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Abstract—Generalized spatial modulations (GSM) represent a 

novel multiple input multiple output (MIMO) scheme which can 

be regarded as a compromise between spatial multiplexing 

MIMO and conventional spatial modulations (SM), achieving 

both spectral efficiency (SE) and energy efficiency (EE). Due to 

the high computational complexity of the maximum likelihood 

detector (MLD) in large antenna settings and symbol 

constellations, in this paper we propose a lower complexity 

iterative suboptimal detector. The derived algorithm comprises a 

sequence of simple processing steps, namely an unconstrained 

Euclidean distance minimization problem, an element wise 

projection over the signal constellation and a projection over the 

set of valid active antenna combinations.  To deal with scenarios 

where the number of possible active antenna combinations is 

large, an alternative version of the algorithm which adopts a 

simpler cardinality projection is also presented. Simulation 

results show that, compared with other existing approaches, both 

versions of the proposed algorithm are effective in challenging 

underdetermined scenarios where the number of receiver 

antennas is lower than the number of transmitter antennas. 

 
Index Terms—Generalized Spatial Modulations (GSM), Large 

Scale MIMO (LS-MIMO), compressed sensing (CS).  

I. INTRODUCTION 

Large-scale multiple input multiple output (LS-MIMO) 

schemes, where a large number of antenna elements (AEs) are 

employed at the base station (BS), are considered one of 

strongest candidates for enabling the intended capacity and 

reliability improvements in future 5G systems [1]. However, 

one of the main drawbacks of conventional LS-MIMO is the 

need for an individual radio frequency (RF) chain per each AE 

which can result in a strong overhead in terms of energy 

consumption and hardware cost [2]. 

Multiple input multiple output antenna schemes relying on 

generalized spatial modulations (GSM) [3]-[5] have recently 

emerged as an attractive technique to achieve both spectral 

efficiency (SE) and energy efficiency (EE). While spatial 

multiplexing MIMO is aimed at SE and spatial modulations 

(SM) are targeted at EE [6][7],  GSM can be regarded as a 

compromise between both, as only a subset of the available 

transmitting antennas is active at any given moment, thus 

reducing the number of RF chains required. As the 

information is encoded on the active antenna combination and 

also on the modulated symbols transmitted on the AEs, GSM 

can achieve higher SE than SM. There are two main types of 

GSM. In the first one [3][4], all active AEs transmit the same 

symbols while in the second one, which is the one we are 

concerned with in this paper,  each AE can transmit a different 

modulated symbol, thus achieving higher SE [5].  

The optimal maximum likelihood decoder (MLD) for GSM-

MIMO transmissions requires an exhaustive search over all 

active antenna combinations and modulated symbols which 

makes it unviable for most applications. Although sphere 

decoding (SD) detectors achieving optimal MLD performance 

have been proposed for GSM-MIMO [8], they exhibit a 

computational complexity which still grows exponentially 

with the problem size. Therefore, many low-complexity 

suboptimal approaches for GSM-MIMO have been proposed 

recently. In [5], a GSM-MIMO detector is described, which 

applies linear decorrelation techniques for first detecting the 

active antennas and then demodulating the constellation 

symbols. The resulting approach has a lower complexity than 

the MLD but its bit error rate (BER) performance is far from 

optimal.  A promising detector named ordered block minimum 

mean-squared error (OB-MMSE) was presented in [9]. 

Although it is capable of near-MLD performance, its 

complexity is affordable only when the number of possible 

active antenna combinations is small.  One of the main 

challenges in deriving low complexity detectors is the 

common GSM-MIMO scenario where the number of 

transmitting antennas is larger than the receiving antennas. 

This results in an underdetermined detection problem which 

makes linear detectors like zero forcing (ZF) and MMSE 

unsuitable. In order to deal with the reduced receiver antennas 

set and exploit the sparsity property of GSM signals, several 

authors have resorted to efficient reconstruction tools available 

within the compressed sensing (CS) framework [10][11]. For 

example, in [12] the authors applied and evaluated the basis 

pursuit denoising (BPDN) formulation from [13] to the 

detection of GSM-MIMO signals. However, directly applying 

conventional CS algorithm to problems defined over discrete 

sets, such as in GSM-MIMO, will have a performance which 

is far from optimal unless knowledge of the discrete nature of 

the signal is directly exploited inside the reconstruction 

method [14][15]. Therefore in [16], a greedy algorithm named 

multipath matching pursuit with slicing (sMMP) was 

presented which combines the use of an inner integer slicing 
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step with the adoption of multiple promising candidates for 

minimizing the residual. This approach was adapted and 

evaluated for GSM-MIMO transmissions in [17], with good 

performance-complexity tradeoffs. 

In this paper we propose a new iterative GSM-MIMO 

detector which relies on the application of the alternating 

direction method of the multipliers (ADMM) as a heuristic for 

solving the ML detection problem. ADMM is a well-known 

approach for convex optimization problems [18], and even 

though the GSM-MIMO detection problem is a nonconvex 

one,  there are several successful examples published in the 

literature regarding nonconvex problems where ADMM was 

found to work with excellent performance [20]-[22]. What 

makes ADMM appealing for the GSM-MIMO detection 

context is its ability to split the MLD problem into a sequence 

of simpler steps comprising an unconstrained Euclidean 

distance minimization problem, an element wise projection 

over the signal constellation and a projection over the set of 

valid active antenna combinations. As this last subproblem can 

incur an excessive complexity cost when the valid antenna 

combination set is large we also propose a simpler algorithm 

version where this projection is relaxed into a simpler 

cardinality one. In either case, the resulting algorithm also 

includes a refinement step based on a projected MMSE 

estimate defined over a fixed support set whose goal is to find 

a solution closer to the optimal one.  Simulation results show 

that both versions of the proposed GSM-MIMO detector can 

attain very competitive complexity-performance tradeoffs 

against other suboptimal approaches.  

The remainder of the paper is organized as follows. Section 

II describes the GSM-MIMO system model and formulates the 

MLD problem. Section III derives the iterative detection 

algorithm and discusses several important aspects about its 

operation. Simulation results are presented in Section IV 

followed by the conclusions in Section V. 

Notation: Matrices and vectors are denoted by uppercase 

and lowercase boldface letters, respectively. The superscripts 

(
.
)

T
 and (

.
)

H
 denote the transpose and conjugate transpose of a 

matrix/vector, ||
.
||2 is the 2-norm of a vector, ||

.
||0 is its 

cardinality, ( )supp x  returns the set of indices of nonzero 

elements in x (i.e., the support of x), diag(
.
) represents the 

vector containing the diagonal elements of a matrix, ⋅    is the 

floor function,  
N

k

 
 
 

 denotes the number of combinations of N 

symbols taken k at a time and In is the n×n identity matrix. 

II. SYSTEM MODEL AND PROBLEM STATEMENT 

Let us consider a GSM MIMO transmission in a flat fading 

channel employing Nt transmitter antennas and Nr receiver 

antennas. At any given time, only Na AEs are active allowing 

a total of 
2log

2
t

a

N
N

comb
N

  
    =  antenna combinations available for 

mapping ( )2log t

a

N

N
 
 

 information bits. If each active AE 

transmits a different M-QAM modulated symbol then a total 

of ( )2 2
log logt

a

N

N a
N M  + 

bits are sent on each GSM symbol. 

The baseband received signal can be represented using  

= +y Hs n           (1) 

where  1rN ×∈y �  is the received vector, r tN N×∈H �  is the 

channel matrix and 1rN ×∈n �  is the vector containing 

independent zero-mean circularly symmetric Gaussian noise 

samples with covariance 22
rN

σ I . The 1
t

N ×  GSM signal 

vector s contains only 
a

N nonzero elements drawn from an M-

sized complex valued constellation set A.  

The maximum likelihood detector (MLD) for model (1) can be 

formulated as  

 ( )
2

2
min   f −

s
s y Hs�             (2) 

   0subject to  tN∈s A            (3) 

    ( )supp ∈s S .           (4) 

where we employ an extended constellation set defined as

{ }0 0
def

= ∪A � A  and S  denotes the set of possible supports of s 

(i.e., valid active antenna combinations). Although there are 

many possible suboptimal approaches for solving the detection 

problem, what complicates the adoption of most approaches is 

when the system has to operate in an underdetermined 

scenario, which is common in the downlink where the number 

of receiver antennas can be substantial smaller than the 

number of transmitter antennas, i.e., 
r t

N N< . 

III. ITERATIVE GSM DETECTOR ALGORITHM  

A. Algorithm Description 

In the MLD formulation, constraints (3) and (4) make the 

optimization problem nonconvex. To avoid excessive 

computational complexity, in this section we apply ADMM to 

(2)-(4). However, due to the nonconvex nature of the problem, 

ADMM is used as a heuristic in the sense that it will provide a 

solution faster than an optimal method but it is not guaranteed 

to be the optimal one. Since ADMM solves linearly 

constrained problems with a separable objective function, we 

rewrite problem (2)-(4) as  

  
0

2

2, ,
min   ( ) ( )Nt

I I− + +
s x z

y Hs x z
S A

     (5) 

  subject to  =s x           (6) 

=s z              (7) 

where ( )I v
G

is the indicator function for a generic set G

which is 0 if ∈v G  and +∞ otherwise. Note that the use of the 

indicator function allows us to integrate constraints (3) and (4)

directly into the objective function (5), whereas the 

introduction of (6) and (7) make this function separable over 

three different variables (s, x and z). This enables a convenient 

splitting of the problem, as will be shown. We can write the 

augmented Lagrangian [18] for this problem as 

0

2

, 2
( , , , , ) ( ) ( )Ntx z

L I Iρ ρ = − + + +s x z u w y Hs x z
AS

      

( ) ( )2 2 2 2

2 2 2 2x z
ρ ρ+ + − − + + − −s u x u s w z w . (8) 



 

where 1
, tN ×∈u w �  are scaled dual variables and ρx, ρz are the 

penalty parameters for constraints (6) and (7). The detection 

algorithm is then obtained using gradient ascent to iteratively 

solve the dual problem, with the minimization of the 

augmented Lagrangian accomplished independently for each 

of the primal variables s, x and z. This allows the original 

problem to be decomposed into the following simpler steps:  

{ }2 221

2 2 2
mint t t t t

x z
ρ ρ+ = − + + − + + −

s
s y Hs s u x s w z  (9) 

{ }2
1 1

2
min ( )t t t

xI ρ+ += + + −
x

x x s u x
S

      (10) 

{ }
0

2
1 1

2
min ( )Nt

t t t

z
I ρ+ += + + −

z
z z s w z

A
      (11) 

1 1 1t t t t+ + += + −u u s x .          (12) 
1 1 1t t t t+ + += + −w w s z .          (13) 

A closed form solution for (9) can be derived from 

,
( , , , , ) 0H

x z

t t t tLρ ρ∇ =
s

s x z u w  leading to 

( )( ) (
1

1

t

t H H

x z Nρ ρ
−

+ = + +s H H I H y          

 ( ) ( ))t t t t

x z
ρ ρ+ − + −x u z w .    (14) 

The x and z update steps, can be expressed as  

( )1 1t t t+ += ∏ +x s uD         (15) 

( )
0

1 1
Nt

t t t+ += ∏ +z s w
A

       (16) 

where ( )∏ ⋅
D

 denotes the projection onto set 

( ){ }: supp= ∈s sD� S  which is accomplished by keeping the 

a
N largest magnitude elements whose indices also match a 

valid antenna combination.  Regarding the projection ( )
0

N∏ ⋅
A

 

in (16), it can be implemented as a simple rounding of each 

component to  the closest element in A0.  For a large set S , 

i.e., a large number of valid active antenna combinations, the 

complexity associated to the projection (15) can become 

excessively high due to the exhaustive search required. As an 

alternative, we can relax constraint (4) into 

    
0 aN≤s              (17) 

which turns the MLD problem into a cardinality one. In this 

case (15) is replaced by a projection over set 

{ }
0

:
a

N= ≤s sC  which can be easily implemented by 

zeroing the 
t a

N N− smallest magnitude elements. Note that, 

even though the number of active antennas Na  is fixed, we do 

not adopt an equality constraint in (17) as it would be 

problematic to formally define a corresponding projection 

capable of dealing with input vectors with a number of 

nonzero elements lower than Na. 

Algorithm 1 summarizes the sequence of steps required to 

obtain the estimate of the symbols, ŝ , for the two versions of 

the proposed detector: the one based on search over valid 

antenna combinations  (VAC-ADMM)  and  the one based on 

the   simpler  cardinality constraint  (17)  (C-ADMM).  In  the   

 

Algorithm 1: Proposed GSM-MIMO Detectors 

1: Input: 
0u , 

0w , 0x , 0z , H, y, ρx, ρz, Q, P 

2: 
best

f = ∞ . 

3: ( )( )
1

t

H

x z N
ρ ρ

−

← + +Φ H H I . 

4: for t=0,1,…Q-1 do 

5: ( ) ( )( )1t H t t t t

x zρ ρ+ ← + − + −s Φ H y x u z w . 

6a: ( )1 1t t t+ +← ∏ +x s uD .                              (VAC-ADMM) 

6b: ( )1 1t t t+ +← +x s u  with 
t a

N N− smallest magnitude 

elements set to 0.                                           (C-ADMM) 

7: ( )1supp t
I

+← x . 

8: ( )
0

1 1
Nt

t t t+ +← ∏ +z s w
A

. 

9: If t≥Q-P then 

10: ( )( )1
2ˆ ˆ0, 2 .Na a

candidate candidate H H

I I I N II
σ

−

← ← ∏ +s s H H I H y
A

 

(polishing)   

11: else 

12:  ( )1ˆ ˆ0,    Na

candidate candidate t

I II

+← ← ∏s s s
A

. 

13: end if 

14: If ( )ˆcandidate

best
f f<s then 

15:  ˆ 0
I

←s , ˆ ˆcandidate

I I
←s s . 

16:  ( )ˆcandidate

best
f f= s . 

17: end if 

18: 1 1 1t t t t+ + +← + −u u s x . 

19: 1 1 1t t t t+ + +← + −w w s u . 

20: end for  

21: Output:  ŝ . 

 

algorithm,   I  is  the   support  of  1t +
x ,  I  is  the complement 

of set I (i.e., { }1,..., \tI N I= ), 
I

H is an 
r a

N N×  reduced 

matrix containing the columns of H selected according to the 

indices in I, Q is the maximum number of iterations, P is the 

number of iterations where a polishing technique is applied 

and ˆ
I

s  ( ˆcandidate

I
s ) is the reduced 1

a
N ×  vector containing the 

nonzero elements  of ŝ  ( ˆcandidates ) given by the support I. 

B. Polishing 

Due to the nonconvex nature of the MLD formulation that we  

are  addressing,  ADMM  is applied  as a  heuristic  in the 

sense that the derived algorithm is not guaranteed to find the 

exact solution. Therefore, we also propose one additional 

solution refinement step consisting in the minimization of the 

expected value of the Euclidean distance (2) (a reduced 

MMSE estimate) followed by the projection over the 

constellation symbols  

( )( )1
2ˆ 2Na a

candidate H H

I I I N I
σ

−

= ∏ +s H H I H y
A

.    (18) 



 

This refinement step can be applied at the P last iterations, 

with 0≤P≤Q. Please note other alternative detectors could be 

adopted for this step, such as an SD applied to the reduced 

problem resulting from the estimated antenna combination.  

Although, for simplicity, in this work we assume perfect 

knowledge of matrix H, in practice a channel estimation 

algorithm must be implemented. While the resulting 

estimation error always has an adverse effect on the 

performance of MIMO detectors, the proposed algorithm can 

be made more robust if the channel estimation error model is 

incorporated into the design of the s-update and polishing 

steps, following an approach similar to [23]. 

C. Extension for Soft Decoding 

While not the main purpose of this paper, it is important to 

highlight that some form of forward error correction coding is 

often adopted in wireless communication systems as it can 

substantially improve the performance of the overall system, 

especially when it is based on OFDM. The proposed algorithm 

can be modified in order to yield soft decisions which are 

required to achieve high coding gains. Since running several 

iterations of the algorithm produces a list of candidate vectors, 

Λ, approximate log-likelihood ratios (LLR) can be computed 

for the k
th

 bit using [19]   

( )
( )

( )
( )

2 2

2
ˆ ˆ: 1

2 2

2
ˆ ˆ: 0

ˆexp 2

log

ˆexp 2

k

k

b

k

b

L

σ

σ

∈Λ =

∈Λ =

− −

=

− −

∑

∑

s s

s s

y Hs

y Hs

     (19) 

where ( )ˆ
k

b s  denotes the k
th

 bit of vector ŝ .  

D. Initialization and Penalty Parameters 

Due to the nonconvex nature of the feasible set (defined by 

constraints (3) and (4)) in the MLD problem, ADMM is only 

applied as a heuristic and, thus, there are no theoretical 

guarantees that it converges to the optimal points. It has been 

observed that in nonconvex problems, both the initialization 

and penalties have an important impact on the quality of the 

solution found [18], being still active areas of research [22], 

[24]. Therefore, in the proposed detector the penalty 

coefficients, ρx and ρz , act as tuning parameters which can be 

chosen through numerical evaluation in order to achieve the 

best performance for a specific problem setting. 

Regarding the initialization we propose the use of either a 

warm or a random start. In the case of warm initialization, we 

correlate the received vector with the columns of the channel 

matrix and normalize with the respective squared norm  

( )( )
1

 = diag
H H

−

ψ H H H y .      (20) 

An initial support set is then estimated as 

( ) supp  HI = ψ ψ ,       (21) 

followed by 

( )
1

22
a

warm H H

I I I N Iσ
−

= +s H H I H y ,     (22) 

0
warm

I
=s , 0 warm=x s , ( )

0

0
Nt

warm= ∏z s
A

, 0 0=u  and

0 0warm= −w s z .  In   the   case  of   random  start,  we  simply  

TABLE I 

NUMBER OF REAL FLOPS FOR DIFFERENT MIMO-GSM DETECTORS 

Detector Complexity 

MLD ( )8 4 1 aN

r a r comb
N N N N M+ −  

OB-MMSE 
( )3 2 2

12 2

1 4 12 7 14 4 1

r a t

comb a a a r a a r r

N N N

N N N N N N N N N

+

+ − + + + + + −
 

BPDN 
3 2 24 12 7 6t t r t t rN N N N N N+ + +  

sMMP 

( ) ( ) ( ) ( )

( ) ( )( )3 2

1

8 1 1 5 2

4 4 15 20 5

a a

a

N N

t r t r

N
k

r r

k

N N N T T N T

k k N k N T
=

+ − − + −

+ + + + −∑
 

VAC-ADMM 
( ) ( ) ( )( )

( ) ( )( )

3 2

3 2

4 4 15 12 3 2 1 35

4 4 15 12 3

t t r t r comb a t

a a r a r

N N N N N Q N N N

P N N N N N

+ + + − + − +

+ + + + −
 

C-ADMM 
( ) ( )

( ) ( )( )

3 2

3 2

4 4 15 12 3 32

4 4 15 12 3

t t r t r t

a a r a r

N N N N N N Q

P N N N N N

+ + + − +

+ + + + −
 

 

replace warms  in the previous procedure with a vector whose 

elements are randomly selected inside the constellation limits. 

As previously stated regarding the application of ADMM as 

a heuristic to the GSM-MIMO detection problem, there are no 

guarantees that it will converge to the exact solution. 

Therefore, the adoption of a stopping criterion based on the 

primal and dual residuals (as explained in [18]) or on the 

detection of a stall condition (variables with negligible change 

after several iterations), must be complemented with a 

maximum number of iterations Q to guarantee the termination 

of the algorithm. Furthermore, the algorithm can be restarted 

multiple times with different initializations (warm and/or 

random) as this can increase the chance of finding the optimal 

solution [21].  

E. Complexity 

The steps with highest complexity in the proposed algorithm 

are the s-update step (14), which involves an 
t t

N N×  matrix 

inversion (although it is only computed in the beginning of the 

algorithm), and the x-update step (15) (for the VAC-ADMM 

algorithm version). In Table I we present the worst-case 

complexities (i.e., no earlier termination of the algorithm 

occurs) in terms of real-valued floating point operations 

(flops) of the proposed algorithms, as well as of MLD, OB-

MMSE [9], BPDN [13] and sMMP [16] (T is the number of 

child candidates expanded at each iteration of sMMP). The 

expressions were obtained assuming that the sum, product and 

absolute value of complex numbers require 2, 6 and 3 flops, 

respectively. The complexities of OB-MMSE and BPDN were 

taken from [25] although in the case of BPDN the expression 

is optimistic as it does not consider the iterative nature of the 

inner algorithm (exact computation is dependent on the chosen 

optimization method).  We also note that  in the  case of  using 



 

 
Fig. 1.  BER performance of the proposed detector with Nt=64, Nr=16, Na=3 

and 64-QAM.  

multiple initializations the complexity is roughly the same as 

increasing the number of iterations Q and polishing steps P, 

since some operations (such as step 3) do not need to be 

recomputed. According to Table I, while the complexity of 

OB-MMSE and VAC-ADMM does not grow exponentially 

with the signal constellation size, M, like in the case of MLD, 

it still depends on 
2log

2
t

a

N
N

comb
N

  
    = , which can restrict their 

use when a large number of bits are conveyed on antenna 

indices. The other detectors do not have this dependency but 

the complexity of sMMP grows exponentially with the 

number of active antennas for T larger than 1, which is usually 

required in order to have competitive performance, as will be 

shown in Section IV. 

IV. NUMERICAL RESULTS 

In this section, we present BER results obtained using Monte 

Carlo simulations. The elements of the channel matrix H were 

independently drawn according to a complex Gaussian 

distribution ( )0,1CN  while the active AEs transmitted 

randomly selected 64-QAM symbols with 
2

1
i

E s  =
 

. The 

results are plotted as a function of the signal to noise ratio per 

AE defined as  ( )2 2

1010 log 2
i

SNR E s σ =
 

.   The values 

applied for the penalty parameters were ρx=ρz=2.5 as these 

were numerically found to result in good recovery 

performances.  

In Fig. 1 we can observe the results for different 

configurations of the proposed detector as a function of SNR 

in a scenario with Nt=64, Nr=16 and Na=3. In most of the 

tested configurations, the algorithm was run with multiple 

restarts (the first initialization using the warm procedure and 

the remainder using the random procedure). For that reason, in 

the figure we use n1xn2 to state that a setting comprising n1 

initializations with Q=n2 iterations was employed. In the 

configurations without multiple restarts, the initialization is 

always through the warm start except in one case (shown as 

“no warm init.”  in  the  legend). According to  the results,  the 

 
Fig. 2.  BER performance and complexity of different GSM-MIMO detectors 

for Nt=64, Nr=16, Na=2 and 64-QAM.  

 
Fig. 3.  SNR gap to the Oracle SD and complexity of different GSM-MIMO 

detectors for Nt=100, Na=4, 64-QAM, assuming a BER target of 10-4. 

 

adoption of multiple restarts can improve the performance as it 

increases the probability of converging to the correct solution. 

This probability also becomes higher when the algorithm 

starts with the warm procedure and when the polishing step 

described in section III.B is applied in the last iteration (P=1). 

Regarding the two versions of the algorithm we can see that, 

as expected, VAC-ADMM performs better than C-ADMM but 

the difference is small.  

Fig. 2  compares the performance and complexity of the 

proposed detector against other existing algorithms, namely 

MLD, BPDN, OB-MMSE and sMMP (with 6 and 12 child 

candidates per node). The   scenario corresponds to a GSM-

MIMO system with Nt=64, Nr=16 and Na=2. Both the VAC-

ADMM and C-ADMM employed 4 initializations, Q=50 and a 

final polishing step (P=1). Although sMMP has the lowest 

complexity, only OB-MMSE and the proposed detectors can 

achieve performances close to the MLD, with the VAC-

ADMM exhibiting a small gain over OB-MMSE and C-

ADMM. Regarding BPDN, while it has a complexity close to 

the proposed detectors, its performance is rather far from the 

optimal curve. 

The good performance of the proposed detector is even 
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clearer in a larger scenario like the one in Fig. 3 where Nt=100 

and Na=4. This figure shows the complexity and SNR gap to 

the Oracle SD (for a BER target of  10
-4

) as a function of Nr. 

The Oracle SD is an ideal SD detector with prior knowledge 

of the active antenna combination (therefore solving a 

conventional overdetermined MIMO scenario with dimensions 

r a
N N× ). Curves for MLD, OB-MMSE and VAC-ADMM 

are not included due to their high computational complexity in 

this scenario (depends on 
2log

2
t

a

N
N

comb
N

  
    = ). C-ADMM was 

applied with 5 initializations, Q=100 and P=1. It can be seen 

that this receiver achieves the best performance, especially 

with a small number of receiver antennas. When Nr increases, 

both C-ADMM and sMMP benefit from the additional receive 

diversity and their performances become close. However, 

sMMP requires a higher complexity in order to achieve those 

results. The performance of BPDN also improves with the 

increase of Nr but is always worse than the other two 

detectors, and the complexity is larger than C-ADMM.   The 

results of Fig. 2 and  Fig. 3, combined with the complexity 

analysis in Table I show that, unlike most of the other 

detectors, the C-ADMM algorithm version is a very flexible 

method as it can be applied not only to large antenna 

configurations but can also cope with an increase of the 

number of active antennas without an excessive complexity 

growth. 

V. CONCLUSIONS 

In this paper a novel iterative detector for GSM-MIMO 

systems was presented which comprises a sequence of simple 

processing steps namely, an Euclidean distance minimization, 

the selection of candidate active antennas and the selection of 

valid modulated symbols. Two different versions of the 

algorithm were proposed: one restricts the search of candidate 

active antennas to valid combinations while the other one 

applies a simple projection over a set of vectors with restricted 

cardinality. Simulation results show that compared with other 

suboptimal decoders, the proposed approach can attain very 

competitive performance complexity tradeoffs in 

underdetermined scenarios with large antenna settings.  
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