
Faculdade de Engenharia da Universidade do Porto

Mobile Router

Control Plane

Daniel Guedes da Costa Neves Carrapa

Project Report developed for the
Integrated Masters in Computer and Electrical Engineering

Major in Telecommunications

Supervisor: Prof. Dr. Manuel Alberto Pereira Ricardo
Co-Supervisor: Filipe Miguel Monteiro da Silva e Sousa
Co-Supervisor: Gustavo João Alves Marques Carneiro

June 2009

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Open Repository of the University of Porto

https://core.ac.uk/display/302950247?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

ii

© Daniel Carrapa, 2009

iv

v

Resumo

Grandes redes emalhadas que providenciam acessos de banda larga à internet e meios

para comunicação de grande débito a terminais em áreas metropolitanas precisam de uma

arquitectura robusta e expansível usando nós de encaminhamento eficientes entre os

terminais. Os protocolos de encaminhamento actuais são incapazes de lidar com redes de

milhares de terminais eficientemente e com fiabilidade. Esta dissertação apresenta um

projecto de implementação do plano de controlo de um desses nós usando um novo protocolo

de encaminhamento para realizar uma rede onde se procura dar acessos de banda larga a

milhares de clientes de um sistema de transportes públicos de maneira segura e fiável.

A implementação foi feita através da emulação da versão de simulação do protocolo e

análise do seu comportamento numa testbed. Os resultados mostram a adaptabilidade do

protocolo a situações de mobilidade e mudanças na topologia da rede.

Este documento apresenta a tese de dissertação do Mestrado Integrado de Engenharia

Electrotécnica e de Computadores. Neste documento serão apresentadas soluções existentes

para os ambientes actuais de encaminhamento móvel e o funcionamento e resultados da

implementação de uma nova solução.

vi

vii

Abstract

Large mesh networks to provide broadband access to the internet and high data rate for

other means of communication to metropolitan areas terminals need a robust and scalable

architecture using efficient routing nodes between terminals. Current routing protocols are

incapable of dealing with networks of thousands of terminals efficiently and reliably. This

dissertation presents a project to implement the control plane in one of such nodes using a

new routing protocol to achieve a network that provides broadband access to thousands of

clients in a public transportation system in a robust, safe and reliable way.

The implementation was achieved via emulation of a simulated version of the protocol

and analysis of its behavior in a testbed scenario. The results show the adaptability of the

protocol to mobility and changes in the network topology.

This document presents the dissertation thesis of the Integrated Master Program in

Electrical and Computer Engineering. In this document existing solutions for mobile routing

scenarios will be presented and also the working and results of a new solution.

viii

ix

Index

Resumo... v

Abstract .. vii

Index... ix

Index of figures .. xi

Index of tables ..xiii

Abbreviations...xv

1. Introduction ... 1

1.1. Background... 1

1.2. Work Objectives ... 2

1.3. Relevant Contributions ... 2

1.4. Structure ... 2

2. State of the Art ... 3

2.1. Routing in mobile and wireless networks .. 3
2.1.1.Multi Protocol Label Switching (MPLS) .. 3
2.1.2.OLSR ... 6
2.1.3.AODV.. 10
2.1.4. DYMO ... 13
2.1.5. TRILL.. 17
2.1.6.Wireless Metropolitan Routing Protocol ... 20

2.1.6.1. Overview .. 20
2.1.6.2. The HELLO message ... 23
2.1.6.3. The TC message.. 23
2.1.6.4. The MC message ... 23
2.1.6.5. The IC message... 24

2.1.7. Summary ... 25

2.2. Network Simulator 3 ... 25

3. Work description and analysis ..27

3.1. Problem Characterization... 27

3.2. Methodology .. 28

3.3. Adopted Solution ... 29

3.4. Code structure.. 31

x

4. Work Evaluation ...37

4.1. First test .. 37

4.2. Second and third tests .. 41

4.3. Second test ... 42

4.4. Third test ... 47

4.5. Discussion of Results .. 58

5. Conclusions...59

5.1. Revision of the work developed ... 59

5.2. Relevant contributions and results .. 59

5.3. Future Work .. 60

References ... 61

xi

Index of figures

Figure 1 – MPLS Mapping between routing and forwarding tables [3]............................... 4

Figure 2 - MPLS header and encapsulation in a packet header [4] 5

Figure 3 - The OLSR Packet format [7] .. 7

Figure 4 –The Hello message in OLSR [7].. 8

Figure 5 – The TC message in OLSR [7] .. 8

Figure 6 – The RREQ message in AODV [10] ..11

Figure 7 – The RREP message in AODV [10] ..12

Figure 8 - The RERR message in AODV [10] ..12

Figure 9 – The RREQ message in DYMO [12]..14

Figure 10 – The RERR message in DYMO [12] ..15

Figure 11 – The TRILL frame format [13]...17

Figure 12 – The TRILL header [13] ..17

Figure 13 – TRILL Data encapsulation [13] ...19

Figure 14 – Flow of information and messages between control (WMRPAgent) and data planes

...21

Figure 15 – WMRP header...22

Figure 16 – WMRP Hello Message ..23

Figure 17 – WMRP TC Message ...23

Figure 18 – WMRP MC Message ...23

Figure 19 – WMRP IC Message ..24

Figure 20 – Frame format in 802.3 type II [16] ..29

Figure 21 – Class diagram for WMRP in ns3 ..31

Figure 22 – Sequence diagram for sending a WMRP message in ns332

Figure 23 – Sequence diagram for receiving a WMRP message in ns333

Figure 24 – Class diagram for physical implementation of WMRP in ns3...........................34

Figure 25 – Sequence diagram for receiving a physical WMRP message in ns335

Figure 26 – Sequence diagram for transmitting a physical WMRP message in ns3................36

xii

Figure 27 – First test topology... 37

Figure 28 – Second test topology.. 42

Figure 29 – Third test topology.. 47

xiii

Index of tables

Table 1 – Test 1 Devices ..38

Table 2 – Test 1 Capture:...38

Table 3 – Test 1 Routing table log...40

Table 1 – Tests 2 and 3 Devices and node IDs. ..41

Table 5 – Test 2 Capture:...42

Table 6 – Test 2 Routing table log in Rbridge3. ...44

Table 7 – Test 2 Routing table log in Rbridge2. ...45

Table 8 – Test 2 Routing table log in Rbridge4. ...46

Table 9 – Test 3 Capture eth1: ..48

Table 10 – Test 3 Capture eth0: ...50

Table 11 – Test 3 Routing table log in Rbridge3...53

Table 12 – Test 3 Routing table log in Rbridge2...54

Table 13 – Test 3 Routing table log in Rbridge4...56

xiv

xv

Abbreviations

List of abbreviations (by alphabetic order)

AF Address Family
ANSN Advertised Neighbor Sequence Number

AODV Ad Hoc On Demand Vector Routing

ARP Address Resolution Protocol

CPU Central processing Unit

CR-LDP Constraint-based Routing Label Distribution Protocol

DHCP Dynamic Host Configuration Protocol

DRB Designated Rbridge

DYMO Dynamic MANET On-Demand

FEC Forwarding Equivalent Class

GB Giga Bytes

GNU GNU is Not Unix

GPL General Public License

HC Hop Count

Htime Hold Time

IC IP Control

ID Identifier

IEEE Institute of Electrical and Electronics Engineers

IETF Internet Engineering Task Force

Inc Incorporated

IS-IS Intermediate System to Intermediate System

IP Internet Protocol

LC Logical Clock

LDP Label Distribution Protocol

LER Label Edge Router

LSP Link State PDU

LSR Label Switching Router

MAC Media Access Control

xvi

MANET Mobile Ad Hoc Network

MC MAC Control

MPLS Multiprotocol Label Switching

MPR Multipoint Relay

MS Message Size

Msg Message

MSN Message Sequence Number

NetDevice Network Device

NID Neighbor Identifier

NS3 Network Simulator 3

NS2 Network Simulator 2

OLSR Optimized Link State Routing Protocol

Orig Originator

OSI Open Systems Interconnection

P2P Peer to Peer

PDU Protocol Data Unit

PDA Personal Digital Assistant

QoS Quality of Service

RAM Random Access Memory

Rbridge RoutingBridge

REBlock Route Element Block

RERR Route Error

RREP Route Reply

RREQ Route request

RSVP Resource Reservation Protocol

TC Topology Control

TRILL Transparent Interconnection of Lots of Links

TTL Time to Live

UDP User Datagram Protocol

VLAN Virtual Local Area Network

VPN Virtual Private Networks

Vtime Validity Time

WiMetroNet Wireless Metropolitan Network

WMAN Wireless Metropolitan Area Networks

WMRP Wireless Metropolitan Routing Protocol

WNMT Wireless Network for Metropolitan Transports

1

1. Introduction

1.1. Background

Currently mobile devices and mobile hardware using heterogeneous wireless

technologies are increasing very rapidly. Cell-phones, PDAs, laptops and many other devices

are growing in popularity inside big cities where the use of public transportation is a

necessity due to high density of population. New problems arise when dealing with

metropolitan networks as large as the ones in large cities to provide access to such devices.

The search for a protocol to adapt to tens of thousands of mobile devices inside a

metropolitan area with vehicular access is one of the most significant aspects of

communication inside developed cities. The possibility of providing such access by a public

transportation system to its vehicles, stations and passengers is trying to be achieved through

the WiMetroNet, a Wireless Metropolitan Network. [1]

The WiMetroNet is a network designed especially for transportation systems. As the

system has vehicles and stops, if a node is to be associated to each vehicle or stop that node

is the WiMetroNet’s interface with public terminals. These nodes have to be especially

designed to be able to deal with different technologies. The chosen node for this network

was the Rbridge that allows for traffic for OSI Model layer 2 and layer 3. Rbridges connected

to each other maintain the connections from terminals to the network and consist of the core

of the WiMetroNet. Inside the core an efficient routing protocol must be able to deal with

thousands of terminals and up to two thousand Rbridges maintaining active routes. The

protocol chosen for this network was Wireless Metropolitan Routing Protocol (WMRP). This

protocol has shown better results in simulation than current routing protocols. To deal with

the communications inside the network with data a data plane was developed based in MPLS,

a network technology that provides fast and efficient data transmission.

2

1.2. Work Objectives

The WMRP is currently only implemented in a simulated environment. The desired

solution is to know if the WMRP can successfully be implemented in real machines to support

testbed scenarios correctly. This means that the solution would evaluate the control plane’s

reliability under scrutiny. Because the final solution includes a control plane and a data plane

the solution developed here would only solve part of the problem.

1.3. Relevant Contributions

The chosen way to approach this evaluation was emulating by using machines running

the simulator with only one Rbridge inside each one, and the interfaces of the underlying

machine would provide for interfaces to physical networks.

1.4. Structure

This report is structured in five chapters. It begins by an introductory chapter that

reveals the purpose of this project and its results. The second chapter will evaluate existing

solutions for routing protocols and their problems adapting to the desired network. It will

also briefly address the chosen routing protocol to implement, as well as the tool used for

implementing the protocol, in order to understand where the solution had to be adapted to.

The third chapter will present the work developed, the initial problem to be solved, how the

solution was devised and a schematic that presents how the solution works. In the fourth

chapter, tests to the implementation are described and their results are analysed. The final

chapter provides conclusions about the work developed its interest for the solution of the

described problem and future works that can in turn provide a better solution.

3

2. State of the Art

In this chapter we will review two important parts of the problem, the routing

protocols that can be used in the WiMetroNet and the simulator for which it has been

developed.

2.1. Routing in mobile and wireless networks

In this section we review existing protocols and network technologies that are related

to the problem at hand. In the end the adopted solution will be presented, the Wireless

Metropolitan Routing Protocol. After that a few comparisons between them and analysis will

show what some of their problems are and which aspects of them could be chosen to be used

in the current solution for the desired network.

2.1.1. Multi Protocol Label Switching (MPLS)

We will first consider MPLS as it is one of the current network technologies available

with the less overhead when bridging frames.

MPLS is a network technology considered to act at an OSI Model layer connoted with

the term “layer 2.5” in that it provides union between different layer 3 protocols and layer 2

protocols. It basically adds a header to the packet containing an identifying label. MPLS

labels can be stacked to be able to tunnel through different networks.

MPLS is considered in [2] a solution to scalability and enables significant flexibility in

routing. Due to its hierarchical possibilities it can easily enable high quality end-to-end

service features that are required in different applications like virtual private networks.

Traffic engineering made these benefits of MPLS networking possible. And nowadays the

Constraint-based Routing Label Distribution Protocol (CR-LDP) and the ReSource Reservation

Protocol (RSVP) are the signaling algorithms used for traffic engineering.

4

Figure 1 – MPLS Mapping between routing and forwarding tables [3]

In MPLS, the control and forwarding components are connected but function

independently. The label is swapped based on the forwarding table that may be different

from the routing table, depending on the forwarding table construction. As MPLS was created

at a time in which label switching was faster than a routing table lookup, it was a faster way

for packets to transverse large mesh networks with a lot of intermediary nodes; at that time

routing table lookup was made in the CPU while label lookup could be made in the switch

fabric. Because label lookup can be made at a lower level in the OSI model it is still faster

than a routing table lookup.

The label in MPLS is the identifier of a forwarding equivalence class (FEC), an

identifier of packets that share common characteristics, usually meaning they should be

assigned the same label. These classes will correspond to a particular Label Switched Path

(LSP).

MPLS acts within areas in the network, between an ingress node and egress node.

Ingress nodes have identifying labels that are read when a packet reaches an intermediary

node; it is then forwarded to the corresponding egress node with the identified label, where

the MPLS header is decapsulated. The entry and exit nodes are called the Label Edge Routers

(LER) which introduce a new MPLS header with a new label in the ingress node and remove it

in the egress (exit) node.

The intermediary nodes, which only perform label switching, are called Label

Switching Routers (LSR, in accordance with their functionality). The path corresponding to a

5

particular ingress node, intermediary nodes and egress node that share a label is called a LSP

which doesn’t mean that path cannot be used by other labels.

MPLS will apply when a packet arrives at an ingress node, a LER, in which a new label

will be assigned to the packet according to its FEC and will forward it to the corresponding

next LSR in the LSP. Each node in the LSP will examine the topmost label and according to

the contents on that label the node will perform a different action: a swap, in which a label

is switched with a new label and forwarded to the corresponding LSP; a push, in which a new

label is introduced in the packet, creating a new MPLS layer which permits hierarchical ways

of routing the packets permitting tunnels through different domains; and a pop, in which the

topmost label is removed possibly ending the MPLS “tunnel” (usually attributed to the egress

node) or a lower layer of MPLS. The default label assignment is the IETF standard LDP which

sets and maintains the LSPs. Ensuring that adjacent nodes share a common FEC to label

binding and allowing the creation of LSPs.[3] The forwarding table is then constructed based

in the label configuration and the routing table (since the label configuration is based in the

routing table).There are different reasons for the binding of certain nodes with certain labels

usually based in routing parameters there are other possible reasons, like data traffic.

The following picture shows us the position of the MPLS header in a packet, and its

encapsulation:

Figure 2 - MPLS header and encapsulation in a packet header [4]

Therefore, MPLS can deal with structured addresses but doesn’t support

automatically configured addresses; the label doesn’t have to be connected to a layer 3

address however. It can control flooding as it has a TTL field. The scope of addresses is link

based. And it can function flexibly under different layer 2 protocols.

The use of 20 bits for labels and the method of functioning mean it can provide

communication for thousands of terminals. Its topology isn’t structured and the fast label

switching methods allow for improved performance. It is capable of supporting traffic

6

engineered paths with differentiation in service thanks to the label stacking, which provides a

greater control of QoS. However, it does not support mobility under the current versions at

the control plane because of the use of RSVP that needs some routing protocol to determine

routes.

To summarize, MPLS can solve the problem of scalability, which means fulfilling the

requisite to support more than ten thousand terminals inside a metropolitan area; the

problem of flexibility, which means fulfilling the requisite of supporting different wireless

technologies; the problem of flooding, which means fulfilling the requisite of dealing and not

spreading broadcast traffic; although it cannot deal with the requisite of mobility and the

dynamic configuration of terminals and nodes it is also important to note that the

configuration protocol of MPLS needs routing protocols in each node participating in the

network. Therefore the data plane part of MPLS was considered a partial solution for the

problem and due to the easiness of separating data and control planes in MPLS it would only

be necessary to build a control plane.

2.1.2. OLSR

We will now consider a routing protocol that can solve some problems regarding the

routing problems in WiMetroNet.

OLSR is a proactive link-state routing protocol intended for mobile ad hoc networks

although it can be used in different wireless ad hoc networks. It works as a protocol in which

special nodes, MPRs (Multi Point Relays) are the only nodes that forward link state

information.

It was made to decrease the amount of messages transmitted during a flooding

process to achieve convergence in the network due to the native regular exchange of

topology. MPRs are chosen by other nodes in its symmetric 1-hop neighborhood to perform

these tasks and they declare the links to their MPR selectors. MPRs send control messages

regularly to declare they are the chosen MPRs and they give the ability to reach their

selectors to the rest of the network. OLSR works independently of the link-layer protocol,

therefore it can work under different underlying link-layers. The use of MPRs, as the only

nodes retransmitting control messages, minimizes flooding and overhead in the convergence

process. It only requires partial link state to be flooded to provide the shortest path route.

The protocol amount of messages transferred can be decreased by reducing the time interval

between transmissions of control messages in order to decrease overhead, which results in a

higher convergence time. This protocol is completely distributed and requires no central

entity to control the topology or to monitor the network status. It also doesn’t need reliable

delivery of messages due to frequent exchange of control messages (mentioned above that

this time may be altered), nor sequenced messaging because it possesses a sequence number

7

that enables nodes to identify and compare messages arriving. The protocol also doesn’t

interact with data sent in packets; it only works in a control plane.

In [5] we see that the algorithm of the selection of MPRs is close to the optimal

solution. The number of isolated points is very important in that it may lead to a lack of

robustness. Each node chooses a MPR set between its 1-hop neighbors in a way that covers all

symmetric 2-hop nodes. From that subset the choice is made of the set with less MPRs to

decrease control traffic to make shortest hop forwarding paths.

In [6] we can see a brief analysis and examples of MPR selection algorithms which

may result in better or worse convergence times (depending on the number of nodes).

While the protocol is working each MPR node must maintain information about its

neighbors which are called “Multipoint Relay Selector set”. This information is obtained by

the way of Hello messages. Broadcast messages are only to be retransmitted by MPRs and

only if it has not received it yet. The set of nodes that are eligible for MPRs can change

during the course of mobility scenarios which is continuously updated by the Hello messages.

Each OLSR packet has the same structure:

Packet Length Packet Sequence Number

Message Type Vtime Message Size

Originator Address

Time to Live Hop count Message Sequence Number

MESSAGE

Message Type Vtime Message Size

Originator Address

Time to Live Hop count Message Sequence Number

MESSAGE

Figure 3 - The OLSR Packet format [7]

From the packet header some fields are important to our problem:

Packet Sequence Number: This field permits nodes to identify older messages and so realize

what information is the most reliable from messages they have received.

Vtime: This field is important in the way it informs the node of the time the information

contained in the packet is valid. This field can be changed but if it is to change the time

between Hello messages has to be accordingly regulated. It is important to note that the

higher the validity time, usually to avoid traffic flooding, the less degree of convergence can

be achieved in the network.

8

Time to Live: This field contains the maximum number of hops a message can be

retransmitted, it decreases any time the message is retransmitted. A message with TTL 1

should not be retransmitted. This field can limit flooding radius.

The format of the HELLO message is as follows:

Reserved Htime Willingness

Link Code Reserved Link Message Size

Neighbor Interface Address

Neighbor Interface Address

. . .

Link Code Reserved Link Message Size

Neighbor Interface Address

Neighbor Interface Address

Figure 4 –The Hello message in OLSR [7]

From this message the fields important to our problem are:

HTime: This field is the time between Hello messages, which means the time that will pass

before the next Hello message is sent from this particular neighbor.

Neighbor Interface Address: This field contains the address of an interface of a neighboring

node. It permits the sender to obtain, through the answer to this message, its one and two

hop neighbors to then select as mentioned before between the set of one hop neighbors the

ones that provide best routes to the two hop neighbors.

The Hello message serve three tasks: link sensing, neighbor detection and MPR

selection signaling.

The format of the TC message is as follows:

ANSN Reserved

Advertised Neighbor Main Address

Advertised Neighbor Main Address

. . .

Figure 5 – The TC message in OLSR [7]

From this message the fields important to our problem are:

ANSN: A sequence numbered which allows for nodes to know if the messages received are the

most recent or not.

9

Advertised Neighbor Main Address: This field provides receiving nodes the main address of

neighboring nodes of the sender.

TC messages are sent by each MPR and contain neighbor state information that is

retransmitted throughout the network, with the advantage of MPRs being the only nodes to

retransmit them. Such messages contain the information that allows nodes to create routing

tables so they must be refreshed accordingly to a TC_interval, maximum time between the

updates from TC messages.

As it was mentioned earlier this is a proactive protocol, TC messages are sent

proactively in a way that allows for routing tables to contain updated information before use

which means it has a low time of route discovery. Routing overhead is not directly

proportional to the number of routes inside the network but is influenced by the method of

choice of MPRs. The times of validity of information and of maintenance of information from

Hello and TC messages can be changed inside the messages which allows for a certain degree

of flexibility, we have mentioned before that this flexibility will also compromise the degree

of reliability of the information in the routing tables.

In relation to the method of selection of the MPR it is mentioned in [8] an underlying

robustness problem regarding the fact that, due to this feature, under a seventy five percent

of coverage from a given MPR to isolated nodes in a two hop neighborhood if one of the MPRs

fails there will be a great probability that one of those nodes is not able to receive messages

from the given node.

In terms of security there are 2 concerns with this protocol:

It is mentioned in [9] that to prevent ad hoc routing messages from modification,

impersonation, replay attacks and more generally from all attacks related to wireless

networks, integrity and authentication services are required. It is noticed that the

confidentiality of messages is not required since routing messages are intended to all network

nodes. For this purpose, cryptographic mechanisms are required, which means that some sort

of certificate for authentication and digital signature for integrity is needed. And even so,

integrity and authentication of routing messages are probably insufficient to prevent from all

possible attacks. The example of dishonest nodes that can act attacks even once that they

have been authenticated with valid certificates. The selfish and wormhole attacks which have

been simulated and evaluated in that paper represent an example of such attacks. Such

attacks have been referred to Byzantine attacks and concern the cases when authenticated

nodes cannot be trusted and don’t act as defined by the protocol specifications.

To summarize, OLSR can solve the problem of mobility, which means fulfilling the

requisite of mobility between nodes and terminals and between nodes and that terminals are

not responsible for signaling the network during mobility scenarios; the problem of automatic

configuration, which means fulfilling the requisite of the automatic configuration of nodes;

the flexibility problem, which means fulfilling the requisite of supporting different wireless

technologies; nevertheless the protocol does not solve the scalability problem not being able

to support a network of around ten thousand terminals and around one thousand and five

10

hundred nodes (MPRs) and default MPRs selection and time values for the variables on the

messages would result in a big overhead,.

2.1.3. AODV

Specially designed for mobile ad-hoc networks, AODV is a distance vector reactive

routing protocol that enables dynamic, self-starting multi-hop routing among mobile nodes

participating in the network. [10]

As was mentioned, AODV is a reactive protocol, this means it does not maintain

updated information of any routes but obtains quickly routes when activated. It offers

mobility solution signaling nodes in the mobility scenario when links are broken so that they

can correct the routes through which messages are sent.

One unique characteristic of the AODV is the use of destination sequence numbers for

the route entries in the routing table, which results in loop-freedom that is easy to achieve

computationally. This means that when a route is to be chosen, if there is more than one

choice, it will be sent through the route with the highest sequence number.

AODV uses RREQ, RREP and RERR through UDP traffic to obtain the routes only when

needed. When a terminal has connection communication with another one it does not use

AODV (AODV works at control plane, not data plane); when it does not have such connection

it works as follows: When a route is needed the source router sends a RREQ in broadcast with

broadcast-id, source, destination, source sequence number, destination sequence number

and hop count, this last one is incremented every time the RREQ is retransmitted, the

message is then forwarded by intermediary nodes. A route can be determined when the

message reaches the destination or a node with an updated route to the destination. An

updated route means the route entry for the target destination has an associated sequence

number as great as or greater than the one contained in the RREQ. The RREP is then sent to

the source node, while caching the route to the source to make the RREP unicast from the

destination and intermediary nodes. The source node uses the route to destination with the

least hops. When a packet to a target destination is lost a link break is detected in the route

and so the source node transmits a RERR message indicating that the destination is no longer

reachable for that particular route. A list of precursors is used to enable the proper

functioning of the RERR mechanism. This list contains neighbors that are likely to use current

node as next hop in routes it “knows” and is usually filled up during the processing of a RREP

message. Fields in a routing table entry in AODV are as follows [10]: Destination IP address,

Destination Sequence Number, Valid Destination Sequence Number flag, other state and

routing flags (e.g., valid, invalid, repairable, being repaired), Network Interface, Hop Count

(number of hops needed to reach destination), Next Hop, Next Hop, List of Precursors,

Lifetime (expiration or deletion time of the route). Sequence numbers guarantee loop

11

freedom, so, each node maintains its own sequence number. That number is changed in one

of two situations: Immediately before a node originates a route discovery, it has to increment

its own sequence number to prevent conflicts with previously established reverse routes

towards the originator of a RREQ and also in the moment before a destination node originates

a RREP in response to a RREQ, it has to update its own sequence number to the maximum

between its current sequence numbers and the destination sequence number in the RREQ

packet.

The RREQ message is as follows:

Type J R G D U Reserved Hop Count

RREQ ID

Destination IP Address

Destination Sequence Number

Originator IP Address

Originator Sequence Number

Figure 6 – The RREQ message in AODV [10]

Of these fields it is important to note the Hop count, which enables the originator to

establish the number of hops necessary to achieve the node that is currently handling the

message; the RREQ ID, which enables nodes to identify the RREQ in combination with the

Originator IP Address; and the Originator Sequence Number, which informs of the sequence

number to be used in the entry pointing towards the originator

12

The RREP message is as follows:

Type R A Reserved Prefix Size Hop Count

Destination IP Address

Destination Sequence Number

Originator IP Address

Lifetime

Figure 7 – The RREP message in AODV [10]

Of these fields it is important to note the Hop Count which enables both the

originator and the destination of the number of hops between them, or in the case of

Multicast, the number of hops between the closest member of the multicast to the originator;

the destination sequence number, which allows for the updated information about the

destination that the originator node needs; and the Lifetime which informs nodes receiving

the RREP how long is the information in the message valid.

The RERR message is as follows:

Type N Reserved Hop Count

Unreachable Destination IP Address

Unreachable Destination Sequence Number

Additional Unreachable Destination IP Address

Additional Unreachable Destination Sequence Number

Figure 8 - The RERR message in AODV [10]

Of these fields it is important to note the N flag which informs receiving nodes that

the link is down but is in repair, so the route should not be deleted; and the unreachable

destination sequence number so that receiving nodes can compare to other messages

regarding such destinations.

The simplicity of AODV comes from the distance vector routing which is easy to

implement and the consumption of bandwidth being lower than proactive protocols, and the

negative aspect comes from the time to establish a connection, the possibility of one RREQ

message obtaining several RREP messages can lead to some control overhead.

13

In a simulation [11] comparing DYMO to AODV (DYMO being the successor of AODV) it

is clear that AODV Route Discovery Latency is greater since it uses Expanding Ring Search

during Flooding. AODV has higher response time and routing overhead in the beginning than

DYMO.

To summarize, AODV can solve the problem of mobility, which means fulfilling the

requisite of mobility between nodes and terminals and between nodes but in current AODV

scenarios terminals are responsible for signaling the network during mobility scenarios; it can

also solve the problem of automatic configuration, which means fulfilling the requisite of the

automatic configuration of nodes, the flexibility problem, which means fulfilling the requisite

of supporting different wireless technologies; nonetheless the protocol cannot solve the

scalability problem not being able to support a WiMetroNet scale network, nor the flooding

problem, which means fulfilling the requisite of dealing with and not spreading broadcast

traffic because it lacks the TTL field.

2.1.4. DYMO

We will now consider a routing protocol that solves some mobility problems in routing

in the WiMetroNet.

DYMO is a primarily reactive distance vector routing protocol although it can be

proactive in maintaining routes updated. It is a successor of AODV in the way that it shares

many similarities but it has been enhanced to improve routing scenarios. It is noted that

DYMO enables reactive, multihop unicast routing among nodes participating in the same

network [12]. It is used for mobile routers to “build” a mobile Ad Hoc network. This protocol

uses some messages similar to the ones in AODV that are exchanged between routers to

ensure network topology differing in a few fields and processing of such messages. Routers

using DYMO who do not know of a particular destination send RREQ messages through every

interface and routers between the source of the message and the destination use this

message to establish routes to both end and passing routers because the RREQ message

contains a list of all the nodes it has passed through. The destination sends RREP message as

response to RREQ to the destination ensuring this way that destination has a route to the

source, and equally every intermediate node learns the route to the target destination in

case it was not yet known. The dynamics of this protocol comes from the maintenance of the

routes. Routes are considered active as packets flow through the routes which means that

whenever a packet is successfully forward that route lifetime is extended. Whenever a

message is lost due to the end of hop limit, the route is considered broken, a route error

14

message is sent to the source router, and the route is deleted from the routing table, if new

packets are to be sent to this node a new RREQ is used to establish a new route.

Some noticeable features about DYMO are: the fact that it uses sequence numbers

(same as AODV) to ensure loop freedom and prevent the use of outdated routing information;

it supports nodes using multiple interfaces in the MANET; it can perform in nodes that do not

possess great memory features since only active routes are maintained in memory; it gives

the ability to other nodes to perform route discovery if they are connected to such nodes,

even in non-participant interfaces; it needs to be configured to obtain routes to a destination

to provide to certain terminals; its routing algorithm can be used in a different network layer

although that may require changes in the message formats.

We now consider the RREQ and RREP messages which are similar in format but differ

in content:

IP Header

IP.SourceAddress

IP.DestinationAddress = LL-MANET-ROUTERS

IP TTL/HopLimit = 255

UDP Header

Destination Port = MANET

Message Header

RREQ-type 0 1 0 0 0 0 0 0 Msg-size = 23

Msg-hoplimit

Message TLV Block

Msg-tlv-block-size = 0

Message Body – Address Block

Number Addrs=2 1 0 0 0 0 Rsv HeadLength=3 Head

Head (cont.) Target.Tail Orig.Tail

Message Body - Address Block TLV Block

Tlv-block-size = 6 DYMOSeqNum-type 0 1 0 1 0 0 Rsv

Index-start = 1 Tlv-length = 2 Orig. Seq Num

Figure 9 – The RREQ message in DYMO [12]

From these fields it is important to note that:

15

-Msg-hoplimit is a field where the number of hops the message can perform can be limited.

-Target.tail is a field indicating the address of the target node for this message, which in the

RREQ is the destination and in the RREP it is the source.

-Orig.tail is the field indicating the address of originator node of this message AND a prefix,

which in the RREQ is the source node and its prefix, and in the RREP it is the destination node

address and prefix for which a RREP is being generated.

It is noticeable that there are a lot of fields that can be attached to the message to

condense information. One important note about the creation of the RREQ messages is that

whenever a DYMO is about to create a RREQ message it has to increment its own sequence

number by one to ensure the information is considered updated.

We now consider the RERR message:

IP Header

IP.SourceAddress

IP.DestinationAddress = LL-MANET-ROUTERS

IP TTL/HopLimit = 255

UDP Header

Destination Port = MANET

Message Header

RERR-type 0 1 0 0 0 0 0 0 Msg-size = 15

Msg-hoplimit

Message TLV Block

Msg-tlv-block-size = 0

Message Body – Address Block

Number Addrs=1 0 0 0 0 0 Rsv

UnreachableNode.Address

Message Body - Address Block TLV Block

TLV-blk-size=0

Figure 10 – The RERR message in DYMO [12]

16

Fields worth mentioning are:

-IP.DestinationAddress is the field that contains the address to which this message will be

forwarded to; in unicast this means the NextHopAddress, the adjacent DYMO router on the

specified route

-HopLimit is the field which contains the number of nodes this message can pass through;

-UnreachableNode.Address which is the field where the address and prefix of the unreachable

node, this field can contain several addresses.

One important benefit in DYMO is the Hop count field that allows for greater control

on traffic to limit the overuse of the bandwidth.

In a simulation in [11] comparing DYMO to AODV it was observed that Route Discovery

Latency in DYMO is lower than AODV, that usually DYMO has the lowest response time. It

possesses routing overhead at the beginning of a session and such routing overhead is higher

than AODV’s. It is also observed that flooding in DYMO doesn’t surpass 10 hops, but there are

no route discoveries when the path is known; it sends more routing traffic than AODV due to

path accumulation. DYMO has higher route discoveries and bigger message sizes because of

the use of REBlock attachments (as was seen earlier in the message format). It is concluded

that performance in smaller networks is better than larger ones where routing traffic

overhead is significantly increased.

To summarize, DYMO can solve the problem of mobility, which means fulfilling the

requisite of mobility between nodes and terminals and between nodes and terminals being

responsible for signaling the network during mobility scenarios; the flooding problem, which

means fulfilling the requisite of dealing with and not spreading broadcast traffic because it

has a Hop count field; it can also solve the problem of automatic configuration, which means

fulfilling the requisite of the automatic configuration of nodes; the flexibility problem, which

means fulfilling the requisite of supporting different wireless technologies; even so the

protocol cannot solve the scalability problem not being efficient supporting a WiMetroNet

scale network.

17

2.1.5. TRILL

TRILL is a layer 2 network protocol that provides routing in large networks by

changing the layer 2 frame in order to provide more direct access between Rbridges. The use

of Rbridges is necessary to provide a scalable solution using a link-state protocol. Each

Rbridge possesses a nickname that is derived from the 6-octet IS-IS System ID. Rbridges learn

each others nicknames through a dynamic nickname acquisition protocol.

TRILL establishes connection between any two Rbridges in the network forming

tunnels, in which those two Rbridges are each end of the tunnel. This tunnel has the

following characteristics:

Communication is obtained when a terminal wants to send a frame towards another

terminal providing the Ethernet address, upon arriving to the first Rbridge in the border of

the network (ingress Rbridge) it will encapsulate the frame to the nearest Rbridge of End

station destination providing its nickname and the nickname of that Rbridge (egress Rbridge).

Traffic between these Rbridges will use an outer Ethernet header in a way that Rbridges will

retransmit the frame from one another until the arrival at the nicknamed egress Rbridge.

This is an example of a TRILL frame:

Outer Ethernet Header

TRILL Header

Inner Ethernet Header

Ethernet Payload

Ethernet FCS

Figure 11 – The TRILL frame format [13]

The TRILL header is as follows:

V R M Op-Length Hop Count

Egress Rbridge Nickname Ingress Rbridge Nickname

Figure 12 – The TRILL header [13]

18

A TRILL frame has 5 different headers, of which the top 3 are the most descriptive

ones. The top header is link-specific (can be used in different technologies); the second

header is the TRILL header that uses a hop count in order to provide loop mitigation and is

independent of VLANs by using a separate VLAN tag, the nickname of the egress Rbridges

(destination Rbridge, which is the Rbridge of the VLAN where the destination terminal is),

and the nickname of the ingress Rbridge (source Rbridge, which is the Rbridge of the VLAN

where the source terminal is).

TRILL needs Rbridges in bridged VLANs to run the IS-IS protocol to elect Rbridges on

each bridged VLAN as the “Designated Rbridge” (DRB), which is the designated router similar

from IS-IS protocol, and as in that protocol the DRB can give a pseudo node to the link, issue

an LSP on behalf of that pseudo node, and specify to Rbridges on that link which VLAN is to

be used for communications. The DRB is also responsible for encapsulating and decapsulating

all traffic to and from the VLAN it is designated, or delegating that task to one of the

Rbridges in the VLAN. The Rbridge that is responsible for forwarding in a VLAN must learn

the address the terminals have in order to know to which VLAN forwarder Rbridge to send

frames to and also the terminals in its own VLAN. It can learn such information in these ways

according to [13]. For the links in its own VLAN it will learn from the source address from

frames it receives, similar to bridges, or through a layer 2 explicit registration protocol; to

learn the addresses in other VLANS it looks at the ingress Rbridge nickname in the header and

VLAN and source addresses of the inner frame of TRILL frames it receives.

When a frame is in transit inside the network it has the following fields:

19

Outer Ethernet Header:

TRILL Header:

Inner Ethernet Header:

Payload:

Frame Check Sequence:

Figure 13 – TRILL Data encapsulation [13]

To summarize, TRILL can solve the problem of flexibility, which means fulfilling the

requisite of supporting different wireless technologies; the problem of flooding, which means

fulfilling the requisite of dealing and not spreading broadcast traffic, because the header has

a Hop Count field as was mentioned before; it does not solve the problem of scalability

because it cannot support efficiently the number of terminals and Rbridges necessary to the

network and it does have a very large header which would result in a serious problem of

Outer Destination MAC address (RB4)

Outer Destination MAC Address Outer Source MAC Address

Outer Source MAC Address (RB3)

Ethertype = C-Tag [802.1Q] Outer.VLAN Tag Information

Ethertype = TRILL V R M Op-Length Hop Count

Egress (RB2) Nickname Ingress (RB1) Nickname

Inner Destination MAC Address (ESb)

Inner Destination MAC Address Inner Source MAC Address

Inner Source MAC Address (ESa)

Ethertype = C-Tag [802.1Q] Inner.VLAN Tag Information

Ethertype of Original Payload

Original Ethernet Payload

New FCS (Frame Check Sequence)

ESa RB1

Ingress

RB3

transit

RB4

transit

RB2

Egress

ESb

20

overhead and bandwidth spending in the data plane; it does not solve the problem of mobility

but the control and data plane are easily separated which means the data plane could be

used with another routing protocol that allows for mobility; it also does not fulfill the

dynamic configuration of terminals and nodes requisite.

2.1.6. Wireless Metropolitan Routing Protocol

The WMRP is a new routing protocol still under development by Gustavo Carneiro and

Pedro Fortuna as part of their PhD works, that was created to be able to achieve certain

goals other routing protocols couldn’t resolve in a whole particularly for a WiMetroNet

scenario.

One of the goals for the development of the WMRP was that it would be auto-

configurable. This was a necessity because of the number of nodes that would participate in

the network. It would be virtually impossible to alter code for every machine in the network.

Other goals are a standard requirement for any such networks: to support network

and terminal mobility, to be able to scale up to ten thousand terminals and more than a

thousand Rbridges, and a way to deal with broadcasts.

Given these goals, the protocol was created to work at a layer in the OSI Model

connoted with the term “layer 2.5”, which in turn allows for terminals to be 1 IP hop away

from other terminals. While the base routing protocol works via periodic updates, as in most

proactive link state routing protocols, certain optimizations are being developed to support

mobility more efficiently.

2.1.6.1. Overview
Figure 14 summarizes the flow of information, its effects on the Rbridge’s tables and

what tables each message interacts with:

21

Figure 14 – Flow of information and messages between control (WMRPAgent) and data planes

As we can see from Figure 14 the protocol is based in the OLSR messages applied to

an OSI model layer 2 environment. Each node has a different 20-bit ID. One way proposed to

ensure that every node has a different Id is to build it based on one of the MAC addresses of

the machine. Like OLSR, WMRP is a proactive protocol. Using Hello messages every node

announces its existence to neighbor nodes this message is sent through each interface every

two seconds. The information collected from these Hello messages can be hold in a table for

six seconds. To be able to know about other nodes beside its neighbors the protocol uses TC

messages that are sent by each node with a 255 TTL that only contain its neighbor node Id’s;

this way an Rbridge knows where all the other nodes are. With the information of different

nodes Ids an Rbridge builds a Routing table containing a node Id as a label, the interface

associated and the following Rbridge MAC address to reach it.

The WiMetroNet reference consists of a core made by Rbridges connected to each

other and exterior terminals connected to the core via an access Rbridge. In this protocol,

any contact made from the terminals would be filtered by the access Rbridges. Broadcast

22

traffic isn’t forwarded to the core and each terminal’s Mac address would be stored by the

data plane in a LocalTerminalAssociation table. The information contained in this table would

be passed periodically in a MC message that relays the information contained in the

LocalTerminalAssociation table to other Rbridges with the source of the information

(Originator node Id) that in turn use it to make a RemoteTerminalAssociation table. This way,

if an Ethernet frame to a known MAC Address is received the node can insert the label

corresponding to the corresponding node Id.

Edge Rbridges also filters DHCP traffic to store IP-MAC associations inside an

IPMacAssociation table. Each Rbridge sends periodically this information in an IC message

containing the information in the IPMacAssociation table which is then forwarded to each

neighbor Rbridge. When a terminal needs to find a destination’s address it sends an ARP

request which is verified by the Ingress Rbridge in the IPMacAssociation table and the Rbridge

will create a corresponding response to answer the ARP request if it finds the associated Mac

address.

For transmission of messages a common header is used in the WMRP:

Message Type Vtime Message Size

Originator ID

Time To Live Hop Count Message Sequence Number

Logical Clock

Figure 15 – WMRP header

This header possesses the following information about the underlying message: the

Message Type field shows what kind of message is in the frame, Hello, TC, MC or IC; the

Vtime is a field with information about how much time the information in this message is

valid (it is not in seconds); Message Size is the size of message in bytes; the originator ID

shows receiving nodes what is the node ID of the Rbridge that created the message, which in

turn can be different from the ID of the last Rbridge to transmit the message; Time To Live is

the number of times the message can be forwarded by any receiving Rbridge (TTL of 1 or 0

should not be forwarded); the Hop Count field is the number of times this message has been

forwarded by any Rbridge in the network; the Message Sequence Number is a unique number

that allows the detection of duplicate messages, when coupled with the Originator ID; finally

the Logical Clock is the field in the frame that allows marshaling of events coming from

different nodes.

23

2.1.6.2. The HELLO message
The Hello message in the WMRP is used only to detect neighbors:

Reserved Htime Reserved

Figure 16 – WMRP Hello Message

Its only field is the Htime, or Hold time, which is the time for which information

about the source of this Hello message should be stored in neighbor routing tables, default is

6 seconds. Since all the information about the source of the hello message is in the Header

there is no need for further fields. Hello Messages are only intended for Neighbor nodes so

TTL in all Hello messages is 1.

2.1.6.3. The TC message
TC messages are the backbone of the network. When sent they are transmitted in a

radius fashion to provide Rbridges in the network with information about the presence of

Rbridges that aren’t directly connected.

Neighbor ID 1

Neighbor ID 2

. . .

Figure 17 – WMRP TC Message

Every TC message sent has the node ID of the currently active neighbors of the

Rbridge that created it. These messages always start with a 255 TTL but are never

retransmitted by the same Rbridge twice.

2.1.6.4. The MC message
MC messages relay Mac Address information about active terminals in their

neighborhood:

Terminal 1 MAC (EUI-48) Address

ClockDelta

Terminal 2 MAC (EUI-48) Address

ClockDelta

. . .

Figure 18 – WMRP MC Message

24

Every MC message possesses the entirety of its neighbors list of terminals although

the message can be segmented into different frames because of MTU limitation. Each

neighbor is shown as a 48 bits Mac Address with a timestamp of when it was last seen active

in the network.

2.1.6.5. The IC message
IC messages are used to relay information about IP-MAC associations to other

Rbridges. They are only sent by Rbridges connected to a DHCP server.

Terminal 1 MAC (EUI-48) Address

ClockDelta

Terminal 1 IPv4 Address

Terminal 2 MAC (EUI-48) Address

ClockDelta

Terminal 2 IPv4 Address

. . .

Figure 19 – WMRP IC Message

The IC message transmits both the Mac Address and the IP address of terminals in its

neighborhood with the time information of when that terminal acquired an IP lease from a

DHCP server which makes them valid for 60 seconds by default.

25

2.1.7. Summary

All in all, none of the initial protocols discussed can be used in whole for the network

intended but they can be partially used to create a possible solution. MPLS would be chosen

over TRILL because it can provide a better scalable solution for the network and the less

overhead due to simple label switching with a smaller header, however it does not provide

mobility support, but because it can easily be separated in a data plane and control plane it

was chosen for the data plane. As for the routing protocol in the control plane, OLSR is the

best candidate because even though the other protocols do possess mobility support they

have very large time consuming route setups due to their reactive nature and do not scale for

such a large network. OLSR has less overhead but still it consumes very large bandwidth to

topology updates to ensure convergence which would be immense in such a large network as

is the WiMetroNet. Rbridges provide use of the network in a lower layer to enable 1-IP hop

away terminals with terminals maintaining their IP.

The WiMetroNet architecture borrowed ideas from TRILL, MPLS, and OLSR.

The WMRP protocol was chosen for the control plane because while being based in

OLSR, using Hello and TC messages without the use of MPR’s and being proactive, it possesses

less overhead and uses Rbridges which allow for layer 2 routing functioning at a lower layer in

the OSI Model. It also is under development to achieve mobility optimizations that would

require it to have much less route updates than OLSR.

2.2. Network Simulator 3

This section will cover the use of the Network Simulator 3 (ns3) and its ability to

emulate.

A simulating environment is one of the cheapest ways to draw conclusions about a

model without actually having to assemble or produce any devices. Network simulation

provides a malleable way to predict the behavior of a network. The use of mathematical

models and the ability to change attributes to different network devices can be used to

experiment with many different kinds of networks and possible outcomes of projects

involving networks.

The simulator chosen to analyze and simulate the WMRP by the WiMetroNet team is

the NS-3. This simulator was developed under the project nsnam, which is the acronym for

network simulation and network animation, although it is not an evolution or a newer version

of NS-2, a previous widely used network simulator. NS-3 is a discrete-event network simulator

26

for Internet systems, targeted primarily for research and educational use. It is Open Source

Software, licensed under the GNU GPLv2 license, and is publicly available for research,

development, and use [14]. It is written in C++ programming language with the option of

resorting to python interfacing, for this aspect it has a python binding module.

The choice of the NS-3 is due to some key aspects that are important to this project.

The scalability and extensibility is better supported than other network simulator. It provides

the required scalability for the WiMetroNet requirements. It provides greater approximation

to real machines and uses packets similar to real network packets, being bit by bit

represented exactly the same way; it uses sockets API; it reuses kernel and application code,

and it has memory optimization. One other aspect of the NS-3 is the possibility to use

callback objects, function objects manipulated by value [14]. In recent studies comparing

current simulators NS-3 was considered to have the best overall performance with low

computational and less memory demands [15].

NS-3 supports software integration with other open source applications and also a

closer approach to tracing and statistic requirements, through various trace sources with a

statistical and data management framework. It also possesses an attribute system very well

documented to provide greater malleability to simulations. Lastly but not least it provides

emulation modes for virtualization and testbed integration.

It is regarding this last property of NS-3 that the work starts to be developed.

Network emulation is a way to insert the simulator in a physical network to test and verify

reactions to physical data. Emulation uses interfaces from a simulator and can send data to

real devices and receive data from those devices to insert into the simulator. The emulation

module in NS-3, ns3-emu module, was made for the ns3.3 version by Craig Dowell providing a

way to use any machine that can support NS-3 to be able to introduce it in real scenarios.

The problem for our implementation is that the WMRP was developed under version

NS-3.2 so there is a need to either backport (use the emulation software to function with the

older version) or to achieve another way to emulate the WMRP.

27

3. Work description and analysis

3.1. Problem Characterization

In order to build a metropolitan area network such as WiMetroNet, which is

considered by [1] as a large Mesh Network of moving Rbridges operating at layer 2.5 over

heterogeneous wireless technologies, some aspects are to be considered. There are two

different planes that needed to be implemented; one is the control plane, the routing

protocol, the WMRP. The other is the data plane, the plane where data is addressed to the

required terminal or server. The implementation was divided in two different planes and here

we will address only the control plane, which is the one implemented.

Terminals access the network inside vehicles and at bus stops or train stations or

tram stations. Each vehicle should support one access station, and the same applies to each

bus stop or train station or tram station. Vehicles should be able to connect to the network

via the stations access or some vehicular protocol.

Many large networks function properly even when a part of the network is non-

functional. This is common in distributed systems. A wireless metropolitan network has the

same concept; the network should be able to respond to different requests even when part of

the network isn’t working properly. The use of Rbridges as the access points to customers of

the metropolitan transports means they are critical elements to guarantee connectivity with

the server and the rest of the network. These Rbridges are to support both the data and the

control plane. The structure of the network must be able to detect flaws so that when a node

becomes unavailable there is always one node that connects to it from where the system can

find the flaw and if possible correct it.

As a metropolitan transports network, the protocol used should be able to support

every single customer in range of the system, which means the number of clients connected

through the system, either for server connection or P2P traffic, will surely be around the

thousands. The number of clients connected inside the network will raise problems of

bandwidth and quality of service given that the access points and the Rbridges will be

connected to the server ultimately by Ethernet which has a limited bandwidth (depending on

28

the technology chosen) as in the wireless technology bandwidth for the vehicular protocol

and terminal access. Scalability problems will not be addressed in the work of this thesis.

As in all the wireless networks, security becomes an increasing concern to protect

data and traffic inside the network there has to be a mechanism to prevent the system of

packet sniffing and rogue nodes trying to enter the network. However, security issues are out

of scope of this work.

Due to the mobility aspect of the network, the routing protocol will have to be

dynamic enough to guarantee there is no loss in data but the exchange of information

between Rbridges should not be enough to overflow the entire system.

Given that the WiMetroNet is intended to be used in real world scenarios, the intent

of this implementation is exactly to provide information that the WMRP can work in similar

scenarios meaning it can successfully be reproduced in physical devices. The control plane

should mainly do three things: 1) build a Routing Table between Rbridges in the network,

2) receive and disseminate information regarding DHCP to build an IP-Mac Address association

Table (this is to provide information to the data plane) and, 3) upon receiving Remote Mac

Associations, to build a Remote Mac Association Table with Remote Macs and the route to

reach them. In turn, the kernel space data plane will relate with the control plane in three

things: 1) Local Terminal Mac Addresses structured in a table with a timestamp of when that

Mac Address was last seen sending frames to the network to allow the sending of MC

messages in the WMRP, 2) detecting and intercepting ARP Requests and based on the IP-Mac

Address association Table provide the requesting terminal with a corresponding response in

the form of an ARP Response, 3) upon receiving any unicast or multicast frames for other

terminals use the Routing Table to create a tunnel to send the frame through the core (if

needed) or simply bridging the frame to the required interface.

3.2. Methodology

These were the relevant aspects and choices made during development of the

solution that lead to the final adopted solution.

The protocol chosen to implement for this thesis was the WMRP. This protocol was

however still under research. Given the fact that there was only an implemented WMRP

inside a simulating environment, to be able to reproduce this protocol in a physical

environment there was a particular need to be able to interface the ns3 modules of the

WMRP with physical scenarios. There was already such an implementation in the latest ns3,

the ns3.3 version in the ns3-emu module, but the WMRP modules were all written for the

ns3.2 version of the simulator and, as such, unable to utilize with the ns3-emu module.

Therefore a different way to achieve emulation was needed. The routing agent in the

29

simulation had to be adapted to run in a real machine and to provide the required

information to the user space to interact in the testbed scenarios.

The Packet module in ns3 had a few aspects that were relevant in the choice of the

adopted solution. Packets created inside the ns3 are similar to real packets, the content of a

packet buffer is bit for bit equal to a real network packet [14]; packets created with

“dummy” bytes (static size with no data, or fewer than actual packet size) do not result in

memory allocated for those “dummy” bytes, which results in less memory spent; packet class

has easy methods for creating a simulating packet with real data, Create<Packet>(), and

reading data from a simulating packet, PeekData().

3.3. Adopted Solution

The implementation of the WMRP was to be used in real testbed scenarios. In these

testbed scenarios each device in the network is independent and can function properly

connected to any network it can be connected to. Therefore, the testing scenarios were all

made using one Rbridge alone inside the simulator in each machine. Ethernet interfaces of

that machine would provide for interfaces with other Rbridges also connected through

Ethernet connections.

Since WMRP runs at layer two in the OSI model inside NS-3, a choice was made to

utilize Sockets using the SOCK_RAW type to continue working in that layer in the real world

scenarios. Packet sockets are sockets used to receive and send packets at OSI model layer 2

that uses the “socket()” function with socket_family as AF_PACKET. The use of socket_type

SOCK_RAW enables the construction of raw packets, packets that are passed to and from the

network device without any changes to the packet data. Frames sent and received through

these sockets have a known structure:

Figure 20 – Frame format in 802.3 type II [16]

The frames that are sent and that arrive at the created packet socket contain the

destination address, the source address, the Ethertype and the WmrpMessage in the payload.

30

The destination and source addresses are the Mac Addresses that the source of the packet

chooses: destination is always broadcast in the WMRP, and source is always the Mac Address

of the Ethernet card from where the sender sent the frame. The Ethertype is a field similar

to OSI model layer 3 ports but at layer 2, it identifies sub-protocols used at upper layers; for

example, Internet Protocols use Ethertype 0x0800, ARP uses Ethertype 0x0806. The Ethertype

chosen for WMRP was 0x1234. Inside the Ethernet frame payload is the WmrpMessage, which

can contain one or more WMRP messages.

To be able to receive messages from outside NS-3 and sending of messages from

inside NS-3 two different kinds of threads had to be implemented, receiving threads and the

main thread. Having a socket in the receiving end and in the transmitting end implied that a

receiving thread needed to schedule arriving frames. This way the Rbridge could continue

working in the main thread without having to wait for other frames, and the main thread

could transmit frames outside of the simulator whenever the Rbridge needed to send a

WmrpMessage. To be able to receive frames in more than one interface and to detect in

which interface the receiving frame arrived more than one receiving thread was created

through the duplication of the methods that were created after pthread_create(). This was

the easier solution because Global Variables in threads are not thread safe as such we could

not create two threads using the same code without the interface address for which the

thread was to receive frames from the network. The receiving threads communicated with

the main thread by using the method “Simulator::ScheduleNow” to schedule the arrival of a

WMRP message or messages in its Ethernet interface. The event scheduled calls method

MainThreadReceive which transforms the frame payload from the received frame into a NS-3

packet to process. The method ScheduleNow is thread-safe, so it enables the scheduling of

events from any arbitrary thread to the simulating thread. It schedules an event with expiring

time as current time.

In the solutions with one and two threads the interfaces address was hard coded by

choice because using the /proc files could result in segmentation fault. These files can

change while tests are running, using netlinks to fetch interfaces from kernel space would

require the implementation of a new kernel space/user space interface which is beyond the

scope of this work.

As was mentioned in Sec. 2.2, NS-3 is a discrete event simulator in which every event

that would happen in a real network is scheduled to occur in an ordered fashion and events

occur immediately after each other since it provides with faster simulations. To be able to

provide a scheduler that could deal with real time events the RealTimeScheduler was

activated using the python code line:

ns3.GlobalValue.Bind("SimulatorImplementationType",

 ns3.StringValue("ns3::RealtimeSimulatorImpl"))

31

The real time scheduler provides a real time implementation of the process of

events. To provide with time consumption it uses sleep and busy-wait cycles until the actual

time of the scheduled event is consistent with the simulator’s time.

The choice for hard coded node Ids is due to simpler and smaller node Ids. The use of

MAC based node Ids would result in bigger node Ids. This choice does not interfere with the

implemented solution as nodes Ids always occupy 20 bits.

To be able to view changes in the routing tables every time the routing table

changed a copy of the routing table was printed to a log file with the change and with the

current time.

3.4. Code structure

The ns3 simulated the WMRP with an interface between native ns3 modules and the

WmrpAgent, that interface is the WiMetroNet class.

Figure 21 – Class diagram for WMRP in ns3

32

Figure 21 shows the association between classes in the ns3 to install the WMRP in an

ns3 node. The WiMetroNet Class adds the protocol in the node with the method

“AddWiMetroNetStack” it also creates a callback when adding a NetDevice to a node through

the “RegisterProtocolHandler()” in Node class to immediately process packets that arrive at

the simulated node.

The following diagram describes how a packet is sent inside the ns3:

Figure 22 – Sequence diagram for sending a WMRP message in ns3

In Figure 22 the simulator starts running and will SendQueuedMessages when this

event expires. The WmrpAgent will then construct packets with the queued messages and

uses the “TransmitCallback” to call the “TransmitWmrp” method for each one. When the

WiMetroNet is asked to transmit a WmrpMessage it uses the node’s devices of where it is

installed (transmission of packets is broadcasted from all the interfaces. Since these packets

are sent inside the simulator the method “Send” in the netdevice simply schedules the

receiving of the sent packet to the corresponding nodes.

33

Receiving a WmrpMessage in the simulator is described in the following diagram:

Figure 23 – Sequence diagram for receiving a WMRP message in ns3

To receive a message a node only has to wait for the simulator to expire the event of

receiving the message. As is shown in Figure 23 the node receives in its NetDevice the

package, for the purpose of the WMRP the sequence only shows what happens regarding the

WMRP. Because the WiMetroNet had set a callback for receiving packets when the NetDevice

received any package it receives it in the method “ReceiveWmrp”. It receives the id of the

device it received the packet from, the packet, and the Mac Address it came from. The

WmrpAgent then processes the received message with the same attributes, processes the

message (the described sequence shows “ProcessTc” but it can process Hellos, TC, MC and IC

messages) and will compute the Routing table accordingly to the received message.

The code developed to implement the solution is based in sockets and threads with

the use of the RealtimeSimulatorImpl class.

34

Figure 24 – Class diagram for physical implementation of WMRP in ns3

There are only 2 visible changes to the class diagram of the code structure: the use

of the “RealtimeSimulatorImpl” class, which is the use of the Real Time Scheduler to enable

the consumption of time in the Simulator, and three new methods inside the WiMetroNet

class. The three new methods implement the thread part of the code. The use of sockets is

invisible at this level; sockets are used in methods “TransmitWmrp” and

“ReadThreadReceive”.

To understand the workings of the code, a sequence diagram for the receiving of

frames from the network, with the new methods and functions used, is displayed:

35

Figure 25 – Sequence diagram for receiving a physical WMRP message in ns3

The main process initializes WiMetroNet under the RealTimeSImulatorImpl with

default attributes as before; but in the constructor one receiving thread for each interface is

created with the pthread_create function as Figure 25 shows. The receiving thread triggers a

continuous loop to receive frames from the network in a receiving socket through the

interface it is bound to and Schedules to the simulator a method to process the arrival of new

frames with the WMRP Ethertype to construct ns3 packages understandable to the WMRP. The

main thread then proceeds to run in the WiMetroNet using the “MainThreadReceive” method.

WMRP packets are then processed by the WmrpAgent in the same way as before the

implementation.

36

For the transmission sequence a similar diagram was developed:

Figure 26 – Sequence diagram for transmitting a physical WMRP message in ns3

Figure 26 shows that the main thread implements the Real Time Scheduler with the

call “RealTimeSImulatorImpl”. The main thread will process scheduled events and transmit

frames with WmrpMessages to the network whenever the WMRP timers get to 0. The queued

messages are then processes in the WmrpAgent in the form of a WMRP packet which is sent to

the WiMetroNet through the “TransmitWmrp” method, which in turn sends the packets in all

the interfaces through multiple packet sockets that build the Ethernet Header with the use of

the sockaddrl_ll structure.

37

4. Work Evaluation

To be able to analyze the results of the work developed it was necessary to design

different tests. These tests can show which requirements were met and if indeed the

protocol can respond to physical testbed scenarios. These tests were designed in increasing

complexity of the topology to understand what problems would arise in any step. All of the

tests were run under machines running NS-3 in Ubuntu 8.10 as the background operating

system in an Intel Pentium 4 machine with 1.5 GB RAM. The capture of packets/frames was

made using Wireshark 1.2, a packet sniffer.

4.1. First test

The first test was designed in a testbed scenario with two machines running the

WMRP protocol inside ns3 in which those machines were connected by Ethernet to a switch in

a home network. This is the most basic scenario in which one can analyze if the WMRP can

indeed deal with the simplest topology. It also tested what happens to the Rbridge and its

routing table when the connection is lost.

Figure 27 – First test topology

38

Table 1 – Test 1 Devices

Rbridge Node ID Eth0 Interface

Smithfield 9 00:0f:ea:f6:37:47

Northwood 1 00:13:8f:42:c5:67

In this test there was a continuous capture of frames in interface eth0 in the

Northwood machine and the changes in the routing table in this machine as well (since it was

a symmetric scenario where both machines ran the same program no logging was made in the

Smithfield machine).

The following table shows the capture made in the interface eth0 during the testing

scenario of the first test:

Table 2 – Test 1 Capture:

Msize = Message size, OID= originator ID (identifier), TTL= Time to live, HC=Hop Count, MSN=Message

Sequence Number, LC=Logical Clock, NID=Neighbor ID. The Smithfield originated frames have white

background, Northwood originated frames have gray background.

Packet

Number

Time Source Info

1 0.000000 00:13:8F:42:C5:67 Hello Msize=20 OID=1 TTL=1 HC=0 MSN=0 LC=0 HT=134

2 2.011913 00:13:8F:42:C5:67 Hello Msize=20 OID=1 TTL=1 HC=0 MSN=3 LC=0 HT=134

3 2.710458 00:0F:EA:F6:37:47 Hello Msize=20 OID=9 TTL=1 HC=0 MSN=0 LC=2 HT=134

TC Msize=20 OID=9 TTL=255 HC=0 MSN=0 LC=1 NID=1

4 3.035886 00:13:8F:42:C5:67 TC Msize=20 OID=9 TTL=254 HC=1 MSN=1 LC=2 NID=1

5 4.243894 00:13:8F:42:C5:67 Hello Msize=20 OID=1 TTL=1 HC=0 MSN=4 LC=4 HT=134

6 4.801707 00:0F:EA:F6:37:47 Hello Msize=20 OID=9 TTL=1 HC=0 MSN=3 LC=5 HT=134

7 5.152014 00:13:8F:42:C5:67 TC Msize=20 OID=1 TTL=255 HC=0 MSN=5 LC=4 NID=9

8 5.596541 00:0F:EA:F6:37:47 TC Msize=20 OID=1 TTL=254 HC=1 MSN=5 LC=4 NID=9

9 6.067219 00:13:8F:42:C5:67 Hello Msize=20 OID=1 TTL=1 HC=0 MSN=7 LC=6 HT=134

10 6.791611 00:0F:EA:F6:37:47 Hello Msize=20 OID=9 TTL=1 HC=0 MSN=4 LC=7 HT=134

11 7.688665 00:0F:EA:F6:37:47 TC Msize=20 OID=9 TTL=255 HC=0 MSN=5 LC=7 NID=1

12 7.915942 00:13:8F:42:C5:67 TC Msize=20 OID=9 TTL=254 HC=1 MSN=5 LC=7 NID=1

Hello Msize=20 OID=1 TTL=1 HC=0 MSN=8 LC=9 HT=134

13 8.684210 00:0F:EA:F6:37:47 Hello Msize=20 OID=9 TTL=1 HC=0 MSN=7 LC=10 HT=134

14 10.251939 00:13:8F:42:C5:67 TC Msize=20 OID=1 TTL=255 HC=0 MSN=9 LC=11 NID=9

39

Hello Msize=20 OID=1 TTL=1 HC=0 MSN=11 LC=11

HT=134

15 10.679840 00:0F:EA:F6:37:47 TC Msize=20 OID=1 TTL=254 HC=1 MSN=9 LC=11 NID=9

Hello Msize=20 OID=9 TTL=1 HC=0 MSN=8 LC=13 HT=134

16 12.267888 00:13:8F:42:C5:67 Hello Msize=20 OID=1 TTL=1 HC=0 MSN=12 LC=14

HT=134

17 12.875799 00:0F:EA:F6:37:47 TC Msize=20 OID=9 TTL=255 HC=0 MSN=9 LC=15 NID=1

Hello Msize=20 OID=9 TTL=1 HC=0 MSN=11 LC=15

HT=134

18 13.188055 00:13:8F:42:C5:67 TC Msize=20 OID=9 TTL=254 HC=1 MSN=9 LC=15 NID=1

19 14.203911 00:13:8F:42:C5:67 Hello Msize=20 OID=1 TTL=1 HC=0 MSN=13 LC=17

HT=134

20 14.775600 00:0F:EA:F6:37:47 Hello Msize=20 OID=9 TTL=1 HC=0 MSN=12 LC=18

HT=134

21 15.111898 00:13:8F:42:C5:67 TC Msize=20 OID=1 TTL=255 HC=0 MSN=14 LC=19 NID=9

22 15.375261 00:0F:EA:F6:37:47 TC Msize=20 OID=1 TTL=254 HC=1 MSN=14 LC=19 NID=9

23 16.115905 00:13:8F:42:C5:67 Hello Msize=20 OID=1 TTL=1 HC=0 MSN=16 LC=19

HT=134

24 16.573997 00:0F:EA:F6:37:47 Hello Msize=20 OID=9 TTL=1 HC=0 MSN=13 LC=21

HT=134

25 17.569895 00:0F:EA:F6:37:47 TC Msize=20 OID=9 TTL=255 HC=0 MSN=14 LC=21 NID=1

26 18.031938 00:13:8F:42:C5:67 TC Msize=20 OID=9 TTL=254 HC=1 MSN=14 LC=21 NID=1

Hello Msize=20 OID=1 TTL=1 HC=0 MSN=17 LC=23

HT=134

27 18.865630 00:0F:EA:F6:37:47 Hello Msize=20 OID=9 TTL=1 HC=0 MSN=16 LC=24

HT=134

28 20.048059 00:13:8F:42:C5:67 TC Msize=20 OID=1 TTL=255 HC=0 MSN=18 LC=25 NID=9

Hello Msize=20 OID=1 TTL=1 HC=0 MSN=20 LC=25

HT=134

29 22.263893 00:13:8F:42:C5:67 Hello Msize=20 OID=1 TTL=1 HC=0 MSN=21 LC=25

HT=134

30 24.479883 00:13:8F:42:C5:67 Hello Msize=20 OID=1 TTL=1 HC=0 MSN=22 LC=25

HT=134

31 26.271911 00:13:8F:42:C5:67 Hello Msize=20 OID=1 TTL=1 HC=0 MSN=25 LC=25

HT=134

32 28.496128 00:13:8F:42:C5:67 Hello Msize=20 OID=1 TTL=1 HC=0 MSN=26 LC=25

HT=134

33 30.645738 00:13:8F:42:C5:67 Hello Msize=20 OID=1 TTL=1 HC=0 MSN=29 LC=25

40

HT=134

34 32.283881 00:13:8F:42:C5:67 Hello Msize=20 OID=1 TTL=1 HC=0 MSN=30 LC=25

HT=134

35 34.299903 00:13:8F:42:C5:67 Hello Msize=20 OID=1 TTL=1 HC=0 MSN=31 LC=25

HT=134

36 36.475901 00:13:8F:42:C5:67 Hello Msize=20 OID=1 TTL=1 HC=0 MSN=34 LC=25

HT=134

Hello messages and TC messages were sent frequently from both machines in the

right times (2 seconds for Hello and 5 seconds for TC), when the Smithfield machine stops

sending frames the Northwood machine stops sending TC messages, it only sends Hello

Messages to try to find the rest of the network.

Logs of the routing table verify what the changes were to the routing table.

Every time a new Routing Table was loaded the Routing table was printed in a

predefined form. The Routing Table always begins empty:

()

Table 3 – Test 1 Routing table log.

Each line in the Routing Table contains: A node ID of a node in the network known by the device, the

Mac Address of where to send a frame to reach that node, and the Ethernet interface from where to

send it to arrive there

Destination Node ID
Next Hop

Time added
Mac Interface ID

9 00:0f:ea:f6:37:47 0 02:58:26.98834

Destination Node ID
Next Hop

Time added
Mac Interface ID

N/A N/A N/A 02:58:48.355649

Destination Node ID
Next Hop

Time added
Mac Interface ID

N/A N/A N/A 02:58:56.358870

When the Northwood machine finds hello messages from node 9 (the Smithfield

machine) it was added to the routing table, once this node lost connection (stopped sending

Hellos and the hold time for the information finished) the Routing table became empty.

The medium time between the break of connection from node 9 and the detection in

node 1 is approximately 6.513 seconds. The standard deviation is 0.2367. Since the

41

theoretical values show that the time required between the loss of a neighbour and the

change in the routing table to be between 4 seconds (which is the time for two Hello

messages not arriving to the Rbridge) and 6 seconds and 700 milliseconds (which is the

combined time for 3 Hellos messages, half a second for the refreshment of the routing table,

and 200 milliseconds for the signalling) the result shows a slightly high medium time for this

interval.

4.2. Second and third tests

The second and third tests comprehend three machines running the WMRP protocol.

Because there weren’t enough Ethernet interfaces available for these tests they were made

in a virtualization scenario using VirtualBox.

VirtualBox is a virtualization product designed for x86 (8086 Intel family)

microprocessors made by Sun Microsystems, Inc. This virtualization product was chosen

because not only being the sole professional solution for virtualization available as Open

Source Software under the GNU General Public Licence, it also runs in hosts using many

different Operating Systems (Windows, Linux, Macintosh and Open Solaris) and, more

importantly, can support a very large number of guest operating systems.

Tests using VirtualBox used for each machine a memory of 256 Mb RAM, 1.6 GB hard

drive and Ethernet cards PCnet-Fast III (Am79C973), the information about each device and

choice for node ID can be seen in the following table.

Table 4 – Tests 2 and 3 Devices and node IDs.

Rbridge Node ID Eth0 Interface Eth1 interface

2 5 08:00:27:82:38:f1 08:00:27:82:e4:4e

3 9 08:00:27:93:b2:47 08:00:27:ff:a2:21

4 1 08:00:27:25:fc:a6 08:00:27:d9:ed:00

42

4.2.1. Second test

The second test comprehends three virtual machines connected via two virtual

Ethernet connections in which only one of the machines is directly connected to the other

two. It can provide better understanding of how, if capable, the routing tables are

constructed with the Hello and TC messages when some Rbridges aren’t directly connected to

each other. There was also a break in the connection from one of the Rbridges connected to

the center one to observe the changes of the routing tables that remained connected.

Figure 28 – Second test topology

In this test the connection intnet was severed, all routing tables changes were logged

for comparing purposes but only frames in eth0 interface of the Rbridge4 machine were

captured to see the difference in Hello and TC messages coming from the right side of the

intnet2 network.

The following table shows the capture using wireshark made in the interface eth0 of

the Rbridge4 during the testing scenario of the second test:

Table 5 – Test 2 Capture:

Msize = Message size, OID= originator ID (identifier), TTL= Time to live, HC=Hop Count, MSN=Message

Sequence Number, LC=Logical Clock, NID=Neighbor ID. The Rbridge2 originated frames have white

background, Rbridge4 originated frames have gray background.

Packet

Number

Time Source Info

1 0.000000 08:00:27:25:fc:a6 Hello Msize=20 OID=1 TTL=1 HC=0 MSN=0 LC=0 HT=134

2 4.114301 08:00:27:25:fc:a6 Hello Msize=20 OID=1 TTL=1 HC=0 MSN=3 LC=0 HT=134

3 7.078047 08:00:27:82:e4:4e Hello Msize=20 OID=5 TTL=1 HC=0 MSN=0 LC=2 HT=134

TC Msize=20 OID=5 TTL=255 HC=0 MSN=1 LC=2 NID=1

4 8.610196 08:00:27:25:fc:a6 TC Msize=20 OID=5 TTL=254 HC=1 MSN=1 LC=2 NID=1

5 10.174736 08:00:27:82:e4:4e Hello Msize=20 OID=5 TTL=1 HC=0 MSN=3 LC=2 HT=134

6 13.830040 08:00:27:82:e4:4e Hello Msize=20 OID=5 TTL=1 HC=0 MSN=4 LC=2 HT=134

7 15.939311 08:00:27:82:e4:4e TC Msize=20 OID=9 TTL=254 HC=1 MSN=1 LC=6 NID=5

8 16.114924 08:00:27:25:fc:a6 Hello Msize=20 OID=1 TTL=1 HC=0 MSN=4 LC=6 HT=134

43

TC Msize=20 OID=9 TTL=253 HC=2 MSN=1 LC=6 NID=5

9 16.534651 08:00:27:82:e4:4e Hello Msize=20 OID=5 TTL=1 HC=0 MSN=7 LC=8 HT=134

10 18.955104 08:00:27:25:fc:a6 TC Msize=20 OID=9 TTL=255 HC=0 MSN=5 LC=9 NID=5

11 19.349439 08:00:27:82:e4:4e TC Msize=20 OID=9 TTL=254 HC=1 MSN=5 LC=9 NID=5

12 20.683584 08:00:27:82:e4:4e Hello Msize=20 OID=5 TTL=1 HC=0 MSN=8 LC=11 HT=134

13 22.137868 08:00:27:25:fc:a6 Hello Msize=20 OID=1 TTL=1 HC=0 MSN=7 LC=12 HT=134

14 23.854870 08:00:27:82:e4:4e TC Msize=24 OID=5 TTL=255 HC=0 MSN=9 LC=14 NID=9

NID=1

Hello Msize=20 OID=5 TTL=1 HC=0 MSN=11 LC=14

HT=134

TC Msize=20 OID=9 TTL=254 HC=1 MSN=5 LC=12 NID=5

15 24.936035 08:00:27:25:fc:a6 TC Msize=24 OID=5 TTL=254 HC=1 MSN=9 LC=14 NID=9

NID=1

TC Msize=20 OID=9 TTL=253 HC=2 MSN=5 LC=12 NID=5

16 27.357993 08:00:27:82:e4:4e Hello Msize=20 OID=5 TTL=1 HC=0 MSN=12 LC=15

HT=134

17 28.454239 08:00:27:25:fc:a6 Hello Msize=20 OID=1 TTL=1 HC=0 MSN=8 LC=17 HT=134

18 30.406632 08:00:27:82:e4:4e Hello Msize=20 OID=5 TTL=1 HC=0 MSN=13 LC=18

HT=134

19 31.983813 08:00:27:82:e4:4e TC Msize=24 OID=5 TTL=255 HC=0 MSN=14 LC=18 NID=9

NID=1

20 33.743396 08:00:27:82:e4:4e Hello Msize=20 OID=5 TTL=1 HC=0 MSN=16 LC=18

HT=134

21 36.302382 08:00:27:82:e4:4e Hello Msize=20 OID=5 TTL=1 HC=0 MSN=17 LC=18

HT=134

22 36.397335 08:00:27:25:fc:a6 TC Msize=20 OID=1 TTL=255 HC=0 MSN=9 LC=19 NID=5

Hello Msize=20 OID=1 TTL=1 HC=0 MSN=11 LC=19

HT=134

TC Msize=24 OID=5 TTL=254 HC=1 MSN=14 LC=18 NID=9

NID=1

23 36.863061 08:00:27:82:e4:4e TC Msize=20 OID=1 TTL=254 HC=1 MSN=9 LC=19 NID=5

24 38.122444 08:00:27:82:e4:4e TC Msize=20 OID=5 TTL=255 HC=0 MSN=18 LC=21 NID=1

Hello Msize=20 OID=5 TTL=1 HC=0 MSN=20 LC=21

HT=134

25 38.937156 08:00:27:25:fc:a6 TC Msize=20 OID=5 TTL=254 HC=1 MSN=18 LC=21 NID=1

26 40.641872 08:00:27:25:fc:a6 Hello Msize=20 OID=1 TTL=1 HC=0 MSN=12 LC=24

HT=134

27 43.028805 08:00:27:25:fc:a6 Hello Msize=20 OID=1 TTL=1 HC=0 MSN=13 LC=24

44

HT=134

28 44.145914 08:00:27:25:fc:a6 TC Msize=20 OID=1 TTL=255 HC=0 MSN=14 LC=21 NID=5

29 44.748858 08:00:27:25:fc:a6 Hello Msize=20 OID=1 TTL=1 HC=0 MSN=16 LC=24

HT=134

Rbridge2 (node ID 5) forwarded TC messages from Rbridge3 (node ID 9) allowing

Rbridge4 (node ID 1) to know the existence of Rbridge3 (node ID 9) in the network. Frame 24

shows that Rbridge3 (node ID 9) is no longer connected to the network.

Table 6 – Test 2 Routing table log in Rbridge3.

Each line in the Routing Table contains: A node ID of a node in the network known by the device, the

Mac Address of where to send a frame to reach that node, and the Ethernet interface from where to

send it to arrive there

Destination Node ID
Next Hop

Time added
Mac Interface ID

5 08:00:27:82:38:f1 0 01:45:38.642903

Destination Node ID
Next Hop

Time added
Mac Interface ID

1 08:00:27:82:38:f1 0 01:45:50.954198

5 08:00:27:82:38:f1 0 01:45:50.954348

Destination Node ID
Next Hop

Time added
Mac Interface ID

1 08:00:27:82:38:f1 0 01:45:55.323607

5 08:00:27:82:38:f1 0 01:45:55.331047

The Routing table’s first change was the addition of node 5 (neighbor node), having

received the information that node 1 was a neighbor of node 5 added it to the Routing Table

in “06-25-2009 01:45:50.954198”.

45

Table 7 – Test 2 Routing table log in Rbridge2.

Each line in the Routing Table contains: A node ID of a node in the network known by the device, the

Mac Address of where to send a frame to reach that node, and the Ethernet interface from where to

send it to arrive there

Destination Node ID
Next Hop

Time added
Mac Interface ID

N/A N/A N/A 01:45:31.625827

Destination Node ID
Next Hop

Time added
Mac Interface ID

N/A N/A N/A 01:45:44.747870

Destination Node ID
Next Hop

Time added
Mac Interface ID

9 08:00:27:93:b2:47 0 01:45:46.674377

Destination Node ID
Next Hop

Time added
Mac Interface ID

9 08:00:27:93:b2:47 0 01:45:47.649935

Destination Node ID
Next Hop

Time added
Mac Interface ID

1 08:00:27:25:fc:a6 1 01:45:49.905686

9 08:00:27:93:b2:47 0 01:45:49.905915

Destination Node ID
Next Hop

Time added
Mac Interface ID

1 08:00:27:25:fc:a6 1 01:46:03.245083

46

The Routing Table of Rbridge2 (node ID 5) showed current available connections in

the network because it was the only Rbridge with connections to every other device of the

network. It was neighbor to both Rbridge4 (node ID 1) and Rbridge3 (node ID 9). The final loss

of connection to Rbridge3 (node ID 9) is consistent with what was expected from the caused

break in the second part of the test.

Table 8 – Test 2 Routing table log in Rbridge4.

Each line in the Routing Table contains: A node ID of a node in the network known by the device, the

Mac Address of where to send a frame to reach that node, and the Ethernet interface from where to

send it to arrive there

Destination Node ID
Next Hop

Time added
Mac Interface ID

5 08:00:27:82:e4:4e 0 01:45:39.658263

Destination Node ID
Next Hop

Time added
Mac Interface ID

5 08:00:27:82:e4:4e 0 01:45:47.746945

Destination Node ID
Next Hop

Time added
Mac Interface ID

5 08:00:27:82:e4:4e 0 01:45:55.612927

9 08:00:27:82:e4:4e 0 01:45:55.613510

Destination Node ID
Next Hop

Time added
Mac Interface ID

5 08:00:27:82:e4:4e 0 01:46:10.345234

The Routing Table of Rbridge4 (node ID 1) maintained a constant route to Rbridge2

(node ID 5) its neighbor from the start of detecting it until the end of the test. It detected

the presence of Rbridge3 (node ID 9) behind Rbridge2 (node ID 5) therefore the next Hop

Address is the same as to Rbridge2 (node ID 5) and after the break the Rbridge3 (node ID 9)

was removed due to lack of detection.

The medium time between the break of connection from node 9 and the detection in

node 1 is approximately 14.32828 seconds. The standard deviation is 0.203521. Since the

theoretical values show that the time required between the loss of a hidden node connected

to a neighbour and the change in the routing table to be between 10 seconds (which is the

47

time for two TC messages not arriving to the Rbridge) and 21 seconds and 700 milliseconds

(which is the combined time for 3 TC messages, 15 seconds, and the 6 seconds and 700

milliseconds is the maximum time the node between them takes to know the loss of the

disconnected node, which is its neighbor) the result shows an average medium time for this

interval.

4.2.2. Third test

The third test comprehends three virtual machines connected via three virtual

Ethernet connections in which every machine is connected to the other two machines in the

network and the break in one of the Ethernet connections to verify the mobility requisite of

the implementation, if indeed a change in the network can be translated into different routes

when there is still connections available.

Figure 29 – Third test topology

In this test the connection intnet3 was severed, all routing tables changes were

logged for comparing purposes and frames in both eth0 and eth1 interface of the Rbridge4

machine were captured.

48

The following table shows the capture made in the interface eth1 of the Rbridge4

during the testing scenario of the third test:

Table 9 – Test 3 Capture eth1:

Msize = Message size, OID= originator ID (identifier), TTL= Time to live, HC=Hop Count, MSN=Message

Sequence Number, LC=Logical Clock, NID=Neighbor ID. The Rbridge3 originated frames have white

background, Rbridge4 originated frames have gray background.

Packet

Number

Time Source Info

1 0.000000 08:00:27:d9:ed:00 Hello Msize=20 OID=1 TTL=1 HC=0 MSN=0 LC=0 HT=134

2 4.409386 08:00:27:d9:ed:00 Hello Msize=20 OID=1 TTL=1 HC=0 MSN=3 LC=0 HT=134

3 7.980688 08:00:27:d9:ed:00 Hello Msize=20 OID=1 TTL=1 HC=0 MSN=4 LC=0 HT=134

4 8.151470 08:00:27:ff:a2:21 Hello Msize=20 OID=9 TTL=1 HC=0 MSN=0 LC=2 HT=134

TC Msize=20 OID=9 TTL=255 HC=0 MSN=1 LC=2 NID=1

5 8.819252 08:00:27:d9:ed:00 TC Msize=20 OID=9 TTL=254 HC=1 MSN=1 LC=2 NID=1

6 9.643697 08:00:27:d9:ed:00 TC Msize=20 OID=1 TTL=255 HC=0 MSN=5 LC=4 NID=9

7 10.578921 08:00:27:ff:a2:21 TC Msize=20 OID=1 TTL=254 HC=1 MSN=5 LC=4 NID=9

8 11.829415 08:00:27:d9:ed:00 Hello Msize=20 OID=1 TTL=1 HC=0 MSN=7 LC=4 HT=134

9 12.263142 08:00:27:ff:a2:21 Hello Msize=20 OID=9 TTL=1 HC=0 MSN=3 LC=5 HT=134

10 15.681861 08:00:27:d9:ed:00 Hello Msize=20 OID=1 TTL=1 HC=0 MSN=8 LC=6 HT=134

11 19.289710 08:00:27:d9:ed:00 TC Msize=20 OID=1 TTL=255 HC=0 MSN=9 LC=6 NID=9

Hello Msize=20 OID=1 TTL=1 HC=0 MSN=11 LC=6 HT=134

12 20.632689 08:00:27:ff:a2:21 TC Msize=20 OID=1 TTL=254 HC=1 MSN=9 LC=6 NID=9

Hello Msize=20 OID=1 TTL=1 HC=0 MSN=4 LC=9 HT=134

13 22.156036 08:00:27:ff:a2:21 TC Msize=24 OID=5 TTL=254 HC=1 MSN=1 LC=11 NID=1

NID=9

14 22.282702 08:00:27:d9:ed:00 TC Msize=24 OID=5 TTL=254 HC=1 MSN=1 LC=11 NID=1

NID=9

Hello Msize=20 OID=1 TTL=1 HC=0 MSN=12 LC=13

HT=134

15 26.937926 08:00:27:d9:ed:00 Hello Msize=20 OID=1 TTL=1 HC=0 MSN=13 LC=15

HT=134

16 28.927837 08:00:27:d9:ed:00 TC Msize=24 OID=1 TTL=255 HC=0 MSN=14 LC=16 NID=9

NID=5

17 29.740109 08:00:27:d9:ed:00 TC Msize=24 OID=5 TTL=254 HC=1 MSN=5 LC=16 NID=1

NID=9

18 31.395668 08:00:27:d9:ed:00 Hello Msize=20 OID=1 TTL=1 HC=0 MSN=16 LC=17

HT=134

49

19 35.637818 08:00:27:d9:ed:00 Hello Msize=20 OID=1 TTL=1 HC=0 MSN=17 LC=19

HT=134

20 37.284560 08:00:27:d9:ed:00 TC Msize=24 OID=9 TTL=253 HC=2 MSN=5 LC=14 NID=1

NID=5

21 39.728989 08:00:27:d9:ed:00 TC Msize=24 OID=5 TTL=254 HC=1 MSN=9 LC=22 NID=1

NID=9

22 47.482493 08:00:27:d9:ed:00 TC Msize=24 OID=9 TTL=253 HC=2 MSN=9 LC=26 NID=1

NID=5

TC Msize=24 OID=5 TTL=254 HC=1 MSN=14 LC=28 NID=1

NID=9

23 48.871052 08:00:27:d9:ed:00 TC Msize=20 OID=1 TTL=255 HC=0 MSN=18 LC=32 NID=5

Hello Msize=20 OID=1 TTL=1 HC=0 MSN=20 LC=32

HT=134

24 53.945844 08:00:27:d9:ed:00 TC Msize=20 OID=9 TTL=253 HC=2 MSN=14 LC=33 NID=5

25 56.538811 08:00:27:d9:ed:00 Hello Msize=20 OID=1 TTL=1 HC=0 MSN=21 LC=37

HT=134

TC Msize=24 OID=5 TTL=254 HC=1 MSN=18 LC=36 NID=1

NID=9

26 60.054562 08:00:27:d9:ed:00 Hello Msize=20 OID=1 TTL=1 HC=0 MSN=22 LC=40

HT=134

27 63.100710 08:00:27:d9:ed:00 TC Msize=20 OID=1 TTL=255 HC=0 MSN=23 LC=42 NID=5

28 63.754806 08:00:27:d9:ed:00 TC Msize=20 OID=5 TTL=254 HC=1 MSN=23 LC=43 NID=1

29 66.235791 08:00:27:d9:ed:00 Hello Msize=20 OID=1 TTL=1 HC=0 MSN=25 LC=44

HT=134

30 69.589539 08:00:27:d9:ed:00 Hello Msize=20 OID=1 TTL=1 HC=0 MSN=26 LC=44

HT=134

31 71.512182 08:00:27:d9:ed:00 TC Msize=20 OID=1 TTL=255 HC=0 MSN=27 LC=44 NID=5

Hello Msize=20 OID=1 TTL=1 HC=0 MSN=29 LC=44

HT=134

Both Rbridge4 and Rbridge3 successfully forward TC messages from Rbrige2 allowing

both Rbridge4 and 3 to find a second route to reach Rbridge2, although the default choice

will always be the one with the least amount of hops. There is a successful topology build,

even after the break in connection from interface eth1 in the Rbridge3, because of TC

messages coming to Rbridge4 from the other interface of Rbridge4 which are forwarded

through this interface showing that Rbridge3 found a different route to Rbridge4.

The following table shows the capture made in the interface eth0 of the Rbridge4

during the testing scenario of the third test:

50

Table 10 – Test 3 Capture eth0:

Msize = Message size, OID= originator ID (identifier), TTL= Time to live, HC=Hop Count, MSN=Message

Sequence Number, LC=Logical Clock, NID=Neighbor ID. The Rbridge2 originated frames have white

background, Rbridge4 originated frames have gray background.

Packet

number

Time Source Info

1 0.000000 08:00:27:25:fc:a6 Hello Msize=20 OID=1 TTL=1 HC=0 MSN=0 LC=0 HT=134

2 4.438086 08:00:27:25:fc:a6 Hello Msize=20 OID=1 TTL=1 HC=0 MSN=3 LC=0 HT=134

3 8.009412 08:00:27:25:fc:a6 Hello Msize=20 OID=1 TTL=1 HC=0 MSN=4 LC=0 HT=134

4 8.582730 08:00:27:82:e4:4e TC Msize=20 OID=9 TTL=254 HC=1 MSN=1 LC=2 NID=1

5 8.847956 08:00:27:25:fc:a6 TC Msize=20 OID=9 TTL=253 HC=2 MSN=1 LC=2 NID=1

6 9.672343 08:00:27:25:fc:a6 TC Msize=20 OID=1 TTL=255 HC=0 MSN=5 LC=4 NID=9

7 10.196738 08:00:27:82:e4:4e TC Msize=20 OID=1 TTL=254 HC=1 MSN=5 LC=4 NID=9

8 11.852306 08:00:27:25:fc:a6 Hello Msize=20 OID=1 TTL=1 HC=0 MSN=7 LC=4 HT=134

9 15.710449 08:00:27:25:fc:a6 Hello Msize=20 OID=1 TTL=1 HC=0 MSN=8 LC=6 HT=134

10 19.318416 08:00:27:25:fc:a6 TC Msize=20 OID=1 TTL=255 HC=0 MSN=9 LC=6 NID=9

Hello Msize=20 OID=1 TTL=1 HC=0 MSN=11 LC=6

HT=134

11 19.787199 08:00:27:82:e4:4e TC Msize=20 OID=1 TTL=254 HC=1 MSN=9 LC=6 NID=9

12 21.384108 08:00:27:82:e4:4e Hello Msize=20 OID=5 TTL=1 HC=0 MSN=0 LC=11

HT=134

TC Msize=24 OID=5 TTL=255 HC=0 MSN=1 LC=11 NID=1

NID=9

13 22.311332 08:00:27:25:fc:a6 TC Msize=24 OID=5 TTL=254 HC=1 MSN=1 LC=11 NID=1

NID=9

Hello Msize=20 OID=1 TTL=1 HC=0 MSN=12 LC=13

HT=134

14 24.403601 08:00:27:82:e4:4e Hello Msize=20 OID=5 TTL=1 HC=0 MSN=3 LC=14

HT=134

15 26.954840 08:00:27:25:fc:a6 Hello Msize=20 OID=1 TTL=1 HC=0 MSN=13 LC=15

HT=134

16 27.383417 08:00:27:82:e4:4e Hello Msize=20 OID=5 TTL=1 HC=0 MSN=4 LC=14

HT=134

17 28.956303 08:00:27:25:fc:a6 TC Msize=24 OID=1 TTL=255 HC=0 MSN=14 LC=16 NID=9

NID=5

18 29.295592 08:00:27:82:e4:4e TC Msize=24 OID=5 TTL=255 HC=0 MSN=5 LC=16 NID=1

NID=9

51

TC Msize=24 OID=1 TTL=254 HC=1 MSN=14 LC=16 NID=9

NID=5

19 29.766431 08:00:27:25:fc:a6 TC Msize=24 OID=5 TTL=254 HC=1 MSN=5 LC=16 NID=1

NID=9

20 30.980408 08:00:27:82:e4:4e Hello Msize=20 OID=5 TTL=1 HC=0 MSN=7 LC=17

HT=134

21 31.424317 08:00:27:25:fc:a6 Hello Msize=20 OID=1 TTL=1 HC=0 MSN=16 LC=17

HT=134

22 34.815287 08:00:27:82:e4:4e Hello Msize=20 OID=5 TTL=1 HC=0 MSN=8 LC=18

HT=134

23 35.666524 08:00:27:25:fc:a6 Hello Msize=20 OID=1 TTL=1 HC=0 MSN=17 LC=19

HT=134

24 35.976626 08:00:27:82:e4:4e TC Msize=24 OID=9 TTL=254 HC=1 MSN=5 LC=14 NID=1

NID=5

25 37.313211 08:00:27:25:fc:a6 TC Msize=24 OID=9 TTL=253 HC=2 MSN=5 LC=14 NID=1

NID=5

26 38.036184 08:00:27:82:e4:4e TC Msize=24 OID=5 TTL=255 HC=0 MSN=9 LC=22 NID=1

NID=9

Hello Msize=20 OID=5 TTL=1 HC=0 MSN=11 LC=22

HT=134

27 39.743345 08:00:27:25:fc:a6 TC Msize=24 OID=5 TTL=254 HC=1 MSN=9 LC=22 NID=1

NID=9

28 41.079397 08:00:27:82:e4:4e Hello Msize=20 OID=5 TTL=1 HC=0 MSN=12 LC=25

HT=134

29 44.099026 08:00:27:82:e4:4e TC Msize=24 OID=9 TTL=254 HC=1 MSN=9 LC=26 NID=1

NID=5

Hello Msize=20 OID=5 TTL=1 HC=0 MSN=13 LC=28

HT=134

30 45.351326 08:00:27:82:e4:4e TC Msize=24 OID=5 TTL=255 HC=0 MSN=14 LC=28 NID=1

NID=9

31 47.447792 08:00:27:82:e4:4e Hello Msize=20 OID=5 TTL=1 HC=0 MSN=16 LC=31

HT=134

32 47.511181 08:00:27:25:fc:a6 TC Msize=24 OID=9 TTL=253 HC=2 MSN=9 LC=26 NID=1

NID=5

TC Msize=24 OID=5 TTL=254 HC=1 MSN=14 LC=28 NID=1

NID=9

33 48.897997 08:00:27:25:fc:a6 TC Msize=20 OID=1 TTL=255 HC=0 MSN=18 LC=32 NID=5

Hello Msize=20 OID=1 TTL=1 HC=0 MSN=20 LC=32

52

HT=134

34 49.582459 08:00:27:82:e4:4e TC Msize=20 OID=1 TTL=254 HC=1 MSN=18 LC=32 NID=5

35 51.146930 08:00:27:82:e4:4e Hello Msize=20 OID=5 TTL=1 HC=0 MSN=17 LC=35

HT=134

36 53.269632 08:00:27:82:e4:4e TC Msize=20 OID=9 TTL=254 HC=1 MSN=14 LC=33 NID=5

37 53.974547 08:00:27:25:fc:a6 TC Msize=20 OID=9 TTL=253 HC=2 MSN=14 LC=33 NID=5

38 54.712034 08:00:27:82:e4:4e TC Msize=24 OID=5 TTL=255 HC=0 MSN=18 LC=36 NID=9

NID=1

Hello Msize=20 OID=5 TTL=1 HC=0 MSN=20 LC=36

HT=134

39 56.567484 08:00:27:25:fc:a6 Hello Msize=20 OID=1 TTL=1 HC=0 MSN=21 LC=37

HT=134

TC Msize=24 OID=5 TTL=254 HC=1 MSN=18 LC=36 NID=9

NID=1

40 57.642930 08:00:27:82:e4:4e Hello Msize=20 OID=5 TTL=1 HC=0 MSN=21 LC=38

HT=134

41 60.082888 08:00:27:25:fc:a6 Hello Msize=20 OID=1 TTL=1 HC=0 MSN=22 LC=40

HT=134

42 61.221605 08:00:27:82:e4:4e Hello Msize=20 OID=5 TTL=1 HC=0 MSN=22 LC=41

HT=134

43 63.115663 08:00:27:82:e4:4e TC Msize=20 OID=5 TTL=255 HC=0 MSN=23 LC=41 NID=1

44 63.123307 08:00:27:25:fc:a6 TC Msize=20 OID=1 TTL=255 HC=0 MSN=23 LC=42 NID=5

45 63.482336 08:00:27:82:e4:4e TC Msize=20 OID=1 TTL=254 HC=1 MSN=23 LC=42 NID=5

46 63.776270 08:00:27:25:fc:a6 TC Msize=20 OID=5 TTL=254 HC=1 MSN=23 LC=41 NID=1

47 64.807689 08:00:27:82:e4:4e Hello Msize=20 OID=5 TTL=1 HC=0 MSN=25 LC=43

HT=134

48 66.249403 08:00:27:25:fc:a6 Hello Msize=20 OID=1 TTL=1 HC=0 MSN=25 LC=44

HT=134

49 69.618252 08:00:27:25:fc:a6 Hello Msize=20 OID=1 TTL=1 HC=0 MSN=26 LC=44

HT=134

50 71.540853 08:00:27:25:fc:a6 TC Msize=20 OID=1 TTL=255 HC=0 MSN=27 LC=44 NID=5

Hello Msize=20 OID=1 TTL=1 HC=0 MSN=29 LC=44

HT=134

Both Rbridge4 and Rbridge2 successfully forward TC messages from Rbrige3 allowing

both Rbridge4 and 2 to find a second route to reach Rbridge3, although the default choice

will always be the one with the least amount of hops. There is a successful topology

establishment to Rbridge3, even after the break in connection from interface eth1 in the

53

Rbridge3, because of TC messages from Rbridge3 forwarded by the Rbridge2. Rbridge2

continues to maintain connections to both Rbridge3 and 4 as demonstrated by frames 29 and

38.

Table 11 – Test 3 Routing table log in Rbridge3.

Each line in the Routing Table contains: A node ID of a node in the network known by the device, the

Mac Address of where to send a frame to reach that node, and the Ethernet interface from where to

send it to arrive there

Destination Node ID
Next Hop

Time added
Mac Interface ID

N/A N/A N/A 01:32:26.169576

Destination Node ID
Next Hop

Time added
Mac Interface ID

1 08:00:27:d9:ed:00 1 01:32:35.623706

Destination Node ID
Next Hop

Time added
Mac Interface ID

1 08:00:27:d9:ed:00 1 01:32:47.720752

5 08:00:27:82:38:f1 0 01:32:47.720997

Destination Node ID
Next Hop

Time added
Mac Interface ID

1 08:00:27:d9:ed:00 1 01:33:00.757004

5 08:00:27:82:38:f1 0 01:33:00.757169

Destination Node ID
Next Hop

Time added
Mac Interface ID

1 08:00:27:82:38:f1 0 01:33:10.900208

5 08:00:27:82:38:f1 0 01:33:10.937878

Destination Node ID
Next Hop

Time added
Mac Interface ID

1 08:00:27:82:38:f1 0 01:33:15.488318

5 08:00:27:82:38:f1 0 01:33:15.488542

54

The Routing table’s first change was the addition of node 1 (first active neighbor

node) and soon after that node 5. By 06-25-2009 01:33:10.900208 the node lost connection in

interface 1 (eth1) to node 1 and having received TC messages from node 5 supporting

connection to node 1 it was added as a new route to node 1.

Table 12 – Test 3 Routing table log in Rbridge2.

Each line in the Routing Table contains: A node ID of a node in the network known by the device, the

Mac Address of where to send a frame to reach that node, and the Ethernet interface from where to

send it to arrive there

Destination Node ID
Next Hop

Time added
Mac Interface ID

N/A N/A N/A 01:32:26.525902

Destination Node ID
Next Hop

Time added
Mac Interface ID

9 08:00:27:93:b2:47 0 01:32:33.451404

Destination Node ID
Next Hop

Time added
Mac Interface ID

1 08:00:27:25:fc:a6 1 01:32:35.431156

9 08:00:27:93:b2:47 0 01:32:35.431385

Destination Node ID
Next Hop

Time added
Mac Interface ID

1 08:00:27:25:fc:a6 1 01:32:54.578861

9 08:00:27:93:b2:47 0 01:32:54.579015

Destination Node ID
Next Hop

Time added
Mac Interface ID

1 08:00:27:25:fc:a6 1 01:32:56.51540

9 08:00:27:25:fc:a6 1 01:32:56.51796

Destination Node ID
Next Hop

Time added
Mac Interface ID

1 08:00:27:25:fc:a6 1 01:32:58.495165

55

Destination Node ID
Next Hop

Time added
Mac Interface ID

1 08:00:27:25:fc:a6 1 01:32:56.51540

9 08:00:27:25:fc:a6 1 01:32:56.51796

Destination Node ID
Next Hop

Time added
Mac Interface ID

1 08:00:27:25:fc:a6 1 01:33:00.949042

9 08:00:27:25:fc:a6 1 01:33:00.949247

Destination Node ID
Next Hop

Time added
Mac Interface ID

1 08:00:27:25:fc:a6 1 01:33:02.638959

9 08:00:27:93:b2:47 0 01:33:02.639315

Destination Node ID
Next Hop

Time added
Mac Interface ID

1 08:00:27:93:b2:47 0 01:33:11.183303

9 08:00:27:93:b2:47 0 01:33:11.183452

Destination Node ID
Next Hop

Time added
Mac Interface ID

1 08:00:27:25:fc:a6 1 01:33:14.750119

9 08:00:27:93:b2:47 0 01:33:14.750344

Destination Node ID
Next Hop

Time added
Mac Interface ID

1 08:00:27:25:fc:a6 1 01:33:18.371559

9 08:00:27:93:b2:47 0 01:33:18.371793

Destination Node ID
Next Hop

Time added
Mac Interface ID

1 08:00:27:25:fc:a6 1 01:33:26.275455

56

The Routing table in Rbridge2 sustained a lot of unexpected changes, probably due to

lack of Hello messages (lack of Hello messages from node 1 to node 5 can be seen in table

10). When received information from neighboring nodes the Routing table maintained a

different route to node 1 and 9, each from a different interface. At “01:32:56.51796” node 9

was perceived as being behind node 1, for this to have happened it can only mean that node

9 didn’t maintain a constant transmission of Hellos to node 5 (through intent). It also shows

that node 9 was temporarily lost at “01:32:58.495165”, since node 5 didn’t even see it as

behind node 1 although it is quickly recovered at “01:33:00.949247”; at that time node 9 was

still connected to node 1. A correct route to node 9 is achieved at “01:33:02.639315” but

lack of Hello messages from node 1 change route to node 1 at “01:33:11.183303” which is

only regained correctly at “01:33:14.750119”, the final loss of connection to node 9 is

expected due to closing of simulations.

Table 13 – Test 3 Routing table log in Rbridge4.

Each line in the Routing Table contains: A node ID of a node in the network known by the device, the

Mac Address of where to send a frame to reach that node, and the Ethernet interface from where to

send it to arrive there

Destination Node ID
Next Hop

Time added
Mac Interface ID

9 08:00:27:ff:a2:21 1 01:32:34.291356

Destination Node ID
Next Hop

Time added
Mac Interface ID

5 08:00:27:82:e4:4e 0 01:32:47.477773

9 08:00:27:ff:a2:21 1 01:32:47.550487

Destination Node ID
Next Hop

Time added
Mac Interface ID

5 08:00:27:82:e4:4e 0 01:33:00.72346

9 08:00:27:82:e4:4e 0 01:33:00.79060

Destination Node ID
Next Hop

Time added
Mac Interface ID

5 08:00:27:82:e4:4e 0 01:33:02.59618

9 08:00:27:82:e4:4e 0 01:33:02.59843

57

Destination Node ID
Next Hop

Time added
Mac Interface ID

5 08:00:27:82:e4:4e 0 01:33:19.349256

9 08:00:27:82:e4:4e 0 01:33:19.349406

Destination Node ID
Next Hop

Time added
Mac Interface ID

5 08:00:27:82:e4:4e 0 01:33:29.221587

The Routing table in Rbridge4 (node ID 1) sustained only expected changes. In the

beginning of the test it maintained a different route to each node, one in each interface.

When having lost connection to node 9 it changed the route to the other interface, through

node 5.

The medium time between the break of connection from node 9 and the detection in

node 1 is approximately 5.852011 seconds. The standard deviation is 2,165355. Since the

theoretical values show that the time required between the loss of a neighbour and the

change in the routing table to be between 4 seconds (which is the time for two Hello

messages not arriving to the Rbridge) and 6 seconds and 700 milliseconds (which is the

combined time for 3 Hellos messages, half a second for the refreshment of the routing table,

and two hundred milliseconds for the signalling) the result shows an average medium time for

this interval.

58

4.3. Discussion of Results

The first test suggests that the Rbridge can function independently correctly and that

changes to neighboring topology are noticed and those changes are respectively made to the

Routing table. The medium time taken to detect the loss of connection with real machines

was a little high but considering both machines were in a domestic environment with several

other machines accessing the network through the switch which was directly connected to

the router, and the machines tested were running other processes it is understandably high.

The second test shows that Rbridges are detected even outside the immediate

neighborhood and problems or changes in those Rbridges are detected and result in changes

in the network Rbridges. The time to detect the loss of connection from the two machines

not directly connected was well within the boundaries of the theoretical predictions and

envisions a possibility to scale well.

The third test shows that mobility scenarios are detectable and result in changes in

the network Rbridges that display correct Route configuration upon topology changes. The

time taken for detection was well within boundaries although it showed a great deviation but

since all machines were directly connected it was not surprising.

These tests are but a fraction of all tests made to the network and all tests provided

the same output. No tests were made for scalability purposes because of the lack of material

for such implementations. VirtualBox can only provide up to 8 fully functional Ethernet

interfaces in its virtual machines, further increase in devices in the network would result in

host malfunction.

59

5. Conclusions

5.1. Revision of the work developed

The purpose of this implementation was to produce a solution that would validate the

viability of the WMRP in real life scenarios. There were two main objectives achieved:

-The functionality of the WMRP was verified, in all the tests topology changes were

detected and the Routing Table was corrected to represent them;

-The implementation of an open solution that can provide for a connection with the

kernel space upon integration with the data plane, Routing Table is accessible to kernel

space, the IP-Mac Association Table and the Local Mac Table can be built upon additions to

this solution that in turn would simply add a greater number of messages sent by the WMRP.

5.2. Relevant contributions and results

There were two main contributions: the first was the integration of the simulation

code with the use of “packet raw” sockets, threads and the real time scheduler which

enabled the emulation; the second contribution was the validation of the WMRP in a testbed

scenario subjecting machines using the WMRP through increasing complexity tests.

The implementation contribution positively allowed for the testing stages, without

real frames in the network the tests could not have been made. Although the fact it used

hard coded information about the devices and used duplicate code for each interface

regarding the methods in which the reading thread ran, resulted in a hard to port code for

each machine. Further work would have to be applied in this case.

The results from the tests suggest that WMRP is functional in testbed scenarios, which

means, it can be transported for real network scenarios and that Rbridges in a network using

it will adapt correctly to topology changes, even unexpected ones.

60

The use of Virtual machines provided with a poor solution for real machines because

of lack of memory for each machine (256 Mb RAM) which resulted in a series of missed Hellos

in the network which in turn resulted in unexpected topology changes in Rbridges that were

connected.

5.3. Future Work

To be able to build the required WiMetroNet there is a need to integrate this solution

with the data plane to provide a fully functional network using terminals and servers. The

final solution would have to integrate both control plane and data plane.

To provide with automatic configuration of Rbridges there are some parts of the code

that need to be changed from hard coding: the declaration of node IDs has to be based in Mac

Address to provide different node IDs in the entire network; to be able to detect Ethernet

interfaces and its Mac Addresses a new solution using netlink has to be developed [17] or file

reading (ifcfg-eth) from the /proc files that have network information; and to allow the use

of multiple threads without recurrent copying the code there needs to be developed a

solution of turning global references into private references [18]

To be able to reproduce exactly the WiMetroNet, this protocol has to be used with

wireless interfaces. Testing it in wireless interfaces is the next obvious step.

61

References

[1]Manuel Ricardo et all, “WiMetroNet-Scalable Wireless Network for Metropolitan Transports”,

2008 Porto.

[2]Jong-Moon Chung, “Analysis of MPLS traffic engineering”,

http://ieeexplore.ieee.org/xpl/freeabs_all.jsp?arnumber=952816, August 2008, Lansing, MI,

USA. Last access in 06/February/09

[3]José Ruela and Manuel Ricardo, “MPLS – Multiprotocol Label Switching”, 2008, Porto,

Portugal.

[4]Rick Gallaher, “An introduction to MPLS”,

http://www.convergedigest.com/Bandwidth/archive/010910TUTORIAL-rgallaher1.htm, 10

September 2001. Last access in 22/February/2009

[5]Anthony Busson, Nathalie Mitton, Eric Fleury, “An analysis of the MPR selection in OLSR”,

http://www.lri.fr/~fragile/IMG/ppt/OLSR-Fragile_AussoisMars05_leBon.ppt, March 2005, ARES

INRIA/INSA de Lyon. Last access in 06/February/2009

[6]A.Qayyum, L.Viennot, A. Laouiti, “Multipoint relaying: An efficient technique for flooding in

mobile wireless networks” Submitted to the 35th Annual Hawaii International Conference on

System Sciences (HICSS'2001).

[7]T. Clausen and P. Jacquet, “Optimized Link State Routing Protocol (OLSR)”,

http://www.ietf.org/rfc/rfc3626.txt, October 2003. Last access in 20/November/2008.

[8]Anthony Busson, Nathalie Mitton, Eric Fleury, “An analysis of the MPR selection in OLSR”

http://hal.inria.fr/docs/00/07/05/39/PDF/RR-5468.pdf, January 2005, INRIA de Lyon. Last

access in 06/February/2009

[9]Alia Fourati, Hakim Badis, and Khaldoun Al Agha, “Security Vulnerabilities Analysis of the

OLSR Routing Protocol”, http://www.lri.fr/~alia/Publis/ICT05.pdf, 2005. Last access in

06/February/2009

62

62

[10]C. Perkins and E. Belding-Royer, “Ad hoc On-Demand Distance Vector (AODV) Routing”

http://www.ietf.org/rfc/rfc3561.txt, July 2003, California. Last access in 26/November/2008

[11]Koojana Kuladintihi, Carmelita Görg, “DYMO implementation in OPNET simulator”,

submitted to IETF-63 Paris, http://www.comnets.uni-bremen.de/~koo/kuladinithi-manet-

ietf63.ppt, 4 August 2005. Last access in 06/February/2009

[12]I. Chakeres and C. Perkins, “Dynamic MANET On-demand (DYMO) Routing”,

http://tools.ietf.org/html/draft-ietf-manet-dymo-16, 5 December 2008. Last access in

20/February/2009.

[13]Radia Perlman et all, “Rbridges: Base Protocol Specification (TRILL)”,

http://www.ietf.org/internet-drafts/draft-ietf-trill-Rbridge-protocol-11.txt, 7 January 2009,

Brocade. Last access in 22/February/2009.

[14]Various authors, “The ns-3 network simulator. Project Summary”,

http://www.nsnam.org/docs/proposal/summary.pdf, 2006-2009. Last access in

06/February/2009

[15]Elias Weingärtner, Hendrik vom Lehn and Klaus Wehrle, ”A performance comparison of

recent network simulators”, http://ds.informatik.rwth-aachen.de/publications/2009/2008-06-

Weingaertner-ICC-NetworkSimulatorComparison, Proceedings of the IEEE International

Conference on Communications 2009 (ICC 2009), Dresden, Germany, IEEE. Last access in

26/June/2009

[16]IEEE Std 802.3TM-2008: Part 3: Carrier sense multiple access with Collision Detection

(CSMA/CD) Access Method and Physical Layer Specifications

[17]”NETLINK(3)”, http://linux.die.net/man/3/netlink, Linux Programmer’s Manual, 2008-08-

08

[18]Dave Marshall, “Threads: Basic Theory and libraries”

http://www.cs.cf.ac.uk/Dave/C/node29.html, 1/5/1999 Cardiff School for Computer Science

Last access in 26/June/2009

[19]Todd Litman, “Evaluating Public Transit benefits and Costs”,

http://www.vtpi.org/tranben.pdf, 2008, Victoria, Canada. Last access in 22/February/09

[20]Victoria Transport Policy Institute, “Transit Oriented Development”,

http://www.vtpi.org/tdm/tdm45.htm, August 2008, Victoria, Canada. Last access in

22/February/2009

[21]Jure Leskovec, “Dynamics of Large Networks”,

http://videolectures.net/sep08_leskovec_tdef/, September 2008, Carnegie Mellon University,

Pittsburgh, Pennsylvania, U.S.A. Last Access in 22/February/2009

 63

[22]Mark Steyvers, Joshua B. Tanenbaum, “The Large-Scale Structure of Semantic Networks”,

http://web.mit.edu/cocosci/Papers/03nSteyvers.pdf, 2005, Cognitive Science Society. Last

access in 22/February/2009

[23]Journal/Magazine Gregory G. Finn, “Routing and Addressing Problems in Large

Metropolitan-Scale Internetworks”,

http://eric.ed.gov/ERICDocs/data/ericdocs2sql/content_storage_01/0000019b/80/1c/4e/45.p

df, submitted to ISI Research report, March 1987, Washington D.C. Last access in

6/February/2009

[24]Rishi Srivatsavai et all, “OpenSolaris Project: Rbridge (IETF TRILL) support”.

http://opensolaris.org/os/project/Rbridges/, Last access in 22/November/2008.

[25]Wagner Meira Jr, “Redes Metropolitanas de Alta Velocidade”,

http://www.rnp.br/newsgen/9911/rmav.html, November 1999. Last access 06/February/2009

[26]Network Instruments LLC All Rights Reserved, “Network Instruments Observer version 12

features”, http://www.networkinstruments.com/products/observer/new/3.html, 2007. Last

access in 06/February/2009

[27]Dionísio Smith Nunes, Jonas Silva de Andrade, Marcelo Ribeiro Bazílio, “Simulação de rede

metropolitana usando OPNE: Um estudo de caso”,

http://www.cci.unama.br/margalho/portaltcc/tcc2005/PDF/014.pdf, 2005. Last access

06/February/2009

[28]Edgard Jamhour, “Tecnologias sem fio para redes metropolitanas”,

http://www.ppgia.pucpr.br/~jamhour/Download/pub/Outros/Redes%20Mesh%20Metropolitanas

.doc, August 2006. Last access in 6/February/2009

