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   ABSTRACT 

   In this article it is shown that if the busy period of a 𝑀|𝐺|∞ queue system is PME 

distributed, the respective service time is a random variable with a long-tail distribution. 

The result is obtained through Laplace transforms analysis.    

 

     Keywords: 𝑀|𝐺|∞, busy period, PME distribution, long-tail distribution, Laplace 

transform.   

INTRODUCTION  

      In a 𝑀|𝐺|∞ queue system, 𝜆 is the Poisson process arrivals rate, 𝛼 is the mean service 

time, 𝐺(. )  represents the service time distribution function and so 𝛼 = ∫ [1 − 𝐺(𝑡)] 𝑑𝑡
∞

0
 

since 𝐺(. )  is the distribution function of a positive random variable. The traffic intensity 

is 𝜌 = 𝜆𝛼 and B is the busy period length. 

      Note the busy period study importance, for this queuing system, because in its 

operation any customer, when it arrives, finds immediately an available server. So the 

problem is “for how long the servers – and how many servers? – must be available? 

That is: how long is the busy period length?” 

      When looking for a family of positive distribution functions, 𝐹𝑟(𝑡), with tail 

behavior: 

                                         𝐹𝑟
𝑐(𝑡)~𝛼𝑟𝑡−𝑟 , as 𝑡 → ∞,  

with mean 1 and manageable Laplace transform, to serve as test in their queues, with 

long-tail service-time distributions, waiting-time tail probabilities study (Abate, 

Choudhury and Whitt, 1994) created the PME-Pareto Mixture of Exponentials 

distributions family. 
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       Being mandatory a finite mean it must be 𝑟 > 1. So the Pareto distribution could be 

the adequate choice. For this distribution  𝐹𝑟
𝑐(𝑡) = (

𝑟−1

𝑟
)

𝑟

𝑡−𝑟 , 𝑡 ≥
𝑟−1

𝑟
, and its density 

is 𝑓𝑟(𝑡) = 𝑟 (
𝑟−1

𝑟
)

𝑟

𝑡−(𝑟+1), 𝑡 ≥
𝑟−1

𝑟
 . As their moments are 𝑚𝑛

′ =
𝑟

𝑟−𝑛
(

𝑟−1

𝑟
)

𝑟

, 1 ≤ 𝑛 <

𝑟, the squared coefficient of variation is 𝑐 =
1

𝑟(𝑟−2)
.  

    As this Pareto family does not allow small values and its modifications, that would do 

so, Laplace transforms are not expressible in terms of elementary functions, (Abate, 

Choudhury, Whitt, 1994) proposed a new modification,  the  PME-Pareto Mixture of 

Exponentials distributions family, with 

                       𝑔𝑟(𝑡) = ∫ 𝑓𝑟(𝑦)𝑦−1𝑒
−

𝑡

𝑦𝑑𝑦, 𝑟 > 1
∞

𝑟−1

𝑟

               (1.1) 

where  𝑓𝑟(𝑦) = 𝑟 (
𝑟−1

𝑟
)

𝑟

𝑥−(𝑟+1), 𝑥 ≥
𝑟−1

𝑟
, is a Pareto distribution probability density 

function. It is long-tail type distribution. The 𝑔𝑟 moments are 

                                     𝑚𝑛 = 𝑛!
𝑟

𝑟−𝑛
[

𝑟−1

𝑟
]

𝑛

, 𝑛 = 1,2, …                    (1.2).  

      It will be supposed that the B probability density function is given by (1.1). And 

through Laplace transform analysis it will be emphasized that in these circumstances the 

service time is a random variable with a long-tail distribution. 

     THE PME LAPLACE TRANSFORM 

      Calling �̂�𝑟(𝑠) the Laplace transform of a PME with parameter r, see again (Abate, 

Choudhury, Whitt, 1994), 

�̂�𝑟(𝑠) = 𝑟 (
𝑟 − 1

𝑟
)

𝑟

∫
𝑥𝑟

𝑠 + 𝑥

𝑟
𝑟−1

0

𝑑𝑥, 𝑟 > 1            (2.1). 

But �̂�𝑟(𝑠) = 𝑟 (
𝑟−1

𝑟
)

𝑟

(∫ (𝑥𝑟−1 −
𝑠𝑥𝑟−1

𝑠+𝑥
) 𝑑𝑥

𝑟

𝑟−1
0

) = 𝑟 (
𝑟−1

𝑟
)

𝑟

(∫ 𝑥𝑟−1𝑑𝑥 −
𝑟

𝑟−1
0

𝑠 ∫
𝑥𝑟−1

𝑠+𝑥
𝑑𝑥

𝑟

𝑟−1
0

) = 𝑟 (
𝑟−1

𝑟
)

𝑟

([
𝑥𝑟

𝑟
]

0

𝑟

𝑟−1
− 𝑠 ∫

𝑥𝑟−1

𝑠+𝑥
𝑑𝑥

𝑟

𝑟−1
0

) = 𝑟 (
𝑟−1

𝑟
)

𝑟

(
1

𝑟
(

𝑟

𝑟−1
)

𝑟

−

𝑠 ∫
𝑥𝑟−1

𝑠+𝑥
𝑑𝑥

𝑟

𝑟−1
0

) = 1 − 𝑠𝑟 (
𝑟−1

𝑟
)

𝑟

∫
𝑥𝑟−1

𝑠+𝑥
𝑑𝑥

𝑟

𝑟−1
0

. 

       If ℎ̂𝑟(𝑠) is the PME with parameter r tail Laplace transform, as ℎ̂𝑟(𝑠) =
1

𝑠
−

1

𝑠
�̂�𝑟(𝑠), 

ℎ̂𝑟(𝑠) = 𝑟 (
𝑟 − 1

𝑟
)

𝑟

∫
𝑥𝑟−1

𝑠 + 𝑥

𝑟
𝑟−1

0

𝑑𝑥, 𝑟 > 1     (2.2).          

       So, after (2.2), 



              ℎ̂𝑟

(𝑛)
(𝑠) = (−1)𝑛𝑛! 𝑟 (

𝑟−1

𝑟
)

𝑟

∫
𝑥𝑟−1

(𝑠+𝑥)𝑛+1

𝑟

𝑟−1
0

𝑑𝑥, 𝑛 = 0,1,2, …        (2.3)     

                      

where ℎ̂𝑟

(𝑛)
 is the nth  order derivative of ℎ̂𝑟. 

      Then ℎ̂𝑟

(𝑛)
(0) = (−1)𝑛𝑛! 𝑟 (

𝑟−1

𝑟
)

𝑟

∫ 𝑥𝑟−𝑛−2
𝑟

𝑟−1
0

𝑑𝑥, 𝑛 = 0,1,2, …  .       But 

∫ 𝑥𝑟−𝑛−2
𝑟

𝑟−1
0

𝑑𝑥 = {
[

𝑥𝑟−𝑛−1

𝑟−𝑛−1
]

0

𝑟

𝑟−1
, 𝑛 ≠ 𝑟 − 1

[log|𝑥|]
0

𝑟

𝑟−1, 𝑛 = 𝑟 − 1

= {
(

𝑟

𝑟−1
)

𝑟−(𝑛+1)

𝑟−(𝑛+1)
, 𝑟 > 𝑛 + 1

−∞, 𝑟 ≤ 𝑛 + 1

. 

So  ℎ̂𝑟

(𝑛)
(0) = {(−1)𝑛𝑛! 𝑟 (

𝑟−1

𝑟
)

𝑟 (
𝑟

𝑟−1
)

𝑟−(𝑛+1)

𝑟−(𝑛+1)
, 𝑟 > 𝑛 + 1

(−1)𝑛(−∞), 1 < 𝑟 ≤ 𝑛 + 1

 or, equivalently,  

 

ℎ̂𝑟

(𝑛)
(0) = {(−1)𝑛𝑛! 𝑟 (

𝑟 − 1

𝑟
)

𝑟 (
𝑟

𝑟 − 1)
𝑟−(𝑛+1)

𝑟 − (𝑛 + 1)
, 𝑛 < 𝑟 + 1

(−1)𝑛(−∞), 𝑛 ≥ 𝑟 − 1

  , 𝑟 > 1    (2.4). 

 

 

       𝑴|𝑮|∞  QUEUE BUSY PERIOD TAIL LAPLACE TRANSFORM 

       Call 𝑈(𝑡) the 𝑀|𝐺|∞ busy period tail and 𝑢(𝑠) the respective Laplace transform so, 

see (Ferreira, Andrade, 2010a), 

𝑑

𝑑𝑡
(

1 − 𝑒−𝜆 ∫ [1−𝐺(𝑣)]𝑑𝑣
𝑡

0

1 − 𝑒−𝜌
) = 𝑇𝐿−1 (

1

1 − 𝑒−𝜌

𝜆𝑢(𝑠)

𝜆𝑢(𝑠) + 1
)           (3.1) 

and 

 

𝑒−𝜆 ∫ [1−𝐺(𝑣)]𝑑𝑣
𝑡

0 𝜆(1 − 𝐺(𝑡))

1 − 𝑒−𝜌
= 𝑇𝐿−1 (

1

1 − 𝑒−𝜌

𝜆𝑢(𝑠)

𝜆𝑢(𝑠) + 1
)   (3.2) 

being 𝑇𝐿−1(. ) the inverse Laplace transform. 



         So,                    ∫ 𝑡𝑛 𝑒−𝜆 ∫ [1−𝐺(𝑣)]𝑑𝑣
𝑡
0 𝜆(1−𝐺(𝑡))

1−𝑒−𝜌
𝑑𝑡 =

∞

0

(−1)𝑛 1

1−𝑒−𝜌 (
𝜆𝑢(𝑠)

𝜆𝑢(𝑠)+1
)

𝑠=0

(𝑛)

⇔ ∫ 𝑡𝑛𝑒−𝜆 ∫ [1−𝐺(𝑣)]𝑑𝑣
𝑡

0 𝜆(1 − 𝐺(𝑡))𝑑𝑡 =
∞

0

(−1)𝑛 (
𝜆𝑢(𝑠)

𝜆𝑢(𝑠)+1
)

𝑠=0

(𝑛)

. 

          As 𝑒−𝜆 ∫ [1−𝐺(𝑣)]𝑑𝑣
𝑡

0 ≤ 1 the consequence is that ∫ 𝑡𝑛𝜆(1 − 𝐺(𝑡))𝑑𝑡 ≥
∞

0

(−1)𝑛 (
𝜆𝑢(𝑠)

𝜆𝑢(𝑠)+1
)

𝑠=0

(𝑛)

⇔ ∫
1−𝐺(𝑡)

𝛼

∞

0
 𝑑𝑡 ≥

(−1)𝑛

𝜌
(

𝜆𝑢(𝑠)

𝜆𝑢(𝑠)+1
)

𝑠=0

(𝑛)

this entire happening if 

1

1−𝑒−𝜌

𝜆𝑢(𝑠)

𝜆𝑢(𝑠)+1
 is in fact a probability density function Laplace transform, being enough 

that (−1)𝑛 (
𝜆𝑢(𝑠)

𝜆𝑢(𝑠)+1
)

𝑠=0

(𝑛)

≥ 0, 𝑛 = 0,1,2, … . 

        𝑴|𝑮|∞  QUEUE BUSY PERIOD WITH PME DISTRIBUTION 

         Note that in the 
𝜆𝑢(𝑠)

𝜆𝑢(𝑠)+1
 nth order derivative,  𝑢(𝑛)(𝑠) always appears with a positive 

sign in the numerator and, for  𝑠 = 0 , if    𝑢(𝑠) is given by (2.1), in that order n derivative 

the denominator is (𝜆 + 1)𝑛+1. It is enough to be attentive to the quotient derivative 

expression and note that   ℎ̂𝑟(0) = 1. 

         So, after (2.4), it is concluded: 

         -If there is a service distribution such that the 𝑀|𝐺|∞ queue busy period is 

distributed as a PME distribution with parameter r, the service equilibrium 

distribution moments of order greater than  𝑟 − 1 ,   centered in the origin, are 

infinite.  

            Note that 

           -The   service equilibrium distribution, with these moments, is a long-tail 

distribution, see again (Abate, Choudhury, Whitt, 1994), 

            -As 
𝑢(𝑠)

𝑒𝜌−1

𝜆

 is the 𝑀|𝐺|∞ queue busy period equilibrium distribution Laplace 

transform it is also concluded that if this has moments of order greater than 𝑛, . 𝑛 ∈ ℕ, 

infinite, the same happens with the service time equilibrium distribution, which is: they 

are both long-tail distributions. 

           CONCLUDING REMARKS 

           As it is stated in (Abate, Choudhury, Whitt, 1994) the PME are long-tail 

distributions. So it is checked in this work that there is an uncontested association 

between long-tail service distributions and long-tail busy period distributions for the 

𝑀|𝐺|∞ queue, as it was shown in (Ferreira, Andrade, 2012). 

            The PMEs were introduced in (Abate, Choudhury, Whitt, 1994). There they were a 

tool to investigate properties of waiting times tail probabilities in queues with long-tail 

service-time distributions. For this investigation the authors developed algorithms for 



computing the waiting time distribution by Laplace transform inversion when the Laplace 

transforms of the inter-arrival time and service time distributions are known. The procedure here 

trailed is similar. 
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