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M.C. Câmaraa, C. Diogoa,b, I. M. Spitkovskyc,d,∗

aCenter for Mathematical Analysis, Geometry, and Dynamical Systems
Mathematics Department, Instituto Superior Técnico, Universidade de Lisboa
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Abstract

We solve a Riemann-Hilbert problem with almost periodic coefficient G,
associated to a Toeplitz operator TG in a class which is closely connected
to finite interval convolution equations, based on a generalization of the so-
called table method. The explicit determination of solutions to that problem
allows one to establish necessary and sufficient conditions for the invertibility
of the corresponding Toeplitz operator, and to determine an appropriate
factorization of G, providing explicit formulas for the inverse of TG. Some
unexpected properties of the Fourier spectrum of the solutions are revealed
which are not apparent through other approaches to the same problem.

Keywords: Toeplitz operator, Riemann-Hilbert problem, Factorization
theory, Almost periodic function.

1. Introduction

For p > 0, let H±
p = Hp(C±) denote the Hardy spaces of the upper/lower

half-planes C±, and let Lp := Lp(R). Let moreover eλ be the function
defined by eλ(x) = eiλx.
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For every class X of functions introduced so far (or below), let Xm×n denote
the class of m × n matrices with entries in X, and let Xm = Xm×1. The
diagonal n × n matrix with diagonal entries f1, . . . , fn will be denoted by
diag[f1, . . . , fn].
It is well known that the study of several properties of Toeplitz operators
TG : (H+

p )n −→ (H+
p )n, with G ∈ Ln×n

∞ and 1 < p < ∞, in particular
Fredholmness and invertibility, is closely connected with the study of an
associated Riemann-Hilbert problem

Gϕ+ = ϕ−, (1.1)

where ϕ± belong to certain spaces of analytic functions in C±.
In this paper we consider Toeplitz operators with 2 × 2 matrix symbols of
the form

G =

[
e−λ 0
g eλ

]
, g ∈ L∞, λ > 0, (1.2)

which we call Toeplitz operators of finite interval type, given their close
connection with convolution operators on a finite interval of length λ (cf.
[2]), focusing mainly on the case where the non-diagonal function g is an
almost periodic polynomial, i.e., g ∈ APP .
Recall that APP consists, by definition, of all finite linear combinations

f =
∑

j cjeλj
(1.3)

with complex cj and real λj . We will say that the set of all λj in (1.3)
corresponding to cj ̸= 0 is the Bohr-Fourier spectrum sp(f) of f , while the
respective coefficients cj are its Bohr-Fourier coefficients.
For matrix functions of the form (1.2) the problem (1.1) with ϕ± ∈ (H±

∞)n

is equivalent to

gϕ1+ = ϕ2− − eλϕ2+ with ϕ1+, ϕ2+ ∈ H+
∞, e−λϕ1+, ϕ2− ∈ H−

∞. (1.4)

It is clear that, if a function ϕ1+ satisfying (1.4) exists, then it determines
ϕ1− and ϕ2± uniquely. Analogously, if ϕ1− exists, then it determines ϕ1+
and ϕ2± uniquely. Since ϕ± are completely defined by either ϕ1+ or ϕ1−,
we will say that ϕ1+ (or ϕ1−) is a solution to the Riemann-Hilbert problem
(1.4).
One of the main goals of this paper is to obtain, whenever possible, explicit
solutions to (1.4) (or, equivalently, (1.1)) for almost periodic polynomials g
satisfying sp(g) ⊂ αZ+βZ, with particular emphasis on the case where g is
a trinomial of the form

g = ce−σ + beµ + aeα, −σ < µ < α, abc ̸= 0. (1.5)
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Our approach to this problem is based on the so-called table method which
was first presented in [5] and was later extended and developed in [8], as a
systematic procedure to obtain explicit solutions of (1.4) with

g = c0e−β + b+
n∑

j=1

ajejα or g =
n∑

j=1

cje−jβ + b+ a0eα, (1.6)

0 < α, β < λ and b, aj , cj ∈ C (j = 0, 1, . . . , n).
It allowed to construct solutions that were completely explicit and, moreover,
involved almost periodic functions with what might be regarded as a minimal
Bohr-Fourier spectrum.
Since this method is based on a graphical algorithm using a two-entries table,
an essential condition for the table method to be applicable is the existence
of solutions with spectra supported in an additive subgroup xZ + yZ of R
with two generators x and y (α and β in the cases studied in [5, 8]), so that
the values of the integer coefficients of the (real) parameters x and y can be
represented in the two entries of the table.
Although it was clear in [5, 8] that the table method was not exhausted
by the classes of problems treated in those papers, there was no hint at
that point that it could also be used to study Riemann-Hilbert problems of
the type (1.4) with 0 /∈ sp(g). This prompted the question, raised in [5],
of characterizing the most general class of APP functions g with spectrum
in αZ + βZ such that the problem (1.4), with g given by (1.6), admits an
almost periodic solution with spectrum also in αZ+ βZ.
In fact, it is not difficult to see that the table method, as presented in [5, 8],
cannot be applied if g is given by (1.5) with say α + σ > λ, µ > 0. In this
paper we show however that problems of the form (1.4) with 0 /∈ sp(g) can
be tackled by retaining the essential reasoning underlying the table method,
while changing some of its aspects whose importance actually stemmed from
the specific properties of the examples studied in the past. It should be
stressed, however, that the latter aspects, and the appropriate changes, were
by no means evident from the previous works, and overcoming this difficulty
was not a trivial task.
By using the table method approach, the solutions thus obtained exhibit
certain unexpected properties regarding their Bohr-Fourier spectrum. This
allows to consider them optimal, in the sense that they are defined by a
function with spectrum in a two parameter additive group. This is all the
more surprising given that the spectrum of the elements in G depend on
four parameters and, in particular, sp g lies in the three-parameter group
αZ+ µZ+ σZ.
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These results are presented in Sections 3 and 4, central to our paper. Namely,
in Section 3 we review the essentials of the table method and discuss its
implementation in the context of this paper. This (non trivial) generalization
of the table method is illustrated by solving a scalar problem (1.4), called
Problem g, for a particular case with trinomial g. The explicit determination
of solutions to Problem g, for g given by (1.5), under certain additional
restrictions, is obtained in Section 4.
The reason for imposing these restrictions is explained in Section 2. There
we also settle the notation and present the third subject that will play a main
role in this paper, along with Toeplitz operators TG and the Riemann-Hilbert
problem (1.1), namely, the (AP ) factorization of G and its partial(AP )
indices.
In Section 5 we demonstrate how the results of Section 4 can provide ex-
plicit solutions to (1.4) satisfying certain corona type conditions, thus yield-
ing existence criteria for a canonical (that is, having zero partial indices)
factorization of G and, under rather general assumptions, formulas of the
canonical factorization itself. They also provide expressions for its partial
AP indices if the factorization is not canonical in terms of the parameters
α, µ and σ. Moreover, new lower estimates of the partial AP indices are
obtained, raising the question whether they hold in a broader context.
These results are used in Section 6 to obtain a complete solution of the
factorization problem for G and the invertibility problem for the respective
Toeplitz operator TG, for a class of matrix symbols G with parameters α, µ, σ
in (1.5) lying in a certain domain for which a graphical interpretation of the
results is possible.
It is clear from the table method itself that it can also be applied to solve
Riemann-Hilbert problems of the form (1.4) where sp(g) has more than three
points in the same two-parameters group. More importantly, the explicit
form of the solutions thus obtained makes it clear that their expressions
remain valid for non-constant (and even non almost periodic) coefficients in
a certain range, henceforth revealing some stability properties that are yet
to be fully understood. These generalizations, and related open problems
are presented and discussed briefly in the final Section 7.

2. Almost periodic symbols and factorization

The algebra AP of Bohr almost periodic functions is defined as the closure
of APP , the set of almost periodic polynomials, with respect to the uni-
form norm. The notions of Bohr-Fourier spectra and coefficients extend
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from APP to AP . Namely, the Bohr-Fourier coefficient f̂(λ) is defined as
M(e−λf); recall that the Bohr mean value

M(f) := lim
T→∞

1

2T

∫ T

−T
f(t) dt

exists for any f ∈ AP , see e.g. [16, 17] for details. The Bohr-Fourier
spectrum sp(f) = {λ : f̂(λ) ̸= 0} is at most countable, so the (formal) Bohr-
Fourier series

∑
λ f̂(λ)eλ can be put in correspondence with f . The set of

f ∈ AP for which this series converges absolutely, that is,
∑

λ

∣∣∣f̂(λ)∣∣∣ < ∞,

forms the algebra APW .
Further, let

AP± = {f ∈ AP : sp(f) ⊂ R±}, where R± = {x ∈ R : ± x ≥ 0}.

AP± are closed subalgebras of AP . The subalgebras APW± and APP±

are defined as the intersections of AP± with APW and APP , respectively.
Note that

APP+ ⊂ APW+ ⊂ AP+ = AP∩H+
∞, APP

− ⊂ APW− ⊂ AP− = AP∩H−
∞

and so AP+ ∩AP− = C.
A (right) AP factorization of an n×n matrix function G is a representation

G = G−DG+, (2.1)

where
G±1

− ∈ (AP−)n×n, G±1
+ ∈ (AP+)n×n,

and D = diag[eµ1 , . . . eµn ] with µ1, . . . µn ∈ R. The values µ1, . . . , µn are
uniquely defined, up to a permutation, by the factorization (2.1), and are
called the partial AP indices of G. Substituting AP± in (2.1) by the more
restrictive APW±, APP±, or the less restrictiveH±

∞, we arrive at the defini-
tions of APW , APP , and bounded factorizations of G, respectively. Either
of these factorizations is called canonical if in (2.1) all the partial AP indices
are equal to zero, and so the middle factor D can be dropped:

G = G−G+. (2.2)

If a bounded factorization (2.2) exists, the respective Toeplitz operator is
invertible, and (2.2) provides an expression for its inverse:

T−1
G = G−1

+ P+G−1
− I,
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where P+ denotes the Riesz projection acting from Ln
p onto (H+

p )n entry-
wise.
For matrix functions G ∈ (APW )n×n this sufficient invertibility condition is
also necessary [2, Theorem 5.16]. Moreover, (2.2) is then automatically an
APW factorization of G. This is the main reason because of which the AP
factorization of matrices (1.2) with g ∈ APW is of interest. Note that the
factorability criterion for such matrices, even with g ∈ APP , is presently
not known.
Here is a brief summary of what is known for matrix functions of the form
(1.2) with g given by (1.5):
If α ≥ λ or σ ≥ λ, the respective term in (1.5) is inconsequential, and
effectively g becomes, at most, a binomial. If α or σ are non-positive, then
sp(g) lies to one side of the origin. Either way, G is then APP factorable, and
an explicit factorization was constructed in [12], see also [2], Sections 14.1
and 14.3. Further, if (α−µ)/(µ+σ) is rational, then the distances between
the points of sp(g) are commensurable. This again guarantees the APP
factorability, with factorization formulas given in [15] and [2, Section 14.4].
We will therefore suppose that

0 < α, σ < λ,
α− µ

µ+ σ
/∈ Q (2.3)

and, without loss of generality, that µ ≥ 0 (see [2, Section 13.2]). We will
assume, in addition to (2.3), that

α+ σ ≥ λ. (2.4)

Some factorability results are known for α+ σ < λ, see e.g. [6], [7], and [8],
but we will not pursue this case here.
If in (2.4) the equality holds, i.e., if α + σ = λ, and in addition µ = 0,
then G is not APP factorable. More specifically, it admits a canonical
APW (but not APP ) factorization if |a|σ |c|α ̸= |b|λ, and it is not AP
factorable otherwise. This criterion was established in [11, 13], while the
explicit factorization formulas were obtained in [1]; see also [2], Sections 15.1
and 23.3.
On the other hand, if along with (2.3) we have either α+ σ > λ, or α+σ =
λ and µ ̸= 0, then G is APP factorable. This was shown in [18] (see
also [2, Sections 15.2-15.4]) via a recursive procedure, not well suited for
the derivation of explicit factorization formulas. The explicit formulas for
a canonical factorization of G, in the case α + σ > λ, µ = 0 follow as
a particular case from [5], where a more general class of almost periodic
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polynomials g was treated. Explicit formulas for the case of a trinomial g
with α+ σ = λ, µ ̸= 0 were obtained in [14], showing that this factorization
is actually canonical.
Explicit (non-recursive) criteria for existence of a canonical factorization for
G, i.e., invertibility of TG, as well as explicit formulas for the factors G±,
when

α+ σ > λ, µ ̸= 0, (2.5)

have not been obtained before. This is why we concentrate in the forthcom-
ing sections on g given by (1.5) and in addition satisfying (2.3), (2.5).

3. The table method and Problem g

The factorization problem for 2 × 2 matrices of the form (1.2) is closely
connected to the solution of the Riemann-Hilbert problem (1.1) which in
its turn, can be equivalently formulated as a scalar problem (1.4). In [5],
a Riemann-Hilbert problem of the form (1.4), denoted by Problem (A, g)
where

g = ce−σ + b+
n∑

j=1

ajejα or g =
n∑

j=1

cje−jσ + b+ aeα , (3.1)

was considered and solved by what might be called a graphical algorithm
called the table method. Besides its simplicity this method had the advantage
of yielding explicit APP solutions with coefficients given by rather simple
expressions. The reasoning behind the table method, as well as its main
steps, have been described in detail in [5, Section 4]. Two main steps were
outlined. The first step consisted in obtaining a solution to (1.4) such that
ϕ1+ ∈ APW+ with

0 ∈ sp(ϕ1+) ⊂ αZ+ σZ , (3.2)

this being the starting point. The second step consisted in obtaining a
solution with ϕ− ∈ APW− and

0 ∈ sp(ϕ1−) ⊂ αZ+ σZ , (3.3)

which was linearly independent from the previous one, by applying a sim-
ple transformation ξ → −ξ to a solution, satisfying (3.2), of an associate
Problem (A,g(−)), where g(−)(ξ) = g(−ξ).
As a consequence it was possible to establish the existence of a canonical
factorization of G in all cases that were considered, as well as the explicit
formulas for the factors.
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Let now
g = ce−σ + beµ + aeα (3.4)

with a, b, c ∈ C\{0} and

µ ∈ [0, λ[, σ, α ∈]0, λ[, α > µ, α+ σ ≥ λ,
α− µ

µ+ σ
/∈ Q, (3.5)

assuming moreover that if

α+ σ = λ then µ > 0. (3.6)

Consider the following:

Problem g: Determine ϕ1+, ϕ2+ ∈ H+
∞ and ϕ2− ∈ H−

∞ with sp(ϕ1+) ⊂ [0, λ],
such that

gϕ1+ = ϕ2− − eλϕ2+

for g satisfying (3.4) and (3.5).

The most obvious difficulty arising in this case is the fact that g is now a
linear combination of exponentials involving three parameters, instead of
just two as in the case considered in [5, 8] . On the other hand, as will be
shown later, it turns out that in this case it is no longer possible to obtain
a solution to the Riemann-Hilbert problem (1.4) satisfying (3.2), nor can
we apply a simple change of variables such as ξ → −ξ in order to obtain
a second linearly independent solution to the same problem when µ > 0.
Moreover, as already shown in [2], an AP factorization of G in this case is
not necessarily canonical.
In order to apply the table method in this case, we start by reducing the
Riemann-Hilbert problem (1.4) with g given by (3.4) to an equivalent prob-
lem depending only on two parameters. To this end, let

x = µ+ σ , y = α− µ. (3.7)

Problem g can then be restated as either one of the following:

Problem (g, r): Determine ϕ̃1+, ϕ2−, ϕ2+ with ϕ̃1+, ϕ2+ ∈ APP+, ϕ2− ∈
APP− and sp(ϕ̃1+) ⊂ [α− y, λ+ α− y] such that

(ce−x + b+ aey)ϕ̃1+ = ϕ2− − eλϕ2+.

Problem (g, v): Determine ϕ1−, ϕ2−, ϕ2+ with ϕ1−, ϕ2− ∈ APP−, ϕ2+ ∈
APP+ and sp(ϕ̃1−) ⊂ [λ, 0] such that

(ce−x + b+ aey)ϕ1− = e−λ−α+yϕ2− − e−α+yϕ2+.
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Secondly, we replace (3.2) by an equivalent condition which is more appro-
priate to study the case when µ ̸= 0 in (3.4). Considering for simplicity that
n = 1 in (3.1), in which case

g = ce−σ + b+ aeα,

we easily see that imposing (3.2) is equivalent to imposing that ϕ2− ∈
APW− and

0 ∈ sp(ϕ2−) ⊂ αZ+ σZ. (3.8)

We will show in the next section that it is always possible to find a solution
to Problem g satisfying either (3.3) or (3.8).
Now we present an example which does not involve elaborate computations,
in order to illustrate how the results of the following sections were obtained
by the table method. Remark however that, while the solutions would have
been very difficult to obtain without this graphical algorithm, the proofs of
the results in the following sections are all of analytic nature.
Recall that (f1±, f2±) ∈ (H±

∞)2 is a corona pair (cf. [21]) in C± if and only
if

inf
z∈C±

(|f1±(z)|+ |f2±(z)|) > 0.

By the corona theorem (cf. [9]), (f1±, f2±) satisfies this condition if and only
if there exists a pair (f̃1±, f̃2±) ∈ (H±

∞)2 such that f1±f̃1± + f2±f̃2± = 1 in
C±.
Assume that α, µ, σ are such that (3.5) holds and, in addition,

3λ

2
≤ λ+ α ≤ 2(µ+ σ) ≤ λ+ 2α− µ. (3.9)

In terms of the parameters x and y defined by (3.7) we have

x+ y ≥ λ,
3λ

2
≤ λ+ α ≤ 2x ≤ λ+ α+ y. (3.10)

We start by looking for a solution to Problem (g, r) in the form of a linear
combination of exponentials ejx−ly with j, l ∈ N∪{0}, requiring 0 ∈ sp(ϕ2−).
This implies x ∈ sp(ϕ̃1+). Following the table method, we obtain the results
shown in Table 1, where the (j, l) entry in the boxed area is the Bohr-Fourier
coefficient of ϕ̃1+ corresponding to ejx−ly. The positions marked with ∗ and
∗∗ correspond to the points in the spectra of ϕ2− and eλϕ2+ respectively.
Note that the point 2x− 2y belongs to both sp(ϕ̃1+) and sp(eλϕ2+).
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Figure 1: Table 1

Thus we have, for Problem (g, r),

ϕ̃1+ = ex −
b

a
ex−y +

b2

a2
ex−2y −

b3

a2c
e2x−2y, (3.11)

which implies that the solution to Problem g is given by

ϕ1+ = ex+y−α − b

a
ex−α +

b2

a2
ex−y−α − b3

a2c
e2x−y−α, (3.12)

ϕ2+ = −a ex+y−λ +
b3

ac
e2x−y−λ +

b4

a2c
e2x−2y−λ, (3.13)

ϕ2− = c− bc

a
e−y +

b2c

a2
e−2y, (3.14)

if
x− y ≥ α. (3.15)

For x− y < α it is not possible to continue the same procedure and obtain
a solution to Problem (g, r) satisfying (3.8). However, we can obtain a
solution to Problem (g, v) for which (3.3) holds, according to the table
below. The (j, l) entry in the boxed area there is the Bohr-Fourier coefficient
of ϕ1−) corresponding to ejx−ly, while ∗ and ∗∗ correspond to the points
in the spectra of e−α+yϕ2+ and e−λ−α+yϕ2− respectively. Note that 0 ∈
sp(ϕ1−) ∩ sp(e−α+yϕ2+).
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Figure 2: Table 2

Thus we have the following solution of the Problem (g, v):

ϕ1− = 1− c

b
e−x +

ac

b2
e−x+y, (3.16)

ϕ2− = −ac
2

b2
e−2x+λ+α − c2

b
e−2x−y+λ+α, (3.17)

ϕ2+ = −beα−y − aeα − a2c

b2
e−x+y+α. (3.18)

For the case when (3.9) and, in addition, (3.15) hold, we see from (3.12)–
(3.13) that

(ϕ1+, ϕ2+) = eδ(ϕ
c
1+, ϕ

c
2+),

where
δ = min{x+ y − λ, 2x− 2y − λ, x− y − α} (3.19)

and ϕc1+, ϕ
c
2+ ∈ APP+.

On the other hand, as suggested by Table 1, we have

ϕ̃1+ =
1

c
exϕ2− − b3

a2c
e2x−2y

where ϕ̃1+ = eα−yϕ1+, which shows that

inf
S

(
|ϕc1+|+ |ϕc2+|

)
> 0

11



for any strip of finite width parallel to the real axis (see the proof of Theorem
2.3 in [3]), while

inf
C+\S

|ϕ1+| > 0 if δ = x+ y − α, and

inf
C+\S

|ϕ2+| > 0 if δ = x+ y − λ or δ = 2x− 2y − λ.

Therefore (ϕc1+, ϕ
c
2+) is a corona pair in C+, and we can see analogously

that (ϕ1−, ϕ2−) is a corona pair in C−. Consequently, G admits an APP
factorization with partial AP indices ±δ defined by (3.19) [4, Theorem 3.8].
Similarly, if (3.9) holds and x− y ≤ α, the partial AP indices are ±δ with

δ = min{λ− x, α− y, α+ y − x}.

We conclude, in particular, that an AP factorization of G, with x, y, α sat-
isfying (3.9), is canonical if and only if

x+ y = λ or x− y = α.

Indeed, for these values of x, y, α we always have α > y, 2x− 2y > λ,, while
x = λ if and only if x− y = α.
Finally, for x − y = α, (3.12)–(3.14) and (3.16)–(3.18) yield two linearly
independent solutions of the Riemann-Hilbert problem (1.1) which define
the factors

G± = [G±
ij ] (3.20)

in a canonical factorization (2.2) of G, where

G+
11 = e2(x−α) −

b

a
ex−α +

b2

a2
− b3

a2c
ex

G+
12 = eλ − c

b
eλ−x +

ac

b2
eλ−α

G+
21 = −a ex+y−λ +

b3

ac
e2x−y−λ +

b4

a2c
e2x−2y−λ

G+
22 = −beα−y − aeα − a2c

b2

G−
11 = e2(x−α)−λ − b

a
ex−α−λ +

b2

a2
e−λ − b3

a2c
ex−λ

G−
12 = 1− c

b
e−x +

ac

b2
e−α

G−
21 = c− bc

a
e−y +

b2c

a2
e−2y

G−
22 = −ac

2

b2
e−2x+λ+α − c2

b
e−2x−y+λ+α.
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4. Subgroup supported solutions to problem g: the trinomial case

Using the notation (3.7) introduced in Section 3, the conditions (3.5)–(3.6)
imposed on sp(g) can be rewritten as

0 < y ≤ α < λ, λ ≤ x+ y < λ+ α, x > 0,
x

y
/∈ Q (4.1)

and
x+ y ̸= λ or y ̸= α. (4.2)

We define P as the set of all triples (x, y, α) satisfying (4.1) and (4.2).
From x+ y ≥ λ and y ≤ α it follows that x+ α ≥ λ and, taking (4.2) into
account, we have

x+ α > λ. (4.3)

Below we will repeatedly use the standard notation [x] for the integer part
of x ∈ R, that is, the largest integer not exceeding x. On the other hand,
⌊x⌋ will stand for the largest integer strictly smaller than x:

⌊x⌋ =

{
[x] if x /∈ Z,
x− 1 otherwise.

Lemma 4.1. Let (x, y, α) ∈ P. Then for all n ∈ Z we have either[
λ+ ny

x

]
=

[
α+ ny

x

]
,

or [
λ+ ny

x

]
=

[
α+ ny

x

]
+ 1.

Proof. It is clear that, since α ∈]0, λ[, we have

α+ ny

x
<
λ+ ny

x
,

and so [
α+ ny

x

]
≤

[
λ+ ny

x

]
. (4.4)

From (4.3),
λ+ ny

x
<
α+ ny

x
+ 1. (4.5)

Since
[
λ+ny

x

]
is an integer, the result follows from (4.4) and (4.5).
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For any (x, y, α) ∈ P, let

J1(x,y,α) :=

{
j ∈ N ∪ {0} :

[
α+ jy

x

]
=

[
λ+ jy

x

]
and

λ+ jy

x
/∈ N

}
and

J(x,y,α) :=

{
j ∈ N ∪ {0} :

[
α+ jy

x

]
=

⌊
λ+ jy

x

⌋}
.

To prove our next result, the one-dimensional version of Kronecker’s theorem
will be needed, see e.g. [10]. For convenience of reference, we provide its
statement below.

Theorem 4.2. Let p be a positive irrational number. Then the set {np −
[np] : n ∈ N} is dense in the interval [0, 1].

Theorem 4.3. For all (x, y, α) ∈ P, we have J1(x,y,α) ̸= ∅.

Proof. If x + y > λ, according to Kronecker’s Theorem 4.2, there is some
n ∈ N ∪ {0} such that

(n+ 1)y

x
−

[
(n+ 1)y

x

]
< 1− λ− y

x
, (4.6)

since 0 < 1− λ−y
x < 1. Thus we have

λ+ ny

x
=

(n+ 1)y

x
+
λ− y

x
< 1 +

[
(n+ 1)y

x

]
≤ 1 +

[
α+ ny

x

]
,

so
[
λ+ny

x

]
< 1+

[α+ny
x

]
. Since λ+ny

x > α+ny
x , we cannot have λ+ny

x ∈ N and

therefore, by Lemma 4.1 we have[
α+ ny

x

]
=

⌊
λ+ ny

x

⌋
=

[
λ+ ny

x

]
.

If x + y = λ, from Kronecker’s Theorem we have that there is some n ∈
N ∪ {0} such that

(n+ 1)y

x
−

[
(n+ 1)y

x

]
>
λ− α

x
,

where 0 < λ−α
x < 1. Since in this case (n+1)y

x = λ+ny
x , we have

λ+ ny

x
−

[
λ+ ny

x

]
>
λ− α

x
.

14



It follows that
[
λ+ny

x

]
< α+ny

x . Therefore, we have
[
λ+ny

x

]
=

[α+ny
x

]
and

λ+ny
x /∈ N, so

[α+ny
x

]
=

⌊
λ+ny

x

⌋
.

If λ+ny
x ∈ N, then λ+ny

x − 1 ∈ N and x+ y > λ. From (4.6) we have

λ+ ny

x
− 1 <

[
(n+ 1)y

x

]
≤ 1 +

[
α+ ny

x

]
≤ 1 +

[
λ+ ny

x

]
= 1 +

λ+ ny

x
.

Therefore we must have[
(n+ 1)y

x

]
= 1 +

[
α+ ny

x

]
= 1 +

λ+ ny

x

and
[α+ny

x

]
= λ+ny

x , which is impossible because
[α+ny

x

]
≤ α+ny

x < λ+ny
x .

Since J1(x,y,α) ⊂ J(x,y,α), we immediately conclude the following:

Corollary 4.4. For all (x, y, α) ∈ P, we have J(x,y,α) ̸= ∅.

Having fixed (x, y, α) ∈ P, let now

N(x,y,α) := min J(x,y,α), (4.7)

S−1 = 1, (4.8)

Sl =

[
λ+ ly

x

]
if l = 0, 1, . . . , N − 1, (4.9)

SN :=

[
α+Ny

x

]
=

⌊
λ+Ny

x

⌋
. (4.10)

It is clear that
λ+Ny

x
− 1 ≤ SN ≤ α+Ny

x
, (4.11)

and on the other hand we have

λ+ ly

x
− 1 ≤ λ+ ly

x
+
α− y

x
− 1 ≤ α+ ly

x
<
λ+ ly

x
, (4.12)

for all l ∈ N ∪ {0}. So, the following theorem holds:

Theorem 4.5. For all (x, y, α) ∈ P we have

α+ ly

x
< Sl <

λ+ ly

x
and Sl =

[
α+ ly

x

]
+1 for all l = 0, . . . , N − 1,

(4.13)
and one of the following must hold:
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(i) λ+Ny
x − 1 < SN ≤ λ+Ny

x + α−y
x − 1 ,

(ii) λ+Ny
x + α−y

x − 1 ≤ SN < α+Ny
x ,

(iii) SN = λ+Ny
x − 1 ,

(iv) SN = α+Ny
x .

Proof. By (4.7), (4.9) and (4.10) we cannot have Sl ≤ α+ly
x , since this would

imply that λ+ly
x /∈ N, because otherwise we would have Sl =

λ+ly
x − 1 and⌊

λ+ly
x

⌋
=

[
λ+ly
x

]
=

[
α+ly
x

]
, which is impossible for l < N . On the other

hand, we have Sl ≤ λ+ly
x but we cannot have Sl =

λ+ly
x since this would

imply that
⌊
λ+ly
x

⌋
= λ+ly

x − 1 =
[
α+ly
x

]
, which is impossible for l < N .

Therefore (4.13) must hold. The rest follows immediately from (4.11) and
(4.12).

Remark that we have λ ≤ λ+ α− y ≤ α+ x.
We can now present a solution to the Riemann-Hilbert problem (1.1).
Recall that, by Theorem 4.5, either λ ≤ (SN + 1)x − Ny ≤ λ + α − y or
λ+ α− y ≤ (SN + 1)x−Ny ≤ α+ x.

Theorem 4.6. For all (x, y, α) ∈ P, the Riemann-Hilbert problem (1.1)
admits an APP solution (ϕ+, ϕ−) such that 0 ∈ sp(ϕ2−) or 0 ∈ sp(ϕ1−).
Namely, if

λ ≤ (SN + 1)x−Ny ≤ λ+ α− y , (4.14)

then an APP solution to the Riemann-Hilbert problem (1.1) is given by

ϕr1+ =

N∑
l=0

Sl∑
j=Sl−1

(
−b
c

)j−1(
− b
a

)l

ejx−(l−1)y−α +

(
−b
c

)SN
(
− b
a

)N

eγ ,(4.15)

where γ = (SN + 1)x− (N − 1)y − α , (4.16)

ϕr2+ =

N−1∑
l=0

Sl+1∑
j=Sl+1

−a
(
−b
c

)j−1(
− b
a

)l+1

ejx−ly−λ

−b
(
−b
c

)SN
(
− b
a

)N

e(SN+1)x−Ny−λ +

S0∑
j=S−1

ac

b

(
−b
c

)j

ejx+y−λ

−a
(
−b
c

)SN
(
− b
a

)N

e(SN+1)x−(N−1)y−λ , (4.17)
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ϕr1− = e−λϕ
r
1+, (4.18)

ϕr2− =

N∑
l=0

c

(
−b
c

)Sl−1−1(
− b
a

)l

e(Sl−1−1)x−ly. (4.19)

Respectively, if

λ+ α− y ≤ (SN + 1)x−Ny ≤ α+ x , (4.20)

then an APP solution to the Riemann-Hilbert problem (1.1) is given by

ϕv1− = 1 +
N∑
l=0

Sl∑
j=Sl−1

(
−c
b

)j(
−a
b

)l
e−jx+ly , (4.21)

ϕv2− =
N∑
l=0

c
(
−c
b

)Sl
(
−a
b

)l
eλ−(Sl+1)x+(l−1)y+α , (4.22)

ϕv1+ = eλϕ
v
1−, (4.23)

ϕv2+ = −beα−y − aeα − a
(
−c
b

)SN
(
−a
b

)N
e−SNx+Ny+α −

−
N∑
l=0

Sl−1∑
j=Sl−1

a
(
−c
b

)j (
−a
b

)l
e−jx+ly+α. (4.24)

Note that in (4.21) we have 0 ∈ sp(ϕv1−), while 0 ∈ sp(ϕr2−) in (4.19).
To prove Theorem 4.6 we use the following two results.

Lemma 4.7. Let (x, y, α) ∈ P, and let N and Sl be defined by (4.9) and
(4.10), respectively. Then

(i) 0 ≤ Sl−1 ≤ Sl for all l ∈ {0, 1, . . . , N};

(ii) If l ∈ {0, 1, . . . , N − 1}, then α − y < jx − ly < λ, for all j =
Sl−1, . . . , Sl;

(iii) (Sl + 1)x− ly ≥ λ , for all l ∈ {0, 1, . . . , N − 1};

(iv) (Sl−1 − 1)x− ly ≤ 0 , for all l ∈ {0, 1, . . . , N}.

Proof. For l = 0, 1, . . . , N − 1, statement (i) follows immediately from (4.9),
and for l = N , if λ+Ny

x /∈ N, from (4.10). On the other hand, if λ+Ny
x ∈ N,

then SN = λ+Ny
x − 1 = λ+Ny−x

x and

SN−1 =

[
λ+ (N − 1)y

x

]
=

[
SN + 1− y

x

]
≤ SN + 1− y

x
< SN + 1.
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Therefore, SN−1 ≤ SN .
To prove (ii), it suffices to show that

Sl−1x− ly > α− y , (4.25)

Slx− ly < λ (4.26)

since, for j = Sl−1, . . . , Sl, we have

Sl−1x− ly ≤ jx− ly ≤ Slx− ly.

Now, since l − 1 < N , we have from Theorem 4.5

α+ ly

x
< Sl <

λ+ ly

x
, l = 0, . . . , N − 1

so that Sl−1 >
α+(l−1)y

x and Slx− ly < λ. Thus, (4.25) and (4.26) hold.
In its turn, (iii) easily follows from the definition of Sl. The same is true for
(iv), taking into account that λ− y ≤ x because x+ y ≥ λ.

Theorem 4.8. Let (x, y, α) ∈ P, and let N be defined by (4.7). If

λ ≤ (SN + 1)x−Ny ≤ λ+ α− y , (4.27)

then an APP solution to Problem (g, r) is given by

ϕ̃r1+ =
N∑
l=0

Sl∑
j=Sl−1

(
−b
c

)j−1(
− b
a

)l

ejx−ly

+

(
−b
c

)SN
(
− b
a

)N

e(SN+1)x−Ny ,

ϕr2+ =

N−1∑
l=0

Sl+1∑
j=Sl+1

−a
(
−b
c

)j−1(
− b
a

)l+1

ejx−ly−λ +

−b
(
−b
c

)SN
(
− b
a

)N

e(SN+1)x−Ny−λ +

S0∑
j=S−1

ac

b

(
−b
c

)j

ejx+y−λ

−a
(
−b
c

)SN
(
− b
a

)N

e(SN+1)x−(N−1)y−λ ,

ϕ̃r1− = e−λϕ1+ ,

ϕr2− =

N∑
l=0

c

(
−b
c

)Sl−1−1(
− b
a

)l

e(Sl−1−1)x−ly.
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Proof. A straightforward computation shows that

(ce−x + b+ aey)ϕ̃
r
1+ = ϕr2− − eλϕ

r
2+.

To prove that sp(ϕ̃r1+) ⊂ [α − y, λ + α − y], it suffices to show that for all
l = 0, . . . , N and j = Sl−1, . . . , Sl,

α− y ≤ jx− ly ≤ λ+ α− y

and
α− y ≤ (SN + 1)x−Ny ≤ λ+ α− y. (4.28)

If l = 0, . . . , N − 1, from Lemma 4.7 (ii), we have

α− y < jx− ly ≤ λ ≤ λ+ α− y,

for all j = Sl−1, . . . , Sl. If l = N , since

SN−1x−Ny ≤ jx−Ny ≤ SNx−Ny

for j = Sl−1, . . . , Sl, it suffices to show that

SN−1x−Ny ≥ α− y and SNx−Ny ≤ λ+ α− y,

which is indeed the case due to Lemma 4.7 and (4.27), respectively. On the
other hand, it is easy to see from (4.27), that (4.28) holds.
It remains to prove that ϕr2± ∈ H±

∞. As to ϕr2+, we have:

• If l = 0, . . . , N − 1, we have (Sl + 1)x − ly − λ ≤ jx − ly − λ, for all
j = Sl + 1, . . . , Sl+1. But due to Lemma 4.7, (Sl + 1)x− ly − λ ≥ 0.

• From (v) of the same lemma, it follows that (SN + 1)x−Ny − λ ≥ 0.

• Taking into account that 0 ≤ x + y − λ ≤ jx + y − λ, for all j =
S−1, . . . , S0 and (4.27), we conclude that ϕr2+ ∈ H+

∞.

By (iv) of Lemma 4.7, we have (Sl−1 − 1)x− ly ≤ 0, for all l = 0, . . . , N . So
we conclude that ϕr2− ∈ H−

∞.

Proof of Theorem 4.6: Note that λ ≤ λ + α − y ≤ α + x. So, according to
Theorem 4.5 we have either

λ ≤ (SN + 1)x−Ny ≤ λ+ α− y (4.29)

or
λ+ α− y ≤ (SN + 1)x−Ny ≤ α+ x. (4.30)
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Let (4.29) hold. The Riemann-Hilbert problem (1.1) can be written in the
form {

e−λϕ1+ = ϕ1−
(ce−x + b+ aey)ϕ1+ = ϕ2− − eλϕ2+

where ϕ1+ = eα−yϕ̃1+. Therefore, the Riemann-Hilbert problem (1.1) ad-
mits a solution ϕ1+ if and only if ϕ̃1+ = e−α+yϕ1+ is a solution to Problem
(g, r). Therefore, the solution to (1.1) immediately follows from the above
mentioned equivalence with Problem (g, r) and from Theorem 4.8; in this
case 0 ∈ sp(ϕr2−).
Let (4.30) hold. We will prove now that

sp(ϕv1−) ⊂ [−λ, 0] and ϕv2± ∈ H±
∞.

• If l = 0, . . . , N , to prove that sp(ϕv1−) ⊂ [−λ, 0], it is enough to show
that

−Slx+ ly ≥ −λ (4.31)

−Sl−1x+ ly ≤ 0, (4.32)

since, for j = Sl−1, . . . , Sl, we have

−Slx+ ly ≤ −jx+ ly ≤ −Sl−1x+ ly.

It is easy to see that (4.31) follows from Lemma 4.7 (v) and (vi).

From (vi) of the same lemma we have −Sl−1x + (l − 1)y < −α , l =
0, . . . , N . Since y ≤ α we have −Sl−1x+ ly < y− α ≤ 0 and therefore
(4.32) holds.

• To prove that ϕv2− ∈ H−
∞, we have to show that

λ− (Sl + 1)x+ (l − 1)y + α ≤ 0, for l = 0, . . . , N. (4.33)

If l = 0, . . . , N − 1, taking into account that x+ y ≥ λ and Lemma 4.7
(vi), we have

Slx− ly > α ≥ α+ λ− x− y. (4.34)

If l = N , from (4.30) we have also

(SN + 1)x−Ny ≥ λ+ α− y. (4.35)

So (4.34) and (4.35) imply (4.33) and we conclude that ϕv2− ∈ H−
∞.
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• As to ϕv2+, due to (4.30) we have that −SNx + Ny + α ≥ 0, so it is
clear that α−y, α,−SNx+Ny+α ≥ 0. Therefore, it remains to prove
that −jx + ly − α ≥ 0, for all l = 0, . . . , N and j = Sl−1, . . . , Sl − 1.
Since −jx+ ly − α ≥ −(Sl − 1)x+ ly − α, we just have to show that

−(Sl − 1)x+ ly − α ≥ 0, for l = 0, . . . , N. (4.36)

If l = 0, . . . , N − 1, taking into account that x ≥ λ − α and Lemma
4.7 (vi) we have

Slx− ly ≤ λ ≤ α+ x. (4.37)

If l = N , from (4.30) we have

SNx−Ny ≤ α < α+ x. (4.38)

Therefore from (4.37) and (4.38) we have (4.36) and we conclude that
ϕv2+ ∈ H+

∞.

Finally, a straightforward computation shows that in fact (4.21)–(4.24) is
an APP solution to (1.1) with 0 ∈ sp(ϕv1−).

5. Partial AP indices and canonical factorization

As was already mentioned in Section 2, matrix functions (1.2) with g defined
by (3.4)–(3.6) are APP factorable. We will now use Theorem 4.6 to extract
some additional information concerning the partial AP indices ±δ̃ of this
factorization. To this end, observe the following:

(i) if λ ≤ (SN + 1)x−Ny ≤ λ+ α− y, then:
ϕ+ = eδ

(
ϕc1+, ϕ

c
2+

)
with ϕc1+, ϕ

c
2+ ∈ APP+,

δ = min ({δ1, δ2} ∪ {Slx− ly − α , l = 0, . . . , N − 1}) , (5.1)

with δ1 = (SN + 1)x−Ny − λ , δ2 = x+ y − λ;

0 ∈ sp(ϕc1+), 0 ∈ sp(ϕ2−).

(ii) if λ+ α− y ≤ (SN + 1)x−Ny ≤ α+ x, then:
ϕ+ = eδ

(
ϕc1+, ϕ

c
2+

)
with ϕc1+, ϕ

c
2+ ∈ APP+,

δ = min ({δ1, δ2} ∪ {λ− Slx+ ly , l = 0, . . . , N − 1}) , (5.2)

with δ1 = −SNx+Ny + α , δ2 = α− y;

0 ∈ sp(ϕc2+), 0 ∈ sp(ϕ1−).

21



We now conclude:

Theorem 5.1. The partial AP indices ±δ of G are given by (5.1)–(5.2) if
(ϕc1+, ϕ

c
2+) and (ϕ1−, ϕ2−) are corona pairs. In that case, δ ≤ µ = α− y.

Recall that the Toeplitz operator TG with matrix n × n symbol G acts
according to the formula

TGf = P+Gf, f ∈ Xn.

Various settings are possible, depending on the choice of the spaceX and the
respective meaning of the (acting entry-wise) projection P+. In particular,
X may be a Hardy space H+

p of functions analytic in the upper half space
with 1 < p < ∞; P+ is then the projection of Lp onto H+

p parallel to
H−

p , and G can be any matrix function in Ln×n
∞ . For G ∈ APn×n one

may also take X to be the Besicovitch space, and for G ∈ APWn×n the
case X = APW+ can be considered; see [2] for the detailed treatment. In
all the settings mentioned above, the relation between certain properties
of TG (Fredholmness, one- or two-sided invertibility, dimensions of kernel
and cokernel, etc.) and an appropriate factorization of the symbol G are
the same, and therefore we will not specify the spaces in the forthcoming
statements.

Corollary 5.2. Let (x, y, α) ∈ P and let N be defined by (4.7). A necessary
condition for TG to be invertible is that δ, given by (5.1)–(5.2) is equal to 0,
i.e.:

(i) (SN + 1)x−Ny = λ, or x+ y = λ,
or SLx− Ly = α, for some L ∈ {0, . . . , N − 1},
if

λ ≤ (SN + 1)x−Ny ≤ λ+ α− y (5.3)

(ii) SNx−Ny = α, or y = α,
or SLx− Ly = λ, for some L ∈ {0, . . . , N − 1},
if

λ+ α− y ≤ (SN + 1)x−Ny ≤ α+ x. (5.4)

These conditions are necessary and sufficient if (ϕ1+, ϕ2+) and (ϕ1−, ϕ2−)
are corona pairs in C+ and C−, respectively.

These results yield some simple criteria for the invertibility of Toeplitz oper-
ators TG. For example, we have the following, in the notation of the previous
theorem.
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Theorem 5.3. If (x, y, α) ∈ P and, for some n ∈ N, we have x = λ
n or

x = α
n−1 ≥ λ

n , then TG is invertible.

Proof. Let x = λ
n with n ∈ N. Then n − 1 ≤ α

x < n and we have N = 0,

since ⌊λx⌋ = n− 1 =
[
α
x

]
, S0 = n− 1, and ϕ2− = c. Therefore (ϕ1−, ϕ2−) is a

corona pair in C−. On the other hand it is clear that (4.14) is satisfied and
it follows from Theorem 4.6 and from Theorem 2.3 in [3] that (ϕr1+, ϕ

r
2+),

given by (4.15) and (4.17), is a corona pair in C+.
We can follow a similar reasoning if x = α

n−1 ≥ λ
n . In this case 1 < λ

α ≤ n
n−1

and n − 1 < λ
x = λ

α(n − 1) ≤ n, so that we also have ⌊λx⌋ = n − 1 = α
x and

N = 0, and (4.20) is satisfied.

The existence of a canonical factorization can also be proved by determining
two linearly independent solutions to the Riemann-Hilbert problem (1.1)
satisfying the conditions of the following theorem. In that case δ, given by
(5.1)–(5.2), is 0 and (ϕ1±, ϕ2±) are corona pairs in C±, respectively.

Theorem 5.4 ([5]). Let ϕ1+, ψ1+ be solutions to Problem (1.1). Then G
admits a canonical bounded factorization (2.2) with

G− =

[
ϕ1− ψ1−
ϕ2− ψ2−

]
, G+ =

[
ϕ1+ ψ1+

ϕ2+ ψ2+

]−1

,

if, for some sequence (ξn) such that ξn ∈ C+ (respectively, C−) and |ξn| →
+∞ we have

lim
n→∞

(ϕ2+ψ1+ − ψ2+ϕ1+)(ξn) ̸= 0,

(respectively, limn→∞(ϕ2−ψ1− − ψ2−ϕ1−)(ξn) ̸= 0).

Now we have the following.

Theorem 5.5. Under the assumptions of Corollary 5.2, the necessary con-
ditions established in this corollary for TG to be invertible are also sufficient
if:

(i) (5.3) holds and

SLx− Ly = α, for some L ∈ {0, . . . , N − 1}, (5.5)

or (SN + 1)x−Ny = λ, with N = 0 or

⌊
λ− α

y

⌋
≤ x− α

y
, (5.6)

or x+ y = λ.
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(ii) (5.4) holds and

SLx− Ly = λ, for some L ∈ {0, . . . , N − 1}, (5.7)

or SNx−Ny = α, with

⌊
λ− α+ y

x

⌋
≤ λ

x
− 1, (5.8)

or y = α.

Proof. (i) Assume that (5.3) holds. If (5.5) or (5.6) hold, we see from
Theorem 5.4 that TG is invertible, by taking ϕ1± = ϕr1±, ϕ2± = ϕr2±,
where ϕr1±, ϕ

r
2± are defined by (4.15–4.19), and

ψ1− = 1 +

L∑
l=0

Sl∑
j=Sl−1

(
−c
b

)j (
−a
b

)l
e−jx+ly ,

ψ2− =

L∑
l=0

c
(
−c
b

)Sl
(
−a
b

)l
eλ−(Sl+1)x+(l−1)y+α ,

ψ1+ = eλψ1− ,

ψ2+ = −beα−y − aeα − a
(
−c
b

)SL
(
−a
b

)L

−
L∑
l=0

Sl−1∑
j=Sl−1

a
(
−c
b

)j (
−a
b

)l
e−jx+ly+α

if (5.5) is satisfied, and

ψ1− = 1 +

N∑
l=0

Sl∑
j=Sl−1

(
−c
b

)j (
−a
b

)l
e−jx+ly +

(
−c
b

)SN+1 (
−a
b

)N
e−λ

+

k−1∑
j=1

(
−c
b

)SN+1 (
−a
b

)N+j
e−λ+jy ,

ψ2− =
N−1∑
l=0

c
(
−c
b

)Sl
(
−a
b

)l
eλ−(Sl+1)x+(l−1)y+α

+c

k−1∑
j=0

(
−c
b

)SN+1 (
−a
b

)N+j
e−x+(j−1)y+α ,

ψ1+ = eλψ1− ,
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ψ2+ = −beα−y − aeα − a
(
−c
b

)SN
(
−a
b

)N
e−λ+x+α

−
N∑
l=0

Sl−1∑
j=Sl−1

a
(
−c
b

)j (
−a
b

)l
e−jx+ly+α +

+b
(
−c
b

)SN+1 (
−a
b

)N+k
e−λ+(k−1)y+α ,

where k =

⌊
λ− α

y

⌋
+ 2,

if (5.6) is satisfied.

Note that x+ y = α+ σ, so the case x+ y = λ is covered by [14].

(ii) Assume now that (5.4) holds. Then, if (5.7) or (5.8) holds, we conclude
from Theorem 5.4 that TG is invertible by taking ϕ1± = ϕv1±, ϕ2± =
ϕv2±, where ϕ

v
1±, ϕ

v
2± are defined by (4.21)–(4.24), and

ψ1+ =
L∑
l=0

Sl∑
j=Sl−1

(
−b
c

)j−1(
− b
a

)l

ejx−(l−1)y−α +

(
−b
c

)SL
(
− b
a

)L

ex+y−α ,

ψ2+ =

L−1∑
l=0

Sl+1∑
j=Sl+1

−c
(
−b
c

)j(
− b
a

)l

ejx−ly−λ − b

(
−b
c

)SL
(
− b
a

)L

−
S0∑

j=S−1

a

(
−b
c

)j−1

ejx+y−λ − a

(
−b
c

)SL
(
− b
a

)L

ey ,

ψ1− = e−λψ1+,

ψ2− =

L∑
l=0

c

(
−b
c

)Sl−1−1(
− b
a

)l

e(Sl−1−1)x−ly.

if (5.7) is satisfied, and

ψ1+ =
N∑
l=0

Sl∑
j=Sl−1

(
−b
c

)j−1(
− b
a

)l

ejx−(l−1)y−α +

(
−b
c

)SN−1(
− b
a

)N+1

+

k∑
j=1

(
−b
c

)SN+j−1(
− b
a

)N+1

ejx ,
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ψ2+ =
N−1∑
l=0

Sl+1∑
j=Sl+1

−a
(
−b
c

)j−1(
− b
a

)l+1

ejx−ly−λ

−
S0∑

j=S−1

a

(
−b
c

)j−1

ejx+y−λ − bc

a

(
−b
c

)SN+k(
− b
a

)N

eα−y+kx−λ

−
k∑

j=1

a

(
−b
c

)SN+j−1(
− b
a

)N+1

eα+jx−λ ,

ψ1− = e−λψ1+,

ψ2− =
c2

a

(
−b
c

)SN
(
− b
a

)N

eα−y−x −
N∑
l=0

c2

b

(
−b
c

)Sl−1
(
− b
a

)l

e(Sl−1−1)x−ly ,

if (5.8) is satisfied, where k =
⌊
λ−α+y

x

⌋
+ 1.

If y = α, that is, µ = 0, the operator TG is invertible by [5].

The proof of Theorem 5.5 provides an explicit canonical factorization for G,
revealing in particular additional information concerning the Bohr-Fourier
spectra of the entries of G±. To put this in perspective, recall that according
to [19] for any G admitting an AP factorization and such that sp(G) ⊂ Σ
for some additive subgroup of R, it is possible to choose a factorization in
such a way that

sp(G±), sp(G
−1
± ) ⊂ Σ. (5.9)

In particular, the partial AP indices of G lie in Σ. If the AP factorization of
G is a priori canonical, the latter statement is redundant, and the property
(5.9) holds for every factorization of G, as was shown earlier in [1, 20]. For
matrix functions (1.2) this observation was strengthened in [6]. Skipping
technical details, for which we refer to Theorem 6.1 of [6], the result is
as follows: if sp(g) ⊂ Σ0 for some subgroup Σ0 of R and (1.2) admits a
canonical factorization, then each entry of G± (and thus G−1

± as well) has
its Bohr-Fourier spectra located in exactly one of the three sets Σ0, Σ0 + λ
and Σ0−λ. In our setting of g given by (1.5), Σ0 = xZ+yZ+αZ. However,
the formulas obtained while proving Theorem 5.5 show that in fact the Boh-
Fourier spectra of each entry of G±, G

−1
± belong to one of five smaller sets

Σ1,Σ1 ± α,Σ1 ± (α+ λ), where Σ1 is the subgroup xZ+ yZ of Σ0.

Remark 5.6. It remains to be seen whether an APP factorization of G is
canonical when (5.3) and (5.6) hold without the additional condition that
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N = 0 or
⌊
λ−α
y

⌋
≤ x−α

y , and when (5.4) and (5.8) hold without the addi-

tional condition that
⌊
λ−α+y

x

⌋
≤ λ

x−1. The authors’ conjecture is that, in all

cases, the necessary conditions of Corollary 5.2 are sufficient for invertibility
of TG.

6. Example

Assume now that α, µ, σ are such that (3.5) holds, and in addition

α >
2

3
λ ,

λ

2
≤ x ≤ λ, (6.1)

with x defined by (3.7). From the results of Section 4, it follows that:

Theorem 6.1. For all (x, y, α) ∈ P satisfying (6.1), the Riemann-Hilbert
problem (1.1) admits an APP solution (ϕ+, ϕ−) given by

ϕ1+ =
1

c
ex+y−α (1− η)ϕ2− + ζ, (6.2)

ϕ2+ = −e−λP[0,+∞[(gϕ1+), (6.3)

ϕ1− = e−λϕ1+, (6.4)

where

(I) if λ ≤ 2x ≤ α+ x, we have

(i) ϕ2− = c, η = 0, ζ = −b
c
e2x+y−α, if 2x ≤ λ+ α− y;

(ii) ϕ2− = c
(
−c
b

)
eλ+α−2x−y, η = 0, ζ = eλ,

if 2x ≥ λ+ α− y;

(II) if α ≤ x ≤ α+ y, we have

(i) ϕ2− = c− c

k−1∑
j=0

(
b

a

)j+1(b
c

)j

ejx−(j+1)y,

η =
b

c
ex, ζ =

b

c
e2x+y−α,

if λ ≤ (k + 1)x− ky ≤ λ+ α− y, k ∈ N ;
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(ii) ϕ2− = c
(a
b

)k (c
b

)k
eλ+α−(k+1)x+(k−1)y

−
k−1∑
j=0

c
(a
b

)j (c
b

)j+1
eλ+α−(j+2)x+(j−1)y,

η =
b

c
ex, ζ =

(a
b

)k (c
b

)
eλ−(k−1)x+ky,

if λ+ α− y ≤ (k + 1)x− ky ≤ λ+ x− y, k ∈ N;

(III) if α+ y ≤ x, we have

(i) ϕ2− =

k+1∑
j=0

c

(
− b
a

)j

e−jy,

η = 0, ζ =

(
− b
a

)k+1(
−b
c

)
e2x−ky−α,

if α+ x− y ≤ 2x− (k + 1)y ≤ λ+ α− y, k ∈ N;

(ii) ϕ2− =

k+1∑
j=0

c
(
−a
b

)j (
−c
b

)
eλ+α−2x+(j−1)y,

η = 0, ζ = eλ,
if λ+ α− y ≤ 2x− (k + 1)y ≤ α+ x, k ∈ N.

Theorem 6.2. For all (x, y, α) ∈ P satisfying (6.1), the partial AP indices
±δ of G are given by the following formulas

(I) if λ ≤ 2x ≤ α+ x, we have

(i) δ = min{2x− λ, x+ y − λ}, if 2x ≤ λ+ α− y;

(ii) δ = min{α− x, α− y}, if 2x ≥ λ+ α− y;

(II) if α ≤ x ≤ α+ y, we have

(i) δ = min{(k + 1)x− ky − λ, x− α},
if λ ≤ (k + 1)x− ky ≤ λ+ α− y, k ∈ N ;

(ii) δ = min{λ− kx+ (k − 1)y, α− y, α− k(x− y)},
if λ+ α− y ≤ (k + 1)x− ky ≤ λ+ x− y, k ∈ N;

(III) if α+ y ≤ x, we have
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(i) δ = min{x− ky − α, x+ y − λ},
if α+ x− y ≤ 2x− (k + 1)y ≤ λ+ α− y, k ∈ N;

(ii) δ = min{λ− x, α+ (k − 1)y − x},
if λ+ α− y ≤ 2x− (k + 1)y ≤ α+ x, k ∈ N.

Proof. We prove this result for the case (I)-(i); in the remaining cases the
proof is similar, using (6.2) and Theorem 2.3 in [3].
Let λ ≤ 2x ≤ α+ x and 2x ≤ λ+ α− y. Then from (6.2)–(6.4) we obtain

ϕ1+ = ex+y−α +

(
−b
c

)
e2x+y−α ,

ϕ2+ = a

(
−b
c

)(
− b
a

)
e2x−λ − aex+y−λ − a

(
−b
c

)
e2x+y−λ ,

ϕ1− = e−λϕ1+ ,

ϕ2− = c .

It is easy to check that (ϕ1+, ϕ2+) = eδ(ϕ
c
1+, ϕ

c
2+), where δ = min{2x −

λ, x+ y − λ} and ϕc1+, ϕ
c
2+ ∈ APP+. Moreover, by (6.2) we have

inf
S
(|ϕc1+|+ |ϕc2+|) > 0

for any strip S of finite width parallel to the real axis (see the proof of
Theorem 2.3 in [3]). In addition, infC+\S |ϕc2+| > 0 if δ = 2x − λ or δ =
x+y−λ. Therefore (ϕc1+, ϕc2+) is a corona pair in C+. We can see analogously
that (ϕ1−, ϕ2−) is a corona pair in C−, since infS(|ϕ1−|+ |ϕ2−|) > 0 for any
strip S as above and infC−\S |ϕc2−| > 0 (cf. [3, Theorem 2.3]).

From here we immediately obtain:

Corollary 6.3. For (x, y, α) ∈ P satisfying (6.1), we have 0 ≤ δ ≤ µ.

Note that we may have δ = µ, and therefore Corollary 6.3 provides optimal
estimate for the partial AP indices.

Corollary 6.4. Let (x, y, α) ∈ P satisfy (6.1). A necessary and sufficient
condition for TG to be invertible is that

(I) if λ ≤ 2x ≤ α+ x, we have

(i) x = λ
2 or x+ y = λ, if 2x ≤ λ+ α− y;

(ii) x = α, if 2x ≥ λ+ α− y;
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(II) if α ≤ x ≤ α+ y, we have

(i) (k + 1)x− ky = λ or x = α,
if λ ≤ (k + 1)x− ky ≤ λ+ α− y, k ∈ N ;

(ii) kx− (k − 1)y = λ or k(x− y) = α,
if λ+ α− y ≤ (k + 1)x− ky ≤ λ+ x− y, k ∈ N;

(III) if α+ y ≤ x, we have

(i) x− ky = α or x+ y = λ,
if α+ x− y ≤ 2x− (k + 1)y ≤ λ+ α− y, k ∈ N;

(ii) x = λ or x− (k + 1)y = α,
if λ+ α− y ≤ 2x− (k + 1)y ≤ α+ x, k ∈ N.

The factors in a canonical factorization of G can be obtained, for λ
2 < x <

λ, x + y > λ, from Theorem 6.1 noting that, in each case, it provides two
linearly independent solutions to Problem g. Thus, for instance, if x−y = α,
then (6.2)–(6.4) and (II)-(i) provide the first columns of G+ and G−, while
(6.2) – (6.4) and (III)-(ii) provide the second columns of these factors (cf.
(3.20)).
In Figure 3 we represent the cross-section of P satisfying (6.1) for a certain
value α (α = 0, 67) indicating by different colours the points corresponding
to (I)-(i), (II)-(i), (III)-(i) (red) and to (I)-(ii), (II)-(ii), (III)-(ii) (green). (In
the black and white version red and green correspond to dark and light grey,
respectively.) The points on the thicker black lines are those corresponding
to values of (x, y, α) for which G admits a canonical factorization, accord-
ing to Corollary 6.4. For all other points the results of Theorems 6.1 and
6.2 provide an explicit solution to Problem g and to the Riemann-Hilbert
problem (1.1), as well as explicit formulas for the partial AP indices.
It may be worth noting that the borderline cases α+ σ = λ and α+ σ > λ,
µ = 0 for which explicit necessary and sufficient conditions for existence of a
canonical factorization of G were previously known, as mentioned in Section
1, correspond only to the boundary lines of the polygon which are given by
the equations x+ y = λ, y = α in the (x, y) plane.

7. Final remarks

7.1. More general AP polynomials

The table method approach is by no means exhausted by the class of symbols
studied in the previous sections. The following examples illustrate this point.
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Figure 3: Cross-section for α = 0, 67.

Example 7.1 Assume that

g = c e−x + b+ a ey + d e2y

with a, b, c, d ∈ C\{0}, x, y, α for which (3.10) holds and α > 2
3λ.

Analogously to what was done in Tables 1 and 2 in Section 3, we see that a
solution to Problem g, and to the Riemann-Hilbert problem (1.1), is given
by

ϕ1+ = ex+y−α − ab

bd− a2
ex−α − b2

bd− a2
ex−y−α

− b3

bdc− a2c
e2x−y−α, (7.1)

31



ϕ2+ =

(
−a− abd

bd− a2

)
ex+y−λ − ab3

bdc− a2
e2x−y−λ

+
b4

bdc− a2c
e2x−2y−λ − dex+2y−λ − db3

bcd− a2c
e2x−λ, (7.2)

ϕ2− = c+
abc

bd− a2
e−y −

b2c

bd− a2
e−2y, (7.3)

if x− y ≥ α, and

ϕ1− = 1− c

b
e−x +

ac

b2
e−x+y, (7.4)

ϕ2− = −ac
2

b2
e−2x+λ+α − c2

b
e−2x−y+λ+α, (7.5)

ϕ2+ = −beα−y − aeα − a2c− bcd

b2
e−x+y+α

−dey+α − acd

b2
e−x+2y+α, (7.6)

if x− y < α.
For x− y = α, (7.1)–(7.3) and (7.4)–(7.6) yield two linearly independent so-
lutions of Gϕ+ = ϕ− which define the factors G± in a canonical factorization
of G.

Example 7.2 Let now

g = c e−x + b+ a ey + d ex−y

with a, b, c, d ∈ C\{0}, x, y, α satisfying (3.10), and α > 2
3λ.

In this case a solution to Problem g is given by

ϕ1+ = ex+y−α − b

a
ex−α +

b2

a2
ex−y−α − b3

a2c
e2x−y−α, (7.7)

ϕ2+ = −a ex+y−λ −
(
b3

ac
− d

)
e2x−y−λ +

b4

a2c
e2x−2y−λ

−bd
a
e2x−2y−λ − db2

a2
e2x−3y−λ +

db3

a2c
e3x−3y−λ, (7.8)

ϕ2− = c− bc

a
e−y +

b2c

a2
e−2y (7.9)

if x− y ≥ α, and
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ϕ1− = 1− c

b
e−x +

ac

b2
e−x+y, (7.10)

ϕ2− = −ac
2

b2
e−2x+λ+α − c2

b
e−2x−y+λ+α, (7.11)

ϕ2+ = −
(
b+

dac

b2

)
eα−y − aeα − a2c

b2
e−x+y+α

−dex−2y+α +
cd

b
eα−2y, (7.12)

if x− y < α and y < α
2 .

For x− y = α, (7.7)–(7.9) and (7.10)–(7.12) yield two linearly independent
solutions of Gϕ+ = ϕ− which define the factors G± in a canonical factoriza-
tion of G.

These examples raise several interesting questions such as the following. Can
the table method be applied to obtain solutions to the Riemann-Hilbert
problem (1.1), with G given by (1.2), for any APP g? Is there always an
APP solution to that Riemann-Hilbert problem? What are the optimal
solutions with respect to the Bohr-Fourier spectrum, and the best estimate
of the partial AP indices in terms of the spectrum of g?

7.2. Non-AP symbols

Finally, we see that knowing the explicit expressions of the solutions to
Problem g enables one to extend the results to some cases where the constant
coefficients of the exponentials in g are replaced by functions, not even
necessarily belonging to AP . To illustrate this point, note for example that
in case (I) of Theorem 6.1 a bounded factorization of G exists, and exactly
the same factorization formulas persist, when a constant coefficient a is
replaced by an arbitrary function a ∈ H+

∞. This factorization is in fact AP ,
APW , or APP if and only if a belongs respectively to AP+, APW+, or
APP+.
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[2] A. Böttcher, Yu. I. Karlovich, and I. M. Spitkovsky, Convolution op-
erators and factorization of almost periodic matrix functions, Operator
Theory: Advances and Applications, vol. 131, Birkhäuser Verlag, Basel
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