

Repositório ISCTE-IUL

Deposited in Repositório ISCTE-IUL:
2019-03-26

Deposited version:
Post-print

Peer-review status of attached file:
Peer-reviewed

Citation for published item:
Duarte, M., Oliveira, S. M. & Christensen, A. L. (2015). Evolution of hybrid robotic controllers for
complex tasks. Journal of Intelligent and Robotic Systems. 78 (3-4), 463-484

Further information on publisher's website:
10.1007/s10846-014-0086-x

Publisher's copyright statement:
This is the peer reviewed version of the following article: Duarte, M., Oliveira, S. M. & Christensen, A.
L. (2015). Evolution of hybrid robotic controllers for complex tasks. Journal of Intelligent and Robotic
Systems. 78 (3-4), 463-484, which has been published in final form at
https://dx.doi.org/10.1007/s10846-014-0086-x. This article may be used for non-commercial
purposes in accordance with the Publisher's Terms and Conditions for self-archiving.

Use policy

Creative Commons CC BY 4.0
The full-text may be used and/or reproduced, and given to third parties in any format or medium, without prior permission or
charge, for personal research or study, educational, or not-for-profit purposes provided that:

• a full bibliographic reference is made to the original source

• a link is made to the metadata record in the Repository

• the full-text is not changed in any way

The full-text must not be sold in any format or medium without the formal permission of the copyright holders.

Serviços de Informação e Documentação, Instituto Universitário de Lisboa (ISCTE-IUL)
Av. das Forças Armadas, Edifício II, 1649-026 Lisboa Portugal

Phone: +(351) 217 903 024 | e-mail: administrador.repositorio@iscte-iul.pt
https://repositorio.iscte-iul.pt

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Repositório Institucional do ISCTE-IUL

https://core.ac.uk/display/302955033?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://dx.doi.org/10.1007/s10846-014-0086-x

Noname manuscript No.
(will be inserted by the editor)

Evolution of Hybrid Robotic Controllers for
Complex Tasks

Miguel Duarte · Sancho Moura Oliveira ·

Anders Lyhne Christensen

the date of receipt and acceptance should be inserted later

Abstract We propose an approach to the synthesis of

hierarchical control systems comprising both evolved

and manually programmed control for autonomous

robots. We recursively divide the goal task into sub-

tasks until a solution can be evolved or until a solution

can easily be programmed by hand. Hierarchical com-

position of behavior allows us to overcome the funda-

mental challenges that typically prevent evolutionary

robotics from being applied to complex tasks: boot-

strapping the evolutionary process, avoiding deception,

and successfully transferring control evolved in simu-

lation to real robotic hardware. We demonstrate the

proposed approach by synthesizing control systems for

two tasks whose complexity is beyond state of the art

in evolutionary robotics. The first task is a rescue task

in which all behaviors are evolved. The second task is a

cleaning task in which evolved behaviors are combined

with a manually programmed behavior that enables the
robot to open doors in the environment. We demon-
strate incremental transfer of evolved control from sim-

ulation to real robotic hardware, and we show how our

approach allows for the reuse of behaviors in different

tasks.

Keywords Evolutionary Robotics · Hierarchical

Control · Artificial Evolution

This work was partly supported by FCT – Foun-
dation of Science and Technology under grants
SFRH/BD/76438/2011, PEst-OE/EEI/LA0008/2013 and
EXPL/EEI-AUT/0329/2013.

Miguel Duarte (�) · Sancho Moura Oliveira · Anders Lyhne
Christensen
Instituto Universitário de Lisboa (ISCTE-IUL), Instituto de
Telecomunicações, Avenida das Forças Armadas, 1649-026
Lisboa
E-mail:
{miguel duarte,sancho.oliveira,anders.christensen}@iscte.pt

1 Introduction

Evolutionary robotics (ER) is a field in which evolution-

ary computation is applied to the design of autonomous

robots. Artificial evolution is commonly employed to

synthesize behavioral control [38], but can also be used

to synthesize robot morphology (see [24, 6] for recent

examples). ER techniques have the potential to auto-

mate the design of control systems without the need for

manual and detailed specification of the desired behav-

ior [14] and to exploit the way in which the world is

perceived through the robot’s (often limited) sensors.

In ER, it is common to use artificial neural networks
(ANNs) as robotic controllers because they: (i) provide
evolution with a relatively smooth search space, (ii) are
able to tolerate noisy input inherent to most real world

sensors, and (iii) have been shown capable of repre-

senting general and adaptive solutions [15]. Numerous

studies have demonstrated evolved control systems that

enable robots to solve simple tasks in surprisingly ele-
gant ways [38, 16, 25, 7, 36]. It has, however, proven
difficult to evolve controllers for complex tasks [37].1

The evolutionary process follows a fitness gradient
in the search space. If a task is too difficult, an initial

randomly generated population may be located in a
region of the search space without a fitness gradient.
The evolutionary process may therefore drift in such
a region and fail to bootstrap. Even when a gradient is

present, the gradient may lead the evolutionary process
toward low-quality local optima, a problem known as

1 Task complexity cannot be quantified in general, and we
therefore rely on the intuitive notion of complexity. We con-
sider a task to be complex, if the task clearly is more chal-
lenging than the state of the art or if it incorporates several
tasks that only individually have been solved by evolved con-
trollers.

2 Miguel Duarte et al.

deception [48]. As the complexity of a task increases,

the fitness landscape typically becomes rugged [37], and
the evolutionary process becomes more vulnerable to
deception.

A large number of candidate solutions typically have
to be evaluated. As a consequence, evaluations are usu-

ally conducted in computer simulation and not on real

robotic hardware. Despite best efforts to accurately

simulate the real world, differences are bound to exist

between simulation and reality. The differences between

simulation and reality are often referred to as the real-
ity gap [27]. The presence of the reality gap means that

controllers evolved in simulation may exploit aspects of

the simulated world that are different or may not exist

in the real world. Controllers evolved in simulation are

therefore not guaranteed to maintain their performance

when executed on real robotic hardware [28].

The reality gap, the bootstrapping problem, and de-

ception remain major challenges in ER. While there has

been considerable progress in the field of ER in recent

years, there have been no significant breakthroughs in-

dicating that ER scales to tasks with the level of com-

plexity found outside strictly controlled laboratory con-
ditions. Notwithstanding, evolutionary techniques still
have significant potential in controller design that can
be realized if we depart from the tradition unadulter-

ated application of ER and embrace more practical and

engineering-oriented approaches.

In this paper, we propose an approach that com-

bines the benefits of ER, such as automatic synthesis

of control, with human engineering to circumvent the

bootstrapping problem, to avoid deception, and to suc-

cessfully cross the reality gap. If a robotic controller

cannot be evolved for a particular task, we manually

divide the task into two or more sub-tasks and evolve

sub-controllers for each sub-task. An additional con-

troller that selects which sub-controller is active at any

given time is then evolved. Behavioral control for com-

plex tasks can thus be synthesized in an incremental

and hierarchical manner, and issues related to perfor-

mance on real hardware can be addressed at each in-

crement. Our approach allows for the reuse of evolved

controllers and for the combination of evolved and pre-

programmed control. Some tasks, such as those that

require the robot to perform actions with a high degree

of accuracy, might be difficult to simulate with sufficient
fidelity to allow for successful transfer of evolved con-
trol to a real robot. For such tasks, a preprogrammed

behavior can be developed directly for the real robotic

hardware and integrated in the hierarchical structure

of the controller. We demonstrate our approach in two

distinct tasks, which are beyond the complexity level of

current state of the art in ER. In both tasks, controllers

evolved in simulation maintain their performance when

transferred to a real robot.

The main contribution of this paper is the introduc-

tion of a hierarchical approach to the semi-automatic
synthesis of behavioral control for real robotic hard-

ware. Our approach solves three fundamental issues re-

lated to the use of ER techniques as an engineering

tool: (i) incremental evolution: by taking an incremen-

tal, divide-and-conquer approach to evolution, boot-

strapping issues and deception are avoided, (ii) scal-

ability: as partial solutions are combined, fitness func-

tions can be derived based on the immediate task de-

composition, and an increase in fitness function com-

plexity is thereby averted as increasingly complex tasks

are considered, and (iii) transfer: sub-controllers can be

tested incrementally on real robotic hardware and is-

sues related to real robot performance can be addressed

locally in the controller hierarchy. Our approach fur-

thermore allows for seamlessly integration of prepro-

grammed control and evolved control.

The structure of this paper is as follows. In Sec-

tion 2, we discuss the related work. In Section 3, we

discuss how behavioral control can be synthesized hi-

erarchically. In Section 4, we present the software and

hardware platforms used in the experiments. Sections 5,

6 and 7 detail three different experiments that were con-

ducted in order to assess the validity of the proposed
methodology. Finally, we present the conclusions in Sec-
tion 8.

2 Background and Related Work

ER emerged as a field in the beginning of the 1990’s [40].
The use of artificial evolution frees the designer from

manually specifying a robot’s controller in detail and
allows for the self-organization of behavior [38]. Soon
after the emergence of ER as a research field, two main

challenges became clear, namely, (i) that it often is non-

trivial to ensure successful transfer of behavior evolved

in simulation to real robots, and (ii) that the number of

evaluations required meant that simulation had to be

used extensively.

Several authors have proposed approaches to enable

controllers evolved in simulation to maintain their per-
formance on real robotic hardware. Three complemen-

tary approaches were proposed by Miglino et al. [33]:
(i) the use of real robot sensor samples in simulation
to narrow the reality gap, (ii) the introduction of a

conservative form of noise in order for controllers to

increase their tolerance to different sensory conditions,

and (iii) the continued evolution of controllers for a few

generations on a real robot. Continuing evolution on

Evolution of Hybrid Robotic Controllers for Complex Tasks 3

real hardware allows controllers to adjust to minor dif-

ferences between simulation and reality. The use of sam-

ples from real robots and a conservative form of noise

has since become widespread in ER studies, but cross-

ing the reality gap still proves a challenging task. In

1997, Jakobi [27] advocated the use of minimal simula-
tions in which the simulator only implements the spe-

cific features of the real world that the experimenter

deems necessary for a robot to complete its task. All

other features are hidden in an envelope of noise to

minimize the presence of simulation-only artifacts that

can prevent successful transfer of evolved control to

real robotic hardware. It is uncertain if Jakobi’s mini-

mal simulations are feasible to apply to more complex

tasks, since they require that the experimenter is able

to determine the set of relevant features and to build a

simple, task-specific simulator based on this set.

Koos et al. [28] proposed the transferability ap-

proach that aims to ensure successful transfer of con-

trol evolved in simulation to real robotic hardware. The

transferability approach is a multi-objective formula-

tion of ER, in which controllers are evaluated not only

on their simulated performance, but also on their real-

robot performance. A surrogate model is created to
avoid having to test every solution in real hardware, and
can be updated with results from a periodical real-robot

experiment or by interpolation. In this way, a solution

that relies on certain robot-environment dynamics that

are inaccurately implemented in simulation might not

be selected for reproduction by evolution. Koos et al.

successfully validated the approach in two robotic tasks:

a navigation task with an e-puck robot and a gait task

with an 8-DOF quadrupedal robot. The authors pro-

pose to evaluate the transferability of the best controller

and update the surrogate model every five generations.

Although frequent real robotic evaluations may be fea-

sible for simple tasks for which a solution can be evolved

in a few (100 or less) generations, it quickly becomes un-

feasible if a solution for a more complex task is sought

since several hundred or potentially thousands of gen-

erations might be required. Furthermore, some tasks

might take too long to perform or it may be difficult to

automatically measure performance of the real robot.

Numerous studies have demonstrated evolved con-

trollers solving basic tasks in surprisingly simple and

elegant ways. Nelson et al. [37] surveyed different types

of fitness functions used in the field of evolutionary

robotics. In the discussion of their findings, they state

that evolutionary robotics may possibly “generate au-

tonomous systems with limited general abilities at some

point in the future”. In their survey of more than one

hundred different ER studies, there were only reports

on the successful application of ER techniques to rel-

atively simple tasks, such as locomotion and obstacle

avoidance [16], goal homing [22], foraging [36], and pho-

totaxis [47]. In a different survey, Meyer et al. [32] ar-

gued that “the challenge is to move from basic robot

behaviours to ever more complex, non-reactive ones”.

The lack of successful applications to complex tasks

can be attributed to the bootstrapping problem and

deception.

An approach to avoiding deception was proposed
by Celis et al. [5], which allows for non-expert users

to interact with the evolutionary process by allowing

them to guide evolution away from local optima. The

approach was demonstrated on a simple navigation task

with a deceptive fitness function, where the robot has

to reach a goal by moving around an obstacle. The non-

expert user can aid evolution by defining an interme-

diate way-point that the robot should pass through on

its way to the target location.

Different incremental approaches have been studied

as a means to overcome the bootstrapping problem and

to enable the evolution of behaviors for complex tasks.

In incremental evolution, the initial random population

typically starts in a simple version of the environment.

The complexity of the environment is then progres-

sively increased as the quality of the evolved controllers

improves [19, 7, 8]. An alternative approach is to de-

compose the task into different sub-tasks that are then

learned sequentially [22, 10], or even to incrementally

change the structure of the artificial neural network in-

stead of modifying the environment or the task [42].

While a single ANN controller is sometimes trained
in each sub-task sequentially, different modules can also

be trained to solve different sub-tasks. Moioli et al. [34]

used a homeostatic-inspired GasNet to control a robot

in two sub-tasks: obstacle avoidance and phototaxis.

The authors used two different sub-controllers that were

inhibited or activated by the production and secretion

of virtual hormones, and they were able to evolve a

controller that activated the appropriate sub-controller

depending on external stimulus and internal stimulus.

Nolfi and Parisi [39] experimented with dividing a neu-

ral network into different modules in a garbage collec-

tion task. The robot had to grasp objects and release

them outside of the environmental bounds. For their

experiments, they used a Khepera robot with a gripper

module. They divided the network’s output layer into

two modules that competed for activation. The con-

troller evolved one of the modules to find and pick up

the objects, and one to release them outside the bounds

of the environment.

Stanley and Miikkulainen [42] introduced Neuroevo-

lution of Augmenting Topologies (NEAT), an evolu-
tionary algorithm that not only optimizes the weights

4 Miguel Duarte et al.

of the neural controller’s connections, but also incre-

mentally augments the controller’s topology by adding

new connections and neurons. NEAT has been shown

to outperform traditional evolutionary techniques for

some tasks and to produce solutions with minimal com-

plexity. Recently, Lehman and Stanley introduced nov-

elty search [31] as a means to avoid premature conver-

gence and to overcome bootstrapping issues. In novelty
search, behaviors are not scored based on a traditional
fitness function, but based on behavioral novelty with

respect to previously evaluated individuals. Since nov-

elty search does not have a static objective, bootstrap-

ping is typically not an issue, and the constant evo-

lutionary pressure toward behavioral innovation means

that novelty search is unaffected by deception. However,

effective behavior characterizations are not always triv-

ial do define [18].

In the past, several approaches have been proposed

to the synthesis of controllers by hierarchical task de-

composition. These studies have applied different tech-

niques, such as genetic programming [30], neuroevolu-

tion [29, 1], or fuzzy logic control [46]. The tasks in

which the approaches have been demonstrated are rel-

atively simple, and have been shown to be solvable by

traditional evolutionary techniques. The approach pre-
sented in this paper is distinct in a number of key as-
pects: (i) our approach allows for hybrid controllers in

which preprogrammed control and evolved control are

mixed. Hybrid controllers can take advantage of the

benefits of ER, namely the automatic synthesis of be-

havior, and at the same time the use of manual pro-

gramming for behaviors that would be infeasible to

evolve; (ii) we test our approach in tasks that go be-

yond the state-of-the-art in terms of complexity. We

further demonstrate transfer of behavioral control from

simulation to real robotic hardware without loss of per-

formance; and (iii) derived fitness functions are intro-

duced as a solution to circumvent the otherwise increase

in fitness function complexity as the tasks considered

become more complex.

Preliminary studies of the experiments presented in

Section 5 and Section 6 have previously been published

in [11] and [12], respectively. In this paper, we present

a methodology that combines our previous work, and

we demonstrate the application of the methodology to a

non-sequential task that requires accurate sensorimotor

coordination.

3 Hierarchical Evolution of Robotic Controllers

In this section, we provide an introduction of how our

hierarchical approach can be applied in general. This

approach is demonstrated in specific tasks in Sections 5,

6 and 7.

3.1 Controller Structure

In our approach, we resort to manual division of the

task into simpler sub-tasks when an evolutionary pro-

cess is unable to find a solution to a task. Sub-

controllers are then evolved to solve each sub-task,

and the complete controller is composed of several sub-

controllers arranged in a hierarchical structure (see Fig-
ure 1). Each node in the hierarchy is either a behav-

ior arbitrator or a behavior primitive [30]. Behavior

primitives are at the bottom of the controller hierarchy
and directly control the actuators of the robot, such as
wheels. If it is possible to find an appropriate fitness
function for a given task, a behavior primitive com-

posed of a single ANN is evolved to solve the task. An
appropriate fitness function is one that (i) allows evolu-
tion to bootstrap, (ii) leads to controllers that are able

to solve the task consistently and efficiently in simu-

lation, and (iii) leads to controllers that maintain per-

formance when transferred to real robotic hardware. In

case an appropriate fitness function cannot be found,
the task is manually and recursively divided into sub-
tasks until an appropriate fitness functions has been
found for each sub-task. We resort to manual program-

ming of behavior primitives if an appropriate fitness

function cannot be found for a sub-task that cannot be

further divided. Previously evolved or preprogrammed

behaviors can be reused if sub-tasks are sufficiently sim-
ilar or if the behavior is general enough to be used in
different tasks.

Sub-controllers are combined through the evolution

or preprogramming of a behavior arbitrator. A behavior
arbitrator receives either all or a subset of the robot’s

Behavior

Primitive

Primitive

Behavior

Primitive

Behavior

Arbitrator

Behavior

Behavior

Arbitrator

Fig. 1 A representation of the hierarchical controller. A be-
havior arbitrator delegates the control of the robot to one or
more of its sub-controllers. A behavior primitive controls the
actuators of the robots directly.

Evolution of Hybrid Robotic Controllers for Complex Tasks 5

sensory inputs, and it is responsible for delegating con-

trol to one or more of its sub-controllers. The behav-

ior arbitrators used in this study are all evolved and

have one output neuron for each of their immediate sub-

controllers. The output with the highest activation de-

termines which sub-controller is activated at every con-

trol cycle. The state of a sub-controller is reset when-

ever it is deactivated. Alternative methods for activat-
ing sub-controllers could be used, such as allowing for
multiple sub-controllers to be active at the same time.

The behavior primitives are synthesized first and are

then combined through the synthesis of behavior arbi-
trators. The resulting controller can then be combined
with other controllers to create a hierarchy of increas-

ingly more complex behavioral control. Each time a new

sub-controller (either a behavior primitive or a com-

posed controller) has been synthesized, its performance

on real robotic hardware can be evaluated. The experi-

menter can thus address issues related transferability

incrementally during the development of the control

system. A pseudocode representation of the proposed

approach can be seen in Algorithm 1.

Algorithm 1 Pseudocode representation of the pro-

posed approach.

procedure hierarchicalEvolution(task)
if suitable controller exists then

return existing controller

else if infeasible to simulate accurately then

return preprogramController(task)
else

behaviorPrimitive = evolvePrimitive(task)
if behaviorPrimitive performs adequately then

return behaviorPrimitive

else

sub–tasks = decompose(task)
controllers = ∅

for each sub–task do

c = hierarchicalEvolution(sub–task)
add c to controllers

end for

return evolveArbitrator(task,controllers)
end if

end if

end procedure

The logic in each node of the controller hierarchy is

completely independent of the logic in other nodes. For

the experiments presented in Sections 5, 6 and 7, for in-

stance, we evolve continuous-time recurrent neural net-

works (CTRNN) [2] and use preprogrammed control,

but nodes could be other types of ANNs or different

types of control or decision systems altogether. Nodes

can also be evolved under different simulation condi-

tions and even using different algorithms. In this paper,

we use a simple generational evolutionary algorithm

and focus on issues related to the hierarchical compo-

sition of control. Our approach is, however, compatible

with modern neuroevolution algorithms such as NEAT

and novelty search, which can be used to evolve the

individual components of our hierarchical controllers.

One of the potential costs of decomposing control

hierarchically is that the solution space is restricted:

the evolution of certain primitive behaviors is forced,

and at the higher layers evolution is restricted by the

set of behaviors available in lower layers. While decom-

position might exclude optimal solutions, the narrower
search space allows for the application of ER techniques
to tasks that would otherwise be prohibitively complex.

3.2 Derived Fitness Functions

As we move up the controller hierarchy and attempt to

synthesize behavioral control for increasingly complex

tasks, fitness functions that lead to the evolution of ad-

equate solutions may be challenging to define. If the

fitness function for the evolution of a behavior arbitra-

tor is difficult to define, it can be derived based on the

task decomposition. The derived fitness function is con-
structed to reward the arbitrator for activating a sub-
controller that is valid for the current sub-task, rather

than for solving the global task. The use of derived

fitness functions in the composition step circumvents

the otherwise increase in fitness function complexity as

the tasks considered become more complex. The exper-

imenter may not always know which sub-controller is

the optimal one for a given situational context, and for

such cases, a subset of valid sub-controllers can be spec-

ified. In Section 5.2, we use a derived fitness function

for the evolution of a behavior arbitrator.

4 Simulation, Evolution, and Robotic Hardware

We use the JBotEvolver simulation platform for evolu-

tion of behavioral control [9]. JBotEvolver is an open

source, multirobot simulation platform, and neuroevo-

lution framework. The simulator is written in Java and

implements 2D differential drive kinematics.

In simulation, we run a total of ten evolutionary

runs with a population size of 100 genomes for each

node in a controller hierarchy. The fitness score as-

signed to each genome is the average score obtained

in 50 simulations with different initial conditions. The

five highest scoring genomes are copied directly to the

next generation. Another 19 copies of each genome are

made and mutation is applied to each gene with a prob-

ability of 10%. A Gaussian offset with a mean of 0 and

6 Miguel Duarte et al.

a standard deviation of 1 is applied when a gene un-

dergoes mutation. The evolutionary runs for each node

are terminated after an empirically determined number

of generations. Upon termination, we conduct a post-

evaluation of the highest scoring controller of each evo-

lutionary run in a total of 100 samples for each differ-

ent configuration of the environment. Genomes consist

of floating-point alleles that encode the parameters of a
CTRNN with one hidden layer of fully-connected neu-
rons. The neurons in the hidden layer are governed by

the following equation:

τi
dHi

dt
= −Hi +

J∑

j=1

ωjiIj +

K∑

k=1

ωkiZ(Hk + βk)

where τi is the decay constant, Hi is the neuron’s state,

J is the number of input neurons, ωji the strength of

the synaptic connection from neuron j to neuron i, I

is the set of input neurons, K is the number of output

neurons, β is the bias term, and Z(x) = (1 + e−x)−1 is
the sigmoid function. The bias terms βi, the decay con-

stants τi, and the connection weights ωji are genetically
controlled network parameters. The possible ranges of

these parameters are: βi ∈ [−10, 10], τi ∈ [0.1, 32] and

ωji ∈ [−10, 10]. Circuits are integrated using the for-

ward Euler method with an integration step-size of 0.2

and cell potentials are set to 0 when the network is

initialized.

For our real hardware experiments, we used an e-
puck [35] (see Figure 2). The e-puck is a small circular

(diameter of 75 mm) differential drive mobile robotics

platform designed for educational use. The e-puck’s

set of actuators is composed of two wheels that en-

able the robot to move at speeds of up to 13 cm/s,

a loudspeaker, and a ring of eight LEDs. The e-puck is

equipped with several sensors: (i) eight infrared prox-

imity sensors which are able to detect nearby obstacles

and changes in light conditions, (ii) three microphones

(one near each wheel of the robot, and one toward the

front), (iii) a color camera, and (iv) a 3D accelerome-

ter. Additionally, our e-puck robots are equipped with

a range & bearing board [21] which allows them to com-
municate with one another.

We use four of the e-puck’s eight infrared proximity

sensors: the two front sensors and the two lateral sen-

sors. We collected samples (as advocated in [33]) from

the sensors on a real e-puck robot in order to model

them in JBotEvolver. Each sensor was sampled for 10

seconds (at a rate of 10 samples/second) at distances
from an obstacle ranging from 0 cm to 12 cm. We col-
lected samples at increments of 0.5 cm for distances

between 0 cm and 2 cm, and at increments of 1 cm for

distances between 2 cm and 12 cm.

E−puck

Range & Bearing

Board

Fig. 2 The e-puck with a range & bearing board [21].

We use ray-casting to model the infrared sensors in

the simulation. Seven rays are cast from each sensor in

different directions, from −
α
2
to α

2
, where α is the sen-

sor’s opening angle. Based on experimental data from
the robot, we used an α value of 70◦. The distances

at which the rays intersect with an obstacle are aver-
aged and the final sensor reading is the interpolation of
the closest samples collected on the real robot. Finally,

noise is added to the reading with an amount based on

the variance measured on the real robot for the partic-

ular distance.

The e-puck’s infrared sensors can measure the level

of ambient light. In the experiments presented in Sec-

tion 5 and Section 6, we use ambient light readings
from the two lateral proximity sensors to detect light
flashes. When a light flash is detected on one of the

sides, the activation of its corresponding sensor is set

to 1. The sensor remains activated for 15 simulation cy-

cles (equivalent to 1.5 seconds) to indicate that a flash

has been detected. In simulation, we added Gaussian

noise to the wheel speeds, with a standard deviation
corresponding to 5% of the current wheel speed in each
control cycle. The robot’s speed is limited to 10 cm/s

in our experiments.

The e-puck only has 8 kb of onboard memory. If

the control code does not fit within the e-puck’s lim-

ited memory, we run the control code off-board. When

the control code is executed off-board, the e-puck starts

each control cycle by transmitting its sensory readings

to a workstation via Bluetooth. The workstation then

executes the controller, and sends back the output of

the controller (wheel speeds) to the robot. We use off-
board execution of control code in the real robot exper-
iments conducted in Section 5 and Section 7, and on-
board execution of control code in the real robot exper-

iments conducted in Section 6. Videos of our real-robot

experiments and source code for our preprogrammed

behaviors can be found online [13].

Our simulator allows to automate some parts of

the hierarchical composition process. The experimenter

defines a configuration file with the various sub-

Evolution of Hybrid Robotic Controllers for Complex Tasks 7

controllers, including information on how they are con-

nected and the evolutionary setup for each node (envi-

ronment, controller, evolutionary algorithm, and eval-

uation function). The simulator then synthesizes and

composes the hierarchical controller by picking the best

controller for every hierarchical node, out of multiple

runs. The experimenter can then test each node on the

real robot. If a controller proves to be difficult to trans-
fer to the real robot, the experimenter can change the
configuration for that particular node and restart the

evolutionary process from that node and up.

5 Evolving and Transferring Controllers for

Complex Tasks

In this section, we apply the proposed methodology to a

rescue task. The task is relatively complex and requires

several behaviors typically associated with ER [37] such

as exploration and obstacle avoidance [16], delayed re-
sponse [45], and the capacity to navigate safely through
corridors [41].

We purposefully designed the task to be more com-

plex than any previously solved by real robots with
evolved controllers: (i) a robot must first find its way
out of a room with obstacles, (ii) the robot must then

solve a double T-maze [3], and finally (iii) the robot
must guide a teammate safely to the room. Variations
of the T-maze task have been used extensively in stud-

ies of learning and motivation in animals [43], neuro-

science [44], and robotics. In robotics, T-mazes have

been used to study different neural network models such

as diffusing gas networks [26], the online learning capa-

bility of continuous time recurrent neural networks [3],

and the evolution of transferable controllers [27, 28].

While a T-maze task may appear simple from an an-

thropomorphic perspective, robots’ sensors are often

limited. In our experiment, each sensor only provides

the controller with a single scalar or binary value. The

information available to the controller about the envi-

ronment and about the robot’s position in the environ-

ment is thus very limited. Previous studies in which

evolved control has been tested on real hardware, only

single T-mazes were used.

A number of obstacles are located in the initial

room. The room has a single exit that leads to the start

of a double T-maze (see Figure 3). In order to find its
teammate, the robot should exit the room and navigate
to the correct branch of the maze. Two rows of flashing

lights in the main corridor of the double T-maze give

the robot information about the location of the team-

mate. Each row of lights indicates the branch leading

to the teammate in a junction. For instance, if the left

light of the first row and the right light of the second

Second
row

First row
of lights

120 cm

20 cm

130 cm

120 cm

160 cm

Teammate

Obstacle

Double T−Maze

Room

Fig. 3 The environment is composed of a room with ob-
stacles and a double T-maze. The room is rectangular with
varying side lengths. The double T-maze has a total size of
200 cm × 200 cm. The two rows with the lights are located in
the central maze corridor. The activation of these two rows
of lights indicates the location of a teammate.

row are activated, the robot should turn left at the first

junction and right at the second junction. Upon nav-

igating to the correct branch of the maze, the robot

must guide the teammate back to the initial room. We

included a boolean “near robot” sensor that indicates

if the teammate is within 15 cm. For this sensor, we use

readings from the range & bearing board.

For the real robot experiments, we built a double T-

maze with a size of 200 cm × 200 cm (see Figure 3). In

the real maze, a Lego Mindstorms NXT brick controlled

the flashing lights. The brick was connected to four ul-

trasonic sensors that detected when the robot passed

by. Lights were turned on by the first and third ultra-

sonic sensor and turned off by the second and fourth

ultrasonic sensor. The NXT brick controlled the state

of the lights using two motors.

We use simple, functional incremental fitness func-

tions [37] for the evolution of behavioral primitives in
the experiments presented below. Each fitness function

typically has a number of cases that represent differ-
ent outcomes of an experiment such as whether a robot
reached its destination or not. Each case is kept sim-

ple and typically has only one or two terms. The cases

are weighted by adding a constant and by multiplying

by a factor, initially with values of zero and one, re-

spectively. The values of the constants and factors are

adjusted through an empirical trial-and-error process
when necessary: if a bootstrapping case is exploited over
a goal case, guiding evolution toward local optima, the

relative weight of the exploited case is either decreased

or the weight of the other cases are increased. While

8 Miguel Duarte et al.

the exact weights are not crucial, the relative weight

between cases need to be such that solving the task

is significantly better than not solving the task. For

instance, bootstrapping cases should have significantly

lower weights than high-level goal cases. The constants

and factors that appear in the fitness functions below

are the result of such a process. Given the simplicity

of the fitness functions used, this process usually only
required a couple of iterations.

5.1 Attempting to Evolve a Monolithic Controller

We attempted to evolve a monolithic controller, i.e. a

controller with a single neural network for the complete
rescue task. The chosen neural network was composed
of seven input neurons (two light sensors, four infrared
sensors, and one robot sensor), ten hidden neurons and

two output neurons (two wheels). The robot was placed

at a random position and with a random orientation in

the room. The complexity of the task translates to a

difficulty in finding an appropriate fitness function that
allows evolution to bootstrap. In order to evaluate the
controller, we chose a functional incremental, gradient-

based fitness function with a bonus for reaching three

intermediate points of the task: exiting the room, find-

ing the teammate, and returning to the room. The fit-

ness function is defined as follows:

fmonolithic =
3
∑

i=1

β +
Di − ds

Di

where β is the bonus constant for reaching each in-

termediate point, Di is total Euclidean distance from

the previous intermediate point of task to the current

intermediate point of the task, di is the robot’s Eu-

clidean distance to the next intermediate point of the

task. The bonus constant of each term in the fitness
function was chosen based on the methodology pro-
vided in Section 3.2, with values ranging from 1 to

5. The controllers were evolved for 1000 generations,

and were post-evaluated in order to measure how many

times they navigated to each of the intermediate points

of the task. The controllers were able to solve the first

part of the task and leave the room in 92% of the post-

evaluation samples, and navigated to the correct exit

of the double T-maze in 51% of the samples. The best

controllers in some of the runs specialized in solving the

task for a particular maze exit (i.e., 25% of the samples

in which the robot managed to leave the room), and as

a results, the average solve rate for the complete task

was only 17%.

We also tried to evolve a monolithic controller for

the rescue task using NEAT [42]. The NEAT imple-

mentation available in the open-source Encog Machine

Learning Framework [23] was integrated in our simula-

tor platform JBotEvolver [9]. The controllers were eval-

uated based on fmonolithic in a total of 10 evolutionary

runs. Each run was evolved for 1000 generations, and

we used the parameter values proposed in [42]. We ob-
served that evolution typically got stuck in a local op-
timum around the 300th generations. On average, the
best controllers of the 10 evolutionary runs were able

to leave the room in 77% of the samples, navigated to

the correct exit of the room in 19% of the samples, but

none of the controllers was able to return to the ini-

tial room. We experimented with several variations of
the default parameter values, but obtained similar or
inferior results (for details see [13]).

5.2 Decomposition of the Rescue Task

As shown in Section 5.1, the rescue task is relatively

complex, which meant that we were unable to find an

appropriate fitness function that allows evolution of a

controller based on a single ANN. We therefore divided

the rescue task into three sub-tasks: (i) exit the room,

(ii) solve the double T-maze to find the teammate, and

(iii) return to the room, guiding the teammate. We

evolved sub-controllers to solve each of the sub-tasks.

A hierarchical controller was then given access to each

of the sub-controllers and evolved to solve the complete

rescue task. Figure 4 shows the hierarchical structure

of the complete controller, the description of each be-

havior arbitrator and behavior primitive, including the

topology, inputs (sensors) and outputs (actuators) used

by of each neural controller, and the performance re-

sults in simulation.

5.2.1 Exit Room Sub-task

The first part of the rescue task is an exploration and

obstacle avoidance task. The robot is located in a room

and must find a narrow exit leading to the maze. The

room is rectangular with side lengths that vary between

100 cm and 120 cm drawn from a uniform distribu-

tion. We evolved the “Exit Room” behavior primitive

to solve this sub-task. In each sample, we placed either

two or three obstacles in the room depending on its size.

Each obstacle was rectangular with random side lengths
ranging from 5 cm to 20 cm drawn from a uniform dis-
tribution. The location of the room exit was also ran-
domized in each trial. The robot was randomly oriented

and positioned inside the room at the beginning of each

Evolution of Hybrid Robotic Controllers for Complex Tasks 9

Alleles:

Solve Rate

Main

I/H/O Neurons:

Sensors: IR, Near Robot

203

5/10/3 3000Control Cycles:

Evolved for 1000 gens

Solve Maze

I/H/O Neurons:

Sensors: IR, Light
Solve Rate

Alleles:

6/10/3

213Evolved for 300 gens

1000Control Cycles:

Return to Room

I/H/O Neurons:

Sensors: IR

Alleles:

Solve Rate

4/10/3

193Evolved for 300 gens

1000Control Cycles:

Exit Room
Alleles:

Solve Rate

182

Control Cycles:I/H/O Neurons: 4/10/2

Evolved for 300 gens

Wheels

1000

Actuators:

Sensors: IR

Turn Left

Sensors:

Actuators: Wheels

I/H/O Neurons:

IR

Alleles:

Solve Rate

35

4/3/2

Evolved for 100 gens

300Control Cycles:

Sensors:

Actuators: Wheels

IR

I/H/O Neurons:

Turn Right

4/3/2

Alleles:

Solve Rate

35Evolved for 100 gens

300Control Cycles:

Follow Wall

Sensors:

Actuators: Wheels

IR

I/H/O Neurons:

Alleles:

Solve Rate

4/3/2

35Evolved for 100 gens

300Control Cycles:

Avg:62%±42% Best:94%

Avg:87%±12% Best:100% Avg:97%±3% Best:100%Avg:58%±29% Best:94%

Avg:55%±27% Best:95% Avg:65%±30% Best:98%Avg:85%±27% Best:98%

Fig. 4 Hierarchical Rescue Task Controller. The controller used in our experiments is composed of three behavior arbitrators
(with darker background) and four behavior primitives. In each node, we list its name, the number of generations for which the
sub-controller was evolved, the number of alleles, the number of input, hidden and output neurons, the sensors and actuators,
the number of control cycles each evaluation lasted, and the average and best solve rate of the post-evaluation.

sample. Controllers were evaluated differently depend-

ing on whether they found the exit of the room within

the allotted time or not, according to fexit room:

fexit room =

5 +
C − c

C
if exit was found

D − d

D
time expired

where C is the maximum number of cycles (1 second =

10 control cycles), c is the number of cycles spent, D

is the distance from the center of the room to its exit,

and d is the closest point to the exit that the robot
reached. fexit room rewards controllers that move from

the center of the room and toward the exit. Since the

controller has no information about the location of the

exit, we reward it based on how close it got to the exit

in order to implicitly promote exploration.

In two of the ten evolutionary runs, the highest scor-

ing controller was able to find the exit of the room in

over 90% of the post-evaluation samples. The best per-

forming controller starts by moving away from the cen-

ter of the room until it senses a wall, which it then fol-

lows counter-clockwise until the room exit is found. The

remaining eight runs did not produce successful behav-

iors: the robots would spin around in circles, sometimes

finding the exit by chance but often colliding with one

of the walls or with an obstacle.

5.2.2 Solve Maze Sub-task

In the second sub-task, the robot has to solve a dou-

ble T-maze in order to find a teammate that needs to
be rescued (see Figure 3). Controllers were evaluated
according to fmaze:

fmaze =

1 +
C − c

C
if navigated to destination

D − d

3D
if collided or chose wrong path

0 if time expired

where C is the maximum number of cycles, c is the

number of cycles spent, D is the distance from the start

of the maze to the robot’s destination, and d is the fi-

nal distance between the robot to its destination. fmaze

awards a score of 1 plus a speed bonus in case the robot

reaches the destination. If the robot collides with a wall
or chooses a wrong path, a lower fitness is awarded, cal-
culated based on how close to the destination it man-

aged to get. The experiment ends prematurely if the

robot either collides with a wall or reaches one of the

maze exits. In such cases, we do not count the time as

having expired.

We divided the “Solve Maze” sub-task into three dif-

ferent sub-tasks: “Follow Wall”, “Turn Left” and “Turn

Right”, for which appropriate fitness functions could

easily be specified. For each sub-task, we evolved a be-

havior primitive. Although the intended behaviors were

10 Miguel Duarte et al.

quite simple, we evolved the controllers in a wide vari-

ety of simple mazes, some of which had a high degree

of difficulty due to the starting position and orientation

of the robot. The difficulty of some of the mazes had an

impact on the solve rates of these controllers, bringing

the average down to 55% in the “Turn Left” controller

and 65% in the “Turn Right” controller (see Figure 4).

We used ten different mazes for the “Turn Left” and
“Turn Right” controllers, and four mazes composed of
corridors with different widths for the “Follow Wall”

controllers.

We then evolved a behavior arbitrator with the
three highest scoring behavior primitives as sub-

controllers. At the beginning of each trial, the robot

was placed at the start of the double T-maze and had

to navigate to the correct branch based on the activa-

tions of the lights in the central corridor (see Figure 3).

The robot was evaluated by fmaze, and the simulation
sample was terminated if the robot collided with a wall

or if it navigated to a wrong branch of the maze.

5.2.3 Return to Room Sub-task

The final sub-task consists of the robot guiding its

teammate back to the room. We initially tried to evolve

a behavior primitive for this sub-task, but the evolved
solutions proved difficult to transfer successfully to the
real robot. We therefore reused the behavior primitives

previously evolved for maze navigation (“Follow Wall”,

“Turn Left” and “Turn Right”), and evolved a new

behavior arbitrator. The new behavior arbitrator was

evolved in the double T-maze with the robot starting

in one of the four branches of the maze (chosen at ran-

dom in the beginning of each trial). In the guidance

sub-task, the robot had to navigate correctly through

the maze, and we therefore used the same fitness func-

tion, fmaze, as in the “Solve Maze” sub-task. The only

difference was the objective: the robot was evaluated

based on how close it got to the initial room (see Fig-

ure 3), and not the distance to the teammate.

For the complete task, we evolved a behavior arbi-

trator with the highest scoring controllers for the “Exit

Room”, the “Solve Maze”, and the “Return to Room”

sub-tasks as sub-controllers. The teammate being res-

cued continuously emitted a signal while waiting for

the rescuing robot. We used a derived fitness function,
fderived, to evolve the main behavior arbitrator for the

rescue task. The derived fitness function rewards the

selection of a valid behavior for the current sub-task

and penalizes the selection of an invalid behavior (for

instance, selecting the “Exit Room” behavior primitive

if the robot was in the T-maze). The controller was

awarded a fitness score between 0 and 1 for each sub-

Generation

 0

 0.5

average of all runs

 1

 1.5

 2

 2.5

 3

 3.5

 4

 0 100 200 300 400 500 600 700 800 900 1000

F
it

n
es

s

best run

Fig. 5 The average fitness trajectory of each of the highest
scoring controllers of all ten evolutionary runs, and the fitness
trajectory of the highest scoring controller for the complete
rescue task.

task (hence a maximum score of 3 for successful com-
pletion of all sub-tasks), depending on the proportion
of the time that it selected the valid behavior, plus a

time bonus. fderived is defined as follows:

fderived =
n
∑

s=1

(

ts

Ts

−
ws

Ts

)

+

C − c

C
if the task completed

0 otherwise

where the sum is over all the started sub-tasks, ts is the

number of cycles in which the controller chose a valid
sub-controller for sub-task s, Ts is the number of sim-

ulation cycles that the controller has spent in sub-task
s, ws is the number of cycles in which the controller

chose an invalid sub-controller for sub-task s, C is the

maximum number of cycles, and c is the number of cy-

cles spent. The fitness trajectory for the highest scor-
ing controller evolved and the average fitness trajectory
of all ten evolutionary runs for the rescue task can be

seen in Figure 5. The best controller had a solve rate
of 94%. Out of the ten controllers, seven were able to
consistently solve the whole rescue task in over 89% of

the samples, while the remaining three were not able to

solve the three sub-tasks.

5.3 Transfer to the Real Robot

We tested each sub-controller incrementally on the real

robot, which enabled us to ensure the transferability

of the complete controller. After evaluating all the dif-

ferent evolutionary runs of the complete controller, we

tested the best performing controller from the simula-

tion on a real e-puck. The robot had to solve the com-

plete rescue task: find the exit of the initial room, navi-

Evolution of Hybrid Robotic Controllers for Complex Tasks 11

gate to the correct branch of the double T-maze, and re-

turn to the room. We used a room with a size of 120 cm

× 60 cm for our real robot experiments. Three identical

obstacles with side lengths of 17.5 cm and 11 cm were

placed in the room as shown in Figure 3. We sampled

the controllers six times for each light combination, re-

sulting in a total of 24 samples.

To avoid interference between the two robots, we
excluded the teammate in the real robot experiments,

and manually triggered the near-robot sensor when the

robot reached the correct maze branch. We ran ad-

ditional proof-of-concept experiments in which we in-

cluded a teammate that was preprogrammed to follow

the main robot back to the initial room. Videos of these

experiments can be found online [13].

The controller solved the composed task on the real

robot in 22 out of 24 samples (a solve rate of 92%). The

main behavior arbitrator consistently chose the correct

sub-controller at each point of the task, and only failed

once in the “Solve Maze” behavior (the robot turned

the wrong way in the second intersection of the maze),

and once in the “Return to Room” behavior (the robot

did not turn at the intersection, ending up in a different

maze branch).

The experiments and results presented above

demonstrate how controllers can be composed in a hi-

erarchical fashion to allow for the evolution of behav-

ioral control for a complex task. For the main behavior
arbitrator, we used a fitness function directly derived
from the immediate decomposition of the task, that is,
we used a fitness function that rewards a controller for

activating a valid sub-controller given the current sit-

uational context. During evolution, an arbitrator (an

ANN) was rewarded for (i) activating the “Exit Room”

sub-controller while the robot was in the room, (ii) the
“Solve Maze” sub-controller while the robot was in the
maze, and (iii) the “Return to Room” sub-controller
after the teammate had been located. In this way, we

avoid that the complexity of the fitness function in-

creases with the task complexity as sub-controllers are

combined. The highest scoring controller in simulation

was able to cross the reality gap, achieving a perfor-
mance on real robotic hardware similar to the perfor-
mance obtained in simulation.

6 Hybrid Controllers

In this section, we experiment with the evolution of

hybrid control systems that can take advantage of pre-

programmed behavior primitives. There are examples

in literature where researchers have combined evolved

control and preprogrammed control, but it has been

done in an ad-hoc manner (see for instance [20]). Our

approach, on the other hand, allows for a structured

integration of learned and preprogrammed behavior in
a hierarchical and incremental manner. We used the
double T-maze task (see Section 5) with simple pre-

programmed behavior primitives (“FollowWall”, “Turn

Left”, and “Turn Right”). The controller for the com-

plete task is composed of an evolved behavior arbitrator

that activates one of the three preprogrammed behavior

primitives.

Two preprogrammed primitives take more than one
control cycle to complete, namely turning 90◦ left or

right. For such primitives, we introduce the concept of

locking the controller. While a locking preprogrammed

behavior is executing, no other behavior primitive can

be executed. The locking mechanism helps to guarantee

transfer of control from simulation to a real robot by

ensuring that preprogrammed behaviors are allowed to

complete before another behavior is executed.

6.1 Experiments and Results

The input layer of the ANN-based behavior arbitrator

was composed of six neurons: one for each of the four

infrared proximity sensors, and one for each of the two

light sensors. The highest value of the output neurons of

the neural network determines which one of the three

possible preprogrammed behaviors is activated: “Fol-

low Wall”, “Turn Left” or “Turn Right”. The complete

controller and the results are shown in Figure 6.

After the evolutionary process was concluded, we

conducted a post-evaluation of the evolved controllers

in which the fitness of every controller was sampled 100

times for each of the four possible light configurations.

The evolved controllers had an average solve rate of

50%(±31%). A solve rate of 80% or more was achieved
by three of the ten controllers, with a solve rate of 93%

for the highest scoring controller. The solutions pro-

duced in different evolutionary runs were similar. The

controllers learned to navigate the T-maze correctly,

but some were not able to take advantage of the infor-

mation from the light flashes to consistently make the

correct decisions at the junctions, which caused them
to navigate to a wrong maze branch.

The highest scoring controller was tested on a real
e-puck 24 times, six for each light configuration. The

controller was successful in 22 of the 24 samples (a solve
rate of 92%). In both failed samples, the robot turned
to the wrong maze branch in the second intersection.

These results are comparable to the results obtained

in simulation and to the real robot experiments where

the behavior arbitrator had access to evolved behavior

primitives (see Section 5).

12 Miguel Duarte et al.

control cycles

locking for 40
control cycles

Alleles:

Solve Rate

Main

I/H/O Neurons:

Follow Wall

Sensors: IR, Light

6/10/3

213

Preprogrammed Preprogrammed

non−locking

Preprogrammed

Turn Left Turn Right

Control Cycles: 1000

locking for 40

Evolved for 300 gens

Avg:50%±31% Best:93%

Fig. 6 Hierarchical Solve T-Maze Controller. The controller used in our experiments is composed of one behavior arbitrator
and three preprogrammed behavior primitives. Both the “Turn Left” and the “Turn Right” preprogrammed behavior primitives
lock the network during execution, in order to ensure that the behavior completes before another primitive can be executed.

We used the same preprogrammed behaviors both

in simulation and on the real robot for the experi-
ments presented in this section. Preprogrammed behav-
ior primitives can be an alternative to evolved behavior

primitives. It may not always be possible to evolve a

controller for a sub-task, either because an appropriate

fitness function cannot be found or because fine sensori-

motor behaviors are required. Fine sensorimotor behav-

iors are those that require the robot to perform actions

with a high degree of accuracy, and that depend on

the precise information provided by the robot’s sensors.

When such behaviors are necessary for solving the task,

evolved control may be combined with preprogrammed

behaviors, which can be fine-tuned manually for the real

robotic hardware. The use of preprogrammed behaviors

is particularly beneficial for sub-tasks and behaviors

that are infeasible to simulate with sufficient accuracy

to allow for the successful transfer to real robotic hard-

ware. Behaviors that have only been implemented for

the real robotic hardware can be integrated in simula-

tion in two different ways: samples can be collected from

the real robot performing the preprogrammed behavior
and then played back in simulation (sensor playback),

or the normal control cycle can be stopped completely

while the robot executes the preprogrammed behavior

(offline behavior). In either case, it is only necessary to

change the state of the environment according to the

robot’s ations, and not to simulate the detailed robot-

environment interaction. We explore the offline behav-
ior technique in the experiments described in the next

section. Source code for the preprogrammed behaviors

can be found online [13].

7 Hierarchical Evolution for Integrated Tasks

In the experiments presented in the previous sections,

the behavior primitives were either all evolved, or all

manually programmed. Furthermore, in the case of the

experiments in Section 5, the task was sequential, which

meant that the robot had to learn a strict sequence of

behaviors: “Exit Room”, “Solve Maze” and “Return to

Room”. In this section, we evaluate our approach in a

task that is non-sequential and we combine evolved be-

havior primitives and preprogrammed primitives. We

use the offline behavior technique described in Sec-

tion 6, in which a preprogrammed behavior is imple-

mented for the real robot, but not in simulation. When

the controller activates such a preprogrammed behav-

ior in simulation, the normal control cycle is stopped,

the end-result of the robot-environment interaction is

applied, and controller is then resumed.

We use a task in which the robot must clean dust

spots. The dust spots appear in two rooms that are

connected by a corridor (see Figure 7). The rooms are

square-shaped and side lengths vary between 80 cm and

120 cm drawn from a uniform distribution. A new dust

spot is randomly placed in one of the two rooms every

10 s. The placement of a new spot is determined by

a Bernoulli trial with a probability p that the spot is

placed in one room and 1−p that it is placed in the other
room. The probability p is randomly sampled from the

uniform distribution at the beginning of each trial. A

maximum of five dust spots can be in the environment

at any given time. This means that if the robot keeps

cleaning one room for a long time, all dust spots may

eventually be in the other room.

In order to traverse the corridor connecting the two

rooms, the robot must first push a button to open both

Evolution of Hybrid Robotic Controllers for Complex Tasks 13

doors (see Figure 7). We preprogrammed a behavior

primitive to enable an e-puck to push a button, which

opens the doors to the corridor. Pushing a button to

open the doors requires fine sensorimotor coordination,

since the buttons are difficult to detect and hit. The

buttons are only 2.5 cm in diameter, and they must be
pushed at an angle under 45◦. This is a difficult inter-

action to model correctly in simulation, and it can also

be a challenging behavior to evolve and transfer suc-

cessfully. The preprogrammed “Push Button” behav-

ior was therefore only implemented for the real robot,

and activating the preprogrammed behavior automati-

cally opens the door instantly in simulation. On the real

robot, the preprogrammed behavior uses the e-puck’s

on-board camera to find and move the robot toward

the button. When the preprogrammed behavior primi-

tive that opens the door is activated, the control cycle

of the main behavior arbitrator is stopped. The prepro-

grammed behavior primitive rotates the robot up to a

maximum of 360◦ in order to try to locate the button,

which can be identified by its red color. The central

horizontal line of each image captured by the e-puck’s

camera is scanned. If the button is identified, the robot

aligns itself, moves forward, and pushes it. The main be-

havior arbitrator is resumed after the preprogrammed

behavior terminates. When the preprogrammed behav-

ior is activated in simulation, the elapsed time of the

current sample is increased by the average amount of
time taken by the preprogrammed “Push Button” be-
havior on the real robot. Source code for the prepro-
grammed “Push Button” can be downloaded from [13].

Corridor

Door

Button

Fig. 7 The environment is composed of two rooms, connected
by a corridor. The corridor is blocked by two doors that the
robot can open by pushing a red button.

7.1 Experiments and Results

In the real robot experiments, virtual dust spots are im-

plemented using a visual tracking system. The position

and orientation of the robot is tracked using an over-

head camera. The robot has a cross-shaped marker on
top (see Figure 7), which is extracted from the video
feed using the OpenCV library [4]. This information

allows virtual dust spots to be detected by the robot

using virtual sensors. The controller is executed in a

workstation, and the resulting movement commands

are sent to the robot every 100 ms. The robot is able to

sense the dust spots up to 30 cm away with eight vir-

tual sensors, positioned on the perimeter of the robot’s

body at equal angular intervals. The robot must acti-

vate a virtual actuator when it is within 5 cm of a dust

spot to remove the spot. The robot is also equipped

with two button sensors that are placed at angles of

−30◦ and 30◦, providing the controller with informa-

tion on the direction and distance (up to 1 m) to the

nearest button. The controller we used for these exper-

iments can be seen in Figure 8. We decomposed the

task into two main sub-controllers: “Change Room”
and “Clean”. The “Change Room” sub-controller is a
behavior arbitrator that can choose between the “Open

Door” behavior arbitrator and the “Enter Corridor” be-

havior primitive.

The robot must push a button to open the doors

to the corridor before it can move from one room to

the other. Once the doors have been opened, the robot

has 40 seconds to traverse the corridor that leads to

the other room before the doors close. We divided the

“Change Room” sub-controller into a behavior primi-

tive and a behavior arbitrator: the “Open Door” behav-

ior arbitrator, which moves the robot toward the cur-

rent room’s button (“Move to Button” behavior prim-

itive) and pushes the button (“Push Button” prepro-

grammed behavior primitive), and the “Enter Corri-

dor” behavior primitive, which navigates to the corridor

and crosses to the other room.

We first evolved the “Move to Button” behavior

primitive. The controller was evaluated by by ftwo rooms

according to a distance gradient to the button, with

a time-dependent bonus upon correctly activating the

preprogrammed behavior primitive:

ftwo rooms =

1 + 10 ·
C − c

C
if achieved objective

D − d

D
otherwise

where C is the maximum number of cycles, c is the num-

ber of cycles spent, D is the distance from the robot’s

14 Miguel Duarte et al.

I/H/O Neurons:

Alleles:

Solve Rate

6/5/2

Sensors: IR, Button

77

Change Room
Evolved for 100 gens

Control Cycles: 400

Alleles:

I/H/O Neurons:

57

Solve Rate

Open Door

Sensors: Button

2/5/2

Evolved for 100 gens

Control Cycles: 400

Sensors:

Wheels

IR

I/H/O Neurons:

Alleles: 35

4/3/2

Solve Rate

Actuators:

Enter Corridor
Evolved for 100 gens

Control Cycles: 300

Push Button

Preprogrammed
I/H/O Neurons:

Alleles:

Solve Rate

77

Actuators:

IR, Button

6/5/2

Wheels

Sensors:

Move to Button
Evolved for 100 gens

Control Cycles: 1000

Alleles:

Main

I/H/O Neurons: 8/5/2

Sensors:

87

Fitness
Dust

Evolved for 100 gens

Control Cycles: 4000

Alleles:

I/H/O Neurons: 12/5/2

113

Fitness

Clean

Actuators:

Sensors: IR, Dust

Evolved for 100 gens

Control Cycles: 3000

Wheels,
Dust Cleaner

Avg: 25±6 Best: 29
Avg:92%±6% Best:99%

Avg:100%±1% Best:100% Avg:65%±30% Best:98%

Avg:97%±2% Best:100%

Avg:28 ± 8 Best: 29

Fig. 8 Hierarchical Dust Cleaning Controller. The controller synthesized for the dust cleaning experiment is composed of
three behavior arbitrators and four behavior primitives.

starting point to the button, and d is the closest point

to the button that the robot reached. In the case of the

“Move to Button” behavior primitive, the objective was

to get within 5 cm of the button.

The “Open Door” behavior arbitrator has access to

the button sensor. In simulation, the preprogrammed

“Push Button” behavior opens the doors if the robot is

within 20 cm of the button, otherwise the robot stops
moving while the behavior is activated. Since the “Push
Button” behavior takes some time to execute on the real

hardware, controllers that activate this behavior too of-

ten or too far from the button are therefore indirectly

penalized because they have less time to clean. On the

real robot, such controllers would make the robot search

for the button at a distance that would make it very
difficult for the e-puck’s camera to detect a small tar-
get. The controllers were evaluated by ftwo rooms, where

the objective was to open the corridor doors. Since the

button was placed to the right-hand side of each door,

we reused the “Turn Right” behavior primitive from

Section 5 instead of evolving a new primitive for the
“Enter Corridor” sub-controller. This behavior primi-
tive allows the robot to move to the other room after
pushing the button.

For the evolution of the “Change Room” behavior

arbitrator, the robot was positioned and oriented ran-
domly in one of the rooms at the beginning of each

trial, and had to push the button, enter the corridor
and move to the other room. Each controller was also
evaluated according to ftwo rooms, where the objective

was to reach the other room. For the “Change Room”

arbitrator, D is the distance from the robot’s starting

point to the end of the corridor, and d is the point clos-

est to the end of the corridor that the robot reached.

The “Clean” behavior primitive was evolved in a
single room without any door or exit. The output neu-

rons controlled the speed of the robot’s wheels, and the

“clean dust spot” actuator was triggered if its corre-

sponding output had an activation value higher than

0.5. If no dust spot is nearby when the robot activates

the “clean dust spot” actuator, the speed of the robot

is set to 0. This penalizes the controller from always ac-
tivating the actuator, instead of only activating it near
a dust spot. The robot was randomly oriented and po-

sitioned near the center of the room at the beginning of

each sample. The fitness function rewarded the robot

based on how many dust spots it cleaned (a score of

1 for each dust spot) in the allotted time or until it

collided with a wall.

To obtain a controller for the complete task, the

“Clean” behavior primitive and the “Cross Rooms” be-

havior arbitrator were combined via the evolution of

a new behavior arbitrator (see Figure 8). All evolu-

tionary runs converged to a behavior where the robot

Evolution of Hybrid Robotic Controllers for Complex Tasks 15

would move between rooms whenever necessary. If the

robot did not sense any dust spot for a certain amount

of time, the “Main” arbitrator would choose to acti-

vate the “Change Room” behavior arbitrator. The con-

trollers were evaluated according to the number of dust

spots they cleaned, as in the evolution of the “Clean”

behavior primitive. The controllers achieved an average

fitness of 28 ± 8 in the ten evolutionary runs, and the
best controller achieved an average of 29± 6. The con-

trollers chose to cross to the other room an average of

2.86 times per sample.

7.2 Real Robot Experiments

For our real robot experiments, we built the walls of

the two rooms and the corridor using wooden blocks.

Each room had a size of 100 cm × 100 cm, and the
corridor had a length of 40 cm and a width of 18 cm

(see Figure 7). Both doors were opened and closed by
motors connected to a Lego Mindstorms NXT brick. A
physical button was placed on the wall to the right of

the entrance to the corridor in each room.

We transferred the highest scoring controller from

simulation to the real e-puck. The performance of the

controller on the real robot was sampled five times in

five different configurations, for a total of 25 samples.

We used fixed rates at which the dust spots were placed

in each room. In each configuration, the rate of a dust

spot being placed in each room was set to one of the fol-

lowing: 1 : 0, 3 : 1, 1 : 1, 1 : 3, and 0 : 1. The robot started

each sample in one of the rooms. In the 3 : 1 scenario, for

instance, three dust spots are placed in the room where

the robot starts, and then one dust spot is placed in

the other room, and so on. The dust spots were placed

deterministically at these fixed rates in order to allow

for direct comparison of performance in simulation and

performance in real hardware. We sampled the robot’s

performance in simulation 100 times per configuration.

Each sample lasted five minutes (3000 control cycles).

The results can be seen in Figure 9. In the real robot

experiments, the controller was able to complete the

task with a performance comparable to that obtained

in simulation.

Several outliers can be observed in the 0 : 1 configu-

ration. In this configuration, the robot starts in a room

where no dust spots are ever placed. After some time,
the controller decides to cross to the other room. In
most of the samples, the robot keeps cleaning the room

in which all the dust spots appear, but sometimes the

controller might choose to return to the initial room.

This happens when several dust spots are placed in

a cluster and the robot does not explore the part of

the room containing the cluster for a certain amount

of time. In such cases, the number of dust spots that

the robot can clean are significantly lower than if the
robot remains in the room in which dust spots appear.
The robot wrongly returned to the initial room in one

of the real robot samples. As a result the robot only

cleaned 13 dust spots in the 0 : 1 experimental setup,

and received a low fitness (see outlier for the 0 : 1 setup

in Figure 9).

7.3 Discussion

In this section, we introduced a non-sequential task that

required fine sensorimotor coordination. A hybrid ap-
proach in which evolved behaviors are combined with
preprogrammed behaviors can be beneficial when some

behaviors are too difficult to simulate accurately. In the

case of pushing the button, we did not implement the

preprogrammed behavior in simulation. When the con-

trollers were being evolved, the doors in the environ-

ment would open automatically if the robot activated

the “Push Button” behavior primitive near the button.

On the real robot, activating that same behavior prim-

itive triggered a preprogrammed behavior, which used

the robot’s camera to detect and push a physical button

in the environment.

In the experiment, we reused a previously evolved
behavior primitive from a different experiment. The

“Turn Right” behavior primitive from Section 5 was

used to navigate from one room to the other. In this

case, the behavior could be reused because of the char-

acteristics of both the task and the environment: the

button was positioned to the right of the door, and

the robot had to turn right to enter the corridor af-

 0

 5

 10

 15

 20

 25

 30

1:0 3:1 1:1 1:3 0:1

Fi
tn

es
s

Si
m

ul
at

io
n

Si
m

ul
at

io
n

Si
m

ul
at

io
n

Si
m

ul
at

io
n

Si
m

ul
at

io
n

R
ea

l R
ob

ot

R
ea

l R
ob

ot

R
ea

l R
ob

ot

R
ea

l R
ob

ot

R
ea

l R
ob

ot

Experimental setup

Fig. 9 Results of the real robot experiments in the dust clean-
ing experimental setup. The box plots represent 100 samples
in simulation, while the scatter plots represent the fitness ob-
tained in the real robot experiments. The whiskers extend
to the most extreme data point within 1.5× the interquartile
range.

16 Miguel Duarte et al.

ter pushing the button. If the position of the button

was unknown, it would have been necessary to evolve a

new behavior for the sub-task. Classic evolutionary ap-

proaches force the designer to evolve new controllers for

similar tasks. Our approach, on the other hand, allows

for the reuse of previously evolved or preprogrammed

behaviors.

8 Conclusions

The application of classic evolutionary robotics tech-

niques to the synthesis of controllers for complex tasks
has proven problematic: the evolutionary process is of-
ten challenging to bootstrap and vulnerable to decep-

tion when the task is difficult. Successful transfer of

evolved control from simulation to real hardware also

remains a largely unsolved problem. In this paper, we

demonstrated how hierarchical composition of robotic

controllers can overcomes these issues. We recursively
divide the goal task into sub-tasks until an appropri-
ate fitness function has been found or until a behavior

can easily be programmed by hand. In this way, par-

tial solutions can be found incrementally and successful

transfer to real robotic hardware can be guaranteed at

each increment. Controllers for complex tasks can thus

be synthesized in a hierarchical fashion while, at the

same time, they can benefit from evolutionary robotics

techniques, namely (i) automatically synthesis of con-

trol, and (ii) evolution’s ability to exploit the way in

which the world is perceived through the robot’s (often

limited) sensors. In summary, our contribution is three-

fold: (i) we combined preprogrammed and evolved con-

trol, (ii) we demonstrated our approach on real robotic

hardware and in tasks that are beyond the state of the

art in terms of task complexity, and (iii) we introduced

the concept of derived fitness functions that circumvent

an increase in fitness function complexity as progres-

sively more complex tasks are considered.

Some researchers advocate the use of implicit, be-

havioral, and internal fitness functions [17]. Fitness

functions with such characteristics, in theory, allow

for solutions to emerge through an autonomous self-

organization process. In practice, however, such fitness

functions, which are supposed to be redeemed from any

constraints imposed by a priori knowledge, are often

the result of a series of unsuccessful experiments. The
fitness function is modified after each unsuccessful ex-
periment based on the results and on the experiment’s

guess concerning what may be “wrong”. While we do

not dismiss the potential benefits of implicit, behav-

ioral, and internal fitness functions, we instead suggest

dividing the task into sub-tasks, when such a function

cannot easily be found.

The transfer of behavioral control from simulation

to a real robot is usually a hit or miss because a con-
troller for the goal task is completely evolved in simu-
lation before any tests are conducted on real hardware.

In our approach, the transfer from simulation to real

robotic hardware can be conducted in an incremental

manner as sub-controllers are evolved. Crossing the re-

ality gap one sub-controller at a time allows the de-

signer to address issues related to transferability imme-

diately and locally in the controller hierarchy. The fact

that each sub-controller solves only part of the task also

allows for the use of different types of noise and other

sub-task specific configurations in simulation.
The potential cost of an engineered approach, such

as the approach proposed in this paper, is that evolu-

tion is constrained. The solution space for a behavior

arbitrator is determined by the set of behavior primi-

tives available, and the space is therefore smaller than

the solution space in a traditional ER setup, in which

the neural controller has direct control over the robot’s

actuators. The restricted solution space may exclude

the optimal solution(s) for a given robot and task and
surprisingly simple and elegant solutions that the ex-
perimenter did not foresee may therefore never be dis-
covered. The solution space, however, is only restricted

when evolution is not able to find a solution for the task,

and the combination of evolutionary computation, task

decomposition, and preprogramming enables the appli-

cation of ER to tasks that would otherwise be insuper-
able.

References

1. J. A. Becerra, F. Bellas, J. S. Reyes, and R. J.

Duro. Complex behaviours through modulation

in autonomous robot control. In Proceedings of

the 8th International Work-Conference on Artifi-

cial Neural Networks (IWANN), volume 3512 of
Lecture Notes in Computer Science, pages 717–724.

Springer, Berlin, Germany, 2005.
2. R. D. Beer and J. C. Gallagher. Evolving dynamical

neural networks for adaptive behavior. Adaptive

Behavior, 1(1):91–122, 1992.

3. J. Blynel and D. Floreano. Exploring the T-

Maze: Evolving learning-like robot behaviors using

CTRNNs. In Applications of Evolutionary Com-

puting, pages 593–604. Springer, Berlin, Germany,
2003.

4. G. Bradski. The OpenCV Library. Dr. Dobb’s

Journal of Software Tools, 25(11), 2000.

5. S. Celis, G. S Hornby, and J. Bongard. Avoid-

ing local optima with user demonstrations and low-

level control. In Proceedings of the IEEE Congress

Evolution of Hybrid Robotic Controllers for Complex Tasks 17

on Evolutionary Computation (CEC), pages 3403–

3410. IEEE Press, Piscataway, NJ, 2013.
6. N. Cheney, R. MacCurdy, J. Clune, and H. Lip-

son. Unshackling evolution: Evolving soft robots

with multiple materials and a powerful generative

encoding. In Proceedings of the Genetic and Evolu-
tionary Computation Conference (GECCO). ACM

Press, New York, NY, 2013. in press.
7. A. L. Christensen and M. Dorigo. Evolving an inte-

grated phototaxis and hole avoidance behavior for

a swarm-bot. In Proceedings of 10th International

Conference on the Simulation and Synthesis of Liv-

ing Systems (ALIFE), pages 248–254. MIT Press,
Cambridge, MA.

8. A. L. Christensen and M. Dorigo. Incremental evo-

lution of robot controllers for a highly integrated

task. In From Animals to Animats 9: Proceedings

of The 9th International Conference on the Simu-

lation of Adaptive Behavior (SAB), pages 473–484.
Springer, Berlin, Germany, 2006.

9. A. L. Christensen, S. Oliveira, and M. Duarte.

JBotEvolver, 2014. URL http://code.google.

com/p/jbotevolver.

10. R. de Nardi, J. Togelius, O. E. Holland, and S. M.

Lucas. Evolution of neural networks for helicopter

control: Why modularity matters. In Proceedings
of IEEE Congress on Evolutionary Computation

(CEC), pages 1799–1806. IEEE Press, Piscataway,
NJ, 2006.

11. M. Duarte, S. Oliveira, and A. L. Christensen. Hi-

erarchical evolution of robotic controllers for com-

plex tasks. In IEEE International Conference on

Development and Learning and Epigenetic Robotics
(ICDL), pages 1–6. IEEE Press, Piscataway, NJ,

2012.
12. M. Duarte, S. Oliveira, and A. L. Christensen.

Automatic synthesis of controllers for real robots
based on preprogrammed behaviors. In From Ani-

mals to Animats 12: Proceedings of the 12th Inter-
national Conference on Adaptive Behaviour (SAB),
pages 249–258. Springer, Berlin, Germany, 2012.

13. M. Duarte, S. Oliveira, and A. L. Christensen.
Videos and source code from real robot experi-
ments, 2014. URL http://home.iscte-iul.pt/

~alcen/hybridcontrollers/.

14. D. Floreano and L. Keller. Evolution of adaptive

behaviour in robots by means of Darwinian selec-
tion. PLoS Biology, 8(1):1–8, 2010.

15. D. Floreano and F. Mondada. Automatic cre-
ation of an autonomous agent: Genetic evolution
of a neural-network driven robot. In From Ani-

mals to Animats 3: Proceedings of the 3rd Interna-
tional Conference on Simulation of adaptive behav-

ior (SAB), pages 421–430, MIT Press, Cambridge,

MA, USA, 1994.
16. D. Floreano and F. Mondada. Evolution of homing

navigation in a real mobile robot. IEEE Transac-

tions on Systems, Man, and Cybernetics–Part B:
Cybernetics, 26(3):396–407, 1996.

17. D. Floreano and J. Urzelai. Evolutionary robots

with on-line self-organization and behavioral fit-

ness. Neural Networks, 13(4–5):431–443, 2000.

18. J. Gomes and A. L. Christensen. Generic be-

haviour similarity measures for evolutionary swarm

robotics. In Proceedings of the 15th Annual Con-

ference on Genetic and Evolutionary Computation
Conference (GECCO), pages 199–206, ACM, New

York, NY, USA, 2013.

19. F. Gomez and R. Miikkulainen. Incremental evolu-

tion of complex general behavior. Adaptive Behav-

ior, 3-4(5):317–342, 1997.

20. R. Groß, M. Bonani, F. Mondada, and M. Dorigo.
Autonomous self-assembly in swarmbots. IEEE

Transactions on Robotics, 22(6):1115–1130, 2006.

21. A. Gutiérrez, A. Campo, M. Dorigo, D. Amor,

L. Magdalena, and F. Monasterio-Huelin. An
open localization and local communication embod-
ied sensor. Sensors, 8(11):7545–7563, 2008. ISSN

1424-8220.
22. I. Harvey, P. Husbands, and D. Cliff. Seeing the

light: artificial evolution, real vision. In From Ani-

mals to Animats 3: Proceedings of the 3rd Interna-
tional Conference on Simulation of Adaptive Be-
havior (SAB), pages 392–401. MIT Press, Cam-
bridge, MA, 1994.

23. J. Heaton. Encog machine learning framework,
2008. URL http://www.heatonresearch.com/

encog.

24. J. Hiller and H. Lipson. Automatic design and

manufacture of soft robots. IEEE Transactions on

Robotics, 28(2):457–466, 2012. ISSN 1552-3098.

25. G. S. Hornby, S. Takamura, T. Yamamoto, and

M. Fujita. Autonomous evolution of dynamic gaits
with two quadruped robots. IEEE Transactions on

Robotics, 21(3):402–410, 2005.

26. Phil Husbands. Evolving robot behaviours with dif-

fusing gas networks. In Proceedigs of the 1st Euro-

pean Workshop Evolutionary Robotics (EvoRobot),

pages 71–86. Springer, Berlin, Germany, 1998.

27. N. Jakobi. Evolutionary robotics and the radical
envelope-of-noise hypothesis. Adaptive Behavior, 6

(2):325–368, 1997.

28. S. Koos, J.-B. Mouret, and S. Doncieux. The trans-

ferability approach: Crossing the reality gap in evo-
lutionary robotics. IEEE Transactions on Evolu-

tionary Computation, 17(1):122–145, 2013.

http://code.google.com/p/jbotevolver
http://code.google.com/p/jbotevolver
http://home.iscte-iul.pt/~alcen/hybridcontrollers/
http://home.iscte-iul.pt/~alcen/hybridcontrollers/
http://www.heatonresearch.com/encog
http://www.heatonresearch.com/encog

18 Miguel Duarte et al.

29. T. Larsen and S.T. Hansen. Evolving compos-

ite robot behaviour - a modular architecture. In
Proceedings of the 5th International Workshop on
Robot Motion and Control (RoMoCo), pages 271–

276. IEEE Press, Piscataway, NJ, 2005.

30. W.-P. Lee. Evolving complex robot behaviors. In-
formation Sciences, 121(1-2):1–25, 1999.

31. J. Lehman and K.O. Stanley. Abandoning ob-
jectives: Evolution through the search for novelty
alone. Evolutionary Computation, 19(2):189–223,

2011.

32. J.-A. Meyer, P. Husbands, and I. Harvey. Evolu-

tionary robotics: A survey of applications and prob-
lems. In Proceedings of the 1st European Workshop

on Evolutionary Robotics (EvoRobot), pages 1–21.

Springer, Berlin, Germany, 1998.

33. O. Miglino, H. H. Lund, and S. Nolfi. Evolving

mobile robots in simulated and real environments.
Artificial Life, 2(4):417–434, 1996.

34. R. C. Moioli, P. A. Vargas, F.J. Von Zuben, and

P. Husbands. Towards the evolution of an artifi-

cial homeostatic system. In Proceedings of IEEE

Congress on Evolutionary Computation (CEC),

pages 4023–4030. IEEE Press, Piscataway, NJ,

2008.

35. F. Mondada, M. Bonani, X. Raemy, J. Pugh,
C. Cianci, A. Klaptocz, S. Magnenat, J.-C. Zuf-

ferey, D. Floreano, and A. Martinoli. The e-
puck, a robot designed for education in engineer-
ing. In In Proceedings of the 9th Conference

on Autonomous Robot Systems and Competitions

(ROBOTICA), pages 59–65. Instituto Politecnico

de Castelo Branco, Castelo Branco, Portugal, 2009.
36. H. Nakamura, A. Ishiguro, and Y. Uchilkawa.

Evolutionary construction of behavior arbitration
mechanisms based on dynamically-rearranging neu-
ral networks. In Proceedings of Congress on Evolu-

tionary Computation (CEC), pages 158–165. IEEE

Press, Piscataway, NJ, 2000.

37. A. L. Nelson, G. J. Barlow, and L. Doitsidis. Fitness
functions in evolutionary robotics: A survey and

analysis. Robotics and Autonomous Systems, 57(4):
345–370, 2009.

38. S. Nolfi and D. Floreano. Evolutionary robotics:

The biology, intelligence, and technology of self-

organizing machines. MIT press Cambridge, 2000.

39. S. Nolfi and D. Parisi. Evolving non-trivial be-
haviors on real robots: an autonomous robot that

picks up objects. In Proceedings of the 4th Congress

of the Italian Association for Artificial Intelligence

(AI*IA), pages 187–198. Springer, Berlin, Ger-

many, 1995.

40. S. Nolfi, D. Floreano, O. Miglino, and F. Mondada.

How to evolve autonomous robots: Different ap-

proaches in evolutionary robotics. In Proceedings of

the 4th International Workshop on Artificial Life,

pages 190–197. MIT Press, Cambridge, MA, 1994.

41. C. W. Reynolds. Evolution of corridor following
behavior in a noisy world. In From Animals to An-

imats 3: Proceedings of the 3rd International Con-

ference on Simulation of Adaptive Behavior (SAB),

pages 402–410. MIT Press, Cambridge, MA, 1994.

42. K. Stanley and R. Miikkulainen. Evolving neural

networks through augmenting topologies. Evolu-

tionary Computation, 10(2):99–127, 2002.
43. E. C. Tolman and C. H. Honzik. Introduction and

removal of reward, and maze performance in rats.

University of California Publications in Psychol-

ogy, 4:257–275, 1930.

44. A. B. L. Torta, M. A. Kramer, C. Thorn, D. J. Gib-

son, Y. Kubota, A. M. Graybiel, and N. J. Kopell.

Dynamic cross-frequency couplings of local field po-

tential oscillations in rat striatum and hippocam-

pus during performance of a T-maze task. Proceed-

ings of the National Academy of Sciences, 105(51):

20517–20522, 2008.
45. E. Tuci, V. Trianni, and M. Dorigo. ‘Feeling’ the

flow of time through sensorimotor co-ordination.
Connection Science, 16(4):301–324, 2004.

46. E. Tunstel. Mobile robot autonomy via hierarchical

fuzzy behavior control. In Proceedings of the 6th

International Symposium on Robotics and Manu-
facturing (WAC), pages 837–842, New York, 1996.
ASME Press.

47. R. A. Watson, S. G. Ficici, and J. B. Pollack. Em-
bodied evolution: Distributing an evolutionary al-
gorithm in a population of robots. Robotics and

Autonomous Systems, 39(1):1–18, 2002.

48. L. D. Whitley. Fundamental principles of deception

in genetic search. In Foundations of Genetic Algo-

rithms, pages 221–241. Morgan Kaufmann, 1991.

