisa/Desktop/Thesis/Figures/GridCarac_flat.tif
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1.3). 

Experiments show that for a complete activity coverage of the available environment it is 

enough to record, simultaneously and in the same neural tissue position, a small number 

of grid cells. In fact, the distribution of the vertex sites or grid phases has been reported 

to be close to uniform assuring the coverage of the maze. There is no evidence of 

topographic relation between the relative position of cells in the cortex and their receptive 

fields’ relative position. Nevertheless, neural neighboring cells show fields with common 

orientation and spacing while their vertices location differs (Hafting et al. 2005). Another 

important feature, reminding us about the heterogeneity of the tessellation, is that the 

various nodes of one grid map can display disparate firing rates, ranging from above 

30 Hz in some vertices to a few spikes in others. Concerning the orientation of grid fields, 

there is no pattern, to our knowledge, about the orientation distribution throughout the 

dorsoventral axis of mEC (Hafting et al. 2005).  

In grid cells’ firing maps, the spacing and size of the receptive fields increase from 

dorsalmost to ventralmost recording locations (Hafting et al. 2005; Sargolini et al. 2006). 

It is common belief that these multi-peaked spatial cells have been recorded before but 

failed to reveal their hexagonal tessellating pattern due to the unfortunate combination of 

small mazes with cells in ventral portions of mEC (Quirk et al. 1992). 

Some experimental studies have been carried out in order to access the effect of 

environment changes on the receptive fields of grid cells. One example, made 

simultaneously with place cells in CA3 and grid cells in mEC’s layer II, has showed that 

when rate remapping occurs in place cells, grid vertices remain stable in mEC cells. 

Moreover, when global remapping occurs, e.g., a different set of place cells is active, grid 

fields realign shifting their vertices location, but without losing their intrinsic spatial 

phase structure (Fyhn et al. 2007; Savelli et al. 2008). Similarly to cells in CA1, 

prospective and retrospective coding has also been reported for EC neurons (Frank et al. 

2000). 

According to one of the first reports on grid cells, the hexagonal like structure in their 

receptive fields is present when the rat enters in a maze for the first time (Hafting et al. 

2005). However experiences with baby rats show that grid firing is not innate but takes a 

short period (4-5 weeks) of the early animals’ life to acquire adult properties (Langston 

et al. 2010; Wills et al. 2010). 
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Reports of grid like firing cells are emerging in mammals besides rodents. Experiments 

with walking bats have revealed that grid cells are also present in the cortex of these 

animals (Yartsev et al. 2011). Moreover, grid cells have been observed in the visual cortex 

of primates, when those were subject to visual tasks with their head fixed (Killian et al. 

2012).  

Several models have been proposed for the emergence of these characteristic cells. The 

second chapter of this thesis is dedicated to a complete review of existent models for grid 

cell formation. Part of the work in this thesis consisted in producing this hexagonally 

distributed firing map in a simulated cell. In the fourth chapter, a computational model 

originally created for this purpose is described. 

Gridness Score 

Along with the first reports of grid cells throughout mEC, experimentalists needed to 

define a measure to classify cells in order to distinguish grid cells in an objective and 

universal fashion. This measure, named gridness score, was reported in its original form 

in Sargolini’s supporting material of the 2006’s paper (Sargolini et al. 2006). Some have 

published alternative methods, which have not been used as broadly as the original. With 

proved value for experimental reports, this measure is also useful for computational 

models for grid cell formation. In fact, it provides a tool for defining how simulated grid 

fields are in line with the cellular ones. 

To evaluate how well the firing bumps of a cell form a grid structure, the spatial 

autocorrelation of the cell’s rate map is computed. Let f (x, y) denote the average firing 

rate of the cell at location (x, y) of the firing rate map. Each pixel of the autocorrelogram 

corresponds to the Pearson’s correlation coefficient between each bin of the rate map and 

the correspondent bin in the same rate map shifted by τx on the x axis and τy on the y axis. 

The Pearson’s correlation coefficient applied to lags (obviously discrete), τx and τy, is 

given by:  
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, where the summations are over all n pixels in f (x, y) for which rate was estimated for 

both positions: (x, y) and (x - τx, y – τy) (only accounted for lag pairs such that n ≥ 20). In 
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other words, the goal of this tool applied to firing rate maps is to measure the amount of 

correlation between the firing rates in any two positions of the maze, separated by lags τx 

and τy, attributing that correlation value to position (τx, τy) of the autocorrelogram. 

In the normalized autocorrelogram map of a cell, only the central ring region is 

considered: excluding the central peak of the autocorrelogram1 and including the closest 

surrounding peaks (ideally six). Then, other maps are generated by performing rotations 

of the ring map with center on the map central point by angles from 0º to 180º (because 

of the mirror symmetry of the autocorrelation), by steps of 6º (or less). For each one of 

the rotated maps or matrixes, a correlation value is computed between them and the 

original non rotated map. 

Finally, the measure evaluating how grid a cell is, is expressed as the difference between 

the minimum correlation at 60º and 120º (where a peak correlation would be expected 

due to the triangular nature of the grid) and the maximum correlation at 30º, 90º, and 150º 

(where the minimum correlation would be expected). In Sargolini’s report, cells were 

classified as grid cells whenever their gridness score was greater than 0, however other 

reports have provided higher thresholds for this categorization such as 0.30 (Langston et 

al. 2010). Denoting by rrotα the correlation of the original and the rotated ring map by α 

degrees, the formula for computing the gridness score of a map is given by: 

   60º 120º 30º 90º 150ºmin , max , ,Gridness Score rrot rrot rrot rrot rrot  . 

1.2.3 Other spatial cells 

Head-direction cells discovery dates from 1990, when Taube and colleagues reported the 

existence of cells whose firing was highly correlated with the direction of the animal’s 

head, with tuning curves stable across different trials (see Figure 1.4 b) (Taube et al. 

1990). The first recordings were made in the postsubiculum region which corresponds to 

the dorsal presubiculum. However, recent reports provide evidence of head-direction cells 

also in parasubiculum and in EC layers III to VI (see blue regions in Figure 1.3).  

These cells activity can go from low rates (0.5 Hz) up to a maximum value in the range 5 

to 40Hz. Experiments show that in the same recording location the distribution of their 

                                                 
1 Notice that by construction, the normalized autocorrelogram of a firing rate map has value 1 on its center – 

corresponding to zero lag for each coordinate – and doubled sides length, when compared to the rate map. 
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preferred directions is close to uniform. In EC, head-direction cells are found together 

with grid cells. Conjunctive cells have also been found in mEC, gathering properties of 

place (grid like) and head direction coding (Sargolini et al. 2006).  

Interestingly, head-direction cells recorded in distinct environments have tuning curves 

displaced by the same degree amount. More precisely, the preferred directions on one 

setting are rotations in the same angle of the preferred directions on another environment 

(Wills et al. 2010). 

Regardless of combinations of the three already mentioned, the fourth most important 

space cell has a pattern of firing related to the borders of the maze where the animal is 

located (see Figure 1.4 d). Border cells first extensive description is from 2008 although 

their existence had been previously predicted by navigation related models. These cells 

are present in all mEC layers and parasubiculum. The tuning of this cells firing can be set 

to a wall in one direction, two sides of the maze, a straight line parallel to a wall (not 

contiguous to it) or to the set of all the maze borders, for example in a circular arena. Just 

like head-direction cells, border cells also rotate their preferred region of firing when the 

maze is subject to a cue card rotation (Solstad et al. 2008). 

1.2.4 Ontogeny of spatial cells 

Soon after the discovery of the various spatial cells probably engaged in some part of the 

navigation process, the need for an ontogeny characterization of those cells emerged and 

studies with newborn rodents gained relevance. 

Place cells are shown to reach adult levels performance by the first 4-5 weeks after birth, 

however at younger ages some animals exhibit already consistent receptive fields 

between trials. After that time, information content or coherence of place fields do not 

increase throughout the place cells subpopulation (Langston et al. 2010; Ainge and 

Langston 2012). 

Grid cells reach adult levels after place cells, while head-direction cells are completely 

active and tuned even before the pup is taken from the nest for the first time. (Langston 

et al. 2010; Wills et al. 2010; Ainge and Langston 2012). There are no reports (to our 

knowledge) on the development of border cells’ specialization throughout rats’ life. 
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1.3 Neuronal dynamics 

When modeling a single neuron or a group of connected neurons, suitable types of 

mathematical dynamical models should be adopted, in accordance with the cellular and 

temporal detail required for the a specific situation. 

As previously showed, a typical neuron is divided into four specific sections: the soma, 

the dendrites, the axon and a set of synapses (recall Figure 1.2). Some mechanisms require 

the biophysics activity to be computed separately for each compartment, other do not 

demand such division. In the work developed for this thesis the compact approach has 

been used, which intends to model a neuron as a single compartment unit.  

Models with spiking neurons require detailed analyses and are biologically compliant; 

they range from complex dynamical systems of differential equations (Hodgkin-Huxley 

model) to simpler and more user friendly versions. Users may favor spiking models if the 

time of each spike or the oscillatory activity of the neurons membrane is of relevance for 

the study. Otherwise, firing rate models are preferred, with less variables to tune and 

simpler in their analyses (Dayan and Abbott 2001).  

Nevertheless, before going through the established mathematical formalism for cells 

activity, a biophysical detailed description of the mechanisms behind an action potential 

urges. 

The action potential 

A neuron cell state of activation is measured by the electrical potential difference between 

the intracellular and the extracellular medium, which is called the membrane potential of 

the neuron. This charge is due to the presence of ions in both sides of the membrane such 

as sodium (Na+, mostly extracellular), potassium (K+, essentially intracellular), calcium 

(Ca2+) and chloride (Cl−). A lipid bilayer forms the membrane of the cell (3 to 4 nm thick) 

which, by its molecular structure, does not allow ions to cross over it, being thus 

responsible for the maintenance of the ionic gradient.  

The distribution of the ions, at resting state, is responsible for a negative difference of 

potential between intracellular and extracellular mediums (around -70 mV). By 

convention, the medium submersing the cells has zero potential and thus the interior of 

the cell is charged at -70 mV. At rest, the cell is said to be polarized because an excess of 
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negative ions exist inside the cell close to the membrane and positive ions lie in the outer 

side of the membrane. 

Specialized proteins exist located in the lipid bilayer membrane of the cell. Such proteins 

are crossed by pores which allows for ions to flow in and out of the cell – ion channels. 

These gates open and close in response to voltage changes, they are voltage gated 

chemical synapses. Normally these channels are ion selective, controlling and regulating 

ion gradients. Others synapses exist, called electrical synapses, which form gap junctions 

and intermediate the passage of ions and small molecules from one cell to another, with 

no direction defined. When positive ions flow inside the membrane (or negative ions flow 

outside) the cell is said to be depolarized as its membrane potential gets less negative. If 

the membrane potential gets more negative (by the outflow of positive ions or inflow of 

negative ones) the cell is hyperpolarized. 

The action potential (spike) is a rise and fall pattern in a neuron’s membrane potential, of 

about 100 mV, which indicates the transmission of an electrical signal to the neuron(s) 

connected at axons terminals. In a more biophysical approach, the process is triggered by 

a depolarization of the neuron above a certain threshold that sets the opening of sodium 

channels. Being more concentrated outside the cell, Na+ ions flow inside the cell 

depolarizing the neuron even more. At higher membrane potential voltages, the sodium 

channels close and the potassium channels open allowing the outflow of K+ ions. This 

loss of positive ions turns the neurons charge more negative again and the ions gradient 

gets back to resting values while the potassium channels end up closing too. This 

fluctuation lasts about 1 millisecond: initiates at the soma and follows through the axon 

until it reaches postsynaptic neurons by synapses and sends its message. If in addition to 

the Na+ flow, a transient Ca2+ current is present, then a slow and temporary depolarization 

of the membrane potential occurs. In this case, instead of a single spike, the neuron fires 

a burst of action potentials, which resemble a sequence of faster spikes on top of an 

elevated membrane potential period. For tens of milliseconds after a spike, or a burst of 

spikes, the neuron crosses the refractory period during which it is not able to fire another 

spike (Dayan and Abbott 2001). 

The cells depolarization that triggers the action potential may be obtained artificially by 

the direct introduction of an excitatory current, using an electrode, or due to the arrival of 

presynaptic electric signals. In a synaptic derived action potential, a presynaptic spike 

depolarizes the postsynaptic cell in the synapse terminal, leading to an inward flux of 
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calcium through synaptic calcium channels. When Ca2+ goes into the presynaptic cell it 

causes the release of vesicles which are full of neurotransmitters in the space – synaptic 

cleft – between the two neurons. Neurotransmitters are chemicals which are responsible 

for transporting signals from one neuron to the other such as glutamate – excitatory 

signals – and dopamine or GABA – inhibitory signals. The neurotransmitter approaches 

the postsynaptic neuron causing the opening of its channels. Different neurotransmitters 

activate different receptors which bind, by their turn, to different channels opening them 

(see Figure 1.2). This allows for the ion flux to cross the cells’ membrane. For excitatory 

synapses, the most common receptors are AMPA and NMDA which are activated by 

glutamate; some inhibitory synaptic transmission is activated by GABA (γ-aminobutyric 

acid) neurotransmitters which activate GABAA and GABAB receptors2 (Roth and van 

Rossum 2009). 

In the following section we briefly present the canonical models for spiking neurons’ 

activity, which are constructed taking into account the biochemical aspects just referred. 

1.3.1 Spiking models 

When using a spiking model, the user obtains (normally through numerical methods) not 

only the spike times, but also the oscillations of the membrane potential of the neuron, as 

a function of time. In the following lines one possible derivation of the best known spiking 

neural model is given, the integrate-and-fire model together with a brief reference on the 

complex Hodgkin-Huxley model. 

Integrate-and-fire model 

Neuron cell compartments are endowed with certain properties which influence the way 

electric membrane potential is affected by injected current. The passive properties of the 

membrane are associated with the fact that small injected currents produce membrane 

potential oscillations that evolve linearly (in relation to the amount of current injected) 

onto an asymptotic value. Some properties are those present in any circumstance, and can 

be derived based on the parallelism established between the membrane of a cell and a 

resistor-capacitor electrical circuit. 

                                                 
2 AMPA, NMDA and GABAA receptors are ionotropic, that is, they directly induce the opening of channels which are 

permeable to specific ions. 
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The lipid bilayer, given its ability to maintain a sheet of positive charge on its outside and 

a sheet of negative charge on its inside, is commonly compared to a (parallel plate) 

capacitor. From physics, when a potential difference is applied to a parallel plate 

capacitor, it causes a certain amount of charge to flow in the plates. In the cell’s case, the 

capacity of the membrane (Cm) tells how much charge (Q) the membrane can hold for a 

given membrane potential difference: 

m mQ C V . 

This means that the membrane can store charge and release it in the form of current. The 

current that crosses a capacitor, IC, is given by the derivative of its charge in relation to 

time: 

C

dQ
I

dt
 . 

The derivative of the equation Q = CmVm, together with the last relation, results in: 

m
C m

dV
I C

dt
 . 

The membrane channels, turning the membrane permeable to ions are compared to the 

resistor in the electrical circuit with a certain resistance, also referred as the membrane 

resistance (R). In other words, the membrane resistance sets the opposition offered by the 

membrane to the flow of electric current.  

Finally, the battery of the electric circuit, is compared to the ionic bumps present in the 

cell’s membrane. When no current is injected in the cell, the battery is responsible for 

maintaining the membrane potential at -70 mV (-70 mV in the inside and 0 mV in the 

outside – the reference point). For example, potassium ions are more concentrated inside 

the cell than outside, thus they are prone to diffuse in the direction that sets their 

concentrations even. Potassium is able to cross the membrane by diffusion through 

potassium selective channels (not voltage dependent). Once K+ leaves the cell, the cell’s 

charge gets imbalanced and consequently the potential outside the cell becomes greater 

than in the inside. The current is not equal for all the ions because it depends on their 

electric charge, on the membrane potential and on the ionic concentration difference 

between inside and outside the cell. The membrane potential at which an ion’s flow is 

zero, is called the equilibrium potential of that ion, Eion (for example: EK ≈ -80 mV, ENa 

≈ 50 mV, ECa ≈ 150 mV, ECl ≈ -65 mV). 
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The equilibrium potential of a membrane at rest (passive, without stimuli) is represented 

by EL (L from leak) and its value is usually set at EL=-70 mV. 

According to Ohm’s law, the current across a resistor is given by the difference in 

potential divided by the resistance of the resistor. The resistor potential drop is given by 

Vm - EL and then, the current that crosses the membrane by the ion channels, IR, can be 

obtained from: 

m L
R

V E
I

R


 . 

When there is current coming into the circuit (injected current, Ie) then by Kirchhoff’s 

charge conservation law, the currents going through these two components of the cell 

(capacitor IC, and resistor IR) must totalize the total injected current, which results in: 

m m L
e C R m e

dV V E
I I I C I

dt R


      . 

Multiplying both members in this last equation by the resistance, we obtain the leak 

integrate-and-fire differential equation for the membrane potential of a neuron: 

m
m m L e

dV
RC V E RI

dt
    . 

From this formulation, with a constant small current, we can deduce that the membrane 

potential will evolve exponentially towards an equilibrium, at EL + RIe, with time constant 

given by τm = RCm. With no injected current, the membrane potential will settle at EL, also 

called the membrane resting value or membrane equilibrium value. 

Active properties of the membrane are associated with the fact that high injected currents 

produce membrane potential oscillations that do not evolve linearly, in relation to the 

amount of current injected. Instead, the already referred action potentials are produced, 

reflecting a nonlinear behavior which is not well described by the above electrical circuit. 

In the leak integrate-and-fire model the mechanism of the action potential is inserted 

artificially by a rule. Accordingly, each time the membrane potential reaches some 

threshold value (Vth, commonly set at -50 mV), a rule for resetting the membrane potential 

to a resting value (Vrest or EL ) is added to the above equation.  

 

m
m m L e

m th m rest

dV
V E RI

dt

V t V V V




   

   

. 
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This formulation assumes an instantaneous action potential event which represents a 

simplification of the biophysical phenomenon such is the one modeled by the Hodgkin-

Huxley equations (described shortly). Nevertheless it is a plausible model for mechanisms 

that do not depend on a detailed mathematical description of the action potential.  

The injected current Ie is often used for experimental procedures and theoretical studies 

to study the effect of a controlled current in the neurons activity. When modeling neurons 

activity, users may need in addition/alternative to introduce currents that better represent 

inputs provided by other neurons – synaptic currents. Synaptic currents can be included 

in the above model formulation, but with a time varying conductance that takes 

presynaptic spike times into account – synaptic conductance. These currents are often 

distinguished by the nature of their input to the neuron, defined by the synaptic reversal 

potential. For simplification purposes, excitatory synapses are commonly modeled with 

a reversal potential equal to 0 mV and for inhibitory synapses an accepted value is -80 mV. 

The formulation of such scenario is as follows (Dayan and Abbott 2001; Ermentrout and 

Terman 2010): 

 
 

 

m
m m L e syn

m th m rest

dV
V E R I I

dt

V t V V V




    

   

. 

Note the different signs of the current terms in the dynamical equation. By convention, 

electrode driven currents are defined as coming inside the cell – positive sign – while 

synaptic and membrane currents are defined as going outside – negative sign. 

Synaptic transmission 

Here we describe the most common forms of synaptic transmission which can be coupled 

with the integrate-and-fire spiking model to account for variable synaptic conductances. 

The generation of an action potential by synaptic inputs is the result of synaptic 

conductance and, depending on modelling purposes, the mathematical implementation of 

such mechanism may use different approaches. A simple way to express the conductance 

for a synapse (or a group of synapses) is to assume that each time a presynaptic spike 

occurs, there is an instantaneous rise of the conductance of amount Δg (µS). In the absence 

of presynaptic spikes, the conductance, g, decays exponentially with time constant τsyn. 

The dynamical equation and additional condition that represents this behavior, known as 

single exponential model, is the following:  
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   

syn

sp

dg
g

dt

t t g t g t g




 

    

, 

where tsp represents the time of the presynaptic spike. 

Instantaneous conductance rising times are plausible for modeling inhibitory synapses 

and AMPA mediated excitatory synapses. But some postsynaptic currents, as those 

mediated by NMDA receptors, have slower rising time and are thus better represented by 

dual exponential synaptic conductance functions. In those cases, the time constants of the 

rise, τs, and decay, τd, periods are distinct and a normalizing factor, f, to account for an 

amplitude of Δg is included. The dynamics of the conductance can be described by a 

differential equations system: 

               g t g f h t     with: 

 0

sp

r

d

r r
sp

tr

dh h
h

dt

dh h
h t t

dt







  



     



, 

where h0 is a scaling factor and δ is the Dirac’s Delta function. 

Synaptic transmission is not instantaneous. In fact, the electric charge flow through the 

axon, synapse and dendrite is subject to delays which may sum to several milliseconds. 

Delays can be incorporated in spiking models, affecting the synchronization and 

oscillation of its units’ activity (Roth and van Rossum 2009). 

Hodgkin-Huxley model 

Inspired on the squid giant (because it is visible at naked eyes) axon, Hodgkin and Huxley 

derived a detailed model for the dynamics of the membrane potential of a neuron 

including its active responses (action potentials). In this model, three resistors and three 

batteries are considered, corresponding to the three types of ionic channels. One of the 

channels corresponds to the leak component, and represents mainly potassium channels 

present in the membrane which are not voltage dependent. This term has similar meaning 

of the leak term in the integrate-and-fire model. The other two are the sodium and the 

potassium active channels which have variable resistances, not obeying Ohm’s law. The 

current derived by each one of these channels takes into account the conductance of the 

channel, specific for each ion (gion, which is the inverse of the channel resistance), and is 
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defined by: 

 ion ion m ionI g V E  . 

The difference Vm – Eion is called the driving force by which the ions will diffuse through 

the neurons membrane. The differential equation for the Hodgkin-Huxley model then 

becomes: 

     m
m L m L K m K Na m Na e

dV
C g V E g V E g V E I

dt
        . 

However, to account for voltage dependent conductances, this differential equation is 

coupled with dynamical equations for the gating variables of potassium and sodium 

channels: 

 1m m

dm
m m

dt
    , 

 1n n

dn
n n

dt
     and 

 1h h

dh
h h

dt
    , 

In these equations, α and β are functions of the membrane potential, tuned to experimental 

data, defining the properties of the action potential. 

These variables are used to obtained the values for the conductances in the following 

manner: 4

K Kg g n   and 3

Na Nag g m h  , where Kg  and Nag  are constants. 

Additionally other channels can be added to this model in order to account for the 

generation of complex spiking patterns as bursts (Dayan and Abbott 2001; Ermentrout 

and Terman 2010).  

1.3.2 Firing rate models 

Models that neglect the effect of spike timing in their outcome or inputs, taking only rate 

of firing into account are called firing rate models. This approach is usually chosen when 

no short time scales are required. It assumes that information is coded in the rate of firing 

instead on the precise times of spikes. Firing rate models have simpler formulation than 

spiking models being in result easier and faster to compute.  
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In firing rate models the neuron(s) being modeled receives inputs in the form of rate (u) 

of the presynaptic units. The effect presynaptic activity has in a spiking neuron is coded 

in conductances together with respective driving forces. In firing rate models, this process 

has two steps. First, the synaptic input is obtained from presynaptic rates according to the 

correspondent connection strengths (w, dimensionless). In the second processing step a 

transfer function ( f ) is chosen for the conversion of total synaptic input (or current) into 

firing rate change. Transfer functions come in many flavors, but their rational is to map 

slow current (or negative) into small or zero (or negative, representing inhibition) change 

in rate and strong synaptic input into a bounded rate step to prevent excessively high 

output firing rates. Some possible choices for this activation function are sigmoid 

functions (such as the logistic function), the Heaviside function and the threshold linear 

function. Representing the output firing rate of the neuron as v, the firing rate equation 

becomes: 

 ( )r i i

i

dv
v f wu

dt
     , 

where the sum is over all the i presynaptic neurons, connected to the output neuron. τr is 

a time constant which represents how fast the output firing rate incorporates changes of 

the input (Dayan and Abbott 2001).   

For this version of the firing rate function, the room for variability lies in the argument of 

the activation function. Here, excitatory synapses and inhibitory synapses (determined by 

the signal of the weight parameter) can be incorporated, as well as time dependent weights 

and time dependent input rates.  

The spatial models developed for this thesis and described in chapters 3 and 4 are: a 

spiking model to mimic the mechanism of phase precession and firing rate models which 

intend to provide a possible method for the formation of the hexagonally distributed firing 

nodes of a grid cell. 

1.3.3 Synaptic plasticity 

A neuron transmits electrical signals to other neurons and the choice of neurons to connect 

is in some cases defined by gene expression during the development of the animal. 

Frequently, the strength of those connections is not constant but plastic, and influenced 

by neural activity. Activity is known to be responsible for the establishment of new points 
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of connection (spines) or the deletion of others, between connecting neurons (van Rossum 

et al. 2000). By their turn, recent studies suggest that spines play a critical role in 

controlling the maximum weight of a synapse (O'Donnell et al. 2011). Memory coding is 

made precisely on the connection strength between neurons where synaptic plasticity, 

experienced during learning, is thought to provide the basic mechanisms for the storage 

of information. 

The simplest form of a plasticity rule was suggested by Hebb in 1949 and is still 

commonly employed. His idea is that if two neurons are repetitively active 

simultaneously then the connection between them is strengthened. Later the rule was 

generalized and applied also in the decreased of connection strength between neurons 

which activity is not consistently coordinated.  

When postsynaptic receptors are constantly desensitized, less transmission of ions is 

made and the response of that synapse decreases – this is called synapse depression, and 

basically means that the synapse strength has been reduced. On the other hand, if vesicles 

are successively releasing neurotransmitters in the synaptic cleft, then channels are 

constantly being activated. This allows for an increase of the synapse efficacy called 

synapse facilitation, for short term effects, or potentiation for long term effects. 

Detailed short term synaptic plasticity (facilitation and depression) effects are usually 

modeled by the dynamics of available synapse resources. Short term effects are 

commonly associated to short term memory which is not directly related to the type of 

learning addressed in this thesis. 

When pre and postsynaptic neurons are simultaneously subject to a period of high/low 

activity, their synapse can experience a long period of augmented/decreased synapse 

strength. These longer time effects are called long term potentiation, LTP, and long term 

depression, LTD. Their computational implementation is usually done using conductance 

as a function of presynaptic spike times for spiking units, or connection strengths 

dynamics in firing rate models. 

Modeling synaptic plasticity 

In this subsection, a brief approach to the mathematical formulation of the plasticity rules 

mentioned above is given. For simplification only one synapse weight is represented 

throughout the equations, which can be straightforwardly extended to account for arrays 
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of synapses. In plasticity models for firing units, firing rate is usually a normalized 

variable in order for the equation to be dimensionally coherent. 

One of the simplest rules is the Hebb’s LTP mechanism where the weight (w) changes as 

a function of pre and postsynaptic rates (u and v respectively): 

 
w

dw
vu

dt
  , 

where τw is the time constant of the weight change and α is an optional scaling constant. 

In this formulation, the amount by which the synapse weight is incremented is set by a 

correlation measure between pre (input) and postsynaptic (output) signals, replicating the 

well-known statement: “neurons that fire together wire together”. 

In a simpler LTP form, the synapse weight can be set to increase as a function of the 

presynaptic rate alone: 

 
w

dw
u

dt
  . 

For a combination of both LTP and LTD effects, the covariance rule is often used 

allocating the weight change to the difference of the pre and postsynaptic rate from some 

threshold values: 

    w u v

dw
u v

dt
      . 

Here θu is the rate threshold for the input and θv is the rate threshold for the output. The 

inadequate effect of potentiation obtained by this rule when both neurons are silent is 

overcome if one of the threshold values is set to zero3. If only the input (output) threshold 

is set to zero, then the shift between potentiation and depression effects is triggered only 

by the postsynaptic rate (pre) and the presynaptic rate (post) acts as a scaling factor. If 

both thresholds are set to zero, the original Hebbian rule is obtained. 

Just like all the rules mentioned so far, this formulation of LTP and LTD is not stable and 

requires some conditions to assure that the activity and thus the weights do not grow 

unbounded. An alternative is to use sliding values for θu and θv, adjusted to pre and 

                                                 
3 The covariance designation comes from the fact that if the thresholds are chosen to match the respective firing rate 

average values and the output is written as the product of input and weight, the two rules produce the same average 

rule. This average rule, for a vector of inputs, states that change in weights is the input covariance matrix multiplied by 

the weight vector. 
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postsynaptic activity, such as in the case of the Bienenstock-Cooper-Munro (BCM) rule. 

Interestingly, this weight modification rule models with great accuracy real situations 

although the rule has no direct equivalence with biological mechanisms. 

Another common rule for long term synaptic plasticity, modeled only with spiking 

models, is the spike time dependent plasticity (STDP). Although not employed in the 

models described in this work, this formulation is worth to be referred for its 

unquestionable importance when writing about synaptic plasticity. STDP states that the 

strength of a synapse is a monotonically decreasing function of the time between two 

consecutive spikes, one of the presynaptic neuron and the other of the postsynaptic neuron 

(tpre and tpost, respectively). In particular, for tpre - tpost < 0 (tpre - tpost > 0), the synapse is 

potentiated (depressed) as a decreasing function of this difference. As the majority of 

enunciated rules for firing rate models, STDP must also be implemented together with 

limiting constraints or reducing the potentiation amount as the weights increase, for 

preventing weights to grow indefinitely (Dayan and Abbott 2001; Roth and van Rossum 

2009). 

1.4 Phase coding 

Another coding mechanism is thought to exist related to population level rhythmic signals 

which are observed in the electroencephalogram (EEG) signal. Exploratory activities 

during rat’s motion in an environment (like walking, running, swimming) are 

accompanied by an oscillatory activity pattern in the hippocampus’ EEG with a frequency 

range from 6 to 12 Hz – the theta rhythm (Buzsaki 2002). The generation of theta waves 

is in part attributed to the medial septal nucleus which projects to hippocampal regions 

(Amaral and Lavenex 2006). Experimentally, if a set of electrodes is placed in the rat’s 

hippocampus recording spike trains4 of the neural population, the total smoothed activity 

representation should exhibit a sinusoidal pattern with frequency between 6 and 12 Hz. 

As mentioned in section 1.1, some cells, especially inhibitory neurons, show a rhythmic 

electrical activity, at the frequency of the theta rhythm and are thus called theta cells 

(O'Keefe 2006). The alternative coding mechanism emerged in the 90’s, after several 

reports provided evidence that place cells firing times showed selectivity regarding the 

                                                 
4 An array of consecutive spike times of a cell is commonly termed a spike train. 
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phases of the theta rhythm. Specifically, as the rat runs across place cells’ receptive fields, 

spiking occurs at progressively earlier cycle phases of the theta rhythm (see Figure 1.6).  

 

Figure 1.6 Spike times theta phase for a CA1 pyramidal cell as a function of rat’s position in the linear track (triangular 

maze “linearized”). The position axis extends from 0 to 60 cm and the motion of the rat was from left to right. To better 

illustrate the phase advance of the spikes as the rat crosses the CA1 cell place field, the data for one cycle is repeated 

filling 2 cycles of the theta rhythm. Accordingly, phase values range from 0 to 2 completed theta cycles (720º) (adapted 

from (Skaggs et al. 1996)). 

The detection of this complex pattern, named phase precession, generated a new form of 

spatial coding – phase coding.  Their supporters claim that phase coding might be a 

strategy to refine the location primarily derived by rate coding, the more traditional 

approach (O'Keefe and Recce 1993; Skaggs et al. 1996). This is because, in a straight 

line, a Gaussian curve has two positions with the same rate intensity, but the advance in 

phase will be higher at the exiting compared to the entering of the receptive field, allowing 

then to distinguish between the two (which would not be possible with the rate profile 

alone). In the third chapter an original plausible model for the emergence of the phase 

precession effect developed for this thesis is presented in detail. 
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2. State of the art 

Several models for the phase precession effect or the formation of grid cells’ firing 

patterns have been proposed. Interestingly, some of the base ideas present in literature 

models for grid cell formation appeared before grid cells were actually found. 

One of these ideas started with a model for path integration mechanism and place cell 

formation which used cells recurrently arranged in a continuous attractor network 

(Samsonovich and McNaughton 1997). This model also exhibits a phase precession effect 

due to a time advance in updating neural activity positions relative to the real spatial 

position of the animal. Moreover, the toroidal topology of place units’ recurrent 

connections had an unexpected effect in longer mazes: a multi-peak firing pattern grid 

cell.  

The other idea is that the interference of two oscillations with similar frequencies 

produces a firing pattern which can both explain place cell formation and phase 

precession effect ((O'Keefe and Burgess 2005), one dimension). However, in sufficiently 

long trajectories, several firing nodes appear instead of just one, which also turned this 

approach into a plausible one for the generation of grid cells’ firing pattern formation. 

These two classic models have generated two distinct lines for spatial models, either for 

phase precession effect or for grid cell firing patterns: continuous attractor networks 

(CANs) and oscillations’ interference (OIs). In the following section, a brief introduction 

on the emergence of each of these class of models is provided, starting with a 

contextualization of path integration and the associated cognitive map. In the subsequent 

two sections a short review on existent models for phase precession is provided followed 

by a more complete description on existent models for grid cell formation. 

2.1 The emergence of two model classes 

In 1978, probably with an additional inspiration from the newly place unit cells recorded 

throughout the hippocampus proper, a possible way for a cognitive map of the 

environment to be located in the hippocampus was suggested. In the cognitive map model, 

DG, CA1 and CA3 are engaged in collecting input environmental data, converting it to 
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place units. Place units are, by their turn, connected with each other in an organized 

pattern defined by information about the direction and distance between their receptive 

fields. At that time, they were already assuming the existence of neurons providing 

directional information in the hippocampus, head-direction cells, which were found more 

than 10 years later. Theta rhythm role in the navigation system was also already relevant. 

In DG, theta frequency is thought to provide a timing pulse in the output signals to CA3. 

In a later stage, theta rhythm plays a part in the switching of excitation from one position 

in the map to another. CA1 field is also the locus of the misplace system, which basically 

accounts for exploring new environments, signaling the presence of something new in 

some place or the absence of something that was usually there.  

According to the authors, this cognitive map can be used in several ways to control motor 

outputs. As the animal feels sleepy, for example, memories previously created about home 

are emphasized, exciting place cells coding for the nest position over the others. Cells 

coding for current position are excited by the rat’s position. As a result, the motor program 

which activates simultaneously these two units is called and activated, guiding the animal 

from the actual position to the nest location (O'Keefe and Nadel 1978). 

Path integration basically states that as the animal moves from a base point, inputs coding 

for direction and speed of self-motion are computed to derive the trajectory followed since 

the initial base. As previously mentioned, there is evidence that animals are in fact able 

to estimate their current position relative to a starting point based only on internal 

indicators, such as vestibular and proprioceptive5 signals, sensed during the journey. 

Experiments show that even after all the position cues have been removed or the lights 

have been turned off these animals are still capable of returning to their homes, which 

provides an extra support for the path integration mechanism (Burgess and O'Keefe 

1998).  

Although not directly linked to the work developed for this thesis, path integration ability 

is commonly assumed by alternative models for phase precession and grid formation 

(described shortly).  

 

                                                 
5 Relative to the sense of position, location, orientation and movement of the body and its parts. 
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2.1.1 Continuous attractor networks 

In a general network attractor model, a grid map corresponds to a stable firing state 

(attractor state) which is maintained by recurrence. Each attractor state corresponds to a 

configuration of cells’ activity state that is stable if no input (motion) is introduced to the 

net. This means that, if the rat is still, the neural configuration will accordingly remain 

intact. Overall, attractor networks used in models of grid formation are continuous, in the 

sense that between two stable state configurations there is always a third. The scale at 

which real space is coded in the cells is controlled by external input and by the relation 

between the rat speed and the speed of the activity bump moving on the neural layer. 

Attractor models are generally robust to noise and can store several attractor states 

(McNaughton et al. 2006). 

Classical model for path integration – one dimension 

Five years after the report of head direction tuned cells, a one dimensional attractor map 

model for encoding head angular velocity signals was proposed (McNaughton et al. 

1991). In this model, cells tuned for different head direction angles are disposed 

conceptually in a circular arrangement, ordered by their preferred angles6 (see Figure 2.1 

a). The weight of the excitatory connection between two units is a decreasing function of 

the difference between their preferred angles. At each point of the trajectory, the activity 

profile in the disposed cells is concentrated in a region of the ring, centered on the cell 

tuned to the current direction of the rats’ head (see Figure 2.1 b). Because of the 

connectivity scheme and inputs from the vestibular system, as the rat moves its head, this 

bump of activity slides on the ring units in a continuous fashion (or quasi, because head-

direction units are discrete). The direction of the slide is determined by a two dimensional 

array of angular rotation cells (in a hidden layer) receiving angular velocity signals and 

head-directional cells inputs. Units in this layer project asymmetrically to the left/right 

cells in the outer ring according to clockwise/anticlockwise motion signals, respectively 

(see Figure 2.1 b). Then, if the head rotates from 2 to 3 o’clock, the hidden layer receives 

excitation from the 2 o’clock head-direction cell and excites the 3 o’clock cell, inciting 

                                                 
6 Head-direction cells code the direction of the animal’s head. Nevertheless, models that take into account this type of 

spatial cells input to code direction of motion, assume head direction is highly correlated with direction of movement 

itself. 
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the neural activity to accompany the head angular motion. In the absence of head 

movement (e.g., no input besides random noise) those projections are assumed to be 

below the activation threshold of angular cells. In addition, and due to the connectivity 

design, the activity bump remains unchanged as it corresponds to a stable state of the 

network (see Figure 2.1 c). 

 

Figure 2.1 Ring attractor model for the head direction system. a – Diagram of head-direction cells organized in a circle, 

with connections reflecting their preferred head directions. b – In a motion scenario, head-direction cells project to the 

cells in the hidden layer (cells providing angular input about rat’s motion) which project back in an asymmetrical 

fashion to left or right of the most active head-direction cell depending on the direction of movement of the animals 

head. c – In the absence of motion input, the activity of the head-direction cells layer is not sufficient to activate the 

hidden layer (adapted from (McNaughton et al. 2006)). 

The mechanism briefly described – based on a ring attractor network – allows for the 

activity of the cells in the circle to represent online the directions faced by the head of the 

animal in an expedition, thus performing angular path integration (McNaughton et al. 

2006). 

Classical model for path integration – two dimensions 

A fundamental model for path integration in a two dimensional trajectory was given in 

1997 where head-direction cells and place cells were the essential processors 

(Samsonovich and McNaughton 1997). For their multichart map based path integrator 

(MPI model), the authors extended the one dimensional angular path integrator model. 

Here place units are connected through different schemes, originating several charts 

file:///C:/Users/Luisa/Desktop/Thesis/Figures/Cap1_ring_attractor_flat.tif
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which can be active in distinct environments. Thus, several maps can be stored using the 

same assemble of place cells. Through an attractor map concept a cognitive map was 

embedded in the model providing a reference frame endowed with reference location, 

reference direction, a metric system and a clock system. This frame is necessary for the 

internal representation of planar coordinates. For each map, a two dimensional set of 

quasicontinuous attractors exists, such that a small dislocation is enough to drive the state 

shift from one attractor state to another. Such dislocation will be smaller with the increase 

of map units’ density. 

When a representation of space is presumed to exist internally, a mechanism for updating 

that representation according with the rat’s motion is required. For that purpose, the 

integration of velocity signals (speed and direction) is made over time in that reference 

frame. The weight of excitatory connections between cells in this layer is a decreasing 

function of their place field centers relative location. Global inhibition is inserted in order 

to prevent the activity from spreading out. The input array - providing position V, 

direction H and motion signals M - excites a certain portion of the cells in layer P. By 

their turn, place units project to the integrator layer I, tuned to the current head direction, 

exciting there a small region. Connections from this layer to the attractor network are 

offset by the same direction of active head-direction cells. This asymmetrical connectivity 

provides excitation to other place units, ahead of the currently active units, in the direction 

of motion. Together with the connectivity scheme in the place units’ network, this results 

in a moving activity packet along the map in that direction (see Figure 2.2). The 

mathematical formulation of this model is as follows.  

The P-I system is defined by the following system of equations for each iteration t: 
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where i represents the ith unit and N is the total number of units. V represents the 

dynamical activity (voltage), S is a Boolean variable signaling the occurrence of spikes 

and W is the connectivity matrix. Δ represents the time bin, τ is the potential time constant 



34 
 

and θ denotes the Heaviside function.  

The sensory system (V), the head-direction system (H), and the motion system (M) are 

not explicitly simulated and are assumed to be consistent with the rat motion. μ represents 

the efficacy of the V to P connections, thus affecting the sensory input. The input from 

the V system takes into account a Gaussian function of the distance between the rat 

position xt (the same as x(t)) and the coordinate of the i cell on the k chart given by ri
k 

(with some width ε).  

The modulation of the I network by the head-direction system H is represented by v.bi, 

where v is a unit vector pointing in the direction of motion (representing the perceived 

direction of motion) and {bi} is a set of random Gaussian vectors.  

The activity in the I network is controlled by the motion system M. The total inhibition 

affecting the network P, hP, is introduced to control the number of active units MP at each 

time step. For the P network and the I network, the number of active units is a function of 

time given by: 

2 2
cos cost

PM A t t B
T T

 

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, 

where T represents the theta cycle period. The parameters A, B, C and D were adjusted in 

accordance with data of theta cells population in CA1 (for P network) and DG (for I 

network). C and D also reflect the modulation of the I units by the motion system M. 

Connections strengths between units in P network, from P network to I network and from 

I network to P network are all excitatory and represented by slow variables. These 

connections depend on the distance between the receptive fields of the units being 

connected (across all the n charts): 
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In the above defining equations, η represents a static synaptic noise, σ is the width of the 

Gaussian function for the distances and rij
k is a vector connecting the units i and j on chart 

k (n is the total number of charts). The vector bj is defined as a constant random vector 
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(the same as bi, for the head direction system) which represents the asymmetry in the 

connectivity scheme between the I network and the P network. 

 

Figure 2.2 Extension of the ring attractor for a model for path integration in a two dimensional space. a - Toroidal 

topology of the synaptic matrix of place units is assumed. Connection strength decays with distance of receptive fields. 

b – Sensory stimulation activates the conjunctive layer tuned for the current direction resulting in the bump of activity’s 

displacement. c – In the absence of input, the conjunctive layers are silent and thus the bump is static (adapted from 

(McNaughton et al. 2006)). 

This mechanism just described works almost like a prediction method for the next 

position of the rat, assuming that the rat’s head is not changing its direction in the current 

time step. The input layer is also responsible for correcting the cumulative drift errors 

emerging from this mechanism, allowing for the neural activity to reflect the rat’s 

movements in a quasi-online basis. This time advance in neural tissue of the activity bump 

relatively to the actual movement of the rat, has been suggested as phase precession effect, 

flowing naturally as a side effect of the model. In particular, the activity bump moves 

ahead of the rat during each theta cycle and then jumps back to the real rat position in the 

onset of the next cycle (given that the time step is smaller than theta rhythm period).  

To conclude about the place cell activity in this model, the authors state that individual 

activity has no meaning per se, but is acquired in the scenario where other place cells are 

active with it in a certain location. A constant exchange flow exists between real motion 

and neural activity, such that self-motion is updated and updates place cell activity 

(Samsonovich and McNaughton 1997). 

Components of the cognitive map concept 

In close relation to the above theory of path integration and the cognitive map, if the 

animal has already a cognitive idea of the environment he is in, then connections between 

file:///C:/Users/Luisa/Desktop/Thesis/Figures/Cap1_2d_path_int_flat.tif
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place units would be already established. If these connections contain information about 

distance and direction between place fields then physical motion would be sufficient to 

trigger the accurate sequential activation of position cells. Moreover, there is evidence 

that before adjusted to signal some external set of cues (for instance, in starting a goal 

task), place cells are driven by self-motion information solely, i.e. maintain their firing 

fields in the absence of external signals. Together these findings confirm that place cells 

are in fact the more suitable neural components (so far) to play the reference place role 

(Moser et al. 2008) (but see (McNaughton et al. 2006)).  

Concerning the usefulness of the grid pattern to retrieve position, some have showed that 

the difference in phase maps of neighboring grid cells could be used to code for the rat’s 

position in the environment (Fiete et al. 2008). However, the more consensual view is 

that, since their firing distribution is multimodal throughout the environment, grid cells 

are considered as part of the navigation distance-measuring device (Jeffery 2013; Moser 

et al. 2008; Fyhn et al. 2004). 

In addition, velocity (direction and speed) inputs necessary to keep an online space 

representation in the brain are also available since head-direction cells with speed 

modulation have been reported (Sargolini et al. 2006). As to the recent border cells, they 

could play a part in the neural representation reset when the animal is placed in a new 

environment, driving the restructuring of the path integration process (Derdikman et al. 

2009). 

After the publication of the path integrator model mentioned above (Samsonovich and 

McNaughton 1997), some realized that if the environment could be sufficiently large, 

then the toroidal topology would originate the same cell to be active more than once in 

the same environment, with receptive fields arranged in a square like fashion. If the units 

disposed on the torus had a rhombic disposition instead of a squared one, then the 

resultant firing map would exhibit triangular arranged nodes, resembling typical grid cell 

maps. 

2.1.2 Oscillations interference  

In 2005, right after grid cells first report, the first model using interference of oscillations 

was suggested with a dual role: able to produce the effect of phase precession and also 

the triangular firing pattern of grid cells (originally thought as place fields due to a time 
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scale issue) (O'Keefe and Burgess 2005). For a one dimensional maze, the base 

assumption of the oscillation interference approach is the existence of two oscillation 

signals with distinct frequencies arriving at a cell. If one of the sinusoidal oscillations is 

at theta rhythm frequency fθ and the other’s frequency is slightly higher fI, then their 

interference would predict a repeating series of firing fields, corresponding to the peaks 

where the cells’ firing threshold would be exceeded (see Figure 2.3). The second oscillator 

fI, with a higher frequency that theta’s, is supposed to be modulated by the speed of the 

animal (on top of the theta frequency), increasing its frequency with the increase of 

running speed. The summation of the two oscillations is given by: 

cos(2 ) cos(2 ) 2cos 2 cos 2
2 2

I I
I

f f f f
f t f t t t 

   
    

     
   

. 

The resultant sinusoid has a carrier frequency of (fI + fθ)/2 and is modulated by

2cos 2
2

If f
t

 
 
 

. 

At this point, phase precession is already evident: when firing, the output cell will prefer 

the upper phases of the oscillation cycles with frequency (fI + fθ)/2 > fθ. In result, firing 

threshold will be reached in subsequent earlier phases of fθ, as can be observed by the 

phase signaled in Figure 2.3. Whenever the two individual subthreshold oscillations are 

in phase, the resultant oscillation will be sufficiently depolarized to cause spiking activity. 

Because fI ≠ fθ, they will go out of phase again, resulting in silent activity. The envelope 

of such interference is modulated by cos [2π(fI - fθ)t/2] (see yellow line in Figure 2.3). A 

complete cycle of the envelope sinusoid lasts for 2/(fI - fθ) seconds (time period), and a 

possible resultant receptive field (if the cell would in fact reach firing threshold) would 

be crossed during a proportion (<1) of half that cycle time. Then, if s (m/s) denotes the 

rat constant velocity, the place field size would be proportional to s/(fI - fθ) meters. If the 

animal is moving at a constant speed and in a linear path, this mechanism is repetitive at 

constant lengths giving rise to periodic locations where the cell is spiking intercalated 

with non-spiking periods (cos [2π(fI - fθ)t], note that this frequency is twice the envelope’s 

frequency). Since spiking regions arise with time period T=1/(fI - fθ), then space distance 

between the grid field nodes (G) will depend on the constant velocity: G = sT (called the 

spatial wavelength). So basically, different input oscillators’ frequencies will produce 

grids with different spacing. Conveniently, if the second oscillator is modulated at a 

frequency above theta rhythm by coding velocity then, field size would be independent 
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of rat’s velocity.  

 

Figure 2.3 Interference of two oscillations with distinct frequencies. Blue signal is a sinusoid with 10 Hz and green 

sinusoid has 12 Hz of frequency. Their summation (red oscillation) has a sinusoid envelope with frequency 1 Hz, 

represented by the yellow curve. The red oscillation has a frequency of 11 Hz, which results in precession of phase 

relative to the theta frequency, indicated by the arrows. Time axis represents one second. 

Hence, a direct prediction of oscillations interference (OI) models is that on a longer time 

scale (as happened in the CANs models history), the cell receiving the two oscillations 

would evidence not a unique but several receptive firing regions, with equal spacing 

distance. Before grid cells were found, this was actually a problem of a model which 

originally intended to mimic place fields and phase precession. However this side effect 

was a great insight which provided the basis of an oscillation interference model for grid 

cell formation. 

Despite of all the attention this type of models have attracted and the subsequent models 

build on top of this one, interference of oscillations class of models show intrinsic 

biological incoherencies. Although the authors state the existence of biological theta 

signals impinging the same cell at slightly distinct frequencies, this feature is only 

transient and local, interfering on the results consistency of the model. The unsuccessful 

search of cells modulated at other frequencies that theta’s, in the major hippocampal 

sources of inputs (EC and medial septum) made the authors suggest that this second 

oscillator could be received by the cell’s dendrites, instead of directly in its soma (as is 

the case of the theta modulated input). In addition, neural oscillators are rather noisy, 

which disrupts completely the resultant envelope pattern (O'Keefe and Burgess 2005). 

file:///C:/Users/Luisa/Desktop/Thesis/Figures/OI.tif
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2.2 Previous models for the phase precession effect 

One of the most well-known hypothesis/models for phase precession is grounded on the 

mechanism of interference between two slightly different oscillations, mentioned above 

(O'Keefe and Burgess 2005). Although widely accepted, this and other oscillation 

interference models (see also (Lengyel et al. 2003)) are grounded on the assumption that 

two consistent and distinct θ oscillators, with slightly different frequencies, exist in the 

hippocampus. However the existence of two independent θ oscillations is not 

corroborated by many independent experimental results (for review see (Buzsaki 2002)). 

Other models rely on synaptic properties, such as asymmetric connectivity matrices 

(Tsodyks et al. 1996) or synaptic plasticity (Baker and Olds 2007), but while elegant these 

models fail to account for the important experimental result that phase precession can be 

observed prior to any training of the animal in the maze. There is also the hypothesis that 

phase coding could be generated by intrinsic cellular properties in the entorhinal cortical 

neurons, and inherited by downstream structures such as dentate gyrus and CA fields 

(Hasselmo et al. 2009). 

Using a different approach, the model by Bose and coworkers (Bose et al. 2000) relies on 

the interaction between two coupled neurons, one pyramidal (excitatory) and one 

interneuron (inhibitory), to show phase precession of place cells in region CA3 of the 

hippocampus. In this model, general independent oscillators are used to describe the 

neuronal dynamics which means that if one is turned off the other continues to exist. The 

interneuron’s average firing frequency behaves as a new theta-independent oscillator 

generating oscillations at a fixed frequency, which is not supported by experimental 

results as already mentioned. A single input to the principal cell is sufficient to produce a 

reorganization of the network’s dynamics, leading to a transient increase in the principal 

cell frequency. This increase generates phase precession.  

2.3 Previous models for the formation of grid cells 

Since the report in 2005 with the first characterization of grid cells, several computational 

models have been published aiming to provide plausible mechanisms to explain how 

hexagonal firing patterns could emerge within the activity of medial entorhinal cells (for 
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a recent review see (Giocomo et al. 2011)). Moreover, given the loop architecture of the 

circuits involving mEC and the hippocampal formation, interesting models describing 

how place fields can be generated from grid cells inputs have also been created (for a 

review see (Moser et al. 2008)). Experimental work required to properly disentangle the 

right direction (if grid cells are generated by place cells or if it is the other way around) 

is far from being simple.  

In this thesis, the focus is given to the formation of grid cells based on place cells 

existence. The direction adopted is supported on two main reasons. The first concerns the 

development order, experimental work on rat pups provide evidence that adult like place 

cells precede adult like grid cells (Ainge and Langston 2012; Langston et al. 2010). The 

second reason concerns the firing patterns of cells. In fact, grid firing patterns are more 

robust to environmental changes while also exhibiting some generalizing ability. 

Additionally, their multi-peak firing pattern seems to be a more complex behavior than 

the unimodal distribution of place cells firing. 

In the following sections we travel through the most relevant existent models of grid cells 

formation. This subsection is divided into three parts. The first two are within the 

classification already mentioned: oscillations interference models and continuous 

attractor network models. These two approaches are not exclusive and one can find in the 

literature models combining ingredients of both classes (Blair et al. 2008; Mhatre et al. 

2012; Grossberg and Pilly 2012). A third class of models is also presented, whose main 

difference from OIs class and CANs class is the way weight matrixes are built. In this 

third class of models, hexagonal pattern emerges in the output cell’s firing maps as a result 

of self-organizing mechanisms during learning. 

2.3.1 Continuous attractor networks 

This section intends to cover the major available models in the literature which are based 

on attractor networks dynamics to model the properties that characterize grid cells.  

Spin glass model 

In the subsequent year of the discovery of grid cells in rodents, one of the first published 

models focused on generating grid cells using continuous attractor networks (CANs), 

while also providing a mechanism for path integration. By construction, recurrence 
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between neurons and their topographic organization were 2 key assumptions for the 

model to generate perfect hexagonal firing cells. The putative grid cells are localized in a 

two dimensional neural sheet, disposed in a rectangular lattice (aperiodic connectivity), 

connected to each other with weights that vary according to the distance between them. 

This implies that their mutual interaction is symmetric and is constrained to neighboring 

cells.  

In a first step, this spin glass model comprises the emergence of such a connection scheme 

for weights which is as follows. For a certain period of time there is a packet of 3 waves 

(equally oriented) that smoothly crosses through all cells within a band with orientation 

perpendicular to the randomly set wave packet orientation (between 0 and 2π). Out of that 

band, cells will fire at a tonic level which is set at 1. Cells with centers within the band 

see their firing rate increase to 2 or fall to 0 depending on the phase position of the 3 wave 

packet they fall into. So the firing rate of each cell, in this weight matrix generation part, 

is a function of their packet phase. Each traveling wave has some time to cross the neural 

tissue and change the firing rates of the cells affected. The weights are updated according 

to a simple rule: as the wave passes through a cell, its weights onto the coactive cells 

suffer a glimpse of the sinusoidal characteristic collapsed into them. So after a 

considerable amount of waves with distinct orientations had passed, the weights are 

expected to reflect concentric rings of high and low scales. The learning rate increases 

within each packet wave crossing but is resettled when a new packet wave arrives. 

According to the authors, this description is that of a spin glass model (for a contrary 

opinion check (Burak and Fiete 2006)) and represents a system where each initial 

configuration will in general converge to a global minimum energy state (with the help 

of noise) where the system meets stability. The cells are subject to a competition with 

their closest neighbors for neural space to settle. They eventually converge to the optimal 

packing layout which is known to be the hexagonal geometric shape. 

After the symmetric recurrent weight matrix is computed, reflecting concentric rings of 

connectivity in topographic layout fashion, the second part of the model with a path 

integration mechanism takes place. The units of the system are integrate-and-fire neurons 

which activity is the reflection of their synaptic inputs with a noise term and a velocity 

input. The full weight matrix comprises also an asymmetric component matrix (inhibitory 

and offset of the symmetric one) which plays a part in path integration by translating the 

activity pattern across the sheet (in a similar way as the MPI model). So every time this 
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inhibition is activated, the current local of activity will be slightly inhibited and a set of 

others cells in the portion of space which was not inhibited is activated. Moreover, rat’s 

position is encoded by ensembles of cells with distinct scales and/or orientations (Fuhs 

and Touretzky 2006). Regardless of the lack of biophysical support for the mechanism 

used to compute the weight learning rule in this model, traveling waves have been widely 

and successfully applied in the context of visual cortex. However, in contrast to what is 

known about grid cells in mEC, visual cortex cells show a topographic relation between 

neural and space coordinates. 

In a 2006 short publication, is stated that using the spin glass model in a simulated rat 

trajectory, with reality inspired changes in velocity (meaning speed and direction), the 

cell’s firing map obtained does not exhibited a multi-peaked arrangement as experimental 

data does. According to their study, when the rat is moving around inside the maze and 

the velocity information is not being correctly updated in mEC units, then the model fails 

to work. This happens because rat’s movements in space are not accompanied by 

correspondent translations in the neural pane (Burak and Fiete 2006).  

McNaughton’s 2006 PI model 

In 2006, a review for path integration proposes another attractor model that concerns the 

early emergence of grids, which can be separated in four steps. In the early pups, there is 

a “teaching” layer which has Mexican Hat type connectivity (center-surround profile) 

between its units (Turing layer). There also exists a set of modules similar to a cortical 

column where connectivity is high within each module but weak between modules. Each 

synapse weight obeys one of two distinct learning rules. The first is a competitive learning 

rule and operates in the connections between the teaching layer and the modules. This 

rule sets the occurrence of LTP or LTD, dependent on the activity of the cell. While each 

module starts with random connections from the Turing layer, this one is alternatively 

visiting all possible grid phases. This way cells in the modules would become tuned to 

the different phases of the grid, without exhibiting any topographic relation between 

them. The other learning rule operates in the connections within the modules and is a 

Hebbian like LTP. This rule will strengthen the connections between units that are tuned 

to similar phases of the Turing layer. Therefore, within each layer, a synaptic matrix with 

a torus shape would emerge, setting the hexagonal grid cell firing in the adult animal 

(without requiring topography relations in the neurons of the adult animal). Once this 
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process is completed, the teaching layer disappears or is allocated to other functions 

(McNaughton et al. 2006). This idea for a model seems to assume that each module is 

attached to a different maze or class of mazes memorized by the animal. However, if the 

teaching layer vanishes at some time in the animal’s life, then he will not be able to learn 

new classes of mazes from that time on. 

Artificial Neural Network 

In 2007, another model for generating grid cells activity patterns together with a path 

integration mechanism is published, suggesting for the first time a role for the projections 

from hippocampus place cells to mEC lower layers. They suggest an artificial neural 

network with grid cells synapses’ weights obtained from a Gaussian function of the 

distance on a torus, exciting neighbors and inhibiting distal cells (assumes topography in 

grid cells disposition). The recurrent connectivity structure is that of a twisted torus in 

order to generate a triangular tessellation. Cells are firing rate units with a linear transfer 

function of the synaptic input. In contrast to other models where velocity is provided from 

cells to cells, here strength connections incorporate the simulated animal velocity. This 

allows for a transformation of the rat’s motion into neural activity. The correction of large 

path integration errors is mediated through Hebbian learned connections between a 

simulated place cell population and the grid cells population. All the grid cells are 

connected to an external cell that computes their summed activity and is responsible for 

the stabilization of the overall neural activity. As the simulated animal moves, a bump of 

activity slides on the grid cell population’s weights such that the same synapse may 

change between excitatory and inhibitory regimes. The designation of an artificial neural 

network comes from (at least) the synaptic nature change and also from the velocity 

affecting directly the synapse weights (Guanella et al. 2007). 

Single neuron (SN) response 

A different model for PI and grid formation was suggested in 2009, employing spiking 

units and firing rate recurrently connected neurons. In contrast with previous ones, in this 

approach, external sensory cues frequent update is not a requirement. This model aims to 

provide evidence that accurate velocity inputs integration is possible under certain 

conditions related to: the topology and size of the network, distribution of the weight 

connections and the noise present in cells firing rates. In this model, the neurons activity 

is specified by: 
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where: f represents the linear threshold function, τ is the time constant of the neural 

response, Wij is a recurrent weight matrix from neuron j to neuron i and Bi represents a 

feed-forward input to neuron i. 

A patch of neural tissue is filled with neurons disposed in a regular triangular lattice (with 

n×n=N cells). The units’ geometrical disposition is thought to be driven by a global feed-

forward excitation and inhibitory projection toward each neuron, coming from a 

surrounding ring of neural local neurons. This pattern, formed at the neural level, is 

coupled with rat´s velocity in the sense that each neuron will have a preferred direction. 

Wij is given by: 

 0
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where xi is the location in the sheet of neuron i and θi denotes its preferred direction. The 

weight matrix assumes a topographical organization of units and has a center-surround 

shape located at a shifted location relative to the position of its units. This shift is related 

to the preference in direction of the input unit ( ˆ
j

e is the unit vector pointing along θj). 

The parameters γ and β are tuned according to the periodicity of the lattice. Moreover, a 

is set to 1, resulting in a local surround inhibitory connectivity. 

Direction preferences are distributed randomly throughout the population of neurons and 

may be explained by velocity tuned projections from head direction single cells. 

Accordingly, each 2×2 block of neurons is defined as to span all possible preference 

directions, restricted to W, N, S or E.  The idea of the model is that each cell synapses 

form a ring of inhibition upon other cells that are slightly ahead of the cell, in its preferred 

direction. So the bumps formed are not dependent on the rat’s trajectory but on the 

direction preferences of the activated cells. For the simulation of the model, data was 

taken from a rat’s real trajectory over a circular maze with diameter length of 2 meters. 

From this data they obtained inputs referent to velocity which were injected in the 

simulated network neurons. The feed-forward input to neuron I is defined as:  

  ˆ
i i iB A x l   e v , 

where v is the velocity vector of the rat, parameters l and α determine the speed of the 
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neural activity flow, for a fixed speed of the rat, and function A determines the spatial 

modulation in the inputs to the neurons. 

In the model with a periodic network – torus topology for connectivity – the results were 

that path integration was accurately derived. The aperiodic network regime, that has a 

sheet topology for connectivity, raises the problem of borders already addressed in 

previous models. Here the authors opted to maintaining the strength of recurrent 

connections throughout the neural sheet and gradually reducing the external excitatory 

input (tapering). For periodic boundary conditions, A=1 and for the aperiodic network A 

is given by: 
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where R is the diameter of the network, a0 is a constant parameter, Δr defines the range 

of radii for the tapering in the inputs. This way the firing pattern is not distorted but 

neurons are less active near the borders, proportionally to the external input.  

The spiking units were generated based on the above equation for neuron dynamics such 

that at each time step [t, t + Δt], neuron i will generate a spike with probability: 

      spk ; , ij j iP i t t t f W s t B t t    . 

Resizing and rescaling of grid maps as a response to physical changes in the experimental 

maze are commonly seen as evidences against the class of attractor network models.  In 

this paper the authors conclude that if seen at the single-neuron (SN) response level, this 

might not be a problem. In CAN models, the set of stable activity states in the grid cells 

population – the attractor manifold - comprise translations of a canonical pattern and also 

rotations in aperiodic networks. If stretching and rotation occur at the population pattern 

level, they are unstable states and so cannot be invoked within the continuous attractor 

models to explain experimental observations. On the other hand, the SN response is a 

function of the instantaneous connectivity pattern and the velocity response of the pattern. 

So if the pattern is flowing more slowly in one dimension than in the other then, for 

equivalent rat speeds, the SN response (accumulated over the trajectory) would be a 

stretched version of the regular population grid. Here they demonstrate that geometric 

manipulations can in fact not disrupt the weights stable configuration acting only by 
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means of head-direction driven inputs modification. In fact, if the amplitude of the tuning 

curves is reduced in one or more directions when the maze is expanded in the same 

directions, then the firing map will show fields expansion in those directions. On the other 

hand, if head-direction cells change their preferred direction in accordance to the angle 

of rotation of the maze, then the resultant firing map will evidence rotated fields as has 

been reported. They conclude that accurate path integration in aperiodic networks only 

happens in larger networks than the ones needed for the periodic case. In each of the 

connectivity regimes, the accuracy in the rat’s position determination is upper bounded 

by 10-100 times larger than reported studies until this one (Burak and Fiete 2009). 

STDP for grid cell emergence 

Spike time dependent plasticity appears for the first time (to our knowledge) associated 

with grid cell emergence in a model proposed in an abstract conference. The authors take 

the traditional attractor network model and substitute some mechanism by new ones, with 

no requirement for topographic organization of cells. STDP rules comprise both 

symmetric and asymmetric components. The symmetric regime is responsible for the 

development and maintenance of the stable states, through the strengthening of firing 

correlations. The other component produces asymmetries in the network weights which 

allow the shift between the stable states caused by velocity inputs received during the rat 

journey. The network receives velocity inputs providing information about the speed and 

direction of movement, but also positional ones driven by place cells. Available only in 

abstract form, the model’s information about how the STDP acts not requiring 

topographic organization is absent (Widloski and Fiete, 2010). 

Integrate-and-fire grid cells 

Navratilova and colleagues merged in a recent model the generation of grid cells with the 

effect of phase precession. This model assumes the same network architecture of previous 

attractor models inheriting consequently the lack of biological support for either the 

assumption of topography in grid cells or high recurrence in mEC. The network comprises 

both grid cells, conjunctive grid cells (accumulate direction and spatial specificity) and 

pure head-direction cells modeled as integrate-and-fire neurons. Between grid cells, 

synapses drive AMPA and NMDA currents while their connections to and from 

conjunctive cells only comprise AMPA currents. Grid cells are arranged as in a ring, with 

connections strength obeying Gaussian functions of the distance between them. When the 
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rat is in a certain position of the 1D apparatus, the grid cell coding for that position is 

active and consequently its closest neighbors are active too, forming thus an activity 

bump. Meanwhile, in another two rings, conjunctive cells are disposed in a way that one 

ring codes north directions and the other codes for south. These conjunctive cells also 

receive inputs from head-direction cells and project back to grid cells but with a shift 

opposite to the direction of the movement of the rat. Conjunctive cells receive a theta 

frequency input and are activated by inputs from head-direction cells with correspondent 

orientation preferences and intensity proportional to rat’s speed. Asymmetry in the 

connections to grid cells from conjunctive cells allows them to drive the activity bump 

through the grid cell network. Although not explicitly modeled, inhibitory cells operate 

between all excitatory units to regulate the total activity through GABA channels. 

Feedback inhibition is the strongest and acts in the grid cell network. Feed-forward 

inhibition is weaker and acts between grid cells and conjunctive cells. Phase precession 

is generated due to resetting of that bump which is attributed to specific conductances of 

mEC II stellate cells, responsible for hyperpolarization and depolarization peaks after a 

spike. The neural units are conjunctive cells which activity is modulated at theta 

frequency with intensity proportional to the rat’s speed which moves an ‘activity bump’ 

forward in the connected network. However, in contrast with other models, the shift of 

the neural activity bump is undertaken by cellular mechanisms (dynamic model currents) 

with no need for external inputs. In particular, after spike conductances temporal 

variability is used to obtain the differences of grid spacing found along the dorsal ventral 

axis of mEC. The maintenance of membrane activity of approximately 100 milliseconds 

duration, allows neurons that were active some time ago to reactivate causing a shift on 

the bump and the reset in the alignment with the theta rhythm. This model constitutes an 

extension of the original Samsonovich model to accurately account for reported features 

of the phase precession effect (Navratilova et al. 2012). 

Final comments 

Recurrence in mEC layers had been previously reported for excitatory connections in 

layers III and V (around 10%) and not for layer II (Dhillon and Jones 2000), but currently 

there is still some ambiguity related to the extent of recurrence in mEC (Giocomo et al. 

2011). Moreover, if the aim is to provide plausible explanations for the emergence of grid 

cells for the first time, as with rat pups, further study must be embraced. Namely, it might 

be of interest to verify the functional correlates of the cells (recurrence may exist 



48 
 

anatomically but be used for other tasks rather than navigation related ones) and also if 

recurrence is present temporally consistent with the first grid cells emergence (Wills et 

al. 2012). 

2.3.2 Oscillations interference 

In this section we refer to the main approaches found in the literature with strategies for 

grid cell firing patterns formation, within the class of oscillations interference. 

The first OI model for grid cell formation 

Two years after the first OI model for grid formation (see section 2.1.2), Burgess and 

colleagues developed a more complete and refined version with its expansion to a two 

dimensional maze. In this setting, the second oscillation (thought of as inputs at dendrites) 

is tuned to a preferred direction (by speed modulated inputs from head-direction cells), 

and its frequency is raised above the theta rhythm as it codes the speed, s, of the animal 

in that direction. More precisely, if ϕ is the direction of the animal movement and ϕHD is 

the preferred direction of the cell, then the velocity v  of the movement of the rat can be 

given by: 

 cos HDv s    . 

Adapting the one dimensional formula of the scaling parameter to the open maze, one 

obtains: 

 cos HD

I

s
G v T

f f

 
  


. 

As mentioned in the original formulation, if the oscillators frequencies difference is 

related to velocity components by some scale factor B, fI – fθ = B s cos(ϕ – ϕHD ), then the 

grid spacing becomes independent of changes in speed and direction of movement, 

G =1/B, as planned. Then, for the directional preference ϕHD of the current head-direction 

cell, the output cell shows a constant spacing. 

When considering a two dimensional maze, the interference oscillating pattern will 

produce high activity bands with directions perpendicular to their preferred direction. The 

hexagonal pattern emerges as two or three of this simple interference patterns are 

multiplied, provided that their orientations differ by multiples of 60º (in the three pattern 
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case, orientations can be obtained with self-organizing rules, because they differ in the 

same angle from each other).  

The first weakness of the model is that the location of the grid vertices will depend on the 

precise trajectory of the rat since the last reset phase point. Here they consider that as the 

grid is being created, each grid node will be connected to the place cell that has its 

receptive field in the location of the node. As a result, grid nodes become locked to 

locations in the now familiar environment. Moreover, they assume that in each node of 

the grid, this connection to the place cell drives the dendritic oscillators to realign their 

oscillation phase with the somatic theta, thus producing a phase reset. Additionally, the 

interference of the patterns will produce the desired map if the oscillations involved are 

in the correct phase with each other, and this is what sets the spatial position of the grid. 

Different values for this phase difference will generate grid maps with the same spacing 

but different orientation, resembling the reported feature of real grid cells maps.  

In accordance to the known anatomy of this brain regions, the authors suggest that place 

cells and grid cells could be wired in a loop such that place cells could provide the position 

input to keep the grid firing fields with a stable position in the environment and, on the 

other hand, grid cells that overlap with place fields could provide them the path integrative 

input. Each time a grid cell suffers a phase reset, its phase propagates on the same local 

group to cells with distinct phases, by delay connections that depend on the speed of the 

animal (this means that some grid cells have their phase realignment triggered by place 

cells and others by the grid cells in the same local population). This propagation of phase 

reset driven by place cells enables the correction of the path integration error in grid cells 

firing locations, requiring recurrence and probably also a topographic relation of grid cells 

(Burgess et al. 2007). 

Scaling factor for grid nodes’ spacing 

In the same year of this publication, an experimental work reports the existence of 

subthreshold membrane potential oscillations differences in the dorsal-to-ventral axis 

entorhinal neurons which could account for the different spacing between grid fields. 

Using real data, they determined a scaling factor to be incorporated in the oscillation 

interference canonical model for obtaining grid spacing of cells from the frequency of the 

subthreshold oscillation in the same anatomical location (Giocomo et al. 2007).  At the 

same time this scaling factor was appended to the model of Burgess and colleagues and, 
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by varying the oscillation frequencies, they replicated grids with different spacing from 

dorsal to ventral mEC.  

Regarding the type of currents that could underlie the presence of the subthreshold 

dendritic oscillations required for such a model, the authors refer a commonly used 

persistent sodium current (NaP), which is an inward current. By its interaction with a 

reduced inward current or an increased outward current, the subthreshold oscillations 

would resemble an oscillation in the net membrane current. The fact that at the soma the 

recordings made show that oscillations have small amplitude, the authors suggest that at 

distal dendrites the amplitude of oscillations could be higher (for instance by an increase 

of the h-currents in more distal dendrites without disruptions caused by somatic 

oscillations). According to the authors, small oscillations happening in faraway dendrites 

could be responsible for the maintenance of phase information which would be again used 

on the onset of the soma’s spiking activity (Hasselmo et al. 2007). 

Velocity input from theta cells 

By 2008, a new envelope for the interference oscillatory model was created, describing 

the way grid cells could convert the interference patterns into their characteristic spatial 

firing coding location. With this intent they add, to the oscillatory interference model 

circuit, the familiar ring attractor which has previously been proposed as a way to perform 

angular path integration in the head-direction system (described in section 2.1.1). Each 

ring attractor is formed by theta cells and is supposed to exist in subcortical regions. Theta 

cells are expected to burst at a frequency proper of each ring and at a phase determined 

by the position of the theta cell in that same ring. So theta cells in different rings oscillate 

at different frequencies and theta cells in the same ring oscillate at the same frequency 

but in different phases. This model provides an alternative for the nature of the velocity 

modulated theta oscillations relative the previous models, in the sense that each velocity 

modulated oscillation is supposed to correspond to a theta cell. The correction of path 

integration errors in the determination of the animals’ location may also be here 

performed by phase-reset derived by place cells assuming that it can back propagate to 

reset ring attractor’s phases (Blair et al. 2008). 

Velocity-controlled oscillators (VCOs) 

To overcome the constraint related to the lack of noise in oscillations of OIs models, a 
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new foundation for the oscillations involved has been proposed. In this model, each 

oscillation is the result of a set of singular noisy and thus more realistic oscillations 

coupled together. Each network represents a velocity-controlled oscillator (VCO) with a 

certain preferred direction. In fact, a network of cells coupled all to all, with noisy activity 

produces a synchronized population of units with low period variance either measured 

between all the units either within each unit activity. The model consists of a grid cell 

receiving input from three identical oscillatory networks which differ in their own inputs. 

One of the three VCO’s, termed Vo, is considered the baseline oscillator, as it sets the 

timing for the other networks activity to affect the grid cell. The combination of three 

such network oscillations (Vo plus VCO’s oriented at angles 0º and 120º) can produce 

grid cells with positional firing activity relatively stable in realistic timescales. Each one 

of the VCO units project to the grid cell, but the networks are not coupled with each other 

in order to prevent synchrony. The spacing of the grid is set by the parameters chosen to 

perform the change from velocity to frequency at the VCO’s and their velocity inputs. 

Although this model conveys many simplifications, it provides evidence that interference 

of noisy oscillatory signals may produce regular hexagonal firing patterns under certain 

conditions. Grid cells sharing the same set of VCO’s will have the same spatial scale. On 

the other hand, this architecture predicts that displacement of the nodes in individual cells 

may be partially correlated (Zilli and Hasselmo 2010). In fact it has been reported that 

cells recorded in the same set of different mazes show similar grid phase vectors (Fyhn 

et al. 2007) translation, in the sense that not only the angle of rotation is similar between 

pairs of cells tested, but also its length. Interestingly, both of the behaviors described are 

not present in interference models of single oscillators but are a characteristic of attractor 

network models. 

Final comments 

The diversity of models that have been suggested in such short period of time since the 

first report on grid cells is remarkable. Not less important are the predictions arisen from 

proposed model about features of those cells and related matters. A recent example is the 

result that when theta oscillation is reduced (by disruption of the activity of the medial 

septum), grid patterns lose their hexagonal regularity although place cells and head 

directional cells do not lose their characteristic firing (Brandon et al. 2011; Koenig et al. 

2011). 
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2.3.3 Self-organizing models 

This recent class of models comprehends essentially two distinct models, described 

shortly. 

Self-organizing units with adaptation 

By the year of 2008 an alternative class model was published. The most differentiating 

characteristic of this model is that it uses place cells as the source of spatial information 

input arriving grid cells. In this model, random initial weights make the output cell fire in 

random places of the maze and increase (by a Hebbian learning regime) the synapse 

weight with the place cells that were responsible for that increase. The adaption 

mechanism makes the overall rate to decrease after some time of high activity, decreasing 

then connection weights from place cells that code de current location. This process 

creates dispersed multi-peaks of activity that become hexagonally arranged because fields 

move around to minimize their distance from each other producing the most compact 

form of arrangement. The change in connections strength from input cells to grid cells are 

subjected to a slow learning process and the total input weight arriving each neuron is 

obligatory constant. The amount of synaptic input coming to each cell is subject to a 

mechanism of adaptation before being subject to the transfer function. This transfer 

function produces grid cells activity and includes two parameters of interest: a threshold 

parameter and a gain parameter. mEC neurons perform competition in such a way that 

the threshold parameter increases if the average activity is high when compared to a target 

mean activity. At the same time, the gain parameter is used to control the sparseness of 

the ensemble’s activity relatively to a desirable sparseness value. For the Hebbian learning 

rule, knowledge about a temporal mean of the presynaptic activity and the postsynaptic 

activity is required. The model evolves as the simulated rat randomly moves within a 

square box and it takes about 107 time steps for the hexagonal configuration to stabilize. 

In this model recurrent connections between grid cells are only used between local 

populations to stabilize cells in a common grid orientation.  

The mathematical formulation of this model is as follows. The total synaptic activation 

of the units is given by: 

1

1 IN
t t

i ij j

jI

h J r
N 

  , 
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where NI is the number of units in the input layer, Jij is the weight of the synapse from 

neuron j to neuron i and t

jr is the firing rate of the input neuron j.  

The transfer function is given by: 

     sat

2
ψ ψ arctanh g h h 


      , 

where ψsat is the saturation rate and Θ represents the Heaviside step function. Parameters 

θ and g are the threshold and the gain, respectively, defined equally for all mEC neurons 

and updated according to: 

 1

3 0

t t b a a      and  1

4 0

t t tg g b g s s    . 

In these rules, b3 and b4 parameters control the speed and smoothness of the changes, a is 

the mean activity and s is the sparseness of the mEC units, defined by: 
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Parameters a0 and s0 are the target values for the mean and the sparseness of the units, 

respectively. NmEC is the number of units in the output layer. 

Before transformed by ψ, the input activity is subject to fatigue dynamics (adaptation) by 

means of activation variables defined by: 

 1

1

t t t t t

act act inact actr r b h r r      and  1

2

t t t t

inact inact inactr r b h r    . 

Parameters b1 and b2 define the speed of rise and fall of the activity of a mEC unit 

receiving strong input.  

Finally, the update rule for the weight matrix is given by: 

 1 ψ ψt t

ij ij i j i jJ J r r    , 

where ε is the learning rate, rj is the activity of the input neuron and   denotes the 

temporal average. Additionally, weights are normalized such that the total input weight 

to any mEC neuron is constant. 

Besides using place cells like input, simulations were made with other type of spatial 

inputs in order to demonstrate that the model is also valid with other profile spatial cells 

(Kropff and Treves 2008). 
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Four years later this model was updated in order to produce not just spatial grid cells, but 

conjunctive cells, that comprise directional tuning in addition to spatial, and are abundant 

in several layers of mEC. The architecture of the model contains connection paths from 

head-direction units, from place units and recurrent connections in the conjunctive 

population. According to the authors their model focuses on learning happening in layers 

III to VI, because layer II does not contain head-direction cells nor recurrent collateral 

connections. The inputs injected in each modeled conjunctive cell are: a population of 

place cells with self-organizing synapse weights, all conjunctive cells with fixed weights 

(self-excluding) and one head directional cell. This last one is included to represent the 

global effect of angular modulation from the local network. As in the original model, 

place cells inputs are taken to be regularly arranged and their activity rate is modeled with 

Gaussian curves. The dynamics of conjunctive cell firing rate and adaptation variables, 

along with the weights update rule is obtained as in the first model. The utility of the 

collateral connections is to obtain the units (grid cells) with the same orientation and 

spacing but distinct phases. This allows for units with similar direction preferences to 

have strong collateral connections. Ellipsoidal grid fields are produced by learning 

weights if the foraging is undertaken with anisotropic7 speed of the rat and collateral 

connections are present. Collateral connections comprise a delay which must be above 

130 ms (is the time the rat needs to go in a straight line from one place field to the next) 

in order to avoid the collapse of subpopulations with similar direction tuning. The 

network activity is regulated by the gain and threshold parameters which stabilize in an 

ad hoc fashion. The authors argue that this method is intended to mimic homeostasis8 in 

a local portion of mEC. In this model and its previous iteration, grid spacing is originated 

in the mean speed of the simulated rat during learning and on the time constant for 

adaptation. Collateral connections weights are dependent on distance between two 

imaginary fields with no requirements for topographic relations between units. However, 

a biophysical explanation for how synapses obtain such strength values was not explored 

(Si et al. 2012). 

                                                 
7 Variable with respect to direction. 

8 Metabolic equilibrium actively maintained by several complex biological mechanisms that operate via the 

autonomic nervous system to offset disrupting changes 
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GRIDSmap model 

Self-organizing maps have also been used in a broader model that intends to mimic the 

emergence of grid cells as well as place cells in a two dimension maze. This GRIDSmap 

model, uses path integration signals relative to direction and speed and translates them 

into spatial representation units such as place cells and grid cells through a network of 

self-organizing maps. While contemporaneous models of oscillations interference are 

more devoted to the nature of the oscillations than to the mechanism that would dictate 

an orientation difference of 60° between the interfering oscillators, one of the main 

concerns of this paper is to explain this latter preference. The first strong assumption of 

GRIDSmap model is the existence of the so called stripe cells, which have not, to our 

knowledge, been reported. These particular cells supposedly fire in a stripe like fashion 

within a maze, with stripes perpendicular to their preferred direction of movement. Each 

of these cells is defined by their preferred direction θ, and by the period length, l, of the 

stripes measured in that same direction (that will be the shortest period of all directions). 

Stripe cells project to future grid cells and the intermediating connections are subject to a 

learning process of type on-center off-surround involving a self-organizing map. The co-

occurrence of two stripe cells in a maze will be most frequent in the case where their 

orientation differ by angles of ±60° and this is the reasoning behind the choice of the 

stripe cells to co-occur. The idea is based on the detection on the most common co-

occurrences, their amplification and learning and, in addition, on the deletion of the less 

frequent co-occurrences. Stripe cells are thought to be arranged in 1D ring attractors such 

that each ring contains cells that have the same orientation preference and spatial period 

but differ in their spatial position. If the animal is still, there is a bump (stable) in each 

oriented ring on top of the stripe cell that is coding for the position where the rat is. As 

the animal starts moving, the vector of displacement is decomposed into the distance 

traveled in each direction. Consequently, the different rings see their activity bump 

moving around the ring, from stripe cell to stripe cell, according to the distance traveled 

in their directional preference. Because the ring has finite length, the bump returns to the 

same cell after the period length has been traversed by the animal in the direction 

preferred by the cell. The ring structure implies recurrence in stripe cells with the same 

orientation preference. In conclusion, the first stage of the GRIDmap model converts 

small space scales stripe cells into grid cells with multiple spatial scales. The second stage 

(which is beyond the scope of the present work) converts grid cells of multiple spatial 
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scales into place cells representing even larger spatial scales. Stripe cells are supposed to 

be located in layer III of the entorhinal cortex which project randomly to layer II cells. 

The co-activation principle will emphasize projections coming from stripe cells which 

differ ±60° in their directional preferences generating cells with hexagonally arranged 

fields in layer II. The simulations of such a model show failure of the representation of 

grid cells with large scaling as are those located more ventrally in the medial entorhinal 

cortex. The current model shares with the class of oscillatory interference the idea that 

spatial scale of grid cells in inherited from the spatial scale of the stripe cells (frequency 

of oscillators). Moreover they also assume the existence of cells that combine codes of 

speed and direction. As for the requisites of attractor models, this model uses the moving 

bump ring attractor mechanism (Mhatre et al. 2012).  

A GRIDSmap new generation model (known as Spectral Spacing model) intends to 

correct some less accurate results of the original version, such as reducing the production 

of stripe like cells instead of grid cells in some scenarios, simulate the known gradual 

changes in spatial and temporal feature of grid cells along the dorsoventral axis of mEC. 

As a side effect of this model, grid cells exhibit membrane potential oscillations with 

decreasing frequency along with rate from dorsal to ventral locations in mEC. Grid cells 

recurrently interact in an on-center off-surround network (Grossberg and Pilly 2012).  

Final comments 

The set of models comprising self-organizing maps described here have received 

inspiration from successful models for visual system. However, an important feature can 

make the difference in their effective applicability to positional system: the lack of 

topographic organization within space cells. It is known that grid cells are also present in 

deeper layers of mEC and thus, if coming from stripe cells and if the projections inside 

mEC are feed-forward (or even recurrent) stripe cells must be present in deeper mEC 

layers or even in CA1 or subiculum, but this remains unknown. 

Another limitation of the self-organizing models described concern their results 

dependency on velocity. Furthermore, they require large scale environments and long 

exposition periods for the process to result in characteristic grids of ventral mEC regions 

(greater spacing) (Zilli 2012). Recurrence is also a prevailing requisite for the models in 

this class.  
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3. Modelling phase precession 

The work described in this chapter originated one publication in an international peer-

reviewed journal and two conference abstracts, one of which in an international peer-

reviewed conference: 

 Luisa Castro and Paulo Aguiar, Phase precession through acceleration of local 

theta rhythm: a biophysical model for the interaction between place cells and 

local inhibitory neurons, Journal of Computational Neuroscience: Vol.33, Issue 1, 

Pages 141-150, 2012. DOI: 10.1007/s10827-011-0378-0. 

 

 Luisa Castro and Paulo Aguiar, Possible roles for inhibition in the linear phase 

advance of complex spike cells undergoing phase-precession, XII Meeting of the 

Portuguese Society for Neurosciences, Unidade de Neurociências Instituto de 

Medicina Molecular, Lisboa (28 May 2011). 

 

 Luisa Castro and Paulo Aguiar, Phase precession through acceleration of local 

theta rhythm: a biophysical model for the interaction between complex spike cells 

and theta cells, BMC Neuroscience (18 July 2011) 12 (Suppl 1): P2. DOI: 

10.1186/1471-2202-12-S1-P2. 

3.1 Introduction 

Exploratory activities which involve changing the position of the rat in an environment 

(like walking, running, swimming) are accompanied by an oscillatory activity pattern in 

the hippocampus’ EEG with a frequency range from 6 to 12 Hz – the θ rhythm. This θ 

oscillation is believed to have important functional roles in information coding (Buzsaki 

2002), and is a key component in the phase precession coding mechanism. Coding 

through phase precession states that the phase in the θ cycle in which the place cell fires, 

provides information regarding the position of the rat in the environment, more refined 

than what is available from firing rate coding alone (O'Keefe and Recce 1993; Skaggs et 

al. 1996). Many researchers believe that, in terms of space representation, phase coding 

and rate coding are produced by independent mechanisms (Huxter et al. 2003). 
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The precise mechanisms underlying the generation of phase precession are still unknown 

and some hypothesis, together with computational models, have been suggested. 

Naturally, the majority of these models target key experimental results concerning phase 

precession properties. In two-dimensional mazes, some of these results are (Harris et al. 

2002; O'Keefe and Recce 1993; Skaggs et al. 1996): the total advance in phase can be 

more than 180° for single trials; firing phase correlates better with location inside the 

receptive field than with time since entrance; gradual broadening of spike clusters; 

precession is not confined to spatial tasks, emerging also in not spatial ones; phase 

advance is faster in the center than in the periphery of the receptive field; the place cell 

has a Gaussian shaped firing response in the crossing of its place field (slightly 

asymmetric for linear tracks); phase precession is observed since the first crossing of the 

receptive field, and not only when the animal has been trained on the maze. Moreover, 

experiments on rat pups, provide evidence that early place cells are theta-modulated and 

show phase precession (Langston et al. 2010). 

Here we present a minimal spiking model for phase precession generation which uses 

biophysically plausible neuronal dynamics. Our model shares with Bose’s model the 

importance for the interaction with inhibitory interneurons (Bose et al. 2000), but the 

dynamics, nature and consequences of this interaction are quite different. Our model is 

capable of producing many key experimental results and has the advantage of doing so 

using simpler principles and fewer assumptions than other recent models (Geisler et al. 

2010). 

3.2 Methods 

Pyramidal cells found in layers CA1 and CA3 of hippocampus are of two main cellular 

types: theta cells or interneurons, which are inhibitory and well correlated with EEG 

patterns, and excitatory complex spike cells which major correlation is with the location 

on the animal – place cells (Amaral and Lavenex 2006). The model focuses on the feed-

forward network established between the entorhinal cortex and CA1. EC neurons provide 

input for the CA1 field sending signals simultaneously for excitatory and local inhibitory 

neurons. The latter are responsible for the control of the network activity: if the input 

received by the complex cells is too high so will be the input for the interneurons. As a 

result, interneurons provide feed-forward inhibition to principal cells, which is a frequent 
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architecture motif in the nervous system (Shepherd 1998). In this particular model, 

inhibitory neurons may represent basket cells (Freund and Buzsaki 1996) or other local 

inhibitory units which strongly influence pyramidal cell’s activity. 

With this in mind, the main units of our simple model are a complex spike cell and an 

interneuron or theta cell, both fed by excitatory synapses coming from cortical areas. The 

input spike trains, representing the entorhinal cortex activity, both space modulated and 

theta rhythm modulated, are generated using a non homogeneous Poisson process. In 

addition, the interneuron is also affected by a modulatory input, at theta rhythm frequency, 

which represents the population activity. This input maintains the inhibitory cell firing 

activity synchronized with the population theta rhythm in the absence of entorhinal 

excitation. Theta cells are thus assumed to be connected in a weakly coupled network. 

This weak coupling allows, under certain conditions, for a particular cell to desynchronize 

its activity from the global population activity. In the model, only that interneuron is 

present and is connected to the complex spike cell by an inhibitory synapse. This 

functional block - complex spike cell plus theta cell - constitutes a unit of repetition on 

the CA1 and is the focal point of our model. 

 

Figure 3.1 The population of inhibitory interneurons is assumed to form a weakly coupled network with synchronized 

activity at the θ frequency. Each interneuron (I) is connected with a place cell (P) and receives a modulator activity 

from a common pacemaker. Our model focuses in the functional block consisting of a pair of place cell and local 

interneuron; the weakly coupled network is not modeled. Both cells in the functional block share an input from the 

entorhinal cortex (EC) which is, at the same time, space modulated and θ modulated. Connections a, b and c are, 

therefore, all θ modulated (adapted from (Castro and Aguiar 2012)). 

file:///C:/Users/Luisa/AppData/Roaming/Microsoft/Word/Figures/Fig2_1_CircuitDiagram.tif
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3.2.1 Dynamics for neurons and synapses 

The dynamics of the two types of neurons, complex cell and interneuron, are described 

by the leaky integrate-and-fire model: 
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where τm = 200 ms is the time constant of the neuron; Vrest = -70 mV is the membrane 

resting potential; Rm = 200 MΩ, is the membrane resistance; I is the total current stimuli 

and Vth = -50 mV, is the threshold membrane potential for the neuron to fire. The 

parameters described are all shared by both the inhibitory neuron and the excitatory 

neuron, except for the input current components described shortly.  

The time varying synaptic currents, Isyn, are given by: 

      syn synI t g t V t E    .  

The synaptic conductances are modeled with its simplest form, as a single exponential 

and initialized at zero. Every time a presynaptic spike occurs the conductance value of 

the synapse is incremented by a fixed amount, Δg. When the presynaptic neurons are 

silent, the conductance decreases with time constant τsyn. This non linear dynamical 

behavior is formulated as: 

 

   

syn

sp

dg
g

dt

t t g t g t g




 

    

 

, where tsp represents the presynaptic spike time. 

The synaptic current for the excitatory neuron is the sum of two distinct currents: one 

carrying the spatial related information coming from the entorhinal cortex, Isyn
ce, and the 

other coming from the inhibitory theta cell, Isyn
ie. The total current flow impinging on the 

complex spike cell is then: I = – Isyn
ce – Isyn

ie. 

The current coming into the interneuron (theta cell) is also the sum of two distinct 

currents: one carrying the spatial related information coming from the entorhinal cortex, 

Isyn
ci,  and the other with the pacemaker one carrying the spatial related information 

coming from the entorhinal cortex, IΩ. The total current for the interneuron builds up to: 
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I = IΩ – Isyn
ci. 

3.2.2 Pacemaker current 

The assumed weakly coupled network of inhibitory interneurons is synchronized by a 

common pacemaker Ω. In the model this weak coupling is not included (for this see 

(Bendels and Leibold 2007; Loewenstein et al. 2001)), instead, only the global rhythmic 

theta input to the interneuron is incorporated. 

With a sinusoidal shape in accordance with the theta rhythm pattern, the pacemaker 

current, IΩ, is given by: 

    cos 2I t k f t b     , 

where k is the intensity parameter, φ is a free parameter allowing different trials to start 

at distinct phases of theta, f is set at the theta frequency and b is the baseline constant level 

for the current. In our simulations, for the sole sake of simplicity we used f =10 Hz, which 

is in the range of experimental values.  

When subject solely to this pacemaker current (with b = 0), the subthreshold membrane 

potential time course can be computed analytically (check section A.3 for details) from 

the integrate-and-fire equation described above: 

  
 

   2
2 sin 2 cos 2

1 2

mtm
rest m

m

R k
V t V f f t f t e

f

   
 

      


. 

This function oscillates between two extremes Vmin and Vmax, with a dependence on the 

intensity parameter which is given by (see section A.4): 

 
   

2

max min 1 2

2

m

m

V V f
k

R

   
 .  

3.2.3 Entorhinal cortex input 

The inputs from the entorhinal cortex are considered in the form of spike trains and affect 

simultaneously the place cell and the interneuron in our model. This stochastic input is 

assumed to originate from an entorhinal cortex subpopulation composed by 1,000 neurons 

and is set to be both space modulated and theta modulated. The intensity function defined 



62 
 

for the generation of spike trains subject to this properties includes: 

-  a sinusoidal component for the theta modulation and 

-  a Gaussian tuning profile for the space modulation. 

Entorhinal cortex spike trains are modeled by the intensity function λ(t) given by: 

    

2
1

2

min mod mod1 cos 2 1

t

t f A f t B e



  

 
  

 

 
       
 
 

. 

The parameters Amod and Bmod control, respectively, the amount of theta modulation and 

space modulation; f = 10 Hz represents, as before, the theta rhythm and φ is the same 

parameter (with the same value) as in the pacemaker current equation. In the Gaussian 

component, the parameters µ and σ set, respectively, the center and width of the place 

field. The simulated animal is assumed to move in a straight line at constant velocity, 

therefore space units are replaced by time units. The spatial input is set as taking off from 

a minimum level of firing, fmin, representing the basal activity level when the animal is 

outside the receptive field. This spontaneous firing level is set at fmin = 0.5 Hz, 

nevertheless, the stochastic activity is also theta modulated. Once entering the receptive 

field, a portion of the EC cells is assumed to start firing at a higher rate. In this model, the 

spatial selectivity shown by the place cell is inherited from the entorhinal cortex: the place 

field of the modeled place cell results from the combination of spatially tuned activity 

already present presynaptically. The population average rate of fire was set assuming that 

around 10% of the 1,000 neurons fires at a high rate, in the order of 40 Hz, while the rest 

of them remain at the basal level. The percentage chosen is not decisive and the 10% EC 

neurons are assumed to have co-localized receptive fields. In result, considering the 

population average, the mean input firing rate at the center of the place is set to fmax = 4.5 

Hz.  

As explained in the following section, the entorhinal spike trains are simulated as 

realizations of a Poisson process with intensity function λ(t). The additive property9 of 

the Poisson process allows the construction of a single spike train reflecting the merged 

activity of the entire EC subpopulation spikes. Therefore, instead of 1,000 intensity 

functions, only one intensity function λ(t) is needed for the generation of the EC spike 

                                                 
9 The additive property of the Poisson process states that the combination of two independent Poisson processes is 

another Poisson process which intensity function is the sum of the individual intensity functions (Papoulis and Pillai 

2002). 
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trains. Accordingly, the spatial modulated parameters used are fmin = 0.5 kHz and 

fmax = 4.5 kHz. This property in the Poisson process setting the EC spike train also renders 

the model more general, since less stringent constraints are set for the input population. 

In order to assure an fmax firing rate from EC units at the center of the place field and a 

spontaneously firing, fmin, outside the place field, the parameter Bmod is defined as: 

max min
mod

min

f f
B

f


 . 

The Gaussian profile parameters are set to µ = 500 ms and σ = 250 ms. For a simulation 

lasting 1 s, this means that the center of the place field is reached at t = 500 ms and its 

crossing lasts less than 10 theta cycles. 

Spike train simulation 

In vivo recorded cells exhibit stochastic spiking activity with particular statistical 

properties. When analyzing spike trains it is usual to study not only the characteristics of 

their time series but also the distribution of their inter spike intervals (ISI’s). In fact, 

samples of ISI’s are commonly characterized by an average time interval similar to its 

standard deviation (Dayan and Abbott 2001). The coefficient of variation, Cv = sISI/<ISI>, 

applied to such data produces unitary values, which is the theoretical value for Poisson 

processes. Moreover, if the spike train is split in subintervals, the number of action 

potentials (events) happening in two disjoint intervals are independent (independency 

assumption). The distribution of the number of spikes that occur in a given interval 

depends only on the length of the interval and not on its location, meaning that equal 

length intervals should have the same event occurrence probability (this is the stationary 

assumption). 

Supported on the similarity of the described properties, the common way to model spike 

events is to generate realizations of Poisson processes with the desired spike rate. If the 

rate has the same intensity throughout the simulation then a homogeneous Poisson 

process should be used. In the present model however, cells firing rate is variable through 

time thus, a non homogeneous Poisson process is required for the generation of spike 

times. In fact, the non homogeneity of the process is a relaxation of the Poisson constraint 

stating that events are equally distributed in all intervals of identical size. 

In this model, entorhinal cortex input, in the form of spike trains, is modeled as events in 
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a non homogeneous Poisson process using the thinning algorithm “Acceptance-

Rejection” method, chosen for its fast computational performance (Ross 2002). The rate 

function, λ(t) for t ϵ [0, T] defined above, corresponds to the intensity function for the 

Poisson process realizations to be produced. In the following lines, the algorithm will be 

presented, but previously the details behind such method are described. The general idea 

is to generate the time intervals between successive spike events (instead of generating 

the event times) and then sum them to obtain the event, in this case spike, times. 

For a Poisson process of events with intensity λ, the distribution of Xn is the base for the 

spike train generation, where Xi, with i ϵ {1, 2, …, n} denotes the length of the interval 

between successive events ti-1 and ti. In order to address the distribution function of the 

ISI’s, the first notion to establish is that if N (t) is defined as the number of events occurred 

in [0, t], then N (t) is a Poisson random variable with mean10 λt.  

Consider the first ISI event, {X1 > t}, which occurs if and only if no Poisson process 

events have occurred in [0, t[, then P (X1 > t) = P { N(t) = 0} = e-λt . In general, the ith inter 

event interval {Xi > t} will occur if and only if no events have occurred since the (i-1)th 

inter event interval, say {Xi-1 = s}, then: 

       1 1| 0 , | 0 ,i i iP X t X s P events in s s t X s P events in s s t          

  0 tP N t e    . 

The reasoning behind the 2nd and 3rd equalities are, respectively, the independency and 

the stationary principles of Poisson processes mentioned above together with the 

convention that N (0) = 0. 

The result11 is that the inter arrival times Xn are independent and identically distributed 

exponential random variables with parameter λ (recall that the mean of the exponential 

distribution is the inverse of its parameter). For the generation of such ISI’s, with constant 

rate λ, the inverse transform method is used (check the section A.1 for details). According 

to this method, n random (from a uniform ]0,1[ distribution) numbers are generated, 

                                                 

10 Recall that a Poisson variable with parameter λt has density probability function:  
 
!

it

i

e t
p P X i

i

 

   , with 

i = 0,1,…  

11 Since   t

nP X t e   , then the (cumulative) distribution function for X is   1 t

X nF P X t e     , for t ≥ 0, , which 

corresponds to the exponential distribution. The corresponding probability density function is t

Xf e   , for t > 0. 
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U1,U2,…,Un, and Xi = –ln (Ui)/ λ is defined. with i ϵ {1, 2, …, n}. Each Xi corresponds to 

the length of the interval between the ith event and the (i-1)th spike, then the array of the 

n event times builds up to: 

{ X1,  X1 + X2, X1 + X2 + X3, …, X1 + X2+…+ Xn}, 

which constitutes a Poisson process with constant rate λ.  

The next step is based in the thinning technique (check section A.2 for more details). If 

each one of these event times is accepted with probability λ(t) / λ (for λ (t) < λ , for all t), 

then the process of counted events constitutes a non homogeneous Poisson process with 

intensity function λ(t), 0 ≤ t ≤ T. 

The performance of the thinning method is increased when less events are rejected. Then 

the constant λ must be as close to the intensity function as possible, throughout the 

simulation time interval. A refinement of the general procedure can be obtained by 

applying the algorithm in a piecewise fashion, breaking into disjoint intervals the time 

interval of the simulation. Subintervals must be chosen in order to better comply with the 

performance hint and their union must be the total time interval, [0, T]. Thus, appropriate 

values k, 0 = t0 < t1 < t2 < …< tk-1 < tk = T, λ1, …, λk should be selected in order to have 

λ(s) ≤ λi , if ti-1 ≤ s < ti, i = 1,… ,k. 

Finally, for each interval (ti-1, ti) the non homogeneous Poisson process can be generated 

by the process described above, that is, generating exponential random variables with rate 

λi, and accepting the generated event occurring at time s, s ϵ (ti-1, ti), with probability 

λ(s) / λi. 

The thinning algorithm for generating the first T time units of a non homogeneous Poisson 

process with rate λ(t) in a piecewise fashion is as follows (Ross 2002). 

STEP 1: t = 0; J = 1; I = 0. 

STEP 2: Generate a random number U and set 
ln

J

U
X


  . 

STEP 3: If t +X > tJ, go to STEP 8. 

STEP 4: t = t +X. 
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STEP 5: Generate a random number U. 

STEP 6: If 
 

J

t
U




 , set I = I + 1, S (I) = t. 

STEP 7: Go to STEP 2. 

STEP 8: If J = k, stop. 

STEP 9: 
 

1

J J

J

X t t
X



 

 
 , t = tJ, J = J + 1. 

STEP 10: Go to STEP 3. 

In the algorithm above, t represents the present time, J is the present interval (i.e., J = j 

when tj–1 ≤ t < tj), I are the number of events generated, and S (1), …, S (I) represent the 

event times. In step 3, t + X  > tJ means that the interval length generated is such that the 

event time produced, which is t + X, falls in the next subinterval. If the next subinterval 

exists (otherwise the process is finished) then the present generated time event is counted 

but all the variables must be updated (in step 9). In particular, X is redefined as belonging 

to the next subinterval and substituted by (X – tJ + t) λJ / λJ+1, t is set as the next interval 

left value (t = tJ) and J is set as the next interval (J = J +1) (Ross 2002). 

The piecewise algorithm just described was applied to the intensity function defined 

above, with 50 equally sized subintervals, k =50. The time events generated together with 

the respective histogram corresponding to a total of 1,000 neurons is illustrated in Figure 

3.2 together with the non homogeneous intensity function (thick green line). 

The iterative method used to approximate the model’s differential equations was the 

forward Euler method with a time step of 0.01 ms. The full model was coded and 

simulated in MATLAB® (R2010a, MathWorks, Natick, Massachusetts, U.S.A.). Source 

code for the model described in this paper is available from ModelDB 

[http://modeldb.yale.edu/] (Hines et al. 2004) via accession number 143248. 
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Figure 3.2 Scatter plot (top panel) and histogram with respective intensity function (bottom panel) of a spike train 

example generated with the piecewise thinning algorithm. The data refers to the spike times of 1000 simulated neurons 

with mean firing intensities between 0.5 Hz and 4.5 Hz, during one second of real time taken to cross a fictional place 

cell receptive field. 

3.2.4 Parameterizations 

The choice of parameters is a critical point in any model. While many clear-cut 

parameters were already presented along with the description of the model, it is important 

to segregate the arguments regarding the choice of values for some of the parameters. 

This dedicated explanation is also used to address the robustness of the model to small 

changes in the parameters. 

file:///C:/Users/Luisa/Desktop/Thesis/Figures/fig_raster_poisproc.tif
file:///C:/Users/Luisa/Desktop/Thesis/Figures/fig_hist_poisproc.tif
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Pacemaker 

The intensity parameter k is set so that, in the absence of any other stimulation (including 

b = 0), the pacemaker alone is responsible for a membrane subthreshold oscillation in the 

interneuron of the order of 5 mV of amplitude (between extremes) (Kamondi et al. 1998). 

Based on this argument the parameter value is set at k = 0.1 nA (check calculus details in 

the Appendix). For the b parameter, the imposed constraint is that, when provided only 

with the current from the pacemaker, the interneuron (theta cell) should fire at a constant 

rate of 10 Hz. The value found is b = 0.25 nA (check calculus details in section A.5). 

Input spike trains 

The Amod parameter in the intensity function is set so that, in the absence of spatial 

modulation (Bmod = 0), a theta oscillation should be present in the spike times histogram 

(but not directly visible in the individual raster plots). The used constraint was that the 

oscillation amplitude (relative to the mean value) in the histogram should be around 20% 

of the average activity level (Skaggs et al. 1996). The global model dynamics remain the 

same with changes in this value. By construction, the average level of the oscillating 

function is defined by fmin and Amod sets precisely the amplitude of the deviating from this 

mean value of the oscillations. Accordingly, the parameter Amod is set to 0.2. 

Synaptic connections 

In the dynamic activity of the tree synaptic conductances presents in the model, the 

amounts incremented when a presynaptic spike arrives are represented by (see 

connections a, b and d in Figure 3.1, respectively): 

 Δgce, for the synapse coming from the cortex to the excitatory neuron; 

 Δgci, for the synapse coming from the cortex to the inhibitory neuron; 

 Δgie, for the synapse coming from the inhibitory neuron into the excitatory neuron. 

The parameterization of the synaptic conductances is initiated with the connection 

between the EC population and the interneuron: constraints about the expected 

interneuron’s activity profile as the animal runs through the place cells receptive field are 

considered.  Out of the place field, EC excitation is residual hence the theta cell is mainly 

driven by the pacemaker thus firing at the same frequency as the theta rhythm: 10 Hz. 

Our model is grounded on the assumption that, inside the receptive field, the elements of 

the functional block, the place cell plus the local interneuron, undergo an increase of their 
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firing rates. The value for Δgci is defined accounting for the experimental result that a 

phase precession close to 360º takes place within about 7 cycles of the theta rhythm 

(O'Keefe and Recce 1993). If a constant rate is assumed for the input spike train, the 

inhibitory cell has 7 cycles to perform a total advance of 360º. While constant, the 

interneuron‘s firing rate is such that in each cycle the advance is around 50º. This means 

an increase of 20% of the theta oscillation at 10 Hz (driven by the pacemaker) resulting 

in an average firing rate for the interneuron inside the place field set at 12 Hz. Setting the 

EC spike train at a constant firing rate of 10 Hz (note that in this case the modulation 

frequency and the firing rate are the same, which is not always the case), the conductance 

value was tuned, averaging over 100 simulations, in order to produce a firing rate of 12 Hz 

for the inhibitory cell. 

This means that while the interneurons activity is also space modulated, the magnitude of 

this modulation is smaller than the modulation in the place cell. Due to the weakly 

coupling, this firing rate acceleration disrupts only the local interneuron’s oscillation 

frequency while not affecting the global population oscillation frequency.  

The parameterization that follows is for the synapse between the interneuron and the place 

cell. When the EC population is firing at the lower rate, 0.5 Hz, and turning off the 

connection between from the EC population into the excitatory cell (but maintaining all 

the others), the complex spike cell should exhibit a subthreshold oscillation of 5 mV 

approximately (Kamondi et al. 1998). In this case, when the only input to the place cell 

is the inhibitory one, the complex cell’s membrane potential will oscillate between its 

resting value (set at -70 mV) and a lower one. Through simulation, the parameter value 

Δgie is set such that this amplitude matches the 5 mV benchmark (see Table 3.1). The only 

connection with a non-zero delay, set at 5 ms, is the synapse between the interneuron and 

the place cell. Changes in the order of milliseconds in this parameter do not affect the 

global dynamics of the model. 

Finally, for the tuning of parameter Δgce, the excitatory neuron is imposed to be virtually 

silent outside its receptive field, and firing at its maximum rate, established around 15 

Hz, inside the place field. The value chosen is within the range of values reported in 

experimental findings for firing rates in the center of place fields: 13 Hz in EC layer II, 

17 Hz in CA1 and 25 Hz in CA3 (Hafting et al. 2008). In analogy with the Δgci’s case, 

the conductance value Δgce was tuned, averaging over 100 simulations, in order to 

produce a firing rate of 15 Hz for the place cell (see Table 3.1). 
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Table 3.1 Parameter values for the synaptic currents between the entorhinal cortex, the local theta cell and the place 

cell.  

3.3 Results 

The core element in our hypothesis/model for phase precession generation lies in the 

acceleration of the local θ oscillation when the place cell is within its place field. The 

increased load in excitation, when inside the place field, affects not only the principal cell 

(place cell) but also the local inhibitory interneurons responsible for activity level control 

(feed-forward inhibition). This increase in excitation to the interneuron decouples it from 

the population theta rhythm, and makes it fire at a slightly higher frequency. This above-

θ frequency modulates the place cell firings and produces phase precession. This 

hypothesis implies that, in order to produce a consistent and robust precession, it is 

necessary that the accelerated interneuron fires consistently at regular times, at a 

frequency above the population θ rhythm. This key point is shown in Figure 3.3 where 

the input from EC is not space modulated and where the place cell is discarded: while 

both inputs to the interneuron are θ-modulated (EC and pacemaker), the output spike 

times are regularly spaced with a period shorter than the θ-period. 

To simulate the crossing of a place field, the input from the EC is subject both to theta 

modulation and space modulation. The animal’s velocity is considered to be constant 

(reflected in the homogeneous Gaussian profile of the space modulation), and within 

1,000 ms the animal enters and exits the place field in a straight path. The intensity 

function used to generate the EC spike times is illustrated in Figure 3.4 (top panel). For 

each simulation, the intensity function uses different initial phases of theta (defined 

randomly). This randomness demonstrates the independence of the results with the theta 

phase in which the animal enters the place field. The intensity function and the pacemaker 

Synapse Esyn [mV] τsyn [ms] Delay [ms]  Δg [µS] 

EC to interneuron 0 5 0 3×10-5 

EC to place cell 0 5 0 4×10-4 

Interneuron to place cell -80 20 5 4×10-2 
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always share the same value for the initial phase. A synchronized θ modulation in both 

EC and pacemaker inputs (same phase φ) is the worst-case scenario in terms of facilitating 

the decoupling of the interneuron from the population rhythm.  

 

Figure 3.3 Mean and standard deviation of the interneuron’s firing rate as a function of EC’s input firing activity (50 

runs). With space modulation removed, but not θ-modulation, the EC firing activity is kept at different fmin levels and 

the interneuron’s ISIs are measured (1,000×[0.5, 1.5, 2.5, 3.5, 4.5] Hz) (adapted from (Castro and Aguiar 2012)). 

The spike train generated by this intensity function is delivered to both place cell and 

interneuron, although with different responses due to differences in synaptic efficacies. 

The resulting currents, together with the sinusoidal pacemaker current, are shown in 

Figure 3.4. When inside the place field, the interneuron is accelerated by the additional 

EC input and fires at a frequency slightly above the population 10 Hz θ-rhythm set by the 

pacemaker. Whenever the inhibitory cell fires, it sets time bands where the probability for 

the place cell to fire is lowered. As both neurons are driven by the same excitation, despite 

the additional delay between the interneuron and place cell, they intend to fire at 

approximately the same times. The place cell is more probable to fire a few milliseconds 

before the interneuron does. Representing the place cell’s spike times on top of the θ 

oscillation clearly shows the advance in phase that these times are subject to, while the 

rat crosses the correspondent place field (see Figure 3.4, lower panel). In the depicted 

simulation, phase precession takes place within 6 cycles of the theta rhythm, which is 

coherent with experimental findings, as mentioned in the introduction section. The 

interneuron activity properties are in accordance with recent experimental data showing 

that during spatial exploration interneurons also show spatial selectivity and phase 

precession dynamics (Ego-Stengel and Wilson 2007). 

Several simulations, each representing a different run, were combined to compare our 

model’s behavior with the canonical phase precession representation obtained from 

experimental data. New EC spike trains were generated on each run, each using a different 

file:///C:/Users/Luisa/Desktop/Thesis/Figures/Fig2_2_InterneuronRates.tif
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random initial theta phase φ from the set [0, 2π]. The place cell’s spike times for each 

crossing were plotted in a scatter plot, after shifting every sequence to start at a θ phase 

of 2π radians. 

 

Figure 3.4 Place cell phase precession. a - example of an intensity function representing EC activity during the crossing 

of the place field (for each value of φ, the model constructs an intensity function with a distinct phase onset); b - currents 

dynamics affecting the place cell and the interneuron during a simulation of 1 s during which the rat crosses, at constant 

velocity, the place field; c - membrane potential dynamics of the place cell (Ve) and interneuron (Vi) – the place cell 

fires systematically a few milliseconds before the interneuron; d - spike times of the place cell advance relatively to the 

global, population level, θ rhythm during place field crossing  (adapted from (Castro and Aguiar 2012)). 

While both place cell and interneuron typically produce their first spikes in the upper half 

of the ascending theta phase, the added noise introduces variability in the precise phase. 

The shifting of the first spike phase, in every sequence, to 2π radians facilitates the 

visualization and analysis of the phase precession features. 

As can be confirmed in Figure 3.5, phase precession occurs during 5 to 6 cycles of the θ 

rhythm, with a progression which is approximately sigmoid, and spanning almost 360º. 

It is important to notice that phase advance is faster in the middle of the place field than 

in the periphery, reflected in the sigmoid shape of the curve. One can also verify a gradual 

broadening of spike clusters (vertical bars) representing an ongoing small dispersion of 

the spike times throughout the consecutive θ windows. In parallel with the phase 

file:///C:/Users/Luisa/Desktop/Thesis/Figures/Fig2_3_PhasePrecession_FullModel.tif


   73 
 

precession, the place cell’s firing rate is spatially tuned (see Figure 3.5, lower panel). Our 

spiking model does not support bursting and the firing rate tuning profile comes from 

lower inter-spike intervals in the center of the place field. 

 

Figure 3.5 Phase precession scatter plots and place cell tuning curve. a - place cell’s spike times in 50 combined runs 

versus the respective phases in the theta rhythm - each run has distinct (random) phase onset and distinct EC spike 

train; b - mean values for the firing times versus respective phases, with vertical and horizontal error bars (one standard 

deviation); c - place cell firing rate mean values with respective error bars for the 50 runs - the time for each data point 

is the mean time of each of the firings for the 50 runs, with respective error bars (adapted from (Castro and Aguiar 

2012)). 

An alternative way to visualize phase precession in the model is by plotting histograms 

of the place cell’s spike times for a relatively large number of runs. The histogram for 200 

place field crossings, using 5 millisecond sized bins, is shown in Figure 3.6. It can be seen 

that the clusters of spikes precess leftwards with respect to the θ cycles. It is important to 

notice that spike times dispersion is contained. Removing the randomization of the initial 

θ phase when animal enters the place field (parameter φ) produces distributions with less 

dispersion (see Figure 3.6, lower panel).  

The crucial role of the interneuron in the generation of phase precession can be 

appreciated by removing it from the circuit. Without the input from the accelerated 

interneuron, place cell produces spikes which no longer precess with respect to the θ 

rhythm (see Figure 3.7, upper panel). However, the firing rate tuning profile is preserved 

(data not shown). 

file:///C:/Users/Luisa/Desktop/Thesis/Figures/Fig2_4_ScatterPlot.tif


74 
 

 

Figure 3.6 Distribution of place cell’s spike times for 200 simulations with EC spike trains. Upper panel: each 

simulation used a different random φ value for the initial θ phase. Lower panel: the same initial phase, φ = 0, was used 

in all place field crossing simulations. Bin size is 5 ms (i.e., 0.05 theta cycles) (adapted from (Castro and Aguiar 2012)). 

As mentioned earlier, phase precession on the place cell relies on the ability of the 

accelerated interneuron to fire consistently at regular times, at a frequency above the 

population theta rhythm. As expected, this means that the local interneuron itself must 

also exhibit phase precession measured against the global theta rhythm. 

 

Figure 3.7 Without the interneuron connection (synaptic conductance Δgie = 0), phase precession cease to exist (upper 

panel). While all inputs to the interneuron are θ modulated, this neuron is capable of firing at a frequency above θ, and 

modulate the place cell responses to this higher frequency (lower panel) (adapted from (Castro and Aguiar 2012)). 

This is shown in Figure 3.8: the average firing frequency of the interneuron deviates from 

the theta frequency as the animal crosses the place field, as a result of the space modulated 

EC input, and this produces a localized phase precession.  

file:///C:/Users/Luisa/Desktop/Thesis/Figures/Fig2_6_Distributions.tif
file:///C:/Users/Luisa/Desktop/Thesis/Figures/Fig2_7_InterneuronRole.tif
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Figure 3.8 Local interneuron phase precession. a - during the crossing of the place field, the mean firing rate of the 

interneuron accelerates with respect to the θ oscillation, as a result of the increased stimulus drive; b - interneurons’ 

spike times in 50 combined runs versus the respective phases in the θ rhythm – each run has distinct (random) phase 

onset and distinct EC spike train; c - mean values for the firing times versus respective phases, with vertical and 

horizontal error bars (one standard deviation); d - spike times of the local interneuron also advance relatively to the 

global, population level, θ rhythm during place field crossing (adapted from (Castro and Aguiar 2012)).  

In order to address the question of which parameters set the slope of phase precession in 

the scatter plots, some manipulations were introduced in the EC input spike trains. 

Distinct scenarios were constructed where the rat is considered to be at a fixed position 

(not moving) inside the place field. Under such constraint, the EC activity is no longer 

subject to space modulation (fmax = fmin) varying with time. Instead, the EC spike trains 

have only θ modulation with distinct baseline levels fmin. Three baseline levels were 

considered: 2.5 kHz, 3.5 kHz and 4.5 kHz. Since there are 1,000 synaptic contacts from 

the EC, this means that, on average, the activation rate on each fiber/synapse was 2.5 Hz, 

3.5 Hz and 4.5 Hz respectively. Again this weak constraint provides freedom to consider 

different scenarios where different fractions of the EC input subpopulation changes from 

spontaneous/stochastic (low) to evoked (high) spatially modulated activity. As it can be 

verified in Figure 3.9, the increase in the EC stimulation leads to an increase in the phase 

precession slope. In other words, the advance in phase is related to the stimuli intensity, 

file:///C:/Users/Luisa/Desktop/Thesis/Figures/Fig2_5_PhasePrecession_Inhibitory.tif
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which in turn, in the case of space tuning, is related to the location of the animal. This 

result is connected with the experimental report that firing phase correlates better with 

location inside the receptive field than with time since entrance.  

 

Figure 3.9 Firing times of the place cell in 50 runs with the phase measured relatively to the global θ rhythm (each run 

used a distinct φ but, as with other phase graphs, all sequences were aligned at 2π). a, b and c – The EC input is subject 

to different baseline levels fmin: 2.5 kHz, 3.5 kHz and 4.5 kHz, respectively. d – Phase precession slopes as a function 

of the EC stimuli intensity, calculated from linear regression. Error bars represent the 95% confidence bound for the 

calculated slope coefficients. The values adjacent to each data point correspond to the R2 statistical measure for the 

goodness of fit. A stimulus intensity of 2.5 kHz marks the transition below which there is no consistent phase precession 

(spike times appear scattered). Below a stimulus intensity of 2.0 kHz there are no spikes elicited in the place cell (data 

not shown) (adapted from (Castro and Aguiar 2012)). 

The slope in phase precession is an interesting property, and through the slope this model 

offers an indirect way of testing and assessing the interaction between place cells and 

local interneurons. Another interesting piece of information regarding the dependence 

between phase precession slope and stimuli intensity is the fact that below 2.5 kHz, 

consistent phase precession is no longer visible, despite activity in the place cell (see 

Figure 3.9, lower panel). In other words, the place cell firing frequency is still space 

modulated (even if weakly), while phase precession is less consistent or even absent. 

file:///C:/Users/Luisa/Desktop/Thesis/Figures/Fig2_8_Slopes.tif
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While the simulation results presented so far assumed a standard Gaussian profile for the 

inputs’ space modulation, it is relevant to assess the implications of different EC 

stimulation profiles on the phase precession properties. This analysis is shown in Figure 

3.10 and compares four different input profiles: Gaussian, square, triangular and ramp. 

 

Figure 3.10 Phase precession outline as a function of EC’s input stimuli profile. All stimuli profiles share the same 

baseline, fmin= 0.5 kHz, and peak at the same maximum intensity, fmax = 4.5 kHz. The beginning and end of each stimuli 

profile is chosen to match the elicited spikes time interval obtained with the Gaussian profile. Modulation in θ was not 

added to the input profiles. a - Standard Gaussian profile. b - Square wave. c - Triangular wave. d - Ramp with sudden 

drop. Different phase precession outlines, from distinct published experiment data, may be explained by differences in 

the receptive field profiles (adapted from (Castro and Aguiar 2012)). 

The ramp profile is in agreement with experimental data suggesting that the 

depolarization of a place cell during a pass through its place field steadily ramps and 

suddenly drops off (Harvey et al. 2009). It is interesting to notice that the downward 

concave shape of the phase precession outline produced by this input profile better 

resembles some published data (namely (Skaggs et al. 1996)). This model can thus be 

used to test hypothesis about conditions giving rise to particular features in the phase 

precession properties. 

file:///C:/Users/Luisa/Desktop/Thesis/Figures/Fig2_9_StimProfiless.tif
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3.4 Discussion 

Understanding how phase precession may arise is an important step in knowing how 

spatial and non-spatial information is coded in the brain. Here we present an alternative 

theoretical spiking model, biophysically plausible, which captures key experimental 

results and shows that phase precession can arise from local θ rhythm acceleration, taking 

place in local inhibitory interneurons targeting the activated place cell. This is a minimal 

model in the sense that it shows how phase precession can be generated based on a very 

limited amount of constraints and principles. 

A key advantage of our model is that the functional block - place cell plus local 

interneuron - is not limited to represent a unit of repetition in hippocampal CA1: it can 

also represent other regions in the hippocampus formation (DG and CA3) or even in the 

medial entorhinal cortex where phase precession has also been reported. The absence of 

particular architectural/connectivity constraints, except for the feed-forward inhibition 

and the weakly coupled interneuron network exhibiting an oscillation (against which 

precession can be measured), makes our hypothesis and model relevant to other areas of 

the brain besides the hippocampus and entorhinal cortex. It should be noticed that the role 

played by the interneuron in the model can be represented in the neuronal population by 

a small group of local interneurons. In the hippocampus, basket cells are very good 

candidates for this role since they are subject to θ oscillations and they have a key 

influence in the pyramidal cell’s activity (Halasy et al. 1996). In the model, both θ 

modulations in the EC input and into the interneuron are synchronized to the same phase 

of the global θ rhythm (i.e. the parameter φ is shared). This is not a requirement though, 

and in fact it is easier to accelerate the interneuron and modulate the place cell at a 

frequency above θ if all inputs are not synchronized at the same phase. This is stated since 

different interneuron classes are known to be synchronized to different phases of the 

population θ rhythm. 

The absence of restrictive architectural constraints has even further implications: in our 

model, the input to the functional block is tuned to spatial information, but a tuning profile 

with a different nature (non-spatial) would still give rise to phase precession. Our model 

demonstrates this possibility and, in fact, is in accordance with recent results showing that 

phase precession is also present in experiments which do not involve spatial tasks. Even 

in experiments were the rat is running in a wheel, thus in a fixed spatial position, some 
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cells exhibit phase precession (Harris et al. 2002). It is important to notice that many 

alternative models for phase precession generation often rely on specific spatial 

information inputs (head direction cells, velocity tuned cells, among other) to support the 

phase precession dynamics. 

Phase precession observed at all dorsoventral recording levels in CA3 revealed that the 

slope of the precession decreased as the place field size increased (Kjelstrup et al. 2008). 

In the model just described, phase precession slope is a function of the input profile. In 

particular, if the intensity function is set to define a larger receptive field, the model is 

expected to produce a phase precession effect dispersed by the total field, thus with a 

decreased slope, according to this experimental result. 

A final comment goes to the connection between firing rate coding and phase precession 

coding. Some authors (Mehta et al. 2002; O'Keefe and Recce 1993; Skaggs et al. 1996) 

address this two coding schemes as being independent and complementing each other in 

the sense of providing more spatial information when combined. Our results are coherent 

with experimental results and do not support this idea: rate coding and the phase 

precession effect may not be two independent mechanisms. 
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4. Modeling grid like firing pattern formation 

Experimental research has provided several key results which are improving our 

knowledge about some of the components involved in spatial navigation. Some essential 

aspects to be considered in grid models are: grids of neighboring cells share a common 

orientation and spacing, but their vertex location (their phases) differ (Hafting et al. 2005); 

the representation of space in hippocampal and cortical tissue is non-topographical (Quirk 

et al. 1992); when rate remapping occurs in place cells, grid vertices remain stable; when 

global remapping occurs (different set of place cells active), grid fields realign without 

losing their intrinsic spatial phase structure (Fyhn et al. 2007); gridness scores (measure 

used to classify grid cells) near adult levels are already present in the early days of rats 

life (P22) (Wills et al. 2010). 

In this chapter, an original model developed for this thesis published in two abstracts in 

international peer-reviewed conferences are presented (see also section A.7). A paper is 

currently under review for an international peer-reviewed journal: 

 Luisa Castro and Paulo Aguiar, Inhibitory synaptic plasticity, allied with place 

fields competition and compactness, can give rise to grid-like firing pattern, 2nd 

Champalimaud Neuroscience Symposium, at the Champalimaud, Centre for the 

Unknown, Lisbon (October 2012). 1st European Neuroscience Conference by 

Doctoral Students, ENCODS, Bordeaux (April 2013). 

 

 Luísa Castro and Paulo Aguiar, A model for grid cells where spatially correlated 

place cells compete for the grid map nodes, BMC Neuroscience (8 July 2013) 14 

(Suppl 1): P2. DOI:10.1186/1471-2202-14-S1-P2.  

 

 Luisa Castro and Paulo Aguiar, A feed-forward model for grid fields’ formation 

where spatial information is provided solely from place cells. Submitted to 

Biological Cybernetics, (BICY-D-13-00060). 

4.1 Introduction 

Grid cells (GCs), which can be found in the medial entorhinal cortex (mEC), have the 
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remarkable property of having their firing activity spatially tuned to a regular triangular 

lattice. Most of theoretical models already proposed for their formation fail to account for 

important constraints of the GCs system such as lack of high recurrence levels and 

absence of topographic organization of mEC. As such, models for grid fields’ formation 

are still under active improvement.  

In our point of view, another crucial element which is not properly accounted for in 

existing models concerns the result that grid fields form almost instantaneously when the 

rat is placed into new environments (Hafting et al. 2005). This is complemented by results 

from experiments with rat pups (first spatial experiences being formed) providing 

evidence that head direction cells develop first followed by place cells and finally grid 

cells (Wills et al. 2010). This development hierarchy suggests that place fields may 

provide the spatial inputs to the grid cells firing field’s formation. 

Here we present a novel model for the emergence of grid like firing patterns which stands 

on two key hypothesis: i) spatial information in GCs is directly linked to place cells (PCs) 

activity and ii) grid fields result from a complex synaptic plasticity mechanism involving 

inhibitory and excitatory neurons mediating the connections between PCs and GCs. 

Depending on spatial location, each PC can contribute with excitatory or inhibitory inputs 

to the GCs activity. The amount of excitation or inhibition provided by each PC is a 

function of the distance to the place field center, which is inferred from rate decoding. A 

complex but biophysically plausible spatially tuned learning rule drives the evolution of 

the synaptic efficacies mediating the connections from PCs to GCs. The potentiation and 

depression effects driven by such plasticity rule favor efficient packing of space 

representation leading to grid like firing patterns, while not requiring a topographic 

organization. The model described here intends to represent the feed-forward connections 

from hippocampal fields such as CA1 towards deeper mEC layers. 

4.2 Methods 

Supported on the low recurrence levels in EC deeper layers and on the existent projections 

from CA1 onto EC’s layers V and VI, the model represents feed-forward projections from 

place cells in CA1 to grid cells in EC deeper layers. 

The output unit, a putative grid cell, is modeled by a firing rate model, where a transfer 
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function decides the relevant input for inversing the output rate decay tendency while the 

synaptic dynamics define the way connections strength evolve and settle to a final map. 

The reason for choosing a firing rate model in the formation of grid patterns is 

straightforward since the goal is to obtain a firing rate pattern with no dependence on the 

precise spike timings.  

4.2.1 Feed-forward firing rate model 

The model proposes a simple feed-forward architecture where one grid cell receives 

indirect input from N place cells associated with different locations (space sampling). The 

feed-forward connections between each place cell (PC) and the grid cell (GC) are 

mediated by two pathways of opposite influence: one excitatory and one inhibitory (see 

Figure 4.1). Each place cell drives one excitatory neuron (E) and one inhibitory neuron 

(I1) responsible for these two pathways.  The inhibitory pathway is subject to an activity 

level control by a third class of neurons (I2). The core assumption of this architecture is 

that each place cell can have a combined excitatory and inhibitory influence over the grid 

cell activity. The nature and strength of the influence is determined by the place cell firing 

activity. This model assumes that the firing rate range in place cells is approximately 

normalized. In other words, the firing rate coding scheme is shared among the place cell 

population meaning that the firing rate of a place cell is highly informative about the 

absolute distance to its place field center. 

The dynamics of the grid cell are described using the firing rate model:  
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where τr =20 ms; f(z) = z if z > 0 and zero otherwise; ui and wi represent respectively the 

firing rate of the inputs and their associated synaptic efficacies (connection weights). The 

semi-linear transfer function is used as it represents a good compromise between simple 

and meaningful way for the neuron to integrate its inputs. 

For the purpose of simplification, in most analysis the dynamics of the association 

neurons12 E, I1 and I2 are not explicitly described by a differential equation and their 

                                                 
12 An association neuron is nerve cell found entirely within the central nervous system that acts as a link between 

sensory neurons and motor neurons. 
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modulatory action on the grid cell is instead represented as a transfer function which is 

applied to the place cells output activity. This transfer function reflects the combined 

action of the individual transfer functions of the association neurons and allows the model 

to be analyzed with only two neuronal classes, one grid cell and N place cells, with a 

simplified direct connection between them.   

Exclusively in the detailed analysis of the weight modification rule, and as a proof of 

concept, the association neurons E, I1 and I2 are explicitly described by firing rate models 

with τr =100 ms. Instead of the semi-linear transfer function  f of the grid cell, the 

association neurons use a sigmoid function φ defined by parameters a and b: 

 
1

1
z b

a

z

e










. 

Parameter a defines the width of the sigmoid’s slope and was set 0.02 for all neurons. 

Smaller/higher a values produce sharper/smoother slopes in the transfer function but do 

not affect the overall behavior of the model. Parameter b assumes distinct values, bE, b1 

and b2 corresponding to the three distinct association neurons E, I1 and I2 respectively. 

Note that the same overall effect could be attained if neuron E was not considered and 

GC played his part (having bE as an inflexion point in the transfer function). The described 

architecture was chosen in order to obtain the effect not only on the output grid cell but 

already in the synapses affecting it. For the simulations presented here the values bE=0.25, 

b1=0.50 and b2=0.75 were used. 

The plasticity of the synapses that project to the GC must reflect the behavior of the 

presynaptic neurons in order to mimic the desired connections strength modification rule. 

Therefore, dynamic weights are attributed to both synapses which increase proportionally 

to their presynaptic rate. 

As described, the circuit comprises only canonical tools for neural transmission and 

processing and could easily fit in the communication projections between CA1 and mEC 

deeper layers. In our simulations we used a step version of the synapses modification rule 

derived here just for the sake of simplicity. 

The combined excitatory and inhibitory action of each place cell on a grid cell 

hypothesized in this model allows the formation of different regions of influence, 

dependent on the distance between the place field center and the animal’s position 

(encoded in the firing rate): a hot spot of excitation in the neighborhood of the place field 
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center, an adjacent ring of inhibition, a surrounding excitation ring and a neutral 

peripheral region. This is therefore a center-surround activation profile but modulated by 

the place cell’s firing rate (encoding the distance to place field center) instead of 

modulated by topographic connections which are known to be absent in the grid field 

system (Hafting et al. 2005). The borders of the regions are defined by the parameters bE, 

b1, b2 and σ. 

 

Figure 4.1 Diagram of the model network architecture. The key element in the proposed model is that each place cell 

PC can both excite (directly or indirectly) and inhibit (indirectly) the grid cell GC. In the presented architecture this 

modulation is mediated by three types of association neurons: excitatory neuron E, and inhibitory neurons I1 and I2. All 

synapses have a static unit weight w0 except for the synapses targeting directly the grid cell. The excitatory synaptic 

weight w+ and the inhibitory synaptic weight w– dependent on the firing rates of neurons E and I1, respectively. A grid 

cell receives connections from N place cells, each combined with an E, I1 and I2 neurons (shaded area). 

In this model, place cells compete for grid cell activation. The excitatory and inhibitory 

pathways of a winning (selected) place cell, ensure that the grid cell is enforced to fire 

close to the center of the place field. Grid cells continuously recruit new place cells to 

cover the space. Importantly the recruitment is only possible when the grid cell is freed 

from inhibitory action from place cells close to the present position. The learning rule 

supporting these dynamics is described in detail in the synaptic plasticity section. 

4.2.2 Spatial input from place cells 

In the model, all spatial information reaching the grid cell originates from place cells 

which encode the position of the hypothetical animal in a maze. Place field centers are 

positioned, for simplification, in the nodes of a square lattice with 1 cm unit side that 

covers the entire virtual maze.  

Place fields firing intensity is defined as a bi-dimensional Gaussian function. The same 
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standard deviation σ is used in all place fields and its magnitude can be changed to reflect 

the hippocampal area that is being modeled (dorsal/ventral). The place cell field’s width 

was set to σ = 0.05 m. In fact, when modeling dorsal place fields, the radius of the field 

should be approximately 12 cm. According to (Jung et al. 1994), in dorsal CA1, an 

average place field occupies an area of 0.0462 m2 (corresponds to 0.12 meters radius). 

The same paper attributes 8 Hz for the maximum firing rate for CA1 complex spike cells. 

Thus, for deriving the place cell width (σ) our normalized firing rate function must satisfy: 
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For the parameter values above described, the value for the place cell standard deviation 

becomes 0.06. However, in our models we have lowered this parameter value to 0.05 

meters since recent reports (Hafting et al. 2008) show higher maximum rate values close 

to 20 Hz. 

We use either a path generator function or experimental data to define the position p(t) of 

the rat in the maze at each time step t. The position p(t) is then used to obtain each place 

cell’s firing rate: 
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where µi is the position of the ith place field center, d() is the Euclidean distance and σ 

sets the scale of the field provided to the grid cell system. 

Experimental reports show that place cells fields cover homogeneously the training arena 

(Hafting et al. 2005). In order to provide such a homogenous positional input to the grid 

cell, we included place cells which center was outside of the arena but close to its border. 

This way the average activity level provided from the place cells to the grid cell close to 

maze periphery is not smaller than the activity in other areas. A border or 40 cm was thus 

considered around the square maze, increasing the total number of simulated place cells 

to 180×180 units distributed regularly in a square lattice (100×100 units inside the maze 

borders). The choice of the cells density in the input layer was made to ensure a close to 

homogeneous input intensity throughout the virtual maze, avoiding super-sampling. It is 

relevant to notice that random uniform distribution of the place centers could be used 

without affecting the qualitative results of the model. In the simulations the grid cell 
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receives connections from all place cells. This is not a requirement, in fact this condition 

can be relaxed to a reduced number of place cells inputs producing a reasonable sampling 

of the maze space. Following the firing rate coding scheme hypothesis, the firing rate of 

the place cells is considered to be normalized and therefore is constrained to the range 

[0, 1]. 

4.2.3 Animal space trajectories 

Two types of trajectories were used to set the place cells firing rates: experimentally 

recorded (real) trajectories and randomly generated (synthetic) trajectories. The real 

trajectories were obtained from Moser group grid cell raw data database, available for 

download at http://www.ntnu.no/cbm/moser/gridcell, which include the position times for 

a rat running in a cylinder with a diameter of 180 cm with time step of 20 ms. The 

simulated animal trajectories were constrained to a square maze with 1 meter side and 

were used in most analyses. 

The rat’s simulated path inside the maze for a total time of T milliseconds is defined by 

p(t) = (x(t), y(t)). After choosing an initial position to start the trajectory p(t0) = (x0, y0), 

with x0, y0 є [0, 1] meters, the position of the rat for the following iterations ti is obtained 

accordingly to the recurrent rule: 
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where αi represents an angle in radians, for 2 ≤ i ≤ T/dt. The factor 1/h = dt × v represents 

the distance traveled in each step, given that 𝑑𝑡 is the time duration of each step and v is 

the simulated rat’s velocity. A constant velocity is used and, unless otherwise stated, is 

equal to 0.08 m/s. For step 2 ≤ i ≤ T/dt, the direction of the movement of the rat is given 

recurrently by αi =αi-1 + k dt 𝜀  radians, where k is the rate of change in direction, and 𝜀  

is chosen randomly in each step from a Gaussian distribution with mean 0 and standard 

deviation 1. The initial direction α0 is set to zero. The rate of change in direction was 

tuned taking into account the velocity and the time step duration, dt=1 ms, in order to 

generate qualitatively plausible rat trajectories; a value k=π/120 radians/ms was used. In 

artificial animal trajectory just described, the direction of movement of the rat is random 

at each step, taken from a normal distribution with mean equal to the direction of the last 

move and a small standard deviation. The reason for such choice was to obtain an overall 
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effect of reduced changes in the direction of motion throughout the trajectory, as loosely 

visually observed from real rat trajectories. Examples of a real trajectory and a synthetic 

trajectory are shown in Figure 4.2. 

 

Figure 4.2 Animal trajectories. a - Real trajectory taken from Moser group database (Hafting et al. 2005) and refers to 

a circular maze of diameter 1.8 m. b - Simulated rat’s trajectory on a square maze with 1.8 m side (for comparison with 

circular maze). Both real and simulated trajectories are for 3 minutes of foraging with velocities of 0.20 m/s (average 

in real, and constant in simulated). The time steps are 20 ms and 1 ms long respectively. 

4.2.4 Synaptic plasticity learning rule 

All synaptic connections are static, and take a unit value (w0=1), with the exception of the 

synapses E-GC and I1-GC which are plastic and subject to a fast learning rule (see Figure 

4.1). 

Learning in these synapses is triggered by a high threshold value rth in the grid cell firing 

rate; bellow this fixed value no learning takes place. Each time the grid cell’s rate rises 

above rth, the connections with the place cells which are very near their place field center 

– one or more with their firing rate also above a small threshold value – undergo 

modifications (association learning rule). The selected cells are recruited from the pool 

of place cells establishing connections with the grid cell (which provide a space sampling 

of the arena). These place cells then become responsible for one node of the grid field. In 

the parameterization of the synaptic plasticity rule proposed here, if the animal crosses 

the same region again the modified connections keep a high firing rate in the grid cell, 

but below rth, thus preventing further modifications. As a result, after the complete 

learning episode, the strengths of the synapses between place cells and the grid cell remain 

stable as the rat continues foraging/exploring the familiar maze. Nevertheless, if the 

assemble of place cells involved is changed or suffers remapping, new plasticity episodes 

can take place. 

For the purpose of simplification, plasticity takes place in the collapsed direct connection 

between PCs and the GC. A synapse between a PC and the GC represents the combined 
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action of w+ and w– (see Figure 4.1). To emphasize this, the terminology connection 

strength is used instead of synaptic efficacy to address the modifications driven by the 

learning rule. 

A gain modulation mechanism is assumed to take place in the association circuit between 

PCs and GC during learning episodes. The gain function is implemented by increasing 

the spatial scale σ of the place fields to 2.5  , thus broadening the spatial tuning 

provided by the PCs to the GC. This gain modulation is associated with plasticity (only 

takes place during learning) and has the purpose of taking into account published studies 

showing that the place fields in rats foraging in unfamiliar mazes are larger than those 

reported for familiar arenas (Barry et al. 2012; Karlsson and Frank 2008). 

Plasticity occurs in a one-step procedure which is a function of the present weights in 

addition to the gain modulation of place cells activity. The synaptic strength of the 

connections is considered to be in one of four distinct levels: baseline wb, minimum wmin, 

switching ws, and maximum wmax, where wmin<wb<ws<wmax. Changes can occur in both 

directions (potentiation and depression), with consecutive transitions between levels. 

Note that this does not mean that in our model a synapse can be simultaneously exciting 

and inhibiting a postsynaptic neuron (contradicting biological evidences (Amaral and 

Lavenex 2006)). In fact the double modulation effect described is the result of the small 

network illustrated in Figure 4.1, where each existing synapse has only one of two 

possible effects: either exciting or inhibiting its goal cell. 

In a naïve animal, in an unfamiliar environment, place cells connections are assumed to 

have similar weights wb. Also, in the first entry to an unfamiliar environment, the GC is 

assumed to be in a more depolarized state such that, independently on the animal’s 

position, it easily reaches rth and triggers the first plasticity event. In this initial condition, 

given the homogeneity of the PCs connection strengths, every place in the maze is a 

possible place for the emergence of the first grid field node. 

Upon the first plasticity event, the strengths of the connections from some place cells are 

pushed towards one of the three modified levels (wmin, ws or wmax) accordingly to each 

place cell firing rate. The PCs firing rate is considered to be divided into ranges 

1>q1>q2>q3>0, each defining an interval of distances to the place field center. In this first 

plasticity event, PCs with a rate above q1 have their connection strength modified to wmax. 

This sets a central disk, region R1, centered in the position of the animal. Place cells which 
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place field center is located inside R1 have their connections set to wmax. Surrounding this 

inner disc, a ring shaped region R2 is formed with all place cells with rate values in the 

interval [q2, q1[. The connections of the place cells within this gain activity range are 

modified to minimal value (could also be negative) wmin. Importantly, place cells firing in 

the range [q3, q2[, forming an outer ring R3, have their connections potentiated to a 

temporary value 𝑤̃𝑠 slightly above ws (𝑤̃𝑠=1.2 ws, in the simulations). This condition is 

only required in the formation of the first grid field node, and is necessary for generating 

a grid cell firing rate above rth (and thus a second learning event) once the animal crosses 

the center of a place cell which connection has been potentiated to 𝑤̃𝑠. Alternatively to 

the temporary 𝑤̃𝑠 condition, one can think of the grid cell still having some residual 

depolarization after entering a novel environment, making it more susceptible to reach 

rth, in the periphery of region R1. Finally, place cells with firing rate values below q3, i.e. 

fields centers located in the rest of the maze, do not undergo any modification in their 

connections strengths, these are kept at wb. The dependence of the synaptic modification 

with the PC firing rate, triggered only when the GC rate is above rth, is represented in 

Figure 4.3. 

The radius associated with each of the regions R1, R2 and R3 is, respectively, φ1, φ2 and 

φ3. The initial connections strengths wmin, 𝑤̃𝑠 and wmax are set in such a way that, after the 

first learning event, where the grid cell was considered to be more prone to high firing 

rates, the only region where the grid cell receives enough excitation to reach rth is on the 

ring R3. In other words, a range in the firing rate of the PCs encodes a ring of space around 

the previously created grid field node where a new node can be created. 

As the animal explores the environment, each new learning event adds a new grid field 

node by recruiting some place cells with the field’s center (approximately) at the node’s 

location. The connections of the PCs in the inner disc R1 and inhibitory ring R2 are set, 

respectively, to wmax and wmin, as previously. For PCs in the R3 region, i.e. gain rates in 

the interval [q3, q2[, two types of potentiation may occur: connections that were at level 

ws now become wmax and connections that were at level wb now become ws. Connections 

that were previously wmin or wmax do not suffer modifications. Figure 4.3 and Table 4.1 

summarize the proposed synaptic plasticity learning rule.  
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Figure 4.3 Relation between PC rate gain function and connection strength modifications. Output of a PC with place 

field center at 0.5 m and σ = 0.05 m for a one meter length linear path (blue/dark gray), and associated connection 

strength modifications (green/light gray).  

This mechanism is repeated as the animal explores the environment, with the GC reaching 

rth (and thus triggering plasticity) only in the intersecting areas of the outer potentiation 

rings. The grid map is assembled as the rat explores the environment by recruiting new 

place cells to activate the nodes of the grid field. By construction, the nodes of the grid 

field form a regular triangular lattice, as a rate range in PCs encodes a specific distance 

interval. 

Different parameterizations of wmin, wb, ws and wmax, for a given σ, can satisfy the 

constraints of the learning rule to support grid field formation from the 

recruitment/competition of place cells. The parameterization used to produce the results 

presented here is the following. 

In the inhibitory/depression rings (regions R2) the grid cell must be silent, leading to the 

choice of wmin = 0 for the connections from place cells which place field center is located 

in the R2 rings. Notice that wmin < 0 could also be used, reflecting a strong potentiation of 

the inhibitory pahtway. These R2 rings are bounded by the PCs’ gain firing rates q1 (inside) 

and q2 (outside). Values for q1 and the connection strength wmax of the R1 discs were 

chosen so that the total input to GC would produce an elevated firing rate but without 

crossing the plasticity threshold. Additionally, these two parameters (q1 and wmax 

combined) should produce a grid field node with a diameter in accordance to 

experimentally reported values. 

file:///C:/Users/Luisa/Desktop/Thesis/Figures/fig1_WGainProfile2.tif
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Table 4.1 Summary of the discrete learning rule. Synaptic modifications only take place when GC firing rate is above 

rth. The notation w* means ‘any connection strength level’.  

First Learning Event Subsequent Learning Events 

PC Gain Modification PC Gain Modification 

[q1,1] wb → wmax [q1,1]    w* → wmax 

[q2, q1[ wb → wmin [q2, q1[    w* → wmin 

[q3, q2[ wb → 𝑤̃𝑠 [q3, q2[ 

   ws → wmax 

wb → ws 

wmax, wmin static 

[0, q3[ wb static [0, q3[ w* static 

 

In the dorsal mEC, grid field nodes should have approximately 10 cm of radius (Sargolini 

et al. 2006). The size of individual grid field nodes was estimated as the area covered by 

the central peak of the autocorrelogram, using a threshold correlation of 0.2. Satisfying 

both constraints, we choose for the R1 region: 

2
1

22
1q e






  and wmax = 1.5 ρ rth. 

The parameter ρ is a normalization factor: if GC input connections strengths were all ρ 

then the firing rate would be 1 (check section A.6 for details). The scale 1.5 is used to 

ensure a GC high firing rate if the inputs were coming only from R1 (assuming a null 

contribution from the outer regions). Finally, the distance of φ1 = 0.07 was tuned to 

generate grid field nodes with approximately 10 cm of radius, assuming that the PCs in 

R1 are at wmax and in R2 are at wmin. The other parameters are dependent on the spacing G 

between nodes (defining the triangular lattice length), which in the dorsal regions of mEC, 

is roughly 35 cm (Sargolini et al. 2006).  

Quantities 
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2

22
2q e






  and 

2
3

22
3q e






 define the limits of the R3 region. Distances φ2 and 

φ3 must be such that the intersection of excitatory rings, the diamond zones, fall preferably 

inside the R1 disc to be later formed in that intersection. With this in mind, the parameters 
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adjusted according to simulations results were set to φ2 = 0.26  φ3 = 0.34 (although these 

values are below the spacing desired, null weights in R2 will push the maximum input 

intensity towards the outside of the region R3 which results in the threshold for plasticity 

occurring outside the R3 region). As a result, firing rate boundaries relevant for plasticity 

become: q1 = 0.85; q2 = 0.11; q3 = 0.025. Please remember these are normalized rates. 

Assuming a maximum rate of 40 Hz, these boundaries would become, respectively, 34.0, 

4.4 and 1.0 Hz. 

Finally, the connections strengths to attribute to regions R3 and rest of the maze must obey 

two soft conditions. First, in these regions, the output firing rate must not trigger plasticity, 

thus both ws and wb must be less than ρ rth. Second, since connections from cells in R3 

have been potentiated once, contrary to the surrounding region, then for coherence 

ws    wb. The analysis of simulation results supported the following choices for the weight 

parameter values: ws = 0.98 ρ rth and wb = 0.97 ρ rth. It is important to emphasize that other 

combinations of values for connections strengths and distances/rates delimiting the 

various regions , while keeping the models qualitative results, are possible. 

The model was developed, simulated and analyzed in MATLAB® (R2010a, MathWorks, 

Natick, Massachusetts, U.S.A.). For numerical integration the Euler forward method was 

used with time step dt = 1 ms. 

4.3 Results 

The learning rule for connections strength update used in this model, plays an important 

role in the resultant grid fields. Given its non-standard form, this section starts with an 

analysis supporting the biological plausibility of such rule. Simulation results showing 

grid map formation, both for synthetic trajectories and real trajectories are then presented, 

demonstrating also the robustness of the model to variable velocities. Autocorrelograms 

and gridness scores are presented for the model’s generated grid fields. 

Biological plausibility of the learning rule 

The connections strength between place cells and grid cells in our model are obtained 

using a non-standard rule. In this subsection we provide biological support to the 

plasticity rule and show that this rule can be produced by a combination of canonical 
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synaptic plasticity rules applied in a small excitatory/inhibitory neuronal circuit. In this 

section, instead of using the simplification of a direct connection between each PC and 

the GC, we consider the architecture presented in Figure 4.1. Given the parameterization 

bE=0.25, b1=0.50 and b2=0.75, the excitatory and inhibitory influences of the PC over the 

GC are segregated into firing rate domains (see Figure 4.4). 

 

Figure 4.4 Rate profiles and correspondent weight changes illustrating the weight modification rule. a - Associated 

neurons firing rates as functions of input PC’s normalized rate. b - Weight modification for the excitatory synapse from 

E to GC as a function of PC’s rate. c - Weight modification for the inhibitory synapse from I1 to GC as a function of 

PC’s rate. For the figure, the constant of proportionality between modification amplitude and presynaptic firing rate 

was 0.01 ms-1. d - Weight modification of a global synapse (comprising both inhibitory effect and excitatory effect) 

onto the GC, as a function of input rate from the PC. 

The excitatory modulation is limited to rates above bE and the inhibitory modulation is 

limited to the interval [b1, b2]. Plasticity takes place in the w+ and w– synapses; is triggered 

by a high activity level in the GC and has a modification amplitude, Δw+ or Δw-, 

proportional to the presynaptic firing rate (canonical Hebbian type learning rule in firing 

rate models). The distinct frequency domains, and the combination of w+ and w– 

modifications generate the three levels of connections strengths wmax, ws and wmin. The 

connection strength modification to wmax results from a strong potentiation in the 

excitatory (w+) pathway. The modification to wmin results from a shunting or competing 
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potentiation in the inhibitory (w–) pathway. The combined connection strength 

modification to ws results also from potentiation in the excitatory (w+) pathway alone (see 

Figure 4.4 b-d). 

Grid field formation 

As the rat is placed in the center of a new/unfamiliar maze, the first grid node is quickly 

formed generating the connection strength map shown in Figure 4.5 a. The connection 

strength map is used to represent the connection strength between each PC and the GC as 

a function of the place field center location in space This should not be confused with a 

topographic map – morphological neighboring PCs are not required to have neighboring 

place field centers. As the rat crosses for the first time the excitatory ring (R3), a second 

field node is formed and now there are only two possible regions for the third field to be 

raised (diamond zones in Figure 4.5 b). As the animal explores the new environment place 

cells compete for grid cell activation and become progressively recruited to give rise to 

the grid field nodes (see Figure 4.5 c and d). 

In this simulation, the GC receives inputs from all the PCs, densely covering the maze 

area. This allows improved visualization of the connection strength maps by avoiding a 

patchy representation. But a very large number of PCs inputs is not a requisite for the 

model to work: a reduced number of place cells inputs to the grid cell still produces the 

same qualitative results as long as the place cells provide a reasonable sampling of the 

space. The sampling resolution is related to the R1 disc area – for the parameters of the 

simulations, a few hundred PCs inputs (with place field centers uniformly distributed in 

the maze are) are sufficient to support the grid field formation. It is important to notice 

that in this model the grid map does not extend automatically to infinity; instead, it is 

progressively extended to the regions being explored. It is reasonable to speculate that the 

real trajectory of an animal is chosen/conditioned in order to more rapidly and effectively 

build the grid field through the recruitment process. Using this learning rule, and a 

constant velocity of 0.08 m/s in a maze with 1 meter side, after approximately 20 minutes 

of animal exploration the available area is fully tiled and no more learning takes place 

(GC is no longer able to reach rth). 
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Figure 4.5 Scheme representing place fields centers (cell per pixel) colored according to respective synapse weight (see 

arrows), together with rat trajectory during learning episode (dark red path). Scale bar is 60 cm. a - Result of the first 

plasticity episode. b, c and d - Results of the second, third and final learning events, respectively, as the animal explores 

the environment following a specific trajectory.  

During learning, connections strengths are modified resulting in the configuration of 

Figure 4.5 d. After learning, when the rat is placed back in the same maze, a firing rate 

map for the grid cell is obtained (see Figure 4.6) and used to compute the gridness score 

according to Sargolini’s method (Sargolini et al. 2006), described previously. 

 

Figure 4.6 Grid cell firing rate map after learning process, for the strength connections shown in Figure 4.5 d. a - Firing 

rate map of simulated grid cell after learning. Red zones represent higher rates, (~0.90) and dark blue zones are zero 

rate and unvisited locations. b – Normalized autocorrelogram of field shown in a. Scale bars are 0.5 m. 

Before computing the gridness score for the firing rate map, the autocorrelogram is 

obtained. Grid maps measures for this simulation/parameterization, 36 cm for spacing 

and 20 cm for field diameter, are in line with the ones reported for dorsal mEC grid cells 

(Sargolini et al. 2006). The correlation values obtained from the several rotations of the 

inner ring and the original are depicted in Figure 4.7. The resultant value for the gridness 

score, implemented for this purpose as described in the Background, is 1.36. 

file:///C:/Users/Luisa/Desktop/Thesis/Figures/fig_FormGrid.tif
file:///C:/Users/Luisa/Desktop/Thesis/Figures/fig_RateMapeAutoc.tif
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Figure 4.7 Periodicity of the rate map’s autocorrelogram. The autocorrelogram shown in Figure 4.6 b was rotated in 

steps of 1º and the correlation between each rotated map and the original was computed. The gridness score obtained 

was 1.36. 

Running the model with real rat trajectory data, available for download at 

http://www.ntnu.no/cbm/moser/gridcell) also leads to gridness scores above 1 (see Figure 

4.8). As previously stated, it is reasonable to think, that in a real trajectory, the animal 

favors areas that are less explored, thus actively improving the grid field tessellation/PC 

recruitment procedure. For a circular maze with 1.80 meters of diameter our model was 

able to generate a perfect grid mapping covering almost the total extent of the maze, using 

a real rat trajectory and only 30 minutes of foraging (see Figure 4.8). 

 

Figure 4.8 Connection strengths and firing map for a real animal trajectory. a - Scheme representing place cells learned 

weights, as in Figure 4.5 d but using real trajectory data taken from (Hafting et al. 2005), 30 minutes with dt =20ms. b 

- Normalized average firing rate map of simulated grid cell with the same real trajectory data used in learning epoch a 

(3:1). Scale bars are 1 meter. Although the path was not enough to generate all possible grid fields, the gridness score 

obtained was 1.34. 

In this model, only the input rates are limited to values in [0, 1]. The weights (apart for 

the scaling factor ρ rth) are set initially at unitary value, and throughout the learning 

process evolve in a step manner. The upper value was chosen by guaranteeing (analyzing 

simulations results) that grid learned fields do not generate output firing rates above the 

learning threshold rth. Consequently, the output putative grid cell’s activity is not upper 

constrained explicitly, but by construction, it is also restricted to [0, 1].  

file:///C:/Users/Luisa/Desktop/Thesis/Figures/fig_CorrCurv.tif
file:///C:/Users/Luisa/Desktop/Thesis/Figures/fig_RealTrajGrid.tif
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4.4 Discussion 

Different theoretical models for grid cell patterns formation have been suggested, 

stimulated by experimental results obtained from a great variety of protocols. As 

previously mentioned, the majority of attractor network models assume recurrence and a 

topographic relation between grid cells. Recurrence in mEC layers has been reported for 

excitatory connections in layers III and V, only around 10%, and not for layer II (Dhillon 

and Jones 2000) (theoretical models usually do not model grid cells for layer II). 

Topography for mEC units has not been reported and effective ways to relax this system 

constraint have not been addressed. Some existent approaches imply path integration 

ability (Fuhs and Touretzky 2006; McNaughton et al. 2006). The model proposed here 

has the advantage of not relying on oscillations to generate grid fields. Another important 

feature of our model, but also present in (Kropff and Treves 2008), is that path integration 

is not required to produce grid like firing maps. 

An interesting result obtained in 1992 was that modifying the shape of the arena had more 

consequences in positional firing of place cells than on patterns of mEC (Quirk et al. 

1992). This particular outcome made the authors suspect that the major information flow 

could be from hippocampus to mEC, which is in line with the circuitry of this model. The 

shaped synapses described here could thus refer to the circuit involving hippocampus 

subfield CA1 place cells feeding the deepest layers of mEC. In accordance with most of 

grid cells experimental results, the described model is capable of generating a hexagonal 

grid like firing pattern unit, receiving solely feed-forward inputs from place cells and their 

associated neurons. The grid cells recently found in pre and parasubiculum (Boccara et 

al. 2010) can also be derived with the model described here as it only requires place cells 

input, present in CA1, which has direct projections to subiculum which projects to pre 

and parasubiculum. 

In our model, after 20 minutes of having the rat foraging in the simulated maze, the square 

maze is totally covered by the grid cell firing map. This behavior is consistent with the 

finding that the transition from rudimentary to adult-like grid firing structure occurs in a 

very short time course, of approximately 24 hours in real time (Wills et al. 2012). 

Moreover, grid structure is expressed instantly in a novel environment maintaining the 

receptive fields in future visits even if they occur in complete darkness (Hafting et al. 

2005).  According to our point of view, the “novel environment” (or a maze which the 
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cells find equivalent to it) could in fact have been already “memorized” by an ensemble 

of grid cells connections from place cells which were “chosen” as the ones representing 

that particular class of equivalent mazes. Taking into account that different sets of place 

cells are active in different environments (Quirk et al. 1992), we can also argue that the 

same happens with grid cells as a consequence of their connections (place to grids) 

profile. This idea is also in accordance with the fact that when the rat is placed back in 

the familiar maze the grid field positions are preserved (Hafting et al. 2005; Derdikman 

et al. 2009). 

Environment shape effects 

Rate remapping of place cells is normally observed after performing small changes in the 

environment such as changing the color of the walls, while global remapping is a 

consequence of, for example, placing the same box in different rooms or using boxes with 

different shapes (Fyhn et al. 2007). According to our model, but subject to simulation of 

the place cells fields in accordance, when the remapping is just in the firing rate of input 

cells, the hardwire mechanism learned before is not expected to disrupt, and consequently 

there is a maintenance of the grid field configuration. However, if the maze is now 

represented by a different set of place cells, then the circuit as described may generate a 

new grid field structure (with distinct phase and possibly orientation from the previous). 

Also, given the model dynamics, if a familiar maze is expanded then one of the two 

situations described in the previous paragraph might occur. If the rat’s space notion 

recognizes the same type of maze, then the place cells that were active in the small maze 

will remain active in the large maze and new cells become active to encode the new 

available portion of the environment. In our model, adding new cells to the familiar place 

cells set is not expected to disrupt the already generate grid field but will add new ones 

of the same size and spacing, completing the hexagonal lattice, in agreement with 

(Hafting et al. 2005).  If the expanded maze is categorized by the rat as unfamiliar, then a 

different set of place cells encodes the space and a new grid field is generated. One way 

or the other, the path taken by the rat does not need to cover every position of the maze 

to exhibit the hexagonal structure, in accordance with experimental reports (Hafting et al. 

2005). 

When Hafting et al performed the cue card displacement experience, they verified that 

the grid phase and orientation changed in accordance, but the spacing of the grid and its 
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field size did not suffer any change. In our model, field size and spacing of grid cells is a 

function of place cells field size. Therefore, if the set of place cells recruited to represent 

the new maze is within the same neural tissue zone (with respect to the dorsoventral axis) 

of the previous set of place cells, then the resulting grid fields will share precisely the 

field size and spacing of the previous ones. 

Experimental reports conclude that grid maps and place maps are less likely to reset under 

food reward displacement than when the local geometry of the arena is changed 

(Derdikman et al. 2009). Place cells are able to accumulate functions with space 

representation, related to coding diversified sensory features, such as smell, color, 

temperature and other experimental cues together with proprioceptive information 

(O'Keefe 2006). In accordance to our model, grid cells could be devoted to extract only 

the positional aspects of place cell firing, gathering them in the most compact fashion. 

When young rodents are exposed and trained in two different environments, recorded grid 

cells exhibit nodes displaced by the same offset vector (Wills et al. 2012) (the same 

behavior is also reported for adult animals (Fyhn et al. 2007)). The same experimental 

scenario could in principle be used to record CA1 place cells observing their remapping 

patterns. If fields remapping occurs in a set of place cells displaced by the same offset 

vector, then it will provide evidence that place cells are feeding positional information to 

deeper mEC grid cells, supporting the model described here. 

A very recent work is devoted to the evolution of grid fields’ characteristics while the rat 

is exploring a novel environment and a familiar one. One important finding is that mEC 

grid cells have wider fields in the first trials and that they diminish in size during 

approximately 4/5 days of experiments (the rat gets acquainted with the new maze) while 

the grid cells in the familiar field do not suffer any change in size. Moreover, in CA1, it 

is also possible to observe larger fields in the first days while after some days the fields 

converge to the “familiar” scales. This change for CA1 place cells is not as high as it is 

for grid cells fields (Barry et al. 2012). In agreement, it has been showed that, during the 

first visit to a new environment, a significant number of CA1 theta cells turn off their 

inhibitory action (while DG interneurons are more active). The authors of this study 

suggest that maybe CA1 interneurons could be part of a broader system that detects new 

from familiar environments. These cells could be responsible for controlling learning in 

pyramidal CA1 cells’ synapses when the rat is placed in unfamiliar mazes (Nitz and 

McNaughton 2004). Our model assumes that grid cell detect place cells fields at a higher 
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scale through the gain function used in plasticity processes, so these reported results 

provide reliability to our method for grid cell formation. 

The feed-forward flow between CA1 and deep mEC 

The effect of the inactivation of the hippocampal input to mEC, deserves particular 

attention when the idea is to learn more about the direction of the information flow in the 

hippocampus – mEC circuit. Distinct studies (both from Moser’s lab thought) state that 

grid patterns almost disappeared and their firing frequency diminished substantially when 

hippocampal cells were inactivated. Although referring to layers II and III in mEC, these 

results suggest that the entorhinal medial cells activity is strongly dependent on excitatory 

input from hippocampus (Bonnevie T 2006; Hafting et al. 2008). This spatial input is 

thought to come essentially from CA1 which is the hippocampal region affecting mEC 

with place correlated inputs. The observation that after hippocampal inactivation several 

grid cells in layers III were mainly driven by direction is straightforward if we recall that 

more than half of the grid cells encountered in this layer had conjunctive (directional and 

spatial) properties (Sargolini et al. 2006). On the other hand, the finding that grid cells in 

mEC upper layers have less space specificity that lower ones can provide evidence of the 

spatial flow direction used in this model (hippocampus to mEC deeper layers) (Frank et 

al. 2000). 

Recently visual system experts have reported grid cells in the visual cortex of primates, 

when those were subject to visual tasks with their head fixed (Killian et al. 2012). Besides 

its high importance per se, this finding gets highlighted when we notice that the same 

cells have been found in spatial related activity cells of rats (and bats). This remarkable 

finding creates a natural partition for the set of grid models. Models that do not need 

spatial features, such as direction, could be thought in a different scope beyond the spatial 

one. Such broad class of models may be applied to the visual system, to provide a 

plausible explanation for the emergence of grid fields in the monkey’s entorhinal cortex. 

While trying to cope with the great majority of reported features of grid cells firing 

patterns, this model emerged to provide a possible mechanism underling the almost 

instantaneous hexagonal grid pattern formation. Our model is able to generate a 

hexagonal grid cell firing map, while the rat follows a plausible trajectory, using the 

following principles: 1) the spatial specificity of grid cells is inherited from place cells 

spatial firing; 2) synapses weights are changed according to a local spatial discriminating 
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mechanism; 3) a short period of learning time is enough to generate an approximately 

hexagonal firing pattern. 

In this model we used stereotyped circular place fields which does not capture the well-

known variability that exists in CA1 (in this region place fields vary in size and shape). 

But it is important to notice that the circular shape of the nodes in the grid fields do not 

require homogeneous circular input place fields. In our model each grid field node is 

produced by recruiting a reasonable amount of neighboring (pseudo co-localized) place 

fields. Even if each place field is heterogeneous, the node will acquire an approximately 

circular shape due to the averaging of the input place fields. 

As a final remark, our model applies to a single grid cell, but could be extended to multiple 

grid maps. Assuming competition between grid cells (possibly mediated by inhibitory 

interneurons), different non-overlapping grid fields can be created. The grid fields would 

share the same spacing for the same level of mEC, which in turn reflects the scale of the 

place fields. 
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5. Final conclusions 

Understanding how spatial related mechanisms are generated in the animal brain 

constitute important steps to understand how animal and thus human neural units 

cooperate providing a representation of spatial and non spatial information. 

Theoretical/computational models have proved to be useful in spatial learning study since 

they anticipated important experimental findings (border cells, grid cells, head-direction 

cells with speed modulation). 

In this thesis we have focused on the study of two distinct spatial processing related brain 

processes: phase precession effect and grid cell emergence. Recently reported, both 

processes are still under study in many neuroscience research international institutes, 

providing every day more relevant data about animal’s (mainly rodents) behavior under 

experimental scenarios. Highly focused on the main features available in the literature 

about phase precession and grid cells, the strategies employed in this thesis are build up 

on solid reported data connected by canonical tools, all described to some extent in the 

first chapter. Accordingly, the models proposed in chapters 3 and 4 of the thesis present 

evidence that phase precession effect and grid cell firing pattern can be generated without 

recurring to perfect oscillatory signals interference, high levels of recurrent projections 

within mEC or topographic assumptions from neural grid cells to physical space. 

5.1 Phase precession 

Coding information in the hippocampus through phase precession means that the phase 

in the theta cycle in which a place cell fires provides information regarding the position 

of the rat inside its place field. There are published models addressing the phase 

precession effect but commonly they are grounded in stringent assumptions or ignore the 

fact that signals in the brain are subject to a high degree of variability and noise.  

Our theoretical spiking model for the phase precession mechanism is supported on 

significant experimental results and biophysical plausible tools. In the model proposed, 

phase advance of place cells spikes is attained from a confined acceleration of the theta 

rhythm in local inhibitory interneurons affecting the activated spatial cell. Based on a 

minimal set of constraints, the functional block of the model original representing a unit 
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of repetition in CA1, can in fact be applied to other regions where phase precession has 

also been observed (DG, CA3 or mEC). Moreover this model predicts precession in any 

network with the same architecture and subject to a clocking rhythm, independently of 

the involvement of the network in spatial tasks (Harris et al. 2002), in contrast with many 

alternative models that rely on spatial information. 

A final important conclusion is that rate coding and phase coding may not be two 

independent mechanisms, not supporting an existent line of thinking where the two 

coding schemes are seen as complementary in providing spatial information (Mehta et al. 

2002; O'Keefe and Recce 1993; Skaggs et al. 1996). 

5.2 Grid cell formation 

Grid cells in the medial entorhinal cortex (mEC) encode space in a particular way: their 

firing rate intensity forms an equilateral triangular lattice as the animal moves in the 

environment. Models available in the literature addressing the generation of grid fields 

fall into two major classes, both with important limitations. Most models based on 

interference of oscillations are not robust to noise and suffer from the prerequisite of two 

independent and stable network oscillations with similar frequency. Models based on 

recurrent networks, where the grid pattern emerges as a stable state of the network, suffer 

from the topographic assumption and the need for dense recurrent connections between 

mEC cells, which are both not supported by experimental data. Existent self-organizing 

models are not robust to velocity changes and demand trajectories covering extensively 

the maze, in order to effectively produce grid cells firing patterns. 

Recent reports stating that grid fields’ maps form almost instantaneously when rats are 

placed into new environments motivated experiments on baby animals. One of their 

remarkable results is that head-direction cells develop first, followed by place cells and 

finally grid cells. This was a core motivation for our models where, in contrast with the 

majority of models proposed so far, the spatial information reaches mEC cells through 

place cells input. The feed-forward firing rate models proposed in this work for single 

grid cell emergence constitute a main general model where the triangular nodes of the 

grid map emerge as the result of a novel plasticity scheme. Strength connections from 

place cells to each grid cell are modeled taking into account the rate coding methodology. 
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Consequently, potentiation and depression occur as functions of the spatial distance 

between place fields, resulting in a triangular disposition of the grid nodes. The model 

proposed does not impose constraints on velocity (suitable for real or simulated paths), 

high recurrence levels, noiseless neurons, topographic disposition of units, and the animal 

trajectory is not required to densely cover the maze.  

By construction, the general model proposed is expected to comply with experimental 

features related to grid cells responses to environmental changes as place cells remapping, 

path equivalence and to spacing scaling differences along the dorsoventral axis of mEC. 

All these experimental distinct features could be direct consequences of the notion that 

assembles of place cells, for each location in the dorsoventral axis (Kjelstrup et al. 2008), 

are needed to represent each class of mazes (Quirk et al. 1992). In our model, place cells 

in dorsal/ventral regions of CA1 would be in the genesis of grid cells in dorsal/ventral 

parts of deep mEC, according to results on topographic projections between the two 

regions (Amaral and Lavenex 2006). The classification of mazes into equivalent classes 

could be the result of the exploration of many mazes combined with the ability of 

generalization. 

5.3 Final remarks 

Experimental studies on hippocampal regions (CA1, subiculum and DG) show evidence 

that spatial firing fields of interneurons are as spatially tuned as principal neurons 

(directional and spatially informative). The spatial pattern of activity is distinct from that 

of the principal cells: they fire continuously at ~20 Hz, show an ON field (where the firing 

rate reaches ~40 Hz) and an OFF field (~2 Hz) on the trajectory path (Wilent and Nitz 

2007). In medial entorhinal cortex, similar evidences have been provided, concerning 

spatial tuning of mEC interneurons (Savelli et al. 2008). Implicit in our plasticity 

mechanism employed for place cell onto grid cell connections, is inhibitory synaptic 

modulation. Both models developed here predict that inhibitory neurons are key elements 

not only for controlling population activity at a global level (as commonly accepted) but 

also playing crucial roles in specific spatial processes according to the experimental 

findings described: 

 modeling phase precession of principal cells we also obtained a phase advance 
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compared to theta rhythm in the spiking times of inhibitory neurons (supported 

by experimental results); 

 on the detailed architecture of the connection strengths modification rule it is also 

assumed that inhibitory neurons have spatial preferences. 

We thus show that inhibitory interneurons have functional roles that go beyond activity 

level control. Instead they have crucial roles in both the dynamics and plasticity of the 

neuronal circuits. 

Finally, the two models presented are complementary in the sense that both mechanisms 

could be merged in a broader model exhibiting a phase precession effect and grid like 

firing patterns. This is a significant step forward towards a holistic model of spatial 

information coding involving the hippocampus.
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6. Future Work 

The study made and the models developed for this thesis have originated some valuable 

suggestions. Such hints could be investigated in further work related with spatial 

encoding in hippocampal and entorhinal cortex regions. Individual predictions from each 

one of the chapters 3 and 4 are described in the following lines. This chapter ends with 

some pioneer ideas for a broader model for the formation of grid cells and place cells 

combined with the phase precession effect. 

6.1 Phase precession 

A critical aspect of our proposed model for phase precession is the lack of bursting 

episodes observed in our results and characteristic of phase precession reports (place cells 

and grid cells are all complex spike cells). In fact, leak integrate-and-fire models are not 

suitable for reproducing such complex output activity profiles. Therefore, a possible 

extension of the model presented in chapter 2 could be the addition of currents suitable 

for complex spike patterns generation. 

In our theoretical/computational model for phase precession, different input profiles 

(spike trains modulation) revealed phase precession curves with different slopes. This 

interesting result may predict that particular features present in experimentally reported 

phase precession can be a result of the type of situation under test. While ramp like input 

curves are suitable to represent inputs in spatial tasks, other tasks (e.g. sensorial) may be 

better symbolized by other inputs profile, thus illustrating other phase precession 

properties. This model can thus be used to test hypothesis about conditions giving rise to 

particular features in the phase precession mechanism. 

6.2 Grid cell formation 

The second model proposed for grid cell formation has clearly some limitations, already 

described in the respective section (see A.7). Overall, some strategies can be imported 

from the first model: the extension of the space representation by the inclusion of more 
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place cells (or border cells) to account for homogeneous input in the maze borders and 

the gain modulation on the plasticity rule to generate plausible spacing values between 

nodes. The following paragraphs refer to predictions extracted from the more complete 

model for grid cell formation described in chapter 4. 

Path equivalence concept, introduced in 2000 by Frank and colleagues, refers to a pattern 

that some cells exhibit by firing in the same position relative to start and end points of a 

maze, on two or more distinct trajectories. Most cells recorded in CA1 area do not show 

this feature but EC cells, especially from deep layers, do. These results suggest that most 

deep EC cells have the ability to fire in somehow similar locations across distinct 

environments. EC deep layers are only fed by inputs from CA1 and subiculum not 

receiving any direct visual projections (Frank et al. 2000). Then some generalization 

process may be taking place in EC units to allow for their reported ability of path 

equivalence. Alternately, another report suggests that subiculum place cells have also 

shown path equivalence (Sharp 2006). Since no grid cells have been found in subiculum 

(to our knowledge) the feature of path equivalence in EC may be inherited by upstream 

path equivalent skilled subiculum place cells. If grid cells are, as thought, responsible for 

setting the metrics in rodents’ spatial navigation, then path equivalence generalization 

ability seems to be a useful skill for that purpose. Analogous experiments on grid cells 

from other regions, such as pre and parasubiculum (Boccara et al. 2010) can allow for 

important data to disentangle the real emergence of characteristic grid cells firing. 

Head-direction cells have their tuning set at adult levels even before leaving the nest by 

the first time (Langston et al. 2010). On the other hand, it has been observed that 

conjunctive cells are present in young rodents mEC (layers III to VI) since the stage of 

grid cells emergence (Wills et al. 2012). Together with the hypothesis that head-

directional ability could be innate (Langston et al. 2010), the finding of early conjunctive 

cells could be explained by a competitive Hebbian plasticity mechanism taking place 

within mEC itself (except layer II) between the two “pure” cell types: grid cells and head-

direction cells. 

The model proposed here for grid cell formation shows that head-direction cells input is 

not required for the emergence of triangular patterns on a single cell. However, 

experimental reports show that head-direction cells, grid cells and border cells all rotate 

their firing preferences when a cue card is rotated (Hafting et al. 2005; Solstad et al. 2008). 

Head-direction cells, although not required for their firing pattern shapes, could be the 
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orientation drive of the cognitive map providing the angular information in mEC for the 

synchronous rotation of grid cells maps and border cells maps. 

A recent experimental report has provided evidence that the organization of the grid cells 

scale throughout mEC is modular (Stensola et al. 2012) instead of continuous as 

commonly thought. According to the general model proposed in this thesis, where grid 

spacing and size are functions of the CA1 place cells field size, then CA1 units’ receptive 

field must also scale in size in a discretized fashion along the dorsoventral axis of that 

hippocampal region. 

An interesting observation is that most of the published reports (to our knowledge) are 

made in rats which are always placed in constrained mazes (probably due to recording 

constraints associated with larger environments). These animals (when adults) are able to 

create the grid tessellation in quite short periods of training time. Would this ability be 

present in a really larger maze, 10 times larger than the traditional ones? 

Experiments in hairpin mazes show that grid cells maps are reset each time the rat moves 

into a new arm after reaching the end of the previous arm. Arms which were crossed in 

the same direction revealed path equivalence in grid cells firing. When the same maze 

had its walls replaced by transparent walls, the different cells behaved in the same way 

which made the authors conclude that visual access to distal environment did not prevent 

realignment between the compartments of the hairpin (Derdikman et al. 2009). A possible 

interpretation for this behavior might be that the animals’ responsiveness is towards the 

portions of the maze he can actually have access to, at each moment. This way, the 

existence of a wall transparent or opaque, is enough for the animal to understand that he 

cannot transpose them and have access to the total extend of the maze or even to two arms 

simultaneously. A possible experience to disentangle this issue would be replacing the 

interior walls in the hairpin maze with curtains such that the rat could not see other 

arms/environments but could access them directly by crossing the curtain. Would grid 

cells keep the discontinuous representation of the maze or will them act as in the case of 

a two dimensional maze? Would place cells behave in the same manner? 

The emergent evidence that place cells signal different shapes by firing or not on similar 

but different shaped environments motivated the recording of place cells activity while 

the square maze become octagonal and finally turned circular (Wills et al. 2005). As a 

result, place cells abruptly remapped, some losing/gaining a receptive field in the maze 

and others changing their place field to a different position. The same experience protocol 
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could be applied to grid cells, shedding some light into the way these cells might be wired 

to each other. 

Although designed to model single grid cell formation, the general model of chapter 4 

can be extended as to provide multiple grid cells/maps by introducing competition 

between grid cells (for example intermediated by inhibitory interneurons present in 

mEC). Such append should accomplish reported results regarding grid cell population 

properties as grid fields alignment between cells in the same recording location, such as 

same phase and spacing of maps with random orientation. 

6.3 Final remarks 

As previously addressed in the review of existent models for grid cell formation, the 

majority of continuous network models for the reproduction of grid firing patterns assume 

a topographic relation between neural regions and environment locations. The ones 

relaxing the importance of this constraint, claim that topography is not required if the 

connections between grid cells have already in their strength the information regarding 

phase difference (i.e., fields displacement from one cell relatively to the other) of units. 

However, the majority of this models do not explore the mechanisms behind the 

emergence of such connectivity scheme. One exception uses traveling waves, much like 

in the visual system where topography between units does exist (Fuhs and Touretzky 

2006). Another paper suggests a teaching layer, possibly innate, which disappears after 

some time, disabling the animal from learning more environments (McNaughton et al. 

2006). 

In a broader view, an improved model for grid cell formation and also place cell 

emergence could be divided in three distinct parts. 

1. In the newly rat, single grid cell formation (not necessarily perfect) could be the 

result of some self-organizing method, in the absence of topography or recurrence 

constraints. The model proposed in chapter 4 of this thesis is a plausible one. 

2. In a second stage, a class of local inhibitory neurons would interfere, allowing for 

a more efficient coverage of the environment by population grid nodes. They 

could be receiving input from one grid cell and locally inhibit the cells with 

distinct nodes locations (through rate coding). As a side effect, the hexagonallity 
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of each grid map would be improved. This process could refer to upper mEC 

layers (such as layer III and II). 

3. Grid cells in mEC layer II could provide positional information for the place cell 

formation in hippocampus regions, such as DG, CA1 and CA3. Place cell fields 

spatial specificity could be obtained from the intersection of nodes from grid cells. 

The grid cells used for each place cell should ideally come from different neural 

locations, since at the same recording locations their nodes are disjoint. Such 

strategy has been proposed by some models for place cells generation (for a 

review see (Moser et al. 2008)). 

This scheme is not dependent on path integration ability nor needs to account for 

oscillations interference. The idea shortly suggested is in accordance with several 

experimental reports referred previously. For example, gridness scores are known to be 

higher in layers III and II than in layers V or VI (Sargolini et al. 2006)13. In step 2, the 

introduction of interneurons capable of organizing grid cells nodes in a more efficient 

packing could contribute for such higher scores in gridness measures.  

Moreover, it is known that spatial information content decays from deeper to upper mEC 

layers units (Frank et al. 2000). In fact, if the mEC is receiving refined positional data 

from hippocampal regions projections, and within mEC the projections are from grid cells 

to grid cells, then part of the original positional information will be lost in this feed-

forward flow. Some models for place cell formation suggest that upper hippocampal 

layers unimodal cells could result from intersection of EC inputs (also from upper layers) 

(see the review (Moser et al. 2008)). Being that the case, then the spatial information 

driving place cells would be the combined spatial information of a set of grid cells. Hence 

place cells could carry more place specificity than upper mEC grid cells in accordance 

with experimental results. 

Regarding phase precession, the mechanism as proposed in chapter 3 could easily be 

incorporated in this broader model. This way place cells and grid cells generated by the 

hypothetic model would exhibit the phase advance in accordance to experimental studies. 

Although many aspects are difficult to test at the present time, many others will certainly 

                                                 
13 This report also shows that gridness scores in layer II are substantially better than in layer III (deduced from 

histograms showing the distribution of the gridness scores of all cells in mEC layers). A simple explanation for this 

could be that since there are no conjunctive cells in layer II, then conjunctive cells could be disrupting the results for 

the deeper layers. 
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begin and continue to be investigated, providing new features of spatial units and 

processes. With this input, models advance in their applicability and we become closer to 

unravel the real mechanisms behind experimental behaviors and consequently understand 

more about animal navigation abilities. 
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Appendix 

A.1. The inverse transform method 

The inverse transform method (Ross 2002) is used for generating random values from the 

exponential continuous distribution.  

Let F be a distribution function which by definition is monotonically increasing. Consider 

U a uniform random variable in ]0, 1[, and X a random variable defined by X = F-1 (U ) 

with distribution function denoted by FX, as usual. Then: 

               1 1

XF x P X x P F U x P F F U F x P U F x         . 

Now, since U is uniformly distributed in ]0, 1[, then it follows that P {U ≤ F(x)} = F(x).  

In summary, the method of generating a realization of an X variable with any continuous 

distribution function F, is to produce a realization of the uniform random variable U and 

take X = F-1 (U ) (Ross 2002). 

In the ISI’s case, X is an exponential random variable, thus its distribution function is: 

FX (t) = 1 – e -λt, for t ≥ 0. To find the inverse function, set u = FX (t) and do: 

 
 ln 1

1 1 .t t

X

u
u F t u e e u t 



 


           

Finally, generating numbers using X = – ln (1 – U ) / λ with U being an uniform random 

variable, is equivalent to use X = – ln (U ) / λ, since 1 – U is also a uniform random 

variable. 
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A.2. The thinning technique 

Formally, {N (t), t ≥ 0} represents a non homogeneous Poisson process with intensity 

λ (t), t ≥ 0, if the following statements are verified: 

a) N (0) = 0; 

b) The number of events that occur in disjoint time intervals are independent; 

c) 
  

 0

exactly1event in ,
limh

P t t h
t

h



 ; 

d) 
  

0

2 or more events in ,
lim 0h

P t t h

h



 . 

The thinning strategy in the generation of non homogeneous Poisson process realizations 

is based on the following proposition.  

Consider that random variables are generated with constant intensity λ such that λ (t) ≤ λ, 

0t   and they are accepted with probability λ (t) / λ, independently of whatever came 

before. The sequence of the accepted events constitutes a non homogeneous Poisson 

process with intensity function λ (t), t ≥ 0. 

The proof of this proposition is the verification of the four conditions above. The items 

a), b) and d) are all consequences of the event sequence being obtained from the sequence 

which is already a Poisson process (but with constant intensity λ). In order to address 

point c), denote p (t) = λ (t) / λ, t ≥ 0, and then: 

  
0

exactly1accepted event in ,
limh

P t t h

h



  

  
0

there is only1event in , and it is accepted
limh

P t t h

h


 
 



     

 
  there are 2 or more events in , and only1is acceptedP t t h

h


 



 

     
0

exactly 1event in , the event in ,  is accepted
limh

P t t h P t t h

h


   
 



     

     2 or more events in , only1of the events in , is acceptedP t t h P t t h

h

  
 



. 
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Above, the probability of the conjunctions is the product of individual probabilities 

because the probability of the event being accepted is independent of former procedures. 

Moreover the probability of the acceptance of each event is not dependent on the length 

of the interval, then those can be extracted from the limit. Finally, if the sum of the limits 

is computed instead of the limit of the sums, the result follows: 

  
0

exactly1accepted event in ,
limh

P t t h

h



  

  
  

0

exactly 1event in ,
the event in ,  is accepted limh

P t t h
P t t h

h



     

  
  

0

2 or more events in ,
only1of the events in , is accepted limh

P t t h
P t t h

h



   

    
 

 only1of the events in , is accepted 0
t

p t P t t h t


  


        . 

As a final remark, in algorithm terms, accepting an event A with probability p means that 

a random number Y is generated (from the uniform distribution) and A accepted if Y ≤  p 

(Ross 2002).  
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A.3. Subthreshold membrane potential driven solely by 

the pacemaker current 

When the only current impinging the complex neuron is the pacemaker current, IΩ (taking 

φ = 0), the membrane potential is given by: 

 
 

   

cos 2m rest m m

th rest

dV
V V R k ft R b

dt

V t V V t V

 


    

   

. 

The dynamics of the membrane potential before the threshold for fire is reached, Vth, are 

described by a linear 1st order differential equation, non separable and non 

homogeneous14.  

    cos 2m rest m m

dV
V t V R k ft R b

dt
      . 

The general process for finding the general solution of such differential equation is as 

follows: 

   
   cos 2

cos 2
rest m m

m rest m m

m m

V t V R b R k ftdV dV
V t V R k ft R b

dt dt


 

 

 
       

Since both the coefficient of the term in V and the right side of the equation are continuous 

functions, the integrant factor is a suitable methodology to apply. In this case, a suitable 

integrating factor is: 

   
1

'm m

t t

m

t e t e
  


    

Multiplying both sides of the main differential equation by this integrating factor results 

in: 

 
   cos 2m mm

m

t tt
t

rest m m

m m m

V R b e R ke ftdV e
e V t

dt

 
 

  


   . 

Integrating both members over t, an equivalent equation is obtained: 

                                                 
14 The differential equation is non separable because it cannot be rewritten in the form dv / dt = g (t) / f (V), 

where g and f are continuous functions of t and V, respectively. Since the equation also has a term 

independent of V (the last term) it is called a non homogeneous differential equation. 
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 
   

1 2

cos 2m m

m

t t

t

rest m m

m m

V R b e R ke ft
V t e c dt c

 

 

 


      

      2 1 cos 2m m m

t t t

m
rest m

m

R k
V t e c c V R b e e ft dt

   


         

To solve the above integral, the integration by parts method can be applied recursively. 

 
   sin 2 sin 2

cos 2
2 2

m m

m

t t
t

m

e ft fte
e ft dt dt

f f

 
  


  

      

   

 

 

 
2 2 2

sin 2 cos 2 cos 2

2 2 2

m m m

t t t

m m

e ft ft fte e
dt

f f f

    

   

 
 

        
 
 

  

   

   
 2 2

sin 2 cos 2 1
cos 2

2 2 2

m m

m

t t
t

m m

e ft ft e
e ft dt

f f f

 
 


   

     . 

Finally the integral is obtained from the first and the last expressions. 

 
   

   
 2 2

sin 2 cos 2 1
cos 2 cos 2

2 2 2

m m

m m

t t

t t

m m

e ft e ft
e ft dt e ft dt

f f f

 

  
 

    
      

 

 
 

   

 

2

2 2

2 1 2 sin 2 cos 2
cos 2

2 2

m m

m

t t

t

m m

m m

f fe ft e ft
e ft dt

f f

 

     


   

 
    

 

   

 
2

2 sin 2 cos 2

cos 2
1 2

m m

m

t t

m mt

m

fe ft e ft

e ft dt
f

 



    


 

 
 

   


  

The replacement of the above integral expression in the membrane potential equation and 

replacing the constants difference by a single constant C, results in: 

   

   

 
2

2 sin 2 cos 2

1 2

m m

m m

t t

m mt t

m
rest m

m m

fe ft e ft
R k

V t e C V R b e
f

 

 

    

  

 
 

       

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 
 

   2
2 sin 2 cos 2

1 2

m

t

m
rest m m

m

R k
V t Ce V R b f ft ft

f

    
 



        


 

, where the last equation corresponds to the general solution of the original differential 

equation. Now, to obtain a value for constant C, it should be noted that Vrest is often taken 

as the initial value for the membrane constant: V (0) =Vrest. 

 
 

   
0

2
0 2 sin 0 cos 0

1 2

m m
rest rest m m rest

m

R k
V V Ce V R b f V

f

  
 



          


 

 
 

 
2 2

0 1 0
1 2 1 2

m m
m m

m m

R k R k
C R b C R b

f f   
         

 
. 

In conclusion, the particular solution for the differential equation above subject to 

V (0) =Vrest is given by (Braun 1983): 

  
 

   2
2 sin 2 cos 2 1

1 2

m m

t t

m
rest m m

m

R k
V t V f ft ft e R b e

f

    
 

    
        

      

  

In particular, when the baseline level of the pacemaker current is zero (b = 0), the 

following equation for the membrane potential is obtained: 

  
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A.4. Pacemaker k’s parameter 

For the tuning of parameter k, the above expression (see section A.3) for the subthreshold 

membrane potential of the interneuron (with b = 0) is used to find two consecutive 

extremes and then imposing their voltage difference to be approximately 5 mV. The 

extremes of V (t) are obtained by: 

 
     

2

2
0 2 cos 2 2 sin 2 0

1 2

m

t

m
m

mm

R kdV e
f ft f ft

dt f



    
 

 
 

       


 
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     
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2 cos 2 2 sin 2 0m

t

m mf ft f ft e
     



     

The function on the right side of the above equation describes a sinusoidal pattern with 

an exponential component, which eliminates the periodicity of the first milliseconds. As 

the independent variable t grows, that exponential term tends to zero and so, and the 

function is then periodic. If this calculus objective is to obtain the amplitude between two 

consecutive extremes, then a reasonable condition is to obtain the amplitude in the 

periodic season of the function. For that purpose it is assumed that t is taking large values 

such that the term mt
e


 can be neglected. In that scenario, the equation left to solve is: 

          
2

2 cos 2 2 sin 2 0 2 cos 2 sin 2m m mf ft f ft f ft ft             (A1) 

A possible approach to extract the values for t that satisfy this equation is to use the 

Pitagoric Identity in the following manner: 
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       

. 

However, not all of these values for t satisfy equation (A4), but only those t for which 

2πft has a positive sine (cosine) and simultaneously a negative cosine (sine). In 
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accordance, 2πft is constrained to belong to the 2nd or 4th quadrants of the trigonometric 

circle. With the values adopted in the model for the parameters τm = 200 ms and 

f =10/1000 = 0.01 kHz, 
 

2

1
arccos

1 2 mf 

 
 

  

 is a 1st quadrant’s angle: 
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21 2 1 4mf
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. 

Consequently, the only possible values for t are described by: 

 
2

1
2 arccos ,

1 2 m
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f

 
 

  
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. 

For simplification let’s denote 
 

2

1
arccos

1 2 mf 
 by β in the following calculus. 

The amplitude between two consecutive extremes, | V (t2) –V (t1) |, can be computed, for 

example, for j = 2n +1 and j = 2n, n  , using the membrane potential equation (A3) 

without the exponential term. 
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Before continuing, and taking into account that 
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quadrant’s angle, some additional calculus are needed: 

 
   

2

2 2

1 1
sin arccos 1 cos arccos

1 2 1 2m mf f   

    
      

         

 



   121 
 

   

 

   

2
2

2 2 2 2

2 21 1
1 1

1 2 1 2 1 2 1 2

m m

m m m m

f f

f f f f

   

       

 
      
     

. 

 

  
   

2 2

21
sin sin arccos

1 2 1 2

m

m m

f

f f

 
 

   

 
     
   

. 

 
   

2 2

1 1
cos arccos

1 2 1 2m m
f f   

 
  
   

. 

 

  
   

2 2

1 1
cos cos arccos

1 2 1 2m m
f f

 
   

 
     
   

. 

Substituting these definitions into the above expression for the membrane potential 

amplitude between extremes, the result is obtained: 
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Finally, k is chosen such that the amplitude between two consecutive extremes is 

approximately equal to 5 mV and the remaining parameters are as defined for the model 

(Rm = 200 MΩ): 
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0.1. 
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A.5. Pacemaker b’s parameter 

The calculus of the value for the b parameter, is based on the following assumption: when 

provided only with the current from the pacemaker, the interneuron (theta cell) fires at a 

constant rate of 10 Hz (that is, 10 events for second). This means that the threshold 

membrane potential value for the cell is reached after T0 =100 ms of the beginning of the 

simulation. In summary, the value for the b parameter should satisfy the condition: 

 0 thV T V , where V (t) is defined by equation (A3). 
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For the parameter values defined in the model, τm = 200 ms; Vrest = -70 mV; Rm = 200 MΩ; 

Vth = -50 mV; f = 0.01 kHz and k = 0.1 nA, the value obtained is b = 0.25 nA. 
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A.6. Scaling factor ρ for connection strengths 

In the strength connections parameterization, a scale parameter ρ is used in all the 

connection strengths, in chapter 4. This is a normalization factor which is computed as to 

produce a unitary input onto the grid cell if all place fields are homogeneously distributed 

throughout the maze and their synapses are equally strengthened. To obtain the value for 

this scale parameter ρ, we start by noting that the mean spatial input our grid cell is 

receiving in each position inside the maze is given by: 

1

N

i i

i

I wu N w u


    . 

It is assumed that all synaptic weights are set to the same value (in average), which can 

be denoted by the scaling parameter ρ, then the above relation becomes: 
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To obtain the mean activity for the place cell units, the average of the Gaussian function 

u is computed over the region of the maze, A: 
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The function of the above integral in x resembles that of the theoretical Gaussian 

distribution with a difference that this integral is not defined between -∞ and +∞. In order 

to apply this result, with no need to consider the erf error, it is assumed that the place field 

is totally contained inside the maze, and the following approximation is considered: 
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Returning to the calculations and repeating the approximation for y it follows that: 
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For the mean total synaptic current to be 1, then we must set: 

2 2
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A.7. An alternative model for grid cell formation 

This prototype computational model for the emergence of grid like weight patterns stands 

on the same key principles of the proposed model in chapter 4 (originated the first 

conference abstract mentioned in that chapter).  

In this alternative approach, self-organization in the synaptic efficacies matrix is driven 

by a similar learning rule but with a different formulation. Plasticity occurs as a function 

of the input provided by each unit, Isep, in a way that high and low Isep units become 

potentiated, while units with mean Isep are depressed. Units with very low Isep are not 

subject to plasticity. This plasticity profile is able to generate a band of inhibited cells in 

the middle of a range of potentiated cells. This method for modifying the connection 

strengths of place cells onto grid cells makes this alternative model simpler than the 

previous one.  

Spatial competition and compactness are results of the learning rule, leading to grid like 

weight patterns. The resultant gridness scores (applied to weight maps) are in the range 

of the ones reported for mEC’s layer V, which is the field receiving direct input from CA1 

region. The model takes into account the features already reported about grid cells and 

can be thought of as a plausible explanation of the mechanisms underlying the emergence 

of the first grid cells in the rat’s early life. In this section we focus essentially on the novel 

features introduced by this approach. 

Methods 

This alternative approach to address grid cells firing patterns emergence shares some 

methodologies with the model of chapter 4 which are: the feed-forward firing rate model 

(with τm = 10 ms); the spatial input from place cells (results presented shortly were 

obtained considering cells which place field is centered inside the maze) and the animal 

space trajectories (in this version we used direc = π/180, however this is not expected to 

categorically affect the results). The main difference between the two models relies on 

the implementation of the weights plasticity rule described in the following lines. 

In this model, weights evolve according to a complex rule which encompasses the 

existence of input and output activity above threshold values together with a potentiation 

component and a pseudo-depression component. The weights (all scaled by ρ, check the 

Appendix for details) are set initially at unitary value, and throughout the learning process 
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are allowed to vary in the range [0, wmax = 1.5]. The weight update dynamics is given by 

(see Figure A 1):  

   0 th

d
H u H v r

dt
     sep

w
I LTP pLTD , 

where α = 0.5 1/ms is the learning rate; u0 = 0.02 and rth = 0.98 (bold is used for denoting 

vectors). The amount of plasticity at each time step is controlled by parameter α.  

This plasticity rule produces some grid fields by a unique passage in addition to grid fields 

which are naturally formed by the intersection of the first’s outer ring, without the need 

for the rat trajectory to pass through them. The parameter α was set such that the unique 

passage would bring the weights of the place cells synapses to high and low weight values 

by a significant magnitude but without reaching their limits (0 and 1.5) after less than 5 

repetitive potentiation steps or 4 repetitive depressions (see Figure A 1 for the scale of the 

above rule, with unitary α).  

In the weight modification differential equation, H represents the Heaviside step function 

such that, for z : 

 

0, 0

0.5, 0

1, 0

for z

H z for z

for z




 
 

. 

In trajectory positions where the animal does not cross the place field of a certain place 

cell, the weight of that cell synapse should not suffer any changes. Given that place fields 

are spatially defined by the intensity of firing rates, the referred constraint is included in 

the plasticity rule in terms of the overall place cell effect, Isep, on the output cell (that is, 

firing rate together with synapse weight). Accordingly, the term H (Isep - u0) assures that 

weights modification takes place only for place cells contributing to the activity of the 

output cell. It is assumed that synapses coming from place cells with normalized firing 

rates below u0 = 0.02 are not eligible for weight modification.  

The term H (v - rth) means that weights modification only occurs if the output cell is very 

active, i.e., when v ≥ 0.98. The threshold values choice is not decisive, similar values are 

expected to produce similar results. 

In terms of the plasticity rule, the individual contribution of place cells is normalized, at 

real time, according to the following expression: 
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Given that weights do not take negative values, this measure takes values in the interval 

[0, 1]. In a given position of the rat there is a great number of place cells who is firing, at 

different rates. In particular, the firing rate of a given place cell will be higher for those 

who have their center closer to the current position of the rat. The relevance of this 

model’s component has to do with the competition between place cells synapses. When 

the output firing rate threshold for plasticity is achieved (v ≥ 0.98), the weight rule will 

attribute different values for increase and decrease of weights. The only synapses eligible 

for that change correspond to place cells that have some activity, in particular to those 

whose Isep is above u0.  

The amount of synaptic weight change will not depend solely on the magnitude of the 

firing rate of the unit, but instead a sorting is done depending on the total contribution of 

each place cell. In this sense, Isep performs is a normalization of all the contributions 

relative to the strongest at each iteration. LTP and pLTD are functions of this variable. 

 

Figure A 1 Profile of the plasticity rule as a function of Isep, for an output rate above the threshold for plasticity. The 

parameters are set as before except for α = 1. 

The plasticity components, pseudo depression and potentiation, are as follows: 

 
2

2
1 2exp

dep

dep





 
   
 
 

sepI
pLTD  and 

1

1 exp
dep

dep






 

   
 

sep

LTP
I

, 

file:///C:/Users/Luisa/Desktop/Thesis/Figures/Cap3_PlastPlot.tif
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where θdep = 0.55 and σdep = 0.45. These parameters where tuned in a naïve fashion, and 

further work to improve the prototype model may involve a rigorous based choice for 

them. For the model main goal of producing a grid like spatial distribution for the weights, 

the values chosen were suitable but other similar values are expected to produce 

appropriate results. 

In the range of the normalized input Isep, LTP is a monotonic increasing function that 

assumes the value 0.236 when Isep = 0.02, goes through 0.5 when Isep = θdep and achieves 

the value 0.73 for Isep = 1. The pseudo depression component has an upside down 

Gaussian shape. Its lowest value (-1) is at Isep = θdep, it starts equal 0.5 for Isep = 0.02 and 

reaches approximately 0.26 in the other extreme. Due to this component, cells with low 

and high Isep values get potentiated while those with intermediate values are depressed. 

In summary, as the virtual rat follows the space trajectory, plasticity occurs whenever the 

output cell is firing above 0.98 and only for synapses which presynaptic cell has Isep value 

above 0.02. From those, higher and lower activity neurons synapses will be potentiated 

and the intermediate ones are depressed, generating concentric rings of low and high input 

levels around each node of the grid. 

This plasticity function, although modeling one synapse for simplification, can in fact be 

the result of a combined effect between excitatory and inhibitory elements, mediating the 

connection between the place cell and the putative grid cell. Such biological plausible 

mechanism has been described in chapter 4. 

Results 

After a learning episode where the simulated rat runs at constant velocity inside the maze, 

disjoint clusters of place fields are formed with higher synapse weight values for their 

cells, surrounded by low weight cells fields (see Figure A 2). However, low weight 

regions formed are not broad enough when compared to the place cells width. This 

disables the production of an accurate scaled firing rate map, characterized by silent rates 

around the grid fields. Even though, we decided to evaluate the gridness of our weight 

map by performing some manipulations.  

Near the walls of the maze there is not sufficient input for the grid cell to achieve rth. 

Hence, and since the maze was not covered with grid fields, we crop the weight map and 

used only the centre region. This new map has dimensions 20:80 × 20:80 instead of the 
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original dimensions of the maze which are 1:100 × 1:100. 

 

Figure A 2 Representation of the place cells weights placed in the central position of the respective place field after a 

learning episode (30 minutes). Synapses weight grading values (apart for the scaling factor) are indicated by the 

colorbar. The square maze is 1 meter wide. 

After the resizing, all the weights lower than 1.08 were set to zero (see Figure A 3 a). 

Finally a smoothing operation was performed over the weights map, which can be 

regarded as the transformation from weights to rates (two dimensional convolution with 

a disc pillbox shaped kernel with radius 3 cm/pixels and total side 7 cm/pixels) (see Figure 

A 3 b).  

 

Figure A 3 Pseudo firing rate map of the cell receiving spatial input from place cells in Figure A 2, resized to the central 

61 cm (a pixel per cm2). Scale bar is 20 cm. a – Raw firing rate map. Pixels in blue correspond to zero activity while 

dark red ones represent maximal firing rate. b – Smoothed firing rate map. Result of a two dimensional convolution 

applied to the left image, with a circular averaging filter with 3 cm radius. 

The gridness score methodology, described previously, was then applied to the resultant 

map, called pseudo grid map. 

file:///C:/Users/Luisa/Desktop/Thesis/Figures/Cap3_WeigthMap.tif
file:///C:/Users/Luisa/Desktop/Thesis/Figures/Cap3_PseuGridMapeSmoothDireito.tif
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Figure A 4 Artificial grid map normalized autocorrelogram and zoom of its central ring. a - Pseudo grid map normalized 

autocorrelogram. Scale bar is 60 cm. b - Central ring of the normalized autocorrelogram map containing the six adjacent 

nodes to the central node. Scale bar is 10 cm. 

In this unique trial, the gridness score obtained was of 0.47 for a grid spacing G of 

approximately 12 cm. 

 

Figure A 5 Correlation values between the ring of the firing rate map autocorrelogram of Figure A 4 and its successive 

rotations by 1 degree. The gridness score obtained from such correlation values was 0.47. 

The plasticity rule in this model implies that the generation of the grid nodes is not 

constrained to the intersecting regions of the potentiated rings, in contrast to the method 

in the previous model. In the current version, connections strengths are set to their 

baseline level which produces a baseline output firing rate above the plasticity firing 

threshold (rth).  

Discussion 

The novelty of the approach used in this prototype model for grid formation resides on 

the plasticity rule which represents a less simplified version (than the previous model) of 

the biological plausible weight modification rule. In particular, connection strengths 

evolve smoother and are not collapsed into four levels of amplitudes in the end of the 

learning episode, but allowed to slide over a continuous range of values. 

The gridness score obtained is below the magnitude of the previous model results. In fact, 

file:///C:/Users/Luisa/Desktop/Thesis/Figures/Cap3_GMNormAutocorreRing.tif
file:///C:/Users/Luisa/Desktop/Thesis/Figures/Cap3_Correlations.fig
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since learning in this model is driven by a less stringent updating rule and dependent (not 

only but also) on weight values, this more biological behavior has the expense of lower 

gridness scores. Nevertheless, the gridness scores to be obtained from the model are 

expected to fall in the range of the ones reported experimentally, with a distribution 

similar to the ones obtained for deeper mEC layers. This means that the gridness scores 

in this model are not expected to be high (close to 1) throughout different trials, but neither 

are the ones reported in studies made with deeper layers of mEC (Sargolini et al. 2006). 

Overall, the main conclusions are similar to the ones obtained with the model described 

in section 4. The novel plasticity rule formulation produces an approximately hexagonal 

weight map, while the rat follows a plausible trajectory, using the following principles: 

 the spatial correlation of grid cells is inherited from place cells spatial firing; 

 synapses weights are changed according to a local spatial modulation 

mechanism – plasticity in inhibitory cell is important;  

 a short period of learning time is enough to generate an approximately 

hexagonal weights pattern. 

Nevertheless less positive aspects are present: the final pattern is obtained with weight 

maps and not with firing rate maps; the scaling of pseudo grid nodes (from the pseudo 

grid map) is not in accordance with experimental reports. The implication of the Isep 

measure on this matter is explored in more detail in the following section. 

Another feature of the plasticity mechanism which also decreases the hexagonal 

disposition of the output cell nodes is related to the weights baseline level allowing the 

emergence of nodes in every position of the maze (except for near border regions) since 

the beginning of the trial. However, if the intensity of the maze is homogeneously 

distributed (e.g. adding an outside band of input cells similarly to the previous model), 

this situation is less probable to occur. In fact, each path leaving the last node formed will 

obligatory drive the next node to happen near the potentiated ring around the last node. 

Moreover, if the baseline level of the weights is lowered to a value not capable to trigger 

plasticity, by introducing an initial stimuli as in the previous model, the performance of 

the model will certainly increase. 

This model, although not successfully producing firing maps with the scaling observed 

in recorded grid cells, advances the possibility that the first grid cells to be built in rodents 

mEC may result solely from place cell’s input and a spatial competition mechanism.  
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The range of the quantitative results obtained together with the objectiveness and 

originality of the plasticity process provide enough reasons to proceed and correct the 

punctual imperfections of this prototype model. 

Spacing between nodes in firing rate maps 

The major drawback present in this preliminary model is that the weight map cannot be 

transposed correctly to a firing map with the same high bumps and low rings intensity 

regions. This is mainly because the width of the input place cells is too large relative to 

the spacing that is being defined by the Isep measure, which is too far from the smallest 

spacing reported in the available literature for grid cells (approximately 12 cm against 

30 cm in dorsal mEC, respectively). In order to address how this problem of the prototype 

model could be overcome, a hypothetical scenario is designed, for a spacing value of 

30 cm between grid cell fields. 

To represent this scenario, outer rings are set 30 cm away from the correspondent node 

center. After the second grid node is created (assuming it is conveniently placed in the 

outer ring of the first node), the weights map exhibit the intersections of the two rings, 

which are precisely the two regions where it is convenient to place new grid nodes. 

Suppose the simulated rat is going away from the second grid vertex approaching one of 

the outer potentiated rings (check scheme in Figure A 6). Now, for the process to work it 

should favor triangular arrangement of high weight place fields clusters. If the rat 

approaches one of the intersection zones (red diamond) by less than a spacing measure 

(at most) and the threshold for plasticity in the output firing rate is achieved, then the Isep 

function should elect that diamond region for its maximum value (one). 

For a general place cell with place field centered on (µx, µy), its firing rate is a function of 

space and in a general position (x, y), its value is given by: 

 
   

22

22,

x yx y

u x y e

 



  


 . 

Now let wa and (μxa, μya) denote the synapse weight and the field center of the cell located 

under the arrow (that is, (x0, y0) = (μxa, μya)). Analogously, wd and (μxd, μyd) denote the 

same parameters for a generic cell located in the diamond region. By the scenario 

construction, the weights obey: wa ≤ wd. 
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Figure A 6 Cartoon scheme for the exemplification of the problem with the scale dependence between weights and 

place fields of the Isep strategy. Each point represents a place field center color coded according to the connection 

strength between the associated place cell and the grid cell, after two grid nodes have been formed. Small dark circles 

represent place cells centers which are assigned to represent grid nodes. Blue rings correspond to the place cells centers 

forming the potentiated ring regions. Green line represents the path of the rat and the dashed arrow points to its current 

position, denoted by (x0, y0). The red diamond represents place fields centers which are responsible for the intersection 

diamond of the two rings closest to (x0, y0). 

Theoretically, for a specific location (x0, y0), if: 

   
22 2

0 0xd ydx y G     , 

then the cell in the diamond region should be preferred in detriment of the cell in the 

arrow point (x0, y0).  

In other words, this relation means that if the current position (where v ≥ rth is assumed) 

is less than a spacing distance from the closest diamond then precisely that diamond 

region should be the preferred location for the next field, in order to achieve hexagonallity 

in the grid receptive fields’ locations. In Isep terms, this means that the place cell with 

maximum Isep value (1), should be in the diamond region or, less stringent, that the Isep 

measure would be much higher for a diamond region cell than for the cell centered in 

(x0, y0). In the prototype model, the cell in the diamond region will be preferred if: 

       0 0 0 0, ,sep sep a a d dI a I d w u x y w u x y     

       
2 22 2

2
0 0 0 0

2 2 2 2

0

2 2 2 2

xd yd xd ydx y x y G

a a
a d

d d

w w
w e w e e e

w w

   

   

     
   

   . 

For the minimum spacing of the range referred above (0.30 < G < 0.50 m, approximately) 

and with the sigma representing typical place fields dimensions, (σ = 0.05 m and 

σ = 0.10 m, respectively for dorsal and ventral regions), the above relation implies a 

weight ratio satisfying not plausible magnitude orders: 

2

2 82 1.5 10

G

a

d

w
e

w



          or               

63.7 10a

d

w

w

 . 
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A relaxation of the condition above can be introduced in the sense that the distance from 

the diamond zone can be defined at half of the spacing (which can bring some non 

hexagonal nodes), which will relax the above ratios to: 

 
2

2

2

2 0.011

G

a

d

w
e

w




  and 0.044a

d

w

w
. 

In the present model, the weights ratio can go from 0.67 to near one, but since the spacing 

is approximately 0.12 cm, the benchmarks for the weights ratio are: 

 
2

2

2

2 0.49

G

e 


  or 

2

22 0.056

G

e 


 , for the most stringent case. 

The situation described shows that the hexagonallity of the weights map produced by this 

prototype model is possible to be obtained only through implausible spacing values. 

Nevertheless, the passage to firing maps is not successful given the large dimensions of 

the filter constituted by the place cells Gaussian firing profiles which smooth such relative 

smaller grid spacing’s (eliminating any spacing at all). However, the inexistence of 

smaller grid spacing’s in the grid cells ever reported may provide an additional support to 

our idea that grid fields spacing might be dependent on the place fields size of downstream 

CA1 fields (in contrast with ideas about its dependence on the frequency of subthreshold 

oscillations). 
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