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Particle-in-cell simulations are used to investigate the formation of magnetic fields B in plasmas with
perpendicular electron density and temperature gradients. For system sizes L comparable to the ion skin
depth di, it is shown that B ∼ di=L, consistent with the Biermann battery effect. However, for large L=di, it
is found that the Weibel instability (due to electron temperature anisotropy) supersedes the Biermann
battery as the main producer of B. The Weibel-produced fields saturate at a finite amplitude (plasma
β ≈ 100), independent of L. The magnetic energy spectra below the electron Larmor radius scale are well
fitted by the power law with slope −16=3, as predicted by Schekochihin et al. [Astrophys. J. Suppl. Ser.
182, 310 (2009)].
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Introduction.—The origin and amplification of magnetic
fields are central problems in astrophysics [1]. The turbu-
lent dynamo [2,3] is generally thought to be the basic
process behind the amplification of a magnetic seed field;
however, some other process is required to originate the
seed itself. Among the few mechanisms able to do so is the
Biermann battery effect, due to perpendicular electron
density and temperature gradients [4]. It is often conjec-
tured that the observed magnetic fields in the Universe may
be of Biermann origin, subsequently amplified via dynamo
action [1]. However, simple theoretical estimates suggest
that Biermann-generated magnetic fields B should be such
that [5–7]

β≡ 8πP=B2 ∼ ðdi=LÞ−2; (1)

where P is the plasma pressure, di ¼ c=ωpi is the ion
inertial length (with c the speed of light and ωpi the ion
plasma frequency), and L is the characteristic length scale
of the system. Given the extremely small values of di=L
typical of astrophysical systems, it is an open question
whether such seeds are sufficiently large to account for the
microgauss fields observed today.
Megagauss magnetic fields are observed to form in

intense laser-solid interaction laboratory experiments
[8–12]. In these experiments, the laser generates an
expanding bubble of plasma by ionizing a foil of metal
or plastic. The plasma is denser closer to the plane of the
target foil and hotter closer to the laser beam axis.
Perpendicular density and temperature gradients are thus
generated, giving rise to magnetic fields via the Biermann
effect. Besides their intrinsic interest, these experiments
offer a unique opportunity to illuminate a fascinating, and
poorly understood, astrophysical process.
In this Letter, we perform ab initio numerical inves-

tigations of the generation and growth of magnetic fields in

a configuration akin to that of laser-generated plasma
systems. For small to moderate values of the parameter
L=di, our simulations confirm the theoretical predictions of
Haines [7]; in particular, for L=di ≳ 1, the magnetic fields
obey the scaling of Eq. (1). However, when L=di ≫ 1, we
find that the plasma is unstable to the Weibel instability
[13], which amplifies the magnetic fields such that β ≈ 100,
independent of L. These results have strong implications
for the interpretation of laser-solid interaction experiments;
they also shed new light on the currently accepted view of
the origin of the observed cosmic magnetic fields.
Computational model.—We perform a set of particle-in-

cell simulations using the OSIRIS framework [14,15]. The
initial fluid velocity, electric field, and magnetic field are
all uniformly 0. We start with a spheroid distribution of
density that has a shorter length scale in one direction:
n ¼ ðn0 − nbÞ cosðπR1=2LTÞ þ nb, if R1 < LT; nb; other-
wise, R1 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

x2 þ ðLT=LnyÞ2 þ z2
p

and nb ¼ 0.1n0 is the
uniform background density. The characteristic lengths of
the temperature and density gradients generated by the laser
beam are denoted by LT and Ln, respectively. To represent
the recently ionized foil, which is flatter in the direction of
the laser y, we set LT=Ln ¼ 2. (This is a generic choice that
appears to be qualitatively consistent with experiments,
e.g., Refs. [9–12]; note, however, that the specific
value of LT=Ln depends on target and laser properties.)
The initial velocity distributions are Maxwellian, with
a uniform ion thermal velocity vTi0. The spatial profile
for the electron thermal velocity is cylindrically symmetric
along the y direction, where it is hottest in the center:
vTe¼ðvTe0−vTebÞcosðπR2=2LTÞþvTeb, if R2<LT;vTeb;
otherwise, R2 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

x2 þ z2
p

, resulting in a maximum initial
electron pressure Pe0 ¼ men0v2Te0=2. The numerical values
of the thermal velocities are vTe0 ¼ 0.2c and
vTi0 ¼ vTeb ¼ 0.01c. Note that in our setup, the pressure
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is dominated by the electrons, and thus β ≈ βe ≡ 8πPe=B2.
For simplicity, the boundaries are periodic, but the box is
large enough that they do not interfere with the dynamics
[Lðx;y;zÞmax ¼ −Lðx;y;zÞmin ¼ 15=8LT]. In order to investi-
gate a larger range of LT=di, the simulations are run with a
reduced mass ratio of 25. The spatial resolution is 16 grid
points/de, or 2.26 grid points=λd, where de ¼ c=ωpe is
the electron inertial length (ωpe is the electron plasma
frequency) and λd is the electron Debye length. The time
resolution is Δtωpe ¼ 0.07. The 2D simulations have 196
or 64 particles per cell (ppc); the 3D simulation has 27 ppc.
Biermann regime.—Figure 1 shows contours of constant

magnetic energy density and magnetic-field lines from a
3D simulation with LT=de ¼ 50 taken at tωpe ¼ 235.2,
after the magnetic-field strength saturates (see Fig. 3). As
expected based on the initial conditions, we observe the
formation of large-scale azimuthal Biermann magnetic
fields which are nearly axisymmetric. Although Biermann
generation of magnetic fields has been investigated before
[16], this is the first fully self-consistent kinetic 3D
simulation.
The axisymmetry in the 3D simulation suggests that a

scaling study in system size can be performed using a
more computationally efficient 2D setup. To this end, we
take a cut of the 3D system at z ¼ 0, where the azimuthal
(out-of-plane) magnetic fields are in the z direction, and
perform a set of 2D simulations with LT=de¼
ð4;8;16;25;32;50;64;128;200;400Þ. For 4≤LT=de≤128,
we use 196 ppc. For LT=de ¼ 200, 400, we use 64 ppc
instead due to computing time limitations; convergence
studies at lower values of LT=de do not show significant
differences between 196 and 64 ppc. A snapshot taken at
the same time of a 2D version of the simulation presented

in Fig. 1 is shown in Fig. 2(a) for comparison. The same
large-scale magnetic-field structure is manifest, with very
similar levels of Bz.
The time trace of the maximum magnetic-field strength

for a selection of cases can be seen in Fig. 3(a). For small
systems LT=de < 50, the magnetic field reaches a maxi-
mum and then decays away. On the other hand, we observe
that for LT=de > 50, the magnetic field saturates at around
its peak value.
Figure 3(b) shows the scaling with system size of the

maximum and the average magnitude of the magnetic field
(the square root of B2

z averaged in a box 2LT × 2Ln
surrounding the expanding bubble) at the time when the
field saturates (or peaks for LT=de < 50). There are three
distinct regions in this plot. For LT=de < 25 (i.e.,
LT=di ≲ 5), the magnetic field increases with system size.
This stage is followed by a region where the saturated
amplitude of the field decreases as di=LT , which lasts while
LT=de < 100. These two stages confirm the theoretical
prediction of Haines [7]: in very small systems, there is a
competition between the Biermann battery effect and
microinstabilities (the ion acoustic and the lower hybrid
drift instabilities), triggered by an electron drift velocity in
excess of the ion acoustic speed, which suppress the

(a)

(b)

FIG. 2 (color online). Out-of-plane magnetic field Bz after
saturation (see Fig. 3) for (a) LT=de ¼ 50 and (b) LT=de ¼ 400.

FIG. 1 (color online). Magnetic energy contours after saturation
(tωpe¼235.2; see Fig. 3) from a 3D simulation with LT=de¼50.
Lighter to darker colors represent B2=8πPe0 ¼ 0.0035, 0.0071,
0.0106. Several magnetic-field lines are also displayed.
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Biermann fields. As the system becomes larger, the electron
drift velocity decreases. (Larger systems have larger-scale
magnetic fields, and therefore lower currents.) The micro-
instabilities thus become progressively less virulent until
their complete suppression, whereupon we encounter
a “pure” Biermann regime, as described in Eq. (1).
Inspection of the simulations for LT=de < 50 at times after
the magnetic field reaches its peak value shows clear
electric-field perturbations along y ¼ 0, consistent with
the ion acoustic instability. These are exemplified for
LT=de ¼ 25 in Fig. 4. Note that the density gradient goes
to 0 at y ¼ 0, ruling out the lower hybrid drift instability as
the cause of the decay of the magnetic field.
Weibel regime.—An unexpected third regime is encoun-

tered for LT=de > 100. In that region of Fig. 3(b), the
magnetic field produced in our simulations no longer
follows the predicted di=LT Biermann scaling, but rather
increases with the system size and appears to tend to a
constant, finite value βe ≈ 100.
In this new regime, the magnetic fields are produced by

the Weibel instability [13]. The initial cloud of plasma
expands due to the imposed density gradient, generating
both outward ion and hot electron flows. The velocities of
the electron flows vary along the temperature gradient. The
higher temperature flows originating in the center stream
past lower temperature inward flows originating further
outward, which maintains quasineutrality. This generates a
larger velocity spread (larger temperature) in the direction
of the flow, while the perpendicular temperature remains
unaffected. It is this temperature anisotropy that drives the
Weibel instability [13]. Note that along x ¼ 0, where the
temperature gradient is 0, no anisotropy is generated, and
thus the Weibel instability is not observed [see Fig. 2(b)].
As exemplified in Fig. 2(b) for our largest simulation

(LT=de ¼ 400), the large-scale coherent Biermann magnetic

fields characteristic of the smaller systems are replaced by
nonpropagating magnetic structures with very large wave
numbers (kde ∼ 0.2) and with a transverse wave vector k
perpendicular to the direction with a larger temperature.
These features are consistent with the Weibel instability
[13,17,18]. In addition, we have compared our results with
the analytic growth rate predicted by Weibel [13]. In our
simulations, we observe an enhanced temperature in the
direction of the density gradient (parallel) as high as
A≡ T∥e=T⊥e − 1 ≈ 2.0. In a cut at y ¼ 0, we calculate
theWeibel growth rate γ for the fastest growing k (kmax) using
the locally measured values of n, T⊥e, and A. The maximum
γ of this cut γmax is plotted vs time in Fig. 3(a), showing a
peak when the magnetic-field strength rises exponentially
and a subsequent drop corresponding to the loss of anisotropy
after saturation. The magnitude of the growth rate thus
calculated is also consistent within a factor of 2, with
kmaxde ≈ 0.2, analogous to the structures in Fig. 2(b).
The transition between the Biermann and Weibel

regimes is also visible in the inset of Fig. 3(b), where
we show the time to reach the maximummagnetic field tmax
as a function of system size. For LT=de < 50, we find that

(a) (b)

FIG. 3 (color online). (a) Maximum Bz vs time for a selection of system sizes (LT=de). The inset shows the LT=de ¼ 400 case (black
line). The magenta line is the maximum Weibel growth rate γmax at y ¼ 0. Dashed lines identify the times at which the spectra of Fig. 5
are calculated. (b) Maximum (asterisks) and average (diamonds) magnitudes of Bz vs LT=de. The triangle represents the maximum Bz
for the 3D run. The solid curve is maxðBzÞ=

ffiffiffiffiffiffiffiffiffiffiffiffi

8πPe0
p ¼ ffiffiffi

2
p

di=LT ; the dotted line indicates LT=di ¼ 5. The inset shows the time to
maximum magnetic field tmax vs LT=de. The solid line indicates tmax ¼ LT=vTe0.

FIG. 4 (color online). Electric field in the x direction Ex for
LT=de ¼ 25 at tωpe ¼ 142.8.

PRL 112, 175001 (2014) P HY S I CA L R EV I EW LE T T ER S
week ending
2 MAY 2014

175001-3



tmax ∼ LT=vTe0. A linear in time scaling is indeed to be
expected for Biermann-generated fields; also, at these small
scales, the electrons are not coupled to the ions and are thus
free to move at their thermal velocity. A transition to a
logarithmic dependence on the system size occurs after
LT=de > 50; this is expected since the Weibel instability
amplifies the magnetic fields at an exponential rate. Note
that the Weibel instability cannot occur below a certain
system size because it is suppressed by the strong, large-
scale Biermann fields. (We have confirmed this suppression
numerically by running a similar setup where the Biermann
effect is not present; see also Ref. [19].)
We have performed additional studies that confirm our

conclusions up to a mass ratio of mi=me ¼ 2000, at which
point the results have converged. With these more realistic
mass ratios, the saturated magnetic field increases less than
twice the value obtained formi=me ¼ 25. These results will
be presented elsewhere.
Spectra.—Figure 5(a) shows the spectrum of B2

z for our
largest simulation (LT=de ¼ 400) at the times indicated in
the inset of Fig. 3(a). At early times, a peak rapidly forms
at kde ≈ 0.01, which corresponds to the large-scale
Biermann-generated magnetic field. At later times, a
second peak corresponding to the Weibel-generated mag-
netic fields begins to form at kde ≈ 0.2 and eventually
saturates at kde ≈ 0.1; this scale corresponds to kρe ¼ 1,
whereρe is the electronLarmor radius based on themaximum
Bz at saturation. Therefore, the Weibel-generated fields
saturate when βe ¼ ðρe=deÞ2 ≈ 100 (cf. Refs. [17,20]), inde-
pendently of the system size, as shown in Fig. 3(b).
Another remarkable feature yielded by the spectra of

Fig. 5 is the power law behavior of the magnetic energy at
sub-ρe scales, with a slope close to −16=3. A less steep
power law appears to exist at smaller scales, but this is not
present in the 3D simulation, as seen in Fig. 5(b). Note that
this slope occurs for both small and large systems and is
not, therefore, a consequence of the Weibel instability. Such
a power law dependence was theoretically predicted using
gyrokinetic theory in Ref. [21], where it was identified as
resulting from an entropy cascade of the electron distribution
function at scales below kρe ∼ 1. We believe this is the first
3D confirmation of that prediction, although similar obser-
vations have been made in 2D simulations [22].
Conclusions.—We have performed fully kinetic simu-

lations of magnetic-field generation and amplification in
expanding, collisionless plasmas with perpendicular den-
sity and temperature gradients. For relatively small systems
LT=de < 100, we observe the production of large-scale
magnetic fields via the Biermann battery effect, fully
confirming the theoretical predictions of Haines [7], in
particular, the scaling of the magnetic-field strength with
di=LT . For larger systems, however, we discover a new
regime of magnetic-field generation: the expanding plas-
mas are Weibel unstable, giving rise to small-scale
(kde ∼ 0.2) magnetic fields whose saturated amplitude is

such that βe ≈ 100, independent of system size, and thus
much larger than would be predicted for such systems
on the basis of the Biermann mechanism. We note that
both of these regimes can, in principle, be probed by
existing experiments. For example, the LT=di ≈ 1 regime
(Biermann) is accessible to the Vulcan laser [9], whereas
LT=di ≈ 100 (Weibel) is reachable by an OMEGA laser
[10]. In practice, however, collision frequencies that are
large compared to the electron transit time prohibit electron
temperature anisotropies, thereby inhibiting the Weibel
instability. If less collisional regimes can be attained
in the experiments, it may be possible to experimentally
investigate the transition from Biermann- toWeibel-produced
magnetic fields that we have uncovered here.
In the context of (largely collisionless) astrophysical

plasmas, our results may significantly impact the canonical
picture of cosmic magnetic-field generation [1], by sug-
gesting that Biermann seed fields may be preamplified

(a)

(b)

FIG. 5 (color online). Fourier spectrum of B2
z for

(a) LT=de ¼ 400 and (b) LT=de ¼ 50. In (a), the spectrum is
shown at several different times [see Fig. 3(a)], while in (b), the
3D (black curve) and the 2D (blue curve) simulations are shown
for tωpe ¼ 235.2. The dashed lines represent where kρe ¼ 1,
based on the maximum magnetic field. The solid black lines
indicate a power law of k−16=3.
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exponentially fast via the Weibel instability up to reason-
ably large values (i.e., independent of the system size)
previous to turbulent dynamo action.
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