
Bomberman as an
Artificial Intelligence
Platform
Manuel António da Cruz Lopes
Dissertação de Mestrado apresentada à

Faculdade de Ciências da Universidade do Porto em

Área Científica

2016

B
o

m
b

e
rm

a
n

 a
s
 a

n
 A

rtific
ia

l In
te

llig
e
n

c
e

 P
la

tfo
rm

M

a
n

u
e
l A

n
tó

n
io

 d
a
 C

ru
z
 L

o
p

e
s

M

S
c

FCUP

2016

2.º

CICLO

�������������	
��������	���������������

�	���	������
���������	������������

�������
���	���������������

������������������������������

Manuel António da Cruz Lopes

Bomberman as an Artificial

Intelligence Platform

Departamento de Ciência de Computadores

Faculdade de Ciências da Universidade do Porto
2016

Manuel António da Cruz Lopes

Bomberman as an Artificial

Intelligence Platform

Tese submetida Faculdade de Ciências da

Universidade do Porto para obteno do grau de

Mestre em Ciência de Computadores

Advisors: Prof. Pedro Ribeiro

Departamento de Ciência de Computadores

Faculdade de Ciências da Universidade do Porto

Junho de 2016

2

Para os meus pais e para o meu irmão

3

4

Acknowledgments

I would like to thank my supervisor, Prof. Pedro Ribeiro, for the opportunity to work

on this research topic, giving me enough freedom to experiment and learn on my own,

and yet he has always been there to guide me. Also to my friends and family that

gave me the moral support needed to endure this journey.

Thank you.

5

6

Abstract

Computer games have a long tradition in the Artificial Intelligence (AI) field. They

serve the purpose of establishing challenging goals with long term positive repercus-

sions, with researchers trying to develop AIs capable of beating the world human

experts. They also provide a good amount of exposition in mainstream media, whilst

also giving an engaging environment for teaching computer science concepts in general

and AI methods in particular.

This thesis aims precisely to contribute to the educational gaming landscape, by

providing a novel Bomberman themed platform and several associated intelligent

agents. Our first major contribution is precisely the platform itself, Bomberman

as an Artificial Intelligence Platform (BAIP). We provide a fully functional open-

source, graphical, language agnostic platform, aimed towards facilitating the study

and development of AI methods.

We showcase the potential of BAIP and the richness of the selected game environment

by developing a plethora of AI agents using different methodologies. At an initial

level we introduce a set of basic heuristic methods capable of providing agents with

the most essential behavior primitives, equipping them for basic survival in the game

environment. At a more advanced level we introduce search-based methods capable of

some form of planning.

From a machine learning perspective we show how BAIP can be integrated and used

with Reinforcement Learning (RL). We use a simple RL problem within the platform

and implement both Q-learning and Sarsa algorithms in order to tackle it.

This thesis also provides detailed and thorough experimental results about all the

developed agents and methods, using the developed platform capabilities.

To sum up, this work introduces a new AI platform, gives a strong baseline agent and

demonstrates the feasibility of using it for machine learning tasks.

7

8

Resumo

Desde sempre os videojogos estiveram presentes no campo da Inteligência Artificial

(IA). Estes têm por objetivo estabelecer desafios pertinentes que trarão repercussões

positivas, enquanto que os investigadores procurarão desenvolver IAs capazes de vencer

os melhores jogadores do mundo. Os videojogos são também uma boa forma deste

meio se expor às pessoas fora da área e de proporcionar um ambiente de ensino para

os conceitos da Ciência dos Computadores ligado às IAs.

Esta tese tem por objetivo dar uma contribuição ao meio que usa as ferramentas

dos jogos como meio de ensino, a qual consiste numa plataforma, criada de raiz,

baseada no jogo do Bomberman e vários agentes inteligentes. A primeira contribuição

foi a plataforma, Bomberman as an Artificial Intelligence Platform (BAIP), uma

plataforma gráfica, open-source, agnóstica à linguagem e está operacional e capaz

de ajudar no estudo e criação dos métodos de IA.

Desenvolveu-se um vasto leque de agentes de IA de maneira a demonstrar as po-

tencialidades da BAIP e do ambiente de jogo escolhido. Começamos por introduzir

um conjunto de métodos que seguiam heuŕısticas básicas, estas heuŕısticas deram

a capacidade de sobrevivência aos agentes. Posteriormente foram introduzidos os

métodos baseados em procura.

Do ponto de vista de machine learning demonstrou-se como é que a BAIP consegue

ser integrada e usada com Reinforcement Learning (RL). Para tal partiu-se de um

problema de RL bastante simples e implementamos os algoritmos de Q-learning e

Sarsa, de maneira a demonstrar a viabilidade da plataforma na integração do RL.

Nesta dissertação também se apresentam detalhadamente os resultados experimentais

sobre todos os agentes e métodos desenvolvidos, usando para tal as capacidades da

plataforma.

Resumidamente, este trabalho introduz uma nova plataforma de IA, e dá-nos também

um agente que pode servir como caso base para futuros estudos e demonstra a viabil-

idade da plataforma para resolver tarefas ligadas ao machine learning

9

10

Contents

Abstract 7

Resumo 9

List of Tables 15

List of Figures 17

List of Algorithms 19

1 Introduction 21

1.1 Motivation . 21

1.2 Bomberman Game . 23

1.3 Goals and Contributions . 24

1.4 Thesis Outline . 25

2 Background 27

2.1 Search Strategies . 27

2.1.1 Breadth-First Search (BFS) . 28

2.1.2 Depth-First Search (DFS) . 28

2.1.3 A∗ Search . 29

2.2 Planning . 30

2.3 Reinforcement Learning (RL) . 32

2.3.1 Temporal-difference (TD) methods 37

2.3.1.1 Q-Learning . 38

2.3.1.2 Sarsa . 39

2.3.1.3 Eligibility Traces . 40

2.4 Related Work and State of the Art . 40

2.5 Summary . 43

3 BAIP Platform 45

3.1 Game Logic . 45

11

3.2 Architecture . 47

3.3 Key Features . 50

3.3.1 Multi-language Agent . 50

3.3.2 Record and Replay . 51

3.3.3 Level Creation . 52

3.4 Possible Applications . 53

3.5 Summary . 54

4 Agents 55

4.1 Basic Agents . 55

4.1.1 Simple Heuristics . 56

4.1.1.1 Avoiding Death . 56

4.1.1.2 Explorer . 57

4.1.1.3 Targeting Players . 57

4.1.2 Different Basic Agents . 58

4.1.3 Experimental Results . 59

4.1.3.1 Baseline Agent . 59

4.1.3.2 The Effects of Power-ups 61

4.2 Search-based Agents . 64

4.2.1 Generating an Action Tree . 64

4.2.2 Search-based Agent . 65

4.2.3 Action Planning Agent . 66

4.2.4 Improving Search-based Agents with some Heuristics 66

4.2.5 Experimental Results . 67

4.3 Reinforcement Learning Agents . 69

4.3.1 BAIP Learning Mode . 70

4.3.2 Improving with Eligibility traces 71

4.3.3 Choosing Parameters . 72

4.3.4 Experimental Results . 74

4.3.5 Further Improvements . 76

4.4 Discussion . 77

4.5 Summary . 77

5 Conclusion and Future Work 79

5.1 Contributions . 79

5.2 Future Work . 80

5.3 Closing Remarks . 81

12

A Appendix 83

A.1 Server-Client Communication Code in C++ 83

References 89

13

14

List of Tables

4.1 Simulation results of the 1vs1 matches . 60

4.2 Simulation results of the matches with all the agents at the same time . . . 61

4.3 Statistics variation in different maps . 62

4.4 Average number of wins per agent in each different map 63

4.5 Performance of different plan size agents 68

4.6 Added survival heuristic performance . 69

15

16

List of Figures

1.1 Screenshots from the original 1985 Bomberman game 23

2.1 Breadth-First Search Tree example . 28

2.2 Depth-First Search Tree example . 29

2.3 Agent-environment interaction in reinforcement learning 33

2.4 Agent state transition diagram . 33

3.1 Game map tiles . 45

3.2 Game icons of the power-ups . 47

3.3 Platform architecture design . 48

3.4 Server to client communication example 49

3.5 Platform communication architecture design 50

3.6 Log file header example . 52

3.7 Replay mode example . 52

3.8 Drawing a map from a text file . 53

4.1 Heuristic: agent checking if it is in the range of a bomb 56

4.2 Heuristic: agent checking nearest wall . 57

4.3 Heuristic: agent field of vision . 58

4.4 Bomberman agent State Machine . 59

4.5 Chart: comparison of the average move per episode of each rank 63

4.6 From a grid representation to a search tree 64

4.7 Danger zones . 67

4.8 Chart: how the plan size affects the score 68

4.9 Example of a Grid World problem . 71

4.10 Chart: how the α variation affects the score 72

4.11 Chart: how the γ variation affects the score 73

4.12 Chart: how the ϵ variation affects the score 74

4.13 Chart: how the λ variation affects the score 74

4.14 Chart: how the introduction of eligibility traces affects the score 75

4.15 Chart: comparison of Sarsa an Q-learning score 75

17

18

List of Algorithms

3.1 Game cycle pseudo-code . 49

3.2 Communication Template . 51

19

20

Introduction 1
Computer games play a very important role on promoting general interest in Com-

puter Science. They have been extensively used as engaging pedagogical tools. In

this thesis we introduce a game-based platform capable of providing an interesting

background for a multitude of tasks. In particular we use the strategic maze-based

game franchise Bomberman and we make the case for why it is a rich and very flexible

game environment for learning artificial intelligence methodologies.

1.1 Motivation

Artificial Intelligence (AI) can improve the daily quality of human lives. One example

of those improvements, on the verge of becoming a daily reality, are self-driving

cars [Gui11]. Real-world problems such as this one are however a very difficult AI

testbed. It is therefore very common that before trying to develop intelligent agents for

real-world environments, we use synthetic and more controlled abstract environments.

Game platforms, such as the one we created in this thesis, are therefore almost ideal

to develop methods and gain knowledge, providing the basis that can afterwards be

applied on more dynamic and complex problems [Lai01].

When looking at history, it is easy to see that AI has a very deep connection with

games [A+94]. One of its greatest accomplishments took place in 1997, when a chess-

playing computer, Deep Blue, defeated the human world champion, Garry Kasparov.

To achieve this feat it was necessary to combine advances in several fields, ranging

from the hardware itself, to massively parallel systems and advanced refinements of

tree based search techniques [CHH02]. Deep Blue’s contributions are acknowledged as

very significant, not only on the AI side, but also on promoting interest of the society in

the area [New00]. This connection with games continues to present days and another

major milestone was achieved precisely in 2016, during the work on this dissertation,

when the computer program AlphaGo defeated the 18-time world Champion Lee Sedol

on Go, a strategic and very complex board game deemed as very difficult challenge for

21

CHAPTER 1. INTRODUCTION

AI [SHM+16]. Again, this had a considerable impact on main stream media and some

of its advances are already being considered for different applications such as clinical

medicine [Zha16].

Besides this capability of introducing measurable goals (winning against the best

humans), games also provide an excellent educational platform. An interested and

motivated student is more likely to be a successful learner and games really excel

in actively engaging students in the material being taught. Several universities have

therefore introduced games as important components in the teaching process, from

the very introductory programming courses teaching basic data structures [Law04]

to upper level machine learning courses [Tay11]. Games have also been used for

teaching very different programming paradigms, from more imperative object-oriented

languages such as Java [MTR11], to more declarative ones such as the logic program-

ming language Prolog [RFS+09]).

From the point of view of teaching AI, games provide highly graphical environments

that can really illustrate the outcome of the methods being taught, increasing the ap-

peal, and providing a very rich background. Examples of well known games that have

been used for teaching AI are Pac-Man [DK10], Spacewars [MF07], Super Mario [Tay11]

or Angry Birds [YK15]. Some more general game platforms have also been introduced,

such as Botzone [ZGL+12], SEPIA [SECR13] or GAIGE [Rie15], but they are generally

limited in scope to certain languages or game types, making it hard for us to use them

on the desired context with all the necessary requirements, such as detailed logs of the

games begin run for a more thorough analysis of the implemented AI methods.

While one must take care of the pros and cons of using games in a learning en-

vironment [Bay09], they have been proven to be a very useful teaching tool. The

main purpose of this dissertation is precisely to contribute to the educational gaming

landscape, by providing a novel platform centered around the Bomberman game,

while also showcasing its potential. We are aware of only two other works based

around Bomberman [WC07, BT02]. Our work differs from these two because we

implemented a multilingual platform geared towards generic AI problem, as opposed to

only supporting a single language and focusing on introductory C programing [WC07],

or only focusing on the development of the AI agents [BT02].

22

1.2. BOMBERMAN GAME

1.2 Bomberman Game

Bomberman, also known as Dynablaster, is a strategic maze-based video game franchise

originally developed by Hudson Soft with that name in 19851. Some screenshots of this

original version can be seen in Figure 1.1. Since then more than 80 different versions of

the game have been published for different gaming platforms 2, including a 2016 official

mobile version celebrating 30 years of the Bomberman franchise 3. Since its creation

the game has kept a large amount of followers, including a dedicated community of

users that created a Bomberman Wiki with more than 1,400 articles 4.

(a) Title screen (b) Example of game action

Figure 1.1: Screenshots from the original 1985 Bomberman game. Taken from
MobyGames website.

The general goal of Bomberman is to complete the levels by strategically placing bombs

in order to kill enemies and destroy blocks. Most versions of the games also feature a

multi-player mode, where other players act as opponents and the last one standing is

the winner. Independently of the game mode, the game logic basics are identical. Each

room is a rectangle surrounded with a grid of indestructible blocks. The pathway can

be blocked with different types of blocks in order to create routes around the screen

in a maze-like fashion. A player can destroy some of the blocks in the pathway by

placing bombs near it. As the bombs detonate, they will create a burst of vertical

and horizontal lines of flames. The contact with the blast will destroy anything on

the screen, except for the indestructible blocks. There is also a plethora of different

power-ups (such as more bombs or bigger detonation range) capable of changing and

enriching the gameplay experience. A more complete and detailed description of the

game logic implemented by our platform can be seen in Section 3.1.
1http://www.mobygames.com/game-group/bomberman-games
2http://www.uvlist.net/groups/info/bomberman
3http://www.pocketgamer.co.uk/r/iPhone/Taisen!+Bomberman/news.asp?c=68842
4http://bomberman.wikia.com/wiki/Main_Page

23

http://www.mobygames.com/game-group/bomberman-games
http://www.uvlist.net/groups/info/bomberman
http://www.pocketgamer.co.uk/r/iPhone/Taisen!+Bomberman/news.asp?c=68842
http://bomberman.wikia.com/wiki/Main_Page

CHAPTER 1. INTRODUCTION

The simple 2D graphics, the multiplayer aspect, the dynamic environment and the

strategic reasoning all contribute to make Bomberman an attractive platform for

developing and testing AI algorithms. Simple greedy behaviors must be implemented

even for providing basic surviving capabilities in such a hostile gaming environment.

More careful planning strategies, involving path finding and strategic bomb placement

must be devised in order to construct more intelligent actions. Furthermore, the

game provides plenty of situations for learning tasks, with new maps, power-ups and

adversaries providing challenging opportunities for testing general game playing that

does not depend on predefined rules.

1.3 Goals and Contributions

The main goal of this thesis is to develop a bomberman-based AI platform, and to

create AI agents using that platform.

The first contribution is the platform itself, which we call BAIP. We are particularly

interested in making the platform easy to use, agnostic in terms of programming

language and rich enough to be used in many possible AI problem formulations. We

have achieved a fully functional state and our platform works with any language,

communicating with using standard input and output. It also boosts an appealing

graphical view of the world state, detailed logs of every simulation, the possibility of

customizing the maps and power-ups, and also out-of-box low level capabilities towards

the development of learning agents.

The second contribution is an implementation of a set of simple heuristics capable of

providing basic functionality for an agent, namely the capability to avoid explosions,

to travel through the maze (by destroying blocks) and to kill other agents. We provide

a detailed analysis of these behaviors, shedding light on which basic strategy is the

most essential, which has more impact in the number of moves, and how one should

deal with the dilemma between exploring and actively pursuing enemy agents.

The third contribution is a search-based agent capable of producing an action tree and

to efficiently explore the state-space. We show a detailed analysis of its competitiveness

against both the simple basic agents and to different variations of the planning agent,

with a focus on discovering the optimal plan size.

The fourth contribution is a simple formulation of a Reinforcement Learning (RL)

problem within the platform, coupled with an implementation of both Sarsa and Q-

learning algorithms that are able to tackle the problem. The obtained results conform

24

1.4. THESIS OUTLINE

to what was expected, showing both the validity and feasibility of our approach and

showcasing its ease of use.

1.4 Thesis Outline

This thesis is structured in five major chapters. A brief description for each one is

provided below.

Chapter 1 - Introduction . An overall view of the problem being studied and the

motivation behind it, as well as a summary of our goals and contributions.

Chapter 2 - Background . An explanation of how Reinforcement Learning (RL)

works and how we can formulate problems using it, along with a more detailed

explanations on some specific RL methods such as Q-Learning and Sarsa. We also

include a brief description of some related work that inspired this research, namely

the Arcade Learning Environment (ALE). This chapter is a review to help readers

that are not experienced in these subfields of the AI area.

Chapter 3 - BAIP Platform. A description of the developed AI platform, including

an explanation of its key features and possible applications.

Chapter 4 - Agents. A detailed view on all the agents developed using the platform.

First we show basic primitive behaviors that lead to a baseline agent. Next we present

the search-based agents capable of planning. We also introduce an RL problem and

how we use our platform to test RL methods on it. We conclude the chapter with a

discussion of the obtained experimental results.

Chapter 5 - Conclusion and Future Work. Concludes the thesis with the

progresses achieved and gives directions for future work.

25

26

Background 2
In this chapter we give an overview of a number of fundamental concepts that are

required for the rest of this thesis. In particular, we will cover reinforcement learning

and its associated methods. We also look at other state-of-the-art training platforms.

2.1 Search Strategies

Maze-themed games such as Bomberman can be seen as path-finding challenges. So

given a graph G = (V,E) and a distinguished source vertex s we need a strategy

to systematically explore the edges of G to find the path reachable from s that best

suits our challenge. So to incrementally explore paths from the start nodes we need to

maintain a frontier of paths from the start node that have been explored. The frontier

contains all of the paths that could form initial segments of paths from a start node

to a goal node [LK10].

Different strategies are obtained by modifying how the selection of paths is imple-

mented. We can group these strategies in two groups:

• Uninformed Search Strategies, do not take into account the location of the goal.

Intuitively, they ignore where they are going until they find a goal and report

success.

• Informed Search Strategies, search for information about which nodes seem the

most promising, they achieve that by using a heuristic function h(n) which takes

a node n and returns a non-negative real number that is an estimate of the path

cost from node n to a goal node.

Next we give an overview of some the Search Strategies that can be implemented

using our platform. From the Uninformed we study the Breadth-First Search and

Depth-First Search methods. Finally from the Informed we study the A∗ Search.

27

CHAPTER 2. BACKGROUND

2.1.1 Breadth-First Search (BFS)

Breadth-first search produces a tree with root s that contains all reachable vertices.

For any vertex ν reachable from s , the simple path in the breadth-first tree from s

to ν corresponds to a shortest path from s to ν in G, that is, a path containing the

smallest number of edges.

Figure 2.1: The order in which nodes are expanded in breadth-first search. Image
taken from [LK10]

The frontier can be implemented as a FIFO (first-in, first-out) queue, following this

implementation the path that is selected from the frontier is the one that was added

earliest.

Although this method is guaranteed to find a solution, if one exists and will find a

solution with the fewest arcs, its time and space complexities are exponential in the

number of arcs of the path to a goal with the fewest arcs. So it is appropriate to use

BFS when we have enough space, or the solution contains few arcs, or few solutions

may exist or infinite paths may exists [LK10].

2.1.2 Depth-First Search (DFS)

Depth-first search explores edges out of the most recently discovered vertex ν that still

has unexplored edges leaving it. Once all of νs edges have been explored, the search

backtracks to explore edges leaving the vertex from which ν was discovered. This

process continues until we have discovered all the vertices that are reachable from the

original source vertex [LK10]. Some paths may be infinite when the graph has cycles

or infinitely many nodes, in which case a depth-first search may never stop.

28

2.1. SEARCH STRATEGIES

Figure 2.2: The order in which nodes are expanded in depth-first search. Image
taken from [LK10]

The frontier acts like a LIFO (last-in first-out stack). The elements are added to the

stack one at a time. The one selected and taken off the frontier at any time is the last

element that was added.

This method is not guaranteed to find a solution and is sensitive to the order in which

the neighbors are added to the frontier. The efficiency of the algorithm is sensitive

to this ordering. So it is appropriate to use DFS when space is restricted, or many

solutions exist, or the order of the neighbors of a node are added to the stack can be

tuned so that solutions are found on the first try [LK10].

2.1.3 A∗ Search

A∗ is the most popular choice for path-finding, because it can be used in a wide range

of contexts. It considers both path cost and heuristic information in its selection of

which path to expand so it avoids expanding paths that are already expensive, but

expands most promising paths first.

In the standard terminology used when talking about A∗, g(n) represents the exact

cost of the path from the starting point to any vertex n, and h(n) represents the

heuristic estimated cost from vertex n to the goal. A∗ balances the two as it moves

from the starting point to the goal. Each time it examines the vertex n that has the

lowest f(n) = g(n) + h(n).

It can be implemented by treating the frontier as a priority queue ordered by f(n).

29

CHAPTER 2. BACKGROUND

This method may be exponential in both space and time, but they are guaranteed to

find a solution if one exists. And it is guaranteed to find the least-cost solution as the

first solution found [LK10].

2.2 Planning

Planning the two major areas of Al: search and logic. A planner can be seen either

as a program that searches for a solution or as one that (constructively) proves the

existence of a solution.Planning can be described as the process of finding a sequence

of actions that can get our agent from the start state to the goal state.

Ordinary problem-solving agent using standard search algorithms use atomic repre-

sentations of states, and that might not be enough to represent a complex object. In

order to assess this problem, researchers settled on a factored representation, in which

a state of the world is represented by a collection of variables [RN03].

Everything from the environment that is available to the agent is known as the state,

defined by s ∈ S where the S is the set of possible steps, and the agent must be able

to take a set of actions, defined by a ∈ A, that affect the state. These representations

make possible the derivation of effective heuristics and the development of powerful

and flexible algorithms for solving problems [RN03].

Planning systems are problem-solving algorithms that operate on explicit propositional

representations of states and actions. The main difference between Planning agents

and Problem-solving agents is how they represent the states. Which can bring some

difficulties to the latter, such as becoming overwhelmed by irrelevant actions, the

difficulty of finding a good heuristic function and not taking advantage of problem

decomposition. The design of many planning systems is based on the assumption that

most real-world problems are nearly decomposable, that is the planner can work on

subgoals independently [RN03].

There are different approaches to Planning and each one has its own advantages. We

can see some of them next:

• State-space search, that can operate in the forward direction (progression) or the

backward direction (regression);

• Partial-order planning (POP) algorithms, that explore the space of plans without

committing to a totally ordered sequence of actions. They work back from the

goal, adding actions to the plan to achieve each subgoal;

30

2.2. PLANNING

• Planning graph algorithms, they process the planning graph in order to extract

a plan. A planning graph can be constructed incrementally, starting from the

initial state. Each layer contains a superset of all the actions that could occur

at that time step.

But while these planning algorithms assume complete and correct information and

deterministic, fully observable environments. Many domains violate this assumption,

thus while planning and acting in the real world we need to take into account that

many actions can generate and consume resources and that time is one of the most

important resources. To address this we need to approach it differently, such as:

• Contingent planning allow the agent to sense the world during execution to

decide what branch of the plan to follow;

• Online planning agent that monitors its execution and repairs as needed to re-

cover from unexpected situations, which can be due to nondeterministic actions,

exogenous events, or incorrect models of the environment.

Using these methods we can plan even when the environment is nondeterministic.

Following Online planning, in the next section 2.3 we can see how an agent can learn

to behave from past successes and failures [RN03].

31

CHAPTER 2. BACKGROUND

2.3 Reinforcement Learning (RL)

Reinforcement Learning is a learning process in which interactions with the environ-

ment produce stimulus, and agents learn from their past actions, as a trial-and-error

approach. In this case the environment S is the emulator created, and the actions will

belong to the set of legal game actions A = {1, ..., K}.

Positive stimulus might be seen as rewards, so the agent must try to maximize them

and must learn which actions produce them, without any help. Sometimes, actions

might affect all subsequent rewards. These two characteristics, trial-and-error search

and delayed reward, are the two most important distinguishing features of reinforce-

ment learning [SB98].

Trial and error learning leads to the exploration vs exploitation dilemma, where an

agent must choose its actions based either on past experiences or to explore new

options. To obtain better results, an agent must exploit the actions that he has already

tried and that he knows that will produce better rewards. But to find the actions that

produce better results the agent needs to explore, so it needs to occasionally select a

randommove from among all the set of legal actions, this randomly selection might lead

us to experience new states. Neither of these approaches should be chosen exclusively,

else it may lead to poor results.

So we can say that RL agents have specific goals and interact with their environment,

through actions that influence it, to achieve those goals. But this goal-seeking problem

has its own sub-problems that derive from the environment, we can divide them

in problems that involve planning and problems that involve supervised learning.

In problems that reinforcement learning involves planning, it has to address the

interplay between planning and real-time action selection, as well as the question

of how environmental models are acquired and improved. When it involves supervised

learning, it does so for specific reasons that determine which capabilities are critical

and which are not [SB98].

To understand the reinforcement learning system, we start by learning what consti-

tutes this system, and after we observe what happens at each time step.

In our problem we consider the reinforcement learning system to have: i) an Agent

that is the learner and decision-maker ii) an Environment that is everything outside

the agent that interacts with it iii) a Policy that defines the learning agent’s way

of behaving at a given time. iv) a Reward Function that defines the goal in a

reinforcement learning problem, the reward and indicates the intrinsic desirability

32

2.3. REINFORCEMENT LEARNING (RL)

of a state. v) a Value function that specifies what is good in the long run. vi) a Model

of the environment that mimics the behavior of the environment, used to predict the

resultant next state and next reward, this is usually used for planning).

As we seen before let S be the set of possible steps, and the agent must be able to

take actions that affect the state. From each action at−1 taken the agent receives a

corresponding reward signal rt. The agent’s goal, broadly, is guided by those reward

signals, and its aim is to find a policy r∗ that maximizes the sum of all rewards.

At each time step t the agent has access to the state st and chooses an action at

based on that state, at ∈ A(st) where A(st) is the set of actions available in st. In

the next time step st+1, the agent receives, usually, a numeric reward signal, defined

by Rt+1 ∈ R. We can observe in Figure 2.3 a diagram that represents the interaction

between the agent and the environment.

Figure 2.3: The agent-environment interaction in reinforcement learning. Image
taken from [SB98]

In our reinforcement learning task the agent-environment interaction breaks down

into a sequence of separate episodes. An episode starts when the player is able to

act and finishes when the game ends or if we reach a predefined maximum number

of frames per episode. Each episode has a finite sequence of time steps and the state

representation at time t is st. Usually it is assumed that the states have theMarkov

property, where each state only affects it’s next state, st+1, or that st+1 only depends

on the representation of the current state and action.

Figure 2.4: The agent state transition diagram. Image taken from [SB98]

33

CHAPTER 2. BACKGROUND

In figure 2.4 we can observe a general representation of the state transition over an

episode, where the solid square is an absorbing state that corresponds to the end of an

episode. This representation assumes that in each time step, t , the agent observes the

reward Rt that is originated in the previous time step st−1,and using that information

the agent takes an action at, while following a policy, π, moving to the next state, st+1.

As what was said before, the agent’s goal is to find a policy that maximizes the sum of

all rewards, so our expected return for an episode is the sum of all the states’ rewards

r observed in each time step t. Let’s define that sum as Rt, and let T be the final time

step of an episode, so

Rt = rt+1 + rt+2 + rt+3 + · · ·+ rT (2.1)

Where, t = 0, 1, 2, 3, . . . is a sequence of discrete time steps, because this only makes

sense in an environment where there is a final step and where each iteration breaks

naturally into subsequences, also know as episodes.

So the agent tries to select actions so that the sum of rewards over the future is

maximized, this leads to an agent that selects the maximum immediate reward. This

kind of behavior, most of the times, will not generate the maximum overall sum of

rewards, in order to solve this problem it was introduced the concept of discounting.

After introducing this concept in our expected return, it becomes:

Rt = rt+1 + γrt+2 + γ2rt+3 + · · · =
∞∑
k=0

γkrt+k+1

Also known as discounted return, where γ is the discount rate, 0 ≤ γ ≤ 1, this

parameter determines how much is worth a reward that will be received k time steps

in the future. It is an important concept that allows the agent to be capable of

determining the present value of future rewards, and through this parameter we can

manipulate the agent’s far sight, managing the importance that the agent gives to

future rewards.

When an environment satisfies theMarkov property it is calledMarkov decision process

(MDP), in our case because there is a final episode the MDP is finite, and a finite

MDP is constituted by its state and action sets and by the one-step dynamics of the

environment. Where given any state s and action a, the probability of each possible

next state, s′ is defined by:

p(s′|s, a) = Pr {St+1 = s′|St = s, At = a} (2.2)

Where P determines how the environment state, s, changes with regard to the agent

actions, a. Based on the state, action and any next state we can calculate the expected

34

2.3. REINFORCEMENT LEARNING (RL)

value of the next reward, r(s, a, s′), defined by:

r(s, a, s′) = E[Rt+1|St = s, At = a, St+1 = s′]. (2.3)

With these transition probabilities we can derive value functions, used to evaluate the

benefit of taking a certain action at a given state, following particular policies. A

policy, π, is a mapping from each state, s ∈ S, and action, a ∈ A, to the probability

π(a|s) of selecting a possible action a when in state s. [SB98]

Value functions assign to each state, or state-action pair, the expected return from

that state, or state-action pair, given that the agent uses the policy. So we have

state-value functions and action-value functions.

• state-value function, vπ(s), is the expected return of starting in s and following

π, this function can be estimated by averaging the rewards encountered in every

state when following a policy π. More formally:

vπ(s) = E[Rt|St = s] = E[
∞∑
k=0

γkRt+k+1|St = s]. (2.4)

• action-value function, qπ(s, a), is the expected return of starting in s and taking

action a, and subsequently following π, this function can be estimated by keeping

an average for each action taken in a state. More formally:

qπ(s, a) = E[Rt|St = s, At = a] = E[
∞∑
k=0

γkRt+k+1|St = s, At = a]. (2.5)

Because of the numerous states it is unpractical to keep separate averages for each

state individually. Instead, the agent would have to maintain vπ(s) and qπ(s, a) as

parameterized functions and adjust the parameters to better match the observed

returns. Both types of value functions follow a policy π, so to find an optimal value

function our agent needs to follow an optimal policy, there may be more than one

optimal policy and they will be denoted as π∗. For a policy, π, to be better than or

equal to another policy, π′, its expected return needs to be greater or equal to the

expected return of, π′, for every state. So an optimal policy is better than or equal

to all other policies, although there may be more than one that they share the same

optimal state-value functions, denoted as v∗ and defined as

v∗(s) = max
x

vπ(s), ∀s, s ∈ S (2.6)

35

CHAPTER 2. BACKGROUND

They also share the same optimal action-value functions, denoted as q∗ and defined as

q∗(s, a) = max
x

qπ(s, a), ∀s∀a, s ∈ S, a ∈ A (2.7)

For the state-action pair (s, a), this function gives the expected return for taking action

a in state s and thereafter following an optimal policy, thus, we can write q∗ in terms

of v∗ as follows:

q∗(s, a) = E [Rt+1 + γ v∗(St+1)|St = s, At = a] . (2.8)

All value functions obey the fundamental property that expresses the relationship

between the value of a state and the values of its successor states, this property is

expressed as the Bellman equation. This equation averages over all the possibilities,

weighting each by its probability of occurring. It states that the value of the start

state must equal the (discounted) value of the expected next state, plus the reward

expected along the way. [SB98]

q∗(s, a) = E
[
Rt+1 + γmax

a′
q∗(St+1, a

′), St = s, At = a
]

=
∑

s′ p(s
′|s, a) [r(s, a, s′) + γ q∗(s′, a′)] .

(2.9)

The optimal value functions also satisfy the Bellman equation for state values, but

also follows the Bellman optimal equation, defined in (2.9), that says that the value

of a state under an optimal policy must be equal to the expected return for the best

action. For finite MDPs this equation has a unique solution independent of the policy.

Although it is called Bellman optimal equation it is actually a system of equations, one

for each state. If we know the dynamics of the environment, p(s′|s, a) and r(s, a, s′),

then the system of equations for v∗ can be solved, but the overhead of looking ahead

at all possibilities, computing their probabilities of occurrence and their desirabilities

in terms of expected reward is impractical due to the large state-space.

In reinforcement learning one has to settle for approximate solutions. There are

methods that estimate the optimal value function by interacting with the environment

and looking at samples of the state transitions and the received rewards. [Nad10]

So the basic idea behind many reinforcement learning algorithms is to estimate the

action-value function, by using the Bellman equation as an iterative update.

There are three different classes of methods for solving the Reinforcement Learning

problem, each has its strengths and weaknesses:

36

2.3. REINFORCEMENT LEARNING (RL)

• Dynamic Programming (DP), if given a perfect model of the environment as a

MDP these methods can be used to compute optimal policies, but the assumption

of a perfect model and the great computational expense make this class of

methods limited and not practical.

• Monte Carlo methods, although it does not assume complete knowledge of the en-

vironment’s dynamics it can still attain optimal behavior, it requires only sample

sequences of states, actions, and rewards from on-line or simulated interaction

with an environment.

• Temporal-difference learning, is a combination of the previous ideas, as they

can learn directly from raw experience without a model of the environment’s

dynamics.

It is desirable to combine these ideas and methods in many ways and apply them

simultaneously.

2.3.1 Temporal-difference (TD) methods

TD learning is an unsupervised technique in which the learning agent learns to predict

the expected value of a variable occurring at the end of a sequence of states. RL extends

this technique by allowing the learned state-values to guide actions which subsequently

change the environment state. These methods can learn from raw experience without

a model of the environment’s dynamics and update estimates based in part on other

learned estimates, without waiting for a final outcome.

Given some experience following a policy π, both TD and Monte Carlo methods update

their estimate V of V π. If a nonterminal state st is visited at time t, then both

methods update their estimate V (st) based on what happens after that visit. But

whereas Monte Carlo methods must wait until the end of the episode to determine the

increment to V (st), TD methods need to wait only until the next time step. At time

t + 1 they immediately form a target and make a useful update using the observed

reward rt+1 and the estimate V (st+1). The simplest TD method, known as TD(0), is

V (st)← V (st) + α [rt+1 + γV (st+1)− V (st)] (2.10)

So TD methods are based on the n next reward, using the value of the state n steps

later as a proxy for the remaining rewards. One kind of intermediate method, then,

would perform a backup based on an intermediate number of rewards: more than one,

but less than all of them until termination [SB98].

37

CHAPTER 2. BACKGROUND

2.3.1.1 Q-Learning

The Q-learning algorithm is an off-policy method and follows a model-free approach

and a temporal difference. It is a frequently used when the environment model is

unknown. So the objective of a Q learner is to determine π∗ without initially knowing

the reward and transition dynamics of the environment, p(s′|s, a) and r(s, a, s′).

There are different types of mode of control of behavior, each are based on the internal

representation of knowledge, they can be divided on whether or not the agent can

predict state-transitions and rewards - that is, model-based if the agent can predict,

state-transitions and rewards, and model-free if the agent only considers the present

state. Learning is a process of improving a policy and value function[WD]. There

are two approaches to ensure the improvement of a policy, resulting in what we call

on-policy methods and off-policy methods. On-policy methods attempt to evaluate or

improve the policy that is used to make decisions, but in Off-policy methods these

two functions are separated. The policy used to generate behavior, called the behavior

policy, may in fact be unrelated to the policy that is evaluated and improved, called

the estimation policy.

Let Q be the learned action-value function, as a direct approximation of the optimal

action-value functions, q∗. In order for the agent to improve Q through its experience

it uses the one-step Q-learning method. In this method the agent’s experience consists

of a sequence of distinct episodes. In nth episode the agent adjusts its Qn−1 values

using a learning rate αn, according to:

Qn(St, At) = Qn−1(St, At) + αn

[
Rn + γmax

a
Qn−1(St+1, a)−Qn−1(St, At)

]
. (2.11)

where the learning rate α, 0 ≤ α ≤ 1, is usually a small constant, this value is

fundamental as it is responsible for the rate at which new information is combined

with the existing knowledge about the value of the state. The learning speed, thus the

learning time, varies accordingly to α. Where if α is close to 0 the learning times are

long, else if α is close to 1 it causes oscillations in the value function [Tok10] [GP06].

The starting Q values, Q0(St, a), for all states and actions are given.

While following the function (2.11) the agent still follows a policy, however, for Q to

converge to q∗, Qn → q∗ as i → ∞, all the state-action pairs need to continue to be

updated. As was presented in [WD], Q-learning converges with probability 1 under

reasonable conditions on the learning rates and the Markovian environment.

The key issue with this approach is generalization, in our task most states encountered

will never have been experienced exactly before, and for each sequence we need

38

2.3. REINFORCEMENT LEARNING (RL)

to estimate separately the action-value function, qπ(s). In order to learn in these

conditions we need to generalize from previously experienced states to ones that

have never been seen. Thus we need a function approximation to take examples

from the action-value function, and attempt to generalize from it to construct an

approximation of the entire function. This approximation technique allows the policies

to be represented in a low-dimensional form, decreasing the number of parameters that

need to be learned or stored.

There are two types of function approximations, i) linear function approximations

that are commonly used, usually states are not represented as a table but are mapped

to feature vectors with fewer components than the number of states. Until recently

this method was the focus of the majority of the work in reinforcement learning, as

it was believed that it gave better convergence guarantees. ii) non-linear function

approximations were not commonly used, although the success behind TD-gammon

[Tes95]. It was shown that the combination of model-free reinforcement learning

algorithms such as Q-learning with non-linear function approximators, such as a neural

network, caused the Q-network to diverge, but these issues were resolved through

gradient temporal-difference methods. Recently the success story behind non-linear

function approximations is due to the deep Q-network (DQN) agent, that combines

deep neural networks with reinforcement learning. [MKS+15].

2.3.1.2 Sarsa

We now introduce the Sarsa algorithm, an on-policy method that stochastically ap-

proximates the optimal value function based on the state transition and the reward

samples received from online interaction with the environment.

The first step is to learn an action-value function rather than a state-value function. In

particular, for an on-policy method we must estimate Qπ(s, a) for the current behavior

policy π and for all states s and actions a. This can be done using essentially the same

TD method described above for learning v∗.

Qn(St, At) = Qn−1(St, At) + αn [Rn + γQn−1(St+1, a)−Qn−1(St, At)] . (2.12)

This update is done after every transition from a nonterminal state st. If st+1 is termi-

nal, then Q(st+1, at+1) is defined as zero. This rule uses every element of the quintuple

of events, (st, at, rt, st+1, at+1), that make up a transition from one state-action pair to

the next. This quintuple gives rise to the name Sarsa for the algorithm [SB98].

39

CHAPTER 2. BACKGROUND

2.3.1.3 Eligibility Traces

In order to obtain a more general temporal-difference (TD) method, that may learn

more efficiently, we can combine it with Eligibility Traces. When applied to TD

methods they generate methods that range between MC methods and one-step TD

methods, all intermediate methods are often better than either extreme method. We

can see an Eligibility Traces as a temporary record of the occurrence of an event.

That is, if a TD error occurs on a given step it is assigned to the previous steps as

determined by the eligibility trace. λ determines the extent to which the prediction

values for previous observations are updated by errors occurring on the current step.

Let Sarsa(λ) be the eligibility trace version of Sarsa. We need a trace for each state-

action pair, let en(St, At) denote the trace for state-action pair (St, At).

Qn(St, At) = Qn−1(St, At) + αnen [Rn + γQn−1(St+1, a)−Qn−1(St, At)] . (2.13)

where

en(St, At) =

{
γλen−1(St, At) + 1 if Sn = St and An = At;

γλen−1(St, At) otherwise.
(2.14)

The states that have recently been visited can be maintained through traces, where

temporarily is defined by γλ, this can indicate the degree to which each state is eligible

for undergoing learning changes, should a reinforcing event occur.

One method that combines eligibility traces and Q-learning is the Watkins’s Q(λ).

The main difference from other methods is that, its lookahead stops at the first

exploratory action, or at episode’s end if there are no exploratory actions before that.

Eligibility traces are used just as in Sarsa(λ), except that they are set to zero whenever

an exploratory (nongreedy) action is taken. The trace update is best thought of as

occurring in two steps. First, the traces for all state-action pairs are either decayed by

γλ or, if an exploratory action was taken, set to 0. Second, the trace corresponding

to the current state and action is incremented by 1 [SB98].

2.4 Related Work and State of the Art

In this section we present some related work that influenced and inspired our developed

plaftorm, namely the Arcade Learning Environment (ALE) [BNVB13].

40

2.4. RELATED WORK AND STATE OF THE ART

ALE is a software framework for interfacing with emulated Atari 2600 game envi-

ronments, spanning a diverse range of genres such as shooters, beat’em ups, puzzle,

sports, and action-adventure games. The user receives a a single game frame (in a 2D

array of 7-bit pixels, 160 pixels wide by 210 pixels high) and/or RAM from the Atari

2600 and sends joystick motions (the action space consists of the 18 discrete actions).

It also provides a game-handling layer which transforms each game into a standard

reinforcement learning problem by identifying the accumulated score and whether the

game has ended. The reward at each time-step is defined on a game by game basis,

typically by taking the difference in score or points between frames. An episode begins

on the first frame after a reset command is issued, and terminates when the game ends.

The game-handling layer also offers the ability to end the episode after a predefined

number of frames.

Tools such as ALE aid in the study of the previously described fields such as RL,

and they also help in the growth of the AI field. One of the most significant recent

developments was that of Deep Reinforcement Learning, which we now describe in

more detail.

Deep Reinforcement Learning can be viewed as the application of Deep Learning to

Reinforcement Learning. The objective of Deep Supervised Learning methods is to

find a powerful synaptic modification rule that will construct an arbitrarily connected

neural network to learn an internal structure, with multiple levels of abstraction, and

allow a system to learn complex functions mapping the input to the output directly

from data, without depending on human-crafted features [Ben09].

Deep architectures are composed of multiple levels of non-linear operations, such as

neural nets with many hidden layers. The learning methods must decide when and

what hidden units should be active. Therefore, a deep representation can be viewed as

a function composed by several individual functions. There are three common archi-

tectures used in Deep Learning: feedforward neural networks or multilayer perceptrons

(MLPs), recurrent neural networks and convolutional neural networks. One of the

DQN agents core components is a deep convolutional network architecture. For a

more detail explanation on the types of architecture it’s advisable to consult [IYA16].

So to combine it with RL in order to create an agent that is capable of learning, we

need a learning algorithm, and DQN agent uses the stochastic gradient descent (SGD)

[Bot10, LBH15, RHW88].

There are three ways to apply Deep Learning to RL: we can use a deep network to

represent the value function, the policy or the transition model. In each case we need

41

CHAPTER 2. BACKGROUND

to try to combine them with stochastic gradient descent and optimizing it by defining

an appropriate loss function. The current state of the art is the DQN agent and Deep

Q-Learning [MKS+15, MKS+13].

42

2.5. SUMMARY

2.5 Summary

In section 2.1 Search Strategies, we gave an overview on Search Strategies, in order

to understand how an agent is can explore in order to select the best possible actions. It

is important to retain from this section the notion of the Uninformed Search Strategies,

the Informed Search Strategies and their difference. We also detailed some algorithmic

methods, namely Breadth-First Search, Depth-First Search and A∗ Search.

In section 2.2 Planning, we gave an overview on Planning Strategies, in order to

understand the problem of planning in deterministic, fully observable, static en-

vironments. This chapter also extends classic planning to cover nondeterministic

environments.

In section 2.3 Reinforcement Learning (RL), we gave an overview on Reinforce-

ment Learning, in order to understand how everything is setup and how an agent is

able to learn in order to select the best possible actions, maximizing the sum of rewards

over the future. It is important to retain from this section the notion of the Markov

decision process, the value functions and how these functions satisfy Bellman equation.

We also detailed some algorithmic methods, namely Q-Learning and SARSA.

In section 2.4 Related Work and State of the Art, we gave an overview of a

similar platform that we used as inspiration in the creation of our work, and also

presented the state of the art Deep Reinforcement Learning method.

43

44

BAIP Platform 3
In this chapter we present the platform that was developed during the thesis: Bomber-

man as an Artificial Intelligence Platform (BAIP)1.

BAIP suports two main modes: (1) multi-player mode, where the user can test his

novel agents against other agents and the last one standing will be the winner; (2)

learning mode directed to Reinforcement Learning (RL) agents where a user can define

a score position and test the behavior and learning habitabilities of his agent. BAIP

also offers the possibility to test human players against the developed agents. This is

achieved by creating a agent that receives its actions from the keyboard. This is one

of the features that the platform has to offer.

3.1 Game Logic

BAIP is an adaptation of the Bomberman games, and therefore it follows the same

concept of strategy and maze-based theme of the original series. The general goal is

to place bombs in order to kill enemies, with the winner being the last standing agent.

An agent can perform the following actions: up, down, left, right, place bomb and wait.

The maps are customizable, as explained in Section 3.3.3, and they all follow the same

principles. Each map is a grid surrounded with indestructible orange blocks (or walls)

and destructible stone gray blocks that block the pathways. As in the original series

the agent can destroy the blocks in the pathway by placing bombs near it. The game

tiles that constitute the basic building blocks of every map are:

(a) Grass (pathway) (b) Destructible Wall (c) Indestructible Wall

Figure 3.1: Game map tiles

1https://github.com/LopesManuel/BombermanAI-Platform

45

https://github.com/LopesManuel/BombermanAI-Platform

CHAPTER 3. BAIP PLATFORM

At the game’s start each bomb takes, by default, 3 game updates to explode. The

number of updates it takes to explode can be altered before the game start. Each

explosion resulting from the bombs will remain in the respective tiles, by default,

during 5 turns, this value can be altered before the simulation. After the destruction

of a block a power-up might spawn at that block’s location. Power-ups are objects that

instantly grant extra abilities to the character. Using these blocks we implemented

the following game logic:

• When a bomb explodes near a wall, that wall will be transformed to a grass tile.

• Power-ups are not destroyed by bombs’ explosions.

• When a explosion encounters any type of wall, stops at that position.

• The agents can only move to positions where there is a tile of grass

• If there is an agent in the same position of an explosion tile, this agent dies

• Agents place bombs at their current position

• There can only be one planted bomb per cell

• More than one agent can be at the same position

BAIP supports a multitude of power-ups. As seen in Figure 3.2, the power-ups

implemented were:

• Bomb power-up, increases the max number of bombs an agent can plant at the

same time.

• Range power-up, increases the max number of cells that the explosion gets to.

• Ghost power-up, gives the permanent ability of walking through stone walls.

• Speed power-up, diminusih the number of updates a bomb takes to explode an

agent.

• Slide power-up, gives the ability to push the bombs to the nearest obstacle.

• Switch power-up, gives the ability of blowing up the agent’s bomb at any time.

46

3.2. ARCHITECTURE

(a) Bomb power-up (b) Ghost power-up (c) Range power-up

(d) Speed power-up (e) Slide power-up (f) Switch power-up

Figure 3.2: Game icons of the power-ups

In order for an agent to catch a power-up it just needs to move to the cell where the

power-up is. Power-ups are not affected by explosions, making them indestructible, but

they also do not stop explosions meaning that an agent cannot hide from explosions

behind them. In Chapter 4 we study how the addition of power-ups changes the

performance of an agent. From the power-ups presented we only study the addition

of the Bomb power-up and the Range power-up.

Every simulation done in the platform can be seen as a standard RL problem. To

achieve this, the user just needs to keep an accumulated scoring function. Each state

consists of a game frame, represented in a 2D array of characters, with the dimensions

of this array varying according to the map size. The action space consists of 6 discrete

movements [up, down, left, right, place bomb, wait], with the agents moving one grid

cell per turn.

3.2 Architecture

The system was originally developed for Unix systems using the Simple DirectMedia

Layer (SDL). It allows the user to interface with BAIP using the keyboard, sending

information to the screen, and simulating the game. When in display mode, in order

for the simulation to be perceptible for the human eye, the agents are slowed down to

5 actions per second, making it possible for a user to play using the manual controls

against his own AI agent. There is also the option of not showing the simulation on

screen, making the agent as fast as they can possibly be.

47

CHAPTER 3. BAIP PLATFORM

BAIP can be used with any type of artificial intelligence, since it passes all the

information to the agent. If a user wants to create an RL agent, he needs to give

a reward at each time-step based on the information received from the platform, and

then store the score or points between frames. An episode begins on the first frame

after the start command, and terminates when the game ends. A game ends when

only one agent is alive or if the simulation has run more than the predefined number

of maximum states allowed per simulation. This limit on the maximum number of

frames was set to prevent simulations to run forever.

Figure 3.3: Platform architecture design

The platform is based in the overall structure presented in Figure 3.3, where we see

that its structure is divided in three major components: the game logic, the screen

drawer and the agents communicator. In the rest of this section we will be explaining

how these three components come together.

From a new user perspective, the only thing one needs to worry about is the pro-

graming of it’s agent’s AI. Let’s start by understanding the game cycle. After all the

initializations are done, BAIP follows the flow described in Algorithm 3.1.

It is important to notice that the server does not wait for the agents to respond in order

to update the game logic, but the changes to the game map are done in a synchronous

fashion, following a first come first served policy. These updates are done at regular

intervals, the time for these intervals is adjustable, by default it is 1 second. Hence,

the agents need to respond in that time frame else their action will not be considered

in that update.

48

3.2. ARCHITECTURE

Algorithm 3.1 Pseudo-code representing an overview of the high-level logic of a game
cycle (details omitted included features such as logging games and RL mode)

procedure Main
Parse commands
Start up SDL and create window
Load map and all images
Create a thread for each AI agent
while game is not over do

Look for an event
Update map
Update agents
Update screen
if all agents are dead or there is only one alive then

game is over

Send updates to all the agents
Draw everything to screen

For each playing agent, BAIP will create a separate thread to run the agents commu-

nicator and handle all the communications between the agent and the main thread.

The game only starts after all the connections between the platform and the agents

are established.

All the communications are in the format of ascii readable strings, we can see an

example in Figure 3.4, and follow the communication protocol described at . The

information the server sends to the clients includes the updated game map and the

complete information about all agents, including active power-ups and life state. In

response the agents only need to send a character with the number of the pretended

movement. We can observe these communications in Figure 3.5.

C 20 15 2 0

M *********************x0++++-+++++-++000**0*+*+*+*++*+*+*-*0**++-

+++++++++++0++-**0*+*+*+*-+*+*+*+*0**+++++00++++++0+-++**+*+*+*+*+

+*+*+*+*0**+++-+++++++++++++-**+*+*+*+*+0*+*+*+*0**+++++++++0++-+0

0-+**-*0*+*+*++*+*+*+*0**+++-+++++++-+++++0**0*+*+*+*++*+*+*+*0**0

0++++-++++-+++00x*********************

P 1 1 2 1 5 1 18 13 2 1 5 2 2 13 2 1 5 3 18 1 2 1 5 4

Figure 3.4: Server to client communication example

Every communication described here follows the communication template presented

in Algorithm 3.2, we can see the algorithm applied in C++ at communicationcode.

49

CHAPTER 3. BAIP PLATFORM

Figure 3.5: Platform communication architecture design

3.3 Key Features

In the following subsections we will present the most relevant BAIP features and we

explain how to use each one. Each feature was conceived in order to facilitate the

development of new AI agents.

3.3.1 Multi-language Agent

We consider that the ability to communicate with different programs written in differ-

ent programming languages is an important feature, because our aim is not to teach

a certain programming language, but to teach and test AI algorithms and heuristics.

BAIP communicates with the agents through standard output and input, and follows

50

3.3. KEY FEATURES

a communication protocol based on the grammar seen in Figure Grammar. Given this,

independently of its programming language, an agent can understand and communi-

cate with the platform, making it even possible to have agents written in different

programming languages competing with each other. Any new agent just needs to

follow the communication template described in Algorithm 3.2.

Algorithm 3.2 Communication Template

1: procedure Main
2: initialization
3: while game is not over do
4: read map from input
5: read players’ position from input
6: if agent is dead then
7: game is over
8: else
9: take next action

The user just needs to program the ”next action” procedure, because it will be in

this procedure that the agent decides which will be the next action to take, based on

the available data. At each time step the agent receives the map and all the players’

positions, the current turn,each players’ power-ups and ranges. All the information

passed is relevant and the ability to adapt to the information can change who wins

the game.

3.3.2 Record and Replay

When a user is developing a new Agent it is useful to review its actions in order to

understand what, and where, anything went wrong. BAIP allows the user to record

the simulations. They will be recorded as log files, in the log folder, and whenever the

user wants to review the game he just needs to execute the program with the replay

flag and pass it the log path file.

When activating the log flag, the user activates the recording function. The record

will be saved in the Log folder, the name of the log will be generated with the seed

chosen by the agent, a random number and the time at the moment.

Each log file has a header describing the presets of the simulation, as seen in Figure 3.6,

describing the number of players, the number of players that were AI agents, if there

was a manual player and which was his id and finally in which map the simulation

took place

51

CHAPTER 3. BAIP PLATFORM

----------------------------- LOG 2769 -------------------------------

Number of players: 4

Number of agents : 4

Manual player id : -1

Screen height : 480 Screen width : 640

Number of columns: 20 Number of rows : 15

Map : Lvls/lvl0.txt

--

Figure 3.6: Example of a log file header, where the simulation had 4 agents and
where tested in the map constructed from ”lvl0.txt”

The controls in the Replay mode are the arrow keys: the left and right keys will do a

one frame backward pass and forward pass, respectively, and the up and down keys

will pass a larger number of frames. We can see a replay example in Figure 3.7.

Figure 3.7: Replay mode example, the images show consecutive frames of a
simulation in replay mode

3.3.3 Level Creation

Different users have different necessities: some might want to test how an agent

respond against others in an unblocked pathway, others might simply want to test

path finding abilities. In order to respond to these necessities BAIP allows its users

to create their own levels. Levels are stored as a text file, and they use the following

nomenclature. The pathway is seen in the text file as ’0’ and can be seen in the screen

as in Figure 3.1a. The pathway is blocked by gray blocks represented in the text file

as ’+’. The user can also include blocks with power-ups that are spawned randomly:

they are represented in the text file as ’-’. Both gray blocks and power-ups can be seen

52

3.4. POSSIBLE APPLICATIONS

in the screen as in Figure 3.1b. Finally we have the indestructible blocks, represented

by ’*’ in the text file and seen in the screen as in Figure 3.1c. The creator of the map

must define the initial position for each player, they are represented in the text file by

’1’,’2’,’3’,’4’.

In the current implementation the maps are rectangular following a grid with 20 width

and 15 height, but in future versions it will be possible to create maps with different

sizes. In the following images we can see an example of a map, and how the text file

corresponds to the image drawn in the screen.

10++++-+++++-++003

0+*+*+*++*+*+*-*0*

++-+++++++++++0++-

0+*+*+*-+*+*+*+*0*

+++++00++++++0+-++

++*+*+*++*+*+*+*0*

+++-+++++++++++++-

++*+*+*+0*+*+*+*0*

+++++++++0++-+00-+

*-*0*+*+*++*+*+*+*0*

+++-+++++++-+++++0

0+*+*+*++*+*+*+*0*

20++++-++++-+++004

(a) Text file of the map (b) Result map from the text file

Figure 3.8: Drawing a map from a text file

3.4 Possible Applications

As AI problems can be formulated in different ways, we wanted to build a platform

suitable to investigate these different formulations. From the beginning, BAIP was

designed to support the creation and testing of different AI approaches.

Another application is in education. The platform can be seen as a friendly envi-

ronment to teach AI algorithms to new students. Learning new AI algorithms is not

always easy and some concepts might be more comprehensible in practice. One way

that the platform helps is in visualization of the actions that the agent takes, making it

easier for the student to understand the behavior of certain algorithms. It also makes

learning more fun because it allows each student to develop his own AI and then test

it against each other.

Its competitive side allows to compare different approaches and analyze which are

more effective in the type of game that the platform simulates. It also helps us to

53

CHAPTER 3. BAIP PLATFORM

understand which algorithm improvements work better.

3.5 Summary

In section 3.1 Game Logic, we gave an overview of the game logic of the Bomberman

game and how they were implemented in our platform.

In section 3.2 Architecture, we gave an overview of BAIP architecture. Some

communication examples and how to setup a new agent.

In section 3.3 Key Features, we give a more detailed explanation on each feature

that BAIP supports, and some examples of how to use them.

Finally, in section 3.4 Possible Applications, we discuss some of the possible

applications.

54

Agents 4
In this chapter we start by analyzing the problem that arises from the Bomberman

game. We present some simple heuristics that we had in consideration when we were

developing the agents. We then follow some novel search-based agents developed in the

platform, and some agents that follow the conventional Reinforcement Learning (RL)

methods. We also present a brief discussion, overviewing all the developed agents.

4.1 Basic Agents

The game as described in the previous chapter has a mazed-base theme, where the

map is a grid. It is only natural that most of the essential problems will originate from

the exploration of pathways. Our main goal is to be the last agent alive, to achieve

this we need to avoid dying, open pathways and target other players. Using these

goals we created different approaches in order to achieve them.

Before we developed more complex agents, there was a need to provide a baseline

performance for traditional techniques, establishing a point of comparison with future

improvements. Using the notions present in section 4.1.1 we created agents corre-

sponding to each heuristic, and in the end we aggregated them all in one novel simple

agent. Afterwards we compared the performance of the more complex algorithms

against the simpler one, trying to understand if there was really an improvement, and

how much did it improve.

Our main testing methodology consists on running a set of n simulations, and observing

the results, including who wins, in what order the agents are losing, how many bombs

were placed and how many movements were made. We run several simulations, and

in different maps, trying to understand what affects the behavior of the agents, and

in which circumstances they had the upper hand.

55

CHAPTER 4. AGENTS

4.1.1 Simple Heuristics

For now we will focus our attention in the heuristics we devised. They are pretty

straightforward but overall they improve a lot the performance of our agents, and

without them they would probably not even be able to complete the simulations.

These approaches are used mainly to give the basic concepts of the game to our

agents, in order to improve the agents’ results.

4.1.1.1 Avoiding Death

The only way an agent dies in this game is if he is in a position of a grid cell that is

currently filled with fire. A cell is filled with fire when a bomb explodes. An explosion

will fill all the cells within the bomb range, both vertically and horizontally. The range

might vary from player to player depending on the power-ups a player catches.

In order to avoid death one must avoid being in a cell that is in range of a bomb. This

is exactly what we will do, by searching the grid around our agent. The first thing we

need to do is discover the possible range that the bomb has. There are several ways

to know this, and we opted to get the max range that the bomb can have at that

moment. After knowing the max possible range a bomb can have, we search the grid

and see if we are inside the range of a bomb. This is illustrated in Figure 4.1.

Figure 4.1: Example of an agent checking if it is in the range of a bomb.

As shown, if an agent finds itself in the range of a bomb it needs to search for some

place in the grid where he is safe, else if there is no bomb in range the agent can follow

a different policy. In the picture above, an yellow tile in the search grid represents a

56

4.1. BASIC AGENTS

safe place, while the red color indicates danger zones. Every time an agent is in the

latter situation, it needs to go to one of the yellow cells.

Using this concept we developed an agent that prioritizes this behavior and is always

checking for bombs, running away from them. Its performance is not the best because

it can easily be cornered, thus in our search-based agents we had this in mind.

4.1.1.2 Explorer

The pathway is blocked by gray destructible walls. Therefore, in order for the agents

to explore the map, they need to unblock the pathway. To achieve this goal, we need

to place bombs near the walls. Figure 4.2 illustrates the possible places where an agent

could place its bombs in order to unblock the pathway.

Figure 4.2: Example of an agent checking for walls near

How an agent searches for those places can determine its effectiveness. In our basic

agent this search is limited to the surrounding blocks. After placing a bomb an agent

uses the Avoiding Death heuristic in order not to be killed by its own bomb.

4.1.1.3 Targeting Players

The main objective of our game is to be the last one standing. To achieve this we need

to survive the bombs of our adversaries, and we also must try to kill them, or wait for

them to kill themselves. The latter might take a long time and the simulation might

end before that. So, as established before, to kill an agent we need to strategically

place a bomb near the enemy in a position that would not allow him to dodge.

57

CHAPTER 4. AGENTS

To target a player we first need to understand the pathway of an agent, although an

agent has all the information about the map and the positions of all the players, even

though they are not in its field of vision, it might not have a pathway unblocked to

that player. So, as we can observe in Figure 4.3, an agent can only target what is in

it’s own pathway.

Figure 4.3: Example of an agent field of vision

Checking what an agent can or cannot reach is an important task, and how we explore

is crucial to performance of our agent. In the basic agent this search is limited to a

certain range surrounding its position. After finding an agent it greedily moves in the

direction of the enemy and when it is finally in the enemy’s range it places a bomb.

This is obviously a really basic way of targeting agents.

4.1.2 Different Basic Agents

Combining all the heuristics described before and somehow following in the footsteps of

the work developed previously by [BT02], we created an agent that is able to complete

an episode of the Bomberman game. To better understand which decisions an agent

takes we can look at the diagram of Figure 4.4.

The basic agents that were constructed all follow the depicted state machine. What

differentiates them is how they prioritize their actions. We also did some experiments

to see how the performance of agents was affected when they played without some of

the heuristics. Given this, we ran our simulation with agents that follow the following

four different playing strategies:

58

4.1. BASIC AGENTS

Figure 4.4: State Machine definition for Bomberman agent. Image taken from [BT02]

• Aggressive strategy - the agent prioritizes the targeting of the enemies over

avoiding death heuristic.

• Safety strategy - the agent prioritizes the avoiding death over any other heuristic.

• Exploratory strategy - the agent prioritizes exploring the map and blowing up

walls over any other heuristic.

• Random strategy - when the agent has to decide which heuristic to apply he

choses it randomly over the possible heuristics.

In following section we discuss the obtained experimental results using these strategies.

4.1.3 Experimental Results

4.1.3.1 Baseline Agent

In this section we are going to analyze how priorities in the heuristics influence the

results of agents created using the same basic set of primitive behaviors, by putting

them in competition against each other. These experimental results will help us decide

which heuristic we will be using as a baseline agent for further experiments. To do

this we created four agents, each one based on one of the basic strategies previously

described.

59

CHAPTER 4. AGENTS

We started by testing all the agents against each other, using the default map without

any power-ups and with the players starting randomly in one of the four possible

initial positions. First we tested the agents in a one versus one (1vs1) match, where

each agent fought every other agent and finally we tested them all together. Table 4.1

summarizes the results for the 1vs1 experiments, with 500 games for every pair of

competing agents.

Safety Vs Aggressive Wins % Safety Vs Random Wins %
Safety 221 44.20% Safety 347 69.40%
Aggressive 213 42.60% Random 56 11.20%
Draw 41 8.20% Draw 66 13.20%
Out of time 25 5.00% Out of time 31 6.20%
Total 500 100.00% Total 500 100.00%

Safety Vs Explorer Wins % Random Vs Explorer Wins %
Safety 276 55.20% Random 85 17.00%
Explorer 170 34.00% Explorer 330 66.00%
Draw 10 2.00% Draw 26 5.20%
Out of time 44 8.80% Out of time 59 11.80%
Total 500 100.00% Total 500 100.00%

Aggressive Vs Explorer Wins % Random Vs Aggressive Wins %
Explorer 145 29.00% Random 93 18.60%
Aggressive 185 37.00% Aggressive 354 70.80%
Draw 40 8.00% Draw 33 6.60%
Out of time 130 26.00% Out of time 20 4.00%
Total 500 100.00% Total 500 100.00%

Table 4.1: Simulation results of the one versus one matches between every agent

From these simulations we collected the information of how many times an agent had

won, draw and the simulation had run out of time. In order to identify which agent

performed better we considered not only the number of wins as a deciding factor but

also the number of times it run out of time, as the latter means that the agent is either

getting stuck or not efficient enough. Having this in mind we observed that the most

successful agents in the 1vs1 simulations are the ones that follow either an Aggressive

strategy or a Safety strategy.

Although the winning rate of the agent that follows the Aggressive strategy is superior

to the others we did not choose him as the baseline agent, because we also had in

consideration the number of draws and especially the number of times the simulation

ran out of time. By analyzing the table of the simulations of Aggressive vs Explorer

and Safety vs Explorer agents we can say that the number of times that the Aggressive

60

4.1. BASIC AGENTS

All vs All Wins %
Safety 314 31,40%
Explorer 180 18,00%
Random 55 5,50%
Aggressive 368 36,80%
Draw 49 4,90%
Out of time 34 3,40%
Total 1000 100,00%

Table 4.2: Simulation results of the matches with all the agents at the same time

agent runs out of time when playing against the Explorer agent is greater than the

number of times that this happens in the Safety agent simulations.

We also tested how the agents behaved when they played altogether in the same

simulation, against each other. The results are detailed in Table 4.2.

By analyzing the previous table we can say that the performances of bothAggressive

agent and Safety agent are similar. In the end the only thing that really distinguishes

these agents was the simulation against the Explorer agent, and therefore so we decided

to use the Safety agent as the baseline agent.

4.1.3.2 The Effects of Power-ups

In this section we show how adding power-ups to the game affects the simulations and

its results. From the power-ups presented in section 3 we only tested with the Bombs

power-up, that increases the number of bombs a player can place at the same time,

and the Range power-up, that increases the range of the explosions of a player’s bomb.

These tests consisted of simulations with the 4 basic agents, starting in random initial

positions. The only factor that changes between tests was the map. We used as a

baseline the default map without any power-ups, and then we tested with maps that

had one of those power-ups and finally we tested with maps that had both of the

power-ups. The power-ups used in these simulations were randomly placed in blocks

through the map at the beginning of the simulation.

In order to assess how these changes affected the outcome of the simulations we used

the following metrics: number of moves per episode and number of bombs placed per

episode. We use these statistics to measure the lifetime and the efficiency of the agents,

and how the power-ups affect them. Table 4.3 shows the obtained experimental results.

It is important to notice that when there was a tie as the result of a simulation, both

61

CHAPTER 4. AGENTS

users were classified as 2nd place, or if it was a three agent tie they were all classified

as 3rd place.

TURNS
1◦ 2 ◦ 3 ◦ 4 ◦ Avg

BOMB&RANGE 14824.4 17982.2 12120.8 10235.3 13790.7
BOMB 16399.6 18458.5 13313.0 10827.0 14749.5
RANGE 12283.3 16875.7 11407.4 9311.9 12469.6
NO POWER-UP 10440.0 19882.0 13390.2 10836.7 13637.2

Average 13486.8 18299.6 12557.8 10302.7

BOMBS
1 ◦ 2 ◦ 3 ◦ 4 ◦ Avg

BOMB&RANGE 25.1 15.1 25.3 29.8 23.8
BOMB 24.7 15.4 24.8 29.1 23.5
RANGE 24.3 14.8 24.4 26.0 23.2
NO POWER-UP 25.3 15.6 26.7 27.1 23.7

Average 24.8 15.2 25.3 28.0

TURNS PER BOMB
1 ◦ 2 ◦ 3 ◦ 4 ◦ Avg

BOMB&RANGE 691.7 1188.3 478.9 343.7 675.7
BOMB 664.8 1197.2 637.7 372.0 717.9
RANGE 604.6 1143.0 468.1 367.6 645.8
NO POWER-UP 412.3 1278.8 501.9 399.5 648.1

Average 543.4 1201.8 496.7 368.2

Table 4.3: Statistics showing number of turns, number of bombs and number of turns
per bomb as we vary the type of power-ups available, per ranking placement.

We start our analysis by focusing on the metric that measures the lifetime of the

agents. Using the no power-ups case test as baseline we can say that introducing the

range power-up shortens the average lifetime of the simulations and introducing the

bomb power-up extends it. The number of bombs also decreases with the introduction

of the range power-up, but although the number of bombs per episode decreases the

average frequency as they place the bombs increases. It is important to keep in mind

that the number of turns is largely due to the time it takes for the bomb to explode.

Now that we have seen the overall picture let’s understand how the power-ups modified

the individual performance of each agent, as detailed in Figure 4.5 and Table 4.4.

By analyzing the individual agent data we can clearly see that when we introduce the

62

4.1. BASIC AGENTS

Figure 4.5: Charts comparing the average move per episode of the different ranks.

BOMB&RANGE PP BOMB PP
1 ◦ 2 ◦ 3 ◦ 4 ◦ 1 ◦ 2 ◦ 3 ◦ 4 ◦

Aggressive 27 97 166 210 Aggressive 20 118 146 216
Random 15 455 25 5 Random 18 434 40 8
Exploratory 72 205 135 88 Exploratory 89 208 107 96
Safety 22 114 166 198 Safety 21 91 187 201

RANGE PP NO PP
1 ◦ 2 ◦ 3 ◦ 4 ◦ 1 ◦ 2 ◦ 3 ◦ 4 ◦

Aggressive 25 127 159 189 Aggressive 74 74 165 187
Random 11 439 38 12 Random 23 400 49 28
Exploratory 61 210 142 87 Exploratory 55 151 180 114
Safety 25 115 151 209 Safety 61 84 188 167

Table 4.4: Average number of wins per agent in each different map.

power-ups there is a change in the winning trend, we can also observe that maybe

the Aggressive strategy does not work as well as it did in the maps without bonus,

and finally conclude that the best strategy when there is a map with power-ups is the

Exploratory strategy. Finally, from the average number of movements per episode of

the agents and the number of times they were classified in 1st or 2nd we can verify

that there is a correlation between the two.

63

CHAPTER 4. AGENTS

4.2 Search-based Agents

In the previous section we presented some basic approaches to the bomberman game.

We will now present more complex agents that try to solve the associated exploration

problems search-based algorithms . These agents are more time efficient as they do not

need to search all of the grid in order to make a decision, since they only search what

is in reach of an agents inside its own pathway. We will present them in the following

subsections.

4.2.1 Generating an Action Tree

To solve the exploration problem that arises from the exploration of the pathway we

decided to use a graph traversing algorithm, and went with the Breadth-first search

(BFS) algorithm because this search method is described as being complete, as it is

guaranteed to find a goal state if one exists.

Our grid map can be considered as a directed graph where each cell is a node and they

are connected to their horizontal and vertical neighboring cells by actions that are

directed edges that represent the actions. Using BFS we start exploring at cell where

the player was at. The neighbor nodes are the neighbor cells that were explorable

(a cell is explorable when it is either a cell with grass or a power-up block). We can

observe in Figure 4.6 a visual representation of an example search tree.

(a) Grid representation of the search tree (b) Search tree

Figure 4.6: From a grid representation to a search tree

64

4.2. SEARCH-BASED AGENTS

Using the search tree, calculated at the begin of each iteration, we can now prioritize

our heuristics from section 4.1.1. Our first priority was to ensure the survival of the

agent, making it search for any bomb in the proximities; the second priority was to

check if there was any reachable player; the third was to check if there was any power-

up in reach as well and finally if there was nothing left to do we would search for the

nearest wall to blow up.

Now that we have explored our pathway, generated a search-tree and also identify

where our goals are at, we can finally create an action tree. The process of creating an

action tree is really simple: after finding the node where our goal is at, we just need

to traverse our tree from the goal node to the root and save the edges that lead to the

goal node. The root of the created tree is the last edge, the one that comes from the

root of the search-tree.

The result is an action tree because there can be more than one leaf node at the end.

Given that the BFS algorithm searches by levels, there can be more than one goal in

the same level. In the next section we present our implementation that uses the action

tree presented here.

4.2.2 Search-based Agent

Having as a basis the baseline agent presented in section 4.1 we improved on it, adding

the generation of the action trees. This addition globally and significantly improves

the performance of our agent, as can be seen in detail in Section 4.2.5.

To give a better insight on what we did, we now give some intuitions about the

improvements. Starting by the agent’s survival approach, we keep how it searches

for bombs because it is a simpler way and gets the job done. Moreover, by using a

search-tree, created when we use the BFS algorithm, we can now search for a safe

place to hide from bombs. This addition improves the escape routes for our agent, as

it always finds the closest safe cell to its position and the shortest path to it, making

our agent harder to eliminate.

The next thing that needed to be improved was our search for goals. In the cases

where there is more than one goal it decides which one to pursue by the heuristics

priority. In the case of a draw we decided randomly. The agent will always take the

shortest path to the desired goal.

We prioritize the targeting of enemy agents because if there is an agent in the pathway

there will be a possibility that it will target us, so “the best defense is to attack”. We

65

CHAPTER 4. AGENTS

place the bombs when we are in range. If we are safe and there is no agent in our

pathway then we will search for the nearest goal, a wall or a power-up, and follow the

path to that goal. The agent chooses always the nearest goal, but there is room to

improve this selection with some heuristics.

At every time step this agent will search for goals. This can lead to undesired effects,

such as the agent becoming overwhelmed by irrelevant actions, or actions undoing the

previous planned action. To overcome this problem we present a planning strategy

detailed in the next section.

4.2.3 Action Planning Agent

Assuming that the game problem is nearly decomposable, meaning that the planner

can work on subgoals independently, we decided to use the action tree created at each

time step as an action plan. When an agent follows a plan, it sends actions from the

action tree to the server, starting from the root until it reaches the end. The plan’s

size is the number of actions an agent will take while following it, and it varies with

the action tree height.

While using this action plan its size affects the performance of an agent because of

the changes in the environment. For instance, if our plan was to target a player and if

moves around our final plan state would be outdated. Given this, the plan size is an

important factor. We did a comparative analysis of the effectiveness of different plan

sizes, in order to decide the most appropriate number. With this goal in mind, we ran

several simulations with agents that had different plan sizes.

The results of these simulations are presented in Section 4.2.5. We can conclude that

the best plan size for the tested maps is 2.

4.2.4 Improving Search-based Agents with some Heuristics

One major problem that arouse from the previous agents’ plans, was that their plan

routes did not take in consideration danger zones (cells that are in range of a bomb).

Meaning that although they were not in immediate danger they could eventually pass

in a node that was considered a danger zone, and this would lead to is death. As we

can see ilustrated in figure 4.7.

In order to fix this problem we implemented a heuristic similar to the Avoiding death

heuristic, but applied in the search-tree. So we are going to prune branches from the

66

4.2. SEARCH-BASED AGENTS

Figure 4.7: Ilustrastes how danger zones are perceived while creating the action tree

search-tree that pass in nodes that are in range of a bomb. Completely avoiding the

danger of passing there when the explosion occurs.

We tested agents with this improvement against others without it the results can be

seen in Section 4.2.5.

4.2.5 Experimental Results

In this section we will show how we found the best k plan size to our simulations. In

order to understand if the changes in the plan size affected the performance of the

search-based agent we ran simulations against the baseline agent, in the default map

in a 1vs1 simulation. The only thing that changed between simulations was the k plan

size.

The metric that we used to evaluate the performance of our agent was the winning

percentage. We consider that an agent performs better than the opponent when it’s

winning rate is greater than 50 %.

By observing the chart in Figure 4.8 we can say that the three best results were from

the agents that had a plan size where k was either 1, 2 or 3. These agents had a

winning rate greater or equal to 75%. To analyze in more detail the behavior of these

plan sizes against more intelligent competitors, we tested them against each other

using the agents at the same time, in the default map with and without power-ups.

From this experiment we obtained Table 4.5.

From this experiment we arrived at the conclusion that the best value for k when

67

CHAPTER 4. AGENTS

1 2 3 4 5 6 7

66.00%

68.00%

70.00%

72.00%

74.00%

76.00%

78.00%

80.00%

82.00%

84.00%

K

W
in

n
in

g
p

e
rc

e
n

ta
ge

Effects of K size plan on winning percentage

Figure 4.8: Effects of plan’s size on winning percentage

K Normal Map Random Map
1 159 168
2 165 176
3 153 148

Table 4.5: Table with number of wins of each agent from the simulation of the
different plan size agents. We performed 500 episodes in this experiment

playing in the default map is 2. After knowing the best value for k we tested if adding

a new survival heuristic to our search algorithm would improve its performance. To

test this, we tested our agent with and without the improvement, both against each

other and against our baseline agent, in default and random maps.

From this experiment we assess that the newly added heuristic, despite slightly im-

proving the survival rate of our agent on random maps, does not improve its winning

rates, as the other agent wins more times. One possible interpretation is that maybe

the risk of passing by paths with cells that are in danger zones gives a higher reward

than avoiding them and as future work it would be interesting to develop a heuristic

to decide if the risk to reward rate ratio is good enough to take a risk.

In conclusion the search based agents can perform around 80% times better than the

baseline agent. The best agent that was developed was the agent that uses the search-

based planning with a value k of 2 without the heuristic improvement described.

68

4.3. REINFORCEMENT LEARNING AGENTS

Default Random
Safety 366 397

Improved 222 188
Draw 12 15

Default Random
Improved 301 276
Baseline 250 148
Draw 49 176

Default Random
Safety 467 403
Baseline 97 64
Draw 36 133

Table 4.6: Tables of the experiments where we tested if adding a new survival
heuristic would improve the performance. The numbers indicate the number of times
each agent wins.

4.3 Reinforcement Learning Agents

The main difference between learning and planning algorithms is that a planning

algorithm has access to a model of the world, whereas the latter involves not knowing

how the world works and learning how to behave from direct experience with the

world. This chapter demonstrates how we can formulate our game problem as a

Reinforcement Learning (RL) problem, and how we can solve it using Q-learning and

Sarsa. As reviewed in Section 2.3, agents try to learn the optimal policy from its

history of interaction with the environment.

The history of an agent is a sequence of state-action-reward, so the first thing we

need to do is to establish how they are represented in our game environment. Let the

states be represented by the game matrix and the players positions, the actions by

the possible actions an agent can take and the rewards defined by the user’s criteria.

Recall that these methods use temporal differences to estimate the value of Q∗(s, a),

and keep a table of Q(S,A) where S is the set of states and A is the set of actions.

Section 4.3.1 introduces an RL-based framework in the Bomberman game environment,

shows how we can develop agents in this mode, and hints about its potential. Sec-

tion 4.3.3 present the parameters chosen and how they affect our agent. In Section 4.3.2

we compare our initial implementation with an implementation that uses eligibility

69

CHAPTER 4. AGENTS

traces. Finally we show every experiment we did using these RL-agents and the

respective comparisons.

From all the AI formulations, we chose the RL representation even though it is

difficult because of delayed rewards, the explore-exploitation dilemma or even by the

changing dynamics of the world. Regardless of these problems, RL representations

have demonstrated to have the most potential, and recent developments in the AI

field demonstrated their almost unlimited possibilities [LBH15, MKS+15, MKS+13].

Even though we were not able to replicate all of the most recent results (given the

time constraints for producing this thesis), we tried to create a platform that is able

to accommodate them in the future.

4.3.1 BAIP Learning Mode

Using BAIP RL-mode we started by solving the canonical example of theGrid World [SB98].

Because our agents move in a grid and walls block the agent’s path, this problem is

an ideal test for any RL-agent as we can easily check if our agent finds the optimal

policy. We tested this with Sarsa(λ) and Watkins’s Q(λ) implementations.

As we could see in section 2.3, Q-learning is an off-policy learner and learns the value

of the optimal policy independently of the agent’s actions, while Sarsa is an on-policy

learner that learns the value of the policy being carried out by the agent, including the

exploration steps [LK10]. In a Grid World this difference could be experienced in the

agent’s exploration steps, because sometimes, when exploring, some large penalties

may occur, and Sarsa takes this into account.

Using the game board presented previously we now want to transform it into the Grid

World problem. This was achieved by letting the user define an objective point, and

every time an agents gets to that point of the map it will be repositioned to its’ original

point. In order to leave the platform the more generic possible, the scoring function

will be handled by the agents. This will leave the scoring decisions to the agents’

creator. In Figure 4.9 we can observe the scoring for each grid cell and the respective

optimal actions to take in the grid positions. This is an illustration of what an agent

is supposed to arrive at, in the end of a learning simulation.

In the previous figures we can observe that eventually the agent will learn that passing

near a bomb is bad and will find the shortest and safest pass to the position of the

blue ball. Considering all of this, we implemented on-policy (Sarsa(λ)) and off-policy

(Watkins’s Q(λ)) control methods using function approximation, where both methods

use linear function approximation with binary features and use an ε-greedy policy

70

4.3. REINFORCEMENT LEARNING AGENTS

(a) The green arrows represent the opti-
mal actions in those positions.

(b) An example of rewards that an agent
receives in those positions.

Figure 4.9: Example of a Grid World problem

for action selection. Different function approximations, such as a neural network or

a decision tree with a linear function at the leaves, could have been used [LBH15,

MKS+15, MKS+13].

4.3.2 Improving with Eligibility traces

Until now only the previous state-action pair was updated when a reward was received.

This leads to the delayed reward problem, because when an agent takes a number of

steps that lead to a reward, all of the steps along the way could be held responsible

and thus receive some of the credit or the blame for a reward [LK10].

Considering this we implemented in our agents an eligibility trace, that specifies how

much a state-action pair should be updated at each time step. When a state-action

pair is first visited, its eligibility is set to 1, and at each subsequent time step is reduced

by a factor of λγ. On any subsequent visit its eligibility is incremented by 1. The

eligibility trace is implemented by an array e[S,A], where S is the set of all states and

A is the set of all actions. After every action is carried out, the Q-value for every

state-action pair is updated [LK10].

We tested agents that use eligibility traces against agents that do not and concluded

that the agents that use are able to learn faster the optimal policy. These tests can

be observed in section 4.3.4.

71

CHAPTER 4. AGENTS

4.3.3 Choosing Parameters

There are a set of parameters that are used in Sarsa and Q-learning algorithms. For

choosing these, we did an empirical parameter search, looking for values that would

improve the algorithm overall performance.

In order to test our RL methods we used the Grid World problem testbed, and tested

how well an agent scores at the end of an episode. An episode starts with the agent

at position (0, 0) and ends at position (18, 14). The agent needs to find the shortest

path in order to have the best possible score.

We started by searching what was the most suitable α (learning rate) parameter and

how its variance would affect the outcome in the scores of our agent. Figure 4.10 shows

the obtained variance, while using the Sarsa algorithm.

1 26 51 76 101 126 151 176 201 226 251 276 301 326 351 376 401 426 451 476

-1200

-1000

-800

-600

-400

-200

0

Episode

Score

0,005

0,05

0,1

0,3

α

Figure 4.10: Chart showing how the score changes when we change the α value of
the agents.

When running our tests we set our range between [0.005, 0.3], because every value

outside this range will cause our agent to behave poorly. By analyzing the previous

graphic we can conclude that the bigger the value of α the faster the agent finds a

good policy, but that policy might not be the best possible policy. On the other hand

the smaller the value of α the agent takes longer to find a good policy that produces

positive scores, but might find a better policy, and even find the optimal policy. After

searching for a balanced value we decided to use a learning rate of 0.1.

In the previous tests we used a static γ (discount factor) value, afterwards we tested

how the changes in the discount factor affected the performance. The range of this

72

4.3. REINFORCEMENT LEARNING AGENTS

value will be different of the previous set range. We tested the values 0.7 and 0.99,

since every simulation we tried with a value under 0.7 performed too poorly.

1 26 51 76 101 126 151 176 201 226 251 276 301 326 351 376 401 426 451 476

-800

-750

-700

-650

-600

-550

-500

-450

-400

-350

-300

-250

-200

-150

-100

-50

0

50

Episode

Score

0,99

0,7

γ

10000

Figure 4.11: Chart showing how the score changes when we change the γ value of
the agents.

γ determines the importance of future rewards, a value near 0 will make the agent

only consider current rewards, while a value approaching 1 will make it search for a

long-term high reward. By analyzing Figure 4.11 we can conclude that values near 1

yield better results.

We then searched the best value for ϵ (Exploration / Exploitation Rate) trying to

address the exploration/exploitation dilemma. We know that after a finite number

of plays, each cell has been visited once [AMS09], thus we need to find a value that

balances the gathering of information with the ability to make the best decision given

current information. Our search range was set between [0.1, 0.9]. We see how this

factor affects the score in Figure 4.12. We found that the best value of ϵ for our

problem was 0.2.

Finally, using the Q-learning method with eligibility traces, we tested the λ value.

This factor affects learning speed of our agent, particularly when rewards are delayed

by many steps as it is the case. The change in learning speed can be observed in

Figure 4.13. We can see that when λ is closer to 1 the agent learns faster.

In summary, considering mainly the number of episodes it took the agent to find a

good policy, we decided to use the following parameters:

73

CHAPTER 4. AGENTS

1 26 51 76 101 126 151 176 201 226 251 276 301 326 351 376 401 426 451 476

-1150

-950

-750

-550

-350

-150

50

Episode

Score

0,5

0,2

0,05

ε

Figure 4.12: Chart showing how the score changes when we change the ϵ value of
the agents.

1 26 51 76 101 126 151 176 201 226 251 276 301 326 351 376 401 426 451 476

-600

-500

-400

-300

-200

-100

0

100

Episode

Score

0,1

0,5

0,9
λ

Figure 4.13: Chart showing how the score changes when we change the λ value of
the agents.

• α (learning rate) - 0.1

• λ (lambda) - 0.9

• γ (discount factor) - 0.99

• ϵ (Exploration / Exploitation Rate) - 0.2

4.3.4 Experimental Results

Using the parameters described in the previous section and the same Grid World

problem, we tested how an eligibility trace would affect our Q-learning agent. As we

74

4.3. REINFORCEMENT LEARNING AGENTS

can see in Figure 4.14, an agent with an eligibility trace is faster to learn the optimal

policy.

1 26 51 76 101 126 151 176 201 226 251 276 301 326 351 376 401 426 451 476

-980

-880

-780

-680

-580

-480

-380

-280

-180

-80

20

Episode

Score

Q_learner

Q_learner_eg

Figure 4.14: Chart comparing the score in each episode of two agents, one that uses
eligibility trace and one that does not.

With this we confirm that it often makes sense to use eligibility traces when data is

scarce and cannot be repeatedly processed, as is often the case in on-line applications,

as the Bomberman game.

Finally, we tested how the Sarsa andQ-learning algorithms compare with each other,

in order to conclude which one has a better performance in this problem. We can see

the results in Figure 4.15.

1 26 51 76 101 126 151 176 201 226 251 276 301 326 351 376 401 426 451 476

-850

-750

-650

-550

-450

-350

-250

-150

-50

50

Episode

Score

Sarsa

Q-learner

Figure 4.15: Chart showing the score in each episode of the agents.

75

CHAPTER 4. AGENTS

Since in both cases the agents learned a behavior by experience and then proceed to

act based on what they had learned, and in the end both agents converged to the same

optimal policy, in this scenario we cannot say which algorithm is definitely better.

4.3.5 Further Improvements

In this section we will detail some possible improvements that were not implemented

due to the limited amount of time available for this dissertation.

Going from a predefined position to another as in the Grid World problem is not really

of practical usefulness in a complete game environment, because the other agents might

behave in completely different ways and our main objective is to survive. For this we

would need to teach our agent more than only the path finding function, and we this

could be achieved for instance running our RL agents in a normal game environment,

where each time they die they would receive a negative score, being re-spawned.

Furthermore, a method of improving our RL agent would be to use Feature Selection.

There are too many states and thus, in order to create a more skillful agent, we would

need to give him some information about the important features of the game.

Using features of both the state and the action to provide features for the linear

function, where F1(s, a), . . . , Fn(s, a) are numerical features for the state s and the

action a, these would be used to represent the Q-function. [LK10]

Qw(s, a) = w0 + w1F1(s, a) + · · ·+ wnFn(s, a) (4.1)

where,

wi ← wi + ηδFi(s, a) (4.2)

The selection of features needs to be made very carefully. Some possible features that

we would select in a future implementation would be the following:

• F1(s, a) - has value 1 if action a would most likely take the agent from state s

into a location where the agent could die and has value 0 otherwise.

• F2(s, a) - has value 1 if action a would most likely take the agent from state s

into a location where there is a wall and has value 0 otherwise.

• F3(s, a) - has value 1 if action a would most likely take the agent from state s

into a location where there is a power-up and has value 0 otherwise.

• F4(s, a), F5(s, a), F6(s, a) - has a value equal to the distance between our agent’s

position and one of the other agent’s.

76

4.4. DISCUSSION

4.4 Discussion

We started by presenting some heuristics that we need to consider. Different ap-

proaches lead to different results, and we considered the behaviors presented as the

fundamental ones to assure the minimal survival of any agent. Using them we created

a baseline performance for traditional agents, and tried to improve it with other AI

methods.

Afterwards we gave the structure needed to created search-based methods and pre-

sented only one search method here, using the Breadth-first search (BFS) algorithm.

Some other methods can be used, such as Depth-first search (DFS) or A* search

algorithm, with the latter being the most popular choice for path-finding problems on

large environments. A* can be seen as a Greedy Best-First-Search in that it can use

a heuristic to guide itself.

Using the search methods we created very simple planning agents, tested the plan’s

size, and concluded that its main flaw is when there are changes in the environment

that the agent did not foresee. Given this, it is important to find a good plan size.

We also explored the challenges of implementing RL agents, such as the sensitivity of

the learning rate (α), the state dynamics and choosing the right reward signals, the

delayed reward problem and delayed consequences (as the bombs took some time to

explode). In order to tackle these problems we based our solutions in some examples

from [Nad10].

In conclusion, this chapter served to explore different types of AI problems formula-

tions, and although these different approaches might arrive to different policies, they

could be combined to either learn faster or to perform better. There are already

examples of successful combinations of search methods and learning methods that

worked [SSM08].

BAIP can now be used as a fully functional platform for learning, developing and

testing AI methods.

4.5 Summary

In section 4.1 Basic Agents, we introduced the environment and some heuristics to

solve the game problem. We created a baseline agent that is used as a comparison to

check if the other agents have improvements.

77

CHAPTER 4. AGENTS

In section 4.2 Search-based Agents, we introduced the search-based agents. We

started by explaining how we created an action tree, and how we use it for planning

agents. We show some improvements to the initial implementations and afterwards

we try to find an optimal plan size.

In section 4.3 Reinforcement Learning Agents, we introduced RL in the context

of our platform. We started by showing the BAIP learning mode, that facilitates the

development of RL-agents and we studied how different algorithms and parameters

behave better.

Finally, in section 4.4 Discussion, we give an overview of all experimental results.

78

Conclusion and Future Work 5
In this section we give a summary of what was achieved and we explore some possible

future directions.

5.1 Contributions

The main goal was to conceive a Bomberman-based AI platform and to use it to create

AI agents, proving its feasibility and ease of use. This goal was achieved and whilst

pursuing it we made the following major contributions:

• A multi-language AI platform using Bomberman, a language agnostic

platform that is capable of communicating, via input and output, with an agent

written in any programing language (it only needs to follow the communication

protocol presented). The platform achieved a fully functional state, with an

appealing graphical view of the world state, detailed logs of every simulation

and the possibility of customizing the maps and power-ups.

• A set of simple heuristics capable of providing basic functionality for an

agent, namely the capability to avoid explosions, to explore the maze (by de-

stroying blocks) and to kill other agents. From the experimental results and

the analysis of these behaviors, we have proven that the capability to avoid

explosions is the one that has proven to be the most essential. We also analyzed

which power-up has more impact in the number of moves. The results lead

us to believe that the range power-up decreases the number of moves and the

bomb power-up increases them. Finally, we have also shown how one should

deal with the dilemma between exploring and actively pursuing enemy agents.

The response for this dilemma varies, with results from maps with power-ups

showing that exploring is the best approach, but in maps with no power-ups

being aggressive presented us with a better performance.

79

CHAPTER 5. CONCLUSION AND FUTURE WORK

• A search based agent capable of producing an action tree and to efficiently

explore the state-space. From the experimental results this agent has proven

to be better than any basic agent. After a detailed competitive analysis of the

different variations of the planning agent, with a focus on discovering the optimal

plan size, we arrived at the conclusion that, for the maps tested in our work, the

best plan size was two.

• A simple formulation of a Reinforcement Learning (RL) problem within

the platform, coupled with an implementation of both Sarsa and Q-learning

algorithms that are able to tackle the problem. The obtained results conform to

what was expected, showing both the validity and feasibility of our approach and

showcasing its ease of use. We have also conducted an empirical search trough

algorithm parameters and we have explored the eligibility traces improvement.

5.2 Future Work

This work only briefly touched some of the subjects in the AI area, and a number of

possibilities for future directions arose whilst developing our platform and our agents.

Some possible topics for future research are the following:

• We only research the effects of the bombs the range power-ups. In the future it

should be investigated how the other power-ups affect the game.

• While the platform tries to follow every aspect that constitutes a good teaching

platform, as a future work it should be tested in a real teaching environment. A

good example for testing our platform in a pedagogical context would be to use

it either in an introductory programming course or in a introductory AI course.

• We would like to develop more heuristics, such as opening pathways having in

consideration the location of the nearest opponent or trying to trap another agent

using the map and our bombs. There are a lot of possibilities and heuristics that

can be developed.

• We would like to implement agents that use Monte Carlo methods, and test its

performance against our previous developed agents.

• We would like to further improve our RL agents using for instance more complex

problems and feature selection, as described in Section 4.3.5.

80

5.3. CLOSING REMARKS

• Finally, it would be interesting to use BAIP to implement agents that use Deep

Reinforcement Learning methods, such as the DQN method, and analyze its

performance against our previous developed agents.

5.3 Closing Remarks

During this work I have greatly extended my knowledge in the Artificial Intelligence

area and contacted with General Game Playing. It involved knowledge representation,

planning, logic and search-based challenges. I have also deepened my knowledge in

Reinforcement Learning and had a chance to get familiarized with the state of the

art in the area. I tried to implement some of the most recent advances, following

new papers being published during the lifetime of this thesis, and although somehow

unsuccessful in incorporating the most recent developments, I have learned how some

of these very recent algorithms work and how to cope with the adversities of this area.

Finally, building the platform gave me a chance to improve my software engineering

and design skills.

81

82

Appendix A
A.1 Server-Client Communication Code in C++

Listing A.1: Server-Client Communication Code

//Holds world map matrix

char ∗∗wordl map ;

// World map width and h e i g h t

int NUMCOLS; //width

int NUMROWS; // h e i g h t

// Number o f a c t i v e p l a y e r s

int NUMPLAYERS;

// Id o f the curren t agent

int PLAYER ID;

int bomb range = 4 ;

//Reinforcment l e a rn ing o b j e c t i v e s

int OBJECTIVE X;

int OBJECTIVE Y;

//To save RL q va l u e s

std : : f s t ream log data ;

// Players ’ p o s i t i o n

int ∗x ;
int ∗y ;
// Players ’ ranges

int ∗ r ;
// Who i s a l i v e 1 − a l i v e | | 0 − dead

int ∗ a l i v e ;

int ∗ speed ;

int ∗ teams ;

83

APPENDIX A. APPENDIX

Listing A.2: Server-Client Establish Communication Code

/∗ Es t a b l i s h e s a connect ion wi th the s e r v e r ∗/
bool connect ()

{
std : : s t r i n g mesg ;

//Get l i n e from pipe input

std : : g e t l i n e (std : : c in , mesg) ;

//Break l i n e in t o p ro t o co l NUM COLS NUMROWS

std : : i s t r i n g s t r e am i s s (mesg) ;

char pmesg ;

i s s >> pmesg ;

i s s >> NUMCOLS;

i s s >> NUMROWS;

i s s >> NUMPLAYERS;

i s s >> PLAYER ID;

i f (pmesg == CONNECT)

std : : cout << ”CONNECTED” ;

else

std : : cout << ”ERROR CONNECTING” << std : : endl ;

return fa l se ;

return true ;

}

84

A.1. SERVER-CLIENT COMMUNICATION CODE IN C++

Listing A.3: Server-Client Establish Communication Code When Using Reinforce-

ment Learning

/∗ Es t a b l i s h e s a connect ion wi th the s e r v e r ∗/
bool connect RL ()

{
char l i n e [2 0] ;

//Get l i n e from pipe input

std : : c in . g e t l i n e (l i n e , 2 0) ;

s td : : s t r i n g mesg (l i n e) ;

//Break l i n e in t o p ro t o co l NUM COLS NUMROWS

std : : i s t r i n g s t r e am i s s (mesg) ;

char pmesg ;

i s s >> pmesg ;

i s s >> OBJECTIVE X;

i s s >> OBJECTIVE Y;

i s s >> NUMCOLS;

i s s >> NUMROWS;

i s s >> NUMPLAYERS;

i s s >> PLAYER ID;

// s t d : : cout << NUMCOLS <<NUMPLAYERS << s t d : : end l ;

i f (pmesg == CONNECT)

std : : cout << ”CONNECTED” ;

else

std : : cout << ”ERROR CONNECTING” << std : : endl ;

return fa l se ;

return true ;

}

85

APPENDIX A. APPENDIX

Listing A.4: Server-Client Update Map Code

/∗ Receives and updates world map ∗/
bool update Map ()

{
std : : s t r i n g mesg ;

//Get l i n e from pipe input

std : : g e t l i n e (std : : c in , mesg) ;

//Break l i n e in t o p ro t o co l wordl map

std : : i s t r i n g s t r e am i s s (mesg) ;

char pmesg ;

std : : s t r i n g world ;

i s s >> pmesg ;

i s s >> world ;

i f (pmesg == MAP)

for (int i = 0 ; i < NUMROWS; i++)

for (int j = 0 ; j < NUMCOLS; j++)

wordl map [i] [j] = world [mIndex (i , j)] ;

else

std : : cout << ”ERROR UPDATING MAP” << std : : endl ;

return true ; // gameover ?

// Inform the s e r v e r t ha t the map was s u c c e s s f u l l y r e c e i v ed

std : : cout << ”RECEIVED” ;

return fa l se ; // gameover ?

}

86

A.1. SERVER-CLIENT COMMUNICATION CODE IN C++

Listing A.5: Server-Client Update Players’ Status Code

/∗ Receives and updates a l l p l a y e r s p o s i t i o n s and ranges ∗/
bool update Players ()

{
std : : s t r i n g mesg ;

//Get l i n e from pipe input

std : : g e t l i n e (std : : c in , mesg) ;

//Break l i n e in t o p ro t o co l NUM COLS NUMROWS

std : : i s t r i n g s t r e am i s s (mesg) ;

char pmesg ;

i s s >> pmesg ;

i f (pmesg == POSITIONS)

for (int i = 0 ; i < NUMPLAYERS; i++)

i s s >> y [i] ; // x po s i t i o n

i s s >> x [i] ; // y po s i t i o n

i s s >> r [i] ; // ranges

i s s >> a l i v e [i] ; // i s p l aye r i a l i v e ?

i s s >> speed [i] ; // p l aye r speed

i s s >> teams [i] ; // p l aye r ’ s team

else

std : : cout << ”ERROR CONNECTING” << std : : endl ;

return true ; // gameover ?

return fa l se ; // gameover ?

}

87

88

References

[A+94] Louis Victor Allis et al. Searching for solutions in games and artificial

intelligence. Ponsen & Looijen, 1994.

[AMS09] Jean-Yves Audibert, Rémi Munos, and Csaba Szepesvári. Exploration-

exploitation tradeoff using variance estimates in multi-armed bandits.

Theor. Comput. Sci., 410(19):1876–1902, April 2009.

[Bay09] Jessica D Bayliss. Using games in introductory courses: tips from the

trenches. In ACM SIGCSE Bulletin, volume 41, pages 337–341. ACM,

2009.

[Ben09] Yoshua Bengio. Learning deep architectures for ai. Foundations and

trends R⃝ in Machine Learning, 2(1):1–127, 2009.

[BNVB13] M. G. Bellemare, Y. Naddaf, J. Veness, and M. Bowling. The arcade

learning environment: An evaluation platform for general agents. Journal

of Artificial Intelligence Research, 47:253–279, 06 2013.

[Bot10] Léon Bottou. Proceedings of COMPSTAT’2010: 19th International

Conference on Computational StatisticsParis France, August 22-27, 2010

Keynote, Invited and Contributed Papers, chapter Large-Scale Machine

Learning with Stochastic Gradient Descent, pages 177–186. Physica-Verlag

HD, Heidelberg, 2010.

[BT02] Arran Bartish and Charles Thevathayan. Bdi agents for game development.

In Proceedings of the First International Joint Conference on Autonomous

Agents and Multiagent Systems: Part 2, AAMAS ’02, pages 668–669, New

York, NY, USA, 2002. ACM.

[CHH02] Murray Campbell, A Joseph Hoane, and Feng-hsiung Hsu. Deep blue.

Artificial intelligence, 134(1):57–83, 2002.

89

REFERENCES

[DK10] John DeNero and Dan Klein. Teaching introductory artificial intelligence

with pac-man. In Proceedings of the Symposium on Educational Advances

in Artificial Intelligence, 2010.

[GP06] Abraham P. George and Warren B. Powell. Adaptive stepsizes for recur-

sive estimation with applications in approximate dynamic programming.

Machine Learning, 65(1):167–198, 2006.

[Gui11] Erico Guizzo. How googles self-driving car works. IEEE Spectrum Online,

October, 18, 2011.

[IYA16] Goodfellow Ian, Bengio Yoshua, and Courville Aaron. Deep learning. Book

in preparation for MIT Press, 2016.

[Lai01] John E Laird. Using a computer game to develop advanced ai. Computer,

34(7):70–75, 2001.

[Law04] Ramon Lawrence. Teaching data structures using competitive games. IEEE

Transactions on Education, 47(4):459–466, 2004.

[LBH15] Yann LeCun, Yoshua Bengio, and Geoffrey Hinton. Deep learning. Nature,

521(7553):436–444, 2015.

[LK10] Poole David L. and Mackworth Alan K. Artificial Intelligence: Foundations

of Computational Agents. Cambridge University Press, New York, NY,

USA, 2010.

[MF07] Amy McGovern and Jason Fager. Creating significant learning experiences

in introductory artificial intelligence. ACM SIGCSE Bulletin, 39(1):39–43,

2007.

[MKS+13] Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Alex Graves, Ioannis

Antonoglou, Daan Wierstra, and Martin A. Riedmiller. Playing atari with

deep reinforcement learning. CoRR, abs/1312.5602, 2013.

[MKS+15] Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Andrei A Rusu, Joel

Veness, Marc G Bellemare, Alex Graves, Martin Riedmiller, Andreas K

Fidjeland, Georg Ostrovski, et al. Human-level control through deep

reinforcement learning. Nature, 518(7540):529–533, 2015.

[MTR11] Amy McGovern, Zachery Tidwell, and Derek Rushing. Teaching introduc-

tory artificial intelligence through java-based games. In AAAI Symposium

on Educational Advances in Artificial Intelligence, North America, 2011.

90

REFERENCES

[Nad10] Yavar Nadaf. Game-independent ai agents for playing atari 2600 console

games, 2010.

[New00] Monty Newborn. Deep blue’s contribution to ai. Annals of Mathematics

and Artificial Intelligence, 28(1-4):27–30, 2000.

[RFS+09] Pedro Ribeiro, Michel Ferreira, Hugo Simões, et al. Teaching artificial intel-

ligence and logic programming in a competitive environment. Informatics

in Education-An International Journal, (Vol 8 1):85–100, 2009.

[RHW88] David E Rumelhart, Geoffrey E Hinton, and Ronald J Williams. Learning

representations by back-propagating errors. Cognitive modeling, 5(3):1,

1988.

[Rie15] Mark O Riedl. A python engine for teaching artificial intelligence in games.

arXiv preprint arXiv:1511.07714, 2015.

[RN03] Stuart J. Russell and Peter Norvig. Artificial Intelligence: A Modern

Approach. Pearson Education, 2 edition, 2003.

[SB98] Richard S. Sutton and Andrew G. Barto. Reinforcement Learning:An

Introduction. MIT Press, 1998.

[SECR13] Scott Sosnowski, Tim Ernsberger, Feng Cao, and Soumya Ray. Sepia: A

scalable game environment for artificial intelligence teaching and research.

In Proceedings of the 27th AAAI Conference on Artificial Intelligence, 2013.

[SHM+16] David Silver, Aja Huang, Chris J Maddison, Arthur Guez, Laurent Sifre,

George Van Den Driessche, Julian Schrittwieser, Ioannis Antonoglou, Veda

Panneershelvam, Marc Lanctot, et al. Mastering the game of go with deep

neural networks and tree search. Nature, 529(7587):484–489, 2016.

[SSM08] David Silver, Richard S. Sutton, and Martin Müller. Sample-based learning

and search with permanent and transient memories. In Proceedings of the

25th International Conference on Machine Learning, ICML ’08, pages 968–

975, New York, NY, USA, 2008. ACM.

[Tay11] Matthew E Taylor. Teaching reinforcement learning with mario: An

argument and case study. In Proceedings of the Second Symposium on

Educational Advances in Artifical Intelligence, pages 1737–1742, 2011.

[Tes95] Gerald Tesauro. Temporal difference learning and td-gammon. Communi-

cations of the ACM, 38(3):58–68, 1995.

91

REFERENCES

[Tok10] Michel Tokic. KI 2010: Advances in Artificial Intelligence: 33rd Annual

German Conference on AI, Karlsruhe, Germany, September 21-24, 2010.

Proceedings, chapter Adaptive ϵ-Greedy Exploration in Reinforcement

Learning Based on Value Differences, pages 203–210. Springer Berlin

Heidelberg, Berlin, Heidelberg, 2010.

[WC07] Wai-Tak Wong and Yu-Min Chou. An Interactive Bomberman Game-Based

Teaching/ Learning Tool for Introductory C Programming, pages 433–444.

Springer Berlin Heidelberg, Berlin, Heidelberg, 2007.

[WD] Christopher J.C.H. Watkins and Peter Dayan. Technical note: Q-learning.

Machine Learning, 8(3):279–292.

[YK15] Du-Mim Yoon and Kyung-Joong Kim. Challenges and opportunities in

game artificial intelligence education using angry birds. IEEE Access,

3:793–804, 2015.

[ZGL+12] Haifeng Zhang, Ge Gao, Wenxin Li, Cheng Zhong, Wenyuan Yu, and

Cheng Wang. Botzone: A game playing system for artificial intelligence

education. In Proceedings of the International Conference on Frontiers in

Education: Computer Science and Computer Engineering (FECS), page 1.

The Steering Committee of The World Congress in Computer Science,

Computer Engineering and Applied Computing (WorldComp), 2012.

[Zha16] Zhongheng Zhang. When doctors meet with alphago: potential application

of machine learning to clinical medicine. Annals of translational medicine,

4(6), 2016.

92

