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Abstract 

Rheumatoid Arthritis (RA) is a chronic, systemic, inflammatory autoimmune disease 

that targets preferentially the synovial tissue. It affects 1% of the population of the world and 

it is more common in women than man, in a ratio of 3:1.  RA is treated recurring to several 

drugs such as non-steroidal anti-inflammatory drugs (NSAIDs) in the first stage of the disease 

which have several negative drawbacks such as low bioavailability, high clearance rates, high 

and frequent dosing which increase the risk of side effects.  

The present work aims the development of a nanodelivery system to carry NSAIDs for 

the RA treatment in order to reduce the side-effects of NSAIDs. To achieve this goal four 

different pH responsive liposomal formulations were prepared by the thin-film method using 

1,2-dipalmitoyl-sn-glycero-3-phosphoethanolamine (DPPE), cholesteryl hemisuccinate (CHEMS) 

and Stearylamine (SA) and indomethacin. Using DPPE and CHEMS in a ratio 7:3 multilamelar 

vesicles (MLV) and large unilamelar vesicles (LUV), also formulations containing DPPE, CHEMS 

and SA in a proportion 7:2.5:0.5 in the MLV and LUV structure. All the formulations prepared 

contained 1mg/mL of indomethacin.  Formulations were physicochemical characterized in 

terms of size, zeta potential, entrapment efficiency, and morphology assessed using 

Transmission Electron Microscopy (TEM). Liposomes stability was evaluated throughout a month 

in order to study changes in size and zeta potential. LUVs possessed a size around 120 nm and 

MLVs 220 nm, zeta potential below -30 mV and EE of 60%. Drug release was evaluated for 48 

hours at pHs 7.4 and 5.0. Also, in vitro studies using cell lines of macrophage and fibroblasts, 

Raw 264.7 and L929, respectively, were performed to evaluate the cytotoxic character of 

liposomal formulations. Finally, in vitro permeation studies were done using Franz diffusion 

cells to assess the permeability through the skin for a period of 8 hours. 

In conclusion, it is possible to say that pH responsive liposomes were successfully 

prepared and shown to be promising particles for the treatment of rheumatoid arthritis. 
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Chapter 1 – Rheumatoid Arthritis 

Rheumatoid Arthritis (RA) is a chronic, systemic, inflammatory autoimmune disease 

that targets preferentially the synovial tissue. It affects 1% of the population of the world and 

it is more common in women than man, in a ratio of 3:1 [1-3] Besides attacking the synovial 

tissue, RA can affect the whole body, since it also targets organ systems such as lungs, heart 

and blood vessels [4] . If untreated, the inflammation of the synovial tissue leads to macrophage 

activation and consequent production of cytokines, which, by their side, will cause 

inflammation, joint swelling bone erosion and cartilage damage (Figure 1). This will result in 

pain, swelling, permanent joint damage and disability. Due to these, the quality of life is 

diminished, the risk of morbidity increases as well as the risk of premature mortality [3, 5-7] . 

 

Figure 1 - Healthy Joint and Damaged Joint by the effects of rheumatoid Arthritis [8]. 

 
Since there is no cure for RA [4], the main strategies of treatment are centralized in 

diminishing the pain and minimizing joint damage [6, 7]. However, there are several negative 

drawbacks in the traditional way of RA treatment such as low bioavailability, high clearance 

rates, high and frequent dosing which increase the risk of side effects [9]. 
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1. Pathogenesis of Rheumatoid Arthritis 

Rheumatoid Arthritis is a complex disease in which both genetic and environmental 

factors play an important role in disease initiation and immunological response against the 

synovium [4, 10]. It occurs when genetically predisposed individuals are exposed to specific 

environmental risk factors. When the genetic and environmental factors interact with each 

other, the immune system suffers perturbations and auto-antibody-rheumatoid factor (RF), 

anti-cyclic citrullinated peptide antibody (ACPA) and anti-inflammatory cytokines are produced 

leading to arthritis inflammation [11]. Regarding genetic predisposition, it is known that the 

major histocompatibility complex (MHC) II is implicated in genetic risk for RA in several ethnic 

groups due to activation of CD4+ T cell [12, 13]. Other genetic risk factors are the presence of 

PTPN22 and PADI4 genes. The first is responsible for the survival of auto-reactive T-cells and 

the second influences protein citrullination [11, 14, 15]. On the other hand, the environmental 

factors also influence the initiation and progression of the disease. Infections[16], tobacco and 

over-weight [17, 18] have been shown to induce RA on individuals who have genetic 

predisposition [4, 16]. Smoking is undoubtedly the environmental risk factor to develop RA, 

however some other associations have been made. They comprise female gender, age, alcohol 

consumption and periodontitis [11]. 

A normal joint moves without pain or discomfort due to the synovial fluid that 

lubricates the joint allowing the movement of smooth cartilage. However, in an inflamed joint, 

this mechanism does not work properly. During the initial disease stages, external or self-

antigens trigger immune responses that activate B-cells and T-cells. B-cells are responsible for 

the production of autoantibodies like RF and ACPA.T-cells activation leads to macrophage 

recruitment and activation and overproduction of inflammatory cytokines and consequent 

generalized inflammation [10, 19]. During the next stages, occurs infiltration of CD4+T cells, 

B-cells and macrophages. Macrophages are responsible for the production of proinflammatory 

cytokines such as tumor necrosis factor (TNF), interleukin-1 and 6 (IL-1 and IL-6) and proteases 

[20, 21]. After, these cytokines will activate synovial fibroblasts, creating a hypertrophied 

synovial lining (pannus structure) that is highly-vascularized (Figure 2).  This pannus structure 

progressively invades and destructs cartilage and bone. Furthermore, TNF-α and IL-1 are also 

known  to induce synovial cells to release metalloproteases that stimulate osteoclasts and 

subsequent bone erosion [22], figure 2. Eventually, RA will result in joint and tissue destruction 

and culminate in immobility and deformity. 
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Figure 2 - RA inflammatory process overview [23]. 

 

2. Clinical Symptoms 

Usually, individuals with RA present some common symptoms in the early phase of the 

disease such as fatigue, prolonged morning stiffness, pain that improve with activity [4]. These 

symptoms distinguish RA from other diseases as for example osteoarthritis. 

 As said previously, RA causes joints on the whole body to swell and stiffen as well as 

pain. According to Gaffo et al., RA involves more than five joints, on both sides of the body 

and attacks preferentially small joints as writs, hands and feet joints. Regarding larger joints 

as knees, hips and shoulders, they are affected in later disease stage [4]. In late phases of 

disease progression, it occurs destructive changes in the periarticular bone, also known as bone 

erosion which are used to measure disease severity. In order to measure disease severity, the 

American College of Rheumatology  produced a criteria for classification of functional status in 

RA (Table 1)  which was approved in another studies [24].  

 RA can have extra articular manifestations that include subcutaneous rheumatoid 

nodules, anemia of chronic disease, various types of pulmonary disease, vasculitis, amyloidosis, 

leucopenia and eye disease [25]. 
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Table 1 - American College of Rheumatology revised criteria for classification of functional 

status in Rheumatoid Arthritis1. [24] 

Class Functional Status 

Class I 
Completely able to perform usual activities of daily living (self-care, vocation and 

avocational). 

Class II 
Able to perform usual self-care and vocational activities, but limited in avocational 

activities. 

Class III 
Able to perform usual self-care activities but limited in vocational and avocational 

activities. 

Class IV 

 

Limited in ability to perform usual self-care, vocational and avocational activities. 

 

 

In 2010, the American College of Rheumatology and the European League Against 

Rheumatism produced a new clinical criteria for the diagnose of patients with rheumatoid 

Arthritis. These included history of symptom duration, a thorough joint evaluation, and at least 

one serologic test (RF or ACPA) positive and one acute phase response measure obtained. 

However these are not restrictive conditions since one person might have RA without requiring 

all the tests to be performed. These criteria are not only used to define if an individual as RA 

but also for purposes of clinical research and trial enrollment [26]. These new criteria shown 

to be more specific than the previous RA criteria (1987 American College of Rheumatology 

criteria for RA) [27, 28]. 

RA diagnose can be performed using several techniques. Among these, rheumatoid factor 

seropositivity has been the most common laboratory marker for the presence of RA, being 

present in 75% of the patients[29]. However RF lacks sensibility and specificity which resulted 

in the need of another marker. A new marker, for ACCP was found to have the same sensitivity 

with more selectivity [30]. Ultrasound is also used in RA diagnose, assessing soft tissue disease 

or detecting articular fluid collection [31]. Magnetic resonance imaging (MRI) is also used to 

evaluate and quantify RA manifestations [31]. The last, ultrasound and MRI are alternatives of 

plain radiography in early diagnosis [4]. 

3. Current Therapeutic Strategies 

 Since there is no cure for RA, the main goals of the treatment are pain relief and 

slowing-down disease activity. In order to accomplish these objectives, different therapies are 

                                                 

 
1 Self-care activities include dressing, feeding, bathing, grooming and toileting. Avocational (recreational 
and/or leisure) and vocational (work, school, homemaking) activities are patient-desired and age- and 
sex-specific. 
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used, including therapies with nonsteroidal anti-inflammatory drugs (NSAIDs), disease 

modifying anti-rheumatic drugs (DMARDs), corticosteroids and biological DMARDs. 

 Therapeutic strategies for RA depend on the degree of synovial inflammation, articular 

damage and the status of articular function [32]. Treatment options for RA are summarized in 

Table 2. 

NSAIDs are used with particular interest during the early stages of disease progression. 

These drugs provide pain relief and stiffness reduction due to the analgesic, anti-pyretic and 

anti-inflammatory effects [32-34]. NSAIDs do not change disease outcomes. The therapy using 

solely these drugs is not recommended since it has not been found that NSAIDs slowed RA 

progression. So, in long-term this therapy should be coupled with DMARD therapy [4, 34, 

35].The majority of NSAIDs act as non-selective inhibitors of the enzyme cyclooxygenase (COX), 

which is responsible for the production of prostaglandins (key molecules in the inflammation 

process) [33]. Most of the NSAIDs present a short half-life period which results in a high dosing 

to achieve the best therapeutic effects. The high dosage required can, however, produce 

several gastrointestinal side-affects, renal malfunction and increased cardiovascular risk [3, 

32]. 

DMARDs have the characteristic of altering disease progression and hindering or 

reducing joint damage, being therefore effective in slowing down RA progression [33, 36]. 

However, DMARDs do not have any effects in pain relief so they are usually coupled with NSAIDs 

for better outcomes. The most common used DMARD is methotrexate (MTX) which is a 

metabolite that inhibits dihydrofolate reductase [10]. MTX has a rapid onset of action, high 

efficacy, low toxicity, ease administration and relatively low cost. Other DMARDs include 

hydroxychloroquine, sulfasalazine, leflunomide and gold salts [32, 35] .  

 Glucocorticoids are a class of steroidal hormones with immunosuppressive and anti-

inflammatory effects [34]. The use of these drugs may result in a significant functional 

improvement due to some activity in slowing-down disease progression [35]. However, 

glucocorticoids present unfavorable pharmacokinetic properties such as rapid clearance rates 

and high and frequent dosing to maintain the therapeutic levels at inflammation site which 

increases adverse effects [33, 37-39]. The adverse effects include insulin resistance, skin 

thinning, osteoporosis, hypertension, obesity and inhibition of wound repair [40]. Among 

glucocorticoids the most common drug is prednisone [35, 41]. 

Due to the advances in the knowledge of RA pathophysiology it was possible to develop 

a novel class of drugs to RA treatment named biological drugs/DMARDs. Biological drugs 

selectively block cytokines, targeting the immune response [35]. These can be divided in five 

categories according their effect: antitumor necrosis factor (anti-TNF), IL-1 antagonist, IL-6 

antagonist, B-cell depleting agent and T-cell co-stimulation blocker [4]. However, some of 

these drugs are only in clinical trials testing and not yet available on the market. 
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Table 2 - Current Treatment options for rheumatoid arthritis. Adapted from [30].  

Class Example of agents Mode of action Indications Risk and side effects 

NSAIDs 

Aspirin, ibuprofen, 

naproxen 
Inhibition of COXs Reduce acute 

inflammation, 

thereby decreasing 

pain 

Gastrointestinal 

disturbance and renal 

malfunction 

Celecoxib 
Selective inhibition 

of COX-2 

Lower incidence of 

gastrointestinal 

disturbance 

Corticosteroids 
Prednisone, 

Dexamethasone 

Prevention of 

phospholipid release 
Anti-inflammation 

Insulin resistance, skin 

thinning, osteoporosis, 

hypertension 

DMARDs 

Methotrexate 

Anti-metabolic 

activity and or 

extracellular 

adenosine release 

Alteration a course 

of the disease 

Hepatic cirrhosis, 

interstitial pneumonitis, 

myelosuppression 

Sulfasalazine Unknown 
Hypersensitivity and 

allergic reactions 

 

Hydroxychloroquine 

 

Unknown Retinopathy 

Leflunomide 
Anti-metabolic 

activity 

Hepatic cirrhosis, 

myelosuppression 

Gold salts Unknown 
Hypersensitivity 

reactions, nephritis 

Biologic drugs 

Etanercept, 

infliximab, 

adalimumab 

TNF blockade 

Alteration a course 

of the disease 

Infections (tuberculosis) 

Anakinra 
IL-1 receptor 

blockade 
Infections, neutropenia 

Tocilizumab 
IL-6 receptor 

blockade 

Infections, elevated 

cholesterol 

Abatacept 
T-cell co-

stimulation blocker 
Infections 

Rituximab 

 

B- cell depletion 

 

Infections 
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3.1 The NSAIDs 

As said previously, NSAIDs are used to relieve the symptoms of RA. They inhibit the 

enzyme COX interfering with the formation of prostaglandins from arachinodic acid (Figure 3). 

The NSAIDs are known for the relief of local inflammation and consequent pain, stiffness, 

swelling and tenderness. However NSAIDs also present some toxicity which results in 

gastrointestinal side-effects and effects on the cardiovascular system. 

 

Figure 3 - Arachidonic Acid Cascade, adapted from [42]. 

 

3.2 Mechanism of Action 

 The mechanisms of action can be divided in three different groups according to their 

effects on inflammation, pain and fever. In which concerns the inflammatory effect, it is known 

that NSAIDs have their effect due to inhibition of cyclooxygenase enzyme [43]. In 1971, this 

mechanism was described by Vane and Piper. They found that NSAIDs were able to attach to 

the COX enzyme binding site inhibiting the ligation of arachinodic acid. Later, it was discovered 

that COX enzyme exists in at least two isoforms COX-1 and COX-2. In 1976 and 1991 the genes 

that encoded for COX-1 and COX-2, respectively, were found and characterized [44]. COX-1 

enzyme is constitutively expressed throughout the body; it is responsible for the production of 

anti-thrombogenic prostaglandins (with cytoprotective effect on the gastric mucosa); and it is 

involved in the maintenance of platelet and renal functions, being therefore particularly 

important in the protection of gastrointestinal tract (GI) and physiological regulation of the 

kidney. Unlike the COX-1 gene, which is constitutively expressed in tissues like the GI mucosa 

and kidney, COX-2 is not normally expressed in most tissues, being induced by cytokines, growth 

factors and other inflammatory stimuli during periods of inflammation, to mediate pain, 

inflammation and fever [44-46]. Recent work has suggested that activation of endothelial cells 

and expression of cell adhesion molecules may interact with circulating cells and target them 
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to inflammation sites. NSAIDs may inhibit the expression of these cell adhesion molecules 

inhibiting the activation and function of inflammatory cells [47]. 

 The inflammation will provoke the inflamed area to answer to pain stimuli that are 

usually painless. So, the point of action of NSAIDs in this field has to do with inflammation 

diminution which results in the restoration of the threshold level for pain stimuli [47, 48]. 

 Prostaglandin E2 is responsible for triggering the hypothalamus to increase body 

temperature. Since NSAIDs act on the synthesis of prostaglandins they are able to reduce body 

temperature due to inhibition of prostaglandin E2 production [48].  

 

3.3 Pharmacokinetics 

 NSAIDs can be classified in different groups according to their COX selectivity and 

chemical and pharmacological properties (Table 3). According to their chemical structure, 

NSAIDs are very similar since most of them are weak acids with amphipathic properties. 

However, they have some relatively significant differences in clinical outcomes due to their 

pharmacokinetics properties [49, 50]. Regarding their bioavailability, NSAIDs usually have high 

oral availability after oral administration. Also, due to the chemical structure of these 

molecules, they are well absorbed by the gastrointestinal tract and have low hepatic clearance 

[50]. One thing that needs to be taken in account is that besides the similar characteristics the 

behavior of all the NSAIDs, each particular type has variance in the rates of absorption [50] 

which result in different dosing regiments. Also, NSAIDs can be classified by their half-life 

period in NSAIDs with short half-life (less than six hours) and those with long half-life (Table 

3). Among the NSAIDs the most common used drugs for the treatment of rheumatoid arthritis 

are ibuprofen and diclofenac [42]. 
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Table 3 -Classification of selected NSAIDs by COX-2 selectivity, chemical and 
pharmacokinetics properties. Adapted from [47]. 

NSAID 
COX-2 

Selectivity 

Chemical 

group 

Bioavailability 

(%) 

Half-

life 

(h) 

Volume of 

distribution 
Clearance 

Peak 

(h) 

Protein 

binding 

(%) 

Renal 

elimination 

(%) 

Clinical 

dosage 

(mg/d) 

Diclofenac 
Non-

Selective 

Heteroaryl 

acetic acid 
50-60 2 

0,1-0,2 

L/kg 
21,0 L/h 2 >99 65 

100-

150 

Ibuprofen 
Non-

Selective 

Arylpropionic 

acid 
>80 2 0,15 L/Kg 

3,0-3,5 

L/h 
1-2 99 45-79 

1200-

3200 

Indomethacin 
Non-

Selective 

Indole acetic 

acid 
80-90 4,5 

0,34-1,57 

L/Kg 

0,195-

0,229 Kg/h 
4.5 97   

Ketoprofen 
Non-

Selective 

Arylpropionic 

acid 
90 2,1 0,1 L/kg 6,9 L/h ≤2 >99 80 

200-

300 

Naproxen 
Non-

Selective 

Arylpropionic 

acid 
95 

12-

17 

0,16 

mL/min/kg 

0,13 

mL/min/kg 
2-4 >99 95 

500-

1000 

Celecoxib Selective 

Dyaril-

subtituted 

pyrazole 

NS 11 400 L 27,7 L/h 3 97 27 200 

 

Eteriocoxib 
Selective Bipyridine 100 22 120 L 50 mL/min 1 92 75 60 

Meloxicam Selective Enolic acid 89 
15-

20 
10 L 

0,4-0,5 

L/h 
4-5 99 59 7,5-15 

 

3.4 NSAIDs side-effects 

3.4.1 Gastrointestinal Complications  

 
 Since NSAIDS act on prostaglandins synthesis cascade, the gastrointestinal tract can 

suffer some damage in all its length. The most common issues related with NSAIDs therapy are 

some side-effects, such as dyspepsia, which  take place in almost 60% of the patients [51].  

Also, bleeding, endoscopic ulcers and gastric outlet obstruction may occur in patients. It is 

believed that NSAID therapy causes endoscopic ulcers in 10-30% of patients and serious ulcer 

complications in 1-2% of patients [42, 49, 51, 52]. Furthermore, poor tolerability might as well 

happen, which, in some cases, leads patients to discontinue [53]. In principle, the development 

of selective NSAIDs to COX-2 (coxibs), was expected to achieve a more effective treatment 

with fewer side effects, even at high doses [54, 55]. In fact, the hypothesis that at comparable 
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doses, NSAIDs selective to COX-2 could be as effective as traditional NSAIDs, sparing the GI 

mucosa, it was a premise not only attractive, but also plausible. 

 However, this initial simplistic interpretation that considered COX-1 as a physiological, 

protective enzyme and COX-2 as the enzyme responsible for inflammatory conditions is not 

correct and the correlation between the COX-2 selectivity of NSAIDs and their GI side effects 

is not always verified. In fact, some studies found that COX-2 selective-inhibitors are associated 

with a lower risk of ulcers and complications than the other types of NSAIDs [56-60].  

 Risk-factors for gastrointestinal complications include high NSAID dose, older age, 

Helicobacter pylori infection, history of ulcer or ulcer complications and concomitant NSAIDs, 

low-dose aspirin, anticoagulants or corticosteroids [61-63]. Usually, patients taking NSAIDs also 

use low-dose aspirin for cardiovascular prophylaxis, however using this combination the risk of 

mucosal damage increases [64, 65] and the benefits of COX-2 selective agents are eliminated 

[59, 60, 66]. 

 Last but not least, in which concerns gastrointestinal complications, some drugs like 

diclofenac or nimesulide shown to possess hepatotoxicity as indicated by liver function tests 

abnormalities [67, 68]. 

 

3.4.2 Cardiovascular complications 

 
 The use of NSAIDs seems to be associated with cardiovascular complications like 

myocardial infarction, heart failure and hypertension [69], moreover, the risk of having 

cardiovascular complications increases with the exposure time [70]. It has been suggested that 

cardiovascular complications while taking NSAIDs may occur due to misbalance of COX-2-

mediated production of pro-aggregatory thromboxane in platelets and anti-aggregatory 

prostaglandin I2 in endothelial cells [46, 71, 72]. 

 Hypertension is one of the cardiovascular complications of the use of NSAIDs. Their use 

can increase the blood pressure by a mean of 5mmHg. Blood pressure increment may be 

correlated with the increase cardiovascular events in RA [42]. Also, NSAIDs are known to cause 

fluid retention and systemic vasoconstriction which can worsen heart failure [42].  

 Cardiovascular complications are different for different NSAIDs. It is known than COX-

2 inhibitors have a different behavior compared with common NSAIDS (without COX specificity).  

For example, there is an increased risk of thrombotic events with the use of COX-2 inhibitors 

and are contra-indicated in established ischemic heart disease, cerebrovascular disease and 

congestive heart failure [42]. 

 However, regarding both cardiovascular and gastrointestinal complications the action 

of NSAIDs is not completely understood which, in a certain manner, limits the understanding of 

the true benefits of NSAIDs.
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Chapter 2 - The skin 

The skin is the largest organ of the body and it is responsible for 15% of the total body 

weight. The skin functions as a barrier between the inside and outside of the body protecting 

it against microbial invasions and water loss [73]. Besides, the skin offers protection against 

external physical, chemical and biological aggressions. Mainly, the skin can be divided in three 

layers: the epidermis, the dermis and the subcutis. The epidermis is the external layer of the 

skin and it is composed of layers of keratinocytes (~90 %) along with melanocytes, Langerhans 

and Merkel cells (~5-10 %) [74]. The dermis is the area of supportive connective tissue and 

contains sweat glands, hairs roots, nervous cells and fibers, blood and lymph vessels. The 

subcutis is the layer of loose connective tissue and fat beneath the dermis. In figure and table 

4 skin structure and function are summarized. 

 

 
Figure 4 - Skin Structure [75]. 
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Table 4- Skin function, adapted from [75]. 

Structure Function 

Hair 
 Display and attraction; 

 Thermal properties. 

Stratum corneum 
 Barrier protection against unregulated loss of 

salt and water and entry of particles. 

Granular layer 

 Adhesion; 

 Cytokine production; 

 Keratin production; 

 Production of vitamin D. 

Basement Membrane 
 Adhesion of epidermis to underlying zone; 

 Supporting dermis. 

Stratum Basale  Reduplication and repair. 

Melanocyte  Protection against ultraviolet radiation. 

Sebaceous gland  Water proofing and moisturizing. 

Dermis and 

subcutaneous fat 

 Strength with suppleness; 

 Shock absorption; 

 Insulation. 

 

1. The epidermis 

The epidermis is, as said previously, mainly constituted by keratinocytes which 

synthetize keratin and are in constant motion from deeper to superficial layers. Keratinocytes 

regenerate through mitosis and are involved in skin repair. Also, they are known to minimize 

transepidermal water loss and for acting as barriers against microbial and chemical attacks 

[76]. The epidermis is avascular and composed of four layers: stratum basale, stratum spinosum 

stratum granulosum and stratum corneum (Table 5).  

2. The Dermis 

The dermis is the supportive, compressible and connective tissue below the epidermis. 

It is predominantly composed by fibrous proteins such as elastin and collagen, produced by 

fibroblasts, which are responsible for elasticity and strength, respectively. It is divided in two 

layers: the papillary layer (thin) and the reticular layer (thick). The papillary layer interacts 

with the epidermis and it is composed of collagen fibers loosely attached. It contains several 

cells types such as fibroblasts, dermal dendrocytes and mast cells. Also, it is possible to find 

blood vessels and nerve endings in this layer.  As it passes to the reticular layer, the 
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arrangement of collagen fibers changes to thicker and coarsen collagen bundles which tend to 

lie parallel to the skin surface. [75, 77] 

 
Table 5 - Epidermis layers and their characteristics [75]. 

Epidermis layers Characteristics 

Stratum basale 

 

 One cell thick; 

 Mainly keratinocytes in cuboidal shape; 

 5-10 % melanocytes. 

 

Stratum Spinosum 

 

 Keratinocytes which start to flatten and differentiate; 

 Connected by desmosomes; 

 Langerhan cells. 

 

Stratum granulosum 

 

 Keratinocytes loose the nuclei and flatten; 

 Nuclei and cytoplasm appear granular; 

 Lipid content of the cell is discharged into the 

intercellular space. 

 

Stratum corneum 

 

 Superficial layer of epidermis; 

 Composed of cells that have migrated from the stratum 

granulosum (corneocytes); 

 Flattened and aligned morphology; 

 Corneocytes surrounded by keratin envelope; 

 Water retaining and natural physic barrier. 

 

 

3. Skin Functions 

The skin main function is to act as a barrier against the entrance of harmful agents 

and the exit of water, however, these are not the only functions associated with this organ, 

figure 5. Besides being a barrier against mechanical, thermal and physical injury, the skin 

protects the body against UV effects. Also, it is a sensory organ, helping in temperature 
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maintenance. Furthermore, it has role in immunological surveillance as well as in the 

production of vitamin D. [78] 

 

 
Figure 5- Functions of the epidermal barrier, adapted from [73]. 

 

 Stratum corneum is the main barrier against water loss and physical assault. Due to 

their composition in keratinocytes arranged in a scaffold-like lattice and the existence of a 

lipid-rich matrix the stratum corneum acts as a robust and waterproof barrier [75].  

The skin is also the first line of defense of the body. This ability is a result of the 

existence of epidermal Langerhans cells, transient epidermal T-cells as well as the production 

of anti-microbial peptides [75]. 

Protection against UV radiation is another skin function. The ability to protect the body 

against UV radiation is performed in two ways. First, the stratum corneum reflects the UV 

radiation which results in a diminishment of the exposure dose. Secondly, the exposition to sun 

results in an increase of the activity of melanocytes which transfer melanin to keratinocytes. 

The increase in melanin production results in a decrease in the absorption of UV radiation, 

since melanin absorbs the radiation. [75] 

 The skin is associated with thermoregulation due to changes in the blood flow at a 

cutaneous level and evaporation of sweat from the surface of the skin. 
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4. Skin Permeation 

Two main routes for skin permeation have been defined: the transappendageal and the 

transepidermal pathway. The transappendageal route may be defined as the permeation 

through hair follicles and/or sebaceous glands whereas the transepidermal pathway concerns 

the permeation through the intact stratum corneum, figure 6. [77, 79, 80]  

 

 
 

Figure 6 - Routes of permeation through the skin, adapted from [81]. 

 

The transepidermal pathway may be divided in two different subpathways: the 

intercellular and the transcellular pathways. In the intercellular route the molecules pass 

through the lipid domains of the skin, whereas on the transcellular route the molecules pass 

through the keratinocytes and then through the intercellular lipids. [77] 

 

4.1 Factors Affecting Skin Permeation 

 Skin permeation is directly affected by the size of the molecule trying to pass through 

the skin. Molecules smaller than 5-7 nm can cross the skin through the intercellular route, while 

larger molecules (10 µm – 210 µm) cross the skin through the transappendageal pathway [80]. 

However, it is believed that molecules with size ranges between the 5 nm and 10 µm may cross 

the skin through both pathways. 

Besides the importance of the size of the molecules there are some factors that have 

a great impact in skin permeation such as (a) location and skin conditions and the application 

site, (b) physicochemical characteristics of the penetrating drug and (c) physicochemical 

characteristics of the nanomaterial [80]. 
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Table 6 - Parameters affecting Skin permeation according to their type [80]. 

Location and skin conditions at application 

site 

 Skin integrity and regional variation; 

 Dimension of orifices, aqueous pores 

and lipidic fluid paths; 

 Density of appendages; 

 Age; 

 Skin type; 

 Sex hormones; 

 Dermathological and pathological 

conditions; 

 Damage; 

 Trauma; 

 Dehydration; 

 Skin temperature; 

 Environmental conditions. 

 

Physicochemical characteristics of the 

penetrating drug 

 Solubility; 

 Amount of drug; 

 pKa and pH; 

 Oil in water partition coefficient; 

 Molecular weight; 

 Potential for binding and 

metabolism; 

 Diffusion coefficient. 

 

Physicochemical characteristics of the 

nanomaterial 

 Dimensions; 

 Shape; 

 Superficial properties (charge, 

polarity); 

 Solubility; 

 Oil in water partition coefficient. 

 

 
  



17 

 

17 

 

Chapter 3 – Drug Delivery Systems 

Due to the side effects of many drugs, drug delivery systems are being developed in 

order to achieve fewer complications. Nanoparticles are more  interesting compared with 

microparticles due to a greater cell uptake [82] .  The main objective of using drug delivery 

systems is the reduction of systemic side-effects and maintenance of appropriate drug 

concentration in the required place. Nanoparticles can be produced using different materials 

synthetic or natural, organic or inorganic, Table 7 summarizes some types of materials used for 

drug delivery systems. 

 

 

Table 7 - Most common materials used in drug delivery systems [10, 32, 83-89]. 

Material Type Examples 

Natural Polymers Chitosan, Gelatin, lectin, sodium alginate albumin. 

Synthetic Polymers 

Cellulose, poly(2-hydroxyl ethyl methacrylate), poly (N- 

vinyl pyrrolidone), poly (methyl methacrylate), poly (vinyl 

alcohol), poly (Acrilic Acid), polyacrylamide, poly ( 

ethylene-co-vinyl acetate), PEG, poly (glycolic acid)(PLA), 

poly (lactide-glicolic acid)(PLGA), polycaprolactone. 

Biodegradable Polymers Poly(glycolic Acid) (PGA), PLA, PLGA, polycaprolactone. 

Cyclic Oligosaccharides Functionalized Cyclodextrin. 

Magnetic Oxides Fe3O4, γ- Fe2O3, Iron, cobalt and FeCo alloys. 

Metal Oxides TiO2, ZnO- 

Gold Gold 

Silicon Porous Silicon 

  

Also, besides the materials cited above, there are also many other nanosystems. These 

include liposomes and niosomes,  magnetic nanoparticles, nanoshells, quantum dots, carbon 

nanotubes, carbon nanohorns, nanodiamonds, colloidal gold, ceramics, dendrimers, solid lipid 

nanoparticles, micelles and nanoemulsions [10, 32, 83, 90, 91]. 
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The aim of any drug delivery system is to modulate the pharmacokinetics and/or tissue 

distribution of the drug in a beneficial way. Among the variety of delivery systems that have 

been devised over the years, this work will focus on liposomes. Because of the ability of 

liposomes to carry a wide variety of substances, their structural versatility and the innocuous 

nature of their components, liposomes have been studied for many different therapeutic 

situations. To understand how liposomes can best be used to improve the performance of the 

enclosed drug, some of their characteristics will be developed in the following sections. 

 

1. Liposomes 

 Liposomes are small lipid bilayer vesicles that possess an aqueous core. This 

characteristic allows the liposomes to entrap both hydrophilic and lipophilic drugs (figure 7). 

They are derived from naturally occurring, biodegradable and non-toxic lipids [32] which in 

aqueous environment form a lipid bilayer. In the lipid bilayer, lipophilic drugs, such as 

dexamethasone, may be incorporated while the aqueous core may entrap the hydrophilic 

molecules, like diclofenac [92, 93].  

 

Figure 7 - Schematic view of liposome. Cross-sectional view [92]. 

 

 Regarding their structure, they can be classified as multilamellar vesicles (MLV), small 

unilamellar vesicles (SUV) and large unilamellar vesicles (LUV) depending on their size and 

number of lipid bilayers (figure 8).  Liposomes can have a size ranging from 30 nm to several 

micrometers being SUV the smallest (10-100 nm) [94] . MLV have more than one bilayer and 

their range in size from a few hundred nanometers to several micrometers [95, 96].  In order 

to obtain different types of liposomes, several lipids may be used which results in different 

liposome characteristics [97]. 
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Figure 8 - Schematic illustration of liposomes based on size and number of lamellae. SUV - 

small unilamellar vesicle; MLV - multilamellar vesicule; LUV - Large unilamellar vesicule [97]. 

 

 Liposomes have been used as formulations for poorly soluble drugs for oral or 

parenteral administration [98], however, it has been shown that conventional liposomes have 

a very high systemic plasma clearance. After injection in the body it was found that they were 

rapidly removed from circulation due to macrophage phagocytosis, which mainly occurred in 

the liver, spleen and bone marrow [99]. Inflamed tissues are characterized by enhanced 

vascular permeability, which allows small, long circulating drug carrier systems to extravasate 

at these sites via enhanced retention and permeability effect [33] which makes drug delivery 

systems suitable for treatment of RA. 

 

1.1 Types of liposomes 

 
 Liposomes may be classified as conventional liposomes, cationic liposomes, stealth 

liposomes which increase circulating time and immunoliposomes that target specific cells and 

tissues (figure 9).  
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Figure 9 - The four major types of liposomes [97]. 

 

1.1.1 Conventional Liposomes 

 Conventional liposomes are composed by lipid or lipid mixtures and are the simplest 

liposomes to produce. However, since they are only composed by lipids they have high 

clearance rates. When in circulation, conventional liposomes are rapidly coated with plasma 

proteins which results in phagocytosis by the rediculoendothelial system cells. Liver, spleen 

and bone marrow are the principal phagocytosis sites due to their content in those cell types 

[97, 99]. Usually rapid clearance is not desired and liposome modification may be required to 

achieve better results.  

 

1.1.2 Long circulating “stealth” liposomes 

 In order to prolong the half-life period of liposomes, some molecules, such as poly-

ethylene-glycol (PEG), have been incorporated within the phospholipid bilayer of conventional 

liposomes. Hydrophilic surfaces are known for impeding plasma protein adsorption due to steric 

stabilization of the liposome surface. In the case of PEG, steric stabilization occurs due to 

hydration of surface PEG groups that will prevent interaction with proteins and biological 

molecules, which results in an increased circulation period [100]. Several studies shown that 

the attachment of PEG on nanoparticles surface (PEGylation) resulted in a smaller rate of 

elimination by the liver and a higher accumulation in inflamed synovium, when compared to 

non-PEGylated nanoparticles [86, 101, 102]. This means, that PEGylation of liposomes will 

increase the bioavailability of drugs, allowing a slow release of the drug which reduces side-

effects and drug toxicity [103-105]. 
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 Stealth liposomes are also able to cross vascular walls in inflamed sites due to the 

enhanced permeability, characteristic of this tissues. The enhanced permeability conjugated 

with  PEG characteristics allows liposomes to extravasate and act in these locals [94]. 

 

1.1.3 Cationic Liposomes 

 Cationic liposomes are usually used as delivery systems for genetic materials. Since 

DNA has a negative charge, the positive charge of the liposome will neutralize DNA chains which 

results in a higher compact structure [106-109]. The DNA-lipid complex will promote cellular 

internalization and protection, and expression of the plasmid [94]. 

 

1.1.4 Immunoliposomes 

 Immunoliposomes are able to target and recognize specific cells or organs due to the 

presence of targeting vectors on their surface. Examples of targeting vectors include proteins, 

peptides and small molecules such as, for example, folate which was used to target folate-

receptor, which is  overexpressed in tumor and inflamed macrophages [110-112]. 

 PEGylated liposomes have minimal affinity to cells being a platform to design targeted 

liposomes. Several coupling strategies exist to attach proteins to phospholipids or to PEGylated 

phospholipids while their biological activity is maintained (Figure 10). These strategies include 

covalent coupling to phospholipids (Figure 10, A and B) or coupling to the terminus of PEG 

chains (Figure 10, C) [98].  The main problem regarding the coupling of proteins to the liposome 

surface is that PEG may have a shielding effect that may inhibit the interaction between the 

ligand and its receptor [113]. However, using the coupling to PEG technique, it was found that 

target binding efficiency increased by a factor of two to three [114, 115]. 

 

Figure 10 - Schematic representation of pegylated immunoliposomes where the antibody is 
bound directly to the liposome surface (section A) or to the distal tip of the PEG chains (C). 
The relative sizes are representative for a 80 nm liposome decorated with PEG2000 (PEG of 
molecular mass 2000 Da). When attached to the liposome surface, steric hindrance between 
the PEG chains in their coiled (A) as well as extended (B) conformation and the antigen- 
recognition site of the antibody can be expected. 
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1.2 pH responsive lipossomes 

 

Inflammation causes two major pathophysiological changes: hypoxia and acidosis which, on 

their turn, result in a pH decrease in the inflamed site [116]. In order to use this characteristic 

of inflamed tissues, liposomes with pH responsiveness have been developed. These liposomes 

possess the ability to release their content in an environment with decreased pH. In order to 

obtain liposomes with these characteristics it is needed a destabilization of the liposomal 

membrane. Liposomal membrane destabilization may be induced by the bound of amphiphilic 

peptides that adopt an α-helical conformation in an acidic environment [117] or by the use of 

cationic and ionizable anionic lipids [118]. Therfore, pH sensitive liposomes can be produced 

by a mixture of a cationic lipid, such as dioleoylphosphatidylethanolamine (DOPE), and an 

ionizable anionic lipid such as cholesteryl hemisuccinate (CHEMS). When at elevated pH, CHEMS 

stabilizes the cationic lipid in its bilayer organization. However, as the pH decreases and gets 

near or the pKa of CHEMS, this molecule becomes to lose its charge leading to the 

destabilization of the liposomes by membrane inversion, membrane fusion,  and the release of 

entrapped substances into liposome surrounding space [119, 120]. This methodology may be 

applied both to conventional and PEGylated liposomes [121].
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Chapter 4- Planned Work  

Taking in account what has been said about RA, skin and liposomes, pH responsive 

liposomes were designed. Three main characteristics had to be taken in account to achieve the 

best performance which concerned size specifications, utilization of a formulation that at pH 

7.4 is stable and at pH 5 is unstable and the ability to entrap indomethacin. Size specifications 

appear as a consequence of both transdermal drug delivery and uptake in inflamed locations. 

In order to pass through the blood vessels and to use the enhanced permeability, liposomes 

should have between 200 – 800 nm. [122] The main objective of this work was to produce 

liposomes, MLVs or LUVs containing indomethacin, with the ability to cross the skin and that at 

pH 5, in inflamed sites, are able to release the entrapped indomethacin, figure 11. 

 

 
Figure 11 - Schematic representation of the aim of the work. Indomethacin is represented by 
the hexagons and its location does not correspond to the location in the liposome, adapted 

from [123]. 

In this work, three different lipids were used to produce different liposomal 

formulations. They comprised 1,2-dipalmitoyl-sn-glycero-3-phosphoethanolamine (DPPE), 

CHEMS  and Stearylamine (SA). DPPE possesses a conic geometry since it contains a smaller 

polar head group compared to the phospholipid tail. CHEMS act as a bilayer stabilizer at pH 
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7.4.   On the other hand, SA was added due to the possibility of electrostatic interactions with 

indomethacin at pH 7.4, which may induce an increase in the amount of encapsulated drug. 

When the pH lowers, occurs a destabilization between CHEMS, SA and DPPE which results in 

bilayer destabilization and consequent drug release, Figure 12. [124] 

 

 
Figure 12- Example of bilayer stabilization with CHEMS and destabilization at pH 5. 

 

Indomethacin is a non-steroid anti-inflammatory and anti-pyretic agent with chemical 

formula C19H16NO4Cl. This drug is rapidly cleared from the plasma having a half-life of 0.3 to 4 

hours [125, 126]. Due to its anti-inflammatory and anti-pyretic properties, indomethacin is 

used to treat several conditions such as rheumatoid arthritis, ankylosing spondylitis, 

osteoarthritis among others. [127] 

As the majority of NSAIDs, indomethacin presents several major side-effects such as 

gastro-intestinal complications, cardiovascular effects as well as platelet aggregation 

inhibition. Liposomes containing indomethacin were produced in an attempt to reduce the side-

effects of this drug.  

Liposomes were prepared by the lipidic film hydration which will be described in the 

next chapter. After their production, they were physically characterized and their interaction 

with macrophage and fibroblasts evaluated. Also, in vitro permeation skin studies were 

performed using Franz cells. In this chapter, a brief description of the techniques used to 

characterize the liposomes and their theoretical support will be presented.  

1. Methodologies and Theoretical Support 

During the development of this work several techniques were employed in an attempt 

to understand liposomes physicochemical characteristics. These included size and zeta 

potential measurements, phase transition (Tm), morphology assessment, encapsulation 

efficiency (EE) and loading capacity (LC). These characteristics were evaluated using different 

apparatus. Size and zeta potential were measured using Dynamic Light Scattering (DLS) and 

Phase Analysis Light Scattering (PALS). Tm was evaluated using DLS and morphology was 

assessed using Transmission Electron Microscopy (TEM). EE and LC were both analyzed using 

spectrophotometric analysis. 
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Regarding their interaction with cells two separate assays were performed cytotoxicity, 

using a MTT assay and uptake using a staining protocol in Raw 264.7, a macrophage cell line. 

Also, in pursue of scientific curiosity, preliminary assays on a fibroblast cell line, L929 were 

also done.  Last but not least, an in vitro permeation skin study was performed to assess 

liposome ability to pass through the skin. 

 

1.1 Dynamic Light Scattering 

 
The DLS technique was used to measure size. When in suspension, colloidal sized 

particles undergo random movement (Brownian motion) colliding with the driven molecules of 

the liquid. With the increase in particle size the particle will have a slower Brownian motion, 

so, smaller particles move more rapidly. The scattered light intensity will fluctuate in time and 

give information about the diffusion coefficient of the particles. In this apparatus, a light beam, 

with a fixed wavelength λ, passes through a polarizer to define the polarization and the incident 

beam passes in the sample where it suffers scattering. Smaller particles will suffer fluctuations 

in the intensity more rapidly than the larger particles [128].  After incidence on the sample, 

the scattered light will be detected and recorded on the photomultiplier and using a 

mathematical approximation, particles size is determined.  

 

1.2 Phase Analysis Light Scattering 

 

 PALS is a technique that during this work was used to assess Zeta Potential. The zeta 

potential is a measure of a particle surface charge. Zeta potential is correlated with stability 

of a formulation, if the liposome suspension has a charge of 30 mV in modulus, the suspension 

is stable and will not form molecules aggregates due to particles repulsion [129]. 

 In zeta potential measurements, an electric field is applied on the suspension and 

charged particles move towards the opposite charged electrode. At equilibrium, particles move 

at a constant velocity which is measured using PALS. Particles speed depends on the strength 

of the electric field or voltage gradient, dielectric constant and viscosity of the medium, and 

zeta potential. The zeta potential is then determined using the well-known Henry’s equation.  

 As said previously, PALS technique is applied to measure particles velocity. This 

technique uses phase shifts measurements to determine particles velocity: when light is 

scattered by a moving particle, its phase shifts in proportion to their velocity. The phase shift 

is then compared with a reference beam and particles velocity calculated. 
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1.3 Phase Transition 

 

Phase transition temperature, Tm, is the temperature of change from the gel phase of 

the lipid bilayer to its liquid-crystalline phase. [130] The dynamic light scattering (DLS) 

exploiting the count rate is a reliable, simple and reproducible technique to determinate the 

Tm [131]. The alteration in the measured scattering intensity reflects changes in the optical 

properties of the material. 

Thus, discontinuity in the mean count rate (average number of photons detected per 

second) as the temperature changes, corresponds to an alteration in the optical properties of 

the material studied (i.e. transition from initial state to another one) (Michel et al., 2006). 

Data as the normalized mean count rate versus temperature were collected and fitted using 

equation 1. 

𝑟𝑠 =  𝑟𝑠1 + 𝑝1𝑇 +  
𝑟𝑠2 − 𝑟𝑠1 + 𝑝2𝑇 − 𝑝1𝑇

1 + 10
𝐵(1

𝑇⁄ −1
𝑇𝑚

⁄ )
    (1) 

where rs is the average count rate, T is the temperature (◦C), p1 and p2 correspond to the slopes 

of the straight lines at the beginning and at the end of the plot, and rs1 and rs2 are the respective 

count rate intercepting values at the y-axis. From the experimental data displayed, it was 

possible to calculate the cooperativity (B) and the midpoint of the phase transition, which 

corresponds to the Tm. The Tm was calculated from the slope and the inflection point of the 

data fitted to sigmoid curves of count rate (rs) versus temperature (T). [131] 

 

1.4 Transmission Electron Microscopy 

 
In TEM a high-energy electron beam is focused on the sample to achieve an image or 

diffraction pattern of the specimen. When a high-energy electron beam hits a thin sample, 

electrons suffer scattering producing several secondary signals which characterize the 

interactions taking place. Scattered electrons are nonuniformly distributed and this non-

uniform distribution contains the structural and chemical information about the sample. The 

information obtained can then be viewed in two ways (a) angular distribution which is 

correlated with diffraction pattern and (b) special distribution of scattering which generates a 

contrast image of the sample. [132] 

TEM microscope is composed of an optical column where the electrons are generated, 

electromagnetic lenses, the sample and an observation systems. Also, several apertures exist 

to collimate the electron beam onto the sample. TEM is a technique that allows to study 

morphology at a nanoscale level, which possibilities the study of specimen structure. [132] 
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1.5 Drug Entrapment 

 

EE and LC are useful parameters used to evaluate liposomes as drug delivery systems. EE 

corresponds to the ration between the amount of drug encapsulated in the liposome and the 

total amount of the drug added, Equation 1, whereas LC correlates the amount of drug in the 

liposome with the lipid content Equation 2. 
 

%𝐸𝐸 =  
𝐴𝑚𝑜𝑢𝑛𝑡 𝑜𝑓 𝑑𝑟𝑢𝑔 𝑖𝑛 𝑡ℎ𝑒 𝑙𝑖𝑝𝑜𝑠𝑜𝑚𝑒 (𝑚𝑔)

𝑇𝑜𝑡𝑎𝑙 𝑎𝑚𝑜𝑢𝑛𝑡 𝑜𝑓 𝑑𝑟𝑢𝑔 (𝑚𝑔)
 × 100       (2) 

 

%𝐿𝐶 =  
𝐴𝑚𝑜𝑢𝑛𝑡 𝑜𝑓 𝑑𝑟𝑢𝑔 𝑖𝑛 𝑡ℎ𝑒 𝑙𝑖𝑝𝑜𝑠𝑜𝑚𝑒 (𝑚𝑔)

𝐴𝑚𝑜𝑢𝑛𝑡 𝑜𝑓 𝑙𝑖𝑝𝑖𝑑 (𝑚𝑔)
 × 100     (3) 

 

1.6 Drug Release 

 

Drug release of pharmaceutical nanoparticle systems greatly influence their biological 

effect. In vitro release profiles are widely used to evaluate interactions between drug and 

lipids and their influence in the release rates and mechanisms of drug release. [133] In this 

experiment, the technique used to assess drug release patterns was the dialysis bag diffusion 

technique.   

The amount of indomethacin presented at each time point was calculated based on 

Equation 3, which correlates the amount of indomethacin present after the incubation period 

with the amount of indomethacin initially placed. 
 

%𝐷𝑟𝑢𝑔 𝑟𝑒𝑙𝑒𝑎𝑠𝑒 =
𝐴𝑚𝑜𝑢𝑛𝑡 𝑜𝑓 𝑖𝑛𝑑𝑜𝑚𝑒𝑡ℎ𝑎𝑐𝑖𝑛 

𝑇𝑜𝑡𝑎𝑙 𝑎𝑚𝑜𝑢𝑛𝑡 𝑜𝑓 𝑖𝑛𝑑𝑜𝑚𝑒𝑡ℎ𝑎𝑐𝑖𝑛
                     (4) 

 

1.7 In Vitro Assays 

 
It is known that in inflamed sites, like arthritic joints, macrophages are present and 

are the main responsibles for the inflammation process. In order to evaluate their response to 

these formulations, a macrophage cell line was used. The mouse monocyte/macrophage RAW 

264.7 cell line was derived from a tumor developing in a BAB/14 mouse, 30 years ago [134].  

Also, a fibroblast cell line, L929, from mouse, was used in preliminary assays to 

evaluate formulations cytotoxicity and to compare cytotoxicity in macrophage against 

fibroblasts.  
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1.7.1 Cytotoxicity 

 MTT (3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide), figure sdf,  is a 

yellow tetrazole reduced in the cells to purple formazan crystals by the activity of the 

mitochondria. The amount of formazan produced is proportional to the number of living cells 

and it can be quantified by absorbance measurements in the range 550-600 nm.[135] Since MTT 

is a rapid, convenient and economical assay it has been used widely to assess cell viability. 

However, there are some factors that have to be taken in account when performing an MTT 

assay, they comprise (a) cell density, (b) culture medium, (c) optimal concentration and 

exposure time for MTT among others. [136]  

 Also, to evaluate the effect of drugs, several drug concentrations should be tested and 

drug exposure times. Moreover, it is important to have controls in order to establish relation 

between the different concentrations and exposure times. [135] 

1.7.2 Uptake 

Uptake was assessed through nuclei, cell membrane and liposomes. Nuclei staining was 

done using 4',6-diamidino-2-phenylindole (DAPI) while for liposomes, 1,2-dipalmitoyl-sn-

glycero-3-phosphoethanolamine-N-(7-nitro-2-1,3-benzoxadiazol-4-yl), NBD, was used. 

DAPI is a blue dye that specifically binds cells nuclei and is excited at 358 nm. NBD is a 

lipid with a group that in a hydrophobic environment becomes fluorescent which allowed the 

staining of liposomes. [137] 

 

1.8 In vitro Permeation Studies 

 

 In vitro permeation studies were carried out using Franz cell diffusion cells. These are 

the most common type of diffusion cells principally due to the low cost, ability to study 

semisolid formulations and good simulation for in vivo performance [138]. Porcine skin was 

placed between the diffusion compartments of the diffusion cell, since it is the most similar to 

the human’s skin and also presents a permeability rate similar to the human skin. [139]  
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Figure 13 - Franz diffusion cell, adapted from [140]. 

 In the donor side of the diffusion cell was placed the formulation, figure 13, above the 

skin, whereas on the receptor side, figure 13, below the skin, the diffusion cell contained an 

isotonic saline solution or a buffer and, in this case, a cosolvent to allow indomethacin 

solubilization. The amount of drug in the receptor side may be evaluated through several 

techniques such as chromatography, or spectroscopy, however in this case UV/Vis. 

spectroscopy was the chosen technique to analyze the amount of drug [138]. 
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Chapter 5 - Materials and Methods 

1. Preparation and Characterization of different liposomal 
formulations 

The steps towards liposomes production until the final formulations are described 

below. In the end, four liposomal formulations and their respective placebos were prepared 

DPPE/CHEMS (7:3) and DPPE/CHEMS/SA (7:2.5:0.5) in their MLV and LUV structure.  

 

1.1 Liposomes Preparation 

 
Liposomes were prepared by the extrusion film method. Firstly, MLVs were prepared. 

The specified amount lipids was dissolved in a solution of methanol: chloroform (3:1), from 

Fisher and Atom Scientific respectively, in a round-bottom flask. The suspension was then 

placed in a rotary-evaporator, under a stream of nitrogen, for 40 minutes at 42 ºC, in order to 

evaporate the solvent and to allow uniform film formation.  After complete solvent 

evaporation, an adequate volume of HEPES Buffer, pH 7.4, was added and the suspension 

vortexed for at least 15 min or until complete film dissolution. In order to form LUVs, the 

liposomal suspension was extruded. The extrusion process allowed the formation of liposomes 

with desired size due to pressure applied in the extrusion system, filter pore size and 

temperature. The suspension content was placed inside the extrusion system, and passed three 

times through a 600 nm polycarbonate filter, Whatman, and ten times through a 200 nm 

polycarbonate filter, Whatman, at 65 ºC (temperature above the main phase transition of the 

liposomes). Figure 14 schematically exemplifies the process for liposomes production. 
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Figure 14 – Liposomes production, adapted from [124]. 

 

1.2 Optimization of the methodology of liposomes preparation 

 
The first step towards process optimization was the use different lipid concentrations 

5 mM and 15 mM. Secondly, the amount of indomethacin in the formulation was altered to 

increase liposomes EE.  

Also, several formulations containing different lipids were produced. This formulations 

were DPPE:CHEMS (7:3), the base formulation, DPPE:CHEMS:SA in different proportions ( 

7:2.5:0.5 and 7:2:1) and DPPE:SA also in two different proportions (7:2 and 9:1).  

Lasic, described that cycles of freeze and thaw increased the encapsulation efficiency 

to values up to 50%.[141] Similarly, in this work, the influence of cycles of freezing and thawing 

was evaluated.  

Finally, the influence of extrusion and extrusion temperature in the EE was evaluated 

also and taken in account in the optimization process. Figure 15 summarizes the optimization 

process. 

In the end, after the optimization process, the final formulations used in this work were 

DPPE:CHEMS 7:3 and DPPE:CHEMS:SA 7:2.5:0.5 in the MLV (MLV 7:3 and MLV SA, respectively) 

and in LUV (LUV 7:3 and LUV SA, respectively) structure containing 1 mg/mL of indomethacin, 

5 mM of lipid and after 10 freeze and thaw cycles.  

The parameters used to assess the best liposomal formulation were size, potential zeta 

and encapsulation efficiency for all the formulations obtained. 
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Figure 15 – Parameters used for Liposomal production optimization. 

 

1.2.1 Lipid Concentration 

The first step towards optimization, was the use of different lipid concentrations and 

its effect on EE, size and zeta potential. The desired amount of lipids was added as well as the 

amount of indomethacin and the liposomes were produced. For the formulation containing 5 

μM of lipids, 12.10 mg of DPPE and 3.65 mg of CHEMS were weighted, whereas for the 

formulation containg 15 μM of lipids, 36.30 mg of DPPE and 10.95 mg of CHEMS were weighted. 

The procedure was then followed as explained previously.  

At this point, formulation containing SA had not yet been introduced. 

1.2.2 Indomethacin Concentration 

Secondly, the influence of indomethacin concentration was assessed. In order to reach 

the indomethacin concentration that was more suitable for this specific formulation, several 

concentrations were tested (16 mg/mL; 8 mg/mL; 1 mg/mL and 0.1 mg/mL). The desired 

amount of indomethacin was weighted, dissolved in a solution of 3:1 methanol/chloroform and 

added to the organic phase. 

 

1.2.3 Formulations 

Even though several formulations were produced until this step, the encapsulation 

efficiency remained at very low values. SA was inserted in this step. In order to prepare these 

new liposomes four different formulations were produced: (DPPE:CHEMS:SA 7:2.5:0.5; 

DPPE:CHEMS:SA 7:2:1 ; DPPE:SA 9:1 ; DPPE:SA 7:2). These liposomal formulations add a final 

Lipid concentration 

( 5 mM and 15 mM)

Indomethacin Concentration

(16 mg/mL;  8 mg/mL; 1 mg/mL and 0.1 mg/mL).

Formulations 

(DPPE:CHEMS 7:3; DPPE:CHEMS:SA 7:2.5:0.5 ; DPPE:CHEMS:SA 7:2:1 ; 
DPPE:SA 9:1 ; DPPE:SA 7:2)

Freez and Thaw Cycles

Extrusion Influence and Extrusion Temperature.
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lipid concentration of 5 mM and a concentration of indomethacin of 0.1 mg/mL. The lipids and 

indomethacin were weighted, dissolved in a solution of 3:1 methanol/chloroform and placed 

in the rotary-evaporator. The protocol was followed as previously described. 

1.2.4 Cycles of Freeze and Thaw 

In order to improve encapsulation efficiency cycles of freeze and thaw were performed. 

In this assay, after lipidic film formation and vortexing, the liposomal suspension was 

transferred to an eppendorf (1.5 mL in each eppendorf) and the eppendorfs placed freezer at 

-80ºC for 6 minutes. After this period, the eppendorfs were transferred to a water bath, at 60 

ºC, for 4 minutes.  

1.2.5 Extrusion Influence 

The effect of extrusion on encapsulation efficiency was another factor evaluated in this 

work. The liposomal suspensions were produced as previously described and half was extruded 

while the other half was the final product of MLV. The encapsulation efficiency, size and 

potential zeta of the non-extruded and extruded liposomes, MLVs and LUVs respectively was 

measured and used as a comparison measurement. 

Also, extrusion temperature was changed. Initially, extrusion temperature was set to 

42ºC, however, to achieve a temperature near the transition temperature, it was raised to 

65ºC. 

 

 

1.3 Liposomes Characterization 

1.3.1 Characterization of liposomes size and Zeta Potential 

To determine Particle Size and Zeta Potential, the liposomal formulations were diluted 

1:10 in HEPES Buffer and 2 mL were placed inside a cuvette for the measurement. Both size 

and zeta potential measurements were performed in a Brookhaven BI-MAS and Zeta-PALS 

(Brookhaven Instruments, Holtsville, NY, USA). For each formulation 6 measurements were 

made and three independent measurements were carried out to achieve statistical 

significance.  

 

1.3.2 Phase transition temperature 

The phase transition temperature of liposomes was determined to assess if (a) the 

addition of SA in the liposomes affected their physical properties, and (b) indomethacin 

encapsulation affected liposomes structure. To perform this task, size was measured through 

a temperature range (37–74) ºC in Zeta Pals. The count rate was analyzed for each temperature 

and a graphical representation of count rate versus temperature performed. Tm and 

cooperativity were determined using Origin©. 
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1.3.3 Morphology 

Morphological evaluation was carried out on TEM. Since the main objective was to 

evaluate morphological changes between the formulations and at different pHs, the liposomes 

were prepared and morphology evaluated at pH 7.4 and at pH 5. For morphology analysis at pH 

7.4 samples were diluted 1:5 in Hepes buffer. For analysis at pH 5, liposomal formulation at pH 

7.4 was diluted 1:5, centrifuged 30 minutes at 2000 rpm, 25ºC. The supernatant was removed 

and the liposomes ressuspended in Acetate buffer, pH 5. 

Samples were deposited on support grids made of Cu that possess an ultramicrotomy 

mesh. Their dimensions were of 3 mm of diameter, 100 μm of edge thickness, and they are 

electron transparent in the mesh region. Uranyl acetate was used as a negative staining for 

samples of biological origin. Since it deposits uranium atoms in specific regions of the specimen, 

that way absorbing electrons from the beam, it enhances the contrast, facilitating the imaging. 

A fluorescent screen is responsible for TEM imaging, which can also be coupled to a 

photographic film, or an image recording system. Projector lenses expand the electron beam 

onto the imaging device. 

The morphology of the liposomes was determined by TEM (Jeol JEM-1400, Tokyo, 

Japan). About 10 μL of the aqueous dispersion of liposomes was placed on copper grids and 

after 1 minute excess was removed and the sample stained with an aqueous solution of 1% 

uranyl acetate for 30 seconds. Samples were then observed in a microscope at the accelerating 

voltage of 60 kV. 

1.4 Encapsulation Efficiency and Loading capacity. 

 

Encapsulation Efficiency was assessed using a UV/VIS spectrometer.  The EE measures 

liposomes ability to encapsulate drugs based on the amount of drug placed during the 

production and the amount of drug in the liposome, equation 2. Also, loading capacity was 

evaluated. The LC correlates the amount of lipid and the amount of drug, equation 3. 

Firstly there was the need to produce a calibration line for indomethacin. To perform 

this task, 0.7 mg of indomethacin were weighted and added to 25 mL of Hepes Buffer, which 

produced an indomethacin solution with a concentration of 78.26 µM. Dilutions were made to 

achieve concentrations of between a range of 5 to 60 μM . The absorbance was measured in a 

PerkinElmer Lambda45 UV/Vis spectrometer, in the range 200-600 nm. The indomethacin peaks 

were found at 320 nm and 266 nm, which is in concordance with other authors [142] and based 

on the values it was obtained a two calibration curves, Figure 16. 
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Figure 16- Indomethacin calibration curves for PerkinElmer Lambda45 UV/Vis spectrometer. 

 
To assess EE and LC the amount of indomethacin that was not entrapped in the 

liposomes (free indomethacin) was determined. To do so, 100 µL of liposomes suspension was 

along with 1.4 mL of Hepes buffer were placed inside centrifugal filter units, Amicon Ultra-4, 

PLGC Ultracel-PL membrane, 10 kDa, Milipore) and centrifuged at 1000 rpm, 25ºC, for 28 

minutes. The supernatant was then analyzed in the UV/Vis spectrometer and the amount of 

indomethacin determined using the calibration line.  

 The amount of drug in the liposome was calculated subtracting the amount of free 

indomethacin to the total amount of indomethacin. EE and LC were then calculated from the 

above equations. 

 

1.5 Drug Release 

 
The ability to release indomethacin at pH 5.0 and at pH 7.4 was also evaluated. To do 

so, 1.5 mL of liposomal suspension were placed into a dialysis bag of cellulose with molecular 

weight cut off of 3500 Da, Cellu Sep, Membrane Filtration Products, Inc. The dialysis bags were 

placed in 40 mL of buffer, Acetate or HEPES and the media stirred with a magnetic bar at 300 

rpm at 37ºC. At time points 15 min, 30 min, 60 min, 90 min, 120 min, 180 min, 240 min 12 

hours and 24 hours, and 48 hours, 300 µL of the suspension were removed placed on a 96 well-

plate and read in a plate reader, Synergy HT, BioTek ® Instruments, Inc., in the range 200-400 

nm. 

 A new calibration line was performed for this equipment and the amount of 

indomethacin present in the medium calculated based on it. The amount of indomethacin 

released from the liposomes was then calculated based on Equation 4. 
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1.6 Stability Assays 

 
Drug stability is one of the parameters that have to be taken in account when producing 

a new drug. In order to assess formulations stability size and potential zeta of each formulation 

(MLV 7:3, MLV SA, LUV 7:3 and LUV SA) were evaluated for one month. To perform this task, 

the liposomal suspension was diluted 1:10 in HEPES buffer and the suspension stocked in the 

fridge at 4ºC, protected from light. For each measurement, 2 mL of suspension were removed, 

placed inside a cuvette in the DLS. After the measurement the suspension was stocked again. 

Placebo solutions were also tested in terms of stability to infer if indomethacin affected the 

liposomes stability. Two independent assays were performed. These measurement were carried 

out in Zeta Pals as previously explained. 

 

1.7 In vitro Assays 

 
Cells response to liposomes was evaluated using a several tests such as cytotoxicity 

evaluation and uptake assays.  

1.7.1 Cell Culture  

Both Raw and L929 were cultured in Dulbecco's Modified Eagle Medium, DMEM, from 

Invitrogen. The medium was supplemented with 10% Fetal Bovine Serum, FBS, from Gibco, 1% 

Penicillin Streptomycin, Pen Strep, Invitrogen and 1% Fungizone, Invitrogen. Cells were allowed 

to grow at 37ºC, 5% CO2 and 95% humidity. Before reaching confluence cells were passed. Raw 

cells were washed with Hank's Balanced Salt Solution, HBSS, from Invitrogen, and detached 

using a scrapper and ressuspended in fresh DMEM. Subculture was done at a proportion 1:6. 

Subculturing of L929 cells involved a more complex procedure using trypsin, Invitrogen, to 

detach cells. Cells were washed with HBSS, 2mL of trypsin added and incubated for 10 min. 

After this period, 4 mL of fresh DMEM were added and the cells centrifuged at 1500 rpm, 25ºC 

for 10 minutes. The supernatant was removed and 5 mL of fresh medium were added. 

Subculture was done at a proportion 1:4. 

 

1.7.2 Cell Viability 

As said in the previous chapter, cell viability was assessed by the colorimetric method 

MTT assay. Cells were detached using the procedure described before and counted in a 

Neubauer chamber. After counting cells were seeded at a density of 5 000 cells/well for Raw 

264.7 and 50 000 cells/well for L929 in a 96 well plate. 

Meanwhile, the liposomal formulations were diluted in complete DMEM to achieve 

concentration of 5 µM, 10 µM, 25 µM, 50 µM and 100 µM of indomethacin. Placebo formulations 

of all the suspensions were also prepared using the same amount of liposomes. As the main 
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objective of this assay was to evaluate drug cytotoxicity, there was the need to run controls. 

The positive control used to this assay was cells incubated with fresh DMEM and the negative 

control only DMEM. To evaluate the effect of the drug and to compare it with the liposomal 

formulations indomethacin at the same concentration as in the liposomes was also incubated. 

In the end, for each concentration evaluated the conditions were negative control, positive 

control, indomethacin, MLV 7:3 placebo, MLV 7:3, MLV SA placebo, MLV SA, LUV 7:3 placebo, 

LUV 7:3, LUV SA placebo and LUV SA. 

Cells were allowed to grow for 24 hours, the medium was removed and 200 µL of 

medium or medium containing liposomes were added to each well. The plates were then 

incubated for 24 hours. After the incubation period, the well were washed with HBSS, 180 µL 

of fresh DMEM were added to each well along with 20 µL of MTT, Sigma, at 5 mg/mL In HBSS. 

After this period, the medium was removed and 200 uL of Dimethyl Sulfoxide (DMSO), 

Sigma, were added to each well and allowed to dissolve for 30 minutes. Absorbance was read 

in a plate reader, at 590 nm with reference to 630 nm. 

The percentage of viability was calculated comparing the absorbance in the well with 

the positive control after subtraction of negative control. After, IC50 was calculated using 

GraphPad Prism®, GraphPad Software, Inc. A non-linear regression was performed and the 

equation that correlates the concentration logarithm with the response was used. IC50 was 

then calculated by interpolation. Two independent assays containing five replicas each were 

carried out. 

 

 

Figure 17 - Schematic representation of the viability assay, adapted from[123]. 
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1.7.3 Uptake 

Liposomes with fluorescent characteristics were produced by the addition of 1,2-

dipalmitoyl-sn-glycero-3-phosphoethanolamine-N-(7-nitro-2-1,3-benzoxadiazol-4-yl), NBD, 

from Avanti Polar Lipids, which possesses fluorescent characteristics. NBD was added at 1 mol 

% of the amount of lipid and added to the organic phase. Liposomes were produced as previously 

described. 

Round cover glasses were sterilized and placed in a 24 well plate. 27 780 cells/well 

were seeded and allowed to grow for 24 hours. Meanwhile, liposomes dilutions in DMEM were 

done to achieve indomethacin concentrations of 5, 25 and 100 µM. After the incubation period, 

400 µL of the diluted liposomal formulations were added and incubated for 3 hours. DMEM was 

removed and the wells rinsed 3 times with HBSS. Cells were fixed for 30 minutes in 2% 

paraformaldehyde, in DMEM (v/v) and rinsed thrice with HBSS. After, they were permeabilized 

with 0.2% (v/v) Triton x-100, Sigma, in HBSS, under stirring for 10 minutes. Triton was removed 

and the wells washed 3 times with HBSS. The samples were then incubated in DAPI diluted 1:10 

000 in HBSS for 10 minutes at resting temperature under stirring. After, samples were rinsed 

thrice with HBSS, the cover slips removed from the wells, one drop of Vectashield, Vector 

Laboratories, was add to each sample and placed on a microscope slide. Samples were then 

visualized under a Nikon Eclipse E400 fluorescence microscope. 

 

1.8 In Vitro permeation 

 

 Samples or porcine skin ear were excised, dissected and the skin surface was cleaned 

to remove hairs and subcutaneous fatty tissue. The skin was then cut into pieces of 

approximately 1 cm2 and placed in the Franz diffusion cells, PermeGear, Hellertown, USA. The 

exposed surface was 0.64 cm2. 5 mL of Hepes buffer containing 5% ethanol (v/v) were placed 

in the receptor side of the diffusion cell. Also, a magnetic stir bar was placed in this 

compartment. 600 µL of liposomal formulations was placed in the donor side of the Franz cell 

and covered with parafilm. A negative control, composed of Hepes Buffer was used as a 

baseline control in order to remove the interferences of porcine skin. At time points 0, 1h, 2h 

3h 4h, 5h, 6h, 7h and 8h, 300 µL were taken and placed in a 96 well plate. The same volume 

was replaced into the diffusion cell, and bubbles formed below the skin removed. The 

absorbance was measure in the range 200-400 nm in a plate reader. Two independent assays 

were performed. 
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1.9 Statistical Analysis 

 

 Statistical analysis was performed using SPSS®, IBM. For all the experiments the results 

are expressed as mean ± standard deviation. One-way Anova was performed using Tuckey’s and 

Dunnet post-hoc test. Dunnet’s post-hoc test was done when there was the need to compare 

different groups with a control. A p-value of 0.05 was considered as statistical significant. 
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Chapter 6 – Results and Discussion 

1. Optimization of liposomes production 

 The first step to achieve a formulation with the desired characteristic was the 

optimization. The main factor took in account was the EE of the formulations. Several 

procedures were performed to measure the EE, since the initial procedure has not suitable 

once it promoted indomethacin release from the liposomes.  

 Initially, liposomes containing 0.1 mg/mL of indomethacin with and without SA and in 

the MLV and LUV structure were made. However, after the achievement of a suitable method 

to measure the EE it was found that the liposomes were capable of incorporating a higher 

amount of indomethacin. Due to this, the amount of indomethacin was increased to a 

concentration of 1 mg/mL. 

 The number of freeze and thaw cycles was evaluated in a range from 0 to 10 cycles. 

After the analysis it was found that 10 was the amount of cycles which produced the highest 

EE, and this number set to be the cycles used from this point. 

 Finally, after this process, four different formulations were produced and 

characterized :  DPPE:CHEMS 7:3 and DPPE:CHEMS:SA 7:2.5:0.5 in the MLV (MLV 7:3 and MLV 

SA, respectively) and in LUV (LUV 7:3 and LUV SA, respectively) structure containing 1 mg/mL 

of indomethacin, 5 mM of lipid, after 10 freeze and thaw cycles. 

 

 

2. Liposomes Characterization 

As said previously liposomes were characterized in terms of size, zeta potential, EE and 

LC and morphology. The following section presents the results obtained. 
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2.1 Size 

In table 8 it is possible to observe the data obtained for liposomes size and polidispersity. 

It is possible to observe that MLV SA are the larger with mean size of 436 nm whereas LUV SA 

placebo are the smaller liposomes 75 nm. There seems to be no statistical significant difference 

between placebo and indomethacin containing liposomes for all the formulations evaluated. 

Also, differences between MLVs and LUVs of the same formulation were tested and it only 

seems to appear statistical significant differences between MLV SA and LUV SA. 

 
Table 8 - Liposomes size and polidispersity. Mean and standard deviation of three 

independent samples. (*) Statistical significant differences, p<0.05. 

  Size (nm) Polidispersity 

MLV 7:3 
Placebo 222 ± 121 0.27 ± 0.04 

Indo 197 ± 70 0.36 ± 0.02 

MLV SA 
Placebo 259 ± 84 0.26 ± 0.06 

Indo 436 ± 90 * 0.34 ± 0.06 

LUV 7:3 
Placebo 111 ± 19 0.037 ± 0.009 

Indo 103 ± 82 0.122 ± 0.002 

LUV SA 
Placebo 75 ± 6 0.13 ± 0.03 

Indo 121 ± 27 * 0.081 ± 0.001 

 

Polidispersity is a measure of heterogeneity of a suspension. If particles are 

monodisperse, which means, they have the same size while on a polydisperse formulation more 

than one population may exist. A formulation is considered monodisperse if the value of 

polidispersity is below 0.2. It is possible to observe that LUV have smaller values of 

polidispersity than MLV. This result was expected since the extrusion process allows the 

formation of liposomes with controlled size.  

The fact that size is much higher in the SA formulations (although is not statically 

different) when indomethacin is present comparing with the placebo, has do to with the fact 

that indomethacin establishes electrostatic bonds with the SA molecules, increasing thereby 

the space occupied in the solvation layer. This occurrence is even more pronounced in the case 

of the MLVs, once they present more than one bilayer which enhances the phenomenon, 

conferring a higher increase in the liposome dimensions. In the case of the formulations that 

do not contain SA, the size slightly decreases when indomethacin is present which is probably 

due a closer packing of the lipids molecules. 

 

2.2 Zeta Potential 

Table 9 presents the results obtained for the liposomes Zeta Potential. MLV 7:3 present 

the higher zeta potential while LUV SA present the lower values. No statistical significant 

differences were found between each formulation.  The addition of indomethacin induced an 
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increase in zeta potential in the MLVs, which was not statistical significant, however this did 

not occur in LUVs.  

A value zeta potential below -30 mV is desirable since at this value of zeta potential 

occurs repulsion between liposomes instead of aggregation. It is possible to notice that all the 

formulations have zeta potential values around the -30 mV whereby it is possible to say that 

this formulations are stable in terms of zeta potential. 

 

 
Table 9 - Zeta Potential of the liposomal formulations (mean and standard deviation of three 

independent samples). 

  Potential Zeta (mV) 

MLV 7:3 
Placebo -50 ± 9 

Indo -36 ± 5 

MLV SA 
Placebo -42 ± 13 

Indo -34 ± 4 

LUV 7:3 
Placebo -28 ± 6 

Indo -28 ± 2 

LUV SA 
Placebo -28 ± 2 

Indo -25 ± 3 

 

 

2.3 Encapsulation Efficiency and Loading Capacity 

In table 10, the results of EE and LC are presented. EE, as said previously is correlated with the 

ability to entrap indomethacin in the liposomes while LC is a measure of comparison between 

amount of indomethacin and the amount of lipid. MLV SA are the ones who had the ability to 

entrap the higher amount of indomethacin. However, there is no statistical significant 

differences between the EE and the different liposomal formulations.  

 
Table 10  - Entrapment Efficiency and Loading Capacity. Mean ± Standard deviation of three 

independent samples. 

 Encapsulation Efficiency Loading Capacity 

MLV 7:3 60% ± 3% 18,8% ± 0.8% 

MLV SA 69% ± 5% 22% ± 2% 

LUV 7:3 61% ± 8% 18% ± 1% 

LUV SA 63% ± 10% 20% ± 3% 

 

  

In which concerns LC for all the formulations evaluated was around the 20% for all the 

formulations evaluated. MLV SA were the liposomes that possess the highest value of LC 
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whereas LUV 7:3 where the ones with the lowest values. The LC differences among all the 

formulations tested is not statistical significant. The addition of SA enhanced the EE, possibly 

due to electrostatic bonds between SA and indomethacin, but not has much as could be 

expected. 
 
 

2.4 Morphology 

 

Morphology was assessed using TEM and representative images of each type of 

liposomes can be visualized on figure 19. In figure 19 A and B it is possible to observe MLVs 7:3 

and MLVs SA, respectively, in Hepes buffer, pH 7.4. These formulations present liposomes with 

round shape morphology containing populations of liposomes with different sizes. 

Figure 19 C and D is representative of MLVs SA placebo and MLVs SA, respectively, in 

acetate buffer, pH 5. It is possible to observe that for both formulations that was a complete 

loss of structure when compared to MLVs SA at pH 7.4. The round shape morphology of 

liposomes was destroyed. This morphology can be explained with hexagonal phase formation.  

DPPE is a phospholipid that presents conic geometry due to presence of a less bulky polar group 

when compared to its hydrocarbon chains. When there is no stabilizer, at neutral pH it forms 

a hexagonal phase (Figure 18). The addition of CHEMS helps in the formation of a stable lipid 

bilayer due to repulsion of the phosphate groups of the phospholipid with the carboxylate 

groups of CHEMS. At neutral pH, CHEMS is deprotonated, however, when the pH lowers, it 

occurs protonation of carboxylate groups and the repulsion with phosphates stops, leading to 

bilayer destabilization. [124]  

 

 
Figure 18 - Destabilization of lipid bilayer and hexagonal phase formation. 

Figure 19 E and F presents TEM representative images of LUV 7:3 placebo at pH 7.4 and 

5, respectively. It is possible to notice that LUV 7:3 placebo at pH 7.4 present a round shape 

morphology with populations much more uniform than MLV 7:3. At pH 5, the liposomes do not 

lose the round shape however they became very small when compared with the ones at pH 7.4 

and with several populations. 
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Figure 19 - TEM representative images of liposomes, (scale bar = 1 µM). (A) MLVs 7:3 in 
Hepes Buffer; (B) MLVs SA in Hepes Buffer; (C) MLVs SA placebo in Acetate Buffer; (D) MLVs 
SA in acetate buffer; (E) LUVs 7:3 placebo in Hepes buffer; (F) LUVs 7:3 placebo in Acetate 
buffer; (G) LUVs 7:3 in Hepes buffer; (H) LUVs 7:3 in Acetate buffer; (I) LUVs SA in Hepes 
buffer and (J) LUVs SA in Acetate buffer. 
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 LUV 7:3 at pH 7.4 and pH 5 are presented in figure 19 G and H. It is possible to notice 

that the above mentioned behavior for placebo formulations occurs also to the formulations 

containing indomethacin. In this case, it is possible to notice that indomethacin did not have 

the stabilization effect that had in the MLV.  

Last but not least, figure 19 I and J present TEM images of LUV SA in Hepes buffer and 

Acetate Buffer, respectively. At pH 7.4, the liposomes are in a round shape morphology with 

uniform sizes. However, at pH 5, the liposomes are have only a few nanometers which may 

indicate that they have formed micelles instead of a lipid bilayer. Also, in this case, the 

addition of indomethacin seems to not have a stabilizing effect at low values pH. 

 

2.5 Stability 

Liposomes stability was evaluated throughout a month and Figure 20 is representative 

of the results obtained for size and zeta potential measurements. It is possible to notice that 

LUVs are more stable than MLV. LUV 7:3 is the formulation which is more stable throughout the 

evaluated period since they suffer smaller changes in effective diameter than all the other 

formulations tested.  

Lasic described that freeze and thaw cycles promoted liposomes aggregation and this 

behavior can be found mainly in MLV [141]. LUVs also undergo freeze and thaw cycles, however 

the extrusion is only done after the cycles which may promote their stabilization. While after 

the first measurement, LUVs increase in size and then had the tendency to stabilize, MLV did 

not show any tendency to stabilize showing size fluctuations for each time point. 

Zeta potential variations occurred both for MLV and LUV and it appear that the same 

behavior can be found for all the formulations. Initially, zeta potential seems to decrease and 

at a time point between 11-14 days it seems to increase.  

In conclusion, in which concerns stability, it is possible to say that LUVs seems to be 

more stable than MLV regarding size. On the other hand, regarding zeta potential, all the 

liposomal formulations do not seem to be stable. Nevertheless, the zeta potential was always 

above -25 mV, which justifies the fact that the size did not change so much, once they still had 

sufficient surface charge to repel themselves and do not aggregate. To increase stability 

throughout time, liposomes could be freeze-dried however the optimizations of this procedure 

is time-consuming and due to lack of time the possibility to study this method was not possible. 
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Figure 20 - Liposomes Stability evaluated through a month. Zeta Potential and Size 
measurements are presented. A - MLV 7:3; B- MLV SA; C - LUV 7:3; - D- LUV SA. 

 
 

2.6 Phase Transition 

In Table 11 and Figure 21, the results from phase transition are presented. It is possible 

to observe that the higher Tm was found for MLV SA, 62.9 ºC, whereas the highest value of 

cooperativity was found for MLV 7:3, 3389. DPPE for itself has a phase transition temperature 

of 63ºC, according to Avanti Polar Lipids, and Handa et. al reported that DPPE had a phase 

transition of 64.5 ºC [141]. Ohtake et al. [142] found that cholesterol addition to liposomes had 
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a fluidizing effect in the membrane. It was possible to observe that for all the formulations 

evaluated the values were below the 63ºC registered for DPPE, which is possibly related to the 

addition of CHEMS, a derivative from cholesterol. Regarding indomethacin addition to 

liposomes and its effects on Tm it was found that indomethacin promoted the decrease of phase 

transition temperature. This effect plus the fact that the cooperativity almost is unperturbed 

is most possibly due to its interaction with the polar headgroups of the phospholipids. 

 
Table 11 - Phase transition temperature and cooperativity values of MLV SA placebo, MLV 7:3 
and MLV SA formulations. 

 MLV SA placebo MLV SA MLV 7:3 

Tm (ºC) 62.9 ± 0.3 59.8 ± 0.4 62.2 ± 0.2 

Cooperativity 1364 ± 203 1297 ± 222 3389 ± 104 

 

 The MLV 7:3 present a much higher cooperativity than the MLV SA, which is related to 

the fact that in the second case we have the addition of one more molecule in the bilayer, 

making it more heterogeneous and more fluid which also justifies the lower Tm. 

 
 

 
Figure 21 - Normalized count rate vs temperature. 

 

3. Release assay 

In vitro release studies were performed to estimate the release patterns of the 

formulation over a period of 32 hours. Figure 22 summarizes the release profiles for all the 

formulation evaluated. From this figure it is possible to understand two different behaviors (a) 

the behavior of liposomes at pH 7.4 and (b) and the behavior at pH 5. Against what was 

expected, indomethacin release was found to be higher at pH 7.4 than at pH 5. Furthermore, 

liposomes at pH 7.4 steady the amount of indomethacin released after 5 hours while at pH 5 it 

only took 3 hours to achieve this equilibrium. 
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At pH 7.4, the highest release was found for LUV SA whilst the lower release was found 

for MLV 7:3. Also, for all the formulations containing SA it was found that they had the highest 

release rates (0.6 %). Although, at both pHs, the release rates were very small which means 

that the drug is almost not released from the liposomes, which is a desirable characteristic at 

pH 7.4. 

 

 
Figure 22 – In vitro release profiles for MLV 7:3, MLV SA, LUV 7:3 and LUV SA. 

  

Taking in account the results from TEM, in which indomethacin lead to a bilayer 

stabilization, it is possible that the low values of release at pH 5 may happen due to interactions 

with the lipid bilayer. Although these results were not expected they might be positive. If the 

drug is not released at pH 5, when crossing the skin, which possesses a region with pH around 

5, the drug is not released thus not delivering drug to a non-inflamed site. 

Thereby if the formulations reach their target, there they will be disintegrated, 

converted into lysolipids and fatty acids, resulting for sure in the release of the encapsulated 

drugs specifically at the diseased target site. 
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4. In vitro studies 

4.1 Cytotoxicity 

The IC50 was calculated after 24 hours of incubation with the liposomes and the results 

are presented in table 12. During the cytotoxicity studies, a concentration range of 5-100 µM 

of indomethacin was used, however, as shown in table 12 it was not possible to find the IC50 

for indomethacin and several placebo formulations (N.D.). For some cases, although they are 

out of range, it was possible to extrapolate the IC50 values using the aforementioned software.  

Also, for the fibroblast cell line, it was not possible to calculate the IC50 but for MLV 7:3. In 

order to overcome this issue, additional studies may be performed using a wider concentration 

range, for example 1 – 1000 µM of indomethacin. 

 
Table 12 - IC50 values of indomethacin and liposomal formulation for Raw 264.7 and L929. 

 Raw 264.7 L929 

Indomethacin N.D. 2 N.D. 

MLV 7:3 placebo N.D. N.D. 

MLV 7:3 51.29 µM 184.93 µM 

MLV SA placebo 224.39 µM N.D. 

MLV SA 66.83 µM N.D. 

LUV 7:3 placebo 254.68 µM N.D. 

LUV 7:3 73.45 µM N.D. 

LUV SA placebo N.D. N.D. 

LUV SA 87.9 µM N.D. 

 

 For all the cell lines and concentration evaluated, indomethacin did not present an 

IC50 which is in concordance with previous studies. For the fibroblast cell line studied, it was 

only possible to define an IC50 value for MLV 7:3, 184.93 µM while for all the other formulations 

these values were not defined. This means that, in the concentration range evaluated, only 

MLV 7:3 present some toxic effects.  

 On the other hand, for Raw 264.7 macrophage cell line, all the formulations containing 

indomethacin presented an IC50 value in the range studied. However, for some placebo 

formulations, such as MLV 7:3 and LUV SA, it was not possible to determine the IC50 value.  

                                                 

 
2 N.D. – not defined 
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 Based on the analysis performed until this moment, it is possible to conclude that all 

the formulations evaluated had a more marked effect on macrophage than on fibroblasts. This 

effect may happen due to the macrophage ability to internalize invader particles. Macrophages 

have the ability to internalize vesicles from 50 -300 nm by clathrin-mediated endocytosis, 

phagocytosis, macropinocytosis, caveolae-mediated endocytosis and non-clathrin-non-

caveoloae-dependent endocytosis. [143] However, fibroblasts do not have internalization 

mechanisms as developed as macrophage which may explain the results obtained for IC50 

determination. 

 

4.2 Uptake 

Uptake was assessed by fluorescence microscopy after 3 hours of incubation with 

macrophages and the pictures are presented in figure 23. Figure 23 A presents the control and 

figure 23 B and C presents the MLV 7:3 at a concentration of 100 µM. For all the other 

formulations tested it was not possible to find any traces of liposomes. 

Looking at Figure 23, it is possible to notice a change in macrophage conformation after 

the addition of liposomes. In the control, the macrophage are in an activated state, which is 

confirmed by their spread morphology. However, when in contact with liposomes, they present 

a round-shape morphology which seems to indicate an inactivated state. In order to assess if 

the macrophage are in a pro-inflammatory state or not, several assays should be performed to 

determine the presence of TNF α and/or cytokines.   

Regarding, liposomes interaction with the macrophage, apart from the change in 

morphology suffered by the macrophage, it is possible to notice that the liposomes did not had 

the time to penetrate in the nuclei. 
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Figure 23 - Uptake images after 3 hours of incubation with liposomes. A - Control; B Nuclei 

Staining with DAPI; C - MLV 7:3 Liposomes localization. Scale bar 100 µM. 

 

The main reason, why it is not possible to see any liposomes in the majority of the 

samples evaluated is that all the experiments were done based on indomethacin concentrations 

instead of lipid concentration. Due to this, the amount of liposomes might not have been 

enough for the sufficient contrast of green fluorescent signal. 

 

5. In vitro Permeation 

Figure 24 is representative of the permeation patterns of liposomes. It is possible to 

notice that the highest release profiles were found for formulations containing SA, mainly MLV 

SA (1%). The higher values of skin permeation for all the time points were found for MLV SA, 

followed by LUV SA, MLV 7:3 and last LUV 7:3 (0.4%). Observing Figure 24, it is possible to 

observe that it did not occur burst release, which means that the release of indomethacin to 

the donor site was not quick. Also, it is noticeable that MLVs have a higher permeation than 

LUVs. 
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Figure 24 - Permeation profiles of liposomal formulation over 8 hours. Mean and SD of two 

independent assays. 

 

Helleberg et al. described that the peak plasma concentration of indomethacin ranged 

from 2 – 3 µg/mL of indomethacin. [144] In this assay, after 8 hours, the amount of 

indomethacin that crossed the skin is resumed in table 13. It is possible to conclude, that the 

amount of indomethacin that successfully crossed the skin is lower than the plasma 

concentration of indomethacin. Nonetheless this can be explained by the fact that the area 

used to evaluate the permeability was very small (0.64 cm2), and the volume applied was only 

of 500 µL. Thereby, if this area and the volume were increased the liposomes passage through 

the skin and as a consequence the indomethacin concentration should be increased.  

However, in order to increase the amount of indomethacin that actually penetrated 

the skin a technological strategy could be employed. This strategy consists in the production 

of a hydrogel that enhances the penetration through the skin. 

 
Table 13 - Indomethacin concentrations after 8 hours of permeation. 

Indomethacin (µg/ mL) 

MLV 7:3 0.225144 

MLV SA 0.206325 

LUV 7:3 0.137607 

LUV SA 0.177836 
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Chapter 7 – Conclusions 

  

 pH responsive liposomes containing indomethacin were successfully produced during 

this work. In fact, several formulations were produced and characterized. LUVs presented 

higher stability when compared to MLVs. Also, the amount of indomethacin loaded in the 

liposomes was almost the same and this difference was not statistical significant. 

 The release patterns of the formulations evaluated did not present any differences at 

the same pH, following the same pattern. However, when comparing both pHs it is possible to 

notice that at pH 7.4 the amount of indomethacin released is higher than at pH 5. One of the 

explanations for this occurrence is the inability of indomethacin to solubilize at this pH value. 

 Regarding liposomes interaction with cells it was possible to found that all the 

formulations affected macrophage more than fibroblasts, being MLV 7:3 the formulations with 

higher cytotoxicity. Also, Raw 264.7 morphology was highly influenced by the addition of 

liposomes. 

 Taking in account all the work performed in this dissertation, in my opinion, the best 

formulations for the following studies are MLV 7:3 and MLV SA. These formulations present 

controlled sized without extrusion, constant values of EE and LC and are easier to prepare. 

Also, they seem to affect macrophage and pass through the skin at a higher rate which are 

desirable characteristics. 
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Chapter 8 – Future Remarks 

 The liposomal formulations made during this period present some interesting 

characteristics. However, there are always several assays that can be re-done and others that 

could be add for the improvement of the work. They comprise: 

 

1. Liposomal formulations optimization: 

a. Stability enhancement due to liophilization; 

 

2. In Vitro Assays 

a. Cytotoxicicty evaluation using lactose dehydrogenase (LDH) cytotoxicity assay 

for the two cell lines tested (Raw 264.7 and L929); 

b. Repeat the assays with L929 to achieve statistical significance; 

c. Perform uptake assays with higher sensitivity for both cell lines, for example 

flow cytometry; 

d. Determination of macrophage inflammatory state using biomarkers for TNF α. 

IL-1 and IL-6; 

e. Quantification of indomethacin released in the cells by high-performance 

liquid chromatography. 

 

3. In Vivo Assays 

a. Evaluation of the inflammation process in an animal model, mice, after 

contact with liposomes. 
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Appendix 

 
Figure 25 - Raw 264.7 viability after 24 hours of incubation with different liposome concentration, mean and standard deviation of two independent 

assays with 5 replica each. 
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Figure 26 – L929 viability after 24 hours of incubation with different liposome concentration, mean and standard deviation 5 replica.  
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