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Abstract: Physiological arousal has been increasingly applied to monitor exploration (or navigation)
of a virtual environment (VE), especially when the VE is designed to evoke an anxiety-related response.
The present work aims to evaluate human physiological reactions to safe and unsafe VEs. We compared
the effect of the presence of handrails in the VE in two different samples, young and older adults,
through self-reports and physiological data: Electrodermal activation (EDA) and electrocardiogram
(ECG) sensors. After navigation, self-report questionnaires were administered. We found that
the VEs evoked a clearly differentiated perception of safety and unsafety demonstrated through
self-reports, with older adults being more discriminative in their responses and reporting a higher
sense of presence. In terms of physiological data, the effect of handrails did not provoke significant
differences in arousal. Safety was better operationalized by discriminating neutral/non-neutral spaces,
where the reaction of older adults was more pronounced than young adults. Results serve as a basis
for orienting future experiments in the line of VE and applied physiology usage in the architectural
spaces design process. This specific work also provided a basis for the development of applications
that integrate virtual reality and applied biofeedback, tapping into mobility and ageing.

Keywords: virtual environment; perception of safety; applied physiology; electrodermal activation
sensors; electrocardiogram sensors; architecture; building construction

1. Introduction

Physiological arousal has been increasingly used to monitor human activity during the exploration
(or navigation) of a virtual environment (VE). Importantly, using physiological measures for sensing
human reactions to a VE requires some considerations [1]. First, the VE must be designed in accordance
with what happens in a real environment. Second, the target population using the VE must present
some characteristics that overlap with what the VE is expected to evoke. The quality or effectiveness of
a VE has been majorly deduced by the degree of presence that it provokes in the user [1], commonly
known as the “sense of being in the virtual world”. Because this sense of presence is a subjective
condition, it is primarily assessed through subjective measures, such as self-report questionnaires.

Physiological arousal might be an objective indicator of a sense of presence, given that the
greater the arousal, the greater the presence [1]. As a matter of fact, using physiological data to
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quantify presence is relevant, not only for reducing the subjectivity of the sense of presence evaluation,
but also for objectively measuring the quality of a VE in evoking the reactions it is expected to evoke.
Yet, physiological measures can only be used if they prove reliable, i.e., if results are repeatable
across experiments; valid, i.e., if they correlate well with subjective measures of presence taken in
self-reports; and sensitive, i.e., if they capture modulations in the VE design. The physiological
metrics most commonly used are heart rate (HR), respiration rate (RR), skin conductance level (SCL),
skin temperature (ST) and electro encephalographic (EEG) activity [2–6].

The present work fits in this research line of physiological metrics for monitoring navigation
in a VE. It is part of a larger set of studies, which long-term goal is to replicate indoor and outdoor
architectural spaces in a VE, in a way that they end up eliciting similar physiological responses of
arousal as the physical spaces. Hence, we aim to validate the use of biometrics for future comparison of
the reactions to indoor and outdoor architectural spaces. In previous work [7], we showed that the VE
evoked different reactions that were captured by self-reports and physiological data. We also showed
that SCL objectively captured modulations in arousal responses related to “positive” or “negative”
emotions, along with the navigation through different architectural spaces in a VE. In the present work,
we aim to deepen our understanding of how subjects perceive safety and unsafety in virtual spaces.

Although literature in similar work is not extensive, some studies have been conducted in a
height-response eliciting VE. Studies show that architectural design configurations have an impact on
the way people behave [8,9], as well as on the stress and anxiety experience of the users of a given
space [10,11]. Results are still inconclusive, not only in terms of the physiological measures at use,
but also regarding the impact of the VE’s design [12] and the characteristics of the population that
is being targeted [2,13]. In these scenarios, a high and significant correlation between presence and
change in SCL has been found [14,15]. However, the use of HR change in detriment to the use of SCL
change has also been strongly supported [1]. Further work conducted in a flying VE system showed
that both HR change and SCL change, display a high correlation with presence, degree of realism and
immersion [2,13].

In order to test the reaction to safe and unsafe places, we will quantify the self-reported sensations
of “fear of falling”, heights or frustration induced by “unsafe” spaces, and the sensations of relief
and safety induced by “safe” spaces. Fear of falling is a psychological phenomenon found at all
ages, but which tends to intensify with aging, causing an increasing number of actual falls and
cognitive decline, causing reduced mobility, lowered self-confidence and overall decreased quality of
life (QoL) [16,17]. Because fear of falling is often associated with increased anxiety during mobility [17],
we assume that it can also be captured by an increase in physiological arousal during navigation in VE,
especially in unsafe architectural places. As we must consider the conditions associated with mobility
in safe and unsafe spaces and how they might affect the individuals’ perception, this study was devised
both to evaluate the reliability, validity, and sensitivity of physiological measures in safe and unsafe
spaces—namely HR change and SCL, which are two of the most used measures and have yet reached
a consensus—and the reaction of young and older people. Importantly, different populations were
tested in order to account for the generalizability of our results.

We envision that a discriminating response to the VE navigation through these physiological
indicators will serve as preliminary guidance to ensuing studies concerning requirements for a complete
simulation of real spaces. Second, we further envision that our results will serve as the grounds
for interesting applications that combine the fields of virtual reality (VR) and applied physiology,
such as Biofeedback systems. Biofeedback systems are loop systems in which real time information
from psychophysiological recordings is provided to the user, who uses it as a means for improving
performance [18]. Most of the existing VR systems coupled with Biofeedback are not yet fully integrated.
Only recently, a fully integrated system was developed [19]. Besides the efficacy and efficiency of
the training process, the authors mention that an adaptable and personalized training environment,
which can be conducted remotely at home, are further advantages of integrating both systems. Existing
systems focus mainly on anxiety-related disorders, such as generalized-anxiety disorder [19], and other
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clinical conditions, such as attention deficit hyperactivity disorder, or broader impulsiveness and
inattention [20], but there is also interesting and relevant work demonstrating the efficacy of VR
training or Biofeedback training targeting age-related conditions associated with anxiety, mobility,
and balance [16,21–24]. In line with this, if our hypotheses are validated in the future, we will be able
to integrate VR and Biofeedback and assess the efficacy of a VR-Biofeedback Training system aiming
to reduce physiological arousal during navigation in unsafe places. Reducing fear of falling in older
adults is also assumed to improve their autonomy and independence in daily activities, increasing
their QoL [17]. In fact, those who experience at least one fall admit to having a prolonged fear of falling
and, as a result, “25% of these individuals decrease their activity levels”, causing a decline in mobility
and independence [25].

Objectives and Hypothesis

In the present work, our main goal was to detect differences in arousal during navigation in a VE
composed of safe and unsafe architectural places to evaluate the validity, sensitivity and reliability of
HR change and SCL change. This goal was broken down into specific objectives. First, we aimed to
detect differences in how participants perceive the safe and unsafe architectural places of the VE through
self-report measures. Second, we aimed to evaluate the extent to which these differences were also
captured by physiological measures. Third, we aimed to evaluate whether the physiological modulation
of arousal held across participants (reliability) even though they might show different responses. As a
secondary objective, we aimed at validating the effectiveness of our semi-immersive virtual space to
evoke fear of falling, when compared to an immersive space. Given these objectives, we hypothesize
that unsafe places will be subjectively perceived as more threatening (H1) and thus they will induce
higher physiological arousal than safe places (H2). We also hypothesize that each physiological measure
is correlated, across the two samples being compared—young and older adults (H3), accounting for
the reliability of these measures. We further suggest that older adults will perceive unsafe places as
more threatening than young adults, which will be manifested by higher physiological arousal for
older adults than for younger adults (H4). A final and secondary hypothesis is proposed concerning
the effectiveness of our stimuli in terms of its technological properties. Hence, we hypothesize that our
semi-immersive VE was as effective in evoking the fear of falling as was the full immersive technology
CAVE (Cave Automatic Virtual Environment) at the High Performance Computing Center (from now
on HLRS CAVE), used as a reference for comparison (H5). We put this question under testing so that
we can demonstrate that our results were obtained in due methodological circumstances.

2. Method

A set of three studies was conducted in the same VE scenario. One study was conducted at the
High-Performance Computing Center, at Stuttgart University, Germany, in an immersive VR facility
from now on called HLRS CAVE (study 1). Two other studies (studies 2 and 3), were conducted at
ISCTE—University Institute of Lisbon (ISCTE-IUL), ISTAR-IUL lab, Portugal, in a semi-immersive VR
called Pocket CAVE, developed in collaboration between the Digital Living Spaces group of ISTAR-IUL
and the Microsoft Language Development Center in Lisbon. Studies 1 and 3 were conducted with a
sample of young adults, whereas study 2 was conducted with a sample of older adults. The methodology
and procedures adopted for this study were approved by the Ethics Committee of ISCTE-IUL, since they
are in accordance with the ethical standards of the responsible committee on human experiments and
with the Helsinki Declaration of 1975, as revised in 2000.

2.1. Virtual Environment Design

The VE was composed of sequenced spaces, like rooms, stairs and ramps, which simulated the
interior of a building. As reported in previous studies [26], three neutral rooms were designed with
30 m long by 5.5 m wide (Figure 1). These neutral rooms interchanged with non-neutral spaces,
like stairs and ramps. Stairs and ramps were designed according to standard construction regulations.
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The VE was composed of two flights of descending stairs with 12 steps each (0.28 × 0.18 m) and
1.5 m wide (Figure 2); two flights of descending ramps with 10 m long by 1.5 m wide and 20% slope
(Figure 3); one horizontal plane with 1.5 m wide by 10 m long followed by an ascending ramp with the
same dimensions and with 40% slope (Figure 4).
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simulating floor tiles. Lighting was done by five light points across the whole sequence of spaces,
with the same attenuation factor (linear/quadratic = 0) and falloff distance (25 m).

Two geometrically identical virtual models were designed with a difference - established by the
presence or absence of handrails in stairs and ramps. The virtual model with handrails was considered
a safe environment (left side of Figures 2–5) and the one without handrails was considered an unsafe
environment (right side of Figures 2–5).
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A third VE was designed for training trials, composed of two neutral rooms connected in an “L”
shape. The same textures and navigational strategy were used for the training environment.

2.2. Participants

Eighty-seven subjects in total voluntarily participated in this study. Informed consent was
obtained from all participants. As in a previous study conducted by us [26], participants were
selected considering the following admission criteria: (i) Meeting age requirements of each study;
(ii) Having normal sight or using corrective lenses; (iii) Being able to stand up without support for
a long period of time; (iv) Do not have pacemakers; v) Not suffering from claustrophobia; (vi) Not
suffering from dizziness.

In study 1 (HLRS CAVE), the sample was composed by 27 subjects recruited from among the
members (researchers, interns and staff) of the High-Performance Computing Center at Stuttgart
University (mean age = 39.3, SD age = 10.2). 13 navigated the VE with handrails (mean age = 38.7,
SD age= 9.8) and 14 navigated the VE without handrails (mean age = 39.9, SD age = 10.9).

In study 2 (Pocket CAVE), the sample was composed of 31 subjects (mean age = 78.5, SD age =

7.2). 12 participants composed the group navigating in the VE with handrails (mean age = 77.8, SD age
= 7.8) and 9 the VE without handrails (mean age = 79.2, SD age = 6.7). Participants were recruited
from two community centers in Lisbon, as volunteers, and a donation was made to help improve their
facilities. Although 31 subjects were recruited and participated in the experiment, only 21 results were
considered valid and analyzed, due to lack of consistency of the data collected (some participants did
not pass through all the spaces, data were not correctly acquired).

In study 3 (Pocket CAVE), the sample was composed on 29 subjects, all of them undergraduate
Architecture students at ISCTE-IUL (mean age = 22.8, SD age = 3.1). 11 navigated the VE with handrails
(mean age = 23.1, SD age = 2.9) and 12 navigated the VE without handrails (mean age = 22.4, SD age =

3.3). Again, six participants have been excluded, due to the same reasons stated above.
In all the three studies participants had no relation or knowledge about the study being conducted.
After physiological data pre-processing (explained in Section 3), some subjects were excluded,

due to noisy recordings. Hence, for the self-reported data we kept the total number of participants in
each study; for EDA data we only considered 18 of 31 recordings in total of older adults and 19 of 29
recordings in total of young adults; and for ECG data we only kept 21 of 31 recordings in total of the
older adults and 23 of 29 recordings in total of young adults.
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2.3. Procedure

For each study, samples were randomly split into two groups: One group was assigned to navigate
in the VE with handrails, and the other to navigate in the VE without handrails (handrails condition).
The experiment began with the setup of the devices for physiological data collection (ECG and EDA).
Afterwards, participants were asked to navigate the training VE until they reported that they had
become familiar with the task. Navigation in the experimental VE ensued, with an approximate
three-minute duration (mean total duration = 177.7 s; SD total duration = 20.8 s), during which
ECG and EDA activity were recorded. The navigation was linear, from the beginning to the end
of the circuit, participants would only move forward and never backward, only passing through
each space once. There were no interruptions in navigation during the test phase. Subjects crossed
the neutral and non-neutral places described above, always following the same seven different
spaces-sequence—Neutral Room 1 (Figure 1), Descending Stairs (Figure 2), Neutral Room 2 (Figure 1),
Descending Ramp 1 (Figure 3), Descending Ramp 2, Ascending Ramp (Figures 4 and 5), and Neutral
Room 3 (Figure 1).

For the present work we did not use the physiological data collected in study 1; nonetheless, we still
collected that data to maximize the similarity between the methodologies (the subjects’ circumstances
during the experiment). A second reason deals with the fact that this is still an exploratory work in
nature, so we might well use this data in future experiments/data analysis procedures.

For the Pocket CAVE (Figure 6) the virtual model was projected on a 4 m × 3 m screen by a
stereoscopic Digital Light Processing (DLP) projector (DepthQ HDs3D-1, Bellevue, WA, US) with 1280
by 720 pixel resolution, and visualized with active glasses (nVIDIA®3DVision(TM)2, Santa Clara,
CA, US). The observation distance (i.e. the distance between the observers’ eyes and the screen)
was 3.50 m. The virtual camera had 45◦ of horizontal Field of View (FOV) and 33◦ of vertical FOV,
approximately. Participants navigated in the VE in a fixed path and used a joystick (Logitech Extreme
3D Pro, Lausanne, Switzerland) with a constant displacement speed of 0.82 m/s [27] for moving forward
or to stop. We used the CAVE Hollowspace software system [28] fully developed and maintained
in-house by our research team.
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bottom projections being done from different floor levels. DLP projectors offer a resolution of 1920 by
1200 pixels. Participants used 3-D glasses with head tracking (ART tracking systems) enabling them to
orient images so that they appear naturally to the human eye. Hence, four cameras at the corners of the
ceiling track the users’ glasses and input device to keep virtual environments in control of researchers
(HLRS site). The observation distance (i.e. the distance between the observers’ eyes and the screen)
was circa 2.0 m. Participants navigated in the VE in a fixed path with a constant displacement speed of
0.82 m/s [27] for moving forward only. In HLRS CAVE, the COVISE software was used.
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Finally, after navigation, participants were asked to answer three questionnaires (Supplementary
Materials). Two were administered to assess the degree of “Sense of Presence”, the Slater, Usoh,
and Steed (SUS) scale [29] and the Witmer and Singer (W&S) scale [30]. A third questionnaire was
drawn up to evaluate how participants perceived the space they navigated (with or without handrails),
by assessing Perceived Safety, Perceived Fear and Anxiety in each of the non-neutral spaces, through a
7-point Likert-scale. It was administered to assess the degree of “Fear of Falling” that the VE navigation
triggered in the subjects and from now on this third questionnaire will be referred to as the “Fear of
Falling” questionnaire. Preliminary analyses revealed good psychometric qualities of the Fear of
Falling questions in each of the non-neutral spaces for both younger and older participants (Chronbach
alphas varied between 0.65 and 0.86). However, the results for the SUS and W&S scales were not so
consistent. Hence, we analyzed the results considering the responses to each individual item.
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2.4. Physiological Data Collection

In the Pocket CAVE studies (studies 2 and 3), physiological data were collected using the BioPLUX
research system (Fluxion Biosciences, Inc, Alameda, CA, US), version 1.2 (2010). BioPLUX research
system has eight channels. In each channel, specific physiological data acquisition sensors can be
connected. The signal is acquired at a sampling frequency of 1000 Hz, with 12-bit resolution, and sent
to the computer through Bluetooth communication with a range of 100 m. ECG sensors capture the
voltage of the heart’s electrical activity of with a range of +/−1.5 mV and a bandwidth between 0.5
and 100 Hz, with an input impedance above 100 GOhm and with a common-mode rejection ratio
of 100 dB. EDA sensors capture skin conductance data within a range of 0–13 µs and a bandwidth
between 0–3 Hz, with an input impedance above 1 GOhm and with a common-mode rejection ratio of
100 dB.

In HLRS CAVE physiological data were collected using a RaspberryPi Embedded System that
recorded data from the sensors and sent it to the CAVE MasterPC via Wifi. The RaspberryPi ran a
version of Debian Linux and was programmed in C to perform the task. e-Health Platform sensors
were used to measure HR and to measure it we used the e-health Platform with SPO2 sensor and an
analog-digital-converter on an ABIO-Card to make the signal “readable” for the Raspberry Pi.

2.5. Physiological Data Processing and Feature Extraction

Physiological data processing was conducted in MatLab, version R2013a. ECG data were high-pass
filtered at 0.05 Hz. In order to proceed with the detection of R peaks, the minimum peak distance
and the minimum peak height were calculated. The minimum peak distance was calculated based
on an arbitrary maximum HR of 150 bpm (beats per minute). Based on this criterion, peaks were
detected for a subset of the signal. The average peak height was then calculated, and the minimum
peak height was defined as 2/3 of the average peak height. Furthermore, we should add that these
criteria were employed for R peak detection based on a backwards elimination process. The minimum
peak height was only kept as a criterion for peak detection as long as the total number of peaks was
above a certain threshold, calculated as a function of peak distances. After R peak detection was
completed, HR was calculated, and the resulting values were standardized in reference to the baseline.
Baseline was calculated as the average value of HR from the beginning of the experiment until the end
of the first neutral room.

EDA data were visually inspected for removal of noisy subsets of the signal. For the determination
of the tonic measure SCL, the signal was decimated for 1 Hz and then low pass filtered at 0.4 Hz.
Finally, the resulting values were normalized in order to remove inter-individual variability.

After the physiological features HR and SCL were extracted from ECG and EDA signals,
respectively, we defined a sliding window of 10 samples, and calculated the change in arousal between
the last and the first sample of each window, for the entire length of the resulting signal of each VE
space, from which we computed the features used in further statistical analysis—HR change and SCL
change. This operation was conducted to deal with the problem of short navigation in each VE space.

Finally, the average value of each of these resulting features—HR change and SCL change—was
calculated for each space of the VE. For this operation, a window of 10 samples (two samples before the
entrance in the space and eight afterwards) was considered. Physiological data matrices for statistical
analyses were composed of eight columns and N rows: One of these columns identified the group of
the subjects—with or without handrails—and the remaining seven represented the arousal in each VE
space; N was the number of subjects.

2.6. Experimental Design and Statistics Rationale

The present work entailed between-subject and within-subject analyses. Between-subject analyses
were conducted to evaluate differences between safe and unsafe spaces in VE (handrails effect) (H1 and
H2), to evaluate differences between samples of young and older adults (sample effect) (H4) and to
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evaluate the effectiveness of fear of falling evocation given the semi-immersive proprieties of the Pocket
CAVE when compared to the HLRS CAVE (H5). During the data analysis procedures, we decided
to deeply explore the captured biometric data to better understand what effects have been captured
in terms of physiological arousal; hence, a within-subject analysis was also conducted to explore
differences between spaces in the same VE (space effect). We assumed that neutral rooms would be
considered safe spaces whereas non-neutral elements, like stairs and ramps, would be considered
unsafe spaces, irrespectively of the presence or absence of handrails. These procedures were conducted
posteriori, which explains why they were not hypothesized. Finally, a correlation was performed
to evaluate the reliability of both measures across the studies with the young and older people in a
semi-immersive Pocket CAVE (H3).

For testing hypotheses 1 to 4, we used the data collected at ISCTE—University Institute of Lisbon
(ISCTE-IUL), ISTAR-IUL lab, Portugal, with young and older adults (studies 2 and 3), during navigation
in the Pocket CAVE. For testing the final and secondary Hypothesis 5, we used the self-report data
collected with young adults at ISCTE—University Institute of Lisbon (ISCTE-IUL), ISTAR-IUL lab,
Portugal, and compared it against the self-report data collected at the High-Performance Computing
Center, at Stuttgart University, with young adults, too.

Non-parametric tests were conducted, due to the non-normal distribution of the physiological
data and the ordinal nature of the self-report data. For between-subject analyses, we performed
Mann-Whitney tests, which is the non-parametric equivalent of the t-test. The test statistic U of the
Mann-Whitney approach consists of two simple steps. First, every value of group A is compared to
every value of group B; second, the number of times the value in A is higher than the value in B is
summed up, and vice-versa; U is the smallest of this summation. The closest U is from 0, the more
the two groups diverge, the higher the significance (the alternative hypothesis can then be accepted).
The closest U is from half the value of A × B, the lower the difference between the groups, the lower the
significance (the null hypothesis remains true). For within-subject analyses, we conducted Friedman’s
ANOVA, which is assumed as the equivalent non-parametric of ANOVA for Repeated Measures.
The test statistic of Friedman’s Chi Squared (X2) is a Chi Squared distribution, calculated in accordance
with the number of measures per subject (in our case, to the number of spaces under consideration):
k(k + 1)/12. The numerator will be the summation of the squared deviations of each group means
to the expected mean if the null hypothesis would remain true. Post-hoc analyzes by conducting
the Wilcoxon sign-rank tests, the non-parametric equivalent of the paired sample t-test. In order to
analyze the correlation of each physiological measure across studies, the Spearman’s Rank Correlation
Coefficient, or Spearman’s rho, was calculated.

Statistical significance was considered at a 95% confidence level, except for contrasts, where
Bonferroni procedures were performed to correct the value of significance (value of significance / # of
comparisons = corrected value of significance).

3. Results

First, we tested whether there were differences in the subjective perception of safe and unsafe
spaces in the studies conducted at ISCTE with young and older adults (studies 2 and 3). For the
following hypotheses, we merged both groups (young and older adults) as we were interested
in evaluating the effect of the handrails in the subjective and objective perception of space safety.
The self-report data collected in the “Fear of Falling” questionnaire allowed us to discriminate the
perception of safe and unsafe spaces, characterized by the presence or absence of handrails, respectively.
Regardless of the participants’ age, unsafe spaces provoked a higher perceived fear, higher anxiety
and lower perceived safety than safe spaces (Table 1). Besides low values of p indicating significance,
the values of U are also congruent, with U < [(N(safe) × N(unsafe))/2] = 449.5.
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Table 1. Condition effect for the perceived fear of falling.

Fear of Falling Questionnaire

Descending Stairs (Desc_Stairs) Descending Ramp (Desc_Ramp) Ascending Ramp (Asc_Ramp)

Safe Fear Anxiety Safe Fear Anxiety Safe Fear Anxiety

Safe (With
handrails)

mdn = 5
sd = 1.61

mdn = 2
sd = 1.20

mdn = 2
sd = 1.52

mdn = 5
sd = 1.71

mdn = 1
sd = 1.24

mdn = 2
sd = 1.26

mdn = 4
sd = 1.91

mdn = 2
sd = 1.82

mdn = 3
sd = 1.81

Unsafe
(Without

Handrails)

mdn = 3
sd = 1.55

mdn = 4
sd = 1.50

mdn = 4
sd = 1.69

mdn = 2
sd = 1.24

mdn = 3
sd = 1.68

mdn = 3
sd = 1.64

mdn = 2
sd = 1.59

mdn = 4
sd = 1.73

mdn = 4
sd = 1.88

Mann-Witney U = 175.5 U = 223.0 - U = 117.5 U = 219.5 U = 288.5 U = 203.5 U = 284.5 U = 300.5

Columns in the first level represent the non-neutral spaces for which there was a handrails effect and in the second
level represent the items of the scales for which the handrails effect was true for that space; rows represent the
median (mdn) and standard deviations (sd) for each sample and the value of the non-parametric Mann-Witney test
(U), respectively.

Second, we proceeded to test whether these differences in subjective perception were extended to
a more automatic level of information processing that could be captured by physiological activity. Yet,
although the effect of handrails was pronounced in self-report data, these differences were not held
for either of the physiological measures. Nonetheless, because our VE was developed to evoke an
anxiety-related response especially for the older adults’ group, we introduced a new hypothesis that
aimed to evaluate the reaction to neutral (safe) and non-neutral rooms (unsafe) rather than dealing
with the effect of handrails. We found that physiological data tended to discriminate neutral and
non-neutral spaces, which correspond to safe and unsafe spaces, respectively (Table 2).

Table 2. Space effect for each physiological measure, irrespectively of the sample.

SCL Change HR Change

X2(6) = 17.05 X2(5) = 19.83

NR2—Desc_Stairs NR1—Desc_Stairs

NR3—Desc_Stairs NR1—Desc_Ramps

NR2—NR3 NR1—Asc_Ramp

NR1—NR2

The first row represents the value of the Chi Squared test for differences between neutral and non-neutral spaces.
The following rows represent pairs of spaces for which significant differences were found. Descending Stairs
(Desc_Stairs), Descending Ramp (Desc_Ramp), Ascending Ramp (Asc_Ramp), Neutral Room (NR).

For SCL change, Neutral Room 2 and Descending Stairs were central events for the emergence of
differences. Descriptive statistics (Table 3) show: A peak in Neutral Room 1 that afterwards decreased
in Descending Stairs; a second peak in Neutral Room 2 that persisted during Descending Ramp 1 and
started decreasing in Descending Ramp 2; and a final elevation in Ascending Ramp that decreased
afterwards in Neutral Room 3. The presence of peaks in neutral rooms will be discussed ahead.
For HR change, we also found differences between spaces, irrespectively of the sample (Table 2).
These differences were calculated excluding Neutral Room 3 because of noisy data. As shown in
descriptive statistics below (Table 3), there was a peak for Descending Stairs, as expected, that emerged
after the lowest arousal elicited by Neutral Room 1. Arousal started decreasing afterwards along with
the remaining spaces.
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Table 3. Descriptive statistics of SCL change and HR change for each neutral and non-neutral spaces,
irrespectively of the sample.

NR1 Desc_Stairs NR2 Desc_Ramp1 Desc_Ramp2 Asc_Ramp NR3

SCL
change

mean 1.91 −1.35 0.56 0.58 −0.29 0.40 −0.88

St.dev. 8.91 7.67 9.87 4.83 5.39 5.36 4.68

HR
change

mean −3.17 1.26 0.33 −0.47 −0.39 −0.10

st.dev. 12.69 3.96 7.14 4.24 3.67 10.19

Descending Stairs (Desc_Stairs), Descending Ramp (Desc_Ramp), Ascending Ramp (Asc_Ramp), Neutral Room (NR).

Third, we tested how reliable both measures were, i.e., to what extent the modulation of
physiological measures was correlated across studies 2 and 3. The modulation of physiological
measures was taken as the sequence of mean activation per event. Hence, we correlated the values of
mean SCL change per event in young adults’ experiment with the values of mean SCL change per
event in older adults’ experiment (Figure 8); we did the same for HR change (Figure 9). We found
that both SCL change and HR change were positively and significantly correlated, at ρ = 0.82 and
ρ = 0.86, respectively.
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Up until this point, the results concern differences irrespectively of the age of the participants.
From this point on, we will segregate the samples. The idea is not so much to compare groups of
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different ages to evaluate the effect of age, but to gather data about the generalizability of our results
when applying the same experiment to different samples.

First, for the self-report data collected in the “Fear of Falling” questionnaire, we found a sample
effect in two of the seven spaces. Young adults showed higher perceived fear and anxiety than older
adults for the non-neutral spaces Descending Stairs and Ascending Ramp (Table 4). Besides low values
of p indicating significance, the values of U are also congruent, with U < [(N(safe) × N(unsafe))/2]
= 449.5.

Table 4. Sample effect in the perceived fear of falling.

Fear of Falling Questionnaire

Desc_Stairs Asc_Ramp

Anxiety Fear Anxiety

Young adults mdn = 4
sd = 1.35

mdn = 3
sd = 1.68

mdn = 4
sd = 1.84

Older adults mdn = 2
sd = 1.73

mdn = 3
sd = 2.01

mdn = 3
sd = 1.96

Mann-Witney U = 282.0 U = 292.0 U = 257.5

Columns in the first level represent the non-neutral spaces for which there was a sample effect and in the second
level represent the items of the scales for which the sample effect was true for that space; rows represent the median
(mdn) and standard deviations (sd) for each sample and the value of the non-parametric Mann-Witney test (U),
respectively. Descending Stairs (Desc_Stairs), Descending Ramp (Desc_Ramp), Ascending Ramp (Asc_Ramp),
Neutral Room (NR).

We tested whether these differences could have been a consequence of differences in sense of
presence between both groups of participants; however, older adults consistently reported a higher
sense of presence than young adults (Table 5), which held independently of the presence or absence of
handrails. Besides low values of p indicating significance, the values of U are also congruent, with U <

[(N(safe) × N(unsafe))/2] = 449.5.

Table 5. Sample effect in the self-reported sense of presence, in studies 2 and 3.

SUS Presence Scale W&S Scale

Sense of
Presence VE as Reality Simplicity Awareness

of Devices
Distractibility

of Devices

Young adults mdn = 3
sd = 1.21

mdn = 3
sd = 1.57

mdn = 4
sd = 1.58

mdn = 5
sd = 1.68

mdn = 2
sd = 1.60

Older adults mdn = 6
sd = 2.15

mdn = 6
sd = 2.42

mdn = 7
sd = 1.62

mdn = 1
sd = 1.66

mdn = 1
sd = 0.75

Mann-Witney U = 223.5 U = 253.0 U = 154.0 U = 104.0 U = 223.5

Columns represent the items of the scales for which there was a sample effect; rows represent the median (mdn) and
standard deviations (sd) for each sample and the value of the non-parametric Mann-Witney test (U), respectively.

In order to disambiguate the source of these results, we scanned the self-report data and suggest
that young adults relied more on central scores than older adults. In order to confirm this suggestion,
we assessed the interaction between the sample and the handrails effect and found that participants
responded to the questionnaires with differentiated patterns for safe and unsafe conditions. For instance,
older adults reported significantly higher scores than young adults for perceived safety and significantly
lower scores for perceived fear and anxiety (Table 6). It became clear that young adults concentrated
their responses in more central scores than older adults, who described their experience through more
dispersed or discriminative scores. In other words, although the statistic tests still manifest differences
in opposite directions, we believe we could demonstrate that the source of these unexpected results
was due to a significantly higher variability in the older adults’ data than in young adults’ data.
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Table 6. Descriptive statistics discriminating the handrails condition for each sample in self-report
questionnaires (studies 2 and 3).

Older Adults Young Adults

Safe
Condition

Unsafe
Condition

Safe
Condition

Unsafe
Condition

mdn sd mdn sd mdn sd mdn sd

5,5 1,49 3 1,79 5 1,63 2 1,31

1 0,48 4 1,7 3 1,13 3 1,23

1,5 0,79 3 2,06 4 1,45 4 1,25

5,5 1,58 2 1,33 4 1,8 2 1,14

1 0,45 3 2,1 2 1,51 3 1,11

1 0,81 3 2,04 2 1,45 3 1,14

4,5 1,99 2 1,76 4 1,87 2 1,45

1 1,78 4 1,88 3 1,74 3,5 1,63

2 1,33 5 1,95 5 1,88 4 1,86

6 1,71 3 2,02 4 1,87 2,5 1,09

1 0,81 3 1,71 3 1,99 3,5 1,4

1 1,15 3 2,04 4 1,96 4 1,68

In terms of objective measures, we found that physiological data tended to confirm sample effects,
although the results were not consistent across measures. For SCL change, a sample effect was verified
for Descending Stairs and Descending Ramp 1 (Table 7), with older adults showing increased arousal
than young adults. This matches self-reports, with older adults reporting a higher perceived fear,
higher anxiety, and lower perceived safety than young adults. For HR change, no sample effects were
found. Besides low values of p indicating significance, the values of U are also congruent, with U <

[(N(young adults) × N(older adults))/2] = 171.

Table 7. Sample effects for SCL change.

SCL Change

Desc_Stairs Desc_Ramp1

Young adults mean = −3.69
sd = 3.40

mean = −0.76
sd = 4.41

Older adults mean = −0.99
sd = 3.43

mean = 2.76
sd = 4.33

Mann-Witney U = 86.00 U = 91.00

Columns represent the spaces for which there was a sample effect; rows represent the mean and standard deviations
(sd) for each sample and the value of the non-parametric Mann-Witney test (U), respectively. Descending Stairs
(Desc_Stairs), Descending Ramp (Desc_Ramp).

We proceeded to test the interaction effects between the sample and both the handrails (safe vs.
unsafe conditions) and space effect. For SCL change, crossing the sample with the handrails effect,
we obtained that for the safe condition (U = 19.00) in Descending Ramp 1, older people displayed
higher activation (mean = 4.05; SD = 4.36) than young adults (mean = −1.50; SD = 5.09). For the
unsafe condition, no differences were found between groups. For HR change, we found an interaction
effect for the unsafe condition for Descending Ramp 1 also (U = 19.00), with older adults showing
further decreased activation (mean = −3.09; SD = 4.64) than young adults (mean = 0.93; SD = 2.20),
which again was not expected. When considering each sample separately, we still did not find any
differences between the presence and absence or handrails. We proceeded to evaluate the space effect
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for each sample separately. Statistically significant differences in the modulation of HR physiological
activity throughout the spaces of the VE were majorly found for older adults (Table 8), this modulation
showing the pattern previously found for the space effect irrespectively of the samples.

Table 8. Space effect for each physiological measure for each sample.

SCL Change HR Change

Older Adults Young Adults Older Adults Young Adults

X2(6) = 16.97 X2(6) = 14.44 X2(6) = 12.15 (p=0.059) No difference

NR1—NR2

NR1—NR3

NR1—Desc_Stairs NR1—Desc_Stairs NR1—Desc_Stairs

NR1—Desc_Ramp2 NR1—Desc_Ramp1

NR2—Desc_Ramp1

The first row represents the value of the Chi Squared test for differences between all seven neutral and non-neutral
spaces. The following rows represent pairs of spaces for which statistically significant differences were found.
Descending Stairs (Desc_Stairs), Descending Ramp (Desc_Ramp), Ascending Ramp (Asc_Ramp), Neutral Room (NR).

Finally, the above-mentioned results were obtained during navigation in a semi-immersive VE.
Hence, as explained in H5, we tested whether the reaction to the VE we designed – presented in the
semi-immersive Pocket CAVE or in the full-immersive HLRS CAVE – was effective in evoking the fear
of falling given the different immersion characteristics. We found no differences in almost all items of
“Sense of Presence” and “Fear of Falling” questionnaires, except two. Although the median scores
were very close to each other, statistically significant differences were found between participants
navigating in the HLRS CAVE and the Pocket CAVE, as regards control devices awareness and sense of
presence (Table 9). Besides low values of p indicating significance, the values of U are also congruent,
with U < [(N(ISCTE) × N(HLRS))/2] = 391.5.

Table 9. The effect of the CAVE in the sense of presence.

SUS Scale W&S Scale

Sense of Presence Awareness of Devices

Pocket CAVE mdn = 3
sd = 1.21

mdn = 5
sd = 1.68

HLRS CAVE mdn = 2
sd = 1.49

mdn = 4
sd = 1.94

Mann-Whitney U = 245.5 U = 268.5

Columns represent the items of the scales for which there was a CAVE effect; rows represent the median (mdn) and
standard deviations (sd) for each CAVE and the value of the non-parametric Mann-Witney test (U), respectively.

4. Discussion

Our envisioned goal is to develop virtual spaces that simulate real spaces and likely elicit the
same reactions in the user. This is important and innovative as it might allow that VR and Biofeedback
is applied to Architecture and Building Construction design processes. Hence, we must explore the
impact of VE, as well as the impact of the participants’ characteristics in perceiving the VE [1]. In this
specific work, the link between the reaction to unsafe places and fear of falling in older adults was
explored. It further inspired us to the development of applications that combine both fields of VR and
Applied Physiology, such as Biofeedback systems. Recent work in this domain shows how effective
this kind of applications might be in training several conditions associated with anxiety and ageing,
improving the QoL of older people [11,13,16–19].
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In the present work, it was our objective to demonstrate that differences in arousal emerge
when participants navigate through safe and unsafe VEs. We devised an experiment for first testing
the effectiveness of the VE in evoking different perceptions of safeness throughout different spaces,
following necessary requirements [1]. Afterwards, we tested the validity, sensitivity and reliability of
physiological measures to quantify the reaction to those spaces, using SCL change and HR change.
We quantified the response of young and older adults to understand how the perception of safeness of
the VE could be related to the Fear of Falling, a condition that is present at all ages, but which mostly
affects mobility in older people [16,17].

Safe and unsafe spaces were primarily characterized by the presence or absence of handrails,
respectively. Self-report data concerning perceived safety, perceived fear and anxiety showed that this
manipulation was indeed effective for producing different subjective perceptions of safeness during
navigation, thus confirming our first hypothesis. However, these discriminated subjective perceptions
of the presence or absence of handrails, were not demonstrated by either of the physiological measures
(SCL change and HR change). This may be interpreted as handrails being an architectural element
that people learn to associate with safety, the meaning of which is possibly encoded by means of
top-down controlled mechanisms - captured in self-reports - rather than in automatic and involuntary
bottom-up mechanisms, obtained in biometric data. The fact that these differences in physiological
arousal did not entirely match the robustness of self-report data, aligns well with fear of falling being
primarily defined as a psychological experience. Hence, according to the definition of the validity of
physiological measures within the scope of VR experiments [1], we conclude that either SCL change or
HR change were valid measures, as they did not capture the effect of the handrails found for self-reports.
However, we still hold the suggestion that future experiments should operationalize safety in a different
way (with a different architectural element), that elicits a more automatic response. In other words,
SCL change and HR change might have not proven valid, due to a poor operationalization of safety.

We proceeded to test a secondary manipulation of safety that was introduced afterwards concerning
the sequence of neutral and non-neutral spaces. We found the differences in arousal interesting,
along with the navigation in the VE, with differentiated patterns for both SCL change and HR change.
For SCL change, we found an initial peak in Neutral Room 1. Although we were not expecting to
detect arousal in a neutral room, this result is in line with previous studies showing that SCL is affected
by the novelty effect [13]; this was verified even though we included a training phase that lasted until
the subject reported being accommodated to the task. Furthermore, we also conclude that the SCL
recordings captured modulations, along with the spaces (a space or event effect), if we consider the
fact that SCL is a slow-moving parameter that resulted in delayed peaks—SCL change positive peaks
usually occurred in the space adjacent to the space that must have elicited the arousal. Latencies of SCL
change are assumed to be in the range of 1 or 2 s [31]. For HR change, although it initiated as expected,
reaching the first peak in Descending Stairs, it subsequently decreased, along with navigation in the
remaining spaces, whether neutral or non-neutral. We assume that the habituation effect possibly
impacted on HR which leads us to conclude that SCL change might be a more sensitive physiological
measure for the purpose defined herein. In line with previous findings, SCL change captured the
novelty and space (or event) effects [14,15]. Although the validity and sensitivity of these measures
were not clear enough in terms of reliability, our third hypothesis was confirmed, showing that both
measures are reliable and allow for/provide/ express/produce a positive correlation across experiments
irrespectively of the presence and absence of handrails, and irrespectively of age differences.

Still regarding the validity and sensitivity of the physiological measures, we suggest that in future
studies the time spent crossing spaces be extended (increasing the length of the concerned spaces) to
capture more pronounced physiological response. This is suggested to benefit both measures. For SCL
change, these reformulations in the VE might be a solution for solving the novelty effect problem
(for the first neutral room) and consequently for having all neutral rooms acting as stabilizers of arousal,
as well as for minimizing the delay of the SCL response—if VE spaces are more extended, we will be
able to detect a physiological response within the correct window. For HR change - given that this
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metric was reliable across studies - it remains an open question whether these reformulations would
also trigger higher amplitudes in HR change in a way that differences among spaces are identified.
This question also remains open because previous findings reported the validity of HR change in
measuring user experience and sense of presence in anxiety-evoking VE [1,2,12,13]. It is further
relevant to mention the high variance in physiological data, which certainly introduced noise in data
analysis and its interpretation. We assume that the above-mentioned reformulations will also play an
important role in decreasing variance, for obvious reasons. Furthermore, in order to test the validity of
physiological measures in respect to the space effect, a questionnaire of space perception concerning
the space effect should be constructed and administered, as well. Finally, these reformulations also
require that safety is operationalized in a different way, yet to be determined.

We proceeded by evaluating if there was a differentiated reaction between young and older adults
along navigation in the different spaces. [16] In terms of self-report data, unexpected results were
obtained, with young adults reporting less perceived safety and higher perceived fear and anxiety
than older adults in two of the seven spaces, even though older adults reported a higher sense of
presence than young adults. After disambiguation, we concluded that results suffered the interference
of increased variability in older adults’ responses when compared to young adults. This increased
variability in the older sample is in line with previous studies showing similar types of effects [32], and
may well occur due to a higher sense of presence in this group. In other words, because older people
perceive a higher immersion [11], they are more discriminative in their responses. The increased sense
of presence showed by older adults might be associated with the fact that this group is less used
to operate with technology and, thus, more permeable to it [17]. In terms of the physiological data,
one can begin to raise the question of whether comparing the response of different aged groups is
valid. Yet, if age (and its associated physiological events) had taken over the effect of other variables,
significant differences between groups would have been found across all experimental conditions,
which was not the case. Hence, we proceeded to interpreting results. We also found that differences
between spaces were more pronounced for the older people group. We found that the space effects
possibly resulted from the heightened sensitivity of older adults to the VE, as we did not find many
differences between spaces for the young adults. This is not only in line with older people reporting a
higher sense of presence, but also in line with Fear of Falling emerging in older adults, who reported
more discriminative answers to the questionnaire and who potentially display higher levels of anxiety
(manifested through higher arousal) when facing unsafe/non-neutral spaces [12,13]. Hence, we went
further in evaluating the interaction between sample and handrails effects. We did not find a consistent
pattern of responses. One the one hand, we put this inconsistency down to possible interference of
high variance in the data. On the other hand, however, it was clear that Descending Ramp 1 is a space
frequently associated with significant differences in arousal for both measures in both safe and unsafe
conditions. This is worth exploring in future studies using the same VE.

Finally, we consider that this work was successful in giving preliminary and necessary steps
towards designing a VE that evokes a differentiated perception of safety and unsafety, which can be
measured through physiological activity. Our first operationalization of safety/unsafety did not prove
effective, but the design of the VE did. Furthermore, as was confirmed by the final and secondary
hypothesis, the VE held effective in evoking fear of falling in both a semi-immersive Pocket CAVE
and in a full-immersive HLRS CAVE. In terms of using physiological measures, we found that both
measures are reliable, but further improvements in the methodology are needed to increase their
validity and sensitivity. This study also showed that SCL change was prone to capture the novelty
effect; that HR change possibly captured habituation effects; and that physiological measurement was
more pronounced for older adults, aligning well with the definition of Fear of Falling. The results also
allowed for the identification of possible sources of noise to improve future experiments.
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Limitations

The main limitations of the present work have been discussed earlier, namely, reformulations
in the VE such that more time is spent in each separate space, and the operationalization of safety,
by thinking of including in the VE, different architectural elements other than handrails.

In terms of self-report data analysis, although the SUS and W&S scales are robust measures used
in the literature, our analyses revealed some limitations in their reliability. Hence, these self-report
results should be taken with caution and should be further explored in future studies using subjective
evaluations of the navigation experience. In terms of physiological data, the fact that some collections
were noisy and useless, could have compromised the robustness of our samples.

5. Conclusions

In line with previous findings [7,26], this work allowed to conclude that our VE was effective in
evoking differentiated reactions for safe and unsafe spaces, irrespectively of the immersive properties
of the CAVE in which it was presented. It also allowed us to determine that, under the present
circumstances, HR change and SCL change are reliable physiological measures, but the reaction to
different spaces along the VE can only be objectively measured through SCL change. Future work is
then needed to improve its validity and sensitivity, and obviously, future work should also be oriented
towards achieving valid and sensitive HR recordings. Our results also allowed us to draw a link
between older adults’ physiological reaction and fear of falling by comparison between samples of older
and young adults. This is relevant for the future development of applications that integrate VR and
Applied Biofeedback for the purposes of performance optimization and assist in architectural design.
Nowadays, there is a high prevalence of VR systems and Biofeedback systems for training people
to improve performance in specific areas of their needs [16,18,21–24]. Yet to this day, little work has
been conducted to integrate both modalities (VR and Biofeedback) in one single training system [19].
This integration accounts for positive results in terms of efficacy and efficiency of training, and can
be conducted remotely, on an adaptable and personalized basis [19]. Within the larger scope in
which this experiment was devised—concerning the future development of VE architectural spaces
simulating real environments—this work was fruitful in indicating that some architectural elements,
like handrails, are discriminative of a conscious perception of space, but not discriminative in terms
of an involuntary automatic perception eventually captured by physiological data. However, results
also point towards the effectiveness of a VE in producing a modulation of arousal if the spaces that
compose it are considered the sources of safety/unsafety perceptions. Moreover, this work was fruitful
in uncovering the effects that are majorly captured by the physiological measurements (novelty and
habituation effects) and, thus, in reformulating the methodology for future experiments. Although
these results open several doors to future studies, they also provide knowledge about the limitations
that we will encounter from now on. Future experiments are already being planned at our research
center at ISCTE—University Institute of Lisbon (ISCTE-IUL), ISTAR-IUL VR lab, Portugal, to replicate
in an indoor VE space experiments carried out in an outdoor real space to. Data analysis is being
conducted to explore users’ differential physiological reaction to both indoor and outdoor spaces in
a simple exploration task. We believe that more robust conclusions will be drawn after a composite
analysis of both studies.
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