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Abstract  

This paper purpose is to investigate exponential behavior conditions for the M|G|∞ queue busy 

period length distribution. It is presented a general theoretical result that is the basis of this work. The 

complementary analysis rely on the M|G|∞ queue busy period length distribution moments computation. 

In M|G|∞ queue practical applications - in economic, management and business areas - the management 

of the effective number of servers is essential since the physical presence of infinite servers is not viable 

and so it is necessary to create that condition through an adequate management of the number of servers 

during the busy period.  
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1 Introduction  

In this paper it is possible to see that queues theory makes available the use of a set of tools 

providing a practical operations management techniques package. This package is often used in very 

different areas of research to model and to explain practical cases of real life. It allows to model for 

example:  

• cases of unemployment (see for example Ferreira, Filipe and Coelho, 2014 or Ferreira and 

Andrade, 2010a), health (see for example Ferreira and Filipe, 2015), computers’ logistic and 

technology (see for example Ferreira and Andrade, 2009a),  

• staffing problems determination (Green, Kolesar and Whitt, 2005), business scheduling (Ferreira 

and Filipe, 2010a), companies’ inventory levels (Carrillo, 1991),  

• the improvement of customers satisfaction and idle devices management (Ferreira, Filipe and 

Coelho, 2008),  

• telecommunications situations or supermarkets’ realities, as it may be seen in sequence. See also, 

on this subject, the works of the queues theory founder Erlang (1909, 1917). 

In fact, real world queuing systems may be found in many concrete areas as it is the case of 

commercial queuing systems (in which commercial companies serve external customers - hairdressers, 

garages, supermarkets, etc) - see Ferreira and Andrade (2011a), Ferreira and Filipe (2010b), Ferreira, 

Andrade and Filipe (2009), Jackson (1957); logistics and transportation service systems (where trucks, 

ships or aircrafts, for example, are the customers or servers - waiting to be loaded, for example) - see 

Ferreira and Andrade (2011), Filipe and Ferreira (2015); business-internal service systems (customers are 

internal to the organization - computer support system, recycling, for example) - see Ferreira and 

Andrade (2010b), Ferreira, Filipe and Coelho (2011); social service systems (waiting lists in a hospital in 

a country’s health system, for example) - see Ferreira and Filipe (2015); economic and financial systems 

(for example, the study of pensions funds or prices analysis) – see Ferreira and Andrade (2011b), 

Figueira and Ferreira (1999), Kendall (1953); traffic accidents (Mathew and Smith, 2006). 

By considering and understanding queues, by learning and using them and knowing how to manage 

queues through models and equations, queues theory may contribute to improve companies organization, 

namely customers management or organizations’ internal processes development in order to give 

companies competitive advantages.  

As shown, applications of queues theory in practice are multiple and very diverse in very different 

branches of activity. Ferreira (1987) has shown that also networks of queues are fruitfully applied in 

solving many practical problems (see also Basket et al, 1975; Disney and König, 1985; Syski, 1960, 

1986; Tijms, 2003; Walrand, 1988). 

 

In M|G|∞ queue system applications it is very important the busy period study. For any queue 

system a busy period begins when a customer arrives at a system finding it empty, ends when a customer 

abandons the system letting it empty and during it there is always at least one customer in the system. So, 

a queue system, when in operation, has a sequence of idle and busy periods. For systems with Poisson 
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.5 2.0206405 9.5577742 15.983720 

1 1.4710382 5.5867425       10.878212 

10 1.0000454 4.0000000 9.0000000 

20 1.0000000 4.0000000 9.0000000 

50 1.0000000 4.0000000       9.0000000 

100 1.0000000 4.0000000 9.0000000 
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It is clear that after � � 10 the M|�
|∞ busy period exponential behavior is evidenced (remember 
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.5 .40655883 6.0360869 11.142336 

1 .56798436 4.5899937       9.6137084 

10 .99959129 4.0000000 9.0000000 

20 .99999999 4.0000000 9.0000000 

50 .99999999 4.0000000       9.0000000 

100 .99999999 4.0000000 9.0000000 

 

and it is clear that after � = 10 the M|D|∞ busy period exponential behavior is evidenced. 

 

5 Exponential Service Times Distributions 

Now, with exponential service times distribution, that is: for the M|M|∞ queue, begin to note that 

the exponential distribution fulfils the conditions of Proposition 2.1. To make a checking as for the M|D|∞  queue, it is not possible to obtain expressions as simple as (4.3) to the ( ) ( )0n
C . It is mandatory to 

compute numerically integrals with infinite limits and so approximations must be done. 
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1 1.1944614 5.4821324       10.923071 

10 1.1227334 4.1511831 9.1617573 

20 1.0544722 4.0326858 9.0337903 

50 1.0206393 4.0049427       9.0550089 

100 1.0101547 4.0012250 9.0012250 



   

 

and only after 20=ρ it can be said that those values are the ones of an exponential distribution. 

 

6 Power Service Times Distribution 
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adapted in the last note. To check the busy period exponential behavior, in the usual form, for this system 

the values of U��2! and UV�2! were computed for 25.=α , .5 and .8 making, in each case, ρ assume 

values from .5 till 100. The results are 
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j =. _k j =. k j =. l 

]_�^! ]`�^! ]_�^! ]`�^! ]_�^! ]`�^! 
.5 3.0181197 9.5577742 1.5035507 5.9040102 3.8933428 9.3287992 

1 4.4211164 9.1402097 2.7111584 7.4994861 3.9854257 9.0702715 

1.5 5.3090021 10.433228 3.3711526 8.2784408 3.9749455 8.9969919 

2 5.8206150 11.140255 3.7332541 8.6924656 3.9751952 8.9815770 

2.5 6.0803833 11.489308 3.9322871 8.9173048 3.9809445 8.9828631 

3 6.1786958 11.619970 4.0388433 9.0369125 3.9871351 8.9877124 

6 5.7006232 11.020248 4.0969263 9.1024430 3.9996462 3.9996459 

7 5.5034253 10.774653 4.0765395 9.0804332 3.9999342 8.9999341 

8 5.3382992 10.570298 4.0596336 9.0623268 3.9999992 8.9999992 

9 5.2037070 10.404722 4.0467687 9.0486468 4.0000086 9.0000086 

10 5.0944599 10.271061 4.0372385 9.0385796 4.0000068 9.0000068 

15 4.7702550 9.8790537 4.0152698 9.0156261 4.0000005 9.0000005 

20 4.6102777 9.6888601 4.0082556 9.0083980 4.0000000 9.0000000 

50 4.3045903  9.3338081 4.0012425 9.0012513 4.0000000 9.0000000 

100 4.1715617 9.1842790 4.0003047 9.0003057 4.0000000 9.0000000 

 

The analysis of the results shows a strong trend of U��2!  and  UV�2! , to 4 and 9, respectively,  

after 10=ρ  . This trend is faster the greatest is the value of α . 

 

7 Pareto Service Times Distribution 

In this section only the exemplification method is used. Consider a Pareto distribution such that 
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ρα =   												]_�^!  ]`�^! 
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1 1474.7159 1969.0197 
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50 4.0000000 9.0000000 

100 4.0000000 9.0000000 

 

 

and show a strong trend from U��2! and UV�2! to 4 and 9, respectively, after 20=ρ . This is natural 

because, in this case, the convergence of α  to infinite imposes the same behavior to k . And so, for the 

above presented distribution function, it results ( ) .0lim =
∞→

tG
α  

 

But, considering now a Pareto distribution, such that 1 − ��1� � m 1,			1 < .4
o.t, qu , 1 ≥ .4r,  v > 1,  so 

1

4.

−
=

θ
θα    

and the values obtained for U��2! and UV�2! in the same conditions as the previous case are 
 

                                                     Table 7.2: \|is|∞ 

 

ρα =  ]_�^!  												]`�^! 
.5 10.993704 16.675733 

1 6.8553306 12.010791 

10 4.5112470 9.5724605 

20 4.4832270 9.5397410 

50 4.4669879 9.5208253 

100 4.4616718 9.5146406 

 

 

 

and do not go against the hypothesis of the existence of a trend from U��2! and UV�2! values to 4 and 9, 

respectively, although much slower than in the previous case. But, now, the convergence of α  to infinite 

implies the convergence of θ  to 1. So ( )






≥−

<
=

→∞ 4.
4.

1

4.,0
lim

t
t

t

tG
α

   and it is not possible to guarantee at 

all that for α  great enough ( ) 11 ≅− tG . 

 

 



   

 

8 Looking for \|w|∞ Queue Busy Period Exponential Behavior through Moments Comparison  

 

Also the busy period moments	W�2X!, Y = 1,2, . .8 were computed for the	M|�
|∞, M|D|∞ and  M|M|∞ queue systems. The results are presented below having been considered � = 	 .2, 1, 10, 20, 50, 100	and	� = 1. For contrast effects it were also computed the same orders 

moments for the exponential distribution with mean  ;8�<:  . 

 

 

Table 8.1: ' =. k; 	� = � 

 W�2X! M|�
|∞, M|D|∞ M|M|∞ Exponential Distribution with Mean
78&

6  

1 .64872127 .64872127 .64872127 .64872127 

2 2.1391211 .49039984 .94021749 .84167857 

3 10.580443 .45345725 2.123908 1.6380444 

4 69.776809 .52362353 6.481435 4.2505369 

5 575.2154 .74561912 24.83009 13.787069 

6 5690.1909 1.2729348 114.3113 53.663788 

7 65670.772 2.5362864 614.2686 243.68989 

8 866182.39 5.7760128 3773.0385 1264.6954 

 
                                              

Table 8.2: ' = �; 	� = � 

 W�2X! M|�
|∞, M|D|∞ M|M|∞ Exponential Distribution with Mean
78&

6  

1 1.7182818 1.71828187 1.7182818 1.7182817 

2 9.3415481 3.90498494 7.1649255 5.9049849 

3 76.178885 11.974748 43.251592 30.439285 

4 828.30271 48.000932 358.65020 209.21308 

5 11257.801 240.00691 3702.6601 1797.4352 

6 183611.26 1440.0037 45803.547 18531.001 

7 3493750.0 10079.998 660802.68 222890.38 

8 75975977. 80639.996 10894769. 3063907.9 

 

 

Table 8.3: ' = �$	; 	� = � 

 W�2X! M|�
|∞, M|D|∞ M|M|∞ Exponential Distribution with Mean 78&

6  

1 22025.46 22025.466 22025.46 22025.46 

2 9.7028634× 10| 9.6984181× 10| 1.0964476× 10} 8.7024229× 10| 

3 6.4115936×10
V 

6.4057725×10
V 

8.1873951×10
V 

6.4110115× 10
V 

4 5.6489899×10
| 

5.6412982×10
| 

8.1515907×10
| 

5.6482206× 10
| 

5 6.2213642×10�V 

6.2100718×10�V 

1.0144929×10�t 

6.2202345× 10�V 



   

6 8.2220799×10�| 

8.2034292×10�| 

1.5150846×10�} 

8.2202137× 10�| 

7 1.2677235×10Vt 

1.2642735×10Vt 

2.6398031×10Vt 

1.2673782× 10Vt 

8 2.2338775×10V} 

2.2267865×10V} 

5.2565179×10V} 

2.2331677× 10V} 

 

 

Table 8.4: ' = _$; 	� = � 

 W�2X! M|�
|∞, M|D|∞ M|M|∞ Exponential Distribution with Mean 78&

6  

1 4.8516519× 10| 4.8516519× 10| 4.8516519× 10| 4.8516519× 10| 

2 4.7077053×10
~ 

4.7077053×10
~ 

4.97111287×10
~ 

4.7077053× 10
~ 

3 6.8520443×10�� 

6.8520443×10�� 

7.6403133× 10�� 6.8520443× 10�� 

4 1.3297494×10V� 

1.3297494×10V� 

1.5656919× 10V� 1.3297494× 10V� 

5 3.2257405×10t� 

3.2257405×10t� 

4.0106193× 10t� 3.2257405× 10t� 

6 9.3901022×10�t 

9.3901022×10�t 

1.2328148× 10�� 9.3901022× 10�t 

7 3.1890255×10�t 

3.1890255×10�t 

4.4211069× 10�t 3.1890255× 10�t 

8 1.2377634×10~t 

1.2377634×10~t 

1.8119914× 10~t 1.2377634× 10~t 

 

 

 

Table 8.5: ' = k$; 	� = � 

 W�2X! M|�
|∞, M|D|∞ M|M|∞ Exponential Distribution with 

Mean 
78&

6  

1 5.1847055×10�
 

5.1847055×10�
 

5.1847055× 10�
 5.1847055× 10�
 

2 5.3762343×10tV 

5.3762343×10tV 

5.4883410× 10tV 5.3762343× 10tV 

3 8.3622575×10�� 

8.3622575×10�� 

7.8395261× 10�� 8.3622575× 10�� 

4 1.7342337×10|| 

1.7342333×10|| 

1.5741896× 10|| 1.7342337× 10|| 

5 4.4957455×10

@ 

4.4957455×10

@ 

3.9512479× 10

@ 4.4974455× 10

@ 

6 1.3985470×10
VV 

1.3985470×10
VV 

1.19012551×10
VV 

1.3985470× 10
VV 

7 5.0757381×10
�� 

5.0757381×10
�� 

4.1821348× 10
�� 5.0757381× 10
�� 



   

8 2.1052966×10
~| 

2.1052966×10
~| 

1.6795590× 10
~| 2.1052966× 10
~| 

 

 

Table 8.6: ' = �$$; 	� = � 

 W�2X! M|�
|∞, M|D|∞ M|M|∞ Exponential 

Distribution with Mean 78&

6  

1 2.6881171× 10	tV 2.6881171× 10	tV 2.6881171× 10	tV 2.6881171× 10	tV 

2 1.4451948× 10|~ 1.4451948× 10|~ 1.4599447× 10|~ 1.4451948× 10|~ 

3 1.1654558× 10
V
 1.1654558× 10
V
 1.083083× 10
V
 1.1654558× 10
V
 

4 1.2531527× 10
~� 1.2531527× 10
~� 1.1226720× 10
~� 1.2531527× 10
~� 

5 1.6843107× 10�
} 1.6843107× 10�
} 1.4546350× 10�
} 1.6843107× 10�
} 

6 2.7155746× 10��V 2.7155746× 10��V 2.2617075× 10��V 2.7165746× 10��V 

7 4.1026610× 10V@~ 4.1026610× 10V@~ 4.1026610× 10V@~ 4.1026610× 10V@~ 

8 The program failed 

this calculation 

The program failed 

this calculation 

The program failed 

this calculation 

The program failed this 

calculation 

 

 

The results evidence the trend to the exponential behavior as � increases. 

 

 

 

9 Conclusions 

 
           In the nowadays socio-economic context, the methodologies associated to queues theory are very 

interesting once they permit to model a set of cases and to get a formal interpretation of specific contexts 

and phenomena. It allows to get a correct understanding of these situations. The specific cases referred in 

this paper are symptomatic of the advantages of the application of queue model systems. Benefits are 

possible to be got from the formal application of statistics and stochastic processes, for example, in the 

area of telecommunications or in supermarkets’ studies as mentioned above in this study on queues 

theory. Namely the busy period importance makes imperative its distribution knowledge and the study 

towards the determination of situations where it is simple to calculate its distribution function and 

moments. This was achieved as much it was possible to identify many situations for which the busy 

period is exponentially or approximately exponentially distributed.  

 

          In fact, in the present research, it was possible to obtain results with the exponential distribution, 

which is very simple and quite useful from a practical point of view. It is frequently considered in 

queuing systems study. Conditions under which B  is exponentially distributed or approximately 

exponentially distributed for the M|G|∞ queue were derived, using either theoretical conditions on the 

service time distributions or busy period moments calculations. 

 

           Many interesting quantities to be considered in queues study are insensible. This means that they 

depend on the service time distribution only through its mean value. Thus it is indifferent which service 

time distribution is being considered. But using the distributions given by expression (3.3), result quasi-

exponential or exponential busy periods. And, for these service time distributions, all distributions related 

to the busy period have simple forms and are related to the exponential distribution. 

 



   

            In section 2, for a large class of distributions under conditions of heavy-traffic (very great values 

for α), it was proved that B  is approximately exponential irrespectively of the service time distribution. 

 

            But, for instance, if the service distribution is a power function, as it was seen, such conditions 

must be adapted. However, for α  near 1 and λ  and ρ  great enough, it is possible to guarantee that B  is 

approximately exponentially distributed. 

 

            Also if service distribution is a Pareto one, adaptations are needed, as it was shown in section 8, 

to identify conditions to guarantee the busy period exponential behavior. And a situation was examined 

for which it was not possible to guarantee at all that for α  great enough ( ) 11 ≅− tG . 

 

             Finally, in section 8, comparing directly the busy period length moments with those of an 

exponential distribution with the same mean it is evidenced the trend to exponential behavior as the 

traffic intensity increases. Curiously, in the case of the M|M|∞ queue system, remembering: with 

exponential service times, occurs the worst situation of convergence. 
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