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Leveraging national tourist offices through data analytics 

 

 

Structured Abstract 

Purpose 

This study proposes a data-driven approach, based on open source tools, that makes it 

possible to understand customer satisfaction of the accommodation offer of a whole 

country.  

Design/methodology/approach 

The method starts by extracting information from all hotels of Portugal available at 

TripAdvisor through web scraping. Then, a support vector machine is adopted for modeling 

TripAdvisor score, which is considered a proxy of customer satisfaction. Finally, 

knowledge extraction from the model is achieved using sensitivity analysis to unveil the 

influence of features on the score. 

Findings 

The model of TripAdvisor score achieved a mean absolute percentage error of around 5%, 

proving the value of modeling the extracted data. The number of rooms of the unit and the 

minimum price are the two most relevant features, showing that customers appreciate 

smaller and more expensive units, while the location of the hotel does not hold significant 

relevance. 

Originality/value 

National tourist offices can use the proposed approach to understand what drives tourists’ 

satisfaction, helping to shape a country’s strategy. For example, licensing new hotels may 

take into account the unit size and other characteristics that make it more attractive to 

tourists. Furthermore, the procedure can be replicated at any time and in any country, 

making it a valuable tool for data-driven decision support on a national scale. 

 

Keywords: national tourist offices, web scraping, data mining, sensitivity analysis, data 

analytics, online reviews. 

Article classification: Research note 

  



1. Introduction 

The hospitality industry has developed online review platforms to empower tourists by 

giving them tools to share their experiences, influencing others through electronic word-of-

mouth (eWOM) (Calheiros et al., 2017). The adoption of mobile applications has further 

emphasized social media use anytime, anywhere (Rita et al., 2018). Research has followed 

suit with recent studies in hospitality and tourism supporting such trend (Moro and Rita, 

2018). However, national tourist offices (NTOs) are falling behind by offering limited data 

capabilities for the industry to explore in a data-driven world (Lam and McKercher, 2013). 

This study proposes a novel approach for NTOs to use state-of-the-art data analysis open 

source tools for extracting data from TripAdvisor, one of the most prolific online reviews 

platform, and train a model of the customer score of accommodation units to leverage the 

knowledge NTOs may offer to tourism and hospitality practitioners and researchers. 

2. Materials and methods 

The proposed approach is exhibited in Figure 1. It consists of three steps represented in 

rounded rectangles. In the first one, web scraping was performed for automatically 

extracting information of all hotels available on TripAdvisor of an entire country. Web 

scraping consists in developing and running a script to efficiently download webpages’ 

contents and to extract the needed information (Mitchell, 2015). The second step consisted 

in modeling the TripAdvisor score, which may be viewed as a proxy of customer 

satisfaction, using a classification method, fed with relevant features extracted from the 

collected data portraying the hotels. The classification method adopted in our experiments 

is the Support Vector Machine (SVM), an advanced machine learning technique that 

discerns the intrinsic relations between the input features and the outcome to model. It 

transforms the input x ∈ ℜM space into a high m-dimensional feature space by using a non-

linear mapping that depends on a kernel (Cortes and Vapnik, 1995). Through this 

transformation, the algorithm identifies the linear hyper plane that best separates the input 

features space, using specifically selected points that constitute the support vectors, from 

which the name SVM derives (Steinwart and Christmann, 2008). For the kernel, we 

adopted the popular Gaussian method, which achieves good performance while requiring 

less parameters than other alternatives (e.g., Silva et al., 2018).  



The third step consisted in extracting insightful knowledge from what the model 

apprehended from data. Sensitivity analysis applied to a data mining model enables to 

understand how each feature contributes to modeling the outcome feature (Barraza et al., 

2018). Such task is accomplished by varying each of the input features through their range 

of possible values to assess model’s sensitivity, i.e., if the outcome is little or highly 

affected by varying the input features. The data-based sensitivity analysis (DSA) is a 

specifically tuned method for assessing relations between the input features and their 

influence on the outcome through a fast-computational algorithm that uses a randomly 

selected sample from the dataset used to train the model (Cortez and Embrechts, 2013).  

The techniques used in the three steps are well-established in the tourism literature. Yet, 

those are more often adopted for analyzing individual online reviews, especially, web 

scraping and SVM. This research takes as a baseline Moro et al. (2017)’s study but at a 

higher granularity level, i.e., instead of analyzing individual reviews, it focuses on hotels as 

units which have received scores from travelers. Furthermore, while the abovementioned 

study used 504 manually collected reviews, we included web scraping to benefit from the 

required volume to analyze an entire country’s offer. 

To test the approach, Portugal was the chosen destination country, as it is an attractive 

western European nation with a strong tourism market, with most of the hotels available in 

TripAdvisor (Moro et al., 2018). The data was extracted on the 27th of June 2017, with the 

web scraping procedure, taking around four hours to collect information on the 1,011 hotels 

registered in Portugal. The total number of reviews for those hotels is above 584k, 

validating the representativeness of TripAdvisor as a proxy to evaluate customer 

satisfaction on a large scale. The 22 features gathered which characterize the hotels are 

displayed in Table 1. Figures 2 to 4 show snapshots from TripAdvisor identifying the 

locations in the webpage from where each feature was extracted (the numbers correspond 

to column # in Table 1). Thereafter, the data cleaning procedure identified 44 hotels with 

missing values, which were discarded, considering those only represented 4.35% of the 

whole dataset, and leaving a total of 967 for training the model.  

Features with the same value for the whole dataset were discarded (e.g. the country was 

always set as Portugal); likewise, features that are different for all cases (e.g., hotel name; 



address) were also discarded; in both cases, the features do not hold patterns, being useless 

for modeling, as argued by Moro et al. (2016). The data preparation procedure enabled to 

identify that while TripAdvisor GreenLeader has four different levels, it is an award hardly 

granted; therefore, it was converted into a binary feature: 6% hotels hold it, while the 

remaining do not. Five of the hotel features (highlights; top.amenities; amenities; 

room.amenities; and things.to.do) contained lists of amenities and attractions the units 

offer, such as “Air Conditioning”. However, a large number of these characteristics overlap 

(see Figures 2 to 4), justifying the conversion of those five features into each individual 

amenity (with binary value: (Y)es, if the hotel offers the amenity; (N)o, otherwise), adding 

a total of 63 features to the dataset and discarding the original five. Further data analysis 

found that several of those 63 new features were highly unbalanced (threshold considered 

of 10%: one of the two categories of the binary value is represented in less than 10% of the 

cases), providing justification to discard 19 underrepresented features. The procedures 

undertaken left a dataset of 967 hotels and 55 features tuned for modeling TripAdvisor 

score. 

For the implementation of the experiments, the two most sound and widely used open 

source scripting languages for data analysis were adopted, namely Python and R (Xia et al., 

2010). The vast number of online communities and enthusiasts of both languages ensures a 

large number of open source packages for data analysis tasks. The experimental setup 

consisted in developing web scraping with the wget package and Python, while the 

“rminer” package from R was used for modeling and knowledge extraction (Figure 1) 

(Cortez, 2010). However, both of them could be used interchangeably for all the tasks, 

proving the versatility of open source scripting languages. Therefore, this study contributes 

also to highlight the usefulness of these tools for research. 

3. Results and discussion 

The modeling step took as input the 967 × 56 dataset (rows × columns, i.e., 967 hotels 

characterized by a total of 55 features plus the score) for training the model, which was 

validated through a 10-fold cross validation scheme to ensure independency, as described 

by Moro et al. (2017). Model’s accuracy was assessed using two metrics: the mean absolute 

error (MAE), which measures the absolute average deviation between the predicted and the 



real values (TripAdvisor score); and the mean absolute percentage error (MAPE), which is 

computed similarly to MAE, but relatively to the real value, thus represented in percentage 

(Hyndman and Koehler, 2006). The model achieved a MAE of 0.219, and a MAPE of 

5.30%, a significant lower error than what was achieved by Moro et al. (2017), who 

modeled TripAdvisor review’s score instead of hotel’s score, thus justifying the reliability 

of the model for knowledge extraction. Nevertheless, results cannot be directly compared, 

not only because different target variables with different granularities are being modeling, 

but also because different datasets are being used. 

The DSA assesses the relevance of each feature in terms of its contribution to modeling 

TripAdvisor score. Figure 5 displays the relative relevance of each of the ten most relevant 

features. It should be noted that each of the remaining 45 features holds an individual 

relevance below 2.5%. Results highlight two main features responsible for explaining 

23.1% of the score granted, based on the SVM model, namely: the number of rooms and 

the minimum price for booking a reservation. The former was also considered relevant for 

the model achieved by Moro et al. (2017), confirming the relevance of accommodation 

units’ size to customer experience, a result also highlighted in previous studies (e.g., Ariffin 

and Maghzi, 2012). Price is also an issue to which consumers tend to give high importance, 

especially in accommodation, due to the high level of competition and transparency in 

social media (María Munar, 2011). Therefore, the minimum price holds significant 

relevance to hotel’s score. It is important to stress that these two features also emerge in the 

literature as highly relevant, confirming the value of the proposed approach for measuring 

customer satisfaction about accommodation offer. 

The third most relevant feature belongs to the TripAdvisor brand and it is an Excellence 

reward based on several dimensions such as the score, the quantity and recency of reviews 

(Diappi, 2018). This shows the influence the TripAdvisor holds on the hospitality industry, 

a result corroborated by Moro et al. (2017), who found that TripAdvisor membership years 

also influence the score granted by users. The number of reviews also plays a role in 

influencing hotel score, emphasizing the power the TripAdvisor brand exerts on hotels. The 

number of stars within the star international system closes the top five ranking, with 

relevance slightly below 4%. 



The remaining five features shown on Figure 5 represent amenities offered by the hotels, 

with relevance between 2.5% and 2.9%. The fact that none of the amenities appears among 

the five most relevant features points out that there is not an isolated amenity standing out; 

instead, each individual amenity plays a small role, but the combined relevance of all of 

them corresponds to 51.6% of the score, which is a highly significant contribution. Hence, 

hotel managers need to have a holistic perspective over the amenities offered to ensure high 

levels of customer satisfaction. Also interesting is the fact that the Portuguese region where 

the hotel is located plays little role in the score, unveiling a homogeneous distribution of 

hotels throughout the country when it comes to pleasing customers. 

Finally, the influence of each of the top five specific features over the TripAdvisor score is 

analyzed individually (Figure 6). In a similar result to the study by Moro et al. (2017), 

smaller units tend to result in higher TripAdvisor scores. Current literature highlights that 

small scale hotels can offer personalized hospitality services, which are harder to 

implement in large hotels where economy of scale is used while serving to mass number of 

guests rather than tailoring for individual guests (Kurgun et al., 2011).  

The main findings can be summarized as follows: 

• Minimum price influences TripAdvisor score, with tourists visiting Portugal 

acknowledging the value for money ratio offered by more expensive hotels; 

• TripAdvisor Excellence reward is recognized by hosts as a quality badge, resulting 

in higher scores for hotels which have been awarded; 

• Units graded with more stars are also better valued by visitors (Jeong and Mindy 

Jeon, 2008). 

 

4. Conclusions 

This study contributes to enhance data analysis’ capabilities of NTOs by introducing an 

automated approach for analyzing an entire country’s accommodation offer from a 

customer satisfaction perspective. The proposed approach is based on a combination of 

known methods implemented using open source tools to model TripAdvisor score of 

individual hotels, helping to shed light about the main drivers for satisfying customers.  



The experimental procedure was set in Portugal, a western leading European country as a 

tourist destination, although the method is directly generalizable to other countries. The 

managerial implications include an increase in awareness of customer sentiments towards 

accommodation units by tourist offices, helping to shape national tourism strategies. 

Additionally, since the method is automated, it may be replicated periodically to refresh the 

analysis with latest data reflecting the most updated trends. For the case of Portugal, both 

the number of rooms and the minimum price were found the most relevant features. Such 

acquired knowledge can be useful when deciding to legislate on the current or possible new 

units, helping to align demand and supply toward meeting customers’ expectations. 

The contributions underlined in this study can set roots for future research, including the 

application of the method to larger countries and the creation of separated and more tuned 

models based on other dimensions such as the hotel type to assess feature relevance on 

different perspectives. Nevertheless, there are some limitations that must be pointed out. 

Web scraping is highly dependent on the source webpages’ format. This implies that the 

extraction process will need to be revised every time TripAdvisor changes the HTML tags 

and style sheets used by the process. Furthermore, some of the extracted features may 

change or even be removed by TripAdvisor. Yet, while this does not happen, the procedure 

remains directly replicable. Thus, monitoring each execution will help in identifying source 

changes and subsequently adapt the extraction script. Another limitation is related to the 

localized nature of the study. Further research is needed in different destinations to assess if 

the findings can be generalized. 
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Figure 1 - Methodological approach. 

 

 

 

 

 

 

 



 

 

 

 

Figure 2 – Information extracted from TripAdvisor’s main section. 

 



 

Figure 3 – Information extracted from TripAdvisor’s “about” section. 

 

 

 

Figure 4 – Information extracted from TripAdvisor’s “Overview” section. 

 

 



 

 

Figure 5 – Features’ relevance. 
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Figure 6 – Influence of the top five features on TripAdvisor score. 

 

 

  



 

Table 1 - Features extracted. 

# Feature Type and description Included 

1 name Name of the hotel N 

2 addr.street Street address N 

3 addr.local Town N 

4 addr.region {Northern Portugal; Algarve; Alentejo; Madeira 

Islands; Central Portugal; Azores} 

Y 

5 addr.postal Postal zipcode N 

6 addr.country Country="Portugal" N 

7 stars Stars in the international ranking system (1 to 5) Y 

8 has.website If the hotel has website ("Y"es / "N"o) Y 

9 nr.rooms Number of rooms of the unit Y 

10 price.min Minimum price Y 

11 price.max Maximum price Y 

12 trav.choice TripAdvisor's travellers' choice award ("Y"es / "N"o) Y 

13 tripadvisor.excel TripAdvisor's certificate of excellence ("Y"es / "N"o) Y 

14 nr.reviews Number of reviews the hotel has on TripAdvisor Y 

15 nr.photos Number of photos published by the hotel on 

TripAdvisor 

Y 

16 eco.level TripAdvisor GreenLeaders' level {Bronze, Silver, Gold, and 

Platinum}. This feature was transformed into binary since only 

6% of the units were GreenLeaders: if the hotel is GreenLeader, 

then "Y"; else "N" 

17 highlights Each of these five features held a list of individual hotel 

characteristics (63 different characteristics for the whole dataset, 

with several overlaps).  

Therefore, 63 different features were added as columns to the 

dataset (e.g., "Free Wifi", "Air Conditioning", "Room Service") 

18 top.amenities 

19 amenities 

20 room.amenities 

21 things.to.do 

22 score TripAdvisor's score of the unit (3 to 5 for the 

Portuguese units) 

Y 

 

 


