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1 INTRODUCTION 
 

For a public transport company, the process of defining trips offers is a central task because 

trips are the main product they have to offer to their clients. As in other business areas the 

offer should maximize clients’ satisfaction at a minimum cost. Traditionally, timetables were 

defined assuming a deterministic travel time. However, with the investments done in the last 

decade in Advanced Public Transportation Systems, a large amount of current data obtained 

from Automatic Vehicle Location systems is now available. This data can be used to enhance 

travel time modelling for timetable definition. This is the subject of this paper, which imposed 

us the study of how to use current data in order to better define timetables aiding public 

transport companies to accomplish their mission. We present a Decision Support System 

(DSS) for the special case of timetable adjustments, assuming therefore that the schedule 

under study is not new, i.e., there are actual trips for that schedule.  

Firstly, in this paper, we present a brief state of the art review on defining travel times for 

timetabling (Sect. 2) then we discuss the reasons for developing a DSS for timetable 

adjustments (Sect. 3). In Sect. 4 we describe the DSS, and in Sect. 5 how to use it in typical 

situations. We conclude with a discussion and guidelines for future research (Sect. 6). 

 

 

2 RELATED WORKS ON TRAVEL TIMES FOR TIMETABLING 
 

An important difference between the existing approaches on timetable creation concerns the 

variables used. These variables depend on the purpose. If, for instance, a timetable for a new 

line is needed, a variable such as the population density of the served area is important [3]. 

However, if the goal is to make small adjustments to the timetables, this variable is not 
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relevant. We describe the variables for the latter case, i.e., for regular planning tasks (line 

creation is a sparse event in a 

scheduled travel time (STT), slack time (SlT), scheduled headway (

scheduled departure time. Let us assume that SCT is the scheduled cycle time,
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where the indexes g and r represent the go and return trips (Fig.

Figura 1: Time

For urban areas, the departure times are usually defined by headway instead of 

spaced. Irregularly spaced departure times are typically used for long distance trips or trips in 

rural areas. We focus on the definition of the timetables' departure times by headway.
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Fixing N, and assuming that travel times are exponentially distributed, slack times can be 

optimized [10]. Using this approach, the shorter the slack time is, the shorter the scheduled 
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where (!"# � ��
�!"#�/ is the utility function, �
�!"#� is the expected waiting time of an 

arrival at time " and � and 0 are constants that must be defined from empirical data. The 

derivation of the passengers' expected waiting time for large headways has not yet been done. 

Using an economic perspective, Carey defines as objective function, the cost expressed in 

terms of STT, lateness and earliness unit costs [2]. Using this approach it is possible to define 

the optimal STT and SlT for given ratios between the STT unit cost and both the lateness and 

earliness unit costs. Another contribution of this work is the inclusion in the model of the 

effect of relaxation when the SlT is larger, i.e., it is known that when the schedule is tight, the 

actual travel time is shorter than when it is large. Carey calls it the behavioural response. 

What Carey shows is that the timetable definition should be neither too tight, to avoid delays 

in departures, nor too large, to avoid behavioural inefficiency. 

In all the studies on the definition of travel times, it is not explicit how global cost is defined, 

i.e., the cost for the passengers and for the company. In Carey's approach, these costs are 

implicit in the unit costs, but the author does not explore how to estimate them (it is not the 

goal of the paper). The work by Zhao et al. uses just the passengers' cost, i.e., the expected 

time the passengers must wait at the bus stop. The operational costs are not considered. 

The above mentioned approaches assume that the purpose is to adjust STT and SlT, i.e., the 

timetable is already defined (even if roughly) and the goal is just to tune it. However, there are 

several studies on methods for the creation of bus timetables, with different purposes. For 

instance, Ceder [3] addresses the definition of the frequency related to the problem of the 

efficient assignment of trips to running boards (i.e., bus duties). Input variables such as the 

population density of the area served by the line, bus capacity and single mean round-trip 

time, including slack time, are used [3]. This work was extended in order to address the 

synchronization of certain arrivals [4]. In [6] the goal is to minimize total schedule delay costs 

for the users. In [7], the goal is to define the bus departure rate as a function of passengers' 

arrival rate. In all these works [3,4,6,7], it is assumed that the travel time is deterministic. 

The approaches used by Carey and by Zhao et al. benefit from the existence of abundant 

archived data from AVL systems, in particular the one by Zhao et al.. This work has the 

appeal of being an analytical approach. However, for the schedulers, rather than a method that 

solves the (partial) problem in a deterministic way, they need a tool to give them insights into 

the best solution, at least while there are no answers to questions such as “what are the 

optimal ratios between STT and lateness unit costs and between STT and earliness unit costs 

(in Carey's approach)?”, or, “when should the scheduler put on an additional bus, i.e., how 

does passengers' waiting time compare with the operational cost of an additional bus?”, or 

even, “what is the impact of reducing the SCT on operational costs?”. 
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3 A DSS FOR TIMETABLE ADJUSTMENTS 
 

In the previous section we presented the limitations of the existing methods for the creation of 

bus timetables with regard to the value of travel time. We pointed out that one of the 

difficulties is the inherent multi-objective nature of the problem of finding the optimal value, 

namely the minimization of both the expected passengers' waiting time at the bus stop and the 

operational costs. In this paper we propose a DSS, which allows the person in charge of 

timetable planning to assess the impact of different scenarios in both objectives. He or she can 

test different values for the scheduled travel time, slack time and headway, and obtain a set of 

descriptive statistics that allow this person to evaluate the impact of this scenario using data 

from a past period similar to the one that the timetable is going to cover.  

The reason for using this approach is that the existing ones can give optimized solutions when 

some of the variables are fixed but do not allow the planner to easily evaluate the sensitivity 

of the solution to each decision variable. Furthermore, the objective functions used by these 

approaches do not simultaneously cover the two objectives above mentioned. This DSS can 

be seen as an integrated environment for analysis and is compatible with the use of optimized 

solutions like the one described in [10]. In fact, such solutions can always be developed and 

integrated in this DSS as a default solution for fixed given values. 

 

 

4 SUPPORTING DECISION IN TIMETABLE ADJUSTMENTS TASKS 
 

The person in charge of planning (the planner) starts by selecting the data to be used for the 

analysis of travel times. It is expected that the planner will choose past data that might be 

representative of the period (in the future) that is going to use the new version of the 

timetable. The planner is able to choose the characteristics of the analysis, such as period of 

time (days), the time of the day and the line/route. There are three types of analysis that 

depend on the characteristics of the line and the objectives of the analysis the planner wants to 

perform: single direction, double direction and circular route analysis. 

 

4.1 Single direction analysis 

In a single direction analysis (Fig. 2) the information provided is:  

• A time plot of travel times: it provides visual information about travel times. It allows 

the user to observe the dispersion of travel times during the period of analysis. This 

can show, for instance, the difference in travel times along the seasons of the year or 

days of the week. It is also possible to identify outliers and to obtain information on 

the trips by clicking the mouse. 



 

 

Figure 2: Single direction analysis. 

• A chart of the accumulated relative frequency of travel times: it allows the user to 

have an idea of the route performance, just by looking at it. The steeper is the slope of 

the plot, the less is the variability of travel times. We can observe that the duration of 

the majority of the selected past trips for line 602 is between 50 and 62.5 minutes. 

• Information about the sample (‘amostra’ in Portuguese): it characterizes the sample 

past data being used in the analysis. 

• A table with statistical information on travel times: it provides the user with statistical 

information for the 25th, 50th and 75th percentile. For these three travel times, say travel 

time ", one presents the percentage of travel times in the intervals: � − ∞, " − 5 456
, 

" − 5 456, " � 5 456
, 
" � 5 456, " � 10 min 
, 
" � 10 456, �∞
. The value of " 

that maximizes the percentage of travel times in the interval 
" −  5456, " �  5456
 
is also calculated and presented in the table. This is the initial information provided in 

the table. The percentiles and the intervals being used were chosen by the planners we 

have been working with. This information complements the plot of the accumulated 

relative frequency of travel times. However, the user may add lines to the table by 

choosing the values of percentile or duration he wants to analyze. The information 

provided in this table is very useful for the transit planners because it helps them to 

estimate the effects on delays and early arrivals, when choosing the duration for a trip. 
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• A table with the STT used in the selected past period: it provides information about 

the STT in the time interval and dates selected. It is useful to compare the STT being 

used with the actual past travel times, which allows the detection of STT that are not 

correctly defined. 

 

4.2 Double direction analysis 

In a double direction analysis (Fig. 3), all the information provided for single direction is also 

shown separately for each of the two directions, as described in the previous section. One also 

provides an additional tab with statistical information of travel times, possible slack times and 

the minimum number of vehicles needed, according to the scheduled headway (a value to be 

introduced by the planner). This kind of information couldn't be shown in a single direction 

analysis because the definition of slack times and the scheduling of vehicles depend on the 

entire cycle (go and return). 

Fig. 3 shows a screenshot of the application for a double direction analysis containing: 

• A plot of the accumulated relative frequency of travel times for both routes (go and 

return): it is identical to the plot of the accumulated relative frequency of travel times 

described in Sect. 4.1 but with two data series, one for each route. 

• A table with statistical information on cycle times: the information provided in this 

table is applied to the lines with period trips in a defined period of time, in which 

vehicle scheduling is done together for both directions. For each travel time presented 

in the table (go and return), one presents three possible slack times and the percentile 

for the sum of travel time and slack time. The table also presents the minimum number 

of vehicles needed to cover the trips with those travel and slack times. The total slack 

time is calculated based on the headway of the service. Imagine the case of an 11 

minutes headway, STT of the first trip equal to 57 minutes and STT of the returning 

trip equal to 55 minutes. The sum of both durations is 112 minutes. This means that 

the three lowest values for the duration of the cycle are 121, 132 and 143 minutes, 

because the duration of the cycle has to be a multiple of the headway (Eq. 2). In the 

first case we have 121 - 112 = 9 minutes of slack time to distribute by the two trips. 

The appropriate slack time to add to each trip is calculated based on the aim of 

minimizing the difference between the percentiles of the total times for each direction 

(travel time plus slack time). In this example, the solution is to give 6 minutes of slack 

time for the first trip and 3 minutes of slack time for the returning trip. The percentile 

values for the sum of STT and slack time are 79.76% and 80.65%, for the go and 

return trips respectively. This is the solution that minimizes the differences between 

them. The minimum number of vehicles needed to cover this demand is 11. However, 

if this solution is applied, we can expect that around 20% of trips, in each direction, 

won't be finished in a time less or equal to the duration of travel time plus slack time. 



 

This may cause an important number of delays in the departures of sequential trips and 

poor line performance. So, the transit planner should analyze all the possibilities 

suggested in the table, trying to maximize the percentage of trips covered by the travel 

time and slack time, but at the same time, minimizing the costs for the company. The 

planner is also able to add lines to the table in order to analyze different solutions. He 

just has to introduce the desired travel times or percentile values, for both directions. 

 

Figure 3: Double direction analysis. 

 

4.3 Circular route analysis 

In circular routes there is no slack time added to trips because the bus must always be in 

service. Besides, the cycle is composed of just one trip. Because of this, the information 

provided is similar to that in single direction analysis with the addition of the minimum 

number of vehicles needed for each tested scenario. 

 
 

5 USING THE DSS 
 

The criteria for defining the timetable depend necessarily on the headway [10]. In this section 

we describe how to use the DSS for timetable adjustments for typical situations: short 

scheduled headways, large scheduled headways and circular routes. This section is based in 
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our experience using this tool at the Sociedade de Transportes Colectivos do Porto, SA 

(STCP), the largest urban public transport operator in greater Oporto, Portugal. 

 

5.1 For short headways 

It is known that for short headways (those shorter to 10 minutes) customers arrive roughly 

uniformly at the bus stops. They do not care about the timetable because they know that they 

will wait no more than the headway time. Additionally, there is an inherent instability of 

headways when they are short. This happens because when a bus is delayed, it has, typically, 

to pick up more customers, increasing the delay after the previous bus even further. At the 

same time, the following bus tends to go faster because it will stop less and less time since the 

number of passengers tends to decrease. In other words, for short headways, the actual travel 

times are very sensitive to the maintenance of the headways. If the actual headways are 

irregular, the buses tend to bunch [5,10]. Fig. 4 presents a real example of this situation 

visible for the return trips (the top-down ones). In this situation, i.e., for short headways, the 

concern of both the planners and the controllers should be to guarantee that the time between 

two buses on the same route is, as much as possible, equal to the scheduled headway [10]. 

 

Figure 4: An example of a bunch situation 1. 

For the planners the aim is to minimize the variance of the headways. It is advisable to use the 

mean travel time (or the median, which is more robust to outliers). The sum of STT and the 

slack time for each direction should be a high percentile value ;. 4�=. This value is, 

                                                           
1 The source of this image is a software application owned by STCP. 



 

necessarily, strongly conditioned by the satisfaction of Eq. 2. The possible values are 

represented in the table with statistical information on cycle times (Fig. 4). 

5.2 For large headways 

For large headways (those of over 10 minutes), the behaviour of customers is different. They 

tend to arrive sometime before the scheduled passing time. In this case, the planner should 

guarantee the adherence of the actual trips to the scheduled ones and the controllers should act 

accordingly. In this case it is important to be aware that, from the passengers' point of view, 

an offset between the actual and the scheduled passing times is accepted as in time if in the 

interval 
−1 456, 5 456� [8]. Another important issue is that a delay is more acceptable than 

an advance of the same amount of time. 

In this case, a low percentile should be chosen for the STT (represented by ;. 456) in order to 

reduce the number of trips passing ahead of schedule. The slack time should be the difference 

between ;. 4�= and STT (the ;. 456). Again, this value should respect Eq. 2 and, 

consequently, the options are limited. 

5.3 For circular routes 

For circular routes, whatever the scheduled headway is, the STT should comprise both the 

expected travel and the slack times. The problem is that on circular routes it is not possible to 

have slack times because the buses are always in service. The time to accommodate delays 

must be incorporated in the STT. Consequently, a high percentile value ;. 4�= should be 

chosen, in the same way as previously described. In this case, controllers tend to have more 

intervention in order to guarantee that the actual travel time respects the STT. 

 

 

6 DISCUSSION AND FUTURE WORK 
 

An important advantage of this DSS is that it allows planners to evaluate different scenarios. 

This is achieved by providing them information about the two business objectives, namely, 

the minimization of both the expected passengers' waiting time at the bus stop and the 

operational costs. With this purpose different indicators are used: 

• Number of vehicles needed: an important indicator of the operational costs; 

• Estimated percentage of trips passing ahead of schedule: an indicator of the level of 

passengers' satisfaction; 

• Estimated percentage of trips starting delayed: another indicator of the level of 

passengers' satisfaction. 
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However, this set of indicators is neither complete for the case of large headways nor adapted 

for short headways or circular routes. A study on the best set of indicators for each case is 

needed. In [8, 9] many indicators are suggested. 

It is expected that the values of ;. 456 and ;. 4�= discussed along Sect. 5 can be obtained 

empirically by the planners. Their values can be different for different routes but it is expected 

that, at least for routes with identical characteristics, they will not be too different. Anyway, 

this DSS can also integrate analytical approaches, like the one suggested in [10]. This is a 

natural step forward for this research. 
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