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Network representations can help reveal the behavior of complex systems. Useful information can be
derived from the network properties and invariants, such as components, clusters or cliques, as well
as from their changes over time. In the last few years the study of temporal networks has progressed
markedly. The evolution of clusters of nodes (or communities) is one of the major focus of these studies.
However, the time dimension increases complexity, introducing new constructs and requiring novel and
enhanced algorithms. In spite of recent improvements, the relative scarcity of timestamped representa-
tions of empiric networks, with known ground truth, hinders algorithm validation. A few approaches
have been proposed to generate synthetic temporal networks that conform to static topological specifica-
tions while in general adopting an ad-hoc approach to temporal evolution. We believe there is still a need
for a principled synthetic network generator that conforms to problem domain topological specifications
from a static as well as temporal perspective. Here we present such a system. The unique attributes
of our system include accepting arbitrary node degree and cluster size distributions and temporal evo-
lution under user control, while supporting tunable joint distribution and temporal correlation of node
degrees. Theoretical contributions include the analysis of conditions for ”graphability” of sequences of
inter and intra cluster node degrees and cluster sizes and the development of a heuristic to search for the
cluster membership of nodes that minimizes the shared information distance between clusterings. Our
work shows that this system is capable of generating networks under user controlled topology with up
to thousands of nodes and hundreds of clusters with strong topology adherence. Much larger networks
are possible with relaxed requirements. The generated networks support algorithm validation as well as
problem domain analysis.

Keywords: Graph Algorithms, Network flows, Clustering, Temporal Networks, Topology

1. Introduction

Networks are all around us: computer, telecommunication, biological and social systems are just a few
examples of systems of entities that interact and relate to one another in some specifiable way, producing
identifiable phenomena. Graph theory, which had its origins in the 18th century when Leonard Euler
published his ”Seven Bridges of Konigsberg” problem and its negative solution [12], is the basis of
the field of study that has become network science. Network science is concerned with understanding
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networked systems, describing their micro, meso and macro scale attributes and helping us predict
their behavior. Many networks exhibit groups of nodes that are more closely interconnected amongst
themselves than with the rest of the network. These groups, referred to as clusters in graph theory or
communities in network science, are usually of particular interest to network researchers. They may
have an over-sized impact on the network behavior and their identification is often highly useful.

From its origin in graph theory, network science has focused on static networks, that is, networks
”frozen in time” with link permanence. However, real world systems are rarely static: links on web-
pages are added and removed everyday in the world wide web, amino acid interaction for protein folding
occurs over time, friendships are created, age, wither and renew. This realization led to major efforts to
extend existing science into temporal networks, with several authors proposing approaches that embed
time specific attributes. Communities are no exception, and several constructs have been proposed to
characterize the way a community develops over time. Although some of these constructs are problem-
atic since they cannot be derived solely from the network structure, they serve as a base that allow us to
build a commonly accepted vocabulary that helps advance this field of study.

Time stamped data of empiric systems with known ground truth about communities does not abound.
As extensively discussed elsewhere [25] even the concept of community membership is not without its
challenges. This makes it more difficult to test systems that effectively recover community node mem-
bership over time. Having a system that generates a temporal network under user specified topology,
with known ground truth, can help alleviate these challenges. Syntgen!, as described in this article, is
such a system.

The input required by Syntgen at each time step is a multiset of community sizes and a bijection
of two n-tuples representing sequences of total and intra-community node degrees. Optionally the user
can specify preferences for joint node degree distributions, temporal node degree correlation and a set
of nodes to be eliminated at each time transition.

We developed a method which Syntgen uses to test user specifications for graphability and, if suc-
cessful, generate a compliant temporal network. The user does not specify node membership or edges,
these are generated by the system. As there is randomness in the process of network construction, both
on node community membership as well as in the network wiring, the same specifications will not typ-
ically generate the same network. However, they should asymptotically converge to the same average
topology.

The user can loosely control the dynamics of the network by changing its input at chosen time steps,
with new nodes created and others killed to satisfy input specifications. Changing correlation and joint
distribution parameters will also impact the wiring of the network.

We provide example sequence generators that sample power laws, exponential and binomial distri-
butions, all of which have been found in empirical networks [26]. These generators include parameters
that specify community maximum and minimum size, maximum and minimum node degree, distribu-
tion rate parameters and a ratio (r) of intra to total degree, which can be fixed or Bernoulli distributed
with P = r. The user can use or adapt these generators or provide their own. Obviously, although the
system will assign nodes to communities, these are only meaningful if the ratio of intra links to total
links is sufficiently high. This ratio varies depending on the network structure and on the cardinalities of
the communities. Larger communities are less stringent with their requirements. A thorough discussion
can be found in page 11 of [14].

With this input, Syntgen outputs a temporal network with known ground truth of its community
structure for every time interval. To minimize network changes beyond those specified by the user,

Icode available on request from the authors
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Syntgen tries to determine the node community membership across time steps that results in the shortest
shared information distance between clusterings. This is an NP-Hard problem for which we develop an
appropriate heuristic.

Our system works for simple networks. Syntgen generates temporal networks with no self loops
or multi-edges, non weighted and undirected, with no community membership overlap, with no iso-
lated nodes, in snapshot mode. A new instance is generated at each time step and the overall temporal
network is the sequence of generated snapshots. It would be possible to extend this model to a truly
continuous streaming network, although a principled approach for node and edge activation would need
to be devised to enforce node degree and community size affinities.

T { T+1

FIG. 1: Time consecutive slices of a dynamic network as generated by Syntgen
This example is color coded according to community and has ~ 200 nodes, 10 —9 communities,
with multiple community events. A full description can be found in section 3.2.5.

We believe Syntgen, as a temporal synthetic network generator, is unique in creating networks with
arbitrary community sizes and node degree distributions and providing ways to control node joint degree
distribution and node degree temporal correlation.

In the remainder of this document we review in section 2 other work related to the function and
objective of our system. In section 3 we start by describing the general flow of the system, its modules
and functionality, followed in section 3.2 by a detailed description of the approach we took to generate
a network snapshot respecting the user topology. How we aim to reduce spurious noise when evolving
the communities at every timestep is covered in section 3.3, and we conclude with 3 additional sections
covering experiments, conclusion and future work.

A note on terminology conventions: In this subject area a vast array of terms are used to describe very
similar concepts, like communities vs clusters, or partitions vs clusterings. Throughout this document,
we adopt the following terminology and symbol conventions:

e “Community” refers to groups of nodes more tightly connected amongst themselves than to the
rest of the network (in lieu of terms like cluster, or partition)

e “Clustering” refers to the splitting of a network into communities (in lieu of partition). See formal
definition in 2.1.
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e “Temporal” is an attribute of a network that changes over time (in lieu of dynamic or evolving)

e “Nodes and Links”: Links are connections between nodes at the same time step. Nodes only exist
if they connect. There are no isolated nodes in Syntgen.

e We call the movement of nodes between communities across time steps, "Node flow”.

e We define ”Graphability” as the property of sequences of community sizes and bijective node
total and intra degrees that enable their graphical representation.

e We denote sets by an uppercase letter and individual elements by the corresponding lower case

letter, optionally subscripted for identification. Frequently used sets and variables have their own
dedicated symbol as per table 1.

Table 1: Symbol convention

Symbol Definition
C Clustering or community set, optionally with a superscript to indicate
time step
D Degree sequence (or ordered total degree sequence, depending on con-

text, bijection with E, optionally with a superscript to indicate commu-
nity membership).

E Intra degree sequence ( bijection with F'), optionally with a superscript
to indicate community membership.

Inter degree sequence , withn = |D| = |E| = |F| and f;+¢; = d; V(1 <
i < n), optionally with a superscript to indicate community membership.
Network, optionally with a superscript to indicate time step

Link set

Kill node set (user specification)

Multiset of community sizes

Time step

Flow of nodes between time steps

Node set

~

< QN QN Q

2. Related Work

Work related to Syntgen falls into two categories:

e network science, theorems and algorithms that supported the development of our system

e prior systems that have been developed with similar or related desiderata.

In the first category we cover clustering similarity and community lifecycle events, and in the second,
benchmarks for community detection algorithms and other temporal community network generators.
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2.1 Benchmarks for community detection algorithms

Authors in [21] have drawn our attention to the fact that community detection algorithms that perform
well in a given network topology may be less accurate in a different topology. Prior to their work,
algorithms for community detection were validated mostly against the Girvan-Newman benchmark [25].
This a stochastic block model that only deviates from a typical random Erd6s—Rényi model by the
introduction of a tunable parameter specifying the probabilities of intra and inter community links,
transforming the network from a pure random network to a random network of random networks (the
communities). From experience we know that empirical networks do not generally follow this model.
As an example, most networks generated by preferential attachment, that is networks where new nodes
attach to existing nodes with probability that is dependent on their degree [2], end up with long tail
distributions of node degrees and community sizes, reasonably approximated by power law distributions.

The benchmark introduced in [21] generates networks with power law distributions of community
sizes and node degrees, with tunable intra/total ratio (mixing parameter). This benchmark, commonly
known by the authors initials (LFR), has been widely accepted and used to test community detection
algorithms for static networks. For instance in [20, 32] a lengthy list of algorithms tested against this
benchmark can be found.

2.2 Comparing clusterings

A clustering, in our context, is the partition of the set V of nodes of a network into disjoint communities,
or formally

C={ct,-,a}: (ciNcj= V(I <i,j<kANi#HAU =V 2.1

Comparing communities at successive timesteps is a key requirement to understand community evolu-
tion. Comparing clusterings, on the other hand, is critical in our system so that, after all the information
required to construct the network at successive time steps is gathered, we can flow nodes resulting in
the closest shared information distance between clusterings. Comparing clusterings is an open problem
as there is no standard way of measuring the distance between them. Popular methods include several
variations of node counting (like the Rand Index) and measures from information theory, like the nor-
malized mutual information and variation of information (VI). A good survey of different methods can
be found in [31]. We have selected VI, given its robustness, low computational complexity and the fact
that it is a true metric [23].

2.3 Temporal community graph generators

There have been some proposals to generate synthetic temporal networks. In [15] the authors propose a
generator for simple networks with a cyclic nature based on a variation of the stochastic block model.
In [16] the authors have adapted the LFR benchmark [21], while introducing over time ad-hoc modi-
fications to the network. In [28] the authors propose RDyn, a system to generate temporal networks
respecting a power-law distribution of community sizes and node degrees with tunable clustering and
injected lifecycle events that, while disrupting cluster quality, are subsequently re-balanced through
re-wiring of node links.

These systems have obvious affinity with Syntgen. The new contributions introduced by Syntgen
include:

e no prior specifications of node degree or community size distribution
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e temporal evolution under user control by searching for the least noisy transition across time steps,
i.e. reducing partition artifacts as a result of node flow

e support for joint distribution of node degrees and node degree temporal correlation

3. Syntgen: Description, challenges and contributions

Syntgen is a system to create temporal networks exhibiting community structure that changes over time.
It is parametric and modular. The major modules are:

e User specifications. These fall into two separate categories: network topology and heuristics
execution.

e Node degree and community size sequence generators. The system includes functions that sample
parametric distributions for community size, intra and total node degree, but, as long as they are
realizable, any sequences can be provided.

e Network module. Deals with all aspects of network creation, including node to community assign-
ment, degree to node assignment and node to link assignment.

e Transition module. This module manages all aspects of temporal evolution, including heuristics
for node flow between timesteps and community lifecycle determination.

e Output module. This module generates all output, both textual as well as machine readable for
further analysis. In Table 2 we include a summary of all information generated.

Table 2: Textual Output of Syntgen

Content | Description
Contingency Matrix Contingency matrix of communities across time steps
Assortativity Coefficient Joint node degree distribution
Temporal Degree Correlation Average Pearsons correlation index for the whole network
Variation of information VI between clusterings across successive time steps

In the remainder of this section we present the basic algorithmic logic of Syntgen in 3.1, the challenges
and solutions of building a static network according to user specifications in 3.2 and the problem of
finding a node flow across time steps that maximizes clustering similarity in 3.3.

3.1 Syntgen basic logic

The general flow of Syntgen is a sequence of looping steps that produce network snapshots as time
progresses. It basically follows algorithm 1.
Syntgen requires from the user at each time step the following graph invariants and parameters:

e a multiset of k positive integers S = {sy,--- , ¢}, representing a sequence of community sizes
e a bijection of total and intra community degree sequences:

— ann-tuple of positive integers D = {d\, - - - ,d,, } representing a sequence of node total degrees
withn=Y*  siAY" di€ {2n:n €N}
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— an n-tuple of positive integers E = {ej,---,e,} representing a sequence of node intra-
community degrees withe; < d;: 1 <Vi<nandY! ;e; € {2n:n €N}

e specifications for joint degree distribution and node degree correlation over time
e optionally, a set of nodes O to kill at a step boundary

The user can loosely control the dynamics of the network by changing S, D, E and O at each time step
boundary. Depending on the sign of S’ — ¥ S’*! — |O| new nodes are implicitly born or additional
nodes randomly killed. Correlation and joint distribution parameters have an impact on the wiring of
the network. As the data per timestep is gathered, Syntgen executes the following actions:

e A bootstrap static network is built. The input elements are independent (with the exception of the
number of nodes and the sum of community sizes, which must match) and it is up to the system to
assign edges and nodes to communities. We provide parameter-based examples of functions that
generate sequences which have been observed in empirical networks ([8, 26, 27]), sampled from
discretized power laws, discretized exponential and binomial distributions, but the user is free to
provide his own as adequate to their problem domain.

Degree assortativity, a topology attribute that varies with the type of network (typically assortative
for social, while dissortative for biological networks [24]), is also parameter driven allowing the
user to request a random, weighted assortative or weighted dissortative network.

To construct the network we use a modified version of the configuration model [9] in a similar
approach to what is found in a popular benchmark for community detection in static networks
[21], but developed independently and extended to support joint node degree distributions as
described in 3.2.5.

Obviously, not all input specifications are possible and we verify feasibility before generating
the network. The problem of whether a given node degree distribution can be expressed as a
graph has been covered extensively in the literature [7, 11, 29, 30], and theorems, like the Erdos-
Gallai condition, can be expressed as an algorithm to test graph feasibility. However, with node
degrees as tuples of inter and intra-cluster degrees, different conditions apply. We extended the
Erdos-Gallai condition to address this problem, developing the corresponding algorithm to halt
(or request new input for) the network generation in case input specifications are infeasible.

o After generating the bootstrap network (7p network) a 77 network is generated, again according to

user specifications. The user may select a different degree or community size sequences as well
as make changes to the network at the end of Tj (selecting nodes for deletion), according to the
requirements of the temporal network to be generated. An additional parameter provides the user
with the option of enforcing node degree assortativity across timesteps.
The system then tries to find the closest possible clusterings between successive timesteps. We
found the problem to be NP-hard and impossible to complete in a reasonable amount of time
beyond a very small number of communities. To address the inherent complexity, we developed
a heuristic based on a greedy anytime algorithm with taboo to search for a solution in an appro-
priate solution subspace. The objective is to reduce the amount of change (noise) to a minimum,
reducing the necessary impact on user specifications. The solution will determine the flow of
nodes between communities in timesteps 7 and 77.

o This process is repeated for a user-specified number (n) of time steps, evolving the network over
a period from Ty to T,,.
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e At each time step the contingency matrix of node/community evolution is produced, and, at the
end, the temporal network is created in a machine readable format for further analysis and visu-
alization.

Algorithm 1 General flow of Syntgen. Steps 2,3,6,10 are implemented in the “Net-
work” module. Build Communities assigns degrees to nodes and nodes to communities, while
Build Network does all the network wiring. Steps 7-9 are implemented in module “Transition”.

1: Community Size Sequence, Node Degree Sequence <— Sequences from User

2: Build Communities @ T,, <— Community Size Sequence, Node Degree Sequence
3: Build Network@T,, <+— Communities

4. while Remaining TimeSteps # 0 do

Community Size Sequence, Node Degree Sequence < Sequences from User
Build Communities @ T, <— Community Size Sequence, Node Degree Sequence
Network @ T, < user Events

Flow Nodes from T, to T, 1 < Search Most Similar Transition

Build Network @ T,

10:  Report Data for T, to T+

11:  Network @ T, < Network @ T,

12:  TimeSteps <— TimeSteps — 1

13: end while

14: Out put Temporal Network

R A4

Syntgen outputs textual information as the network is created overtime, including network metrics,
network events and other supporting information. Syntgen also produces the full temporal network in
machine readable format that can be input directly to the Gephi [4] visualization tool.

3.2 Creating a static network

Creating a T static network involves the following steps:
e Receiving community size and node degree sequences from the user .

e Testing for graphability” and requesting from the user new sequences if they are determined not
to be “graphable”.

e Randomly assigning nodes without substitution to communities from the bijection of intra (E)
and total degrees (D) withe € E : e < |c|.

e Wiring nodes using a modified version of the configuration model both for intra links as well as
inter links respecting assortative specifications.

3.2.1 Community, node sequences Syntgen does not impose specific restrictions on the user input
sequences beyond a coherent total number of nodes, and node intra community degrees that are less or
equal to their respective total degree. It follows that Syntgen does not enforce community structure per
se. The user must provide a ratio of intra to total degree that is conducive to community structure if a
clustered network is preferred.
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3.2.2  Supplied distribution samplers The user may opt to generate community and node sequences
resorting to functionality provided by Syntgen. There are IID samplers of uniform, exponential and
power law distributions. All of our supplied samples of sequence generators accept a ratio (r) of intra
to total degree similar to the mixing parameter in the LFR benchmark [21]. To alleviate rounding
artifacts that are more pronounced for nodes with low degree, we employ stochastic rounding instead of
rounding to the nearest integer. The authors in [21] point out that allowing the ratio to change can lead
to communities containing nodes that have a higher inter than intra degree (due to random fluctuations),
but depending on usage, having a fixed intra to total degree ratio may be too restrictive on the desirable
network topologies. Therefore, we let the user choose between a fixed 0 < r < 1 or Bernoulli distributed
ratio with P = r.

Although we do not challenge if specifications as provided by the user or generated by the supplied
distribution samplers are conducive to community structure, we do test for disconnected components
inside communities by computing the algebraic multiplicity of the zero eigenvalue for the Laplacian
of the adjacency matrix of the community. If higher than one, we warn the user, giving the option to
continue or abort the network generation.

3.2.3 Testing for graphability To test user specifications for graphability as a simple network, we
make use of the Erdos-Gallai condition [11] that states that a degree sequence D is graphable if:

D| k D|
Ydie{2n:neN} A Y di<k(k—1)+ Y min(d;,k) V(1 <k < |D|) (3.1)
i=1 i=1 i=k+1

where d is degree and |D| the total number of nodes. We apply 3.1 to every single community using
only E, the nodes intra degrees. If completed successfully, we move on to test graphability of the inter
degrees sequence F. For this we reduce the network to a multi-graph where each community becomes
a single node and the multi-links are the aggregate inter community links of the base network. It is
obvious that max(F) < Z,lﬂ d; —max(F) is a necessary condition for graphability, as otherwise there
would be not enough links to satisfy the requirements of the largest community inter degree. But it
is also not hard to see that if the total number of inter links is even, the condition above is not only
necessary but also sufficient, or formally:

IF| IF|
ZﬁE{Zn:nEN}/\max(F)éZﬁ—max(F) (3.2)
i=1 i=1

To see why, consider a reduced network with 3 nodes (communities), c1,c2,c3 and their respective
inter node degree aggregation fi, f2, f3, with fi > fo > f3. If fi = fo + f3, the network is obviously
graphable. If fi < o+ fz andif fi € {2n:n €N} then (L e {2n:neN}Afze{2n:neN})V(fr €
{2n+1:neNo} Az €{2n+1:n€ Ny}) but as fj > f» one can always distribute links from c;
to ¢; and c3 such that the remainder degrees to be satisfied are equal. If f; € {2n+1:n € Ny} then
(e€2n+1:neNyV f3 €2n+1:n € Np) in which case after one link is added between ¢ and ¢, or
c3 we revert to the previous case.

The above is a proof for a 3 community clustering. To generalize the proof, let’s consider the
addition of a community to the reduced network resulting in the clustering C = {ci,--- ,c4}, with node
degree aggregation D = {f1,---, fa}, and f; > fi—1 : 2 < Vi < 4. If we use links from f] to satisfy fi, we
get: fi—f1= AV fi—fi<fo If fi —fa > fo we reduce to the previous proof as fi — fa+ o+ f3 €
{2n:n €N} and fi — f4 < fo + f3 (remember that f3 > fa).
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If fi — fa < f> then to reduce to the previous 3-community proof we should have f> < f3+ (fi1 — fa).
This is easy to prove by contradiction as f, > f3+ (fi — f4) is impossible, given that f; > f> would
force f3 — f4 < 0 which violates the problem statement. So by contradiction and induction we prove the
condition for graphability of the inter links part of the network.

In conclusion, a network with |V| nodes and |C| communities with size sequence S, each with a
bijection of intra and inter degree sequences respectively E ¢, F¢ Vi € {1,---,|C|} is graphable under
the condition in equation 3.3.

Vie{l,---,|Cl}: Y ef €e{2n:neN} A () eff <k(k—1)+ Y min(e;k)V(1 <k <)
j=1 Jj=1 J=k+1
A (3.3)
4 \4
fie{2n:neN} A max(F)éZf,-—max(F)
i=1

i=1

3.2.4 Node assignment Syntgen assigns nodes to communities randomly at time step 7y from the
pool of available nodes, avoiding communities with cardinality smaller than the node intra degree. From
T onwards nodes keep their community membership except to honour new community size sequences.
The process of minimizing membership changes is covered in section 3.3. The user can indirectly
control node degree temporal correlation by influencing degree selection from the supplied total degree
sequence thru the shape parameters of a beta distribution used to sample the ordered sequence. When
o = 3 = 1 it reverts back to the uniform distribution.

3.2.5 Configuration model In Syntgen we based the generation of networks with user specified
degree distributions on a modified version of the configuration model (CM) [2]. We use this modified
version to wire nodes inside communities (one community at a time, as if they were separate networks)
and to create inter community links.

The CM can create a network based on arbitrary sequences D of node degrees. To this end, it
expands the sequence into a list of (Y, D) node “stubs” that are randomly paired, creating links. See
figure 2 for an example.

For our purpose, the standard CM presents two difficulties. The first is that nothing prevents a stub

YWY YWYWYYYYY

FIG. 2: Wiring the configuration model. Example of setting up a first link between node stubs
for a network with n = 10 nodes, 15 links and degree sequence D = {4,4,3,3,4,3,3,2,2,2}.
Stubs are randomly chosen and as long as )" ; D; is even, the process always concludes, albeit
with multi edges and self loops.

from linking back to another stub belonging to the same node, or linking the same nodes multiple times,
both of which are incompatible with our aim of building a simple network with no self loops and no
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multi-links. The second is that we want to provide the user with some capacity to control joint degree
distribution, while the CM results in the following fixed joint distribution:

_ kikj
o S—1

Dij (3.4)
where k;, is the number of stubs of node n and S the total number of stubs =} D.

As the network grows, the probability of self-loops and multi-links decreases. This probability
varies with the actual node degree distribution, but it is not unreasonable to disregard self-loops and
multi-edges when building the network (see figure 3 for an example), considering however that, (1) stub
pairing can fail before all stubs are assigned (that is, a node can have unlinked stubs with no candidate
stubs remaining), and (2) that equation 3.4 is no longer representative of the degree joint distribution.
The first problem can be circumvented by selectively rewiring nodes randomly from a pool of candidate
nodes (those that could satisfy the outstanding stubs but are otherwise taken elsewhere). As we test for
graphability beforehand, this completes successfully.

The second problem is less relevant as we aim to generate networks with tunable joint degree dis-
tribution. We modified the CM so that instead of connecting stubs IID over a uniform distribution, we
connect them IID over a beta distribution from the ordered node degree sequence. As the probabil-
ity density function (pdf) increases towards the rightmost side of the distribution domain, correlation
increases, and vice-versa. The o and B shape parameters of the Beta distribution are specified by the
user and enable flexible pdf shapes. Using these parameters, the user can influence the level of the
network correlation, subject to structural cutoffs [6, 24].

3.3 Minimizing Shared Information Distance

Once we have constructed the network at time #, injected user changes, created the network N 1+l (all
based on user specifications), and created adjustment communities for dead and new nodes, so that the
number of nodes across steps remains the same, all that is left is to flow surviving nodes from one
network to the next. We want to perform this node flow in such a way that the clusterings C’ and
C'*! are as similar as possible, in this way minimizing the changes beyond the user specifications. To
measure the changes, we need a way of comparing clusterings. As mentioned previously, there are
several approaches to this problem, from node pair counting to information based distance measures.

There is no best approach as explained in [23], and we have selected the metric therein proposed,
the variation of information (VI) (see figure 4) for its algorithmic simplicity and the fact that it is a true
metric [19], respecting positivity, symmetry, and the triangle inequality.

But let’s set briefly aside the proposed method of comparing clusterings and consider the search
space of feasible node flows between N; and N,y|. One way of looking at the problem is to coalesce
N; and N, into the weighted bipartite network G(C;,C;+1,U), where the nodes are the communities at
successive timesteps and the U the weighted links representing the node flows between them.

It is easy to see that the search space consists of the solutions to an under-determined system of
Diophantine equations Ax = B where A is the incidence matrix of the fully connected bipartite network
G = (C',C""!L) and B is the vector {|C/[E_; U[C{™!|'_,}. As rank(A) = |B| -1, one line of matrix
A and the corresponding entry of vector B can be removed. Dimensionality can be further reduced as
sum|[x] is known, and thus one element of x can be determined from the others. Every solution in the
solution space is a vector x whose elements are the number of nodes (u) that should be transferred from
communities in C’ to communities in C'*1,

Formally we want to find C'*! s.t. min(VI(C',C'*")) with Ax = B as defined above.
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NN YN 8

(a) We use a modified CM, and apply it to one community at a time for intra-community links (full stroke linestyle) and
to the whole network for inter community links (dashed linestyle)

\o\‘a{%ﬁﬁk\‘é%c

(b) Our modified version of the CM deletes from the link candidate list all the remaining stubs of the linking node
(double stroke linestyle) (1), and all the remaining stubs of the linked node for subsequent stubs from the same node (2)

(c) Example of the fully connected network

Fic. 3: CM Plots of a network 3 communities (Blue, red and green),
with community size sequence {4,4,2} and total and intra degree sequences
{4,4,4,3,3,3,3,2,2,2},{3,3,3,2,2,2,2,1,1,1}.

k 1
VI( ZZlog )+ log(“2))] (3.5)

i=1j pi qj

FIG. 4: Variation of Information VI(X;Y) where X = {x;, -+ ,x} and ¥ = {y;,---,y;} are

XN .
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n

clusterings of a given set S, with n = [S|, and r;; =

In topological terms, the space of the solution is a lattice contained in an n — 1 dimensional polytope,
where n = |C’| x |C**!|, bounded by n — 1 positive halfspaces (as x; > 0: Vi), and by |C'|+ |C'*!| -1
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hyperplanes defined by the equations in Ax = B. The number of solutions is equal to the number of
lattice points. Counting lattice points in such a polytope is not an easy task [22] and quickly becomes
intractable. Barvinok proposed an algorithm for lattice point counting in [3] that has been implemented
in systems like Latte [1], software that counts lattice points and performs integration inside convex
polytopes. Some experiments we ran in Latte that illustrate the size of the problem can be seen in table
3.

Clustering @ T Clustering @ T+1 Number of solutions
{20,16,12} {24,13,11} 6.46000F + 03
{16,16,16} {16,16,16} 1.17810F + 04

{13,11,10, 10} {14,12,9,9} 7.80605E + 06

{1300, 1100, 1000, 1000} {1400, 1200,900,900} 1.58534EF +24
{13,11,10,10,9} {14,12,9,9,9} 1.09501F +11
{1300, 1100, 1000, 1000,900} {1400, 1200, 900,900,900} 3.18145E + 41

Table 3: Solution space, as reported by the count function of Latte, for 6 examples of clustering
pairs. As can be seen, flowing even a small number of communities generates a search space
that is for all purposes intractable.

The solutions that are of interest to us will have a high degree of sparsity as we are looking for similar
clusterings and, intuitively (and experimentally), a high dispersion of nodes across communities will
not be conducive to similarity. Higher sparsity solutions correspond to surface features of the polytope
lattice, that is, in decreasing sparsity order: vertices, edges, ridges, cells, facets and so on, basically the
1,---,n— 1 elements of an n-dimensional polytope. We based our heuristic on this intuition, limiting our
search space to the hull of the polytope (see figure 5) This can reduce the space significantly depending
on the polytope geometry.

To scan the space we find the nullspace of A, formally ker(A) = {x € N" : Ax = 0}, where n =
|C¢| X |Cy+1|, and one solution x; to Ax = B. By linearly combining x; with ker(A) we can span the set
of solutions to Ax = B. Finding a single solution is trivial, all that is needed is to flow nodes from C;
to Cy+1 until no more nodes are left in C;. In fact, although the problem as stated is NP-Hard (it is not
difficult to reduce it to the partition problem, a well documented NP-complete problem [18]) there are
easy ways of finding good solutions with a low VI value.

We have implemented a pool of these simple algorithms, with polynomial complexity on the number
of communities, that were experimentally best performers amongst themselves. We have built a pool
of 5 simple one-pass greedy heuristics with an objective function related either to sparsity or similarity
and experimentally verified that, although any one of the 5 may achieve best performance, one of them
clearly outperforms the others as the number of communities increase (see figure 6).

In our space scan heuristic, we use these solutions (or the best of them) as starting points for our
space search. This is accomplished by an anytime algorithm that greedily searches the solution polytope
hull for the lowest VI avoiding previously visited solutions (see algorithm 2). To halt the algorithm, the
user can specify thresholds for search restart after a certain number of failed improvement trials and a
certain number of failed restarts.

Although searching the hull of the polytope vastly reduces the search space in most circumstances,
as the network grows the probability of improving on the results from the pool of simple algorithms
decreases. For very large networks the user may select to proceed with the best result from the pool and
forego the heuristic search for the sake of expediency.
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Algorithm 2 Anytime greedy algorithm with taboo
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currBest <— min(Solution(SimpleAlgorithmPool))
bestVI + VI(currBest)
globalTries < 0
visited < 0
while globalTries < globalTriesT hreshold do
localTries +— 0
globalTries < globalTries + 1
while localTries < localTriesT hreshold do
localTries < localTries + 1
localBest <+— MAXFLOAT
for all v = vector € ker(A) do
n < ((na x v+ currBest € solutionSpace) N\ ((n+ 1) X v+ currBest ¢ solutionSpace)
newSol <— n x v+ currBest
if newSol ¢ visited then
if VI(newSol) < localBest then
localBest < VI(newSol)
newSolLocal < newSol
end if
end if
n < ((n X v+ currBest € solutionSpace) A ((n— 1) X v+ currBest ¢ solutionSpace)
newSol <— n X v+ currBest
if newSol ¢ visited then
if VI(newSol) < localBest then
localBest < VI(newSol)
newSolLocal < newSol
end if
end if
end for
if localbest = MAXF LOAT then
Break Global Tries (Dead end)
else
visited < visited UnewSolLocal
if VI(newSolLocal) > bestVI then
localTries < localTries + 1
else
bestVI < VI(newSolLocal)
currBest < newSolLocal
localTries < globalTries < 0
end if
end if
end while
end while
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F1G. 5: Comparing Clusterings similarity as a function of spacial location Plot of all the
16,799,002 solutions of flowing a clustering with community size sequence of {13, 13, 12, 10}
to {15,11,11,11}. We compare similarity, as measured by the variation of information, against
distance to polytope center and number of polytope surface coordinates in the solution vector.

!
The polytope “center” is computed as the vector (W) , where the vector x is the
j=1max(xj) /.y
number of nodes flowing between communities (the sequence of edges weights of the fully
connected bi-partite network), n is the total number of nodes, f the number of possible flows
and max (x) the maximum number of nodes flowing between two communities. It is clearly

visible that there is a strong positive correlation between these quantities.

In figure 7 an example of an exhaustive search of a very simple temporal network with a total of 279
solutions can be found to illustrate the method.

4. Experiments

Syntgen can generate many variants of temporal networks with community structure respecting user
defined distributions of community sizes and node degree. In this section we present and discuss net-
work metrics from generated networks according to varying input parameters. Given the time-slicing
nature of Syntgen, most of the experiments highlight results from a single point in time, with the under-
standing that input parameters can be changed by the user on every time slice.
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F1G. 6: Relative performance of a pool of 5 simple algorithms to select a starting point for
a space scan All algorithms achieve top VI-based similarity in some of the 1,000 random runs,
but one (MI, based on minimizing the increment of mutual information) vastly outperforms all
others as the number of communities increases.

Sample Distributions

Syntgen provides distribution samplers of node degrees and community sizes. In figure 8§ we can see an
example of a power-law degree distribution and the effects of different rounding approaches.

Mix Ratio

We studied experimentally the impact of using a fixed vs Bernoulli distributed mix ratio (¢). As
expected we did not observe significant differences between both approaches when run over 11 time
steps, as can be seen on figure 9.

Joint Degree Assortativity

As discussed in section 3.2.5, joint degree is tunable by the user thru the shape parameters of the Beta
distribution, affecting link generation. However, dependent on network structure, it may be impossi-
ble to generate a network with positive correlation. In figure 10 we plot all links of a network with
10,000 nodes and power-law distribution of node degrees and community size on a two-dimensional
graph showing the degrees of their connected nodes. As the network is non directional the plots are
symmetrical when reflected about the diagonal. The result of applying shape parameters to influence
correlation can be clearly seen. We confirm previous findings, noting additionally that clustering has a
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Partition similarity ( RI)

i o= iNod 0.5 [ 0.5
O Polytope Vertex Low High

Best Similarity: 0.86 RI

F1G. 7: Example of a heuristic search to minimize information distance. Example of heuris-
tic search of a small network transition from {10,8,6} to {12,10,2}. Note that vertex points of
the solution lattice have higher than average similarity as measured by the Rand Index.

strong influence on correlation behaviour, potentially limiting the possibility of generating a positively
degree correlated network.

Temporal Correlation

We use the same technique of sampling a beta distribution to influence the evolution of node degree. The
user can change the distribution shape parameters to sustain a temporally homogeneous node degree, or
to generate nodes that are cyclically active. Figure 11 shows the impact of varying shape parameters on
the temporal node degree correlation.
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FIG. 8: Node degree distribution of networks generated with 100,000 nodes, mix ratio of 0.7,
and total node degree varying from 10 to 150. The artifact minimizing effect of stochastic
rounding can clearly be seen in these examples.

Clusters Modularity
70 0.8
50 0.78

0.76

50 0.74
0.7

30 0.68

20 0.66

0.64

10 0.62
0 0.6
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FIG. 9: Fixed versus Bernoulli distribute mix ratio Two networks averaged over 11 time steps,
with 10,000 nodes, mix ratio it = .7, power law distribution of community size (K, = 1.5) and
node degree (K,, = 2.5), displaying ground truth modularity and modularity as computed by
the community multilevel algorithm [5]. Differences in modularity between experiments are
negligible. The differences in number of communities found between the ground truth and the
community detection algorithm can be attributed to the resolution limits of the algorithm used
for detection [13].

Sample Network

Currently Syntgen outputs machine readable networks in CSV format adequate for loading into Gephi
[4]. In figure 12 an example of a Syntgen generated temporal network with lifecycle events can be seen.
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F1G. 10: Assortative Experiments on power-law networks with 10,000 nodes, varying the aver-
age degree from 20 to 25 and maximum degree from 100 to 500, with an average community
size of ~ 168. Every point on the chart is a link with (x,y) coordinates representing the connect-
ing nodes degrees. The point size is directly proportional to the total number of links with equal
coordinates. As can be seen, as we increase the average node degree from 20 to 25 by increasing
maximum node degree from 100 to 500, it is no longer possible to generate a correlated network
with stated metrics even with aggressive beta distribution shape parameters.

A simple analysis of the transition from 75 to 73 can be found in table 4. The events were categorized
as a function of the Jaccard Index [17] between communities, based on an external threshold to indicate

community continuation.
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FI1G. 11: Temporal node degree correlation as a function of the Beta Distribution shape
parameters Evolution of the node degree Pearson’s correlation at 11 successive time steps for
different specifications of the Beta distribution shape parameters.

5. Remarks, Discussion and Conclusion

Syntgen is a random network generator with constraints. Links between nodes are created independent
and identically distributed (IID) over explicit and implicit user specifications. Although a single instance
may deviate significantly from the required specifications, the average of a set of generations will con-
verge asymptotically to those specifications. The size of the network also has an impact on how closely
specifications can be followed. For example, a network with a low average number of communities, will
have community size distributions that are likely not recognizable when compared to parameter derived
expectations.

It is also of note that, although Syntgen proceeds basically IID when wiring the network, every
time a "dead-end” is encountered on graphable specifications, the affected process is restarted after re-
wiring adjustments. For instance, if, while generating intra links inside a community, a node exhausts
its list of candidate nodes before satisfying its degree, other established links will be broken so that the
process can proceed to satisfaction. This, in practice, “breaks” the IID aspect of the system, although
for most specifications the impact will be marginal depending on the density of the communities and of
the network.

Joint degree distribution specifications and node affinity over time is influenced by user parameters,
but is also restricted by network wiring requirements and structural cutoffs [10]. This is the reason why
it is not possible to directly specify node joint degrees or temporal correlation.

The ratio of intra to total node degree has a direct impact on the clustering modularity at any given
time. The only node information kept by Syntgen is the intra-community and inter-community node
degree that the user provides, and its linked nodes and community membership, generated by Syntgen.
If specifications are not conducive to a clustered network, community membership will not be recovered
from the network structure.

In fact, modularity is affected not only by the above ratio, but also by assortativity specifications.
In a highly correlated network it is possible that the clustering generated by Syntgen does not exhibit
maximum modularity, which can be verified experimentally. The intuition is that, as nodes exhibit
connection preferences, communities within communities may appear, resulting in improved modularity
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Community Event @ end of time T3
3 Continues shrinking in 3
10 Continues shrinking in 10
2 Continues shrinking in 2
6 Continues growing in 6
9 Continues growing in 9
8 Split into [12, 11]
8 Merged Into 11
1 Continues shrinking in 1
4 Continues growing in 4
5 Continues in 5
7 Merged Into 11

Community Event @ beginning of time T3
12 from Split 8
2 Continued shrinking from 2
3 Continued shrinking from 2
10 Continued shrinking from 10
9 Continued growing from 9
6 Continued growing from 8
1 Continued shrinking from 1
4 Continued growing from 4
5 Continued from 5
11 from Split 8
11 Merged from [8, 7]

Table 4: Community events on time step transition
Note community 8§ as it splits into 12 and merges into 11 continuing in both communities

with a larger number of communities.

The main aim of Syntgen is to provide researchers in network science a tool flexible enough to
generate temporal networks that approximates the topology observed in empirical networks. Syntgen
can help where real data is not easily accessible, but whose structure and topology is known. In the
process of building Syntgen, we developed a method to determine the graphability of intra and inter
node degree and community size sequences, and a heuristic to find the node flow that results in the
closest clusterings at successive time steps, given a network and a community size sequence.

We plan to use the developed search heuristic to determine change points in temporal networks
with community structure. The intuition is that change points are correlated with a peak in community
activity which would be detected as an increase in the dissimilarity gap between successive snapshots
of the network. The gap to the (near) optimal flow would be a proxy of intensive change.

Other extensions to our work include the usage of Syntgen to evaluate community detection algo-
rithms on temporal networks and analysing syntgen capabilities to reproduce empirical systems.
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(b) Network at time 73 with 9 communities with merge and split events.

FIG. 12: Nodes marked "X are examples of nodes to be killed across the transition to 73.
Nodes with a spiral are example of nodes that changed communities, and nodes marked ”B”
are examples of new born nodes. Community 8 split from 7, to 73 into community 12 and
split-merged with community 5 to community 11.



