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Resumo

Esta tese resulta da implementação de um algoritmo de machine learning, com o objectivo de
prever falhas em geradores de turbinas éolicas. Esta tese usa dados referentes ao ambiente da
turbina, como velocidade média do vento, produção anual, tipo de terreno, modelo da turbina, etc,
em conjugação com um historial de falhas conhecidas, de modo a prever a quantidade de falhas
para o próximo ano, por parque e por tecnologia. A rede neuronal implementada foi uma rede
numa arquitectura feed-forward não linear. Este projecto segue o processo, desde a transformação
de dados não tratados até à implementação do algoritmo.
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Abstract

This thesis is an implementation of a machine learning algorithm, in order to predict failures in
wind turbine generators. The thesis uses data relating to wind turbine failures and their context,
average wind speed, annual production, type of terrain, wind turbine generator model, etc, in order
to predict the amount of failures in the next year, per park and per technology. A neural network
in a feed-forward non linear architecture was used. This project follows the transformation and
implementation of the network from raw data, to the training parameters and implementation of
the network.
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Chapter 1

Introduction

In this chapter, the context Section 1.1, motivation, Section 1.2 and structure of the dissertation,

Section 1.3, are explained.

1.1 Context

This thesis exists in the context of the last semester of the course, Master in Electrical and Com-

puters Engineering in the faculty of engineering of the university of Porto.

Nowadays, one of the key trends of industry is the shift towards the notions of interconnectiv-

ity, of industry 4.0, of internet of things. This paradigm allows for a continuous feed of real data

coming from machines and equipments, thus creating a new challenge: what to do with that data.

This new paradigm is allowing companies to take a new perspective in their day to day challenges.

Among these challenges one that is ever present in all aspects of industry is the notion of relia-

bility and of fallibility, which is elemental when maintaining a healthy, efficient and sustainable

production. Knowing when something will fail, learning what is most likely asset to fail is critical

in increasing efficiency.

The answer to this topics is introduced in this thesis in the form of a practical problem. Doing

maintenance to wind turbines, specially in high sea or in a harsh environment is very costly. It

involves the deployment of a large number of resources. So predicting when it will fail is a very

important information when planning and optimizing maintenance.

Renewable energy is a big mega trend, and if one pictures a leading company with tens of

Gigawatts of installed production, with international implementation, operation and maintenance

(O&M) costs are a growing concern.

WTG components (gearbox, generator, blades, etc) have a 20 year designed life cycle and an

important part of wind farms are approaching that age. Thus maintenance planning has a growing

impact in O&M costs.
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2 Introduction

An unplanned maintenance has several costs, some obvious as the loss of power production,

but others less obvious, as the materials required for maintenance and repairs are not always avail-

able, and are highly specialized. Thus an unplanned maintenance forces a chain of costs. There-

fore, the ability to predict the need for maintenance would be relevant in decreasing costs. During

the years of production, there was a gathering of data regarding the functioning of the WTG. So,

there seems to be room for a starting to implement a system of preventive maintenance, where one

can predict when the turbine is likely to fail and schedule the maintenance with more accuracy and

a optimum allocation of resources.

1.2 Motivation

Optimization is a key source of advancement in our society. Machine learning algorithms, as

this dissertation shows, are not just a theoretical consideration, but can create a real impact and

change in an organization. They are very important as ways to triage information and to harness

useful data and as a way to draw informed decisions and planning. The evolution of computational

power, turns this once theoretical prepositions as vital ways to deal with data.

In a very competitive environment, such as the energy production sector, the gain in efficiency

is an industry focal point, and seems to have a great space for innovation. Another important point

is the relation between decreasing O&M costs and increasing the potential of the technology. As

any business if the operational costs are diminished, that grows space for implementing more wind

turbines and increasing a renewable energy efficiency.

1.3 Objectives

The aim of this dissertation is to apply a machine learning solution to predict wind turbine genera-

tor failures. This work comes as a response to a previous iteration, where a Cox-ph model solution

was used. This thesis seeks to find an algorithm that better predicts failures and as such, help

better schedule maintenances, and better allocate specialized components, and human resources.

This will also help understand how variations on context criteria, as terrain, wind speed affect the

life cycle of components, and also choosing the technology that has the best life cycle.

1.4 Document structure

First there will be a revision of the literature, introducing first what is machine learning, Section

2.1, then introducing a methodology to solve the problem this thesis seeks to address, Section 2.2,

then dealing with data collection and preparation, Section 2.3, then addressing the several types of

algorithms in machine learning, Section 2.4, then an introduction to some concepts of reliability,

Section 2.5.

In Section 3, there will be a description of the data provided for this thesis and the changes

made to the data. In Section 3.1, 3.2 and 3.3, there will be a diagnose of the data, singling out
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problems in the data. In Section 3.4, the actions taken to solve the problems with the data and

adjusting the data to better work with the algorithms.

In Section 4, there will be a justification of what features were chosen to be fed to the data and

why.

In Section 5, there will be an introduction to what are the goals of the algorithm, Section 5.1,

and then what algorithm was chosen, Section 5.2, and how to address all the manual parameters

of the algorithm, Section 5.3.

In Section 6, there will be a description of the optimization goals arbitrated, Section 6.1, and

a description of the iterative training process, Section 6.2.

In Section 7, there will be a performance analysis on the optimization goals, Sections 7.1 and

7.2, then a result comparison with previously implemented technologies, Section 7.3.

Finally in Section 8, It will start with a description of this thesis goals and if they were

achieved, Section 8.1, and a suggestion of future work to be done, Section 8.2.
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Chapter 2

Literature review

In this chapter we will perform an introduction to the literature regarding the topic of machine

learning and it’s field of studies, combined with some auxiliary concepts of reliability and data

analysis. It will take us from the data preparation, to the data transformation, and end with predic-

tion algorithms, in search for a solution that fits the problem.

2.1 Machine learning vs statistical analysis

It is significant to expand on the difference between machine learning and statistical analysis, due

do the fact that this thesis, was defined as an alternative approach against a traditional statisti-

cal predictor model, the Cox proportional hazards model, which had already been applied to the

problem at hand.

First, in anything one wishes to know, it is interesting to start with the motivation, the question

each method seeks to answer.

• Machine Learning:“How can we build machines that solve problems, and which problems

are inherently tractable/intractable?”(Mitchell,2006 [14])

• Statistics:“What can be inferred from data plus a set of modeling assumptions, with what

reliability?”(Mitchell,2006 [14])

So what can be inferred from the motivations is that they have very similar goals but very

different perspectives. Namely, machine learning has less issue with working with more of "black-

box" models. From, this a problem arises, as (Kantardzic 2011 [1]) points out "data-mining models

should help in decision making. Hence, such models need to be interpretable in order to be useful

because humans are not likely to base their decisions on complex "black-box" models. Note that

the goals of accuracy of the model and accuracy of its interpretation are somewhat contradictory".

So, it can be observed that the differences are subtle but important, because statistical analysis has

a much bigger emphasis on the "readability" of the process, whereas machine learning algorithms

are concerned with the readability of the results, but not necessarily of the process, being to the

user, somewhat of "black box models" even though they have sound theoretical algorithms and

5



6 Literature review

great accuracy. This shows that in order to be able to have a full understanding of the model and in

order to be easily understood and justifiable, there has to be a process and a sound methodology.

2.2 The machine learning process

When tackling a problem using machine learning, (Marsland 2014 [4]) offers a process and

methodology to the approach, the "machine learning process", and defines it as a process by which

machine learning algorithms can be selected, applied, and evaluated. The approach is divided in

6 steps, Data Colection and Preparation, Feature Selection, Algorithm Choice, Parameter and

Model Selection, Training and Evaluation.

Other approaches do exist, but even though they are different in terminology they are some-

what similar in substance, for example in Kantardzic 2011 [1], "the data-mining process" is de-

scribed as: "state the problem", "collect the data", "perform preprocessing", "estimate the model

(mine the data)", "interpret the model and draw the conclusions".

This process helps polish the data, choose the strongest algorithm and as such have an accurate

and intelligible answer to the problem.

2.3 Data collection and preparation

When being given raw data, or unprocessed data, some problems arise, in fact as ,Kantardzic

2011 [1], points out, the raw datasets are often large and have the potential for being messy, so in

fact there is often great entropy in the data, such as missing values, distortions, mis-recordings and

inadequate sampling. This could have a major impact in the algorithm choice, because many algo-

rithms are sensitive to missing values, so it may require an alternative algorithm or pre-processing

the data.

In Pyle 1999 [15] the objective of preparing data is so that the "data miner" is able to end up

with a data set that produces better and more intelligible models. Nevertheless it is important to

perform this process done without disrupting the natural order of the data, risking compromising

the end goal.

The data collection and preparation are a set of steps, such as normalizing the data and con-

verting non numerical data, that aim at shaping the data into something the algorithm can better

process and optimize.

2.3.1 Handling non-numeric variables

A key aspect and hurdle of any dataset is non-numeric data, as many processing algorithms only

operate on numeric data. Therefore a transformation on the data is needed, converting non-numeric

data to a numeric representation.
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Table 2.1: Cities example of a non-numeric to numeric transformation, using the One-of-n remap-
ping

City City:Porto City:London City:Edinburgh

Porto 1 0 0
London 0 1 0

Edinburgh 0 0 1
Porto 1 0 0

London 0 1 0

2.3.1.1 One-of-n remapping

A one-of-n remapping consists on creating a binary-valued pseudo-variable for each non-numeric

label value (Pyle 1999 [15]). In this process a new variable is created, that is "1" if the label is

present, or "0" otherwise. If for example, there is a dataset with the names of three cities, Table

2.1, this will result in three new pseudo binary variables.

The advantage of this method is that the mean of the pseudo-variable, is proportional to the

proportion of the label in the dataset. The disadvantages are, the large increase in dimensional-

ity, that can hamper computationally the modeling and, in cases of low density, the prediction

algorithms can find it difficult to distinguish from zero.

2.3.2 Outlier detection

According to Pyle 1999 [15], an outlier is a single, or very low frequency occurrence, that is far

away from the bulk of the values of the variable, Figure 2.1, they can be the result of a mistake,

or a result of the normal variability, and as Kantardzic 2011 [1] points out the data-mining analyst

has to be very careful when applying an automatic elimination of outliers, because if the data is

correct, it can result in the loss of important hidden information. An example of that, can be the

algorithm detecting credit card fraud, what can be considered as an outlier may well be a case of

credit card fraud and not a sampling error, therefore one cannot just dismiss every outlier as an

error.

Nevertheless, often outliers are caused by measurement errors due to a device malfunction

error, or an error reading data and can have serious effect in the machine learning algorithm. If the

true value of the missing value is known one can replace it, but in most cases, such is unknown.

If the true range is known, one can implicitly detect it as an outlier, whereas if such is not the

case a threshold can be created, related to the distance to the mean, usually proportional to the

standard deviation of the distribution of the variable. If a normally distributed random variable is

assumed, a distance of two times the standard deviation covers 95% of the points, and a distance

of three times the standard deviation covers 99% of the points, so it is up to the user to arbitrate

what constitutes an outlier (Theodoridis & Koutroumbas 2008 [16]).



8 Literature review

Figure 2.1: Two dimensional outlier example

As above mentioned, the models are sensitive to outliers, and in order to solve this predica-

ment, two strategies can be used. If the number of outliers is very small, they can be discarded

(Theodoridis & Koutroumbas 2008 [16]), however some models are unable to use observations

where some of the variable values are missing and as such, the whole multi-dimensional obser-

vation needs to be discarded, which reduces the amount of information available for modeling

and can hurt the overall accuracy of the model. The other alternative is replace the outlier or the

missing value with an estimate of its true value. The most traditional techniques in dealing with

missing data include replacing the missing values by zeros or with the unconditional mean or the

conditional mean, even if that introduces noise into the samples, although if there are only a small

number of outliers, that shouldn’t have a big impact on the overall model accuracy.

2.3.3 Missing and empty variables

When dealing with missing variables two options arise. If the data missing are few, compared to

the remaining of the dataset, one can choose to simply delete it, as it probably will not affect the

dataset. If on the other hand it is deemed relevant or of great impact to the dataset, they can be

replaced by a value. This new value has to be carefully chosen as to not skew the data, adding bias

and distortion to the data (Pyle 1999 [15]).

Such considerations of what method to choose to estimate the new value are always a matter

of a trade-off, between the impact this prediction has to the dataset, and the impact it has in the

computational time. If the method is complex and the missing data is large, obviously it will take

a long time to predict the values. On the other hand, simple methods may not be enough, or may

affect the accuracy of the output prediction heavily down the road.

Now, two traditional methods are gonna be introduced, a mean estimator and multiple linear

regression.
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2.3.3.1 Mean estimators

A simple and trivial way to address the missing data is to replace it with a mean of the variable.

This simple method has a low computational time and a simple implementation. The downside of

using the mean of the data is that it highly disturbs the intrinsic variance of the data, which may

be very relevant.

2.3.3.2 Multiple linear regressions

A multiple linear regression is an extension of a linear regression for multiple variables, more than

two. It assumes the missing variable has a linear correlation to other variables, which many times

is a reasonable assumption. The method tries to fit a linear equation to the observed data. This

method suffers from a straightforward downside, which is an assumption that the variables are

linearly correlated.

The model can be described as:

yi = β0 +β1x1i +β2x2i + ...+βpxpi + εi, i = 1,2, ....,n (2.1)

Where y is value of the dependent variable, x are the independent variables, p are the number

of explanatory variables, β correspond to the fitting parameters adjusting the linear equation and

ε is called the residual and is the deviation of the predicted values, yi, from their mean, µi.

All the linear and non linear methods described on Section 2.4, can also be applied to predict

missing values.

2.3.4 Normalization

Normalizing, is turning features with dynamic ranges and scaling them to [0,1] ranges. This is

important because features with large values may have a larger influence in the cost function than

features with small values, which may not necessarily reflect their respective significance to the

prediction algorithm (Theodoridis & Koutroumbas 2008 [16]), therefore having every feature on

the same range solves that problem. Several techniques can be applied to do this transformation as

for example a normalization using the linear scaling transform where x1, ....,xN are all the values

in the sample, xn is the original instance value, and xnN is the normalized value (Pyle 1999 [15]).It

can be seen in equation (2.5), the linear scaling transform.

xnN =
xn−min(x1...XN)

max(x1...xN)−min(x1...xN)
(2.2)

From Normalization, two problems may arise, the problem of the range of the sample versus

the true range, which may affect variance or minimum and maximum of the population, that

could result in the appearance of values outside the [0,1] range, the second problem are outliers
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that artificially amplify the scale. The first may be solved by having a sufficiently representative

sample and the second can be solved by dealing with the outliers as explained in Section 2.3.1.

2.3.5 Standardization

Standardizing, is transforming the data in order that it becomes zero mean and unit variance. This

is done using estimates of mean and standard deviation, calculated from the sample data, where xn

is the original instance value, x̄ is the sample mean, σ is the sample standard deviation, and xnS is

the standardized value. In equation (2.6), it can be seen the standardization formula.

x̄k =
1
N

N

∑
i=1

xik,k = 1,2, ...., l (2.3)

σ
2
k =

1
N−1

N

∑
i=1

(xik− ¯xik)2 (2.4)

xnS =
xn− x̄

σ
(2.5)

2.3.6 Feature selection & extraction

A feature, is the equivalent to a variable in a machine learning setting. The decision of what

variables to consider and discard, is one of the fundamental steps in the data analysis process,

largely conditioning the success of any subsequent statistics or machine learning challenge, as

such this step must be treated carefully (Guyon & Elisseeff 2006 [12]). The objective of feature

selection is mainly, to select relevant and informative features, even though it may have other

purposes, as general data reduction, to decrease the amount of data storage required and increase

the speed of the algorithm, feature set reduction, save resources in the next round of data collection

or during utilization, performance improvement, to gain predictive accuracy and in order to get a

better data understanding.

2.3.6.1 Feature selection techniques

There can be discerned three major approaches, Table 2.2.

• Filters- Algorithms that carry out the pre-processing independently of the induction algo-

rithm, it is used later.

– Univariate- Algorithms that analyze the variable individually, therefore ignoring de-

pendencies, even though they are fast and scalable (Bólon-Canedo et all 2012 [11]),
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specially when the number of features is large and the number of available training

examples comparatively small (Guyon & Elisseeff 2006 [12]) .

– Multivariate- Algorithms that are able to model feature dependencies, but are slower

and less scalable than univariate methods (Bólon-Canedo et all 2012 [11]).

• Wrappers- A process that optimizes the prediction as part of the selection process.

• Embedded - Are utilized in the training process and are mostly specific to a given machine

learning algorithm.

Other types of classification methods can be:

• Individual Evaluation / Feature Ranking- Assigns weights to individual features according

to their degrees of relevance. It is incapable of removing redundant features, because they

will have near weights.

• Subset Evaluation- It creates a subset of candidate features, then each candidate subset is

evaluated and compared to the previous best.

Table 2.2: Summary of the feature selection techniques, characteristics, advantages, disadvantages
and examples of algorithms [11].

2.3.6.2 ReliefF

Relief, is a filter algorithm, first proposed by Kira and Rendell,1992 [17]. The original method

had the downsides of not being able to deal with incomplete data and being limited to two-class

problems (Marko Robnik-Sikonja & Igor Kononenko 2003 [13]). ReliefF is an extension to the
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Table 2.3: Frequently used feature selection methods.:RLSQ=regularized least square;
RFE=recursive feature elimination; SVM=support vector machine; OBD=optimum brain dam-
age; ARD=automatic relevance determination; RF=random forest. m is the number of training
examples and n is the number of features [12].

Relief algorithm, proposed by Kononenko 1994 [18], that improves on solving the limitations of

the original Relief, being able to deal with multi-class problems, more robust and able to deal with

incomplete and noisy data.

It can be seen in Table 2.4 the algorithm for the ReliefF method. First it randomly selects an

instance Ri from the data, then locates it’s k nearest neighbors, from the same class, named nearest

hits H j, also it searches for k nearest neighbors from each of the different classes, named nearest

misses M j(C). Then it updates the quality estimation W [A] for all attributes A, in relation to the

values for Ri, and hits H j and misses M j(C). In the update formula, it’s averaged the contribution

for all the hits, H j, and misses, M j(C). The contribution for each class of the misses is weighted

with the prior probability of that class P(C). In order to consider the class of hits it’s required to

divide each probability weight with a factor 1-P(class(Ri)), the whole process is repeated m times

(Marko Robnik-Sikonja & Igor Kononenko 2003 [13]). The k selector of hits, defined by the user,

usually 10, results in a more robust algorithm regarding noise (Kononenko 1994 [18]).

Feature extraction means transforming raw features into new features that are transformations
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Table 2.4: RelieF pseudo-code [13]

of the original ones. They can result in a combination of features that are a transformation of

the original feature, as for example, with the normalization or standardization it was referred of

previously (Sections 2.3.2 and 2.3.3).

2.4 Models

In data mining, as (Kantardzic 2011 [1]) explains, "In practice, the two primary goals of data

mining tend to be prediction and description. Prediction involves using some variables or fields

in the data set to predict unknown or future values of other variables of interest. Description, on

the other hand, focuses on finding patterns describing the data that can be interpreted by humans",

hence there are two major challenges: to predict and to describe.

In predictions, a model of the system is created, which can be easily understood by thinking of

a two dimensional function, where the objective would be, given a set of x and y, to discover the

f(x) which relates both variables. Both this objectives are achieved by this primary data mining

tasks(Kantardzic 2011 [1]):

1. Classification - discovery of a predictive learning function, that classifies a data item into

one of several predefined classes.
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2. Regression – discovery of a predictive learning function, which maps a data item to a real-

value prediction variable.

3. Clustering – a common descriptive task in which one seeks to identify a finite set of cate-

gories or clusters to describe the data.

4. Summarization – an additional descriptive task that involves methods for finding a compact

description for a set (or subset) of data.

5. Dependency Modeling – finding a local model that describes significant dependencies be-

tween variables or between the values of a feature in a data set or in a part of a data set.

6. Change and Deviation Detection – discovering the most significant changes in the data

set.

Other ways one can analyze a problem are related to the available data, which are obviously

related as well to the objective. There are three big groups:

1. Supervised Learning - A teacher assigns a category label or cost for each pattern in a train-

ing set, and tries to minimize the sum of the costs for these patterns (Duda et al. 2001 [19]).

In supervised learning, the algorithm has access to a "teacher-fitness function", where the

outputs for the training set are known (Kantardzic 2011 [1]). In Figure 2.2, one can see

how the teacher provides the outputs, and the system, through the feedback error, creates a

model.

2. Unsupervised Learning or Clustering - In this event, only samples with input values are

given to a learning system, and there is no notion of the output during the learning process.

Therefore, there is no teacher and the learner forms and evaluates the model on its own.

The main aim of unsupervised learning is to discover "natural" structures in the input data

(Kantardzic 2011 [1]). Here, the objective is not to find a model that relates inputs and

outputs, but to discover correlations between inputs, forming a set number of "clusters". In

Figure 2.3, it can be seen how in unsupervised learning the system has no access to outputs

nor any support.

3. Reinforcement learning - In reinforcement learning or learning with a critic, no desired

category signal is given, instead, there is only a binary yes or no feedback from a teacher,

as displayed in Figure 2.4. "This is analogous to a critic who merely states that something

is right or wrong, but does not say specifically how it is wrong."(Duda et al. 2001 [19]).

In this work, the aim is to use a model able to make predictions into the future based on past

occurrences, a predictive model, predictive models could be see as learning a mapping from an

input set of vector measurements x to a scalar output y. Therefore, the aim of a predictive model

is to estimate (from a training set, teacher) a mapping or a function y = f (x; ?) that can predict
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Figure 2.2: Supervised learning [1]

Figure 2.3: Unsupervised
learning [1]

Figure 2.4: Reinforcement learning [2]

a value y given an input vector of measured values x and a set of estimated parameters ? for the

model f (Hand et al. 2001 [20]).

There are two different types of predictive models, depending upon the response, if it’s cate-

gorical, classification, or real-valued, regression.

2.4.1 Classification

In classification, there is a learning function that classifies a data item into one of several predefined

classes, or in other words, it seeks to learn a mapping from a vector of measurements x to a

categorical variable y. As shown in Figure 2.5, the training set, and in 2.6, a classification function,

that separates the data in two classes "ball" and "star".

2.4.2 Regression

In regression, the end result of the learning process is a learning function, that maps a data item

to a real-value prediction variable. Based on this function, it is possible to predict the value

of a variable for each new sample (Kantardzic 2011 [1]). In Figure 2.7, one can look at the

difference, whereas in classification the objective is to partition the space state in order to classify,

in regression the objective is to create a model that approximates the result, and as such is able to

generate predictions of the output according to a new input.

2.4.3 Cross validation

The cross validation is a model evaluation method, that helps estimate how good the model will

behave when faced with new data. When a model is trained using a training set with known

outputs, there are little guarantees that the model is indeed a model that generalizes well for real
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Figure 2.5: Classification
training set [1]

Figure 2.6: Classification
prediction function [1]

data, as such it is required further validation to verify that the model works and an estimate of it is

accuracy.

2.4.3.1 Hold-out method

The hold-out method, is the most common, the training data is broken into two new datasets, one

is used to train and the other to test the model. The ratio of the split depends on the size of the

dataset, if large typically 75% of the dataset is used for training and 25% for the test, if small 90%

for training and 10% for test. The model is confronted with the test set and the cumulative mean

absolute error, between the predicted outcome and the real outcome, is used to evaluate the model.

This evaluation can have a high variance and is dependent on which datapoints end up in the train

and test set, which can affect the evaluation [21].

2.4.3.2 K-fold cross validation

This method is an increment upon the hold-out method, it divides the training set into k subsets,

and the hold-out methods is repeated a k number of times. At every iteration, one of the k subsets

is used as the test and the others k− 1 subsets are put together to form a training set. Then the

average error across all k trials is computed. The advantage is that the data split is less relevant

and every datapoint gets to be in the test set at least once. The disadvantage is that it has to be run

k iterations, which means it requires k times more computationally than the hold-out method [1].

2.4.4 Neural networks

Neural networks start as an attempt to mirror biological systems, namely a neuron. This systems

are important due to the fact that even though the computer has higher levels of speed computation,

the human brain has interesting abilities. It can learn from experience, the performance does not

degrade appreciably under damage, it is robust, and it performs parallel computations quite well.
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Figure 2.7: Regression training
set [1] Figure 2.8: Regression prediction func-

tion [1]

2.4.4.1 Perceptron

The main concept, as (Marsland 2014 [4]) explains, "principal concept is plasticity: modifying

the strength of synaptic connections between neurons, and creating new connections". The neuron

can be mathematically described as Figure 2.9, as originally suggested by (McCulloch and Pitts

1943 [3]). This of course is not a true reflection on how a neuron works, but it is close enough and

gives rise to interesting capabilities.

In Figure 2.9, one can observe how a neuron is constituted by a set of weighted inputs wi, that

corresponds to the synapses of the neurons, an adder that sums the input signals, equivalent to

the membrane of the cell that collects electrical charge, and an an activation function, initially a

threshold function, that decides whether the neuron fires for the current inputs. This neuron is able

to give a binary answer, for instance, if above the threshold and beneath it.

Simplifying, the inputs xi are multiplied by the weights wi, and the neurons sum their values.

If this sum is greater than the threshold then the neuron fires, otherwise it does not. (Marsland

2014 [4])

h =
m

∑
i=1

wixi (2.6)

Equation (2.7), is the activation function, where wi are the weighted inputs xi the inputs, m the

number of inputs.

From what it was described, this model is very simple, and very limited as it can only give

a binary response, and lacks the learning ability. In neural networks, the model is expanded and

treated in a parallel nature.
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Figure 2.9: A picture of McCulloch and Pitts’ [3] mathematical model of a neuron.

2.4.4.2 Perceptron network

The perceptron network, is an aggregation of McCulloch and Pitts neurons, together with a set

of inputs and weights to correlate the inputs to the neurons (Marsland 2014). In Figure 2.10, one

can notice how instead of a single neuron, a perceptron works with several independent neurons

in parallel, and works out whether or not to fire, by multiplying together its own weights, and the

input, adding them together, and comparing the result to its own threshold, regardless of what the

other neurons are doing. Even the weights that go into each neuron can be different, so the only

thing they share are the inputs. Therefore, every neuron computes all of the inputs to the network

(Marsland 2014 [4]). In this instance the number of inputs is the same as the number of neurons,

but this is not a required condition of the perceptron network. It is the aim of the perceptron to,

given a training set, to predict target outputs.

The neuron will now apply the rule, and describe a firing pattern, based in if the neuron fired

or not. This pattern will typically be of "0"s and "1"s. If the output pattern is equal to the target,

t, this is the final model, with weights correctly adjusted, if not, a new iteration is need where the

weights are updated. So it requires an error function, that is used to update the weights, giving

them more "weight", or less "weight" according to the deviation from the target objective. In order

to do this, first it is computed the error, according to equation (2.8), being yk, the predicted output,

minus the tk, the target, and correct output. In order to get around the fact of the disturbance of a

negative input, the formulation, presented in equation (2.9), is used instead. The new value for the

weight will be the old one, plus this delta, as shown in equation (2.10).

δk = yk− tk (2.7)

∆wik = δk× xi (2.8)

wi(k+1) = wi(k)+∆(k) (2.9)



2.4 Models 19

Figure 2.10: A perceptron network, consisting of a set of inputs (left) connected to a McCulloch
and Pitts neurons using weighted connections [4]

Another question that must be addressed is how much the algorithm should change the weights,

at what speed it should traverse the error surface, which is important in helping the network to not

be stuck on a local minimum. In order to do that, the learning rule is adjusted. ( Section 2.4.4.3),

by multiplying it by a parameter called the learning rate, usually labeled η (Marslow 2014 [4]).

So, the final rule for updating the weights will be:

∆wik =−δ × xi×η (2.10)

The threshold function, is a discontinuous function, with discontinuous functions one cannot

use derivatives, which is important to be able to analyze the error surface, and crutial ahead when

talking about non-linear prediction. The question, is the importance of having in the neuron a

threshold shape, so the "fire", "not fire", concept still holds. Mathematically there are a set of

function, that resemble a continuous representation of the threshold, S-shaped functions, called

sigmoid functions (Marslow 2014), Figure 2.12, equation (2.12).

The sigmoid has another convenient characteristic which is that it’s derivative is relatively

simple.

S =
1

1+ e−t (2.11)

2.4.4.3 Learning Rate η

The learning rate, η , can be an important factor of the algorithm. if equal to 1 it generates an

unstable network, that never "settles down", on the other hand, a small learning rate means that the

weights need to see the inputs more often before they change significantly, so the network takes

longer to learn. However, it will be more stable and resistant to noise (errors), and inaccuracies in

the data (Marslow 2014 [4]). Thus there is a trade-off between a network that never stops, or one

that may overstep solutions, in other words between a network that takes too long to learn, and
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Figure 2.11: The threshold func-
tion, which has a discontinuity at
0. [4]

Figure 2.12: The sigmoid function,
which is an S-shaped function. [4]

one that can be trapped in local minimums. Therefore, moderate learning rates are often applied,

typically 0.1 <η< 0.4, depending upon how much error is expected in the inputs. This variable in

practice is chosen by experience and it may also be time-varying, getting smaller as the algorithm

progresses. In Figure 2.13 and 2.14, it can be seen how it may vary on an error surface.

The neurons all have a θ threshold, but the threshold should be adjustable, so that it can be

changed when the neuron fires. So a bias is inserted, namely a w0 j, which can be any non-zero

value.

2.4.4.4 The Perceptron Network Algorithm

This is the Perceptron Network Algorithm according to (Marslow 2014 [4]).

• Initizalization
- set all of the weights wij to small (positive and negative) random numbers

• Training
- for T iterations or until all the outputs are correct:

* for each input vector:

– compute the activation of each neuron j using activation function g:

y j = g(
m

∑
i=0

Wi jxi) =
{

1 i f ∑
m
i=0 wi jxi j>0

0 i f ∑
m
i=0 wi jxi j≤0 (2.12)

– update each of the weights individually using:

wi( j+1) = wi( j)+∆( j) (2.13)

• Recall
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Figure 2.13: The problem of using
a high learning rate, overshooting
the global minimum [5].

Figure 2.14: A small learning rate
would take several iteration to arrive to
the minimum, which may be problem-
atic [5].

– compute the activation of each neuron j using:

y j = g(
m

∑
i=0

Wi jxi) =
{

1 i f ∑
m
i=0 wi jxi j>0

0 i f ∑
m
i=0 wi jxi j≤0 (2.14)

2.4.4.5 Multi-layer perceptron

With the perceptron, it was seen how with some neurons in parallel, it could achieve a function of

weights, that could make a linear prediction, in other words, it could separate groups with straight

lines, planes or hyperplanes. This approach is very limited, because the majority of complex

problems are not linearly separable (Marslow 2014 [4]), therefore an alteration to the network

scheme is needed in order to allow for non-linearity.

The solution for this problem is to add extra layers of neurons. This new layers are called

"the hidden layers", they are called hidden due to the fact the correct activation functions, for this

"middle" layers of neurons, are not known, Figure 2.15 and 2.16. So the multi-layer perceptron,

will first compute the activations of the neurons, in the middle layer, and then will use those

activations as the inputs to the single neuron at the output (Marslow 2014 [4]).

The model can be changed, in order to adjust to a non-linear activation function and to a new

layer. This steps are called the forward phase or forward propagation.

In the first layer, a linear combination is applied as previously explained, equation (2.16).

Where there are M linear combinations of D inputs, variables x1,...., xD, where j = 1, ...,M and

(1) indicates the layer, w j0 are the biases and w ji the weights, the quantities a j are known as

activations. (Bishop 2006 [6]).

a j =
D

∑
i=1

W (1)
ji xi +w(1)

j0 (2.15)
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Figure 2.15: The multi-layer perceptron with a the input layer, the hidden layer and the output
layer [4].

Now, each of them is then transformed using a differentiable, nonlinear activation function

h(·), equation (2.17), , in this case the sigmoid function. Outputs of the basis function are called

hidden units.

z j = h(a j) (2.16)

The activation function is linearly recombined in order to give "output unit activations" (Bishop

2006 [6]), equation (2.18). Where K is the total number of outputs, k = 1, ...,K, and w(2)
k0 the bias

in the second layer.

ak =
M

∑
j=1

W (2)
k j z j +w(2)

k0 (2.17)

In the final step, the output unit activations, are transformed using an appropriate activation

function, to give a set of network outputs, yk, in standard regression problems, the activation func-

tion yk = ak, for multiple binary classification problems, each output unit activation is transformed

using a logistic sigmoid, equation (2.9),"for multiclass problems, a softmax activation function of

the form is used".

yk = σ(ak) ,where σ is equation2.12 (2.18)

Now it is possible to see this whole process in an aggregated fashion, the overall network

function, for sigmoidal output unit activation functions, equation (2.20).
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yk(x,w) = σ

(
M

∑
j=1

W (2)
k j z jh

(
D

∑
i=1

W (1)
ji xi +w(1)

j0 )

)
+w(2)

k0 )

)
(2.19)

Now a neural network architecture has been achieved, it is a nonlinear function, from a set

of input variables, xi, to a set of output variables, yk, controlled by a vector, w, of adjustable

parameters, or weights.

Figure 2.16: The two-layer perceptron, follows the same notation, of the equations previously
introduced [6].

2.4.4.6 Error backpropagation

It is necessary, as it was seen for the simple perceptron, to have a training algorithm, "an iterative

procedure for minimization of an error function, with adjustments to the weights being made in a

sequence of steps" (Bishop 2006 [6]). The process can be broken down to two stages, first stage,

the derivatives of the error function with respect to the weights must be evaluated, in the second

stage, the derivatives are then used to compute the adjustments to be made to the weights. The

simplest such technique, and the one originally considered by (Rumelhart et al. 1986 [22]), in-

volves gradient descent. It was arbitrated, for this example, to use a sum-of-squares error function,

multiplied by 1
2 in order to simplify in the derivation, equation (2.21).

E(t,y) =
1
2

N

∑
k=1

(yk− tk)2 (2.20)

The gradient for this error, ∇E(w), with respect to a weigth, w ji, is given by equation (2.22).
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∂En

∂w ji
= (yn j− tn j)xni (2.21)

In order to proceed, it is is relevant to regard that, En, the error, depends on the weight, w ji,

only through the summed input, a j, to unit , j. This allows to apply the chain rule for partial

derivatives, equation (2.23).

∂En

∂w ji
=

∂En

∂a j

∂a j

∂w ji
(2.22)

Using an auxiliary variable, δ j, and, zi, equations (2.24) and (2.25).

δ j =
∂En

∂a j
(2.23)

zi =
∂a j

∂w ji
(2.24)

Combining the previous equations.

∂En

∂w ji
= δ jzi (2.25)

This correlation, informs that the required derivative is obtained simply by multiplying the

value of δ for the unit at the output end of the weight by the value of z for the unit at the input end

of the weight, where z = 1 in the case of a bias. Thus, in order to evaluate the derivatives, one only

needs to compute the value of δ j for each hidden and output unit in the network, and then apply

equation (2.24).

To discover δ j, for the hidden units, the link as the output-unit activation function, using the

chain rule for partial derivatives, and where the sum runs over all units k that each unit j sends

connections, equation (2.27).

δ j =
∂En

∂a j
= ∑

k

∂En

∂ak

∂ak

∂a j
(2.26)

This technique uses the fact that changes in the activation function, a j, give rise to changes in

the error function through ak.

It can now be written the following backpropagation formula by aggregating the relations,

equation (2.27).
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Figure 2.17: Demonstration of the calculation of δ j for hidden unit j by backpropagation of the δ ’s
from those units k to which unit j sends connections. The blue arrow denotes the direction of in-
formation flow during forward propagation, and the red arrows indicate the backward propagation
of error information [6].

δ j = h′(a j)∑
k

wk jδk (2.27)

This formula explains that the δ , for a particular hidden unit, can be obtained by propagating

the δ ’s backwards from units higher up in the network. Due to the fact that it is already known the

values of the δ ’s for the output units, it follows that by recursively applying equation (2.28), it can

evaluate the δ ’s for all of the hidden units in a feed-forward network, regardless of its topology.

2.4.4.7 Resilient back propagation

New methods have emerged that are improvements upon the back propagation algorithm, but use

similar concepts. The algorithm works, in a way that when the partial derivative of the error

surface, corresponding weight wi j, changes sign, it indicates that the last update was too big and

it has surpassed a local minimum, the updated value is then decreased by the factor η−. Now, if

the derivative maintains its sign, the update value is then slightly increased in order to speed up

convergence in shallow regions. What happens is that if the weight wi j is positive, the weight is

decreased by the factor, if it is negative, it is increased by the factor. There is an exception, if the

weight changes sign again, meaning the previous step was too large, the previous step is reverted

and it ceases to adapt the weight (Martin Riedmiller et Heinrich Braun, 1993 [23]).

This algorithm is much faster than simple backpropagation and generally performs as well.

2.4.4.8 Multi-layer perceptron algorithm

The algorithm as proposed in (Marslow 2014 [4]).

• Initialization

– initialize all weights to small (positive and negative) random values
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• Training

– repeat:

*for each input vector:

∗ Forwards phase:

· compute the activation of each neuron j in the hidden layers using:

hζ =
L

∑
i=0

xiviζ (2.28)

aζ = g(hζ ) =
1

1+ e−βhζ

(2.29)

· work through the network until you get to the output layer neurons, which

have activations

hk = ∑
j

a jw jk (2.30)

yk = g(hk) =
1

1+ e−βhk
(2.31)

∗ Backwards Phase

· compute the error at the output using:

δo(K) = (yk− tk)yk(1− yk) (2.32)

· compute the error in the hidden layer using:

δh(ζ ) = aζ (1−aζ )
N

∑
k=1

wζ δo(K) (2.33)

· update the output layer weights using:

wζ k← wζ k−ηδo(K)ahidden
ζ

(2.34)

· update the hidden layer weights using:
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vl ← vl−ηδh(K)xl (2.35)

*(if using sequential updating) randomize the order of the input vectors so that

you don’t trains in exactly the same order each iteration.

∗ until learning stops

• Recall

– use the Forward phase in the training section above

One must consider the problem of overfitting, which is when the network looses the ability to

generalize and instead is just memorizing the training set. There are several ways to address this

issue that is very present in neural networks, namely cross-validation, Section 2.4.3.

2.4.5 Recurrent neural networks

Another distinction can be made between networks based on their architecture connectivity. If a

network has one or more cycles, if it is possible to trace a path to the unit back to itself, then that is

called a Recurrent Network. A Non Recurrent Network, as the ones referred previously, are based

on a feed forward idea, where there is a continuum between the inputs and the outputs, which is to

say the networks follows a function that relates the inputs to the outputs, (Jordan, M. I. ,1986 [7]).

The recurrent network, not only depends on the input that it receives but also on the state of

the network at a previous time step. For example, a simple network as shown in Figure 2.18, if µ

is the value of the recurrent weight, and assuming the units are linear, the activation of the output

unit at time t is given by equation (2.37).

x2(t) = µx2(t−1)+W21x1(t) (2.36)

This shows how in this architecture the output depends not only on the input, but also on the

previous state.

As explained, this type of architecture is interesting when the previous state of the network is

relevant.

2.4.5.1 Jordan architecture

In order to create bigger networks, capable of non-linearity and multiple inputs and outputs, new

architectures where created. One of the more common and simple are the Elman and Jordan

networks. In Figure 2.19, the difference between a feed forward network and a Jordan Network.

In the Jordan architecture, the feedback connection is from the output layer to the recurrent

input unit, with a a weight of 1. So at time t, the networks receives the weight from the recurrent
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Figure 2.18: Example of a recurrent neural network with two units [7].

unit as an input, that comes form t−1, (Karunanithi et all,1992 [8]). Here describes the example

for one input, but for n inputs the network requires an equal number of n recurrent input and output

units.

Regarding Training of the recurrent network, it’s now transparent that the network will have

two errors, the generalization error, which was explained for the non recurrent networks and the

prediction training, the value of the input variable it at time t is associated with the real value of

the output variable at time t +1. The prediction error trains the network to predict the outputs of

the next time step (Karunanithi et all,1992 [8]).

2.4.6 Support vector machines SVM

This is a model that was introduced by Vapnik in 1992 [24], and "provides very impressive clas-

sification performance on reasonably sized datasets."(Marslow 2014 [4]). Even though SVMs do

not work well on extremely large datasets, due to being computationally expensive, this is still

very interesting model.

2.4.6.1 Linear support vector machines

It is pertinent to, as it was done with neural networks, to start by explaining a simple linear model

and then generalize to non-linear models.
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Figure 2.19: (A) Standard feed forward network and (B) a Jordan network [8].

In Figure 2.20, one can analyze three different classifications, and all are "correct", in the sense

that all of them are able to classify and separate without error. Is any of the lines better? Which

one was the best classifier? This introduces the concept of "optimal separation", the better line as

it can be empirical ascertained, is the one that is furthest from the data points, and still is able to

separate them. In this case the middle graph of Figure 2.21, because it introduces slack, if the line

is close to a data point, the probability of misclassification is higher.

This notion is called the margin, and is defined by the smallest distance between the decision

boundary and any of the samples. In the class of support vector machines the decision boundary

is chosen to be the one for which the margin is maximized. The classifier with the biggest margin,

is called the maximum margin (linear) classifier (Marslow 2014 [4]), the datapoints in each class

that lie closest to the classification line are called "support vectors".

It is now possible to arrive to two conclusions, the margin should be as large as possible,

and second that the support vectors are the key datapoints, because they are the ones that are

more likely misclassified. This second conclusions gives rise to an interesting feature of these

algorithms, after training one can dispense all of the data except for the support vectors, and use

them for classification, which is a useful saving in data storage (Marslow 2014 [4]), due to being

the important points when calculating the margin.

When talking of the perceptron an equation of the type of equation (2.37) was used, where x,

is an input vector, b, is the bias, and w the weight vector, one will now apply that to SVM. It is

also worth noting that in SVMs, w is normal to the hyperplane (Burges 1998 [9]), meaning it’s

perpendicular to the classifier line (Marslow 2014 [4]), as can be seen in Figure 2.22.

y = w ·x+b (2.37)

If one considers equation (2.37) in regard to Figure 2.22, and adding not wanting any datapoint
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Figure 2.20: Three classification lines, all separate the sub-space [4].

in the grey area, one can say that for a margin M, any point x where wT x+ b ≥M is a plus, and

any point where wT x + b ≤ −M is a circle. The actual separating hyperplane is specified by

wT x+b = M (Marslow 2014 [4]). Now what is needed is to traverse the perpendicular to the plus

boundary line, a point x+, until it’s reached the circle boundary line, the point reached will be the

closest and it can be called x−.

The w is, as it was stated before, perpendicular to the classifier line, as such the perpendicular

that was traversed was in fact the w vector. if it’s now made w as a unit vector, w/‖w‖, one can

discover that the margin is 1/‖w‖.
Due to the width of the margin being given by 1/‖w‖, it’s known that maximizing the width

of the margin is the same as minimizing wT w, or 1
2 wT w, for convenience. It is now possible to

write the SVM constraints. If it is assumed that the target, t, has two classes, for example "+1",

"-1", the target can be multiplied for the output, equation (2.38).

ti(wT x+b)≥ 1, for all i = 1, ...,n (2.38)

The problem can now be put as in equation (2.39).

minimize
1
2

wT wconstrainedbyti(wT x+b)≥ 1, for all i = 1, ...,n (2.39)

One could now use the method introduced in the neural network, the gradient descent, but it

would be very slow and inefficient for the problem (Marslow 2014 [4]), a better way to solve this

problem, is quadratic programming, which takes advantage of the fact that the problem described

is quadratic and therefore convex, and has linear constraints.

A convex problem is one where taken any two points on the line and joining them with a

straight line, would result in every point on the line being above the curve (Marslow 2014). Solv-

ing this quadratic problem has several advantages, the problem can be solved "directly and effi-

ciently"(Marslow 2014 [4]) and there’s a unique optimum (Marslow 2014 [4]).

2.4.6.2 Karush-Kuhn-Tucker KKT conditions

The KKT conditions are a set of conditions that are satisfied at the solution of a constrained

optimization problem, with any kind of constraints, provided that the intersection of the set of
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Figure 2.21: M is the margin, the grey box is the area where every line is a correct classifier for
this set, but the dashed line, indicates the optimum solution that maximizes the margin.

feasible directions, with the set of descent directions coincides with the intersection of the set of

feasible directions, for linearized constraints with the set of descent directions(Burges 1998 [9]).

Regarding the SVM problem the conditions are as stated in equations (2.40, 2.41 and 2.42),

these are for all values of i from 1 to n, and where the λi denotes the optimal value of each

parameter (Marslow 2014 [4]).

λ
∗
i (1− ti(w∗T xi +b∗)) = 0 (2.40)

1− ti(w∗T xi +b∗))≤ 0 (2.41)

λ
∗
i ≥ 0 (2.42)

The λi are positive values known as Lagrange multipliers, which are a standard approach to

solving equations with equality constraints.

The first of these conditions, equation (2.40), tells us that, if λi 6= 0 then (1− ti(w∗T xi+b∗)) =

0. This is only true for the support vectors, so it’s only needed to study them and not the whole set

(Marslow 2014 [4]), in other words the support vectors are those in the active set of constraints, as

such, for support vectors the inequalities are instead, equalities, turning it into a solvable Lagrange

problem, equation (2.43).

L (w,b.λ ) =
1
2

wT w+
n

∑
i=1

λi(1− ti(wT xi +b)) (2.43)
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Figure 2.22: Linear separation of the hyperplanes H1 and H2, the unit vector w=w/‖w‖ the support
vectors are circled [9].

Differentiating with respect to w and b, equation 2.44, 2.45.

∇wL = w−
n

∑
i=1

λiti (2.44)

∂L

b
=−

n

∑
i=1

λiti (2.45)

Now, equalizing the derivatives to zero, in order to search for the saddle points, maximum of

the function, it can be arrived at equation 2.46.

w∗ =
n

∑
i=1

λitixi,
n

∑
i=1

λitixi = 0 (2.46)

Replacing the optimal values by the equations (2.44 and 2.45), it results in equation (2.46).

L (w,b.λ ) =
n

∑
i=1

λi−
n

∑
i=1

λiti−
1
2

n

∑
i=1

n

∑
j=1

λiλ jtit jxT
i x j (2.47)

If it’s considered the derivative, in respect to b, the ∑
n
i=1 λiti can be looked as 0. The equation

(2.47), is known as the dual problem, and the objective is to maximize it with respect to the λi

variables. The constraints are that λi ≥ 0 for all i, and ∑
n
i=1 λiti = 0 (Marslow 2014 [4]). In order

to discover b∗, it’s better to average it over the whole set of Ns support vectors, equation (2.49).

b∗ =
1
Ns

∑
s j

(
t j−

n

∑
i=1

λitixT
i x j

)
(2.48)
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For a new point z, it can now be made a prediction, using equation (2.49).

w∗T z+b∗ =

(
n

∑
i=1

λitixi

)T

z+b∗ (2.49)

Therefore in order to classify a new point, it’s just need to compute the inner product between

the new datapoint and the support vectors (Marslow 2014 [4]).

2.4.6.3 Non-linear support vector machines

Every step it was taken so far, implied that the dataset was linearly separable, which many times is

not a reasonable assumption. In order to solve the problem of non-linearity, it’s added a "positive

slack variable", ηi ≥ 0. This implies a change in the constraint, becoming instead equation (2.50),

for correct classifications it was set as ηi = 0.

ti(wT xi +b)≥ 1−ηi (2.50)

Now, for an error to occur, the corresponding ηi must 1, so ∑i ηi is an upper bound on the

number of training errors (Burges 1998 [9]). Another aspect that needs considering is the dis-

tinction, not just between right or wrong, but when comparing two wrong classifiers and deciding

which one is better, in other words as (Marslow 2014 [4]) puts it "where one classifier makes a

mistake by putting a point just on the wrong side of the line, and another puts the same point a

long way onto the wrong side of the line. The first classifier is better than the second, because the

mistake was not as serious, so this information should be included in the minimization criterion.".

In order to do this, it’s added a cost to the minimization problem, C, to the constrictions, where

C is a parameter to be chosen by the user, a larger C corresponding to assigning a higher penalty

to errors (Burges 1998 [9]), this parameter helps deciding how to update the weights, wTW +C×
(distance of misclassified points from the correct boundary line).

Now the problem is a soft-margin classifier, since now it’s allowed a few mistakes.The deriva-

tion of the dual problem still holds, except that 0≤ λi ≤C, and the support vectors are now those

vectors with λi > 0.(Marslow 2014 [4]). The new function that needs to be minimized is equation

(2.51).

L(w,ε) = wT w+C
n

∑
i=1

εi (2.51)

The KKT conditions also need to be rearranged to accommodate the new slack variables,

equations (2.52, 2.53 and 2.54).
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Figure 2.23: It can be seen how by transforming x1 into, x2
1 allows these two classes to be separated.

Here the dimensions are changed from one to two, but the same is applicable to any dimension [4].

λ
∗
i (1− ti(w∗T xi +b∗)−ηi) = 0 (2.52)

(C−λ
∗
i )ηi = 0 (2.53)

n

∑
i=1

λ
∗
i ti = 0 (2.54)

The second condition tells that, if λi < C, then ηi = 0, which means that these are the support

vectors. If λi = C, then the first condition tells that if ηi > 1 then the classifier made a mistake

(Marslow 2014 [4]).

The concept behind solving non-linear problems, is that if it could be used more dimensions,

then it might be able to find a linear decision boundary that separates the classes, Figure 2.23. So

all that it’s needed to do is work out what extra dimensions that can be used (Marslow 2014 [4]), in

order to do this the input vectors are transformed, using instead of xi, a φ(xi), equally zi is changed

for transformations, φ(zi), of a greater dimension. So now the predictor function is, equation

(2.55).

wT x+b =

(
n

∑
i=1

λitiφ(xi)

)T

φ(z)+b (2.55)

A problem that wasn’t solved is the computationally expensive method of multiplying φ(xi)
T 1φ(x j).

For example, when confronted with the three dimensional problem, equation (2.56).
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φ(x)T
φ(y) = 1+2

d

∑
i=1

xiyi +
d

∑
i=1

x2
i y2

i +2
d

∑
i, j=1;i< j

xix jyiy j (2.56)

This can be factorized to (1+xTy)2, "The dot product here is in the original space, so it only

requires d multiplications, which is obviously much better — this part of the algorithm has now

been reduced from O(d2) to O(d). The same thing holds true for the polynomials of any degree s

that we are making here, where the cost of the naïve algorithm is O(ds)."(Marslow 2014 [4]), now

all the dot products are replaced with the computation of a kernel matrix, K, that is made from

the dot product of the original vectors, that is linear in cost (Marslow 2014 [4]) this is "know as

the kernel trick". This shows that φ(.) is not needed, if we know kernel. The kernel function can

be any symmetric function that is positive definite (Marslow 2014 [4]). The most common used,

according to (Marslow 2014 [4]) are:

• polynomials up to some degree s in the elements xk of the input vectors with kernel:

K(x,y) = (1+xT y)s (2.57)

For s = 1 this gives a linear kernel.

• sigmoid functions of the xks with parameters K and δ , and kernel:

K(x,y) = tanh(KxT y−δ ) (2.58)

• radial basis function expansions of the xks with parameter σ and kernel:

K(x,y) = e(
−(x−y)2

2σ2 ) (2.59)

The task of selecting a kernel is not straightforward and "most people just experiment with

different values and find one that works, using a validation set as we did for the MLP"(Marslow

2014 [4]).

In order to address how to do the computations for a testing set, one can use equation (2.56)

and replace the computations of φ(xi)
Tφ(xj), using the kernel as previously showed.

w = ∑
iwhereλi>0

λitiφ(xi) (2.60)
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A key factor of this method, is the objective of optimizing wT w, which tries to keep w small,

that results in many of the parameters being kept near 0 (Marslow 2014 [4]), therefore the overfit-

ting problem disappears and it can always reach a global minimum.

2.4.6.4 The support vector machine algorithm

The SVM algorithm according to (Marslow 2014 [4]).

• Initialization

– For the specified kernel, and kernel parameters, compute the kernel of distances be-

tween the datapoints

*the main work here is the computation K = XXT

*for the linear kernel, return K, for the polynomial of degree d return 1
σ

Kd

*for the RBF kernel, compute K = exp(-(x-x’)2/2σ2)

• Training

– assemble the constraints set as matrices to solve:

min
x

1
2

xT tit jKx+qT xsubject to Gx≤ h,Ax = b (2.61)

– pass these matrices to the solver

– identify the support vectors as those that are within some specified distance of the

closest point and dispose of the rest of the training data

– compute b∗ using equation

• Classification

– for the given test data z, use the support vectors to classify the data for the relevant

kernel using:

*compute the inner product of the test data and the support vectors

*perform the classification as ∑
n
i=1 λitiK(xi,z) + b∗, returning either the label (hard

classification) or the value (soft classification)

2.4.6.5 Support vector machine regression

The SVM was introduced as a classification solving algorithm, but with some alterations, it can be

used as a regression algorithm as well. In order to do this, it’s transformed using the least-squares

error function (Marslow 2014 [4]), equation (2.62), and changing it by adding what is known as

an insensitive error function, (Eε ), that gives 0, if the difference between the target and output is
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Figure 2.24: The ε-insensitive error function is zero for any error bellow ε [4].

less than ε , and subtracts ε in any other case for consistency. The rationale for this is that the

goal is a small number of support vectors, so only points that are not well predicted are interesting

(Marslow 2014 [4]), Figure 2.24.

1
2

N

∑
i=1

(ti− yi)
2 +

1
2

λ‖w‖2 (2.62)

In SVM regression, "we want the predictions to be inside the tube of radius ε that surrounds

the correct line."(Marslow 2014 [4]), as with classification SVM, it needs to allow for errors, so

again slack variables are introduced for each datapoint ,εi for datapoint i, with their constraints and

follow the same procedure of introducing Lagrange multipliers, transferring to the dual problem,

using a kernel function and solving the problem with a quadratic solver (Marslow 2014 [4]). In

order to do predictions, one just needs to apply equation (2.63), where µi and λi, are two sets of

constraint variables.

f (z) =
n

∑
i=1

(µi−λiK(xi,z)+b) (2.63)

2.4.7 Decision trees

A tree-based model is a model that works by separating the input space into cuboid regions, whose

edges align with the axes, and then corresponding a simple model to each region (Bishop 2006 [6]).

It works as a sequential top to down binary decision, according to a decision criteria.

2.4.7.1 Binary tree

A binary tree is an algorithm of common use throughout the whole of computer science. It is

computational cost is low, O(log(N)), where N is the number of datapoints (Marslow 2014 [4]).
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Figure 2.25: SVM for regression applied to the sinusoidal synthetic data set using Gaussian ker-
nels. The predicted regression curve is shown by the red line, and the ε insensitive tube corre-
sponds to the shaded region. Also, the data points are shown in green, and those with support
vectors are indicated by blue circles (Bishop 2006 [6]).

A binary tree is a tree in which each node has only two children, so in essence the tree performs a

binary decision, when descending from the root to the leaves.

The idea of a decision tree is to partition the classification into a set of decisions about each

feature, starting at the "root" of the tree, the top, and traversing to the "leaves", down, where it

receives the classification decision. In Figure 2.26 and 2.27, it can be seen how a binary tree can

translate to a partition of the set. When considering an x, that we want to classify, it only needs to

subject him to the top down tree conditions, and it will end up in a specific region classification.

A great advantage for trees in machine learning is the readability and comprehensibility,

whereas a neural network is a hard method to explain and understand, being often read as "black

box" method, decision trees can often be transformed into if rules that are easy to understand.

Another set of advantages is that decision trees, aren’t as strict in the data preparation as other

algorithms, accepting non-numeric data.

2.4.7.2 CART classification and regression trees

In order to learn a tree model from a training set, it’s necessary to create a structure of the tree,

where it’s defined an input variable at each node to form a split criterion, as well as a threshold

parameter, θi, for the split, and finally the values of the predictive variable within each region

(Bishop 2006 [6]). The structure selection of the tree cannot be an optimal choice, do the combi-

nations associated with it, it would be computationally infeasible (Bishop 2006 [6]), therefore a

greedy approach is selected.

A greedy optimization, starts with a single "root" node that encompasses all the input space,

and then growing the tree by adding nodes one at a time. At each iteration there will be multiple

candidate regions of the input space that can be split, corresponding to the increment of "leaves" to

the tree. As such, for each iteration, there is a choice of what input variables to split and the value
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Figure 2.26: An example of a binary
tree [6]. Figure 2.27: A partition of the set, us-

ing a binary tree [6].

of the threshold. The optimization of what region to split, and the choice of the input variable and

threshold, can be done by exhaustive search, by noting that, for a given choice of a split variable

and threshold, the optimal choice of predictive variable is given by the local average of the data

(Bishop 2006 [6]). Repeating this process for all candidates, it can choose the one that minimizes

or maximizes the decision criterion. The iteration can stop, by a pre defined stopping criteria,

such as an error threshold, but it’s common practice to grow the tree using the number of datapoint

associated to the leaf nodes as a stopping criterion, and then prune back the tree (Bishop 2006 [6]).

When facing a regression problem, the objective is, for example, the minimization of the

sum-of-squares error, as done in other methods. Now translating this mathematically, it can be

described as equation (2.64).

yτ =
1

Nτ
∑

xn∈Rτ

tn (2.64)

Where, τ is the leaf node correspondent to the input space, Rτ , having Nt datapoints. The

corresponding minimization criterion for the residual sum-of-squares is, equation (2.65).

Qτ(T ) = ∑
xn∈ℵτ

(tn− yτ)
2 (2.65)

Being T the total number of leaf nodes. Now the pruning criterion can be described as, equa-

tion (2.66).

C(T ) =
|T |

∑
τ=1

Qτ(T )+λ |T | (2.66)

The pruning is based on a criterion that balances residual error against a measurement of the

model complexity (Bishop 2006 [6]). The regularization parameter λ determines the balance
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between the residual sum-of-squares error and the complexity of the model as measured by the

number |T | of leaf nodes, and its value is chosen by cross-validation (Bishop 2006 [6]).

The above example was an approach to regression using decision trees. When faced with a

classification problem, the sum-of-squares is no longer an appropriate measure of performance.

Two commonly chosen measures are the cross entropy, equation (2.67), and the Gini index,

equation (2.68).

Qτ(T ) =
K

∑
k=1

pτk ln pτk (2.67)

Qτ(T ) =
K

∑
k=1

pτk(1− pτk) (2.68)

Both these measures are zero for pτk = 0 and pτk = 1 and have a maximum at pτk = 0.5. They

bias towards the formation of regions with a high proportion of data points attributed to one class.

They are both differentiable, so better suited for gradient based optimization methods and more

sensitive to node probabilities (Bishop 2006 [6]).

The decision trees suffer from some disadvantages, they are normally less accurate than other

methods, they are based in greedy algorithms, therefore they can arrive at non optimal results, they

are not very robust (Hastie et al. 2001 [25]), a different value can result in a very different tree and

another problem is that it splits in accordance to the axis which can be very suboptimal (Bishop

2006 [6]).

2.4.7.3 Random forests

Random Forests is an ensemble method, which means it results from a combination of models.

The idea behind the ensemble methods is that a great number of models that arbitrate slightly

different outputs, aggregated, are better than just one model. Several ensemble methods exist, but

in order to understand Random Forests, one must look at bagging or bootstrap aggregating.

First, a bootstrap sample is an original dataset, with the same size of the dataset, that results

from a random sampling of the dataset. So, now instead of using a dataset and applying a model

algorithm to the dataset, it is created n new different datasets and have n different models, that

generate n different outputs, and then combining them, applying a majority vote or a mean.

In Random Forests, it’s used the ensemble concept applied to decision trees, if one tree is

good, then a forest, group of trees, should be better. Provided that the trees have enough variety

between them (Marslow 2014 [4]).

So the method implies taking bootstrap samples from the dataset, and generating trees for

each dataset, at each node, a random subset of features is given to the tree, and it can only choose

a subset, instead of the whole set. This helps increasing the randomness and the speed of the

algorithm, due to not having to consider all the features, and typically only a subset that is the
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Figure 2.28: A reliability plot example [10]

square root of the number of features (Marslow 2014 [4]). The randomness is key to increase

variance without increasing the bias and not needing to prune (Marslow 2014 [4]). The stopping

criteria can be, for example an error threshold.

The algorithm works, by aggregating all these trees and applying a majority vote, for classifi-

cation, or a mean, for regression.

2.5 Reliability

In fault prediction problems, the concepts of reliability, fallibility, hazard and cumulative failure,

are very relevant, as such a brief introduction is required.

Reliability, RT (t), is defined as the probability of performing without failure for a specified

period of time, or the probability that at a time t, where t > 0, the object of study will function.

Another analogous concept is the unreliability, FT (t), the probability that at a time t, where t > 0,

the object of study will fail. As such, reliability is defined as:

RT (t) = P(T > t) = 1−FT (t) (2.69)

where T , is an interval of real numbers.

A Reliability plot is so, something that relates time with the probability of not failing, as can

be seen in Figure 2.28. In this figure, it can be seen how with time, in hours, the probability that it

will not fail, will diminish, in this case the curve is plotted using the weibull approximation. But

the shape of the curve may vary.

2.5.1 Reliability with continuous variables

If one assumes T as continuous random variable, taking values in (0,∞) and with density function

fT (t). The reliability function RT (t) can be defined as equation (2.70).
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Figure 2.29: Linear trend - failure rate

RT (t) =
∫

∞

t
f (t)dt (2.70)

2.5.2 Failure rate

Failure rate can be defined as the frequency in which a component from an engineered system

fails, expressed in failures per unit of time. Failure rate, λ , is a parameter defined as follows in

equation (2.71), where [E
{

N(T )
}
] represents the expected value of the number of failures and T ,

represents the failure time variable.

λ (T ) =
∂

∂T
[E
{

N(T )
}
] (2.71)

Failures typically can be expected to behave in three different ways.

2.5.2.1 Failure rate - linear trend

Linear trend, this means, Homogeneous Poisson Process (HPP), in here, the failure rate, λ (T ),

is constant and its estimator can be summarized as equation (2.72), where N(T) is cumulative

number of failures from time 0 to time T .

λ (T )⇒ λ̂ =
N(T )

T
(2.72)
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Figure 2.30: Linear trend - failure rate

2.5.2.2 Failure rate - logarithmic trend

Logarithmic trend, this means, the number of failures is decreasing which means reliability growth,

in here, the failure rate, λ (T ), is decreasing and its estimator can be obtained by the model pro-

posed by Crow as equation (2.73).

λ (T )⇒ λ̂ = γβT β−1 (2.73)

The parameters γ and β , (0<β<1), can be obtained by the maximum likelihood method, pro-

posed by Crow. Where N, is the total number of failures, T0, total time, ti, failure time i and Tn,

the failure time n.

• Time truncated test (t0)

β̂ =
N

∑
N
i=1 ln T0

ti

(2.74)

γ =
N

T β

0

(2.75)

• Failure truncated test (tn)

β̂ =
N−1

∑
N
i=1 ln Tn

ti

(2.76)
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γ =
N

T β
n

(2.77)

2.5.2.3 Failure rate - exponential trend

Exponential trend, this means, the number of failures is increasing which means reliability decay,

in this trend, the failure rate, λ (T ), is increasing and its estimator can be supported by the Weibull

distribution, in equation (2.78). The parameters α (α > 1) and η can be obtained by the maximum

likelihood method.

λ (T )⇒ λ̂ =
α

ηα
T α−1 (2.78)

2.5.3 Hazard rate

The hazard function or hazard rate, h(t), for a component is defined as the conditional probability

of failure per unit of time at time (t +∆t), given it has survived until t. The hazard function in

defined by equation (2.79), where f (t), is the probability density function and R(t), is the survival

function or reliability.

h(T ) =
f (t)
R(t)

(2.79)

Another interesting function, is the cumulative hazard function, H(t), defined in equation

(2.80).

H(T ) =
∫

t−∞h(t)dt (2.80)

As such, reliability can be defined as equation (2.81).

R(T ) = exp(−H(t)) (2.81)

The hazard rate applied to a component, can be interpreted as, if the hazard rate is decreasing,

the component with is becoming less likely to fail, which is not frequent in reality, if the hazard

rate is constant, it means the probability of failure is independent of time, and if the hazard rate

is increasing, it means it is becoming more likely to fail with time, which is normally, the more

common in real life.

The hazard rate can be estimated with parametric models such as Weibull, or non parametric

models, such as Kaplan-Meier.
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2.5.3.1 Weibull Distribution

The Weibull distribution has a great variety of shapes, therefore it is great in applications for a

parametric model, being able to represent all the shapes of the hazard function. It can also be

easily handled in the analytical and graphical perspectives. The probability density function, can

so be defined as equation (2.82), where β , is a shape parameter, (β>0), η , is characteristic life,

which is a scale parameter, (η>0), and γ , is the minimum life, the loction parameter, typically

equal to zero, and the distribution function, as equation (2.83).

f (t) =
β

ηβ
tβ−1 exp

[
−
(

t− γ

η

)β
]

witht > 0 (2.82)

F(t) =
∫ t

0
f (t)dt = 1− exp

[
−
(

t
η

)β
]

(2.83)

2.5.3.2 Proportional hazards modeling technique

The proportional hazards modeling technique, PHM, seeks to acknowledge several context factors

that affect the failure time, t. The PHM, can be defined as a nonparametric technique based on the

assumption of a loglinear hazard function which can be applied to assess the effect of observed

factors on reliability in engineering applications. The hazard proportional model function can be

defined in equation (2.84), where h0(t), is an arbitrary and unspecified baseline hazard function, z,

is the row vector of k measured covariates, factors, β , column vector of k regression parameters,

coefficients, and t is associated failure time.

h(t;z) = h0(t)exp(z1β1 + z2β2 + ...+ zkβk) = h0(t)exp(zβ ) (2.84)

As one can see, the covariates act multiplicatively upon, h0, which is the baseline hazard

function and it is its unique assumption. The main advantages are its distribution free technique,

the ability to analyze not independent and identically distributed data, the capacity to deal with

sparse non-homogeneous data, the capability to deal with a high level of censoring and the fact

that repairable and non repairable systems can also be included in the model.

The survival function can be estimated from the following relationships, present in equations

(2.85, 2.86 and 2.87).

S0(t) = exp

[
−
∫ t

0
h0(u)du

]
(2.85)



46 Literature review

S(t;Z) = exp

[
−
∫ t

0
h0(u)exp(zβ )du

]
(2.86)

S(t;Z) =

[
S0(t)

]exp(Zβ )

(2.87)

The coefficients, β , can be estimated using the maximum partial likelihood method and the

tailor expansion from equation (2.88).

L(β ) =
n

∏
i=1

(
exp(Z(i)β )

∑
n
l∈S(ti )

exp(Z(l)β )

)
(2.88)

2.5.3.3 Traditional method

The traditional method is a custom method that had been previously applied to this problem. This

method estimations are based in the historical averages of each wind farm, additionally a factor

of aging is considered, adding a theoretical failure rate, taken from literature [26]. Therefore,

this method is a conservative approach as it adds two failure rates, the wind farm average and

the theoretical value. This model can be summarized in equation (2.89), where MC, is the major

correctives for the year t, t is the year of the analysis, t0, the year of commissioning of the wind

farm, λ , characteristic life, in years, 27 according to literature [26], k, shape factor, 3,5 according

to literature, N, is the number of wind turbines at the wind farm and X is the historic average of

major correctives, in other words, the absolute value of the number of components replaced each

year.

MC =

[(
t− t0

λ

)k−1 k
λ

N

]
+ X̄ (2.89)

2.6 Summary

The field of Machine Learning and Data mining is a field of trade-offs and of not absolute truths.

There’s not a size fit all algorithm and it depends upon the user to understand the key struggles

he faces and apply the model that best addresses them. It is also needed for the data miner to

know the tool that best fits the problem, and that requires a deep knowledge of the problem and

of the said tools. Reliability is a crucial part of understanding the problem, therefore the concepts

are very useful in order to better understand and approach the project. The previous implemented

approaches are also substantiated.



Chapter 3

Data collection, preparation and feature
selection

As introduced before, the machine learning process, should start with data collection and prepara-

tion. First an introduction to the data available, will be given in Section 3.1. Then an analysis of

the data will be performed, on Section 3.2, were a search for obvious errors and inconsistencies

was performed. The next step, dealing with the missing data and normalization is present, Sec-

tions 3.3 and 3.4.4. Then some strategies to deal with idiosyncrasies of this particular data will

be introduced, Sections 3.4.2 to 3.4.3.3. All this steps are required as most of the aforementioned

algorithms are very sensible to missing data, misrecordings and require normalization. It will also

be introduced how inputs were changed in order to better explain the problem. In Section 3.5, the

strategy to approach the feature selection, will be expressed.

3.1 Data overview

The data available was collected in wind parks and refers to several wind turbine generators. The

data consists of 5314 turbines and 841 fault events. In Table 3.1, all the variables in question are

visible, in the overall there are 18.

• "UT" or "Model", identification of each turbine.

• "Park", park identification.

• "Park_Name", name of the park.

• "Platform", the continent were the park is located.

• "COD", data of the park operational start.

• "A", wind scale factor for the park.

• "Air density", the density of the air.

47
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Table 3.1: Data inconsistencies failure

UT Park_Name COD WTG_manufacturer WTG_model Failure Date
01 - T001 B1 01/12/2016 V V1 19/04/2005
01 - T027 B1 01/12/2016 V V1 03/02/2006
02 - T057 LII 11/05/2008 G G1 27/03/2008

• "K", wind shape factor for the park.

• "V", average wind speed of the park.

• "LIGHTNING STORM FREQUENCY", the lightning storm frequency for the park.

• "SITE CLASS", the site class for the park.

• "TERRAIN CLASS", the terrain class for the park.

• "DRIVE TRAIN CONFIGURATION", the type of drive train installed in the turbine.

• "WTG_manufacturer", the wind turbine generator manufacturer for a turbine.

• "WTG_model", the wind turbine generator model for a turbine.

• "PRODUCTION NEH", the annual power production estimation for the park.

• "Failure Date", for each event the identification of the turbine and the date of the failure.

3.2 Inconsistency analysis

One of the first inconsistencies present in the data was when checking for the failure times. Here

one could clearly see that there were failures that happened before the start of operation of the

park. In Table 3.1, are presented some examples, "UT", have a "COD", or date of the park start of

operation that happens after the failure, "Failure_date", this clearly was an input error and as such

was deleted.

Other input verification that was performed, was to compare the average wind speed, "V", with

the power production, as it was clearly apparent, when "V" was zero, the power production could

not be bigger than zero, as such those results were flagged as mistakes, see Table 3.2.

Table 3.2: Data inconsistencies power

UT PRODUCTION NEH V
01 - T001 2229 0
01 - T002 2229 0
01 - T003 2229 0
01 - T004 2229 0
01 - T005 2229 0
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Table 3.3: Data inconsistencies missing data

UT A AIR DENSITY K LIGHTNING POWER CLASS
CA - T101 NA NA NA NA NULL
CA - T102 NA NA NA NA NULL
CA - T103 NA NA NA NA NULL
FR - T001 NA NA NA NA NULL
FR - T002 NA NA NA NA NULL

3.3 Missing data

Another characteristic of raw data is the absence of data. When confronted with the raw data, it

was apparent that there were for several parks, lack of information or data. An example of that in

Table 3.3.

3.4 Preparing the data

In order to have results, even if somewhat inevitably skewed results, one had to perform some

transformations to the data. If one had decided simply to delete the misrecorded data, or the

sections that were null, it would result in a significant diminishment of the failure events, as many

of them were relative to turbines with misrecordings or null variables.

Regarding misrecordings, as they were very few, they were replaced with the average of the

variable. In the case of Table 3.2, for instance, the wind speed "V", and others were replaced with

the average wind speed.

3.4.1 Dealing with missing data

In the case of null variables, the more common cases, as such, they required to be treated with

more care. First, there was a difference of treatment if they were categorical, or numeric, for

example, if the variable missing is the drive train configuration, or the wind speed.

After careful consideration it was decided that for categorical variables, it would be created a

new category which was, the absence of knowledge, or for the drive train configuration example,

the null drive train configuration. This implies an obvious data misrepresentation of the data, but

was felt that it would not be a very damaging aspect for the overall efficiency of the algorithm.

In order to transform the missing numerical data, the MICE (Multiple Imputed Chain Equa-

tions) library of R, was used. Several tests were performed, validating the mean, versus the fast

predictive mean matching, versus linear regression, versus imputation by random forests. In the

end, it was opted for a mean.

3.4.2 Dealing with categorical data

One of the obvious problems the data had, when face with the algorithms, was that it had several

categorical variables, such as "Park_Name", "WTG_model", and others, but most the algorithms
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Table 3.4: One-of-n remapping small sample

Park_Name:A Park_Name:B Park_Name:C Park_Name:D Park_Name:E
TRUE FALSE FALSE FALSE FALSE
FALSE TRUE FALSE FALSE FALSE
FALSE FALSE TRUE FALSE FALSE
FALSE FALSE FALSE TRUE FALSE
FALSE FALSE FALSE FALSE TRUE

do not work with categorical variables and the ones that do work, prefer numeric or binary vari-

ables. As such it was necessary to "dummify" the data, or perform one-of-n remapping. This is

the process of turning every categorical variable into a binary variable that states if that variable

for those inputs is present, "1" or TRUE, or not, "0" or FALSE, Table 3.4.

3.4.3 Extracting new information

In order to achieve an input and output that was convenient to the problem, several transformations

were performed.

3.4.3.1 Dealing with date format

One problem that was identified was the need to transform the failures dates in time intervals, in

order to have lifetimes of the turbines. In order to achieve this, the POSIXct format was used.

This standard records the seconds since the start of January the first of nineteen seventy. So, now

the "COD" and failure dates will be a number. Now simply subtract the "COD", or the date of the

park inauguration to the date of the failure and have a time of life, in the case of repeated failures

by the same turbine, what is used is the time of the failure minus the time of last failure. In Table

3.5, the data was originally presented is shown, where the time was represented as a date, in the

format day/month/year, and now in Table 3.6, there are three columns, the "Failure_Date_original"

represents the simple conversion to the POSIXct format, the "Time_Series", is the time of life of

the turbine, in other words, it is the time interval, starting from when the turbine was installed to

when the turbine failed.

Table 3.5: Time format raw data

Park_Name COD Failure Date
A 01/06/2009 18/12/2013
A 01/06/2009 07/03/2015
A 01/06/2009 21/02/2014
A 01/06/2009 20/04/2015
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Table 3.6: Time format transformed POSIXct format

Park_Name Failure_Date_original Time_Series
A 1392940800 149130000
A 1425686400 181875600
A 1426464000 182653200
A 1429484400 185673600

3.4.3.2 Cumulative failures

Another information that was foreseen as important for the task at hand was the cumulative fail-

ures, they represent the amount of failures if time is ordered from the smallest time of life to the

biggest. In Table 3.7, there is a small sample of the cumulative failures.

3.4.3.3 Dealing with the Output

The purpose of this paper is to predict the cumulative failures for the next years, using data re-

garding the previous years. So in this problem it is clear that the desired output is the cumulative

failures for the next year.

3.4.4 Using the non failures

The problem that was sought to answer has been addressed in multiple articles, such as [9] [27] [28],

but the articles focus on a simple approach, using only the time to failure, cumulative failures and

only one technology. In this project, it was sought to use the cumulative failures, the time to

failure, multiple technologies, but also different factors that, were relevant to the the life span of

turbine, such as average wind speed, the type of terrain, the amount of power produced, and others.

In order to do so, it was fed to the network the data referring to all the turbines, combined with

failures and non failures, if for example a turbine hadn’t failed yet, it was used that information,

feeding to the network the time of last record as the time to fail, but the cumulative failure would

remain constant (Table 3.8). The last recorded observation was in the 31st of December of 2014,

due to the fact that it was defined that 2015 would be the testing year, as such the information of

non failure is also present.

Table 3.7: Cumulative failures example

Park_Name Platform COD Time_Series Cuml_Fail
A A 1243810800 143514000 1
A A 1243810800 149130000 2
A A 1243810800 181875600 3
A A 1243810800 182653200 4
B A 1114902000 242614800 1
C A 1370041200 26438400 1
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3.4.5 Normalizing the data

The formula used to normalize the data was the aforementioned, equation (3.1).

xnN =
xn−min(x1...XN)

max(x1...xN)−min(x1...xN)
(3.1)

Regarding the cumulative failures and the time series, the normalization posed some con-

straints, because the maximum value is unknown. It was arbitrated that forty years was a time

interval large enough to include all the life expectancy of a turbine, as such, in order to normalize

the cumulative failures, the maximum number of turbines of a park was used as the maximum,

and zero as the minimum, for the time series, the largest time interval was used as the maximum

and zero was used as the minimum.

3.5 Feature selection

hat is sought in feature selection is to select relevant and informative features, in order to achieve

several different objectives, namely general data reduction, to decrease the amount of data storage

required and increase the speed of the algorithm, Feature set reduction, save resources in the

next round of data collection or during utilization, allows for performance improvement, gains

predictive accuracy and establish a better data understanding.

3.5.1 Understanding the data

In order to select the best features and before implementing sophisticated methods, one should

analyze the data. It is clear that some of the inputs are dependent on one another, or are simply

different ways of stating the same information and as such redundant.

Some inputs have exactly the same information, for example "Park" and "Park_Name", "Park"

is merely a tag for the park, as such it is redundant. Other auxiliary variables that were created

upon processing the data can also be discarded.

The input "Model", and the "Park_Name" are cases where it would have a disrupting impact

in the model,as they are all encompassing and would undermine the ability of the algorithm to

generalize.

3.5.2 Filtering the data

It was an objective to try and solve the problem that this thesis addresses by compartmentalized

steps, in other words, the goal was to not have to, at this step, choose an algorithm and have a

compartimentalized approach to the problem. It was decided that a filter was more appropriate, as a

filter enables the separation between the feature selection and the algorithm, whereas an Embedded

or a wrapper, Section 2.3.6.1, method would be highly dependent on the chosen algorithm.
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3.5.3 Choosing the data

It was decided to try the ReliefF, Section 2.3.6.2, filters, in order to ascertain if all the features

are worth considering or if some can be discarded. The ReliefF showed some differences in

importance in the data, but no feature was deemed irrelevant, so it was decided to use all the

features that remained. The computational speed for this thesis deemed as secondary objective.
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3.6 Summary

A determinant element in the performance of an algorithm is molding the data, and molding it

to the answers the the problem that presents itself. In this approach it is key, to understand the

data, address it is limitation and adapt it to the algorithm. The key steps of preparing the data

were, disposing of errors, addressing data absences, manipulating categorical data and normaliz-

ing. Feature Selection is important to trim the data into and shed redundant information. It was

used a mixture of data interpretation mixed with the use of an analysis using the relief algorithm.



Chapter 4

Algorithm choice, parameter and model
selection

As introduced before, the world of machine learning is rich with different algorithms, that have

different objectives and different strengths and weaknesses. As such, now that a dataset is had,

what algorithm to use and what specific traits have to be chosen, as most of them have param-

eters that require manual adjustment. First in Section 4.1,the choosing of the algorithm will be

discussed, Section 4.2 will explore how to best tune the algorithms parameters to generate the best

network.

4.1 Primary objectives

It is important to understand what is relevant to this problem and what type of problem it is. In this

case, the problem is a regression and a case of supervised learning. It is a regression, due to the fact

that the goal is not to classify the problem into pre-defined classes, but to "discover a predictive

learning function, which maps a data item to a real-value prediction variable" [1](Figures 2.8 and

2.9). It is a supervised learning problem, since there is a set of known failures and network trains

using that set for an error comparison (Figure 2.3).

So now the algorithm that best suits the needs of the problem, has to be one that best works

with regressions and supervised problems. Other criteria can be contemplated, for example, some

algorithms have an emphasis on comprehensibility to the user and others on computational speed.

For this problem, the time interval is of years, as such the computational speed has little relevance,

as this project is not to be interpreted by other users that are not familiar with this topics, the

comprehensibility aspect is also of little impact. Therefore, the main focus of the algorithm will

be accuracy.
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4.2 Choosing an algorithm

The algorithm choice is not a straightforward choice, most of them have strengths and weaknesses

and behave differently with the size of the dataset and the objective. The decision trees have a

number of disadvantages that make them a lesser candidate from the start, even though they are

easy to interpret, they are not very robust (Hastie et al. 2001 [25]), it splits in accordance to the

axis which can be very suboptimal (Bishop 2006 [6]), so typically a decision tree sub performs

when compared to other algorithms. When deciding between a support vector machine and a

neural network, the arguments are more even, but due to the support vector machines being more

common to classification problems and to neural networks being a more common and widespread

technology, it was chosen to go with neural networks.
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4.3 Parameter and model selection

When dealing with neural networks, some parameters must be manually defined. Using a tradi-

tional feed forward network, one must define:

• Number of hidden layers

• Number of hidden neurons

• Activation Function

• Error Function

• Training Algorithm

In order to have a non-linear network, one needs at least one hidden layer, but an addition of a

few more, can better read the non linearities of the problem.

In order to choose the amount of hidden neurons a definitive version has not been decided,

yet some general rules prevail, such as that the number of neurons must be between the number

of outputs and inputs. It was arbitrated to start using a generic formula, equation (4.1), where

Ns is the number of observations, Ni is the number of input neurons, and No is the number of

output neurons and alpha is equivalent to a degree of freedom, arbitrated to be between 2 and 10.

This values are just references and are optimized by testing the algorithm, but they give a useful

interval.

Nh = Ns/(α ∗ (Ni +No)) (4.1)

The activation function typically is either a logistic function or a tan-h function, as explained in

Section 2.4.4.2, as the output varies between 0 and 1, and not between -1 and 1, a logistic function

is more appropriate. The error function to access the accuracy will be the sum of squared errors.

The training algorithm opens several options namely the discussed above resilient backpropa-

gation and the traditional backpropagation, which requires a learning rate. It was arbitrated to use

resilient backpropagation, due to being faster and at least as good as backpropagation, as explained

in Section 2.4.4.7.
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Chapter 5

Training, evaluation and interpretation
of the results

This chapter will show the results and the results of training the network, and make a comparison

between different models. It will try to present the results in the two errors, generalization error,

Section 5.1 and Section 5.4, and prediction error, Section 5.1.2 and Section 5.5. This chapter will

also offer a comparison between the different models and their performances, Section 5.5.

5.1 Optimization criteria

To evaluate the algorithm, the dataset was split into two parts, one referring to the year 2015 and

the other referring to the period before 2015, as this year will be used to control and optimize

the prediction error. Then the data will be split in a 10/90 ratio, where 90 percent of the data

will be used to train and 10 percent will be used to test the network, creating a validation set, for

overfitting, ensuring the network is generalizing well, therefore this error is called generalization

error. This can be seen in Figure 5.1.

5.1.1 Preventing overfitting

To prevent overfitting the network, an error threshold criteria and maximum steps criteria, plus the

generalization error, bellow described, were defined.

The equation (5.1), refers to the mean squared error for the generalization error, eg, where

Pred, is the prediction of the network given the inputs referring to the validation set, that the

network has never seen, Actual is the true value, given the inputs of the validation set, and Nv is as

the total number of samples for the validation set. In equation (5.2), the root mean squared error

for the generalization error, Reg.

eg
t =

Nv

∑
i=1

(Predi−Actuali)2/Nv (5.1)
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Figure 5.1: Description of the data splits

Reg = 2

√
Nv

∑
i=1

(Predi−Actuali)2/Nv (5.2)

Furthermore, in order to better generalize and to ensure the best network, the data will be split

randomly in the above mentioned 10/90 ratio at least 10 times, in order to find the split that creates

the best network. After the training iterations, the network that best optimizes the two errors is

saved, and the others discarded.

5.1.2 Prediction Error

The equation (5.3), is the mean squared error, MSE, for the prediction error, ep, if one considers

Actual_2015, as the value regarding to the true number of faults for a given set of inputs in the year

of 2015, Pred_2015 as the value pertaining to the algorithm prediction for given a set of inputs for

the year of 2015 and Ns as the total number of samples for the year 2015. In equation (5.4), the

root mean squared error for the prediction error, Rep.

ep =
Ns

∑
i=1

(Pred_2015i−Actual_2015i)
2/Ns (5.3)
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Rep = 2

√
Ns

∑
i=1

(Pred_2015i−Actual_2015i)2/Ns (5.4)

5.2 Network configuration

As explained in Section 4.3, some parameters must be manually adjusted. The criteria to select

the best parameters was optimizing the errors, by adding both.

Therefore, the variations per iteration will be the α in the hidden neuron numbers, using 2, 5,

10, and the number of hidden layers, between 2,3 and 4.

Table 5.1: Algorithm Iterations

No Hidden Layers No Hidden Neurons Generalization Error (RMSE) Prediction Error (RMSE)

2 2 0.008040232 0.87124
5 0.010328135 0.91782
10 0.027753364 1.00235

3 2 0.007375599 0.93195
5 0.008086259 0.88025
10 0.018754856 0.99399

4 2 0.000751648 0.72066
5 0.011997014 0.92231
10 0.006599443 1.14014

As seen in Table 5.1, the one that minimizes the error of prediction is the one with an α of 2

and 4 hidden layers.

5.3 Network architecture

As demonstrated in Section 5.2, the best neural network architecture used was a neural network

with one output node, 84 input nodes, four hidden layers, and 7 hidden neurons, applying an alpha

of 2, and using the equation (4.1).

5.4 Generalization error results

This error as explained in Section 5.1.1 and Section 2.4.3, equation (5.1), pertains to the ability

of the network to generalize and to not overfit. The ability to generalize is the ability for a net-

work to learn the network and establishing weights, without memorizing results, which would at

first glance seem to improve performance, but in fact be making the network unable to give ac-

curate results to new inputs and never seen inputs. The root mean squared error, RMSE, of the

generalization error was used as the optimization criteria.
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Figure 5.2: Network performance by park - large number of failures

In Figures 5.2 and 5.3, the network is not overfitting. Both figures show the network pre-

diction for a park X, with a medium number of failures and a park Y, with a large number of

failures. On the horizontal axis is the time, in the vertical axis the cumulative failures. In orange,

"Cuml_Fail_original", the real values, in blue the corresponding predicted values, in gray, the real

cumulative failures value for the year 2015, the year used to check accuracy, and in yellow the

corresponding prediction, for the cumulative failures for the year 2015.

For the park Y, is clear that the prediction worsens. If there are less data points and they are

less homogeneously spread the model accuracy diminishes, on the other hand for the park X, as

there are more data samples, the prediction almost overlaps with the real value and the prediction

values for the data previous to 2015 are nearer. The graphic seems to be linear and then turns

logarithmic, this happens due to the factoring of the non failures, as explained in Section 3.4.4, the

non failures are introduced with the time corresponding to the last known record and they have the

cumulative failure of the last cumulative fail registered, as such they attenuate the effect of having

few fail data, for a given park.

5.5 Comparing results

The goal of this thesis was always to compare the proposed methods against other already imple-

mented algorithms, as such in this section one will compare the results above mentioned with the

results that had already been processed for the other methods.

The prediction error is the error related to this thesis ultimate goal, creating a network that best

predicts failures. This error is the predictions the network makes for the values referring to the year

2015, that were separated before training, as such this is new data that the network has never seen.
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Figure 5.3: Network performance by park - medium number of failures

So what was done was give those inputs to the network and compare them with the corresponding

real values. The traditional method is as defined in Section 2.5.3.3 and the proportional hazards

model, PHM, is as defined in Section 2.5.3.2.

Table 5.2: Algorithm predictions error by park

Traditional Prediction RMSE PHM Prediction RMSE Neural Network Prediction RMSE

0.66839 0.795869 0.72066

In Table 5.2, the RMSE for each algorithm varies, the lower the error the better the model can

fit reality, observing the table it can be concluded that the traditional model, is the one that best

fits the network, being followed by the neural network and the PHM. Nevertheless, other factors

must be taken into account and that is what it will be done in the rest of the section.

Table 5.3: Error prediction by park group in percentage, T, stands for the traditional method, PHM,
stands for the proportional hazards model and NN, for the neural network.

Interval Park% T Avg error% PHM Avg error% NN Avg error%
Very Small 39% 10.12% 9.75% 11.69%

Small 24% 4.13% 4.54% 4.93%
Medium 16% 3.21% 3.37% 2.14%

Large 21% 1.55% 2.24% 1.68%

In Table 5.3, the error analysis can be more detailed, the parks were divided into four cate-

gories, very small, small, medium and large, referring to the number of turbines. As expected,

the error is greater for smaller parks, as they have less information and less occurrences, and as
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Figure 5.4: Error dispersion

the size of the park increases, the error prediction becomes more accurate. The methods behave

differently according to the size of the park, the traditional method achieves better results than the

other for, small and large parks, the PHM method, has better results for very small parks, and the

neural network has better results for medium parks.

Figure 5.4, presents the box plot for the prediction of failures by park, for the year 2015. In

this figure, observe that the neural network, in gray, has the least range on its predictions, and that

its outliers are also the least spread, regarding the traditional method, it can be verified that it has

the second smallest range and the second smallest spread of its outliers, finally, the PHM model

has the biggest range and the fewer outliers, even though its outliers have the biggest spread.

5.5.1 Comparing results by technology

As discussed in the motivation, Section 1.2, the technology is a key part of optimizing costs.

As interesting as knowing failures per park, the number of failures per technology is also a key

indicator, due to the costs being related to technology, for instance the amount of components

needed per year is a crucial information, to manage spare parts stock levels.
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Figure 5.5: Error prediction comparison by technology

If the results are grouped by technology, a similar trend, in Table 5.4, the order of the best

results is the same being the tradition the best method, the neural network the second best and the

model based on the PHM is the worst.

Table 5.4: Algorithm predictions error by technology

Traditional Prediction RMSE PHM Prediction RMSE Neural Network Prediction RMSE

2.44 3.0194 2.549

In Table 5.5, the results of each different technology are differentiated, it was used a simple

rank system, known as the M. Friedman’s statistic average ranking. The rank corresponds to the

best error, and varies between 1, the best error, and 3, the worst error. The results match up with the

RMSE, being that the best is the traditional method, the worst the PHM and in second the neural

network. In bold, the best result for each park. In the table also see how the neural network and the

traditional method, for bigger errors tend to undershoot, if one takes in consideration technologies,

"Y,AA,AB,AC,AD,AE,AH and AJ", this effect seems clear, regarding the PHM, no such trend can

be inferred.

Complementary, in Figure 5.4, the data grouped by technology on the horizontal axis, and the

vertical axis, the predicted number of failures by technology. In orange, the traditional method,

in gray, the PHM method, in yellow the neural network method and in blue the real number of

failures by technology.
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5.6 Summary

The root mean squared error enables us to state that the traditional method is still better, by park

and technology and by only technology. The neural network, performs better than the PHM in

park and technology and by only technology.
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Table 5.5: Error prediction by technology in percentage, T, stands for the traditional method,
PHM, stands for the proportional hazards model, NN, for the neural network, Tech for technology
and the R stands for rank.

Tech Actual T% PHM% NN% ∆ T% ∆ PHM % ∆ NN% R T R PHM R NN
A 0.0% 0.0% 5.6% 0.0% 0.03% 5.6% 0.01% 2 3 1
B 0.5% 0.0% 1.5% 0.6% 0.5% 0.9% 0.0% 2 3 1
C 1.5% 7.3% 2.5% 1.3% 5.8% 1.0% 0.2% 3 2 1
D 0.0% 0.0% 0.7% 0.2% 0.0% 0.7% 0.2% 1 3 2
E 0.0% 17.5% 20.2% 0.2% 17.5% 20.2% 0.2% 2 3 1
F 0.0% 0.0% 0.5% 0.3% 0.0% 0.5% 0.3% 1 3 2
G 0.0% 0.1% 0.5% 0.3% 0.1% 0.5% 0.3% 1 3 2
H 0.5% 3.2% 6.0% 0.2% 2.7% 5.4% 0.4% 2 3 1
I 0.0% 0.6% 16.4% 0.4% 0.6% 16.4% 0.4% 2 3 1
J 0.2% 0.0% 1.7% 0.8% 0.2% 1.5% 0.5% 1 3 2
K 0.8% 3.9% 3.5% 0.3% 3.1% 2.6% 0.6% 3 2 1
L 1.0% 0.5% 1.7% 1.7% 0.4% 0.8% 0.8% 1 3 2
M 0.0% 4.1% 0.0% 0.8% 4.1% 0.0% 0.8% 3 1 2
N 2.6% 2.4% 6.1% 3.6% 0.3% 3.5% 1.0% 1 3 2
O 0.0% 1.1% 2.8% 1.0% 1.1% 2.8% 1.0% 2 3 1
P 1.8% 1.6% 2.9% 0.6% 0.2% 1.1% 1.3% 1 2 3
Q 0.0% 0.1% 0.6% 1.3% 0.1% 0.6% 1.3% 1 2 3
R 2.9% 1.0% 1.7% 4.2% 1.8% 1.2% 1.3% 3 1 2
S 0.0% 1.7% 13.7% 1.3% 1.7% 13.7% 1.3% 2 3 1
T 0.0% 0.7% 0.0% 1.7% 0.7% 0.0% 1.7% 2 1 3
U 0.6% 0.4% 1.9% 2.8% 0.2% 1.3% 2.2% 1 2 3
V 3.2% 0.0% 0.4% 0.6% 3.2% 2.9% 2.6% 3 2 1
X 3.2% 2.6% 2.5% 0.4% 0.6% 0.8% 2.8% 1 2 3
Y 4.4% 2.8% 6.7% 7.2% 1.6% 2.3% 2.8% 1 2 3
Z 0.0% 1.0% 3.5% 2.8% 1.0% 3.5% 2.8% 1 3 2

AA 5.0% 21.6% 16.6% 1.0% 16.6% 11.6% 4.0% 3 2 1
AB 5.2% 7.1% 5.5% 1.1% 1.9% 0.3% 4.1% 2 1 3
AC 3.1% 3.6% 5.9% 7.9% 0.5% 2.8% 4.8% 1 2 3
AD 7.2% 3.3% 4.9% 1.8% 3.9% 2.4% 5.4% 2 1 3
AE 37.0% 9.1% 15.3% 31.6% 27.9% 21.7% 5.5% 3 2 1
AF 0.0% 0.4% 0.0% 5.8% 0.4% 0.0% 5.8% 2 1 3
AG 0.0% 8.6% 10.7% 6.2% 8.6% 10.7% 6.2% 2 3 1
AI 0.0% 10.5% 12.4% 8.3% 10.5% 12.4% 8.3% 2 3 1
AH 9.1% 3.3% 10.4% 17.7 % 5.8% 1.3% 8.6% 2 1 3
AJ 15.9% 10.7% 7.7% 0.9% 5.2% 8.2% 15.1% 1 2 3

Avg Rank 1.80 2.26 1.94
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Chapter 6

Conclusion and future work

This chapter will offer conclusions and possibilities for future improvements. Moreover, it also

suggests how the work performed is relevant and its performance.

6.1 Objectives satisfaction

The main goal was to use a machine learning algorithm that would predict failures of the turbines.

This would help to minimize operation and maintenance costs, as it would offer a better insight

and time frame, for allocating maintenance resources. The challenge was to compare a machine

learning algorithm against two methods that had been already employed and to which data for

predictions had already been provided. In this scope, a neural network was chosen to operate as

the algorithm of machine learning. What could be seen was that the neural network was able to

perform better than the PHM model which was the main objective, as such it could be deemed as

a success.

That said, the network still suffered a lot of variation. This can be attributed to the fact that

for some turbines, there was not much useful information, creating data gaps, and the fact that the

turbines had not completed a life cycle and in fact, some were in the beginning of their life cycle,

making predictions harder, and the behavior less stable. Nevertheless, the algorithm was able to

predict failures, with a what seemed a reasonable error.

The incrementation upon the work performed was the ability to implement an algorithm that

offered less constraints and assumptions compared to the PHM model. That was what drove the

work, the possibility to create a network that would offer better and more accurate results, even

when confronted with non linear life cycles.

6.2 Future work

The increase in information on a day by day basis, produces more data and as such enables the

network to better fit and better predict future failures. As such, keeping expanding the network

with more results inputs is in itself an interesting element to the future. It would be beneficial
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if the network would at least acknowledge a complete life cycle for all the technologies, but as

discussed in Section 1.1, the turbines life cycle are rather long, taking up to twenty years.

An interesting increment would be to implement this level of predictive maintenance to all the

key components of the turbine. This way one could have the whole map of behavior of the turbine

cycle of life and as such produce more reliable predictions. This would also help to understand

how different components interact and behave through time.

Another curious increment, would be to intertwine the prediction with the expected cost, in

other words, to adjust the pessimism or optimism of the prediction model to the expected cost of

a failure not predicted or for a failure that was expected and did not happen. This would force a

more in depth understanding of maintenance costs. This would help us not obtain simply a network

that minimizes the error of the prediction, but a network that minimizes the cost of maintenance,

turning this work into a more useful work to the community. This is ultimately the end goal to

offer an algorithm that had a tangible impact in reducing costs and improving performance.

Furthermore, implementing this logic to other algorithms would be interesting in order to

compare algorithm performance.
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