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RESUME 

Modern footbridges are often slender structures prone to excessive vibrations induced by 

pedestrians, due to the trend for construction of longer spans, using new materials and 

satisfying modern aesthetic requirements. Adverse human induced effects may lead to 

serviceability problems in these structures, affecting the human comfort and the structural 

integrity and durability. It may be then very useful to monitor the long term dynamic 

structural behavior, observing and controlling the levels of vibration attained and evaluating 

the evolution of the structural health condition under operational excitations, taking profit 

from recent progress occurred in terms of continuous dynamic monitoring systems, automated 

Operational Modal Analysis and statistical damage detection techniques. 

Continuous dynamic monitoring systems, with remote control and tele-transmission, 

collect vibration data and ambient variables from a structure over a long period of time, and 

they may be used either simply as alert systems, sending automatic messages whenever some 

predefined response threshold is exceeded, or as Structural Health Monitoring (SHM) systems. 

In this case, automated Operational Modal Analysis plays a major role in the automatic 

estimation of modal parameters allowing the tracking of the time evolution of the most 

relevant structural dynamic properties, stemming from environmental and operational factors 

or structural changes due to damage. Damage detection requires then the elimination of 

environmental and operational effects, which can be achieved using Principal Component 

Analysis and statistical treatment of corresponding residue errors, leading to a health index 

that is sensitive to damage. 

In this context, this thesis describes the efforts exerted on the development of LabVIEW 

based software for Operational Modal Analysis, applied either to ambient vibration testing or 

to continuous dynamic monitoring, by summarizing the corresponding state-of-art output-only 

modal identification methods, the participation in the real implementation of continuous 

dynamic monitoring systems, the investigation on the Principal Component Analysis based 

damage identification procedure and presenting two illustrative applications concerning the 

continuous dynamic monitoring of two Portuguese lively footbridges. The first application 

concerns Pedro e Inês footbridge, in Coimbra, where a dynamic monitoring system was 
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installed at the end of construction with the main purpose of checking the efficiency of the 

tuned mass dampers implemented to control excessive lateral and vertical vibrations, whereas 

the second one is focused on the stress-ribbon footbridge of FEUP Campus, where a SHM 

system was installed to analyze and remove the influence of environmental and operational 

factors on the modal estimates, and check the feasibility of vibration based damage detection 

on a efficient and economical basis.  
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RESUMÉ 

Les passerelles à piétons modernes sont souvent des structures minces susceptibles à 

vibrations excessives, dus à la tendance pour la construction de plus longues envergures, 

utilisant des nouveaux matériaux et conditions esthétiques inovatives. Les effets défavorables 

induits par les piétons peuvent mener aux problèmes d'utilité en ces structures, affectant le 

confort humain et l'intégrité et la longévité structurales. Il peut être alors très utile de 

surveiller le comportement structural dynamique à long terme, observant et contrôlant les 

niveaux des vibrations atteints et faisant la evaluation de l'évolution de l'état de santé 

structural sous des excitations opérationnelles, prenant le bénéfice du progrès récent produit 

en termes de systèmes de surveillance dynamiques continus, Analyse Modale Opérationnelle 

automatisée et techniques statistiques de détection de dommages. 

Les systèmes de surveillance dynamiques continus, avec télécommande et 

télé-transmission, rassemblent des données de vibration et des variables ambiantes d'une 

structure sur une longue période, et ils peuvent être employés simplement en tant que 

systèmes d'alerte, envoyant les messages automatiques toutes les fois qu'un certain seuil de 

réponse prédéfini est dépassé, ou en tant que systèmes structuraux de la surveillance de la 

santé (SHM). Dans ce cas-ci, l'analyse modale opérationnelle automatisée joue un rôle 

important dans l'évaluation automatique des paramètres modaux permettant le cheminement 

de l'évolution de temps des propriétés dynamiques structurales les plus appropriées, provenant 

des facteurs environnementaux et opérationnels ou des changements structurels. La détection 

de dommages exige alors l'élimination des effets de l'environnement et opérationnels, qui 

peuvent être réalisée utilisant l'Analyse de Composant Principal et le traitement statistique des 

erreurs correspondantes de résidu, menant à un index de santé qui est sensible aux dommages. 

Dans ce contexte, cette thèse décrit les efforts exercés sur le développement du logiciel 

basé par LabVIEW pour l'Analyse Modale Opérationnelle, appliqué à l'essai ambiant de 

vibration ou à la surveillance dynamique continue, en récapitulant les méthodes d'état-de-art 

d'identification modale correspondantes, la participation dans la vraie exécution des systèmes 

de surveillance dynamiques continus, la recherche sur le procédé et la présentation 

d'identification de dommages basé par Analyse de Composant Principal de deux applications 
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d'illustration au sujet de la surveillance dynamique continue de deux passerelles à piétons au 

Portugal. La première application concerne la passerelle de Pedro e Inês, à Coimbra, où un 

système de surveillance dynamique a été installé à la fin de la construction avec le but 

principal de vérifier l'efficacité des amortisseurs de masse accordés mise en application pour 

commander des vibrations latérales et verticales excessives, tandis que le second est concentré 

sur la passerelle du campus de FEUP, où un système de SHM a été installé pour analyser et 

enlever l'influence des facteurs environnementaux et opérationnels sur les évaluations 

modales, et vérifier la praticabilité de la détection de dommages basée en mesures 

dynamiques, sur une base efficace et économique.  
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RESUMO 

Devido à tendência para a construção de vãos maiores, utilizando novos materiais e às 

actuais exigências de ordem estética, as pontes pedonais modernas são estruturas 

frequentemente esbeltas e susceptíveis de apresentarem vibrações excessivas induzidas por 

peões. Os efeitos adversos induzidos pelos peões podem levar a problemas de utilização 

dessas estruturas, afectando o conforto dos utilizadores, a integridade estrutural e a 

durabilidade. Pode ser por isso muito útil monitorizar o comportamento dinâmico estrutural 

de longo prazo, observando e controlando os níveis de vibração atingidos e avaliando a 

evolução da performance estrutural sob excitações operacionais, tirando partido do progresso 

recente em termos de sistemas de monitorização contínua dinâmica, da Análise Modal 

Operacional automatizada e de técnicas estatísticas para detecção de danos.  

Os sistemas de monitorização contínua dinâmica, com controle e transmissão de dados 

remotas, permitem a recolha de dados de vibração e das variáveis ambientais de uma estrutura 

por um longo período de tempo, podendo ser usados tanto como simples sistemas de alerta, 

enviando mensagens automáticas sempre que algum valor limite da resposta pré-definido é 

ultrapassado, como para avaliar a condição estrutural (SHM). Neste último caso, a 

automatização da Análise Modal Operacional desempenha um papel importante, pois permite 

o cálculo automático de parâmetros modais, possibilitando o acompanhamento da evolução 

temporal das propriedades dinâmicas estruturais mais importantes, motivada por factores 

ambientais e operacionais ou por mudanças estruturais causadas por danos. Em seguida, a 

detecção de danos exige a eliminação dos efeitos ambientais e operacionais, o que pode ser 

conseguido usando a Análise de Componentes Principais e o tratamento estatístico dos 

resíduos correspondentes, possibilitando o cálculo de um índice de saúde estrutural sensível a 

danos.  

Neste contexto, esta tese descreve os esforços desenvolvidos para a criação de um software, 

baseado em LabVIEW, para Análise Modal Operacional, aplicado no processamento de dados 

de ensaios de vibração ambiental e provenientes de sistemas de monitorização dinâmica 

contínua, apresentando o estado-da-arte dos métodos de identificação modal baseados apenas 

na resposta estrutural, participando na implementação de sistemas de monitorização contínua 
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dinâmica, investigando a utilidade da Análise de Componentes Principais na identificação de 

danos e apresentando duas aplicações que ilustram o acompanhamento contínuo de duas 

pontes pedonais Portuguesas bastante flexíveis. A primeira aplicação trata-se da ponte Pedro e 

Inês, em Coimbra, onde um sistema de monitorização dinâmica foi instalado no final de 

construção com o objectivo principal de verificar a eficiência dos sistemas de massas 

sintonizadas implementados para controlar vibrações laterais e verticais. A segunda aplicação 

é uma ponte stress-ribbon no Campus da FEUP, onde um sistema de monitorização da 

condição estrutural foi instalado para analisar e remover a influência de factores ambientais e 

operacionais sobre as estimativas modais, e para verificar a viabilidade de detecção de danos 

com base na medição de vibrações de uma forma eficiente e económica.c 
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 INTRODUCTION 

 

 

1.1 RESEARCH CONTEXT 

1.1.1 Operational Modal Analysis 

Operational Modal Analysis (OMA) consists in the identification of modal parameters of 

a structural system without measuring a controlled input excitation. Therefore, it is also 

known as Output-only Modal Analysis. The motivation to carry out OMA tests emerged 

initially from Civil Engineering, because it is difficult and expensive to artificially excite 

constructions such as buildings, bridges or dams in order to obtain induced vibration levels 

exceeding the structural response due to traffic or wind. However, OMA has been also widely 

used in other fields, like mechanical engineering or aerospace engineering. An extensive 

overview of applications of OMA with different scopes can be found in (Cunha et al, 2007; 

Hermans et al, 1999). 

Generally, OMA methods can be classified in two types: One of them comprehends the 

operational modal analysis methods used to process data from ambient vibration tests. 

Another one involves the long-term automated operational modal analysis methods, used to 

process continuous dynamic monitoring signals.  

In ambient vibration tests, the structural ambient response is captured by one or more 

reference sensors at fixed positions, together with a set of roving sensors placed at different 

measurement points along the structure in different setups. The collected structural response 
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is processed by two main groups of operational modal identification methods, consisting of 

non-parametric and parametric methods in both frequency and time domains. The purpose of 

the ambient vibration tests is the identification of structural dynamic properties in order to 

calibrate and update the finite element models, as well as build a baseline for structural 

continuous dynamic monitoring.  

Long-term automated operational modal analysis techniques mainly comprise a 

structural continuous dynamic monitoring system and fully automated output-only modal 

identification tools. The continuous dynamic monitoring system includes a series of 

permanently installed sensors such as strain gauges, displacement transducers, accelerometers, 

temperature sensors, video cameras, etc, collecting structural responses and environmental 

variations in operational conditions over a long period of time. The continuous dynamic 

monitoring system not only provides vibration data for automated modal analysis, but also 

can be used to build a relatively simple alert system or to accurately characterise the 

structural performance, for instance evaluating experimentally fatigue damage. Automated 

modal identification procedures are responsible for processing the accumulated continuous 

monitoring vibration signals, excluding any user interaction, and tracking the variations of 

structural dynamic properties in order to reflect long term structural dynamic behaviour. In 

recent years, automated operational modal analysis has gathered raising attentions with the 

formulation of algorithms relying on control theory and conventional signal processing 

techniques. Fruitful development of theory and applications is reviewed in (Rainieri and 

Fabbrocino, 2009).  

Combined with continuous dynamic monitoring technology, long term automated 

operational modal analysis, integrated with an appropriate damage detection strategy, can be 

implemented into a complete vibration-based structure health monitoring system with the 

specific purpose of determining the current state of the structural health condition. 

The increasing interest in the investigation and application of OMA led to the emergence 

of several conferences developed in recent years specifically focused on OMA, as is the case 

of the International Operational Modal Analysis Conference (IOMAC).  
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1.1.2 Vibration-based Structural Health Monitoring  

Structural Health Monitoring (SHM) requires the integration of sensing and possibly 

also actuation devices to allow the loading and damaging conditions of a structure to be 

recorded, analyzed, localized, and predicted in a way that nondestructive testing (NDT) 

becomes an integral part of the structure and a material (Boller et al, 2009). Damage 

identification is the key aspect in SHM. Damage means the occurrence of changes to the 

material and/or geometric connectivity, which adversely affect the performance of the system. 

Usually, four levels of damage identification are discriminated (Rytter, 1993). 

Level 1-detection: Is the structure damaged or not? 

Level 2-location: Where is the damaged area located? 

Level 3-quantification: What is the extent of damage? 

Level 4-prediction: What is the remaining service life of the structure? 

Damage identification procedures, also named as damage prognosis, may generally be 

classified as either physical-based or data-based approaches, though typically a combination 

of them is usually employed (Figure 1.1, Farrar and Lieven, 2007). In physical-based 

approaches, the analytical model of the system is proposed. Parameters of such model 

associated with damage are updated so that the predicted system response may be correlated 

with experimental measurements in damage state. Finite Element updating methods are 

example of physical-based techniques (Friswell and Mottershead, 1995). On the contrary, 

data-based methods mainly rely on the comparison between current measurements and 

previous responses collected in healthy conditions, typically by means of feature extraction 

and statistical pattern recognition methods (Farrar and Worden, 2007). Physical-based 

techniques require more computational efforts than data-based assessments, while with 

data-based approaches is more difficult to identify the nature of the structural damage. 

Therefore, the combination of both approaches is useful to acquire confidence and efficiency 

in the evaluation of the system health state. 

Vibration-based structural health monitoring is one of the SHM approaches widely used 

in Civil Engineering applications due to its ‘output only’ nature. The core issue of this 
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methodology is to detect the changes of the meaningful features extracted from the structural 

response, for example, the variations of natural frequencies. This problem is always 

complicated due to two aspects: the first one is the implementation of automated OMA 

approaches in order to extract useful dynamic properties from a large amount of vibration 

signals (Rainieri and Fabbrocino, 2009); the second one is that the ambient variations of the 

system caused by environmental and operational conditions should be separated from 

changes induced by system damage, because the former may mask early subtle structural 

modifications. An efficient methodology for removing the variability due to the environment 

in operational conditions is thus required for reliable damage identification on the basis of 

statistical analysis. (Sohn, 2007). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.1 The general components of a damage prognosis process (Farrar and Lieven, 2007) 
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1.2 OBJECTIVES AND MAIN CONTRIBUTIONS 

1.2.1 Motivations and objectives 

The promising prospective of SHM inspired many researchers all over the world. Recent 

overviews, theory development and practical applications can be found in (Sohn et al, 2003; 

Worden and Farrar, 2007; Boller et al, 2009). Most of the applications of SHM are dedicated 

to large suspension, cable-stayed or highway bridges. Rather rare research is reported 

concerning the development of low-cost and compact vibration-based SHM for footbridges, 

with the intention of understanding the long term dynamic behaviour, investigating the 

environmental effects and attempting to detect early subtle structural changes in operational 

conditions.  

Modern footbridge structures tend to be lively structures due to the increasing strength 

of new materials, longer spans and greater slenderness for aesthetic requirements. These 

construction trends lead to vibration serviceability problems, footbridges becoming more 

susceptible to excessive sway motions resulted from moving crowds. For example, the 

excessive lateral vibrations were clearly perceived by pedestrians in the opening day of the 

Millennium Bridge in London on 10th June 2000 (Dallard et al, 2001). This fact motivated the 

development of important investigations on footbridge vibrations, as clearly evidenced by the 

International Footbridge Conference, launched in 2002 in Paris, and subsequent editions in 

Venice (2005) and Porto (2008). A review on footbridges research can be found in (Živanović 

et al, 2005) and a recent a book on Footbridge Vibration Design was edited by (Caetano et al, 

2009). Considerable footbridge research attentions are paid to different aspects, namely, 

vibration source, path and receivers. However, the long term dynamic behaviour of 

footbridges under operational conditions has not been extensively investigated and well 

understood yet. For example, the influence of walking people on footbridge vibration 

properties, such as natural frequencies and modal damping ratios. Besides, though excessive 

vibration induced by pedestrians is regarded as a serviceability problem, it also may lead to 

early structural changes in normal operational conditions. 
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The Laboratory of Vibrations and Structural Monitoring (ViBest) of the Faculty of 

Engineering of University of Porto (FEUP) has developed extensive research and consultancy 

projects on footbridges during the last ten years, focusing on the design and control of 

footbridge vibrations (SYNPEX, 2008; Caetano et al, 2010a,b), which is a field that may 

require the implementation of continuous dynamic monitoring systems to clarify the long 

term dynamic behaviour of footbridges in operational conditions. 

In this context, the objectives of this thesis are concerned with such issues: 

(i) Understanding and comparison of main OMA methods; 

(ii) Implementation of these methods into a user-friendly toolkit for OMA and 

application of it to existing bridges, evidencing the change of dynamic properties caused by 

structural modifications and ambient factors; 

(iii) Development of a toolkit for continuous dynamic monitoring, installation of 

continuous dynamic monitoring systems on bridges and their application to two slender 

footbridges in Portugal, the Pedro e Inês footbridge over Mondego river in Coimbra, 

equipped with passive control devices, and the stress-ribbon footbridge of FEUP campus; 

(iv) Application of a damage detection procedure to the continuous dynamic monitoring 

data in order to remove the environmental effects and detect simulated structural damage. 

1.2.2 Contributions of the Thesis 

To achieve the above mentioned objectives, the thesis is dedicated to solve these 

problems and its contributions are the following: 

(i) Nearly all frontier operational modal analysis techniques are reviewed synthetically. 

Generally, they are classified as frequency and time domain approaches, depending on the 

primary data type: frequency spectra of data using Fourier Transforms, or data in time domain. 

In order to better explain how the modal parameters can be estimated from measured signals, 

an ambient vibration test of a 3-story metallic frame is performed in laboratory, the 

corresponding experimental signals being processed by each method;  

(ii) A user- friendly toolkit for operational modal analysis is developed by implementing 

different modal identification methods. Moreover, an additional toolkit for automated 

operational modal analysis is also implemented on the basis of appropriate interpretation of 
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stabilization diagrams excluding any user interaction, allowing to track the evolution of the 

modal parameters estimated from continuous monitoring data; 

(iii) Different operational modal analysis approaches are applied to ambient vibration 

test data from a roadway bridge and two footbridges. In these applications, comparisons of 

the estimated modal parameters before and after structural modifications show that the 

identified natural frequencies of different orders may reflect those structural changes, which 

indicates the possibility of detecting damage based on the measurement of frequency shifts. 

However, significant effects of environmental factors on frequency estimates are also 

observed. Therefore, the continuous dynamic monitoring and the implementation of 

automated operational modal analysis tools are necessary to investigate and remove the 

influence of environmental factors; 

(iv) Participate in the implementation and development of continuous dynamic 

monitoring systems for two footbridges. On the basis of long term monitoring data, the 

behaviour of footbridges in operational conditions are thoroughly investigated in both time 

and frequency domains: maximum vibration levels are monitored as a serviceability index; 

waterfall plots characterize the distributions of frequency components; averaged vibration 

levels are used to evaluate the pedestrian traffic intensity and ambient temperature is also 

observed. The relations between modal parameters estimated by automatic operational modal 

analysis and environmental factors are studied. Linear and nonlinear environmental effects 

revealed by analyzing continuous monitoring results suggest that such influences should be 

removed for confident damage identification; 

(v) Linear Principal Component Analysis (PCA) is used to remove the environmental 

effects from damage events under operational conditions. Linear PCA not only naturally 

distinguishes the linear environmental effects on dynamic properties, but also efficiently 

removes the nonlinear influences on natural frequencies if highly linear relations are observed 

among them. The Novelty analysis on the residue errors provides a statistical indication for 

structural damage. The potential of this method is demonstrated by successful detection of 

different simulated damage scenarios. 
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1.3 ORGANIZATION OF THE THESIS 

A chapter-by-chapter overview is presented in the following and inherent logic relations 

of them are manifested. 

Chapter 1 introduces the investigation background and motivations, highlights the main 

work, as well as the organization of the thesis. 

Chapter 2 begins with the classical dynamic vibration equations and Finite Element 

models, transforms the structural vibration to modal model defined in system identification. 

Different parametric and non-parametric system identification approaches in both frequency 

and time domains are presented. An ambient vibration test of a metallic laboratorial frame is 

performed and experimental data is used to illustrate the abstract system identification theory.  

Chapter 3 describes the implementation of a user-friendly toolkit integrating different 

system identification methods for OMA. In addition, a toolkit based on an automated OMA 

algorithm is also developed and proposed for processing a large amount of continuous 

monitoring data.  

Chapter 4 presents three cases of application of OMA using different system 

identification approaches. Comparisons of dynamic properties before and after structural 

changes suggest that the natural frequencies are sensitive enough to reflect such changes. 

However, environmental factors can also influence the dynamic properties. Therefore, 

continuous dynamic monitoring is required to investigate the long term structural behavior 

and the environmental influences. 

Chapter 5 is focused on the investigation of the long term dynamic behaviour and of the 

environmental effects on the dynamic properties of footbridges under normal operational 

conditions, taking into account the maximum vibration levels, distributions of frequency 

components, and tracking of the variations of dynamic properties and environmental 

variables in order to clarify their relations.  

Chapter 6 discusses the removal of the environmental influences and damage 

identification. It is observed that linear PCA not only eliminates the linear effects, but also 

discards the nonlinear influences if natural frequencies of different modes are linearly related. 
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The simulated progressive damage of the two footbridges analyzed is successfully detected 

on the basis of statistical analysis of the residual errors. 

Chapter 7 ends the thesis with some conclusions and perspectives for further 

investigations relevant in the field of vibration-based SHM. 

The organization of this thesis can be further illustrated in Figure 1.2.  
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Figure 1.2 Organization of the thesis 
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2 
 MODELS OF DYNAMIC SYSTEMS AND 

OPERATIONAL MODAL ANALYSIS 

 

 

2.1 INTRODUCTION 

In past two decades, operational modal analysis (OMA), stemming from traditional 

experimental modal analysis (EMA) in mechanical engineering and time series analysis (TSA) 

in systems control engineering, has drawn great attention in the civil engineering community 

with applications in bridges, buildings, towers, etc (Cunha et al, 2006,2007). 

 

 

 

 

 

Figure 2.1 A system with output y; the input, comprising a determined input u and 

  measured disturbance w, is assumed as white noise; v is an unmeasured disturbance 

OMA is also called as output-only ‘system identification’. A system is an object in which 

different kinds of variables interact and produce observable signals, illustrated by Figure. 2.1. 

The observable signals (y) that are of interest to use are usually called outputs. The system is 

also affected by external stimuli. External signals that can be manipulated by the observer are 

defined as determined inputs (u). Others are called disturbances and can be divided into those 

that are directly measured (w) and those that are only observed through their influence on the 

v 

Time-Invariant Linear System 
M,C2,K 
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output (v). The distinctions between inputs (u) and measured or unmeasured disturbances (w, 

v) is often less important for the modelling process.  

The notion of a system is a broad concept. In this thesis, a system is specified as a civil 

engineering structure. In OMA of civil engineering, the structures are naturally excited by 

ambient excitation forces e.g. wind, traffic, seismic activity, etc., which are difficult or even 

impossible to be measured. Elimination of this ambient excitation is often impossible and 

applying an artificial measurable force which exceeds the natural excitation is expensive and 

sometimes difficult. In these cases, only structural responses (y) are measured. The basic 

assumption of OMA is that the output response is a realization of a stochastic process and the 

unmeasured input is a white noise. 

OMA directly evolved from traditional EMA, which can be regarded as a classical 

input-output approach, where the extraction of modal parameters is based on frequency 

response functions (FRFs), derived in frequency domain, or on the equivalent impulse 

response functions (IRFs), in time domain, using input-output measurements. Moving from 

one domain to the other is a matter of applying Fourier Transform. There are many technical 

publications on input-output modal identification (EMA) developed in last three decades. 

These methods are generally classified as frequency domain or time domain approaches. The 

frequency domain methods, based on the measurement of FRFs, comprise the simple 

‘peak-picking’ (PP) or ‘peak-amplitude’ technique, the complex mode indicator function 

(CMIF) method (Shih et al, 1988) and the polyreference least squares complex frequency 

(P-LSCF) procedure (Guillaume et al, 2003). In parallel, the IRFs in time domain are 

normally calculated from the FRFs by an inverse Fourier transform, which leads to time 

domain methods comprehending the least-squares complex exponential (LSCE) method 

(Brown, 1979), the polyreference complex exponential (PRCE) method (Vold et al, 1982), the 

multiple reference Ibrahim time domain (MRITD) technique (Fukuzono, 1986) and the 

eigensystem realization algorithm (ERA) procedure (Juang and Pappa, 1985; Longman and 

Jung, 1989). In 1998, the unified matrix polynomial approach (UMPA) was proposed 

(Allemang et al, 1998). It demonstrates that most of the abovementioned techniques, both in 

the frequency and time domains, are particular cases of a more general polynomial 

formulation, and this helps to clarify the similarities among the various methods. More 



Models of Dynamic Systems and Operational Modal Analysis 

13 

comprehensive and detailed discussion of these methods can be found in (Heylen et al, 1995; 

Maia et al, 1997; Ewins, 2000). 

In early 1990s, the Natural Excitation Technique (NexT) was proposed (James, 1992). It 

is a significant breakthrough for modal identification, because only output measurements in 

the case of natural excitation are used for modal parameters estimation. The underlying 

principle of the NExT technique is that correlation functions (COR) between the responses 

can be expressed as a sum of decaying sinusoids. Each decaying sinusoid has a damped 

natural frequency and damping ratio that is identical to the one of the corresponding structural 

mode. Therefore, CORs can be employed as IRFs to estimate modal parameters, which means 

that a modal identification procedure from traditional EMA can be further adopted for OMA. 

For example, in time domain, by replacing IRFs with CORs, ERA methods can be developed 

to NExT-ERA technique (Akaike, 1974; Benveniste and Funche, 1985; Aoki, 1987). This 

method is also named as Covariance driven Stochastic Subspace Identification (SSI-COV) 

method (Peeters, 2000). Similarly, in frequency domain, output spectra can be modeled in a 

similar way as FRFs under the assumption that the input is white noise. By replacing the 

FRFs matrix with the output spectral matrix, the traditional CMIF method and p-LSCF 

procedure evolved to frequency domain decomposition (FDD) method (Brincker et al, 

2000,2001) and Polyreference Least Squares Complex Frequency techniques 

(PolyMAX®,Peeters, 2004,2005), respectively. 

Apart from EMA in mechanical engineering, OMA in civil engineering also root in TSA 

in control engineering because TSA methods model dynamic systems directly from output 

measurements, such as the auto-regressive moving average (ARMA) time series model and 

stochastic state-space (SS) model. It is demonstrated that the ARMA model is equivalent to 

the stochastic state-space model (Akaike, 1974; Basseville, 1985), however, the identification 

technique of stochastic SS model is better than of ARMA model because no non-linear search 

is required and computational complexity is dramatically reduced. The most important 

techniques for identifying ARMA model is the prediction-error method (PEM) (Ljung, 1999). 

By minimizing the prediction errors, the modal parameters identification is a nonlinear 

optimization problem, which makes ARMA model identification rather difficult to apply, 

especially for large dimension structures. Despite this drawback, efforts have been still made 
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to apply PEM to identify modal parameters in civil engineering (Andersen, 1997). In the 

1990´s, stochastic subspace identification (SSI) technique was developed in control 

engineering (Van Overschee, 1996). It starts by projecting the row space of the ‘future’ 

outputs into the row space of ‘past’ outputs, factorization of the projecting matrix leading to 

Kalman filter state sequence, which can be utilized to estimate system matrix by least square 

(LS) techniques. The identification procedure avoids non-linear iteration and is numerically 

reliable and effective. SSI has been adopted successfully for OMA in civil engineering 

(Peeters, 2000). Because of using the stochastic response data to identify modal parameters 

directly, it is also named Data driven Stochastic Subspace Identification (SSI-DATA).  

A standard OMA procedure require the consideration of three basic entities: (1) a set of 

measured output responses, (2) candidate models and (3) methodologies for the identification 

of the candidate models using the output data. In OMA testing, the only available information 

about the dynamic behaviour of a structure are the output measurements. Different 

identification methods based on mathematical models in OMA are capable to provide accurate 

estimates of the modal parameters of the structure from output response. However, it is 

necessary to obtain some kind of comprehension of how all kinds of models, both in 

frequency domain and time domain, relate to the modal parameters, that is, how they relate to 

the lumped mass-spring parameter model in structural analysis and how modal parameters can 

be identified by these models.  

The main purpose of this chapter is to provide such understanding. Therefore, this 

chapter starts with the description of the simple multi-degree-of freedom vibration model and 

the finite element model of vibration systems, subsequently, the analytical models are 

converted to frequency domain models and time domain state-space models. The 

corresponding modal parameters identification procedures are illustrated and clarified with 

application of these complex techniques to output measurements of a steel frame in laboratory. 

Finally, the performances of different OMA approaches are compared. 
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2.2 MULTI-DEGREE-OF-FREEDOM SYSTEMS 

The dynamic behaviour of a mechanical system can be often idealized by discretizing in 

mn  masses connected by springs and dampers (DOFs), the corresponding motion being 

described by the following matrix differential equations: 

 )()()()()( 2 tuBtftKqtqCtqM l==++ &&&                    (2.1) 

where ∈KCM ,, 2
mm nn ×  are the mass, damping and stiffness matrices; 

),(tq ),(tq& )(tq&& ∈ mn are displacement, velocity and acceleration vectors at continuous time t, 

respectively; ∈)(tf mn is the excitation force vector, which can be factorized into a matrix 

∈lB mnm×  specifying the locations of inputs and an input vector ∈)(tu m In a practical 

modal experiment，output measurements are only a set of responses measured from well 

selected points, and not all nm DOFs described in FE model.  

It is assumed that measurements are acquired at l points. In general case, the response 

can be measured using accelerometers, velocity or displacement transducers. In that case the 

observation equation y(t) is expressed as: 

)()()()( tqCtqCtqCty dva ++= &&&                      (2.2) 

where ∈)(ty l are the outputs and ∈dva CCC ,, mnl× are the selection matrices for the 

accelerations, velocities and displacements. These matrices contain only zeros and a few ones, 

indicating which output is measured as an acceleration, velocity or displacement. For example, 

if only accelerometers are used, ICa = , 0=vC  and 0=dC . 

In structural analysis, e.g., finite element (FE) analysis, the structure is discretized in a 

set of elements. The global mass matrix M  and stiffness matrix K are obtained directly from 

the geometry and material properties. However, it is impossible to assemble the damping 

matrix Cd in the same way as M and K due to lack of reliable material constants representing 

the global damping behaviour of structure. Damping matrix Cd can be modelled as symmetry 

and ordinary form: proportional damping and general viscous damping.  



Chapter 2 

16 

Example 

An example of a metallic frame is introduced to illustrate the theoretical concepts, described in 

this chapter. It is composed by 3 rigid iron masses connected to each other and to the base through 

aluminium columns by connection elements, which are clamped at nodes 1-6 and the base (Figure 

2.2).  

 

           

(a) Photo                          (b) Schematic lateral view 

   Figure 2.2 General view of the metallic frame 

2.2.1 Undamped free vibration systems 

Assuming the free vibration of an undamped system, equation (2.1) is transformed by 

ignoring the damping matrix Cd and the external excitation( )tf :  

  0)()( =+ tKqtqM &&                             (2.3) 

Substituting the general solution t
i

ietq λφ=)(  in equation (2.3) leads to  

)( 2
iii MK λφφ −=                              (2.4) 

where ∈iφ mn  ( mni ,...,2,1= ) is an eigenvector and 2iλ  is an eigenvalue. In an undamped 

vibration system, an eigenvalue is usually denoted as the square of an undamped natural 

 1 

 2 

3 

4 

5 

6 
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frequency ω , that is  

ii jωλ =                                (2.5) 

Equation (2.4) can be expressed in the following complete solution:  

2ΦΩ=Φ MK                             (2.6) 

where [ ]∈=Φ
mnφφ ,...,1

mm nn ×  is the eigenvector matrix and [ ]∈=Ω \
\

iω mm nn ×  is a 

diagonal eigenfrequency matrix. According to orthogonality properties  

[ ]\
\

i
T mM =ΦΦ , [ ]\

\
i

T kK =ΦΦ                       (2.7) 

from which 

iii mk=2ω        

where mi and ki are the modal mass and modal stiffness, respectively. The superindex ‘T ’ 

denotes transpose of a matrix. 

It is important to realize that the eigenvalue matrix Ω  is unique, because 

eigenfrequencies are fixed quantities, while the eigenvector matrixΦ  is subject to 

indeterminate scaling factors, which affect the amplitude of the eigenvectors iφ . There are 

many scaling and normalization processes ofΦ , the most common is to modal identification 

being mass-normalization. The mass-normalized eigenvector matrix is written as [ ]norΦ  and 

has the particular property 

mnnor
T
nor IM =ΦΦ , 2Ω=ΦΦ TT

nor K                   (2.8) 

where 
mnI  is an identity matrix of dimension of mm nn × . 

Matrices Φ  and Ω  describe the dynamic characteristics of the dynamic system. Hence, 

they constitute the modal model. Eigenvector iφ  is also called the i-th mode shape 

corresponding to the i-th undamped natural frequency iω . It is noted that in the undamped 

case the eigenvectors are real modal vectors. 

Example 

The metallic frame is idealized as a 3 degree of freedom undamped vibration model. In the 

current analysis, the density and modulus of elasticity of both aluminum and iron are evaluated as 
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33 /107.2 mkgEA =ρ , =AE 65Gpa and 33 /107.7 mkgEI =ρ , =IE 210Gpa, respectively. The total 

mass of each level, including the iron mass, the mass of each half part of support columns and the 

mass of connection elements, is calculated as kgmm 67.1521 ==  and kgm 28.133 = . The stiffness 

provided by aluminium column are 167.2kN/m, 167.2kN/m and 83.6kN/m. The mass and stiffness 

matrices have the following expression: 

  kgM

















=
28.1300

067.150

0067.15

,     mkNK /

6.836.830

6.832.1676.83

06.832.167

















−
−−

−
=  

             

          Hzf 40.51 =                Hzf 93.142 =             Hzf 16.213 =  

Figure 2.3 Natural frequencies and modal shapes   

According to equation (2.6), the eigenfrequency matrix Ω  and the eigenvector matrix Φ  are 

evaluated. The modal results are shown in Figure 2.3. 

2.2.2 Proportional damping systems 

In a more general case of free vibration of a damped system, it is necessary to introduce 

some assumptions concerning the damping characters. Usually the damping is assumed as 

proportional, which means that the damping matrix C2 is assumed as a linear combination of 

the mass and stiffness matrices, which is also called Rayleigh damping: 

KaMC β+=2                            (2.9) 

where β,a  are two scalar constants, then the equation of motion can be written in the 

form:  
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0)()()( 2 =ΦΦ+ΦΦ+ΦΦ tqKtqCtqM p
T

p
T

p
T &&&               (2.10) 

where )()( 1 tqtqp
−Φ=  is a coordinate transformation. Assuming damping is small, it is 

acceptable to neglect the off diagonal elements in 2C  and it can be diagonalized as: 

 [ ] [ ]\
\

\
\

2 2 iiii
T mcC ωξ==ΦΦ                      (2.11) 

where iiii mc ωξ 2=  is the modal damping ratio. 

The solution of equation (2.10) with proportional damping has a form similar to the one 

of an undamped model t
pip

ietq λφ=)( . Substituting this solution and equation (2.11) into 

equation (2.10) leads to a series of independent equations: 

02 22 =++ iiiii ωλωξλ                          (2.12) 

yielding the following solution: 

iiiiii j ωξωξλλ 2* 1, −±−=                       (2.13) 

where superindex ‘*’ denotes complex conjugate. 

The particular advantage of using a proportional damping model in structural analysis is 

that the mode shapes are identical and the natural frequencies are similar to those of the 

simple undamped system. In fact, it is possible to derive the modal property of a proportional 

damping system by analyzing the undamped version and making a correction for the presence 

of the damping. However, it should be noted that it is only valid under the assumption that 

damping is distributed over the structure in the same way as the mass and the stiffness, which 

does not happen in real structures with local dampers, e.g. bridges with tuned mass damper 

(TMDs). In order to model the damping mechanisms more accurately, another approach is 

introduced in the next section, assuming general viscous damping.  

2.2.3 General viscous damping systems 

In case of a vibration model with general viscous damping, the damping matrix 2C  can 

not be diagonalized. In order to solve the eigenvalue problem, it is necessary to recast 

equation (2.1) into so-called state-space form, the second order equation being reformulated 

as a first order equation. 
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Define a state vector )(tx  of order n=2nm, containing both the displacement vector 

)(tq and the velocity vector )(tq& , 









=

)(

)(
)(

tq

tq
tx

&
                              (2.14) 

Assuming the solution is t
gi

ietq λφ=)( , 

t
i

t

gii

gi
ii ee

tq

tq
tx λλ ϕ

φλ
φ

=







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
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)(

)(
)(

&
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( ) t
ii

t

gii
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ii ee
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


=








= 2)(

)(
&&

&
&      (2.15) 

Equation (2.1) can be then rewritten in state-space form as: 

FtQxtxP =+ )()(&                            (2.16) 

where  





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


=

0
2

M
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P , 




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−
=

M

K
Q

0

0
, 




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


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tq
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iλ
, )(

0
tu

B
F l









=  

Substituting equation (2.15) in equation (2.16), this leads to a generalized eigenproblem 

when f(t)=0, 

0=Ψ+ΨΛ QP com                           (2.17) 

whose solution comprises a set of n=2nm eigenvalues, appearing in complex conjugate pairs.  

Denoting the eigenvalues as ∈Λ mm nn ×  and the conjugate pairs as ∈Λ* mm nn × , 

the corresponding complex eigenvectors are  










ΦΛ
Φ

=ϕ , 








ΛΦ
Φ

=
**

*
*ϕ                       (2.18) 

comΛ  and Ψ  have following structure: 
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, [ ] 
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
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

ΛΦΦΛ
ΦΦ

==Ψ
**

*
*,ϕϕ             (2.19) 

where Λ and ∈Φ mm nn ×  are the eigenvalues and eigenvectors of the original second 

order system. Substituting comΛ  and Ψ   into equation (2.17) and it becomes 

02
2 =Φ+ΛΦ+ΦΛ KCM                        (2.20) 
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It is noted that eigenvectors matrix Φ  can not diagonalize the matrices M, C2 and K as 

happen when proportional damping is assumed. However, complex eigenvalues of (2.20) iλ  

are written as those analogous to proportional damping system: 

iiiiii j ωξωξλλ 2* 1, −±−=                       (2.21) 

Pre and post-multiplying equation (2.16) by the eigenvector matrixΨ , it is found that: 

0)()( =ΨΨ+ΨΨ tqQtqP mc
T

mc
T &                     (2.22) 

where )()( 1 txtqmc
−Ψ=  is the modal coordinate transformation. According to orthogonality 

conditions, matrices P and Q are diagonalized: 

[ ]\
\

i
T aP =ΨΨ , [ ]\

\
i

T bQ =ΨΨ                      (2.23) 

where  [ ]\
\

ia  and [ ]\
\

ib  are modal a matrix and modal b matrix, respectively. 

Substituting (2.23) in (2.17) and pre-multiplying by [ ]TΨ  yields 

[ ] [ ]\
\

\
\

iiicom ab−==Λ λ                          (2.24) 

2.3 FINITE ELEMENT MODELING 

The dynamic behavior of complex structures is generally analyzed by means of the Finite 

Element Method (FEM), which leads to an eigenvalue problem that is solved in terms of 

modal parameters (natural frequencies, modal damping ratios and mode shapes). 

The limitation of the FEM lies in the increase of model size required to properly describe 

complex structures with sufficient detail, which leads to high model construction and 

calculation times. More important restriction is inherent inaccuracy in modelling including 

model structure, parameter and order errors. To address these limitations, an experimental 

approach to modal analysis was developed to yield results which can be either as a model, or 

to validate and improve the FEM (Frisell and Mottershead, 1995). The resulting EMA and 

OMA approach have become a standard element of the mechanical product design and 

engineering process. 
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Example 

The finite element model of the metallic frame was developed with ANSYS software. The iron 

beams and aluminum columns were simulated with beam4 element, and the connection elements were 

modeled as concentrated masses with mass21 element. The numerical results are exhibited in Figure 

2.4.  

                   

             Hzf 35.51 =                Hzf 02.152 =             Hzf 66.213 =  

Figure 2.4 Calculated natural frequencies and modal shapes 

2.4 FREQUENCY DOMAIN MODELS 

A standard OMA procedure consists of three basic stages: (1) Conduction of ambient 

vibration test under operational conditions and collection of output responses; (2) 

Consideration of a set of candidate models; (3) Application of methodologies in model fitting 

using the output data. The candidate models in OMA can be classified based on the domain in 

which the data is treated resulting in ‘frequency domain models’ and ‘time domain models’. 

In time domain, the output responses can be used directly to build the model, while in 

frequency domain models it is necessary to perform a spectrum analysis by Fourier transform. 

In this section, the frequency models and corresponding algorithms will be introduced.  

Example 

In order to illustrate the complex candidate models of OMA, a vibration experiment of the 

metallic frame was performed in laboratory. It is assumed that the lateral response on nodes 1 and 4, 2 

and 5, as well as on 3 and 6 are equal. So, only acceleration signals in nodes 1,2 and 3 were measured.  

The signal acquisition system used in the experiment consists of piezoelectric accelerometers, 
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signal conditioners and a data acquisition equipment, as shown in Figure 2.5 (a-c). The acceleration 

signals were measured with sensors (PCB 352A10 and PCB 352C68) and amplified with ICP sensor 

signal conditioner. The signals were sampled by National Instruments data acquisition equipment 

(cDAQ-9172 and NI 9234) which connected to a computer. The frame was excited manually by a 

hammer (PCB 086C03) occasionally. The experiment was divided in 2 setups and node 1 was selected 

as reference point. The first setup comprehended the vibration signal measured at nodes 1 and 2, while 

the second setup collected data from nodes 1 and 3. The duration of each setup was 15 minutes and the 

sampling frequency was 500Hz. 

       

(a) Sensor (PCB 352A10) at node 1             (b) Sensor (PCB 352C68) at node 2 

 

(c) ICP signal conditioner (480D06 and 480E09) and 

 NI data acquisition equipment (cDAQ-9172 and NI 9234) 

 
    (d) Acceleration signal measured at node 1 in setup 1 

   Figure 2.5 Sensors, signal conditioner, data acquisition equipment and measured signal 
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The application of Laplace transform in continuous time domain leads to the classical 

Frequency Response Function (FRF) in frequency domain. In frequency domain analysis, the 

FRF can be decomposed in two different forms of fraction, representing two different models. 

In one of them is the FRF can be expressed as a Partial Fraction Description (PFD) model, 

which is also called pole-residue parameterization. The modal frequency and modal damping 

can be estimated from the poles, whose modal shapes can be extracted from decomposition of 

residue. In another model is the FRF is described as a Right Matrix Fraction Description 

(RMFD) model. Identification of this model is based on the minimization of an equation error 

between the measured and modelled FRF matrix. After linearization, modal parameters can be 

extracted by linear Least Squares (LS) approach.  

Typical for operational modal analysis is that only discrete and finite output 

measurements are available. Dealing with real random responses requires converting 

continuous time domain models to discrete domain, and introducing concept of spectrum and 

spectrum estimation algorithm in frequency domain, which are the basis for further 

application of frequency domain models for operational modal analysis. On one hand, in PFD 

model, the input spectra matrix is assumed as a constant matrix, therefore, poles and residues 

can be identified by estimation of an output spectra matrix based on response measurements. 

On the other hand, using an output spectral matrix instead of a FRF matrix to build RMFD 

model also leads to accurate identification of modal parameters by linear LS method. 

2.4.1 Laplace transform and transfer function  

The Laplace transform converts time-variant differential equations to algebraic ones, 

which are easier to manipulate. The one-sided Laplace transform of a function x(t), denoted as 

X(s), is defined as  

X(s)=L [x(t)]= dtetx st−∞
∫ )(0                         (2.25) 

where =s is a complex quantity known as the Laplace variable. According to important 

property of the Laplace transform 

L [ )(tx& ]= )0()( xssX −                          (2.26) 

Applying the Laplace transform to equation (2.1) leads to  
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L [ ] [ ] [ ] )()0()()0()0()()()()( 2 sKXxssXCxsxsXsMtqKtqCtqM dd +−+−−=++ &&&&  

                        )0()0()0()()( 2 CxxMMsxsXKsCMs d −−−++= &       (2.27) 

and  

L [ ] )()( sFtf =                              (2.28) 

If the initial displacement and velocity are equal to 0 ( 0)0( =x  and 0)0( =x& ), equations 

(2.27) and (2.28) can be expressed as the ratio of the transformed response to the transformed 

excitation: 
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where )(sZ  is the dynamic stiffness. 

The denominator of equation (2.29) KsCMs d ++2  is identical to equation (2.20) 

yielding roots is  expressed asΛ . Substituting is  and the modal coordinates 

)()( 1 txtqmc
−Ψ=  in equation (2.16), and pre-multiplying by TΨ   

FtqQPs T
mc

TT
i Ψ=ΨΨ+ΨΨ )()(                    (2.30) 

According to orthogonality conditions shown in equations (2.23) and (2.24), it leads to: 

[ ] [ ] Faastq T
comiiimc ΨΛ−= −1

\
\

\
\ )()(                   (2.31) 
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The upper part of equation (2.32) is  

[ ] [ ] [ ][ ] [ ] )()(
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\
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−Λ−=                 (2.33)    

Applying the Laplace transform to equation (2.33) yield 
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Then, transform function )(sH  in Partial Fraction Expansion (PFE) is obtained: 
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The transform function )(sH  is described as a sum of modal contributions, which is 

called modal decomposition. 

In classical modal analysis, *, ii λλ  are named as system poles and coincide with 

equation (2.21): 

iiiiii j ωξωξλλ 2* 1, −±−=  

iφ , iγ  and riR  are defined as mode shape vector, mode participation vector and residue, 

respectively. A so-called ‘modal model’ is characterised by natural frequenciesiω , modal 

damping ratios iξ , mode shapes iφ and mode participation factorsiγ . 

The equation (2.29) can also be expressed as  

)(

)(
))(()( 1

sZ

sZ
sZsH adj== −                      (2.36) 

where the numerator )(sZadj (the adjoint matrix) is an ( mm nn × ) matrix containing 

polynomials in s of order )1(2 −mn , and the denominator is a polynomial in s of order mn2 . 

Therefore, equation (2.36) can also be written as (Verboven, 2002) 
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which is called a common denominator model or also scalar matrix fraction description. This 

expression can also be considered as a special case of multivariable transfer function models 
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described using a Right Matrix Fraction Description (RMFD) (Kailath, 1980; Guillaume et al, 

1996) 

1))()(()( −= sAsBsH riri                        (2.38) 

Based on this relation, the modal participation factor can be estimated directly together 

with poles.  Afterwards, the mode shape can be estimated by linear least-squares frequency 

domain (LSFD) method.  

2.4.2 Fourier transform and Frequency Response Function (FRF) 

If the complex Laplace variable s is restricted to purely imaginary value ωjs = , where 

ω  is any frequency of interest, the Laplace transform is converted into the Fourier transform: 

)( ωjX =F[x(t)]= dtetx tjω−∞
∫ )(0                       (2.39) 

The FRF can be denoted replacing s by ωj  in the transform function. It can be 

written in PFD, also in modal decomposition form: 
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and in RMFD 

1))()(()( −= ωωω jAjBjH rr                       (2.41) 

The Fourier transform is a mathematical tool that converts a time signal into the 

frequency domain, and its great popularity in practical application stems from the efficient 

algorithm known as Fast Fourier Transform (FFT) (Cooley and Tukey, 1965).  

 

Example 

In current research, traditional EMA was also performed using the metallic three story frame. The 

transient force excitation was applied by a hammer and the acceleration response at node 1 was 

recorded with a sampling frequency of 500Hz, as shown in Figure 2.6 (a). The force and free decay 

acceleration signals within 120 seconds were measured and are shown in Figures 2.6 (b) and (c). The 

calculated FRF is shown in Figure 2.6 (d). The frequencies corresponding to the peaks of the FRF are 

5.29Hz, 15.18Hz and 22.35Hz, respectively.  
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 (a) Measurement of force input and acceleration response at node 1 

 

(b) Impulse excitation applied by hammer (PCB 086C03) 

 

    (c) Acceleration response when applying impulse excitation 

 

(d) Amplitude of FRF relating the impulse excitation and the acceleration response at node 1 

   Figure 2.6 Measurements of input and output signals as well as resulting FRF 
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2.4.3 Sampling, z-transform, Discrete Time Fourier Transform and Discrete 

Fourier Transform  

In previous sections all equations are expressed in terms of infinite length in continuous 

time or frequency, but in experimental world observations of inputs and outputs are finite 

length in discrete time because of data-acquisition mode. In order to fit models to real 

measurements, it is then necessary to convert the above models to discrete time form. It is 

assumed that measurements are observed at the sampling instants tktk ∆= , k=0,1,2…N-1∈

where internal t∆  is called sampling interval. Most often, a zero-order hold (ZOH) 

assumption is adopted, which means that the response, for example the displacement)(tq , is 

piecewise constant between the sampling instants: 

kqtq =)( , tkttk ∆+<≤∆ )1(                        (2.42) 

Under this assumption, the equation of motion is converted as: 

kkkdk fKqqCqM =++ &&&                          (2.43) 

where kkk qqq &&& ,,  and kf are the sampled displacement, velocity, acceleration and force 

vectors. 

The z-transform can be considered as a discrete equivalent of the Laplace transform. 

One-sided z-transform is defined as: 

=)(zX Z [ ] ∑=
+∞

=

−

0k

k
kk zxx                         (2.44) 

where ∈z is a scalar complex variable. An important property of the z-transform is:  

Z [ ] ))(( 01 xzXzxk −=+                          (2.45) 

Assuming that initial condition is 00 =x , a forward shift in time domain corresponds to a 

multiplication by z in the z-domain, 

Z [ ] zzzXxk ==+ )(1 Z [ ]kx                        (2.46) 

The Discrete-Time Fourier transform (DTFT) is the discrete equivalent of the Fourier 

transform shown in (2.39), 
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)( tjeX ∆ω =F [ ]kx = ∑
+∞

=

∆−

0k

tkj
kex ω                    (2.47) 

Comparing equations (2.47) and (2.44), it is observed that the DTFT  is a special case of 

z-transform when z is restricted to tjez ∆= ω , which is the evaluation of the z-transform around the 

unit circle in the complex plane. 

In practical evaluation of the inputs and outputs during an experiment, only finite length 

sequences with N points are available. Thus, equation (2.47) may be modified as 

)( tjeX ∆ω =F [ ]kx = ∑
−

=

∆−1

0

N

k

tkj
kex ω                    (2.48) 

If N is a power of 2, )( tjeX ∆ω  can be efficiently computed at uniformly-spaced discrete 

frequencies  

)1,...,0(,
2 −=
∆

= Nl
tN

l
n

n πω                     (2.49) 

across one period (π2 ) by using FFT. )( tjeX ∆ω  is now recognized a Discrete Fourier 

Transform (DFT). By using DFT, a finite length discrete signal in time domain is converted 

discrete frequency spectrum. 

2.4.4 Spectrum and spectrum estimation 

As input is unknown in OMA testing, power spectra are frequently used to identify the 

system model and extract modal parameters. In this section, spectrum analysis and practical 

aspects of spectrum estimation technique are introduced.    

The power spectrum is defined as the Fourier transform of the autocorrelation 

function )(tRs , if the signal can be treated as a stationary stochastic process, 

dtetRjS tj
ss

ωω −+∞
∞−∫= )()(                         (2.50) 

In OMA, it is assumed that the excitation (input) is a zero mean E [ ] 0)( =tx , white noise 

sequence. The autocorrelation function can be written as, 

[ ] )()()()( τδττ xxxx RtxtxER =+=                   (2.51) 



Models of Dynamic Systems and Operational Modal Analysis 

31 

where τ  is the time lag, ∈)(τxxR m×m is a constant matrix and )(τδ  is the Dirac delta 

function. The inherent property of this function is: 

  )()()( afdtattf =−∫
+∞
∞− δ                       (2.52)     

for any function f(t) which is continuous at time a. 

Considering the property of Dirac delta function, the power spectrum of unknown input 

is a constant matrix also called ‘flat’ spectrum matrix. 

con
tj

xxxx SdtetRjS == −+∞

∞−∫
ωω )()(                    (2.53) 

Again, return to real experimental world and recall that the output measurements. The 

measured output vector in l selected points is discreted asky , and thus output correlation 

matrices ∈rR ll × are defined as: 

[ ]T
krkr yyER +=                             (2.54) 

where r is an arbitrary time lag similar to τ  in continuous time. If the measured output 

vector with N points is assumed as an ergodic random process 1,...1,0, −= Nkyk ∈ , the 

correlation matrices are estimated as: 

T
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1ˆ                           (2.55) 

The spectrum of a stochastic process is defined as the double sided z-transform of rR : 

r
r

r
yy zRzS −+∞

−∞=
∑==)(                          (2.56) 

The property of discrete autocorrelation functionrR  is 

T
rr RR =−                               (2.57) 

Thus, the spectrum (2.56) can be rewritten as  

T
yyyyyy zSzSzS ))(()()( 1−++ +=                     (2.58) 

where  

 r

r
ryy zRRzS −+∞
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+
∑+=

1
0 2/)(                      (2.59) 

The so-called half spectrum, having a positive time lag r, can be calculated by DTFT in 
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equation (2.47) as  

trj
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1
0 2/)(                    (2.60) 

In real experiments only a finite number of data is available, and so the spectrum 

indicated in equation (2.60) can not be directly computed up to infinity. Consequently, the 

spectrum used in practice is estimated by finite sample sequence using DFT. The most 

popular spectrum estimation method may be weighted averaged periodogram (modified 

Welch’s periodogram) (Welch, 1967) and weighted correlogram (Tukey and Blackman, 

1958). The term weighted in these two methods means that a window function is applied to 

the signal (Hamming, Hanning,…) to reduce leakage. The averaged periodogram operates 

directly on the output signal sequences, while the correlogram approach first estimates the 

correlations in time-domain and then the power spectra are obtained by transferring the 

correlations to the frequency-domain. 

The weighted averaged periodogram method starts with dividing output sequences into 

L segments of Ms  samples as  

sMNL ≤                             (2.61) 

Each segment )( sMs myl  are formed as  
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The L modified or windowed periodogram can be defined as 
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where win means window function (Hanning, Hamming,…) to reduce leakage. If sM  is a 

power of 2, the spectrum of this segment is efficiently calculated by DFT at the discrete 

frequency points 

1,...,1,0,
2 −=
∆

= s
s

M
tM

l
l πω                      (2.64) 

The spectrum estimation yyS  is computed by averaging all spectra based on L segments 
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of sequenceky . 
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l                          (2.65) 

yyŜ  is the asymptotically unbiased estimate of the spectrum. Because the window functions 

reduce the contributions of the data at the beginning and at the end of the record, introducing 

an overlap between the adjacent segments is advisable. 

Another correlogram approach starts by estimating the correlation functions as indicated 

in equation (2.55). Then, the correlation functions are transferred to the frequency-domain by 

taking the DFT to obtain the power spectrum. 

trj
k

L

Lr
kyy eRwS ∆−

−=
∑= ωˆˆ                         (2.66) 

In this section, the spectrum analysis and spectrum estimation techniques are introduced. 

The spectrum of stationary stochastic output is primary data in frequency domain OMA.  

Example 

The acceleration signal measured at node 1, shown in Figure 2.5 (d), consists of 

500×900=450000 data samples. The autocorrelations of the signal rR̂  were estimated with equation 

(2.55) and time lag r=0, 1,…, 16384. Only the time lag r ≥ 0 is plotted in Figure 2.7 (a).  

The spectrum of the signal was estimated by both weighted averaged periodogram and weighted 

correlogram methods. In the application of weighted correlogram method, the estimated 

autocorrelations rR̂ (r=0, 1, …, 16384) were multiplied by a Hanning window before application of 

FFT, according to equation (2.66). The resulting estimated spectrum, with frequency resolution 

500/16384=0.03Hz, is shown in Figure 2.7 (b). The weighted averaged periodogram method was also 

used to estimate the spectrum, as shown in Figure 2.7 (c). 442368 of a total of 450000 sample points 

were used and divided into 54 segments of 16384 points with 50% overlapping; after multiplication by 

a Hanning window, FFT was applied to each segment. Finally, the 54 FFTs were averaged to yield the 

spectrum estimates with frequency resolution 500/16384=0.03Hz. 

Comparing the spectrum estimated by the weighted averaged periodogram and the weighted 

correlogram methods, it is observed that the spectrum yielded by the weighted averaged periodogram 

is smoother because of multiple averages. 

 

 



Chapter 2 

34 

 

 

(a) Estimation of autocorrelation of response measured at node 1 

 

(b) Spectrum estimation using weighted correlogram method 

 

  (c) Spectrum estimation using weighted averaged periodogram method 

 Figure 2.7 Estimation of output correlation and spectrum 

2.4.5 Model reduction  

In real operational modal analysis, the ambient vibration experiment is always 

band-limited, which means that the signal only contains information over a certain frequency 

band. Only modes whose frequencies are within the bandwidth will show up in data and 
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certain modes out of bandwidth are eliminated. This is called model reduction in operational 

modal analysis. 

Recall equation (2.40), the FRF can be rearranged with components within the 

bandwidth and parts out of the bandwidth as  
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where nre is the number of retained modes. In identification from experimental data, only 

modal parameters located in the test frequency range are estimated, while the contributions of 

out-of-band modes corresponding to the second part of the right hand side of equation (2.67) 

are neglected as  
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The modal reduction is then a step closer to real experimental world.  

2.4.6 Frequency domain models  

a) Half positive power spectra matrix 

In OMA, the relation between the constant input spectrum conS and the output spectrum 

+
yyS  can be expressed as (Bendat and Piersol, 1980): 

H
conyy jHSjHjS )()()( ωωω =+                    (2.69) 

where ∈+ )( ωjSyy
ll ×  and ∈conS mm× are the power spectra matrices of the output and 

input measurements, and l, m are the number of output and input responses. ∈)( ωjH ml×  is 

the FRF matrix. The superscript ( )H denotes complex conjugate and transpose. 

The equation (2.69) leads to a simple non-parametric frequency domain spectrum model 

derived from the FRF in PFE form, and a more complex parametric model based on FRF in 

RMFD format. In this paragraph, two models widely used in current frequency domain OMA 

are introduced. The purpose of OMA in frequency domain is to identify these models and 

extract modal parameters based on the output spectra matrixyyS . 
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Figure 2.8 Schematic for interpretation of spectra matrix 

Example 

The half positive power spectra is a 3-dimension matrix consisting of auto and cross power 

spectra based on the experimental signals acquired in each setup. Considering that only 2 sensors were 

used in each setup of the ambient vibration test of the frame, the output spectrum +
yyS  can be written, 

according to Figure 2.8, as 
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correspond to cross power spectra. ∑
=

ren

i 0

represents that the half positive power spectra )( ωjSyy
+  

comprehends sub-matrix at all discrete frequency points iω  (i=0,1…,nre). 

b) Half positive power spectra model in PFD 

Substituting the equation (2.68) into equation (2.69), the output spectra matrix )( ωjSyy  

is evaluated at discrete frequency points as follows 
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Multiplying the two partial fraction factors and making use of the Heaviside partial 

fraction theorem, the output spectra )( ωjSyy  can be converted to the partial fraction form 

(Hermans and Van der Auweraer,1999; Peeters, 2000; Brincker,2001). 
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where ∈ig  is the operational reference vector for mode i, which replaces the modal 

participation factors in cases where only output responses are available in OMA. The power 

spectra matrix derived above has a 4-quadrant symmetry because the OMA modal model 

contains ii λλ −, , *
iλ  and *

iλ−  as poles, positive ( *, ii λλ ) and negative ( *, ii λλ −− ). The power 

spectra matrix )(ωjSyy , modally decomposed into 4-quadrant symmetric terms, is called full 

power spectra matrix. 

The counterpart of the full power spectra matrix )(ωjSyy  in time domain is the 

correlation function matrix 
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In this equation, the first two terms, having positive poles, correspond to positive time 

lags, whereas the last two terms, with negative poles, correspond to the negative time lags. 

The full power spectra matrix is normally estimated by the spectrum estimation methods 

introduced in section 2.4.4. Because the power spectra matrix is estimated from a limited 

amount of data in OMA, which are typically characterised by significant noise levels, a 
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tradeoff must be made between stochastic uncertainties and bias errors introduced by leakage. 

The drawbacks caused by the spectrum estimation methods can be overcome by the unbiased 

estimation of correlation functions with only positive lags according to equation (2.54) 

(Hermans et al, 1998; Cauberghe, 2004).  The fist two terms in equation (2.72) are kept as  
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Its counterpart in the frequency domain can be written as  
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The output spectra matrix with only positive poles is called half positive power spectra 

matrix.   

The first kind of frequency model begins from some mathematical manipulation of 

equation (2.71) under assumption of light damping. The term T
ii gφ  in equation (2.71) is a 

function of the modal parameters and the constant power spectrum matrix of the unknown 

random input excitation 
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When sλ  approaches iiiii j ωξωξλ 212)1( −+−= (equation 2.21), the contribution of 

the i-th mode is given by 
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If damping ratio is low, T
ii gφ  becomes proportional to the mode shape as  

( ) ( ) H
iii

HT
iicon

T
ii

T
ii dSg φφγφγφφ =∝                   (2.77) 

where id  is a scalar constant. 

Around a certain frequencyiω , only a limited number of modes contribute significantly 

and these modes are denoted as )(ωSub . Thus, the half positive power spectra matrix +
yyS  

can be expressed in PFD form as   
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According to this equation, a relation between the output spectrum, the system poles 

*, ii λλ  and the mode shape iφ  is established, which leads to the identification algorithm of 

peak-picking and frequency domain decomposition. 

c) Half positive power spectra model in RMFD 

The frequency model described in equation (2.78) is only valid for a slightly damped 

structure. In order to estimate modal parameters of highly damped structures, another 

frequency model derived from RMFD shown in equation (2.41) is proposed (Peeters et al, 

2004). It is observed that the half positive spectra matrix )( ωjSyy
+  is similar to the )( ωjH  

and they are parameterized in the same way. Therefore, The left side of equation 

(2.41), )( ωjH , can be replaced by positive power spectra considering only the positive lags of 

the output spectra matrix )( ωjSyy
+ .  

Assuming there are l outputs and m of them are regarded as ‘input’, positive output 

spectra ∈+ )( ωjSyy
ml× can be modelled in RMFD form as 

=+ )( ωjSyy
1))()(( −ωω jAjB riri                      (2.79) 

where ∈)( ωjBri
ml× is the numerator matrix polynomial and ∈)( ωjAri

mm× is the 

denominator matrix polynomial. They are defined as  
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in which )(ωrΩ  are the polynomial basis function and p is the user defined polynomial 

order. A thp  order model based on m outputs contains mp poles. Theoretically, the indication 

of the model order can be counted as twice the number of peaks in the frequency-plot of a 

non-parametric spectrum. It is also provided more accurate by the CMIF in which a frequency 

plot of the singular values of a non-parametric spectrum estimates. However, in practice it is 
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better to over-specify the model order, a stabilization diagram being used to extract modal 

parameters from this model, which will be further discussed in next section.  

For a discrete-time domain model, the functions )(ωrΩ  are usually defined as  

 trj
r e ∆−=Ω ωω)(                            (2.81) 

where t∆  is the sampling time. 

The polynomial coefficients ∈rβ ml× and ∈rα mm×  are the parameters to be 

estimated and are assembled in following matrices: 
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From this model, the output spectra )( ωjSyy
+  can be written as function of the 

coefficient ),( θωkyyS+ . By fitting the measured output spectra )( ωjSyy
+  with this model by 

coefficient θ  at each frequency pointkω , the system poles iλ and operational reference 

vector ig  can be estimated. From this frequency model, a poly-reference least squares 

frequency domain algorithm is used to identify modal parameters.   

Completing this section with two frequency domain models in equations (2.78) and 

(2.79), the path has now been paved for a discussion on the modal identification techniques. 

2.4.7 Summary  

This section presents half positive power spectra frequency domain models in both PFD 

and RMFD form. The evolution from analytical second order vibration equation to OMA 

frequency models is in following steps: converting analytical model to transfer function in 

continuous time domain and to classical FRF in discrete-time domain. The introductions of 

sampling , DFT technique,  spectrum estimation and model reduction are further step to real 

experimental world. Finally, frequency models based on half positive power spectra in 

different forms leads to different identification methods that will be discussed 
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comprehensively in next section. 

2.5 FREQUENCY DOMAIN MODAL  IDENTIFICATION METHODS 

In the context of operational modal analysis (OMA) in civil engineering, structures such 

as bridges and buildings are excited by unmeasured input forces and only output 

measurements are available. Under the assumption that the input is a stochastic process (e.g. 

white noise), the structural behaviour can be idealized by mathematical models in the 

frequency domain proposed, as described in previous section, in order to establish the relation 

between the output spectra matrix and the structural modal parameters. In this chapter, an 

overview of the main frequency domain modal identification methods is presented. They 

comprise peak-picking (PP) and frequency domain decomposition (FDD) algorithms and 

poly-reference least squares complex frequency (p-LSCF) technique. The PP and FDD 

methods are called nonparametric method, because modal parameters are estimated by just 

looking at signal-based features without fitting or estimating a parametric model. Despite their 

simplicity and quickness, nonparametric methods are rather subjective in estimating modal 

parameters. On the contrary, p-LSCF is called a parametric method. A right matrix fraction 

model is selected and it is parameterized as a function of a parameter vectorθ . By fitting this 

model with spectra of the output measurements in a linear least square (LS) sense, θ  is 

determined and further leads to the estimation of modal the parameters more accurately.  

2.5.1 Peak-picking (PP)  

The Peak-Picking (PP) is the simplest and most popular approach to estimate structural 

modal parameters in OMA. The key step of this method is the natural frequencies are simply 

taken from the observation of the peaks on the graphs of the magnitude of the spectrum plot 

under the basic assumption that the modes have well-separated frequencies. Assuming that the 

spectrum around any frequency iω  is dominated by a single mode, equation (2.78) can be 

expressed as: 

=)( ωjSyy
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ωξ
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−                          (2.83) 
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By defining the scalar constant iα  as: 
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i
i

d

ωξ
α −=                             (2.84) 

The approximated spectrum at resonance can be expressed as: 

)( ωjSyy
H
iii φφα≈                         (2.85) 

From the point of view of Peak-Picking method, the interpretation of equation (2.85) is 

that at the resonance frequency iω , each column (or equivalently row) of the spectra matrix 

can be considered as an estimate of the observed mode shape up to some scaling factor, as 

shown in Figure 2.3. If the column (or row) corresponds to a DOF of the structure that is 

situated at a node of a certain mode, this mode can not be identified. In order to that ensure all 

of the natural frequencies of a structure are identified, a practical implementation of the 

Peak-Picking method was firstly developed by Felber (1993). It is suggested to consider the 

averaged normalized power spectrum density (ANPSD) of all measured locations, which 

means the diagonal elements of the spectrum matrix )( ωjSyy
+ . 

The determination of damping ratios is then usually based on the half-power bandwidth 

method. However, this is a rather inaccurate procedure. Using simple peak-picking method, 

the damping ratio is likely difficult to be determined.  

When peak-picking method is applied to identify modal shapes, instead of estimating the 

spectrum matrix )( ωjSyy
+ , only the spectra between the reference sensor and all sensors are 

calculated. The reason is that only one column (or row) of the spectrum matrix suffices to 

obtain the mode shape estimates. Some refinements of the peak-picking method are also 

proposed in (Felber, 1993). Coherence function between two sensors can assist in selecting 

natural frequencies, because the coherence function tends to be 1 around the resonance 

damped frequencies. The phase angles of the cross spectra are also helpful for determining the 

damped natural frequencies since the phase angles should be either o0 or o180 .The detailed 

procedure for identifying modal parameters can be found in (Felber, 1993).  
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Example 

Before applying various modal identification methods, the experimental data sampled at 500Hz 

were pre-processed: They were decimated with factor 5 to reduce the size of data from 450000 to 

90000 samples. The data were filtered with an eight-order Chebyshev type I lowpass filter with a 

cutoff frequency of 0.8*500/5/2=40Hz. Afterwards, the data were resampled with a lower sampling 

rate fs=500/5=100Hz. Subsequently, the decimated data were detrended to remove the linear 

component. 

When the preprocessed signals were treated by peak-picking method, the spectrum matrix was 

estimated by the weighted averaged periodogram method. 81920 of total 90000 sample points were 

used and divided into 9 segments of 16384 points with 50% overlapping; after multiplication by a 

Hanning window, FFT was applied to each segment. Finally, the 9 FFTs were averaged to yield the 

spectrum estimates with frequency resolution 100/16384=0.006Hz. The trace of the spectrum matrix is 

shown in Figure 2.9. Actually, it is the sum of auto power spectra produced by each signal acquired 

from individual sensors. The frequencies are easily identified by picking the peaks: 5.28Hz, 15.18Hz 

and 22.35Hz. The corresponding modal identification results are listed and compared with those 

yielded from other methods in Table 1 at the end of this chapter. 

 

Figure 2.9 The trace of the spectrum matrix 

The peak-picking method may be the most widely used method in civil engineering 

because of its simplicity. Many civil engineering cases exist where the method was 

successfully applied in (Cunha et al, 2006, 2007). Despite its popularity, the disadvantages of 

peak-picking method are obvious: the assumption of this method is that damping is low and 

the modes are well-separated, violation of these assumptions leading to erroneous results. 

Instead of identifying mode shapes, only operational deflection shapes are determined. For 
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closely-spaced modes, such an operational deflection shape will be the superposition of 

multiple modes. For structures like towers, the peak-picking method may become problematic, 

since the bending modes along any of the two principle axes modes are likely to have 

closely-spaced frequencies. Other disadvantages are that the selection of the damped natural 

frequencies can become a subjective task if the spectrum peaks are not very clear and the 

estimation of damped natural frequencies are constrained by the frequency resolution.  

In order to overcome these drawbacks of peak-picking method, a more advanced 

procedure named Frequency Domain Decomposition (FDD) was developed as an alternative. 

2.5.2 Frequency Domain Decomposition (FDD) 

The key step of FDD method is the Singular Value Decomposition (SVD) of the spectra 

matrix at each discrete frequencyiω . The SVD is a mathematic tool that is typically used for 

counting the rank of a matrix, because the number of non-zero singular values equals the rank 

of the matrix. It is also interpreted in modal analysis that the FRF or spectrum matrix 

evaluated at a certain frequency is only determined by a few modes, and the number of these 

modes coincides with the rank of the spectrum matrix. Originally, the SVD of the spectrum 

matrix was used as a tool to count the number of modes of a vibrating system subjected to 

natural excitation (Prevosto, 1982). Subsequently, this method was applied to FRFs to count 

the number of modes in modal testing and it was named as Complex Mode Indication 

Function (CMIF). It was also extended to identify the modal parameters from FRFs (Shih, 

1988). Similarly, SVD of output spectra matrix was further developed to estimate modal 

parameters in OMA (Brincker et al 2000, 2001). 

When applying the FDD method for modal parameters identification, the first step is also 

the estimation of the half positive spectra matrix +
yyS  based on output measurements. Then, 

by taking the SVD of +
yyS  at each discrete frequencyiω , it can be decomposed as follows: 

=+ )( iyy jS ω )()()( i
H
iii USU ωωω                     (2.86) 

where )( iS ω is a diagonal matrix holding the singular values sorted in descending order 

ljs ij ,...,2,1),( =ω . [ ])(),...(),()( 21 iliii jujujuU ωωωω =  is an unitary matrix holding the 
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singular vectors )( ij ju ω .When the frequency approaches a certain resonance frequencyrω , 

the power spectra matrix can be approximately decomposed as a rank one matrix 
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If only one mode is dominating at the resonance frequencyrω , the corresponding 

singular vector )(1 ru ω  is an estimate of the corresponding mode shape with unitary 

normalization. 

)(ˆ
1 rr u ωφ =                             (2.88) 

and the corresponding singular value is the auto power spectra function of the corresponding 

single degree of freedom (SDOF) system associated with equation (2.78). 

In the case of repeated modal frequencies, the rank of the power spectra matrix is equal to the 

multiplicity number of the modes. Therefore, the singular value which is a function of 

frequencies sorted in descending order can be adopted as the modal indication function. 

Modal frequencies can be located by the peaks of the singular value plots. Mode shapes can 

be obtained from the corresponding singular vectors assuming the mode shapes are 

orthogonal. Because SVD has the ability to separate the signal space from noise space, the 

modes can be indicated from singular value plots with noisy measurements, and closely 

spaced modes or even modes with repeated modal frequencies can be easily detected. 

Initially, FDD could only estimate modal frequencies and mode shapes. To identify 

modal damping ratio, the enhanced FDD (EFDD) technique was proposed (Brincker et al, 

2001). After estimating mode shapes according to equation (2.88), the corresponding singular 

value is the auto power spectral density function of the corresponding single degree of 

freedom system. This power spectral density function is identified around the peak by 

comparing the mode shape estimation φ̂  with the singular vectors for the frequency lines 

around the peak. If a singular vector is found that has high Modal Assurance Criterion (MAC) 

value with φ̂  the corresponding singular value consists of the SDOF auto spectra function. 
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From the fully or partially identified SDOF auto spectra function, an approximation of 

the correlation function of the SDOF system is obtained by taking the spectral density 

function back to time domain by inverse FFT. From this free decay function in time domain, 

the natural frequency and the damping is found by estimating crossing times and logarithmic 

decrement. Firstly, all peakskp  on the correlation function are found. The logarithmic 

decrement σ  is calculated as  


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1σ                             (2.89) 

where 0p  is the initial peak value of the correlation function and kp  is the kth peak. And 

the damping ratio is estimated by  

22 4πσ
σξ
+

=                           (2.90) 

The damped natural frequency dω  is found by making a linear regression between the 

crossing times and the times corresponding to the peaks. The natural frequency ω  is found 

by  

21 ξ
ωω
−

= d                            (2.91) 

Example 

The SVD was applied to the estimated spectrum matrix constructed with the preprocessed 

experimental signals of the metallic frame. Figure 2.10 shows the singular values as a function of 

frequency. Because only two sensors were used to record the experimental signal in each setup, a 2×2 

output spectrum matrix+
yyS  (as the example discussed in in section 2.4.6) yields 2 singular value 

vectors according to equation (2.86). The first singular value vector reached peaks at about 5.18Hz, 

15.12Hz and 22.33Hz, 
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Figure 2.10 Singular values produced by EFDD method 

    

(a) Singular values around 22.32Hz with MAC value higher than 0.8 

 

 (b) Time domain free decay function obtained by inverse FFT and estimated damping envelope 

Figure 2.11 Selected singular values and corresponding free decay function  

The peak around 22.32Hz was picked and mode shape Hz32.22φ̂  was estimated. The singular 

vectors of the neighbouring frequency lines around the peak were compared with the mode shape 

Hz32.22φ̂  by calculating the MAC value. The frequency lines with MAC value higher than 0.8 were 

selected and regarded as the auto correlation function of a SDOF system, as shown Figure 2.11 (a).  

By applying inverse FFT to the selected frequency lines, the free decay function in time domain 

is obtained (Figure 2.11 (b)). The natural frequency and the damping were evaluated by estimating 
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crossing times and logarithmic decrement of the fitted envelope according to functions (2.89-2.91). 

The detailed estimation results are presented at the end of this chapter. 

The basic assumption of FDD is that the structure is lightly damped. Moreover, only 

truncated data near the peak of the singular value plot are utilized for the inverse FTT to 

calculate approximate correlation functions of the corresponding SDOF system, which may 

cause bias error in damping estimation. To estimate damping ratio were accurately, the 

poly-reference least squares complex frequency (p-LSCF) algorithm for identification of 

modal parameters based on half positive output spectra matrix was proposed from the 

frequency model in RMFD (Peteers et al, 2005). 

2.5.3 Poly-reference Least-Squares Complex Frequency Domain (p-LSCF) 

Originally, the least-squares complex frequency-domain (LSCF) estimation method was 

introduced to find initial values for the iterative maximum likelihood method (Guillaume et al, 

1998). The method estimates a so-called common-denominator transfer function model. 

Lately it was found that these “initial values” yielded already very accurate modal parameters 

with a very small computational effort. A thorough analysis of different variants of the 

common-denominator LSCF method can be found in (Verboven, 2002). A complete 

background on frequency-domain system identification can be found in (Pintelon and 

Schoukens, 2001).  

a) Equation error formulation  

The frequency model in RMFD is summarized from equation (2.79)-(2.82). The purpose 

of p-LSCF method is to identify all unknown model coefficients θ  in equation (2.82) based 

on the power spectra matrix )( iyy jS ω+  from output measurements, which can be done by 

minimizing the following non-linear least-squares (NLS) equation errors ∈),( θωε i
NLS
o

ml× : 
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NLS
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where fi Ni ,...,2,1, =ω  are the discrete frequencies at which )( iyy jS ω+  are available. 
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is the scalar weighting function, which can further improve the quality of the estimates 

because it allows to take into account different data quality that may exist between different 

outputs.  

The equation errors NLS
oε  for all outputs and all discrete frequency points iω  are 

combined in following scalar cost function: 
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where { }tr  is the trace of a matrix. The cost function is minimized by putting the 

derivatives of equation (2.93) with respect to the unknown model coefficients θ  equal to 

zero. It is obvious that this leads to non-linear equations when equation (2.92) is used for the 

equation errors directly. The non-linear least-squares (NLS) problem can be approximated by 

a linear least-squares (LS) one by right-multiplying equation (2.92) with the numerator matrix 

polynomial A, yielding equation errors ∈),( θωε i
NLS
o

ml×  that are linear in the parameters: 
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The equation errors at all discrete points are stacked in a matrix ∈)(θLS
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where ⊗  denotes the Kronecker product. 

 



Chapter 2 

50 

b) Reduced normal equations 

The linearized equation errors )(θLSl  can be formulated in the similar way as equation 

(2.93) 
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Minimizing this cost function leads to a weighted linear least square (LS) problem. 

Substituting equations (2.95) and (2.96), the cost function can be written as: 
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where ∈J )1)(( ++× pmllN f  is the so-called Jacobian matrix  
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In the case of real-value coefficients θ , it can be shown that the expression JJH  can 

be substituted by its real part ∈)Re( JJH )1)(()1)(( ++×++ pmlpml and the cost function (2.98) 

becomes: 

{ }θθθ )Re()( JJtr HTLS =l                     (2.100) 
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in which  

∈= )Re(0 o
H
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∈= )Re(0 o
H
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The cost function (2.100) is minimized by putting its derivatives with respect to the 

unknown polynomial coefficients equal to zero: 
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If the denominator polynomial α  is computed by above equation, the system poles and 

operational reference factors can be estimated. Firstly, the least squares (LS) problem can be 

reduced by eliminating the oβ  coefficient equation (2.103) 

αβ ooo SR 1−−=                            (2.104) 

Yielding the so-called reduced normal equation 
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This equation can be solved for the denominator polynomialα . In order to avoid finding 

the trivial solution 0=α , the following constraint is imposed: 

mp I=α                               (2.107) 

where Im is the mm×  identity matrix. The other denominator polynomial coefficients can be 

found by least-square (LS) estimation: 
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The estimation of α  is given by 
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c) Estimation of modal parameters 

Once the system order p is specified and LSα̂  is known, the system poles and 

operational reference factors are retrieved as the eigenvalues and eigenvectors of its 

companion matrix: 
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The operational reference factors are the last m rows of ∈V mpmp× , the eigenvalue 

matrix ∈Λ mpmp× contains the mp system poles tie ∆−λ  on its diagonal. They are related 

with natural frequencies iω  and damping ratios iξ  as equation (2.21) 

iiiiii j ωξωξλλ 2* 1, −±−=  

the p-LSCF stabilization diagram is constructed efficiently by formulating the equation (2.110) 

and lower order problems can then be solved by considering submatrices of appropriate 

dimensions. 

The interpretation of the stabilization diagram yields a set of poles and corresponding 

operational reference vectorig . The mode shapes can then be estimated by 
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where ∈URLR, ml×  are the lower and upper residue, respectively. They are introduced to 

reflect the influence of the out-of-band modes as discussed in equation (2.67). The only 

unknown elements in equation (2.111) are the mode shape iφ  and the lower and upper 

residues. They can be solved in a linear least-squares (LS) sense. This procedure is commonly 
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called Least Squares Frequency Domain (LSFD) method. (Heylen et al, 1995) 

Example 

The poly-reference least-squares complex frequency-domain (p-LSCF) method was applied to 

the preprocessed experimental signals of metallic frame. Firstly, the half positive spectra matrix 

)( iyy jS ω+  was estimated with weighted correlogram method, with maximum time lags L=2048 and an 

exponential window. Next, a stabilization diagram was constructed by considering RMFD models with 

the polynomial order p= 0,1,…20. Because l=2, these models have 2,4,…,60 poles. According to 

equation (2.110), the discrete-time eigenvalues iµ  (diagonal elements of V ) and operational 

reference vector ig  (last m rows of V ) were computed. The frequencies and damping ratios are 

related to the discrete-time eigenvalues as  

))1exp((, 2* tj iiiiii ∆−±−= ωξωξµµ  

The mode shapes iφ  were estimated with the linear least-squares method by equation (2.111). 

The stabilization diagram is shown in Figure 2.12. The user defined criteria are 1% for 

frequencies, 3% for both damping and operational reference factors. The symbol ´o´ in red represents 

a stable pole.  

The trace of the half positive spectra matrix )(iyy jS ω+  is also plotted as a visual aid to select the 

stable poles though they are not related with the p-LSCF method. Inspection of Figure 2.12 shows that 

most of the stable poles concentrate around 5.28Hz, 15.16Hz and 22.34Hz. The detailed estimation 

results are presented at the end of this chapter. 

 

Figure 2.12 Stabilization diagram obtained with the p-LSCF method 
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2.5.4 Frequency-domain maximum likelihood identification 

Beyond the previously discussed frequency models and algorithms, a frequency-domain 

Maximum Likelihood (ML) approach for the extraction of modal parameters from output 

measurements was also proposed by (Hermans et al 1998; Guillaume et al 1999). Maximum 

likelihood identification is an optimization-based method that estimates the parameters of a 

model by minimizing an error norm. During the last years attention has been paid to the 

optimization of the frequency domain maximum likelihood method. A detailed discussion on 

the application of this method to identify parametric frequency domain models and successful 

industrial OMA applications of frequency domain ML identification can be found in 

(Parloo,2003; Cauberghe, 2004 ). 

2.5.5 Summary  

This section reviews the main frequency domain modal identification algorithms. The 

classical peak-picking technique is faster and straightforward but it is less accurate for a 

complex structure because of low frequency resolution, difficulty to identify closely spaced 

modes and failure to identify real mode shapes. To overcome these drawbacks, FDD method 

was proposed, whose key feature consists in performing SVD of the output power spectra 

matrix. However, bias error exists in damping estimation, because only truncated data near 

the peak of the singular values plot are used for inverse FFT to calculate approximate 

correlation functions of the corresponding SDOF system. Both PP and FDD methods belong 

to non-parametric modal identification methods and the estimation results are less accurate 

because no mathematic model is proposed to be fitted for parameter identification. On the 

contrary, the p-LSCF modal identification approach based on parametric model was 

developed. The specific advantage of this method is that high-order and highly damped 

systems with large modal overlap can be identified and thus the drawbacks of non-parametric 

methods are overcome.6 
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2.6 TIME DOMAIN MODELS 

Time domain state-space (SS) and ARMA models originate from control engineering. 

These models reveal the inherent relation between modal model of vibration systems and 

output measurements. Without converting from the signals to frequency domain, the modal 

parameters can be fitted directly from time series analysis (TSA) based on parametric models. 

It is utmost useful to inspect these time domain representations of vibration signals. The 

modal identification results estimated by these models in time domain can be correlated with 

the results produced by frequency domain models. 

2.6.1 Continuous-time state-space model  

a) The state equation 

Recall the second order vibration equation in state-space form (2.16) 
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)(tx&  is obtained by pre-multiplying by 1−P  

)()()( tuBtxAtx cc +=&                           (2.112) 

where the sub index ‘c’ denotes continuous time, ∈cA nn×  is the state matrix and ∈cB mn×  

is the input matrix. They are given by 










−−
=−= −−

−

CMKM

I
QPAc 11

1 0
, 








=








= −

−

SM

B
PB l

c 1
1 0

0
         (2.113) 

b) The observation equation  

In a practical vibration experiment, accelerations )(tq&& , velocities )(tq&  and 

displacements )(tq may be measured simultaneously in well selected l positions as described 

in equation (2.2).  
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)()()()( tqCtqCtqCty dva ++= &&&  

Using the second order equation of motion (2.2) and the definition of the state vector 

)(tx  in equation (2.14), the observation equation (2.2) can be expressed as  

)()()( tuDtxCty cc +=                         (2.114) 

where subindex ‘c’ denotes continuous time, ∈cC nl× is the output matrix and ∈cD ml×  

is the direct transmission matrix.  

)( 2
11 CMCCKMCCC avadc

−− −−= , lac BMCD 1−=        (2.115) 

Combining equations (2.112) and (2.114), the classical continuous-time state-space (SS) 

model is given by  

)()()(

)()()(

tuDtxCty

tuBtxAtx

cc

cc

+=
+=&

                       (2.116) 

The equation of motion is written in state-space form and it can also be used to compute 

the response y(t) of the structure with a given input u(t). 

2.6.2 Discrete-time state-space model 

It is necessary to convert the state-space model expressed in the continuous time domain 

to discrete time domain, in order to fit the models to discrete measurements. In section 2.4.3, 

the concepts of sampling and assumption of zero-order hold (ZOH) have been introduced. 

The continuous-time state-space model described in equation (2.116) can be then converted to 

the discrete-time state-space model: 
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where  

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k

k
k q

q
tkxx

&
)(  is the discrete-time state vector consisting of the sampled 

displacements and velocities; kk yu ,  are the sampled input and output vectors; A,B,C and D 

are the discrete state matrix, discrete input matrix, discrete output matrix and direct 

transmission matrix, respectively. They can be expressed by their continuous-time 

counterparts as: 
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The classical derivation of the above relations can be found in (Juang, 1994)  

a) Modal parameters   

The purpose of this section is to reveal the relations between matrices A and C and the 

modal parameters, including natural frequenciesiω , modal damping ratios iξ  and mode 

shapes iφ . 

It is observed that the state matrix Ac in continuous-time state-space model in equation 

(2.113) comprises all information about the structural system. According to orthogonality 

conditions of P and Q in equation (2.23), as well property in equation (2.24), cA  is rewritten 

as a standard eigenvalue problem. 
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where comΛ  and Ψ  are complex eigenvalue and eigenvector matrices defined in equation 

(2.19) as  
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which is called modal decomposition of matrix Ac.  

The matrix A in discrete-time stochastic state-space model is found by inserting the 

modal decomposition of the continuous state matrix Ac into equation (2.118) 
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where 

t
i

ie ∆= λµ      

Thus, the system poles are determined as  

t
i

i ∆
= )ln(µλ                             (2.121) 

The connection betweeniλ , iω  and iξ  is specified in equation (2.21). 

A similarity transformation of the state vector )(tx  to the (complex) modal state vector 
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∈)(txm n is defined as: 

)()( txtx mΨ=                            (2.122) 

The corresponding discrete time format is  

m
kk xx Ψ=                              (2.123) 

The modal state-space model in discrete time format is obtained by inserting the modal 

decomposition of A in equation (2.117) 
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where TL  and V  are the discrete modal participation matrix and the observed mode shape 

matrix, given by  

Ψ=
Ψ= −

CV

BLT 1

                          (2.125) 

The relation between the observed mode shape matrix V and the mode shape matrix Φ  

of the second order equation of motion (2.1) can be clarified by inspectingΨ= CV based on 

the definition of C (equation (2.118)), Cc (equation (2.115)) and Ψ  (equation (2.19)). 










ΛΦΦΛ
ΦΦ

−−=Ψ=Ψ= −−
**

*

2
11 )( CMCCKMCCCCV avadc       (2.126) 

If only displacements are measured, 0== va CC , the mode shape matrix V  becomes 

)( *ΦΦ= dCV                          (2.127) 

If only velocities are measured 0== da CC , V yields 

)( ** ΛΦΦΛ= vCV                        (2.128) 

If output measurements are only specified as accelerations, which is the most widely 

used in vibration experiment, V can be derived by also considering equation (2.19) as 

)(
2**2 ΛΦΦΛ= aCV                       (2.129) 

From equations (2.127-2.129), Cd, Cv and Ca are selecting the components of the mode 

shape corresponding to the output positions. *,ΛΛ  and 
2*2 ,ΛΛ  are diagonal matrices that 
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are only scales of mode shapeΦ . It is concluded that observed mode shape matrix V  

denotes the part of mode shapes from output measurements.  

This section reveals the relation between matrices A and C and the modal parameters. 

Once matrices A and C are identified from the state-space model, modal parameters including 

natural frequenciesiω , modal damping ratios iξ  and modal shapes iφ  will be obtained. 

b) Model reduction  

As experiments are performed using a certain sampling frequencies, only the 

contribution of a limited number of modes is acquired. The model reduction can be derived by 

eliminating higher modes from the modal state-space model. The discrete time modal 

state-space model in equation (2.124) is divided with the nr to-be-retained modes and n-nr 

eliminated modes as   
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where r
kx  is the discrete-time state vector of the reduced system and e

kx  is the state vector 

to be eliminated. The modal decomposition of direct transmission term D can be expressed as 

a sum of n rank-one matrices as (Peeters, 2000). 
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Model reduction can be obtained by putting next states that have to be eliminated equal 

to the current state e
k

e
k xx =+1 . By introducing the resulting of e

kx  into the observation equation, 

the reduced modal state-space model is obtained as 
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The reduced model reflects the real experimental world, where only the modes within a 

certain frequency bandwidth are contained in the experimental data. 
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2.6.3 Discrete-time stochastic state-space model  

The discrete-time state-space model in equation (2.118) shows that the system is only 

driven by the input ku . However, the noise in real measurements has to be considered to 

model the vibration system accurately. Therefore, stochastic components cab be modeled and 

the discrete-time combined deterministic-stochastic state-space model (Van Overschee and De 

Moor, 1996) is obtained as  
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where ∈kw n represents the noise caused by disturbances and modelling inaccuracies and 

∈kv l means the measurement noise due to sensor inaccuracy. 

In real experiments, it is impossible and unimportant to distinguish the terms in uk and 

the noise terms wk and vk in equation (2.134). By incorporating kBu  and kw , kDu  and kv  

as stochastic input, equation (2.134) becomes a discrete-time stochastic state-space model as: 
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It is assumed that unmeasured signal vectors wk and vk are white zero mean, and their 

covariance matrices having the following property: 
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where E is the expected value operator; pqδ  is the Kronecker delta, which means that 

1=pqδ  if qp = , otherwise 0=pqδ ; p,q are two arbitrary time instants. 

The discrete-time stochastic state-space model in equation (2.134) assumes implicitly 

that the input is modelled by a white noise. If this assumption of white noise is not valid, for 

example, if the input contains some dominating frequency components, these frequency 

components can not be separated from the eigenfrequencies of the system, appearing as 

spurious poles of the state matrix A (Petters, 2000).  
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2.6.4 Properties of stochastic systems 

In this section, the main properties of linear time invariant stochastic system are briefly 

summarized. These properties lead to different identification algorithms that will be described 

in section 2.7. More detailed and complete derivation can be found in (Van Overschee and De 

Moor, 1996). 

It is assumed that the stochastic process xk is stationary 

[ ] 0=kxE , [ ] Σ=T
kkxxE                       (2.136) 

where the state covariance matrix Σ  is independent of the time k. In this section, the forward 

model and forward innovation model are introduced, which leads to covariance driven 

subspace stochastic identification and data driven subspace stochastic identification. 

a) Forward model   

Since noise terms wk and vk in equation (2.133) are zero mean white noise vector 

sequences and independent of xk, then  

[ ] [ ] 0,0 == T
kk

T
kk vxEwxE                      (2.137) 

Recall the definition of output correlation matrices in equation (2.54) 

[ ]T
kiki yyER +=   

where i is an arbitrary time lag. The ‘next state-output’ covariance matrix ∈G ln× is defined 

as 

[ ]kk xxEG 1+=                                (2.138) 

From equations (2.135), (2.137)-(2.139), it is be deduced that  

=Σ [ ]T
kk xxE 11 ++ = QAA T +Σ  

[ ] RCCyyER TT
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[ ] RCAyxEG TT
kk +Σ== +1  

and for ...2,1=i  
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This equation reveals an important relation between the output covariance sequence and 

system matrices A and C, which means that A and C can be identified by decomposing the 

estimated output covariance matrix. This property leads to the covariance driven subspace 

stochastic identification algorithm. 

b) Forward innovation model   

The discrete-time stochastic state-space model can be converted into a so-called forward 

innovation model by applying a Kalman filter to the stochastic SS model in equation (2.135). 

The Kalman filter is described in many books. A nice explanation can be found in (Juan, 

1994). The purpose of the Kalman filter is to estimate the optimal prediction of the state 

vector 1+kx , denoted as Kalman filter state vector 1ˆ +kx . It is given as   
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where ek are called innovations sequence, the corresponding covariance matrix being 

[ ] TT
kk CPCReeE −= 0  

K is the Kalman gain 

1
0 ))(( −−−= TT CPCRAPCGK  

and P is the forward state covariance matrix. It can be solved by discrete Riccati equation   

TTTTT APCGCPCRAPCGAPAP )())(( 1
0 −−−+= −  

Based on this forward innovation model, the data driven subspace stochastic 

identification method is proposed to identify the state matrices A and C. 

2.6.5 ARMA model 

In time domain OMA, a more classical auto-regression moving average (ARMA) model 

can also be employed (Ljung,1999). The basic idea of time series analysis is to identify a 

system and predict its present and future response from the information of its past inputs and 

outputs. Instead the second order differential equation (2.1), a linear and time-invariant 
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vibration system is represented by a finite difference equation. It can be derived by 

eliminating the state vector xk from the forward innovation state-space model in equation 

(2.141). An ARMA model can be expressed as  

bbaa nknkknknkk eeeyyy −−−− +++=+++ ββαα ...... 1111           (2.142) 

where the left side is called the Auto-Regression (AR) part and the right side is the Moving 

Average (MA) part. yk is the output vector and ek is a input white noise vector, ii βα ,  are AR 

and MA coefficients, respectively. The physical meaning of an ARMA model is the follows: 

the term iki y −α  signifies the weighted contribution of the historical sample iky −  to the 

present responseky , and the term ikie −β  represents the weighted contribution of the 

historical input ike −  to the present responseky . Therefore, the ARMA model describes the 

input–output relationship of a measured structure. In essence, the ARMA model is equivalent 

to the stochastic state space model and then it will not be discussed in detail. More details and 

applications can be found in (Ljung, 1999; Andersen, 1997). 

2.6.6 Summary 

In this section it is described how a structural system subjected to white noise excitation 

can be parameterized by a stochastic state space model in time domain. The relation between 

a state space model and a modal model is revealed and thus modal parameters can be 

identified from the state space model. The concept of model reduction is also explained in 

state-space model, which makes a closer step to the real experiment field. Introduction of 

important properties of the state space model pave a solid path for the different time domain 

identification techniques. Apart from the state-space model, an equivalent ARMA model is 

also briefly described.   

2.7 TIME DOMAIN MODAL  IDENTIFICATION METHODS 

In this section modal identification methods involving time domain mathematical models 

of vibrating systems are explained. Instead of transforming the time domain data to spectra in 

frequency domain, output measurements are directly assigned to time domain models to 
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extract modal parameters. The main concern is related with the stochastic subspace 

identification (SSI) methods. A first group of algorithms is called covariance-driven SSI 

methods, because the output covariance matrix is used as primary data, which is based on the 

factorization property in equation (2.140). Another group is named data-driven SSI methods, 

because they identify models directly from the time signals, which stems from the Kalman 

filter state sequence shown in equation (2.141). 

2.7.1 ‘Past’ and ‘Future’ part of experimental signal 

Before explaining the identification algorithm, the data reduction and smoothing 

procedure for dividing experimental signal into ‘past’ and ‘future’ part is introduced. The 

Toeplitz and Hankel matrices consist of these two parts of signals.  

In a real experiment, only discrete samples of time signal yk (k=0,1…,N. ∞→N ) are 

available. To determine experimental mode shapes, modal test always involve a batch of 

measurement setups. In each setup, l sensors (mostly accelerometers) are placed at certain 

nodes of the structure. The discrete samples ky  can be described as a samples matrix: 
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where n
my  refers the n-th (n=0,1,…N) sample points from the m-th (m=1,2,…,l) sensor in a 

certain setup. The Hankel matrix H∈ 2li×j  can be divided into a past part Yp and a future part 

Yf  in equation (2.144). 
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where the number of block rows i is a user defined index which is theoretically larger than the 
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maximum order of the system. It is noted that the matrix 120 −iH  consists of 2li rows since 

each block row include l (number of output measurement) rows. The number j is typically 

equal to N-2i+2, which implies that all samples are used.  

The subscripts of 12 −iiY , 10 −iY  and 12 −iiY are subscripts of the first and last element in the 

first column of the block Hankel matrix. The subscripts p and f stand for past and future. The 

past matrix 10 −iY and future matrix 12 −iiY  are defined by splitting the Hankel matrixH  in 

two parts with i block rows. Another division is defined by omitting the first block row of 

12 −iiY  and adding these block rows to the last block row to10 −iY , which can be explained as 
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2.7.2 Covariance-driven SSI method 

The covariance-driven SSI problem is actually called stochastic realization method. 

System realization, whose purpose is to recover or identify the system matrices, was 

developed in 1960s. Classical contribution in deterministic system realization for recovering 

the system matrices from Impulse Response Functions (IRF) is outlined in (Ho and Kalman, 

1966). Refinements of the method were further developed by introducing singular value 

decomposition (SVD) as a tool to reduce the noise inference in the IRF measurements (Zeiger 

and McEwen, 1974; Kung, 1978). The SVD-based system realization was firstly adapted for 

modal identification and named as Eigensystem Realization (ERA) (Juang and Pappa, 1984). 

In parallel, stochastic system realization was also developed based on discrete-time stochastic 

state-space equation (Akaike, 1974), and was extended to apply to modal identification in 

middle of 1980s (Benveniste and Fuche, 1985).The key feature of the stochastic system 
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realization is the system decomposition of the COV matrix instead of the IRF matrix, which is 

identical to the Natural Excitation Technique (NExT) proposed by (James et al, 1992). The 

principle of NExT suggests that correlation function (COR) of the random response of the 

structure subjected to natural excitation can be expressed as a summation of decaying 

sinusoids whose damped natural frequency, damping ratio and mode shape is identical to the 

one of the corresponding structural mode, therefore, COR can be employed as IRF to extract 

modal parameters in OMA. Actually, IRF, COR, Free Decay Response (FDR), as well as 

Random Decrement signature (RDD) can all be expressed as modal superposition or modal 

decomposition. Hence, major modal identification procedures developed in traditional EMA, 

such as the Least Square Complex Exponential (LSCE) and the Ibrahim time domain (ITD) 

methods, can be employed in OMA, which correspond to so-called Instrumental Variable 

method (Ljung, 1999). In this thesis, the covariance-driven SSI method is introduced. 

a) Factorization Property of output covariance  

The Covariance-driven SSI method is based on the factorization property of output 

covariance shown in equation (2.140). Substituting equations (2.120) and (2.125) in equation 

(2.140): 
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                       (2.146)  

where dΛ  is the discrete eigienvalue matrix and Ψ is eigenvectors, V is the modal output 

matrix determining the mode shapes. mG  is the ‘next modal state-output’ covariance matrix , 

which is similar to the modal participation matrix L in EMA. It is noted that the modal 

participation matrix can not be identified by mG  because of lacking of knowledge of the 

input.  

It is observed that dΛ  and V, that is the undamped natural frequencies, modal damping 

ratios and mode shapes can be estimated by output covarianceR .  

The definition of the output covarianceR  is given in equation (2.54) 

[ ]T
kiki yyER +=  



Models of Dynamic Systems and Operational Modal Analysis 

67 

In reality the output covariance R is estimated as R̂  in equation (2.55), because only a 

finite number N of data is available. 

T
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1ˆ  

b) Stochastic realization theory 

This section presents the main procedure of the covariance-driven SSI method, which is 

similar to the classical stochastic realization theory. Firstly, the estimated output covarianceiR̂  

are gathered in a block Toeplitz matrix as  
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Applying the factorization property shown in equation (2.140) yields: 
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where ∈iO nli×  and ∈Γi
lin×  are the extended observability and controllability matrix, 

respectively and given by: 

[ ]
[ ]GGAGA

CACACO
ii

i

Ti
i

...

...
21

1

−−

−

=Γ

=
                     (2.149) 

Applying the singular value decomposition (SVD) to matrix iT1  to reduce noise effect, 

lead to: 
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where ∈U lili × and ∈V lili ×  are orthonormal matrices ( li
TT IUUUU == , li

TT IVVVV == ) 

and ∈S lili × is a diagonal matrix containing the positive singular values in descending 

order. SVD is a mathematical tool to estimate the rank of a matrix, which is determined by the 
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number of non-zero singular values. By omitting the non-zero singular values and 

corresponding singular vectors, the Toeplitz matrix iT1  is reduced to the product of 

U1∈ rnli× , ∈1S rr nn × , 

and ∈iV linr × . By comparing equation (2.148) and (2.150), iO  and iΓ  can be expressed as  

T
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1
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1

21
11

=Γ

=
                             (2.151) 

From the definition of the extended observability matrix Oi and the reversed extended 

controllability iΓ  in equation (2.149), matrix C can obtained from the first l rows of matrix 

Oi and G is the last l columns of matrix iΓ : 
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                         (2.152) 

Two possible methods are proposed to determine the state transition matrix A. One of the 

methods consists in calculating the matrix A from the decomposition property of a shifted 

block Toeplitz matrix (Zeiger and McEwen, 1974): 

iii AOT Γ=+12                             (2.153) 

where the shifted matrix 
iiT 12 +  is composed of covariance )2...,3,2( ikRk = . According to 

equation (2.151) and (2.153), matrix A is computed as  

iOA= †
12 +iT iΓ †= )( 1

21
1121

21
1

T
i

T VSTUS +
− †                 (2.154) 

where † denotes the Moore-Penrose-inverse of a matrix. 

Another method is proposed by (Kung, 1978). Matrix A is then computed by exploiting 

the shift structure of the extended observability matrix iO : 

:)),1(:1( −= ilOA i
† :),:1( lilO i +                  (2.155) 

Once matrix A and C are identified, the undamped frequencies, damping ratios and mode 

shapes can further be estimated by equations (2.120),(2.121) and (2.125): 

[ ] 1
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Ψ= CV  

It is noted that the matrices A and C and the modal parameters are considered as 

estimated results, because in real experiments the measurements are not infinite and the 

output covariance actually are just an estimation ofiR̂ .  

Theoretical, the rank of the Toeplitz matrix is the order of the system. With perfect 

noise-free data, the minimum order realization can be easily obtained by keeping only the 

non-zero Toeplitz singular values, as discussed in equation (2.150). With real or 

noise-contaminated data, however, the Toeplitz matrix tends to be full rank, thus making the 

problem of determining a minimum-order state-space model non-trivial. In this context, it is 

expected that there would be a significant drop in the singular values representing the “true” 

order of the system, while it rarely happens with real data. A reduced-order model obtained by 

retaining only ‘significant’ singular values tends to be poor in accuracy. In practice, an 

efficient procedure consists in construct the stabilization diagram, as already introduced in 

section 2.5.3. For the SSI-COV method, the SVD of the Toeplitz matrix iT1  once and the 

system matrices and the system poles in different order are determined by models including 

different number of singular values and the vectors. By comparing the poles corresponding to 

a certain model order with the poles of a one-order-low model, the stable poles are found and 

a stabilization diagram is efficiently constructed. The modal parameters are determined by 

interpreting the stabilization diagram. 

Example 

The SSI-COV method was applied to the preprocessed experimental data of the metallic frame 

structure. The output covariance iR̂  were estimated with a lag i= 1,2,…,2i-1 with i=20 (an experience 

parameter defined according to user) to construct the li×li  (40×40) Toeplitz matrix (equation 2.147). 

The singular values, yielded from the SVD of the Toeplitz matrix (equation 2.150) with a log scale, are 

plotted in Figure 2.13. After preprocessing of the experimental data, only 3 DOF were retained and the 

true model order is 6. It is also observed from Figure 2.13 that 6 singular values are significant, 

existing a “gap” between the 6th and 7th singular values, representing the true model order in the 
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processed experimental data . (equation 2.147) 

 

   Figure 2.13 Singular values of the covariance Toeplitz matrix 

A stabilization diagram was constructed by identifying the state-space model with orders 

n=2,3,…,40. The user defined criteria were 1% for frequencies, 3% for both damping and mode shape 

correlations. The symbol ´o´ in red represents a stable pole. The trace of the spectrum matrix is also 

plotted as a visual aid to select the stable poles though they are not related with the SSI-COV method. 

Inspection of Figure 2.14 shows that most of the stable poles concentrate around 5.28Hz, 15.16Hz and 

22.34Hz. The modal parameters were computed from the identified model matrices A and C (equation 

2.156). Detailed estimation results are presented at the end of this chapter. 

 

Figure 2.14 Stabilization diagram yielded by the SSI-COV method 

2.7.3 Data-driven SSI method 

Alternatively, modal parameters can be identified by data-driven SSI method by 

Overschee and De Moor. Detailed description of this method can be found in (Van Overschee 

and De Moor, 1996; Ljung, 1999). Instead of computing output covariance of output 

measurements, the data-driven SSI method starts with projecting the row space of future 

outputs into the row space of past outputs. Actually, the purpose of both covariance and 
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projections in different methods is to cancel out the uncorrelated noise. The following steps in 

data-driven SSI method are SVD and Least Squares, similar to covariance-driven SSI method. 

The principles of data-driven SSI algorithm are the Kalman filter states and the factorization 

property of projection matrix. 

a) Kalman Filter States 

The Kalman filter states play a crucial role in data-driven SSI method. The purpose of 

Kalman filter is to estimate the Kalman filter state kx̂  together with the observation of the 

outputs up to time k-1, system matrices and the noise covariance according to the forward 

innovation model indicated in section 2.6.4. If the initial state estimates 0ˆ0 =x , the initial 

covariance of the state estimates [ ] 0ˆˆ 000 == TxxEP  and the output measurements 

110 ..., −kyyy  are observed. The non steady state Kalman filter state estimateskx̂ , the Kalman 

filter gain matrix 1−kK  and Kalman state covariance matrix kP  can be derived as  
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The Kalman filter state sequence ∈iX̂ jn× is defined as 

)ˆ...ˆˆ(ˆ
11 −++= jiiii xxxX                      (2.158) 

 

     

 

 

 

 

 

      Figure 2.15 Non-steady Kalman filter state estimation based on output measurements  

This sequence in equation (2.158) can be written as a linear combination of the past 

output measurements and is generated by a batch of non-steady state Kalman filters working 
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in parallel on each columns of the block Hankel matrix of past outputs Yp, which is illustrated 

in Figure 2.15. This observation implies that the Kalman filter state sequence iX̂  can be 

determined directly from output data (Van Overschee and De Moor , 1996). 

b) Factorization Property of Projection Matrix 

The projection matrix is defined as projecting the row space of future outputs onto row 

space of past outputs 

))(()( T
pp

T
pfpf YYYYYY ==Ρ †

pY                (2.159) 

where ∈fY R jli × , ∈pY R jli × are the block Hankel matrices containing future and past outputs, 

respectively. The projection matrix is also equal to the product of the extended observability 

matrix iO  and the Kalman filter state sequenceiX̂ ,  

ii XO ˆ=Ρ                            (2.160) 

This relation is based on the main theorem of SSI, whose proof is of (Van Overschee and 

De Moor, 1996). From equations (2.159) and (2.160), it is observed that the Kalman filter 

state sequence iX̂  can be determined by projecting the future outputs on past outputs.   

It is noted that the equation (2.159) is just the definition and projection can not computed 

straightforward. In practice, the projection is computed by RQ factorization based on the 

Hankel matrix defined in equations (2.144) and (2.145), 

=−120 iY T
pfpf RQYYYY ===Ρ −+                 (2.161) 

where ∈Q jj × is an orthonormal matrix and ∈R jli ×2 is a lower triangular matrix.  

Projecting the row space of future outputs Yf onto row space of past outputs Yp can be 

achieved by the RQ factorization of projection Pi: 
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Substituting equation (2.162) in equation (2.159), projection matrix Pi is expressed by the 

product of R and Q submatrices as:  

↔↔↔
li l )1( −il
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∞→j
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Similarly, projection Pi-1 is computed by the alternative expression of future outputs −
fY  

and past outputs +
pY : 
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The factorization property applied to projecting matrices play a crucial role in 

data-driven SSI method. Once the projection of matrix Pi and Pi-1 are available, the structure 

modal parameters can be estimated using these matrices. 

c) Estimation of system matrix 

Again, SVD is applied to estimate the rank of projection matrix. Theoretically, the rank 

is equal to the system order n and the number of the non-zero singular values. After omitting 

the zero singular values and corresponding singular vectors, the projection matrix is given as:  

T
i VSU 111=Ρ                             (2.165) 

where ∈U R lili × , ∈S  R lili × and ∈V R lili × . This step explains why these algorithms are called 

subspace algorithms: Only the subspaces consisting of singular vectors corresponding to 

non-zero singular values of the projection matrix are used to identify the system matrices. 

Combining equations (2.160) and (2.165), the extended obsevability iO  is given by 

21
11SUOi =                              (2.166) 

Substituting equation (2.160) into equation (2.165),  

=iX̂ Oi
†Pi                              (2.167) 

In order to identify system matrices A and C, another projection matrix is introduced by 

shifting one block row down in the Hankel matrix,  

111
ˆ

+−
+−

− ==Ρ iipfi XOYY                       (2.168) 

The extended observability matrix Oi-1 is simply obtained by deleting the last l rows of 

Oi, 
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:)),1(:1(1 −=− ilOO ii                        (2.169) 

The state sequence 1
ˆ

+iX  can be derived as  
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Substituting state sequences 1
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+iX  and iX̂  into stochastic state-space model (2.134), 
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where ii VW ,  are residuals, and ∈iiY jl × is the i-th block row of the Hankel matrix. It is 

easily written, according to RQ submatrices in equation (2.161), 
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By now, state sequences 1
ˆ

+iX , iX̂  and block row iiY  are calculated from output 

measurements, and system matrices A and C can be computed by the least square method: 
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Identification of matrices A and C is sufficient to estimate the modal parameters 

following the equation (2.156) discussed in section 2.6.2. System poles and mode shapes are 

given as  
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It is noted that the the matrices A and C identified from output measurements are only an 

estimation (denoted as Â  andĈ ) of the ‘true’ system matrices, because only finite data 

length is available.    

Due to noise of the measurements in practice, the model order n can not be determined 
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by simply counting the number of non-zero singular values of matrix S1 (equation 2.165). The 

expected ‘gap’ between successive singular values is also not obvious in real experiments. To 

solve the order determination problem, the stabilization diagram used in P-LSCF and 

SSI-COV are implemented again. Models of different order are then obtained and used to 

construct a stabilization diagram by considering a different number of singular values and 

corresponding vectors in equation (2.165). Modal parameters are estimated by interpreting the 

stabilization diagram. 

Example 

The SSI-DATA method was also applied to the preprocessed experimental data. The experience 

parameter i was set as 20, like in the SSI-COV method. The first step of SSI-DATA is to gather the 

output measurements in a block Hankel matrix with 2il×N (80×89961). Next the R-factor of Hankel 

matrix is computed to construct the projection matrix Pi. The singular values of the SVD of the 

projection matrix Pi  (equation 2.164) are shown in Figure 2.16. It is also observed from Figure 2.13 

that 6 singular values are significant and that there is a “gap” between the 6th and 7th singular values, 

representing the true model order in the processed experimental data. 

A stabilization diagram was constructed identifying state-space models of orders n=2,3,...,40. The 

user defined criterions are 1% for frequencies, 3% for both damping and mode shape correlations. The 

symbol ´o´ in red represents a stable pole. The trace of the spectrum matrix is also plotted as a visual 

aid to select the stable poles. It is clear from Figure 2.17 that most of the stable poles concentrate 

around 5.28Hz, 15.16Hz and 22.34Hz. The modal parameters were computed from the identified 

model matrices A and C (equation 2.156), and the detailed estimation results are presented at the end 

of this chapter. 

 

 
   Figure 2.16 Singular values of the projection matrix 
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Figure 2.17 Stabilization diagram obtained with the SSI-DATA method 

A complete system identification procedure comprises not only the estimation of 

matrices A and C, but also of matrices G, R0. Identification of full state-space matrices A, C, G 

and R0 in data driven SSI method leads to a postprocessing procedure including spectrum 

analysis, modal decomposition and prediction errors.  

2.7.4 Summary  

In this section, two stochastic subspace identification methods based on output 

measurements from a system subjected to stochastic excitation are introduced. Both 

approaches share similar procedures for modal parameters estimation. In the 

covariance-driven SSI method, original output measurements stem from l sensors and N 

samples in each sensor. The Toeplitz matrix pfi YYT =1 based on covariance between ‘future 

outputs’ and ‘past outputs’ reduce the data matrix from Nl ×  to lili × .In the data-driven 

SSI algorithm, a similar data reduction procedure is used by projecting the row space of future 

outputs to row space of past outputs pf YY=Ρ , which is obtained by RQ-factorization of the 

data Hankel matrix. Following the data reduction procedure, SVD is utilized in both 

approaches to reveal the order of the system and reduce noise inference. However, the true 

system order is difficult to determine, because of noise effect in practical measurements. An 

efficient stabilization diagram is used to identify a whole set of models of different orders. 

Finally, the system matrices A and C in both approaches are estimated by Least Square 

technique and modal parameters are thus estimated.  

There are also some differences between the covariance-driven SSI method and the 
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data-driven SSI approach. The construction of the Toeplitz matrix in the covariance-driven 

SSI is much faster than the QR-factorization of the Hankel matrix. Theoretically, the 

data-driven approach is numerically more robust due to its square root algorithm, comparing 

the matrix square up in covariance-driven SSI method. Apart from these differences, 

postprocessing tools such as closed-form solution of spectrum and modal decomposition of 

total response are also available in data-driven SSI approach (Petters, 2000). 

2.8 COMPARISON OF DIFFERENT MODELS AND MODAL  

IDENTIFICATION METHODS 

This section presents a comparison between the modal parameters computed or estimated 

by different models and modal identification methods. A modal test of a metallic frame was 

described in section 2.2. On the one side, the experimental data acquired can be used to clarify 

the complex theory previous described. On the other side, modal parameters computed by 

theoretical and numerical models can also be used to get confidence on the estimates achieved 

by different operational modal identification methods in both frequency and time domains. 

Besides, a systematic comparison of the modal identification results can be used to evaluate 

the performance of different operational modal identification techniques. So, the practical 

implementation of the identification models and identification methods was introduced to 

illustrate the theoretical development. Table 2.1 synthesizes natural frequencies, modal 

damping ratios and mode shape results. It is noted that the damping ratio can not be computed 

directly by analytical models, being only estimated by experimental methods. The damping 

ratio results estimated by PP method are not listed because the half-power bandwidth damping 

ratio estimation method is not reliable and the EFDD method evolved from PP method can 

provide more objective and accurate estimation of modal damping ratios.  

Theoretically, PP and EFDD modal identification techniques are usually classified as 

non-parametric estimation methods as pointed out in section 2.5.5, because they do not 

employ a parametric model in the search for a best description, which induces that the 

identification procedure becomes a relatively subjective task in case of noisy civil engineering 

experimental data or weakly-excited modes. For example, the half-power bandwidth damping 
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ratio estimation method is not reliable and only operational deflection shapes are identified 

instead of mode shapes. EFDD method can enhance the PP method by applying SVD to the 

spectra matrix, allowing for a rather objective estimation process especially for closely spaced 

modes. However, the quality of modal damping ratios and mode shape estimates depends on 

the selected singular vector around the resonance. On the contrary, the p-LSCF, SSI-COV and 

SSI-DATA are categorized as parameter estimation methods. The linear structural system is 

parameterized as a model using a parameter vector (matrix). Structural modal parameters 

identification then becomes a problem of estimating the parameter vector (matrix). For 

example, during the process of application of p-LSCF, FRF of a linear system are 

parameterized as RMFD model with polynomial coefficients rα  and rβ . By determining 

theses coefficients, solving a least squares problem, the modal parameters are estimated. 

Stochastic subspace algorithms (SSI-COV and SSI-DATA) begin idealizing the linear system 

using state space models with system matrices A, B, C and D. Modal parameters can be 

estimated by identifying system matrices A and C using least squares techniques. Besides, 

these parametric methods employ the stabilization diagram to identify the parametric model, 

allowing separating the true system poles from spurious ones and extract the modal 

parameters confidently. 

Computation speed is another index to evaluate the performance of these modal 

identification techniques. PP method may be the fastest computation algorithm because the 

spectrum estimation consumes very short time. Thus, PP is especially suitable to check the 

quality of the experimental dates in the filed because of its rapidity. The computation time of 

EFDD, P-LSCF and SSI-COV are moderate. All three approaches require two stages to 

identify the modal parameters. The first step of EFDD and p-LSCF methods consists in 

estimating the half positive power spectra matrix. During the second stage, SVD and linear 

LS are applied in EFDD and p-LSCF, respectively. In the first stage of SSI-COV, a Toeplitz 

matrix can be computed by FFT rapidly. Afterwards, the SVD and LS mathematic algorithms 

are adopted for modal parameters estimation. The computation efficiency of these three 

methods is similar. Comparing with the four approaches previous mentioned, SSI-DATA 

algorithm is relatively slow owing to the QR factorization of the large size of Hankel matrix. 
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Considering the numerical accuracy and efficiency of these five modal estimation 

approaches, it may be recommended that for baseline (one time) operational modal analysis of 

structures, different methods are adopted, so that the results can be crosschecked, while for 

automatic modal identification of continuous dynamic monitoring data, it is advised that both 

the p-LSCF method in frequency domain and SSI-COV approach in time domain are 

employed, in order to achieve the most accurate modal estimates in a reasonable time.  

Table 2.1 Modal parameter results computed by theoretical and numerical models, 

as well as those estimated by different experimental models and methods 

 

 

 
 

Mode shape ϕ1 Method 
Frequency 

(Hz) 

Damping 

(%) ϕ11 ϕ 21 ϕ 31 

Theoretical 5.40 / 1 0.82 0.46 
Analytical 

Numerical 5.35 / 1 0.81 0.45 

PP 5.28 / 1 0.88 0.48 

FDD 5.28 0.18 1 0.87 0.48 

P-LSCF 5.28 0.20 1 0.87 0.48 

SSI-COV 5.28 0.19 1 0.87 0.48 

Experimental 

SSI-DATA 5.28 0.19 1 0.88 0.48 

Mode shape ϕ2 Method 
Frequency 

(Hz) 

Damping 

(%) ϕ12 ϕ 22 ϕ 32 

Theoretical 14.93 / 1 -0.40 -1.14 
Analytical 

Numerical 15.02 / 1 -0.41 -1.14 

PP 15.18 / 1 -0.44 -1.22 

FDD 15.17 0.18 1 -0.44 -1.21 

P-LSCF 15.17 0.19 1 -0.43 -1.22 

SSI-COV 15.16 0.21 1 -0.44 -1.21 

Experimental 

SSI-DATA 15.16 0.21 1 -0.44 -1.21 

Mode shape ϕ3 Method 
Frequency 

(Hz) 

Damping 

(%) ϕ13 ϕ 23 ϕ 33 

Theoretical 21.16 / 1 -1.81 1.38 
Analytical 

Numerical 21.66 / 1 -1.82 1.39 

PP 22.35 / 1 -1.92 1.47 

FDD 22.33 0.12 1 -1.93 1.47 

P-LSCF 22.33 0.13 1 -1.88 1.46 

SSI-COV 22.32 0.11 1 -1.89 1.45 

Experimental 

SSI-DATA 22.33 0.12 1 -1.89 1.47 
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  1st mode                 2nd mode               3rd mode 

Figure 2.18 Model shapes identified using SSI-COV  

2.9 CONCLUSION 

This chapter presents a state of art of operational modal analysis (OMA) and describes in 

detailed five of the most relevant methods. The relation between OMA and analytical 

formulations of analysis, as well as the connection between OMA and EMA are described to 

further clarify the theoretic foundation of modal identification based on output-only 

measurements. A modal test of a laboratory frame was performed to enhance the 

understanding of abstract concepts of the theory described. Finally, the performance of 

different OMA methods is briefly compared. This synthesis was essential to create a solid 

foundation for the implementation and application of these OMA methods to the real 

structures, in particular in the context of long-term structural health monitoring. 
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3 
 OMA SOFTWARE FOR AMBIENT VIBRATION TESTING 

AND CONTINUOUS DYNAMIC MONITORING 

 

 

3.1 INTRODUCTION 

Although some of the most relevant modal identification methods for Operational Modal 

Analysis (OMA) have been already introduced in chapter 2, it is important to refer how to 

implement these algorithms for application to structures in a friendly and frequent way. In this 

context, several commercial modal identification software packages have been developed 

worldwide based on these modal identification algorithms such as the Ambient Response 

Testing and Modal Identification Software (ARTeMIS, 2010). However, these dedicated 

software packages have some drawbacks in a research environment, since it is impossible to 

access the implementation of these algorithms and is not straightforward to add own 

developments for further application particularly related with automated modal identification 

for continuous dynamic monitoring. Moreover, there are also many toolboxes in a connection 

program for MATLAB-related third party productions, for example, Structural Dynamics 

Toolbox (SDTools, 2008) and MACEC (MACEC, 2011). However, the former only handles 

with experimental modal analysis (EMA), which is not suitable for the output-only OMA 

applications. Although the latter provides both EMA and OMA components, it does not 

comprise any possibility for automatic continuous dynamic monitoring, whose tasks involve 

automatic processing of massive acquired data, as well as the complex management and 

access of the results. Besides, all of these commercial software packages and toolboxes are 
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only dedicated to signal processing, not combining themselves with specific hardware for data 

acquisition. Therefore, it is clear the necessity to develop new programs aiming not only the 

structural modal identification and continuous monitoring, but that can be also integrated with 

data acquisition hardware to constitute a complete vibration-based continuous structural 

health monitoring system (Hu et al, 2007, 2008, 2010). 

In this thesis, new computational tools for structural modal identification and long-term 

dynamic monitoring, developed in NI LabVIEW (National Instruments, Laboratory Virtual 

Instrument Engineering Workbench) environment, are described. They consist of two 

independent toolkits: SMI (Structural Modal Identification) toolkit is used for one time 

structural modal identification, whereas CSMI (Continuous Structural Modal Identification) 

toolkit is applied for continuous monitoring of structural systems. SMI toolkit is a 

user-friendly toolkit, implementing different system modal identification methods such as PP, 

EFDD, SSI-COV and SSI-DATA. This toolkit offers the possibility of data loading and 

preprocessing, system identification and model shape visualization. By pushing buttons, the 

user is guided through the whole process of structural modal parameters identification. CSMI 

toolkit is used for continuous dynamic monitoring comprising three components: an 

automated signal processing sub-toolkit, including automated vibration level detection 

algorithm and system identification based on SSI-COV approach; a database to organize the 

analytical results, in text and graph format, generated from signal processing sub-toolkit; and 

a user-friendly results visualization toolkit to access the analytical results conveniently. The 

CSMI toolkit can automatically search and process latest signal file, organize results and 

publish them. 

NI LabVIEW software was chosen as the basic environment to develop these toolkits for 

OMA and long-term dynamic monitoring because that, on the one hand, it is an open 

environment offering computation, visualization and programming tools. On the other hand, it 

is convenient to link with a variety of NI data acquisition hardware. 
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3.2 OVERVIEW OF NI LabVIEW SOFTWARE 

NI LabVIEW (National Instruments, Laboratory Virtual Instrument Engineering 

Workbench) is a graphical programming language that uses icons instead of lines of text to 

create applications. In contrast to text-based programming languages, such as Visual Basic, 

C++, JAVA and Matlab, where instructions determine the order of program execution, 

LabVIEW uses dataflow programming, where the flow of data determines the execution. 

 

 

 

Figure 3.1 An example of front panel, block diagram, icon and connector panel 

LabVIEW programs are called virtual instruments (VIs) because their appearance and 

operation imitate physical instruments, such as oscilloscopes and multimeters. A VI contains 

the following three components: 

• Front panel, serving as the user interface; 

• Block diagram, which contains the graphical source code that defines the functionality 

of the VI; 

• Icon and connector pane that identifies the interface to the VI so that one can use the VI 

in another VI. A VI within another VI is called a subVI. A subVI corresponds to a 

Block diagram 

Front panel 

Connector panel 

and icon 
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subroutine in text-based programming languages. 

A simple example of VI including front panel, block diagram, icon and connector panel is 

shown in Figure 3.1. 

The front panel is an interface built with controls and indicators, which are the 

interactive input and output terminals of the VI, respectively. Controls are knobs, push 

buttons, dials, and other input mechanisms. Indicators are graphs, LEDs, and other output 

displays. Controls simulate instrument input mechanisms and supply data to the block 

diagram of the VI. Indicators simulate instrument output mechanisms and display data the 

block diagram acquires or generates. Associated with the front panel, codes using graphical 

representation of functions are implemented to control the front panel objects. The block 

diagram contains such graphic source code, which comprehends terminals, nodes, wires and 

structures. The terminals represent the data type of the control and indicator in the front panel. 

The nodes are objects that have inputs and/or outputs and perform operations. They are 

analogous to statements, operators, functions, and subroutines in text-based programming 

languages. The wires transfer data among block diagram objects and the structures are 

graphical representations of the loop and case statements of text-based programming 

languages. The icon and the connector pane are built to customize a VI as a subVI. An icon is 

a graphical representation of a VI. The connector pane is a set of terminals that corresponds to 

the controls and indicators, similar to the parameters list of a function call in text-based 

programming languages. The connector defines inputs and outputs wired to the VI so that it 

can be used as a subVI (LabVIEW, 2010). 

LabVIEW not only contains a comprehensive set of tools for acquiring, analyzing, 

displaying, and storing data, as well as tools for coding troubleshooting, but also several 

add-on software toolsets for developing specialized applications. Besides, it can be used to 

communicate conveniently with National Instruments (NI) hardware such as data acquisition, 

vision, and motion control devices, as well as GPIB, PXI, VXI, RS232, and RS485 

equipments. All of these characters and advantages of LabVIEW software facilitate user 

involvement for the design and development of system in context of operational modal 

analysis and continuous dynamic measurements based structural health monitoring.  
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3.3 SMI TOOLKIT 

This SMI toolkit was constructed with a main panel shown in Figure 3.2, comprising 

four main options: loading files, preprocessing, system identification and visualization of 

mode shapes. To perform each task, a new window is open and after finishing the desired 

task, the user can choose and return to the main menu to proceed with the following task.  

 

Figure 3.2 Main panel of SMI toolkit 

3.3.1 Loading files      

The toolkit provides two options to import signal files for modal identification: (i) load 

data from a database developed based on SQL (Structured Query Language) program or (ii) 

load signal files directly from local disk. After loading the signal files and defining the 

sampling frequency, the selected signals are listed and some signal information, such as signal 

length, maximum and minimum value and corresponding time or mean and variance values 

are detected or computed automatically. The user has also the choice to visualize the 

waveform graph of the selected signals in time domain. These functions are indicated in the 
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loading files menu shown in Figure 3.3. 

 

 Figure 3.3 Loading files menu 

 

Figure 3.4 Preprocessing menu 
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Figure 3.5 Menu for specification of the location and axis information of each channel 

3.3.2 Preprocessing 

After loading files, the user can begin the pre-processing task using the menu shown in 

Figure 3.4. Pre-processing is the data treatment before system identification and it highly 

influences the results. Functions such as signal decimation, detrend, digital filtering and FFT 

analysis have been implemented. The user can define the window length, overlapping and 

different windows for FFT analysis. The NPSD (normalized power spectrum density) graphs 

of each signal file have been also integrated. The effect of each function in the preprocessing 

procedure can be observed immediately after taking the choice. 

For generating mode shapes, it is essential to incorporate the physical location and axis 

information of the measurement points. For that purpose the user can employ the window 

shown in Figure 3.5, specifying the location and axis of each channel.   

3.3.3 System identification  

Four complementary methods have been implemented in this toolkit: Peak-Picking (PP), 

Enhanced Frequency Domain Decomposition (EFDD), Covariance-driven and Data-driven 

Stochastic Subspace Identification methods (SSI-COV and SSI-DATA). 

If the user chooses the PP method, a window with averaged normalized power spectrum 

(ANPSD) graph opens, as shown in Figure 3.6. The user can then choose the peaks in the 
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ANPSD graph and operational deflection shapes are determined according to the selected 

frequencies. 

 

Figure 3.6 Peak-Picking menu 

 

Figure 3.7 SVD curves obtained through EFDD menu 

The second method is EFDD. Firstly, the singular value curves of spectrum matrices are 

calculated and plotted as shown in Figure 3.7. The user can select resonance peaks in different 

SVD curves. Then, a proper segment of SVD curve is selected near each resonance peak, 

based on a MAC criterion, and the corresponding free decay time domain curve is obtained 

using an inverse FFT. After application of spline interpolation on the free decay curve, a 
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smoother graph is obtained for curve fitting. By defining two proper peaks, a logarithmic 

decrement line will fit all the peak points of the free decay curve and refined natural 

frequency and damping ratio estimates can be obtained. 

Beyond the above mentioned two identification algorithms in frequency domain, the 

SSI-COV and SSI-DATA methods in time domain have been also incorporated in this toolkit. 

Since SSI-COV and SSI-DATA share some similar procedures, a common interface window 

has been introduced. In the former case, for instance, the user should first specify expected 

maximum model order n and choose the model order range. After computation, a stabilization 

diagram as shown in Figure 3.8 is constructed. Then, the user can specify stricter stabilization 

criteria for better quality of the stabilization diagram. User can select a series of stable poles 

in a stabilization column, which corresponds to a certain resonance frequency. For visual 

reference, the ANPSD plot is represented together with that diagram. 

3.3.4 Visualization 

The identified mode shapes are graphically represented in specified menu (Figure 10), 

which offers the following possibilities: scrolling through all modes, representation of 

undeformed structure, 3D-view with different viewpoint and distance. The physical location 

and axis information were attributed to the channels in previous step (see section 

Preprocessing). Before visualization, a grid of nodes and the connection between the nodes in 

terms of beams and surfaces need to be defined.  

 

Figure 3.8 Stabilization diagram obtained through SSI-COV menu 
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Figure 3.9 Mode shape visualization menu 

3.4 CSMI TOOLKIT 

CSMI toolkit is an automated signal processing, system identification, data management 

and result visualization program, with the main purpose of dealing with corresponding three 

different challenges in structure continuous dynamic monitoring: (1) automatic signal 

processing and system identification; (2) appropriate organization of the massive amount of 

signal files and analysis results; (3) easy visualization and access of analysis results via 

Internet. To achieve the goals, this program is divided into three parts as shown in Figure 3.10. 

First of all, an automated signal processing and system identification sub-toolkit is proposed 

without any manual operation and generating a series of results. Secondly, those analysis 

results, including text and graphic files are automatically saved into a database based on 

user-defined file folders in Window system for organizing massive results. Subsequently, a 

user-friendly graphic user interface (GUI) sub-toolkit provides immediate access to the 

analysis results by specifying different options such as time, position of the accelerometers, 

etc. This GUI toolkit may be published within the framework of a webpage, being useful in 

the context of remote monitoring by Internet.  
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  Figure 3.10 Architecture of CSMI 

3.4.1 Automated signal processing sub-toolkit 

a) Algorithm for evaluation of averaged vibration level 

The purpose of evaluation of vibration level is to investigate if some vibration comfort 

limits are exceeded and analysis the effect of traffic intensity on the modal properties. A 

typical response comprehending acceleration signals from different sensors is shown in Figure 

3.11.  

The procedures of the proposed algorithm are the follows: 

(i) Firstly, the envelope of each acceleration signal acquired from each individual 

accelerometer is calculated by Peak Detection Virtual Instrument (VI) based on 

multi-resolution wavelet analysis (LabVIEW, 2010). Using this VI, the peaks as well as 

valleys of the signal are detected, and the envelop is obtained. An example is shown in 

Figure 3.12. 

Numerical and graphical results 

  

Results management database  

Maximum Vibration level  

Averaged vibration level  

Automatic signal processing sub-toolkit 

Signal file database 

Result visualization sub-toolkit 

Signal files 

  

Numerical and graphical results 

  

 Waterfall plot (ANPSD) 

 System Identificaiton (SSI-COV) 
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(ii)  Subsequently, the absolute averaged values of the envelope curve of each accelerometer 

in every hour are calculated.  

 

Figure 3.11 Typical acceleration time series 

 
(a) Signal and its envelope           

 

 
     (b) Part of signal and its envelope   

Figure 3.12 Signal from one accelerometer and its envelope 
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Figure 3.13 (a) shows the distribution of averaged acceleration amplitude from each 

accelerometer in one day. Averaged acceleration amplitudes from all the accelerometers are 

averaged again to obtain a global indicator or the vibration levels in every hour, as shown in 

Figure 3.13 (b). Figure 3.13 (c) plots the averaged acceleration amplitude in one month. It is 

clearly observed that consecutive peaks are presented in five working days and low vibration 

levels are exhibited at weekends. Yearly averaged vibration levels are evaluated in Figure 3.13 

(d). Using this procedure, the vibration level under normal operational conditions is appraised 

efficiently.  

 

 

  (a) Averaged amplitudes at each accelerometer during one day 

 

 

(b) Averaged amplitudes at all accelerometers 
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  (c) Averaged amplitudes in all accelerometers in one month   

 

                                  (d) Yearly averaged amplitude 

Figure 3.13 Averaged acceleration amplitude in all accelerometers during one year 

b) Detection of maximum vibration level 

The accuracy of monitoring the vibration amplitude by picking the peaks directly may be 

disturbed by occasional spike noise. Therefore, the maximum vibration levels are detected by 

calculating the averaged vibration level of the absolute envelope in a user-defined short 

interval. The first step is also to detect the envelope of the vibration signals as described in the 

algorithm in evaluation of averaged vibration level. In a short user-defined time duration (eg. 

1 second), the absolute envelope values are averaged. An example of averaged absolute 

envelope and zoom part are plotted in Figure 3.14 (a) and (b), respectively. In every hour, the 

maximum vibration level is detected and thus the daily maximum values are obtained. The 

monitoring results corresponding to each month and each year are obtained shown in Figure 
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3.14 (c) and (d). These values are used to describe the maximum acceleration response of 

bridges under normal operational conditions. 

 

(a) Averaged absolute envelope within certain time interval 

 

          (b) Part of averaged absolute envelope within certain time interval 

  

     (c) Maximum amplitude in one month        
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                      (d) Maximum amplitude in one year 

Figure 3.14 Vertical maximum acceleration amplitude  

c) Waterfall plot  

CSMI also performs systematic frequency domain analysis of acquired data. By 

arranging sequences of ANPSD spectral estimates besides each other, 3D waterfall plots are 

obtained as shown in Figure 3.15 (a). 2D waterfall plots, as a top view of the 3D versions, can 

be also plotted, as indicated in Figure 3.15 (b). From 2D and 3D waterfall plots, the frequency 

component distribution is easily captured, allowing the observation of time variation of 

natural frequencies, as well as the identification of different intensity periods. 

 

 

(a) 3D Waterfall plot (log scale) 
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    (b) 2D Waterfall plot (log scale) 

    Figure 3.15 Waterfall plots 

d) Automatic SSI-COV algorithm 

The automatic system identification procedure based on SSI-COV algorithm is 

implemented in the CSMI toolkit. It comprehends two steps: (i) construction of stabilization 

diagram and (ii) cleaning of stabilization diagram. 

(i)  Construction of stabilization diagram: The state-space model is estimated using 

correlation functions with a maximum length of i points. The maximum system order is n 

and the stable poles within certain system orders (m, m+j, m+2j,…, n, where m is the user 

defined lowest order and j is the increment of order) are considered. Poles are labeled as 

stable if the relative differences in the natural frequency (fδ ), modal damping ratio (δξ ) 

and modal assurance criterion (MAC) values between poles of consecutive orders are 

below the following threshold values:   

            %1≤fδ , %10≤δξ , %5%)1( ≤×− MAC                                       

   Otherwise, the poles are classified as spurious or numerical. At the same time, the poles 

having unrealistic damping ratios (e.g %10≥ξ ) are discarded.  

(iii)  Cleaning of stabilization diagram: The stabilization diagram inevitably contains spurious 

or numerical poles which interfere with the automated estimation of modal parameters. It 

is observed (e.g. Figure 3.16 (a)) that the spurious poles are isolated, while the stable 

poles are concentrated around the structural natural frequencies. Therefore, the number of 
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spurious poles is smaller than the number of stable poles representing structure modes. In 

order to sort out these spurious poles, the procedure of cleaning of the stabilization 

diagram is implemented by treating all poles between m and n order as follows: (a) 

Different groups are established by examining the different modal parameters represented 

by the poles in the m order; (b) In the  (m+j)  order, the new poles are incorporated into 

the corresponding groups if the relative difference of modal parameters is smaller than 

the  threshold prescribed in step (i), however, if there are any poles in (m+j) order which 

do not match with any groups defined in the previous step, a new group is assigned; (c) 

Step (b) is applied to the poles from (m+2j) to n order and all poles are grouped; (d) 

Subsequently , a plot like the one presented in Figure 3.16 (b) is created through counting 

the number of poles inside each group and averaging all the frequency results of the same 

group. By inspecting this figure, it is observed that the stable poles representing structural 

modes are grouped together and the corresponding numbers are relatively large, while the 

spurious numerical poles are clustered in groups with a small number of elements. (e) 

Finally, a threshold for the numbers of poles p is prescribed and the groups whose number 

of elements is smaller than this threshold are removed. A stabilization diagram obtained 

after the application of the cleaning procedure is shown in Figure 3.16 (c). According to 

the information represented by the stabilization poles, the plot reflecting the relation 

between damping ratios and natural frequency estimates is displayed in Figure 3.16 (d). 

The modal parameters are estimated by averaging the frequencies, damping ratio and 

mode shape vectors within the selected groups of poles. The parameters of the algorithm i, 

j, m, n and p used for the automated modal identification in each application are defined 

by the user according to the quality of the continuous dynamic monitoring results. 

According to the automatically identified results, the long term variation of natural 

frequencies and the modal damping ratios is obtained, as shown in Figure (a)-(d).  
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                      (a) Stabilization diagram 

 

 (b) Number of grouped poles         

 

  (c) Cleaning of stabilization diagram 

 

 

 

spurious numerical poles 
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   (d) Relation between natural frequencies and modal damping ratios estimates 

Figure 3.16 Identification of physical modes based on automatic interpretation of stabilization 

diagrams provided by SSI-COV method 

   

     (a) Variation of natural frequencies during one day 

  

      (b) Variation of nature frequencies during one month 
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     (c) Variation of natural frequencies during one year 

 

(d) Variation of the 1st modal damping ratio during one year 

  Figure 3.17 Variation of modal properties 

3.4.2 Results management database 

The results management system is a series of cascading hierarchical folders created in 

Window system. The main folder consists of three subfolders, ‘time domain’, ‘waterfall plot’ 

and ‘ssicov’, for saving the information stemming from the corresponding signal processing 

operations. They have similar structure, though they integrate different subfolders for saving 

different results. All specified directories for saving the processed results are conveniently 

implemented in the automated signal processing toolkit. When this toolkit operates, the 

processed results, both in TEXT format and PNG (Portable Network Graphics) format, are 

saved to local disk automatically. The size of each TEXT file is less than 10Kb and PNG file 

is no more than 15Kb. It is convenient to create new folders, as well as the corresponding save 
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directories used by the automated signal processing toolkit for application of the monitoring 

system to other structures.  

3.4.3 Results visualization sub-toolkit 

With the purpose of allowing a rapid and easy access of the user to long term dynamic 

monitoring results, the results visualization sub-toolkit was specially designed with a main 

panel and a series of subpanels.  

 

 

(a) Main panel 

 

(b) Subpanel: Maximum vibration, current setup 

  Figure 3.18 Results visualization toolkit 

Figure 3.18 (a) shows the main panel comprising three components: (a) five numerical 

indicators; (b) four pull down menus, and (c) two graph indicators. The user can specify 
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different time and channels in five numerical indicators to load the corresponding acceleration 

signals, using the ‘Time domain signal graphic’ indicator. In the meanwhile, the graphic of the 

normalized power spectrum density (NPSD) is also calculated and shown in ‘Power spectrum 

density graphic’ indicator. A red cursor in this graphic indicator can be used to detect the 

frequency values around each peak in PSD graphic and the frequency content of the vibration 

signal is clarified. The user can also apply ‘zoom’ and ‘move’ functions to search some more 

interesting parts of the plots shown using two graphic indicators. Four pull down menus, 

consisting of ‘Maximum vibration’, ‘Averaged vibration’, ‘Peak-picking analysis’ and ‘SSI 

analysis’, were included to load the results, both in PNG format and TEXT format, which are 

pre-processed by the automated signal processing toolkit and saved in the results management 

database. The user may click the menus, choose different options and enter a series of 

subpanels. One subpanel, ‘Current setup’ of main panel ‘Maximum vibration’, is shown in 

Figure 3.18 (b). In this way, the user can load all pre-processed results. The graphics are 

loaded directly and the analysis results are shown in table indicator on the left side of the 

subpanel, allowing the user to easily examine the analysis results, as well as the information 

when and where they occurred. By pushing ‘Return’ button in red, the user goes back to the 

main panel and makes another choice. The results visualization toolkit can also be linked by 

webpage, which permits the user to easily control this toolkit and access long term monitoring 

results via Internet. 

3.5 CONCLUSION 

This chapter introduces two toolkits developed in LabVIEW software for structural 

modal identification and continuous dynamic monitoring. The LabVIEW software was 

selected as development environment because of two advantages: One of them is that it is a 

graphical programming language offering a series of tools for acquiring, analyzing, displaying, 

and storing data, as well as several add-on software toolsets for developing specialized 

applications. Another reason is that it can be used to communicate conveniently with National 

Instruments (NI) hardware. These features and advantages of LabVIEW software facilitate the 

user to design and develop the system in the context of operational modal analysis and long 
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term structural health monitoring. 

SMI (Structural Modal Identification) toolkit was developed for regular modal 

identification of structures, involving the implementation of the peak-picking (PP), frequency 

domain decomposition (FDD), covariance-driven and data-driven stochastic subspace 

identification (SSI) algorithms. It provides the possibility of pre-processing, system 

identification with different methods and results visualization with a user friendly interface.    

In addition, CSMI (Continuous Structural Modal Identification) toolkit was developed 

for continuous dynamic monitoring. It consists of an automated signal processing sub-toolkit, 

results management database and results visualization sub-toolkit. Automated signal 

processing sub-toolkit searches the latest setup signal file, detects maximum vibration and 

averaged amplitudes both in vertical and lateral directions, and identifies the modal 

parameters continuously based on the covariance driven stochastic subspace identification 

(SSI-COV) methods. Based on continuously processed results in each setup, daily and 

monthly variations of maximum vibration amplitudes, averaged vibration amplitudes, as well 

as of modal parameters are also generated. All these analysis results are saved and organized 

in the results management database both in TEXT format and PNG format. The results 

visualization sub-toolkit allows the user rapidly to access these results and examine the short 

and long term behaviour of the structure.  
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4 
   APPLICATION TO THE AMBIENT VIBRATION TESTING 

OF EXISTING BRIDGES 

 

 

4.1 INTRODUCTION 

After introducing the theoretical background and corresponding implementations of 

OMA (Operational Modal Analysis), this chapter presents some applications to the dynamic 

testing of existing bridges. The first application is concerned with the evaluation of the change 

of modal properties induced by the rehabilitation of the centenary metallic roadway bridge 

over Douro River, at Pinhão. The second case study characterises the identification of modal 

parameters before and after the installation of Tuned Mass Dampers (TMDs) at Pedro e Inês 

footbridge, over the Mondego River at Coimbra. The last one depicts the variations of the 

modal results of a lively stress-ribbon footbridge in FEUP campus, by analyzing data from 

three ambient vibration tests performed in March 2003, October 2004 and October 2009. 

4.2 OMA OF PINHÃO BRIDGE 

4.2.1 Description of Pinhão Bridge 

The Pinhão roadway Bridge crosses over the Douro River at the Pinhão village, located 

in the north of Portugal, and open to public in 1906. Nowadays, the bridge still plays a 

significant role in the road network linking the two banks of the Alto Douro wine region, also 

presenting a relevant historical heritage value, since it is part of the landscape of the Alto 
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Douro Wine Region, where was classified as World Heritage by UNESCO in 2001. Figure 4.1 

shows an overview of this roadway bridge. 

 

(a) Global view of Pinhão Bridge 

   

 

  

(d) View of bridge from below         (e) View of bridge deck and select truss structure 

Figure 4.1 Overview of Pinhão Roadway Bridge  

(b) Location of Pinhão 

(c) Overview of Village of Pinhão 
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(a) Lateral view 

 

(b) Sections 1-1 and 2-2 

 

 

 

 (c) Bottom and top plan view of deck in the 3rd span 

Figure 4.2 Schematic representation of Pinhão roadway Bridge  

Figure 4.2 (a), (b) depicts the characteristics of the bridge and corresponding cross 

sections. The bridge consists of a steel truss structure with three identical simply supported 

spans, presenting a total length of 207.623m and 8.86m of total height at the three mid-spans. 

The deck is approximately 7m wide between the two girders outer planes, and 0.75m high, 

throughout the longitudinal axis, including the 0.08m concrete and 0.02m asphalt layers, 

respectively. The deck area occupied by the two traffic lanes are 4.68m large, and are resting 

on a steel grid accomplished by 5 longitudinal and 17 transversal beams in each span. The two 

sidewalks are 0,675m wide, having a lateral handrail 1m height. The supporting grid beams 

Section 1-1 

Section 2-2 

Bottom view of the 3rd span 

Top view of the 3rd span 
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presented an “I” cross-section achieved by assembling plates and angles connected with rivets. 

Between each pair of transversal deck beams, there were two bracing bars “X” arranged (see 

Figure 4.2 (c)), materialised by double angles rivet connected. In each girder, for each span, 

the lower and upper chords are connected by columns and diagonals. The columns are formed 

by two pairs of laced angles, while diagonals were achieved by pairs of parallel rectangular 

cross bars. In each span, the lateral sway of both girders is prevented by truss bracings 

connecting them at the top. 

Due to the aging and lack of efficient maintenance of the bridge in long history, the 

structure presented some anomalies related with the significant vibration of some of its 

elements, existence of cracks in the joints of the granite masonry at the support pillars, 

occurrence of material corrosion and degradation of the bearing supports, as shown in Figure 

4.3 (Costa et al, 2008). 

  

(a) Deterioration in the deck lower elements     (b) Steel delaminating in the girders lower chords 

  
(c) Poor conservation state of the bearings    (d) Heavy corrosion in the contact area  

of support 

Figure 4.3 Examples of damage 



Application to the Ambient Vibration Testing of Existing Bridges 

109 

In the year 2004 the bridge owner ordered a study to evaluate the bridge rehabilitation 

procedure. In this study, static load tests were carried out. The parameters observed during the 

field test include deflections of the deck, strains of the structural members, longitudinal 

displacements of the bearing supports and their rotations. A three dimensional finite-element 

model was developed by the team of the Faculty of Engineering of the University of Porto 

that conducted the static test of the Pinhão Bridge (www.fe.up.pt/labest), and the calculated 

values were correlated with the results from the static load tests. In the meanwhile, two 

ambient vibration tests were performed by Laboratory of Vibration and Structural Monitoring 

(www.fe.up.pt/vibest) in similar conditions before and after the rehabilitation with the 

purpose of calibrating the finite-element model. The detailed rehabilitation procedure is 

described in (Costa et al, 2008). 

In this dissertation, the OMA of the data acquired from these two ambient vibration tests 

is performed to reflect the change of modal parameters caused by the structural rehabilitation.  

4.2.2 Ambient vibration tests  

During the two ambient vibration tests performed before and after rehabilitation, four 

tri-axial 18-bit seismographs were used (Figure 4.4). These devices comprised very sensitive 

internal force balance accelerometers (linear behaviour from DC to 100 Hz), analogue to 

digital converters with 18 bit (to guarantee a good resolution), batteries that enabled the 

possibility of autonomy for one day of tests, memories materialized by removable Compact 

Flash cards that permit a fast download of the acquired data. The external GPS sensor was 

used to deliver a very accurate time so that the seismographs could work independently and 

synchronously. With these equipments, the cables were avoided and the labour associated 

with the preparation of the dynamic test was drastically minimized. 

In order to obtain a good characterization of the mode shapes, the accelerations at 7 cross 

sections on both sides of the deck were measured in each span (Figure 4.5). Two of the four 

units were fixed at reference points (points 3 and 13), whereas the other two were 

successively placed at the remaining 12 points, scanning the bridge deck in 6 consecutive 

setups for each span, measuring the acceleration along the 3 orthogonal directions (Figure 4.6). 
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For each setup, time series of 13 minutes were collected with a sampling frequency of 100 Hz, 

value that was imposed by the filters of the acquisition equipment. 

 

Figure 4.4 Seismograph and external GPS 

 

Figure 4.5 Measurement points used in the ambient vibration test  

  

Figure 4.6 Position of the measuring devices during one setup 

Since the three spans of the bridge are structurally independent and identical, they were 

also tested independently and the modal estimates are similar (Magalhães et al, 2006). In this 

study, only the experimental data acquired from the middle span of the bridge was analyzed.  

The ambient tests were developed under normal operational conditions without inducing 

significant restrictions in the bridge. So it was possible to quantify the level of the vibrations 

motivated by the traffic. Figure 4.7 shows, for instance, the acceleration measured in the 

downstream point of section 4. In this graphic, the passage of a vehicle can easily be 

identified, which motivated a relatively high vertical acceleration 0.052 m/s2. It is also 
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observed from the graphic that the level of lateral accelerations is approximately 1/10 of the 

vertical accelerations, which may partially explain the lower quality of the identified lateral 

mode shapes. 

 

 Figure 4.7 Measured acceleration signals in vertical and lateral directions during ambient vibration 

test after rehabilitation 

4.2.3 Operational Modal Analysis before and after rehabilitation 

The SMI toolkit was used to analyze the experimental data acquired in the ambient 

vibration tests performed before and after rehabilitation. First, the collected signals were 

de-trended to remove linear effects and decimated with a factor of 2 to reduce the size 

(sampling frequency converted to 50Hz). Then, the PP, EFDD, SSI-COV and SSI-DATA 

methods were employed for OMA, as shown in Figures 4.8 and 4.9 for vertical and lateral test 

data, respectively. With regard to PP and EFDD methods in frequency domain, a window 

length of 4096 points was used, leading to a frequency resolution of 50/4096=0.012Hz in the 

spectral estimates, with application of Hanning window and overlapping of 50%. When using 

SSI-COV and SSI-DATA methods in time domain, the stochastic subspace model was 

calculated with the time lag parameter i (used for evaluation of the output covarianceiR̂ ) 

equal to 40. A stabilization diagram was constructed by identifying state-space models for 

orders n=2,3,...,100. The user defined criteria are 1% for frequencies, 5% for both damping 

and mode shape correlations.  
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(a) ANPSD before rehabilitation             (b) ANPSD after rehabilitation 

 

(c) Averaged SVD curves before rehabilitation   (d) Averaged SVD curves after rehabilitation 

 

(e) Stabilization diagram produced           (f) Stabilization diagram produced 

by SSI-COV before rehabilitation            by SSI-COV after rehabilitation 

 
(g) Stabilization diagram produced          (h) Stabilization diagram produced 

by SSI-DATA before rehabilitation            by SSI-DATA after rehabilitation 

Figure 4.8 OMA of vertical test data acquired before and after rehabilitation 

by PP, EFDD, SSI-COV and SSI-DATA methods 
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(a) ANPSD before rehabilitation              (b) ANPSD after rehabilitation 

 

(c) Averaged SVD curves before rehabilitation (d) Averaged SVD curves after rehabilitation 

 

(e) Stabilization diagram produced           (f) Stabilization diagram produced 

by SSI-COV before rehabilitation           by SSI-COV after rehabilitation 

 
(g) Stabilization diagram produced           (h) Stabilization diagram produced 

by SSI-DATA before rehabilitation          by SSI-DATA after rehabilitation 

Figure 4.9 OMA of lateral test data acquired before and after rehabilitation 

by PP, EFDD, SSI-COV and SSI-DATA methods 
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Table 4.1 Comparison of modal parameters identified by different methods 

and computed by finite element analysis before rehabilitation of Pinhão bridge 

 

 
 
 

Table 4.2 Comparison of modal parameters identified by different methods 

after rehabilitation of Pinhão bridge 

 

 

Modal Identification results  

PP EFDD SSI-COV SSI-DATA 
FEM 

Mode 

Freq 

(Hz) 

Freq 

(Hz) 

Damp. 

(%) 

Freq 

(Hz) 

Damp. 

(%) 

Freq 

(Hz) 

Damp 

(%) 

(%) 

Freq 

(Hz) 

1 2.80 2.80 1.15 2.80 1.35 2.80 1.33 2.87 
2 5.49 5.49 0.32 5.49 0.35 5.49 0.36 5.22 
3 8.15 8.15 2.50 8.17 2.87 8.19 2.66 8.34 
4 10.61 10.62 0.53 10.61 0.54 10.62 0.55 11.28 
5 12.66 12.66 0.55 12.64 0.59 12.65 0.60 12.88 
6 14.05 14.08 0.75 14.07 1.1 14.08 1.06 / 

V 

7 15.60 15.61 0.50 15.60 0.52 15.61 0.58 / 

T 1 5.94 5.94 0.33 5.93 0.57 5.92 0.58 6.66 
1 1.71 1.72 1.21 1.71 0.87 1.71 0.83 1.69 
2 3.20 3.20 0.70 3.19 0.65 3.20 0.67 3.38 L 

3 4.22 4.23 0.41 4.22 0.41 4.22 0.41 4.31 

Modal Identification results  

PP EFDD SSI-COV SSI-DATA Mode 

Freq 

(Hz) 

 

Freq 

(Hz) 

 

Damp 

(%) 

Freq 

(Hz) 

Damp 

(%) 

Freq 

(Hz) 

Damp 

(%) 

1 2.83 2.82 0.78 2.84 2.56 2.85 2.34 
2 6.13 6.13 0.67 6.14 1.52 6.13 1.41 
3 9.58 9.58 0.83 9.59 0.88 9.58 0.75 
4 12.56 12.56 0.85 12.58 0.90 12.58 0.82 
5 15.33 15.31 0.95 15.33 0.93 15.34 1.02 
6 17.35 17.35 0.90 17.33 1.14 17.34 0.93 

V 

7 19.57 19.57 0.91 19.56 1.46 19.58 1.44 
T 1 6.42 6.43 0.43 6.42 0.50 6.42 0.55 

1 1.96 1.96 1.60 1.97 1.55 1.96 1.52 
2 3.49 3.49 0.78 3.49 0.74 3.48 0.75 L 

3 5.54 5.54 0.82 5.56 0.85 5.55 0.81 
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1st vertical mode 

  

2nd vertical mode 

  
3rd vertical mode 

  
4th vertical mode 

  

5th vertical mode 

  

(a) Vertical mode shapes 
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The identified modal frequencies and damping ratios before and after rehabilitation are 

listed in Table 4.1 and Table 4.2, where ‘V’, ‘T’ and ‘L’ represent vertical, torsion and lateral 

modes. Before rehabilitation, a finite element model was also constructed and the 

corresponding frequency results are listed in Table 4.1. Comparing the modal results in Table 

1st torsion mode 

  

(b) Torsion mode shape 

1st lateral mode 

  
2nd lateral mode 

  
3rd lateral mode 

  
(c) Lateral mode shapes 

Figure 4.10 Mode shapes calculated by Finite Element analysis (left side) 
and identified by OMA (right side) 
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4.1 and Table 4.2, it is observed that identical modal frequencies are estimated by PP, EFDD, 

SSI-COV and SSI-DATA. With regard to the damping estimation, both SSI-COV and 

SSI-DATA produced similar results which are in reasonable agreement with those produced 

by EFDD method. Before and after rehabilitation, similar modal shapes were also identified 

by the SMI toolkit. Figure 4.10 shows the modal shapes identified by SSI-COV method 

before rehabilitation and those calculated using the structure analysis software Robot 

Millennium (Costa, 2008). 

  

(a) Vertical natural frequencies          (b) Increase of vertical natural frequencies 

 

  (c) Vertical damping ratios 

 Figure 4.11 Comparison of identified vertical frequencies and damping ratios  

  before and after rehabilitation (SSI-COV method)  
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The changes of natural frequencies may reflect the variation of the bridge’s stiffness or 

modification of boundary conditions caused by rehabilitation works. Comparison of vertical 

and lateral modal frequencies obtained by SSI-COV method is shown in Figure 4.11. For the 

vertical modes, it is found that the 1st natural frequency increases from 2.804Hz to 2.920Hz, 

while the 7th modal frequency changes from 15.608Hz to 19.570Hz, which means that higher 

modal frequencies are more sensitive to the structural modification. On the contrary, no clear 

trend is observed by comparing the estimation results of damping ratios before and after 

rehabilitation (Figure 4.11 (c)). The damping ratios in mode 1, 2, 4, 5 and 7 increase after 

rehabilitation while the one of mode 3 decreases. Similar trend is also observed in lateral and 

torsion modes. 

4.3 OMA OF PEDRO E INÊS FOOTBRIDGE 

4.3.1 Description of Pedro e Inês footbridge 

The Pedro e Inês footbridge (Figure 4.12) is located in the centre of the City Park 

developed along the two banks of the river Mondego, at Coimbra, and was inaugurated in 

November 2006. This infrastructure, conceived to become a landmark for the city and to 

contribute to the quality of a new leisure area, was designed by Adão da Fonseca, leading a 

team from Afassociados, in collaboration with Cecil Balmond, leading the architectural team 

from Ove Arup (Afassociados and OveArup).  

The 275m long slender steel footbridge is composed by a 110 m span central parabolic 

arch raising 9.40m above the water level, two lateral parabolic half arches with a span of 64m 

as well as an approaching span of 30.5m on the west bank and a transition span of 6m on the 

east bank (Figure 4.13 (a)). A distinctive feature of the bridge is the anti-symmetrical 

development of both arches and deck cross-sections along the longitudinal axis of the bridge 

(Figures 4.13 (b)). The continuously supported deck has a width of 4m and is formed by a 

L-shaped box cross section whose top flange is a composite steel-concrete slab 0.11m thick 

(Figure 4.13 (c), section B). In the lateral spans, arch and deck generate a rectangular box 

cross-section 4m x 0.90m. (Figure 4.13 (c), section C). In the central part of the bridge, each 

L-shaped box cross-section and corresponding arch “meet” to form a rectangular box 
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cross-section 8m x 0.90m (Figure 4.13 (c), section D), leading to the creation of a central 

square with 8mx8m at mid-span. 

              

(a) Location of Coimbra 

 

 

(c) General view of the Pedro e Inês footbridge 

  

(d) Perspectives of the bridge 

Figure 4.12 Overview of Pedro e Inês footbridge 

   

(b) Coimbra city and Pedro e Inês footbridge 
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Another structural feature is the poor horizontal stiffness provided by the foundations. 

The central arch is supported by two groups of vertical piles with a depth of about 30m. The 

horizontal stiffness provided by these foundations is low due to poor mechanical 

characteristics of soil layers beneath the river bed. Consequently, the arch-effect is expected 

to be reduced, leading to mixed arch/girder behaviour as explained in Figure 4.14 (Dimande 

et al, 2011). The supports provided at the abutments and at the left bank intermediate column 

allow the longitudinal displacement of the deck and block the transversal movements. 

  

u2 u2

V2 V2

V1 V1

H1 H1

v2

Real behaviour

1) Arch

2) Beam with variable inertia

v1

 

 Figure 4.14 Influence of the soil foundation characteristics on bridge structural behaviour 
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(a) Elevation view (dimensions in m) 

 

 
(b) Plan view 
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(c) Cross-sections (dimensions in mm) 

Figure 4.13 Schematic representation of Pedro e Inês footbridge  

section A 

section D 

section B section C 



Application to the Ambient Vibration Testing of Existing Bridges 

121 

 

4.3.2 Ambient vibration tests 

The investigation conducted at design stage showed that this relatively long and slender 

footbridge would be prone to vertical and lateral vibrations induced by the action of 

pedestrians, requiring implementation of a control system based on a set of lateral and vertical 

Tuned Mass Dampers (TMDs) (Caetano et al, 2010). Two ambient vibration tests were 

performed before and after the installation of the control devices and non-structural elements, 

such as the handrails, the glass panels and timber pavements, in order to accurately 

characterize the dynamic behaviour of the footbridge and allow the design of the TMDs. The 

former test was developed in April 2006, before the installation of TMDs and non-structural 

elements. The latter was performed in November 2006, after the complete construction of the 

footbridge, including all installation of the TMDs and non-structural elements. 

The strategy and testing procedure were similar in the two tests. Both of them were 

developed based on the use of four high sensitivity triaxial seismographs, including 

force-balance accelerometers and 18-bit A/D converters, duly synchronized through external 

GPS sensors (Figure 4.15). The 20 sections indicated in Figure 4.16 were instrumented. 

Except for sections 9, 10 and 11, where accelerations were measured at both sides of the deck 

(upstream and downstream), to better characterize torsional effects, vibrations were just 

recorded at the longitudinal axle of the deck. Taking into account the mode shapes predicted 

numerically, three reference points were considered in the ambient vibration test (points 1, 6 

and 8). Three seismographs were permanently placed at these points, while a fourth one was 

used to measure the response of the bridge successively at the remaining measurement points, 

during 16 minutes in each setup, in a total 19 setups. All the acceleration time series were 

acquired using a sampling rate of 100Hz, which was imposed by the anti-aliasing filters of the 

acquisition system. 

The ambient test was developed under normal operational conditions, so it was possible 

to quantify the level of the vibrations motivated by the ambient excitation such as pedestrians 

and wind. Figure 4.17 presents measured vertical and lateral acceleration signals recoded in 

the second ambient vibration test. It is also observed from the graphic that the level of the 
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lateral accelerations is similar to the order of magnitude of vertical accelerations, which may 

reflect the mixed arch/girder behaviour duo to the poor horizontal stiffness in the foundations.  

 

Figure 4.15 Seismograph and external GPS  

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 171a 4a 6a

 

Figure 4.16 Instrumented sections: lateral and top view 

(reference points are indicated in blue) 

 

Figure 4.17 Measured acceleration signals in both vertical and lateral direction 

4.3.3 Operational Modal Analysis at different construction stages 

The original intent of the two ambient vibration tests was to accurately evaluate the 

dynamic properties of the footbridge before and after the implementation of the TMDs, as 

well as the installation of non-structural elements. This section shows the change of modal 

properties between these two stages. 
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During the phase of the preprocessing of experimental data, collected signals were 

de-trended to remove the linear effect and decimated with a factor of 5 to reduce the size 

(sampling frequency was thus converted from 100Hz to 20Hz). 

Table 4.3 Modal parameters identified by EFFD and SSI-DATA methods  

before installation of TMDS and non-structural elements 

 

 

 

 

 

 

 

 

 

The data collected in the ambient vibration test performed in April 2006, before 

installation of TMDs and non-structural elements, was processed using the Enhanced 

Frequency Domain Decomposition (EFDD) technique and the Data Driven Stochastic 

Subspace Identification (SSI-DATA) implemented in the Artemis software. (Magalhães, F. et 

al, 2007) In the application of the EFDD method, the auto and cross spectra were evaluated 

using a frequency resolution of about 0.01Hz. In the application of the SSI-DATA method, the 

data was fitted by stochastic subspace models of order between 2 and 100. Table 4.3 

summarizes the results identified by the applied output-only identification methods, showing 

the average values of the identified natural frequencies and modal damping ratios. The natural 

frequencies estimated by both methods are almost coincident. But, the modal damping ratios 

still present some differences. The first 10 mode shapes identified by the SSI-COV method 

are represented in Figure 4.20, using lateral and top views and comparing with those 

estimated from data collected at the ambient vibration test after the installation of TMDs.  

The data acquired in the second ambient vibration test, conducted in November 2006, 

was treated by SMI toolkit with PP, EFDD, SSI-COV as well as SSI-DATA methods. In the 

application of frequency domain analysis, it was adopted a resolution of about 0.01Hz, an 

Modal Identification results 

EFDD SSI-DATA Mode 

f [Hz] ξ [%] f [Hz] ξ [%] 
1 0.91 0.89 0.91 0.56 

2 1.54 0.73 1.54 0.84 

3 1.88 0.67 1.87 1.06 

4 1.95 0.82 1.94 1.04 

5 2.05 0.62 2.05 0.57 

6 2.54 1.98 2.53 2.26 

7 2.88 1.13 2.86 2.41 

8 3.18 0.90 3.18 1.11 

9 3.36 0.38 3.35 0.28 

10 3.57 0.39 3.57 0.35 
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overlapping of 50% and a Hanning window when calculating the auto and cross spectrum. 

The vertical and lateral global ANPSD (Averaged Normalized Power Spectrum Density) 

spectra and SV (Singular Values) curves, which were produced by averaging the ANPSD or 

SV diagrams from each setup, as shown in Figure 4.18 (a)-(b) and Figure 4.19 (a)-(b). There 

are four singular value curves, because the signals were acquired from 4 different channels in 

each setup, which led to a 4×4 spectrum matrix for singular value decomposition. The time 

domain methods were also employed to identify modal parameters. The stochastic subspace 

model was calculated with the time lag parameter i equal to 40. The data was fitted by 

stochastic subspace models of order between 2 and 100. With criteria 1% for frequencies and 

mode shape correlations, 3% for both damping, the stabilization diagrams are produced by 

both Covariance and Data driven SSI methods, as shown in Figure 4.18 (c)-(d) and Figure 

4.19 (c)-(d). 

 

 

(a) ANPSD                        (b) Averaged SV curves 

 

(c) Stabilization diagram produced by SSI-COV (d) Stabilization diagram produced by SSI-DATA 

Figure 4.18 OMA of vertical test data acquired before installation of TMDs 

and non-structural elements by PP, EFDD, SSI-COV and SSI-DATA methods 
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(a) ANPSD                        (b) Averaged SVD curves 

 

(c) Stabilization diagram produced by SSI-COV (d) Stabilization diagram produced by SSI-DATA 

Figure 4.19 OMA of lateral test data acquired after installation of TMDs 

and non-structural elements by PP, EFDD, SSI-COV and SSI-DATA methods 

Table 4.4 Comparison of modal parameters identified by different methods 

after installation of TMDs and non-structural elements 

 

 

 

 

 

 

 

 

 

The modal results identified by different methods are summarized in Table 4.4. The 

identified frequencies obtained by different methods are almost coincident, while the modal 

damping ratios estimates are a little different from EFDD to SSI methods. Similar modal 

shapes are provided by PP, EFDD and SSI-COV methods. Figure 4.20 shows the 

Modal Identification results 

PP EFDD SSI-COV SSI-DATA 
Mode 

Fre 

(Hz) 

Fre 

(Hz) 

Damp 

(%) 

Fre 

(Hz) 

Damp 

(%) 

Fre 

(Hz) 

Damp 

(%) 

1 0.83 0.83 0.76 0.83 0.41 0.83 0.42 

2 1.39 1.39 0.71 1.39 0.57 1.39 0.56 

3/4 1.80 1.80 1.16 1.81 1.28 1.81 1.09 

5 1.94 1.94 0.93 1.95 1.18 1.95 1.02 

6 2.28 2.29 1.73 2.29 1.45 2.29 1.65 

7 2.69 2.69 0.85 2.69 1.17 2.69 1.09 

8 2.90 2.90 1.37 2.88 2.11 2.88 2.04 

9 3.13 3.12 0.44 3.11 1.70 3.13 2.00 

10 3.26 3.26 1.00 3.25 1.08 3.25 1.27 
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corresponding coupled modal shapes identified by SSI-COV methods, together with those 

achieved before the installation of TMDs. Modal shapes identified before installation of 

TMDs are similar to those after installation of TMDs except for the 3rd and 4th modal shape. It 

seems that after installation of TMDs and non-structural elements those modes combined into 

a new 3rd mode. The peculiar geometry of the bridge marked by assuming in plane view and 

deck cross section led to less intuitive mode shapes, most of them having vertical and lateral 

components simultaneously. 

 

 

 

1st mode 

 

 

2nd mode 

 

 

 

 
3rd /4th mode 

 

 
5th mode 

 

 

6th mode 
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7th mode 

 

 

8th mode 

 

 
9th mode 

 

 
10th mode 

Figure 4.20 Mode shapes identified by OMA of experimental data collected  

before (left side) and after (right side) installation of TMDs and non-structural elements 

The comparison of frequencies of different modes shown in Figure 4.21 (a), (b) reflects 

the slight decrease of frequencies caused by TMDs and additional non structural elements, 

including the handrails, glass panels and the timber pavements. These elements introduce 

essentially additional mass on the footbridge and nearly no extra stiffness, because the 

contribution of the handrails to the overall stiffness of the footbridge was almost negligible 

(Caetano et al, 2010b). 

Figure 4.21 (c) proves the irregular change of estimated damping ratios before and after 

installation of TMDs and additional non-structural elements, which could not reflect the 

change of damping ratios as described in (Caetano et al, 2010b). Possible explanations are the 

following: First, the ambient excitation was too low to activate the TMDs because both 

ambient vibration tests were performed during the construction phase. Secondly, only 

intermittent damping may be introduced by TMDs as consequence of sporadic transient 



Chapter 4 

128 

excessive vibrations. 

  

(a) Natural frequencies               (b) Change of natural frequencies 

 

(c) Damping ratio 

  Figure 4.21 Comparison of identified frequencies and damping ratios 
   before and after installation of TMDs and non-structural elements (SSI-COV method)  

From OMA of case 1 and case 2, it is possible to observe that the natural frequencies are 

sensitive to structural changes, which means that these frequencies can be used as structural 

health indices. However, in practice it is interesting to detect early damage instead of fatal 

damage caused by a loss of structural resistance or modification of mass or boundary 

conditions. Unfortunately, the structural changes caused by early damage are often disturbed 

by changes induced by environmental and operational variations (Sohn, 2007). In next section, 

OMA of a lively footbridge in FEUP campus of Faculty of Engineering will demonstrate that 

the environment factors may mask the subtle change of frequencies caused by early damage. 
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4.4 OMA OF FEUP CAMPUS FOOTBRIDGE 

4.4.1 Description of FEUP campus footbridge 

The bridge, which establishes a link between the main buildings of FEUP and the 

students’ canteen, was designed by ENCIL (ENCIL, 1998). The deck is a very slender 

stress-ribbon concrete slab, continuous over two spans (Figure 4.22). Figure 4.23 presents the 

elevation and cross section of the footbridge. The slab embeds all four prestressing cables and 

takes a catenary shape over the two spans, with a circular curve over the intermediate support, 

which is made of four steel pipes forming an inverted pyramid hinged at the base. The two 

spans 28m and 30m long and the 2m rise from the abutments to the intermediate pier were the 

starting points for the definition of the bridge structural geometry. The constant cross-section 

is approximately rectangular with external design dimensions of 3.80mx0.15m.  

The construction method suggested by the bridge designer comprised the following steps: 

(i) installation and progressive prestressing of all cables to about 750kN each; (ii) hanging of 

1m long precast segments from the cables, starting from the abutments and ending at the 

external limits of the deviating saddle over the intermediate support; (iii) casting of the 

concrete slab, with formwork provided by the precast segments; casting should be made 

continuously in an approximately symmetric fashion with respect to the intermediate support, 

and it should be followed by an injection of the joints between precast segments; (iv) eventual 

modification of final prestressing in all cables, for correction of geometry; (v) injection of all 

prestressing ducts with cement grout. 

One particular feature of this stress-ribbon bridge is that its stability and stiffness are 

determined by the axial forces in the tensioned longitudinal cables, the corresponding 

geometric configuration being defined by the equilibrium conditions of these elements under 

dead loads. The use of slender deck allows low curvatures. It is worth noting, however, that 

low curvatures are associated with high cable forces and on the other hand, small 

modifications of the geometric structural configuration lead to significant changes of axial 

forces. This characteristics have been already demonstrated by the numerical analysis 
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performed simulating all the construction phase (Caetano and Cunha, 2004). 

              

(a) Location of Faculty of Engineering  

of University of Porto (FEUP) 

 

 

(c) Global view of FEUP Campus footbridge 

 

(d) Upper view of the deck 

Figure 4.22 Overview of FEUP campus footbridge 

(b) FEUP campus and the footbridge 
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Figure 4.23 Schematic representation of FEUP campus footbridge 

4.4.2 Ambient vibration tests 

Two previous ambient tests were performed on the 28th March 2003 and the 5th October 

2004 in order to calibrate Finite Element models (Caetano and Cunha, 2004) as well as enable 

coherent comparison of estimates extracted through different identification techniques. 

(Cunha et al, 2005).  

Those ambient vibration tests were based on the use of 4 triaxial seismographs duly 

synchronized by GPS, provided with 18 bit A/D converters (Figure 4.24). Two of them were 

placed at fixed positions 2 and 18 (reference points at 1/3 span), while the other two were 

successively placed at the other measurement points indicated in Figure 4.25 (a). The 

sampling frequency was 100Hz and the time of acquisition was at least 10 minutes in each 

setup. 

On the 3rd October 2009, a new ambient vibration test was performed with purpose of 

calibrating the continuous monitoring system installed in the footbridge and building a 

baseline for long term monitoring (Hu et al, 2010). Another intention was to make a 

comparison with the modal results estimated based on the previous ambient tests, attempting 

to detect possible variation of frequencies that might stem from structural degradation. It was 

developed with six seismographs duly synchronized using GPS sensors. Four of the 

seismographs were used as references and constantly located at one half and one-third of each 

of the two spans for different measurement sequences (points 9, 26, 100, 101), while the other 

two seismographs were placed progressively at the remaining instrumented sections (Figure 
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4.25 (b)). More measurement points were used to increase the spatial resolution, so that the 

higher order modal shapes might be identified smoothly. The sampling frequency was 100Hz 

and the time of acquisition 16 minutes in each setup. A typical vibration signal collected in 

one setup is shown in Figure 4.26. 

 

 

Figure 4.24 Seismograph and external GPS  

 

 

(a) Measurement points in test developed on the 5th October 2004 

 

          

(b) Measurement points in test developed on the 3rd October 2009 

      Figure 4.25 Measurement points in the ambient vibration tests  
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   Figure 4.26 Measured acceleration signal 

4.4.3 Operational Modal Analysis of FEUP campus footbridge 

The data acquired in the three ambient vibration tests was treated with the SSI-COV 

method. The stochastic subspace model was calculated with the time lag parameter i equal to 

50. The data was fitted using stochastic subspace models of order between 2 and 100. Using 

criteria of 1% for frequencies and mode shape correlations, 3% for damping ratios, the 

stabilization diagrams were produced by the Covariance driven SSI method as shown in 

Figure 4.27. Table 4.5 lists the estimates of modal parameters as well as results from a finite 

element analysis calibrated based on experimental results achieved with the ambient vibration 

test performed on the 28th March 2003. It is observed from Table 4.5 that all natural 

frequencies decreased with time, which may stem from some structural degradation or 

environmental effects.  

 

  Figure 4.27 OMA of ambient vibration test data  
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Table 4.5 Comparison of modal parameters identified by SSI-COV  

     based on different ambient vibration test data  

Figure 4.28 compares the frequencies and damping ratios of all modes. It is noted from 

Figure 4.28 (a) that, after 5 years, frequencies of all modes decrease, the frequency of the 1st 

mode decreasing from 0.965Hz to 0.951Hz, while the frequency of the 15th mode reduces 

from 17.213Hz to 16.458Hz. Figure 4.28 (b) provides the frequency changes of all modes. 

The general tendency is that the frequencies of higher modes are more sensitive to structural 

or environmental changes. Irregular change of estimated modal damping ratios is also noticed 

in Figure 4.28 (c).  

Initially, the environmental effects were assumed to be ignored, because both ambient 

vibration tests were performed in nearly the same days of different years (3 Oct 2009 and 5 

Oct 2004). However, combining the previous results with those achieved with continuous 

monitoring system subsequently implemented in the bridge, and described in chapter 5. The 

effects of temperature on the modal properties are clarified, showing that they can clearly 

disturb the variation of natural frequencies induced by structural changes. 

Modal identification results 

03/10/2009 

(SSI-COV) 

05/10/2004 

(SSI-COV) 

28/03/2004 

(SSI-COV) 

FE results 

Mode 

Freq 

(Hz) 

Damp 

(%) 

Freq 

(Hz) 

Damp 

(%) 

Freq 

(Hz) 

Damp 

(%) 
Freq 

1 0.951 1.03 0.965 1.14 0.983 1.28 0.949 

2 1.989 1.09 2.012 1.45 2.084 1.29 1.990 

3 2.034 1.16 2.038 1.48 2.136 2.37 2.143 

4 2.289 2.05 2.342 1.59 2.415 1.77 2.417 

5 3.520 1.87 3.590 2.08 3.746 2.16 3.869 

6 3.965 1.71 4.105 1.87 4.245 2.38 4.381 

7 5.346 1.80 5.412 1.70 5.709 2.20 5.915 

8 6.037 2.03 6.176 2.12 6.530 2.27 6.820 

9 7.500 2.01 7.656 2.00 8.137 2.38 8.227 

10 8.582 2.12 8.730 1.41 9.300 2.41 9.560 

11 10.072 1.89 10.245 2.63 11.059 2.52 12.487 

12 11.624 2.18 11.704 1.08 12.676 2.49 14.908 

13 13.131 2.15 13.488 2.48 14.424 2.69 16.462 

14 14.983 2.08 15.334 1.32 16.451 2.54 18.475 

15 16.458 1.96 17.213 1.68 18.220 2.72 20.337 
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(a) Natural frequencies                 (b) Change of natural frequencies 

 
     (c) Damping ratios 

   Figure 4.28 Comparison of identified frequencies and damping ratios 

   based on ambient vibration tests performed on 03 Oct 2009 and 05 Oct 2004   

In Figure 4.29 (a), the green and blue solid lines represent the 1st natural frequency 

estimates 0.951Hz and 0.965Hz, obtained from the ambient vibration tests performed in 2004 

and 2009. Both temperature data and identified 1st natural frequency values in the period of 

1-7 October 2009 are plotted in black dotted and red solid lines. It is clear that during this 

week, the 1st natural frequency oscillates between 0.931Hz and 1.001Hz mainly due to the 

variation of temperature. This means that, if the ambient test were performed on the 5th Oct 

2009, the identified 1st frequency would be higher than that from the test performed on the 

corresponding day 5years ago. In Figure 4.29 (b), the 1st identified frequency of 0.983Hz, 

obtained from the ambient tests conducted on the 28th March 2003, is still within the range 
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from 0.957Hz to 1.012Hz measured in the last week of March 2010. The 1st frequency is still 

observed to be mainly driven by the variation of environmental temperature.  

 

 

(a) Comparison of 1st natural frequency indentified by two ambient vibration tests  

(2004 and 2009) and continuous dynamic monitoring estimates  

 

(b) Comparison of 1st natural frequency indentified by ambient vibration test  

(2003) and continuous dynamic monitoring estimates  

Figure 4.29 1st natural frequency estimated from ambient vibration tests 

and continuous dynamic monitoring  

It is demonstrated that apart from the structural changes discussed in cases 1 and 2, 

environmental factors may influence the variation of frequencies identified under operational 

conditions and have adverse effects on the implementation of structural health monitoring 

system in terms of modification of frequencies. Therefore, the implementation of continuous 

monitoring system requires collecting the structural response, environmental and operational 

25/03 26/03 27/03 28/03 29/03 30/03 31/03 
Day 

Day 

01/10 02/10 03/10 04/10 05/10 06/10 07/10 
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data over a long enough period of time, covering all possible normal operational conditions, 

with the purpose of analyzing and removing the environmental influences and building a 

baseline for damage detection. 

Figure 4.30 depicts the mode shapes calculated by finite element analysis (Caetano and 

Cunha, 2004) and experimentally identified on the basis of the ambient vibration test 

conducted in 2009. All experimental identified mode shapes are smooth and in good 

agreement with the numerical ones, except for the 2nd and 3rd modes with closely spaced 

frequencies around 2 Hz. It is interesting to note that the first two modes are clearly globe 

modes, the remaining are involving essentially the motions of one of the spans. 

 

1st mode 

 

2nd mode 

 

3rd mode 

 

4th mode 

 

5th mode 

 

6th mode 

 

7th mode 

 

8th mode 

Figure 4.30 Mode shapes calculated by finite element analysis (left side)  

and identified by SSI-COV method (right side) 
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4.5 CONCLUSION 

This chapter presents the operational modal analysis of Pinhão roadway bridge, Pedro e 

Inês footbridge and FEUP campus footbridge under different conditions. It is concluded that 

structural changes, namely related with rehabilitation works or with the installation of 

additional components, can induce variations of natural frequencies that can be accurately 

measured. The general tendency is that higher order frequencies are more sensitive than those 

of lower modes. The modification of frequencies may reflect the structural changes including 

possible variation of stiffness, mass and boundary conditions, which is the theoretical 

principle of vibration-based structural health monitoring. However, comparison of modal 

identification results estimated by ambient vibration tests conducted under different 

environmental conditions reveals that the structural frequencies are also influenced by 

environmental factors, which may mask the subtle change induced by small structural changes. 

As a result, we conclude that the efficiency and success of the implementation of continuous 

dynamic monitoring systems of bridges requires the analysis of the analysis of the long term 

behaviour under operational conditions, with the purpose of investigating and removing the 

environmental effects and build reliable damage indices which are only sensitive to the 

structural change. In this context, next chapter mainly introduces the continuous monitoring 

systems implemented in both Pedro e Inês footbridge and FEUP campus footbridge, 

characterizing the most relevant results achieved with the two applications. 
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5 
CONTINUOUS DYNAMIC MONITORING OF BRIDGES 

 

 

5.1 INTRODUCTION 

In the previous chapter, it was shown that the variations of natural frequencies reflect 

structural changes, which suggests that they may be used to obtain a damage index for 

structural health monitoring. Unfortunately, the variations of natural frequencies are also 

sensitive to environmental and operational factors, such as temperature, traffic loads, wind, 

boundary conditions, etc. Such change caused by environmental and operational factors may 

mask subtle variations induced structural changes (Sohn, 2007). Accordingly, it is important 

to investigate the long term behaviour of bridges under operational conditions and remove the 

environmental and operational effects on modal parameters, with the purpose of extracting 

features only sensitive to structural damage. 

Considerable efforts have been devoted to investigate environmental effects on modal 

variability. A 3-span RC footbridge was tested for a 3-year period and found that about 10% 

seasonal changes were repeatedly observed for each year, which may be partially attributed to 

the variation of ambient temperature (Askegaard and Mossing , 1988). It is proved in (Rücker 

et al, 1995) that the temperature effects on the dynamics of a 7-span highway bridge in Berlin 

can not be neglected. Rohrmann et al (1999) observed that variation of this bridge caused by 

temperature may reach 10% according to three years continuous monitoring. It was also noted 

that when a bridge structure is obstructed from expanding or contracting, the expansion joints 

can be closed significantly modifying the boundary conditions. A dynamic test was conducted 
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on a skewed 3-span box girder bridge and it was found that there was a 4-5% change in the 

natural frequencies during spring and winter time (Wahab and De Roeck, 1997). In (Peteers 

and De Roeck, 2000), the first 3 natural frequencies of Z24 highway bridge was found to vary 

from 14-18% based on one year monitoring results. A bilinear relationship between 

environmental temperature and the first two natural frequencies was observed. It was 

concluded that such bilinear relations are caused by the change of Young’s modulus of 16cm 

thickness asphalt layer with temperature. It was reported in (Farrar et al, 1997) that the first 

natural frequency of a 7-span composite bridge varies approximately 5% during a 24 hours 

time period. It was observed that normal environmental change accounts for variation in the 

first ten modal frequencies from 0.20-1.52% based on one year monitoring of a 1177m long 

cable stayed bridge (Ni et al, 2005). In (Liu and Dewolf, 2007), it was presented that 3 

identified frequencies of a 3-span curved highway bridge suffered changes of 5-6% induced 

by temperature during one full year. Finally, Magalhães et al (2010) reported annual variations 

due to temperature on the first 12 natural frequencies of a concrete arch bridge with a span of 

280 m, Infante D. Henrique Bridge, around 1.5-2.5%. 

Traffic loads may be another important operational variable affecting the dynamic 

properties of in-service structures. The influence of traffic loads on modal parameters of 

bridge structures has been also investigated. It was documented in (Kim et al, 1999) that the 

heavy traffic may account for the 5.4% decrease of natural frequencies of a 46m simply 

supported plate girder bridge, because of the added traffic mass loading. Magalhães et al 

(2010) observed that the traffic intensity induce variations on the natural frequencies of the 

Infante D. Henrique Bridge: traffic jams (stable load) over the bridge lead to a decrease of 

some natural frequencies (about 0.4% for the first mode), the intensity of the circulating 

traffic has impact on the level of the bridge vibrations and this has consequences on the 

natural frequency of the first bending mode (daily variations of about 1%). Regarding 

footbridges, most of traffic loads are due to pedestrians. The dynamic properties of 

footbridges under moving people are still less researched. In (Ellis and Ji, 1994), it was found 

that a person running and jumping on the spot can not change dynamic characteristics of the 

structure and therefore should be treated only as load. However, this investigation was 

conducted using a simply supported beam having a fundamental frequency of 18.68Hz, higher 
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than typical footbridge natural frequencies.  

In addition, wind-induced vibrations may also affect structural modal properties, 

especially for long-span bridges. In (Fujino et al, 2000), the fundamental frequency of a 

suspension bridge was observed to reduce as the wind speed increased. On the other hand, the 

modal damping increased when the wind velocity exceeded a certain level. It was found that 

the maximum difference in the measured natural frequencies under low wind speed conditions 

and under typhoon conditions is 0.51% (Zhou et al, 2005). 

Damping ratios are also reported to be influenced by operational factors. It is 

well-known that the presence of a stationary (standing or sitting) person increases the 

structural damping (Živanović et al, 2005).In (Zhang et al, 2002), the damping ratio was 

observed to be sensitive to the traffic mass, especially when the deck vibration exceeded a 

certain level. It was concluded that the damping ratio increased because the energy dissipation 

capacity in materials and at the joint increased due to higher traffic load. Recently, Magalhães 

(2010) documented that the modal damping ratios of all the modes of Infante D. Henrique 

Bridge increase due to traffic jam (about 50% for the second mode).  

Brief summary of reported examples of environmental and operational variability reveals 

that they have potential adverse effects on vibration-based damage detection methods. Thus, 

the structure must be monitored continuously at least one full cycle of operating conditions in 

order to examine the long term structural behaviour, as well as environmental and operational 

factors, investigate the effects of environmental and operational variability on dynamic 

properties and extract features only sensitive with possible structural damage by removing 

such adverse influences.  

In this context, this chapter mainly presents continuous dynamic monitoring results of 

Pedro e Inês footbridge, in Coimbra, and FEUP campus footbridge, in Porto, investigating the 

effects of environmental and operational factors, such as temperature and pedestrian traffic, 

on the dynamic characteristics of both footbridges. 

Another important objective of the continuous dynamic monitoring of these footbridges 

consists in the evaluation of the footbridge serviceability by examining maximum acceleration 

amplitudes in normal operational conditions. The excessive human induced vibration is 

generally considered as a serviceability problem for footbridges (Živanović et al, 2005). The 
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prime example of such problem may arise from the infamous excessive lateral swaying of the 

new Millennium Bridge in London caused by crowd walking during its opening day on 10 

June 2000 (Dallard et al, 2001). In the case of Pedro e Inês footbridge, it is anticipated at 

design level that it would be vulnerable to vertical and lateral vibrations based on preliminary 

finite element modelling, which was subsequently verified in crowd tests performed after 

construction (Caetano et al, 2010 a,b). As a result, it was decided to install Tuned Mass 

Dampers (TMDs) to control vibrations and a continuous dynamic monitoring system to 

observe the structural response during a period of 5 years after construction, with purpose of 

evaluating the serviceability of this footbridge in operational conditions. Besides, the stress 

ribbon footbridge of FEUP campus was selected as a case study of the European research 

project “Advanced Load Models for Synchronous Pedestrian Excitation and Optimized 

Design Guidelines for Steel Footbridges” (SYNPEX,2008), coordinated by RWTH Aachen. 

One of the tasks of this research was to characterise the corresponding dynamic response due 

to several passages of a single pedestrian and groups and flows of pedestrians, and evaluate 

the level of importance of human induced vibrations, from the human comfort point of view. 

However, the response of the footbridge under normal operational conditions was still 

unknown. Thus, this chapter describes further research on the continuous monitoring of 

maximum acceleration amplitudes of these two footbridges in-service conditions. 

 The chapter is mainly divided into three parts: the first two parts are dedicated to 

introduce the continuous monitoring results and investigate the environmental effects on the 

variation of modal parameters in operational conditions. Each part begins with a brief 

summary of previous results and characteristics of the continuous dynamic monitoring 

systems installed in the footbridges. Subsequently, the long-term monitoring results are 

presented, including the maximum vibration level, distribution of frequency components, 

averaged vibration level, variation of modal parameters, as well as environmental and 

operational variables. Afterwards, the investigation of the environmental effects on modal 

parameters based on continuous monitoring results under operational conditions is performed, 

laying a solid foundation for removal of such adverse effects and detection of possible 

damage, which will be discussed in detail in next chapter. At last, some conclusions of this 

chapter are synthesized. 
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5.2 CONTINUOUS DYNAMIC MONITORING OF PEDRO E INÊS 

FOOTBRIDGE 

5.2.1 Previous research results 

The structural features and basic dynamic properties of Pedro e Inês footbridge have 

been presented in section 4.3. During the design and construction phases, numerical and 

experimental investigations on the dynamic effects induced by pedestrians were conducted 

(Caetano et al, 2010a). Regarding lateral vibrations, the numerical analysis indicated that the 

first lateral mode of vibration was the most critical for the ‘lock-in’ effect of this footbridge. 

During the crowd tests performed before the installation of passive control device, it is 

observed that a maximum lateral acceleration of 1.2m/s2 under the passage of a group of 145 

pedestrian. With regard to vertical vibrations, several modes in the range of 1.5-4 Hz could 

lead to excessive vibrations when excited by the first or second harmonic of pedestrians in a 

crowded situation, or by groups of pedestrians walking, running or jumping on the spot. 

Results obtained during the dynamic tests performed after construction show that relative high 

accelerations in the vertical direction were recorded when groups of pedestrians jumped 

(simulation of vandal excitation). The maximum vertical accelerations were found at the 

middle points of two local arches, corresponding to the positions where accelerometers AV3 

and AV6 were installed (Figure 3). The recorded maximum accelerations were 1.11 m/s2 and 

1.94m/s2, respectively. However, recently released guidelines for design of footbridges, such 

as Service d’Études Techniques des Routes et Autoroutes (SETRA, 2007) and Human 

induced Vibration of Steel Structures (HIVOSS, 2007), recommended that lateral acceleration 

is limited in any case to 0.10m/s2 to avoid the ‘lock-in’ effect, as well as acceleration range 

associated with degree of comfort as shown in Table 5.1. 

It is noted that both vertical maximum accelerations previously monitored fall in the 

range of minimum degree of comfort, whereas the recorded maximum lateral vibration of 

12m/s2 far exceeds 0.1m/s2, which might lead to unaccepted ‘lock-in’ phenomenon. Thus, 

additional Tuned Mass Dampers (TMDs) were installed to constrain possible excessive 
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vibrations induced by pedestrians in operational conditions. 

Table 5.1 Defined comfort classes with acceleration range 

 

 

 

 

Table 5.2 Natural frequencies, modal masses and characteristics of installed TMDs 

* optimal frequency of TMD 

    

    

Figure 5.1 Horizontal TMD installed at the mid-span section 

Figure 5.1 shows the horizontal TMD installed at mid-span. The design properties of 

TMDs are listed in Table 5.2 and  the corresponding positions are shown in Figure 5.3 (a), 

aiming to control the modes 1, 3/4, 6, 8,9 and 10 that contribute to significant dynamic 

response of the footbridge (Caetano et al, 2010a). The corresponding modal shapes calculated 

Degree of Comfort Vertical alimit Lateral alimit 

Maximum <0.5m/s2 <0.1m/s2 

Medium 0.5-1.0m/s2 0.1-0.3m/s2 

Minimum 1.0-2.5m/s2 0.3-0.8m/s2 

Unacceptable discomfort >2.5m/s2 >0.8m/s2 

Frequency (Hz) 
Mode 

no. 0.5p/m2 Measured TMD*  

Modal 

mass (kg) 

MTMD 

(kg) 
KTMD (N/m) 

CTMD 

(Ns/m) 

Location, 

number and 

mass (kg) 

1 0.83 0.83 0.77 202324 14790 349304 21411 Mv, 6x2465 

2 1.42 1.39   170358     

3 1.80 1.81 1.79 773166 2777 352668 2285 Tlt, 2777 

4 1.74 1.81 1.73 921010 2777 329928 2026 Tlt, 2777 

5 1.90 1.95   444273       

6 2.34 2.28 2.27 117751 3376 689670 9591 Tlt, 2x1688 

7 2.68 2.68   637758      

8 2.74 2.89 2.70 445215 7269 2085781 18807 Ttr, 3x2423 

9 3.07 3.11 3.01 120763 2270 813742 7018 Teq 1x2270 

10 3.17 3.25 3.07 72099 2270 846406 9093 Tdt, 1x2270 
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by SOVIA software and estimated by operational modal analysis using SMI toolkit are shown 

in Figure 5.2. 

 

 

(a) 1st mode 

 

 

 

 

                                 (b) 3rd/4th modes 

 

 

(c) 6th mode 

  

 

  (d) 8th mode 

 

 

   (e) 9th mode 

 

 

   (f) 10th modes 

Figure 5.2 Modes selected for control: calculated and identified modal shapes 
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5.2.2 Continuous dynamic monitoring system 

Aiming the permanent characterisation of vibration levels after construction, the bridge 

owner required the implementation of a continuous dynamic monitoring system, which has 

been in operation since June 2007. This system was subsequently enhanced for research 

purposes, in order to include routines for automatic system identification and management of 

the processed results. This effort led to the organization on three modules, one for signal 

acquisition and transmission, a second one for automatic signal processing and modal 

identification, and a third one for results management and visualization (Hu et al, 2008). The 

second and third modules have been implemented in CSMI (Continuous Structural Modal 

Identification) toolkit and presented in Chapter 2. In this section, the module for signal 

acquisition and transmission is briefly introduced (Moutinho et al, 2008). 

The signal acquisition module comprises six uniaxial piezoelectric accelerometers 

PCB-393C (Figure 5.4 (a)) installed in correspondence with the location of the vertical and 

lateral TMDs (Figure 5.3 (a)). Five of the accelerometers measure vertical accelerations (AV1 

to AV3, AV5 and AV6), whereas the last one measures lateral vibrations at mid-span (AT4). 

All the sensors are mounted inside the steel box and are wired to a signal conditioner 

PCB-481A01, then connected to a digital computer that incorporates an analogue to digital 

converter. The acquisition system includes also a UPS system and is located inside one of the 

abutments (Figure 5.4 (b), (c)). An automatic signal acquisition toolkit was implemented in 

LabVIEW environment to record the acceleration signals with a sampling frequency of 100Hz 

and generate data files every 20 minutes. With the purpose of preparing an automatic signal 

processing, three successive setup files acquired in 20 minutes are concatenated to obtain one 

hour response file in order to achieve more stable estimation results of modal parameters.  

The data transmission module is configured to search the latest acceleration and 

temperature files and send them to a computer located at FEUP, about 110km away from 

Coimbra, using an ADSL line via Internet. To reduce the size of signal files and fasten the 

data transmission, the acceleration signals are decimated, reducing the sampling frequency to 

20Hz. 
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(a) Pedro e Inês footbridge: Longitudinal section and top view, deployment of accelerometers  

(AV1-AV3, AT4,AV5-AV6) and sections (S1-S3) instrumented with temperature sensors 

 

                   

Section 1                            Section 2 

 

 

Section 3 

 (b) Location of temperature sensors (T1 to T4, TC and TA) in cross sections 

Figure 5.3 Pedro e Inês footbridge and deployment of TMDs, accelerometers and temperature sensors 

 

  

(a) (b) (c) 

(a) Accelerometers in deck   

(b) Signal conditioner, signal acquisition card, digital computer and UPS  

  (c) General view of acquisition and conditioning system inside the abutment 

Figure 5.4 Components of the continuous dynamic monitoring system  

The signal acquisition and transmission module has been operating from the 1st of June 

2007 to the 30th of May 2010, except for occasional stops due to small technique problems. It 

leads to the accumulation of a huge amount of data that needs to be processed, analysed and 
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interpreted. CSMI toolkit processes these signals automatically and generates the continuous 

monitoring results depicting long term behaviour of footbridge in operational conditions. 

5.2.3 Continuous dynamic monitoring results 

a) Maximum vibration levels and distribution of frequency components 

In order to avoid possible adverse effects of electrical ‘spike’ noise and accurately 

evaluate the maximum vibration levels, they are detected by calculating the averaged 

vibration levels of the absolute envelope in a short interval, instead of picking the peaks of 

recorded acceleration signals directly. A typical vibration signal acquired from one 

accelerometer within 20 minutes is shown in Figure 5.5 (a). The zoomed part around the 

peaks is plotted in Figure 5.5 (b). During 1 second, the absolute envelope values are averaged 

and shown in Figure 5.5 (c), and the peak of acceleration amplitudes from one accelerometer 

are determined by picking the maximum value of the averaged absolute envelope values. 

 

   (a) Typical vertical vibration signal within 20 minutes 

 

(b) Part of envelope around peak          (c) Averaged absolute envelope within 1s 

   Figure 5.5 Typical vibration signal, envelope and averaged absolute envelope 
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The maximum lateral acceleration is determined from AT4 directly, while the maximum 

vertical acceleration is defined by finding the largest maximum acceleration from the 5 

vertical accelerometers. The maximum lateral and vertical accelerations were detected 

automatically from each setup file of 20 minutes by CSMI toolkit. Based on the results from 

each setup within one day, the corresponding maximum daily lateral and vertical accelerations 

were also obtained, enabling the preparation of figures representing the evolution of these 

quantities along each month and each year, as well as the corresponding statistical 

distributions. 

 

    (a) Maximum daily lateral acceleration amplitude in one month 

 

  (b) Maximum daily vertical acceleration amplitude in one month 

            Figure 5.6 Maximum daily vibration amplitude in one month  

Figure 5.6 shows the evolution of the maximum daily vibration amplitude during one 

month in both lateral and vertical directions. It is found that during one month, nearly all 

recorded maximum lateral acceleration amplitudes occurred on Sunday, whereas maximum 

Sunday 

Sunday 
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vertical amplitudes are noted in workdays. This may be explained taking into account the 

different types of pedestrian excitation that tend to induce maximum vibration levels in 

different directions. As reported in (Caetano et al, 2010a,b), lateral vibrations increase with 

the raising number of pedestrians crossing the footbridge. On Sundays, it is reasonable to 

expect that more people use the footbridge, because it links two areas of the city park along 

the river. As a result, with raising number of pedestrians on the footbridge, larger maximum 

lateral vibration levels are then observed. On the contrary, the relatively high vertical 

vibration levels are more associated with running or jumping of pedestrians, which may have 

a more significant contribution during workdays, where a more reduced number of 

pedestrians cross the bridge.    

 

 

(a) Maximum daily lateral acceleration amplitude 

  

 

   (b) Maximum daily vertical acceleration amplitude 

Figure 5.7 Maximum daily vibration amplitude from 1st June 2007 to 31st May 2010 during day light 
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(a) Lateral acceleration amplitude             (b) Vertical acceleration amplitude 

Figure 5.8 Histograms of maximum daily acceleration amplitudes  

from 1st June 2007 to 31st May 2010 during day light 

 

(a) Maximum vertical signals and corresponding lateral signal 

 

   (b) Maximum lateral signal and corresponding vertical signals 

Figure 5.9 Observed maximum acceleration signals 

Figure 5.7 shows plots with the maximum daily lateral and vertical accelerations 

measured during 3 years (from June 2007 to May 2010), whereas the corresponding 

histogram is shown in Figure 5.8. Figure 5.9 shows that the maximum lateral acceleration is 

0.099m/s2, captured at 8:40 AM on the 27th Feb 2010, and the vertical acceleration is 

0.849m/s2, acquired from AV6 at 9:00 AM on the 25th May 2010. The signals recorded in 

other accelerometers are also included in Figure 5.9. Inspection of Figures 5.7 and 5.8, as well 

as comparison with comfort limits recommended by SYNPEX and SETRA guidelines (Table 
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5.1), it is found that all maximum lateral accelerations and nearly all vertical counterparts fall 

in the range of maximum comfort levels. It can be concluded that no serviceability problem is 

observed in this footbridge under normal operational conditions during 3 years, as 

consequence of the implementation of the corresponding passive control devices.  

 

               (a)Spectra of lateral signals               (b) Spectra of vertical spectrums 

 Figure 5.10 Power spectra of signals corresponding to maximum accelerations observed  

from 1st June 2007 to 31st May 2010 during day light 

In order to better characterize the behaviour of this footbridge when maximum vibrations 

are observed, the frequency content of acceleration signals is analyzed, selecting the 

corresponding maximum 20 minutes acceleration. Taking the signals shown in Figure 5.9 (a), 

for example, the 20 minutes acceleration signal from AV5 is picked, because the maximum 

vibration amplitude is observed in this sensor. The power spectra are produced using a 

Hanning window with 2048 points, and 50% overlap, with a resolution of 0.0097Hz 

(20Hz/2048). Figure 5.10 (a) shows that the peaks of power spectra related with maximum are 

around 0.83Hz, which coincides with the prediction from the design phase, indicating that the 

first lateral mode would be critical for the maximum lateral acceleration amplitude. Figure 

5.10 (b) shows that most of the peaks of the spectra relate with maximum vertical vibrations 

are in the range of 2.7-3.2Hz, which means that natural frequencies in this range are excited 

by running or jumping of pedestrians. This is also in agreement with conclusion drawn at 

stages of design and testing. Besides, the finite element analysis indicates that the 8th-10th 

modes contribute to the significant vertical accelerations (Caetano et al, 2010a). Tab 5.2  lists 

the corresponding modal frequencies, which are 2.89Hz, 3.11HZ and 3.25Hz that match with 

the frequency range 2.7-3.2Hz where the maximum vertical vibrations were observed. This 

evidences that in operational conditions the high vertical responses of the footbridge stem 

from contributions of the 8th-10th modes as predicted in design. The suggestion of waterfall 
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plots could further clarify this conclusion. 

 

 

 

(a) Waterfall plot of lateral acceleration signals (linear scale) 

 

(b) Top view of (a) 

 

 

  (c) Waterfall plot of vertical acceleration signals (linear scale) 
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  (d) Top view of (c) 

Figure 5.11 Waterfall plots of acceleration signals in 3 consecutive days 

The waterfall plot is obtained by arranging sequences of power spectral estimates besides 

each other, which allow to depict the frequency contents of the response, identifying different 

intensity periods and allowing the observation of the time variation of natural frequencies. 

Figures 5.11 (a), (c) show the lateral and vertical waterfall plots based on the power spectra 

(linear scale) of acceleration responses acquired in 3 consecutive days. Top views of them are 

shown in Figures 5.11 (b) and (d). Vertical acceleration responses recorded in 20 minutes 

from AV1-AV3 and AV5-AV6 are used to generate every averaged normalized power spectra, 

while each lateral power spectra is produced by the signal from AT4. The power spectra are 

obtained using a Hanning window with 2048 points, and 50% overlap, the frequency 

resolution being 0.0097Hz (20Hz/2048).  

From Figures 5.11 (a) and (b), it is observed that the peaks of the spectra are around 

0.83Hz, which means that the first lateral mode (0.83Hz) is well excited, contributing to the 

significant lateral acceleration response during operational conditions. Figure 5.11 (c) and (d) 

show clear peaks at 1.39Hz, corresponding to the second natural frequency. On the contrary, 

the peaks for frequencies higher than 1.6Hz are not so clearly defined, which may reflect the 

damping introduced by several vertical TMDs tuned for frequencies in the range 1.8-3.4Hz. 

However, the relative high amplitudes of spectra are observed in the range of 2.7-3.2Hz, 

which may reflect the large energy introduced by pedestrian behaviour, such as running or 

jumping. It may further prove that the 8th-10th modes within the range of 2.7-3.2Hz are easily 

excited and contribute to the main vertical response, as indicated in the previous dynamic 
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analysis. Besides, inspection of Figure 11 (c) and (d) show that the peaks around 1.39Hz in 

the afternoon are higher than those in the morning, which may indicate that the pedestrian 

traffic intensity is higher during the afternoon. 

b) Variation of environmental/operational factors and modal parameters 

For in-service structures, the variation of dynamic properties can be the result of 

time-varying environmental conditions. The environmental and operational factors mainly 

consist of the temperature, humidity and wind, as well as traffic loading and ambient loading 

on the structures. In this section, the monitored temperature data during 3 years from 6 

thermal sensors installed on different positions are presented. The pedestrian loading is 

approximately evaluated by hourly averaged acceleration amplitudes and also described. 

Finally, the variation of identified frequencies and modal damping ratios is reported to 

characterize the long term dynamic prosperities of the footbridge. 

Six temperature sensors are installed in different positions of the footbridge (Figure 5.3 

(b)). T1 and T3 are mounted on the north surface of the steel box girder at the arch and at the 

middle of the footbridge, respectively. On the contrary, T2 and T4 are mounted in the south 

surface. TC and TA record the concrete deck internal temperature and ambient temperature. 

Figure 5.12 (a) shows temperature records from 6 thermal sensors during 3 years, sharing 

similar seasonal variations. The maximum and minimum values are 42.6ºC and -0.85 ºC, 

recorded in TA and T2, respectively. However, the different temperature records during both 

summer time and winter time are also perceived, as shown in Figures 5.12 (b) and (c). It is 

observed that during summer time the air and concrete deck temperatures are relatively high, 

while in the winter time higher temperatures are noted from south sensors. It is inferred that 

the difference among the 6 temperature records are caused by the orientation of the footbridge 

and solar angle. Figure 3 displays that the footbridge approximately east-west direction. As a 

result, in most of time of summer period, the sunlight shines the concrete deck where TA and 

TC are mounted, producing relative high temperature records. Whereas, during winter time, 

the sensors installed in south surface are more exposure to the sunlight due to the smaller 

solar angle, resulting in temperature differentials. A clear time lag between the concrete deck 

inner temperature with regard to other records is observed. The possible reason is that it 



Chapter 5 

156 

would take a longer time for the concrete deck to reflect the change of temperature. The 

difference of temperature is found to be correlated with the natural frequencies in different 

relations, which will be discussed in next section. 

 

 

(a) Temperature record in different positions from 1st June 2007 to 31st May 2010 during day light 

 

(b) Temperature in summer time            (c) Temperature in winter time 

Figure 5.12 Temperature record 

Concerning the pedestrian excitation, the hourly averaged lateral acceleration amplitude 

was used in this work to characterise the pedestrian traffic intensity. In (Caetano et al, 2010 

a,b), it is reported that the lateral vibration will increase with the raising number of people 

crossing the bridge. Therefore, it is reasonable to assume that higher lateral vibration levels in 

each hour are mainly a result of more moving people crossing the footbridge. The detailed 

algorithm of evaluation of vibration levels has already been described in Chapter 3. In every 

hour, the absolute values of the envelope of the lateral accelerations measured by AT4 

installed at the mid-span (Figure 5.3), are averaged, as shown in Figure 5.13 (a). It is noticed 

that the lateral vibration levels in the afternoon are higher than those in the morning, which 

agrees with the observation from Figure 5.11 (d) that pedestrian intensity is higher during the 
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afternoon. At noon, the vibration levels are relatively lower, possibly because less people 

cross the footbridge at launch time. Such trend of daily variation of hourly averaged lateral 

accelerations during daylight is further confirmed by overlapping all corresponding plots 

during one month, as shown in Figure 5.13 (b). The larger vibration levels caused by more 

pedestrian are observed in the afternoon, and a clear gap is also found at noon. Plotting all 

hourly averaged accelerations of each day during one month consecutively (Figure 5.13 (c)), 

it is interesting to note that the larger lateral vibration levels are found on Sundays, which 

clearly stems from the higher pedestrian intensity on Sundays in this footbridge linking two 

sectors of the city park. Figure 5.13 (d) plots hourly averaged lateral accelerations during 3 

years, showing that lateral accelerations tend to increase in summer time and decrease in 

winter time, which seems reasonable as less pedestrian use the footbridge during rainy winter.  

 

(a) Hourly lateral averaged acceleration amplitude during one day (daylight) 

 

(b) Monthly lateral averaged acceleration amplitude 

 (overlapping of 31 daylight period) 
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(c) Monthly lateral averaged acceleration amplitude (consecutive period of 31 daylights) 

         

 

  (d) Lateral averaged acceleration amplitude from 1st June 2007 to 31st May 2010 during day light 

Figure 5.13 Hourly lateral averaged acceleration amplitude 

Figures 5.14 (a) and (b) show acceleration signals from the 6 sensors in the hours 

corresponding to the maximum and minimum averaged lateral vibrations observed. The 

assumption that higher lateral vibration levels are mainly a consequence of more people 

moving over the footbridge may be partially validated by selected lateral acceleration signals. 

Figure 5.14 (a) displays relative large lateral accelerations which are probably associated with 

streams of pedestrians, resulting in high lateral vibration level in one hour. It is also 

interesting to refer that the amplitude of lateral acceleration varies frequently in this hour 

while the vertical counterparts are relatively stable, which may indicate the intermittent 

activation of the lateral TMDs. Comparing with the acceleration signals shown in Figure 5.14 

(a), the vibration levels of Figure 5.14 (b) in both vertical and lateral direction are quite small. 

Sunday 

Months 
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Hourly results 

Daily results 
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The reason is that the minimum averaged vertical vibration was recorded at 8:00-9:00 on the 

4th Jan 2008 and very few people use this footbridge in a cold winter morning. 

 
                      Vertical                                 Lateral 

    (a) Signals corresponding to the maximum averaged vertical accelerations 

 
    Vertical                               Lateral 

(b) Signals corresponding to the minimum averaged vertical accelerations  

Figure 5.14 Acceleration signals acquired in the hours corresponding to 

maximum and minimum averaged lateral accelerations observed 

The modal parameters are identified from vibration signals acquired from the 6 

accelerometers using the automatic SSI-COV algorithm, which is implemented in the CSMI 

toolkit, described in Chapter 3. With the purpose of preparing an automatic signal processing, 

three successive setup files acquired in 20 minutes are concatenated to obtain a one hour 

response file and achieve more stable results. A typical stabilization diagram stemming from 

the application of the automatic system identification procedure to continuous monitoring data 

is presented in Figure 5.15. An averaged normalized Power Spectrum Density plot is 

overlapped to reflect frequency domain information. Inspection of Figure 5.15 shows that 

very clear alignments of stable poles can be found in the frequency ranges 0-1.5Hz and 

4-10Hz, leading to very accurate modal estimates. Less clear results are found in the 

frequency range 1.5-4Hz, probably owing to the damping introduced by the several vertical 

TMDs. 
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Figure 5.15 Typical stabilization diagram produced by the 

automatic SSI-COV algorithm using one hour signals 

 

Figure 5.16 (a) shows the identified frequencies of 8 modes in the range 0-10Hz from the 

1st June 2007 to the 31st May 2010. Figure 5.16 (b)-(i) plots the time evolution of frequency 

estimates of each mode individually. In order to clearly depict the general variation trend 

during three years, the hourly frequency results within one day are averaged again to produce 

the daily averaged frequencies. They are also presented as the solid line in red. The variation 

of frequencies is caused by environmental/operational factors, which will be discussed in next 

section.  

 

 
 

(a) All identified frequencies 
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(b) 1st frequency                         (c) 2nd frequency 

 

 

(d) 12th frequency                       (e) 13th frequency 

 

 

(f) 14th frequency                         (g) 15th frequency 

 

 

(h) 16th frequency                         (i) 17th frequency 

Figure 5.16 Identified frequencies from 1st June 2007 to 31st May 2010 during day light 
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Table 5.3 summaries the statistical information of all identified natural frequencies. It is 

observed that the changes of environmental/operational conditions lead to relative variations 

in the frequencies in the range of 2.7%-3.9% in the period of 3 years. 

Table 5.3 Statistics of identified natural frequencies 

 

 

 

 

 

 

 

 

 

(a) 1st modal damping ratio                (b) 2nd modal damping ratio 

 

(c) Histogram of 1st modal damping ratio     (d) Histogram of 2nd modal damping ratio 

Figure 5.17 1st and 2nd modal damping ratio and corresponding histograms 

from 1st June 2007 to 31st May 2010 during day light 

The black dash line in Figures 5.17 (a) and (b) shows the damping ratio of the first 2 

modes of vibration, estimated from signals acquired in one hour from 5 vertical 

accelerometers and 1 lateral. The solid line in red means daily averaged results, clarifying the 
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long term variation tendency. The corresponding histograms of modal damping estimates are 

plotted in Figures 5.17 (c) and (d), respectively. Inspection of Figures 5.17 (a) and (c) shows 

that the first damping ratio estimates distributes are around the 0.30% (averaged damping 

ratio during 3 years), which is even slightly lower than 0.41% estimated from operational 

modal analysis (Table 4.4). This can stem from two reasons. One is that the lateral component 

is dominated in the first mode (Figure 4.20), but only one accelerometer (AT 4) was used to 

acquire lateral signal, which reduce the accuracy in the identification of the modal damping 

ratio. Another reason is that bias errors may also exist in estimated damping ratios when the 

excitation is quite low. It is observed that the 2nd modal damping ratio scatters around 0.64% 

(averaged damping ratio during 3 years) and is close to 0.57% identified by operational modal 

analysis. Although the vertical component dominates in this mode and 5 accelerometers 

record vertical response, the estimated damping ratio under conditions of low excitation may 

be questionable.  

c)Correlation between environmental/operational factors and modal parameters 

According to previous investigation summarised in the introduction (section 5.1), the 

temperature may be the principal factor affecting the variation of natural frequencies under 

operational conditions. Also, it is noted that, for this footbridge, 6 thermal signals recorded in 

different positions along the footbridge have distinct trend of variation. The correlation 

coefficients fitting linear regression models between the 6 temperature records and the 

frequency estimates of different mode orders are listed in Table 5.4. Inspection of each 

column of this table clearly shows that the coefficients between temperature readings from T4 

and frequencies f12-f17 are larger than those from other sensors, which means that the 

temperature record from the south surface at midspan of the footbridge can better reflect a 

significant effect on the change of natural frequencies than other temperature sensors. 

Therefore, the temperature readings from T4 were selected as the most representative to 

investigate the temperature effect.  

Figures 5.18 (a)-(h) display the relation between temperature recorded by T4 and 

identified natural frequencies f1, f12-17. As shown, all natural frequencies decrease with the 

temperature increase. From a statistical viewpoint, the relations between temperature and all 
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natural frequencies can be identified as approximately linear. The linear regression model was 

then developed to represent the natural frequencies as a function of temperature, which can be 

mathematically described as fi=a+bt, where a and b are coefficients to be estimated, t 

representing the samples of temperature and fi being the corresponding natural frequencies. 

The resulting curve fitting is also plotted as the red solid lines in Figure 5.18. It is also noted 

from Table 4 that the correlation coefficient between natural frequencies f2 and temperature is 

quite small. It may be inferred that f2 is less sensitive to temperature effect. Inspection of 

Figure 5.16 (c) shows the variation of f2 during 3 years which is relatively small compared 

with other mode results. 

Table 5.4 Correlation coefficients between the temperature records in different positions 

and identified frequencies 

 

 

 

 

 

 

 

 

 

 

(a) 1st frequency                          (b) 12th frequency   

 

                  (c) 13th frequency                         (d) 14th frequency 

 
 

Frequency f1 f2 f12 f13 f14 f15 f16 f17 

T1 0.70 0.25 0.52 0.66 0.41 0.67 0.49 0.64 

T2 0.65 0.22 0.62 0.73 0.50 0.74 0.62 0.69 

T3 0.73 0.28 0.53 0.68 0.43 0.69 0.50 0.64 

T4 0.69 0.24 0.63 0.75 0.51 0.75 0.62 0.70 

TC 0.68 0.26 0.49 0.62 0.36 0.61 0.41 0.59 

TA 0.72 0.28 0.54 0.67 0.42 0.67 0.48 0.63 

f1=0.843-0.00032t f12=4.856-0.00254t 

f13=6.025-0.00267t f14=6.565-0.00241t 
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(e) 15th frequency                         (f) 16th frequency 

 

(g) 17th frequency 

Figure 5.18 Identified frequencies versus temperature recorded at T4 

 from 1st June 2007 to 31st May 2010 during daylight 

Beyond temperature, pedestrian traffic may also affect the variation of frequency 

estimates. In (Caetano et al, 2010a), it is pointed that during dynamic tests performed before 

installation of TMDs, a slight decrease of the first natural frequency was observed when 

‘lock-in’ phenomenon occurred due to more pedestrians over the footbridge. A possible reason 

for reduction of frequency is also the nonlinear behaviour of the foundations. In (Caetano et al, 

2010b), after installation of TMDs , it is also observed that activation of lateral TMD due to 

high vibration levels also reduce the first natural frequency. Based on the long term 

monitoring results, the correlations between identified frequencies and hourly averaged 

acceleration level were evaluated to reflect the effects of traffic intensity, as shown in Figure 

5.19. The correlation coefficients fitting linear regression model between hourly averaged 

lateral vibration level and frequency of different orders are listed in Table 5.5.  

Table 5.5 Correlation coefficients between the hourly lateral averaged acceleration level  

and identified frequencies 

 
 
 
 
 

Frequency f1 f2 f12 f13 f14 f15 f16 f17 

Lateral vibration level 0.52 0.40 0.14 0.20 0.14 0.26 0.23 0.23 

f15=7.603-0.00355t f16=8.529-0.00327t 

f17=9.599-0.00443t 
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(a) 1st frequency                          (b) 2nd frequency 

 

(c) 12th frequency                        (d) 13th frequency 

 

(e) 14th frequency                        (f) 15th frequency 

 

(g) 16th frequency                       (h) 17th frequency 

Figure 5.19 Identified frequencies versus hourly averaged acceleration amplitude 

   from 1st June 2007 to 31st May 2010 during day light 

It is observed from Figures 5.19 (a) that the frequencies of the first modes decrease 

slightly with increase of hourly vibration level the corresponding correlation coefficients 

being 0.52. This conclusion agrees with the experimental observations in (Caetano et al, 

2010a, b), showing that more pedestrians crossing bridge may lead to reduction of the first 
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two frequencies. On the contrary, no clear relations are observed in the frequencies of higher 

modes (Figures 5.19 (c)-(h)) and the correlation coefficients are quite low. This means that a 

large number of pedestrians would not change the frequencies of high order modes.  

The effect of pedestrian traffic on natural frequency estimates may be identified in a 

more clear way separating the estimates corresponding to two different ranges of vibration 

amplitude, and projecting those two clusters on the plane frequency-temperature .In Figure 

5.20 (a)-(h) one can find pairs of plots, reflecting the influences of lateral vibration response 

and temperature on natural frequency estimates of different orders, respectively. The plots on 

the left-side depict the relation between hourly averaged lateral response and natural 

frequencies, while the graphs on the right side correlate the temperature and the frequency 

results.  

In order to reveal the influence of both pedestrian traffic and temperature, the samples of 

the left-side plots are divided into two individual clusters artificially. One cluster of samples 

(in black), whose hourly averaged lateral accelerations are in the range 0-0.012m/s2, 

represents frequency results under low vibration levels,  while the other cluster (in red) 

characterizes the frequency results identified, with large vibration levels with averaged 

accelerations larger than 0.012m/s2. Selecting the corresponding temperature records of the 

two clusters and plotting them against with frequency results, one obtains the plots on the 

right-side. It is observed from the right side-plot of Figure 5.20 (a) that the samples 

representing high vibration levels (in red) scatter in the low boundary of the correlation plots 

between 1st frequency and temperature, which shows that high vibration levels induced by a 

high numbers of pedestrians lead to reduce the frequency. Such observation coincides with the 

conclusion drawn in (Caetano et al, 2010a). Figure 5.20 (b) also shows that natural frequency 

estimates of the lower boundary of the correlation plot correspond to higher vibration levels. 

However, it is estimated from Figure 20 (c)-(h) that the frequency estimates associated to the 

two clusters have not a distinct representation in the plane frequency-temperature. It may be 

concluded that the higher order frequencies are not sensitive to pedestrian traffic but only 

affected by temperature changing. 
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(a) 1st frequency 

 

(b) 2nd frequency 

 

(c) 12th frequency 

 

(d) 13th frequency 
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(e) 14th frequency 

 

(f) 15th frequency 

 

(g) 16th frequency 

 

(h) 17th frequency 

Figure 5.20 Effects of averaged lateral acceleration amplitude on identified frequencies 
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(a) 1st modal damping ratio                 (b) 2nd modal damping ratio 

Figure 5.21 Identified damping ratio versus hourly averaged acceleration amplitude 

 from 1st June 2007 to 31st May 2010 during day light 

In addition, the possible effects of operational factors on damping ratio estimates are also 

investigated. Figure 5.21 displays the relation between the hourly averaged lateral 

acceleration and the first two modal damping rations. It is shown in Figure 5.21 (a) that no 

clear influence of lateral vibration level on 1st damping ratio is observed. Within the range of 

low vibration levels, the damping ratio varies from 0.1-1%, which indicates the inaccuracy of 

damping ratios estimates with low excitation under operational conditions. It must be noted 

that the lateral component dominates the 1st mode, and that signals from only one lateral 

accelerometer were used to identify the damping ratio. For the 2nd mode, inspection of Figure 

5.21 (b) shows that, in the range of low vibration levels (0-0.012m/s2) relatively large biased 

errors of modal damping ratios are observed.  

5.2.4 Summary 

This section mainly presents the continuous dynamic monitoring system and 3 years 

dynamic monitoring results of Pedro e Inês footbridge, as well as an investigation on the 

effect of the environmental/operational factors on modal parameters estimates. Firstly, the 

potential and reliability of the economical continuous dynamic monitoring system installed is 

proved by the signals acquired along 3 years. From the 1st June 2007 to 31st May 2010, no 

excessive lateral vibrations and very few immoderate vertical responses were recorded. The 

frequency domain analysis of time series indicates that the 1st mode is critical for lateral 

vibration and the modes around 3Hz contribute mainly to vertical accelerations, validating the 

prediction made in the stage of design of TMDs. Hourly averaged lateral acceleration is 

proposed to approximately evaluate the pedestrian traffic intensity. Modal parameters related 
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with 8 modes were automatically identified by CSMI toolkit, and it is observed that the 

natural frequency estimates are sensitive to environmental/operational factor, the maximum 

differences for modes of different orders varying from 2.7%-3.9%. Investigation of 

continuous recorded temperatures shows that variations of these signals are different because 

of the positions of the temperature sensors. As a result, the level of correlation between those 

temperature records and natural frequency estimates is also dissimilar. Correlation analysis 

demonstrates the approximate linear influence of temperature on natural frequencies of 

different modes except the 2nd one. Besides, it is also observed that the frequency of the 1st 

mode is influenced by the pedestrian traffic intensity, which agrees with previous conclusion 

drawn during the dynamic tests performed in the period of design of TMDs. Estimates of the 

first two modal damping ratios are also presented, but it seems the results are questionable 

under level of excitation. 

5.3 CONTINUOUS DYNAMIC MONITORING OF FEUP CAMPUS 

FOOTBRIDGE 

5.3.1 Previous research results 

The characteristics of FEUP campus footbridge were introduced in section 4.4.1. One 

particular feature of this footbridge is that it is a stress-ribbon bridge and its stability and 

stiffness are determined by the axial forces in the tensioned longitudinal cables. Therefore, the 

structural behavior of the footbridge shows a great dependence on the geometric configuration. 

In (Caetano and Cunha, 2004), this characteristic is demonstrated by numerical analysis. 

Comparison of modal parameters estimated by OMA based on two ambient tests was 

presented in section 4.4.3, indicating that resonant frequencies of different modes are subject 

to the effect of temperature, which motivated the installation of a continuous dynamic 

monitoring system for investigation of the long term behaviour of the footbridge. Besides, 

human-induced vibration of this stress-ribbon footbridge was also examined in (Caetano and 

Cunha, 2004, 2005). It is documented that a group of 22 persons jump at 2Hz at a position in 

the vicinity of one-third the larger span produced an oscillation with amplitude of almost 
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6.6m/s2(Figure 5.22), which far exceeds the recommended unacceptable discomfort limit 

2.5m/s2 (Table 5.1, Page 148). Therefore, the maximum vertical acceleration is also monitored 

to evaluate the serviceability of the footbridge under operational conditions. 

    

                (a) Time response                     (b) Fourier Spectrum 

Figure 5.22 Measured maximum vertical acceleration induced by a vandal load 

5.3.2 Continuous dynamic monitoring system 

The continuous dynamic monitoring system comprehends signal acquisition, 

transmission and processing modules. The signal processing modules have been implemented 

in the CSMI (Continuous Structural Modal Identification) toolkit and were described in 

Chapter 3. In this section, the module for signal acquisition and transmission is briefly 

introduced. (Hu et al, 2010).  

The signal acquisition system comprises sensors and data acquisition devices. Each 

sensor unit comprises an accelerometer PCB-393C, a signal conditioner PCB-488A03 and a 

PT100 thermal sensor. Four units are mounted separately on the lower surface of the bridge 

deck at both half and 1/3 of each span (Figures 5.23 (a) and (c), Figure 5.24 (a)). Acceleration 

signal conditioners and thermal sensors are connected via cable with National Instruments 

Ethernet data acquisition (DAQ) devices, which are incorporated in a steel box installed 

beneath the deck at the intermediate support (Figure 5.23 (b), Figure 5.24 (b)). The NI 

Ethernet DAQ unit consists of a NI ENET-9215 data acquisition device transmitting output 

acceleration signals with a sampling frequency of 5kHz under operational conditions and a NI 

ENET-9219 universal input device acquiring temperature information with a sampling 

frequency of 1Hz, both carriers are connect to a Ethernet switch, which transmits acquired 

data into a computer at FEUP library through a power-line bridge. The NI Ethernet DAQ 
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device is driven by a signal acquisition toolkit, which resamples acceleration signals to 50Hz, 

generating nearly a real-time zipped acceleration signal file every 10 minutes and a 

temperature file every 30 minutes continuously. All signal files acquired under operational 

conditions are conveniently accessed via Internet. 

 

 

 

(a) Longitudinal elevation   

 

            

 

 
          

     (b) Transverse elevation                         (c) Cross section 

Figure 5.23 Elevations and cross section of the footbridge, with indication of the components of the 

installed continuous dynamic monitoring system 

        

  
 
 

Figure 5.24 Images of components of the continuous dynamic monitoring system  

The signal acquisition and transmission module has been operating from the 1st of June 

2009 to now, except for occasional stops due to small technical problems. It leads to the 

accumulation of a huge amount of data that needs to be processed, analyzed and interpreted. 

NI Ethernet,  
DAQ devices, 
Power-line bridge, 
Switch 

Accelerometer, 
signal conditioner 
Thermal sensor 

Power supply 

Accelerometers, signal conditioner and 

     thermal sensors at midspan 
Accelerometers, signal conditioner and 

thermal sensors at 1/3 span 

Unit 4 Unit 3 Unit 2 Unit 1 

South North 

(a) Accelerometer installed at the  

bottom surface of the footbridge deck 
(b) NI Ethernet, DAQ devices, 
power-line bridge and switch 
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CSMI toolkit processes these signals automatically and generates the continuous monitoring 

results. To achieve a better estimation of the structural properties, six consecutive signal files 

are concatenated to obtain the response in one hour for processing. 

5.3.3 Continuous dynamic monitoring results 

a) Maximum vibration levels and distribution of frequency components 

The similar procedure for detection of maximum vertical vibration amplitude that has 

been used at Pedro e Inês footbridge is also applied to vertical responses acquired from the 4 

accelerometers. A typical acceleration signal and detected envelope are plotted in Figure 5.25 

(a). The zoom part around a peak is shown in Figure 5.25 (b). Within 1 second, the absolute 

values of the envelope are averaged and plotted in Figure 5.25 (c). The peak of vertical 

response from one accelerometer is approximately determined by picking the maximum value 

of the averaged absolute envelope values. By comparing the maximum vertical levels from 

the 4 accelerometers, the maximum vertical acceleration in one hour is detected. According to 

the results in every hour, the daily maximum vertical acceleration is recorded. 

 
(a) Signal and its envelope           

 

(b) Part of signal and its envelope       (c) Averaged absolute envelope within 1s 
Figure 5.25 Signal from one accelerometer and its envelope 



Continuous Dynamic Monitoring of Bridges 

175 

Figure 5.26 displays the distribution of the maximum daily vertical acceleration in one 

month. The maximum accelerations observed on weekends are much lower than those in 

workdays. It should be noted that this footbridge is located in FEUP campus, linking the main 

buildings and the canteen. The fact that relative few people use the footbridge during the 

weekend results in lower maximum vibration levels.  

 

    Figure 5.26 Maximum daily vertical acceleration in one month 

    
   

Figure 5.27 Maximum vertical acceleration amplitude from 1st June 2009 to 31st May 2010  

Figure 5.27 shows the maximum daily vertical accelerations measured from June 2009 to 

May 2010 and the corresponding histogram is shown in Figure 5.28. Figure 5.29 shows the 

maximum vertical vibration level achieved of 5.7m/s2, captured at 1/3 of larger span at 16:00 

on the 14th October 2009. Comparing the monitored maximum daily vertical accelerations and 

the comfort limits recommended by SYNPEX and SETRA guidelines, it is observed that there 

were 117 days in which the maximum vertical vibration level exceeded the medium degree of 

comfort (1m/s2) within one year. Actually, it is quite easy to feel the vertical vibration when 

Weekend 

Jun/09 Jul Aug Sep Oct Nov Dec Jan/10 Feb Mar Apr May Jun/10 
Months 
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crossing this footbridge under operational conditions. However, the serviceability is still 

acceptable though relatively large vertical vibrations are monitored frequently. As indicated in 

(Caetano and Cunha, 2005) that the maximum vertical accelerations exceeding 2m/s2 are 

induced by vandal loads corresponding to jumping of group of students. 

  

 Figure 5.28 Histogram of Figure 5.27     Figure 5.29 Maximum acceleration signals 

 
Figure 5.30 Power spectra of signals corresponding to maximum observed accelerations  

The frequency domain analysis of time series is also performed in order to better 

characterize the long term dynamic behaviour of this footbridge. Figure 5.30 shows the power 

spectra of the acceleration signals in one hour when the maximum daily vertical vibration is 

observed. The power spectra are calculated using a Hanning window with 4096 points, and 

50% overlap, the frequency resolution being 0.0122Hz (50Hz/4096). It is observed from 

Figure 5.31 that the peaks of spectra fall in the range of 1.9Hz-2.3Hz and most of them 

around 2.0Hz-2.2Hz. It is also recalled that two adjacent natural frequencies around 2Hz, 

associated with the 2nd and 3rd modes, are listed in Table 4.5. The spectra clearly evidence the 

proneness of this footbridge to vibrations induced by pedestrians and the frequencies around 

2Hz are critical for the maximum vertical vibration during operational conditions, which also 

agrees with the conclusion drawn in (Caetano and Cunha, 2004). The shift of peaks of the 
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spectra within 1.9Hz-2.3Hz may result from the temperature effect. For example, In Table 4.5 

the 2nd natural frequency varies from 1.989Hz to 2.084Hz and the 3rd natural frequency 

changes from 2.034Hz to 2.136Hz because of different temperature conditions. 

 

(a) Waterfall plot of acceleration signals (logarithm scale) 

 

 

    (b) Top view of (a) 

Figure 5.31 Waterfall plots of acceleration signals in 3 consecutive days (logarithm scale) 

Waterfall plots are also used to disclose the distribution of frequency contents, identify 

the intensity period and observe the variation of natural frequencies under normal conditions. 

Every ANPSD (averaged normalized power spectral density) of time series is generated based 

on responses from the 4 accelerometers within one hour. The ANPSD is generated using a 

Hanning window with 4096 points and 50% overlap. The frequency resolution is 0.0122Hz 

(50Hz/4096). Figure 5.31 (a) shows the waterfall plot by putting sequences of ANPSD 

estimates in 3 consecutive days besides each other. Top view of it is shown in Figure 5.31 (b). 

Inspection of Figure 5.31 (a) and (b) shows that the peaks of each spectrum are around 2Hz, 
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indicating that two adjacent modes around 2Hz are easily excited, these two modes 

contributing significantly to the acceleration response. Besides, the areas in red and yellow 

around 2 Hz represent high energy, because of large excitation exerted by more pedestrians, 

whereas those in blue and green, in the vicinity of 2Hz, reflect low energy. The intermittent 

observations of these two different areas may indicate the high and the low pedestrian traffic 

intensity. Finally, it is also observed that for the peaks around 0.99Hz, the frequencies at noon 

are lower than those at other time. Similar tendency is even clear for the peaks around 4Hz, 

6Hz and 8Hz. The variation of frequencies suggests the environmental effects as discussed in 

section 4.4. 

b) Variation of environmental/Operational factors and modal parameters 

The same research procedure used in Pedro e Inês footbridge is applied to FEUP campus 

footbridge. Firstly, the variations of ambient temperature and hourly averaged vertical 

accelerations are presented. Subsequently, the variations of frequencies and modal damping 

ratios are described. 

 

 

(a) Temperature record in different positions from 1st June 2009 to 31st May 2010  

 

        (b) Temperature in summer time            (c) Temperature in winter time 

Figure 5.32 Annual variation of temperature 
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Figure 5.32 (a) displays the temperature records from the four sensors installed in 

different positions at the lower surface of the bridge deck, from the 1st of June 2009 to the 31st 

of May 2010. During nearly one year, the highest measured temperature was 45.7℃, while 

the lowest was -1.5 ºC, slightly below the freezing point. Inspection of Figure 5.32 (b) and (c) 

shows that these four temperature series have similar trends in both winter time and summer 

time, because the length of the footbridge is only 61m and all 4 thermal sensors are mounted 

on the low surface of bridge decks. Therefore, averaged temperature of the records from the 

four thermal sensors is used to investigate the environmental effects. 

In order to investigate the effect of pedestrians on the frequencies of the lively 

stress-ribbon footbridge under normal operational conditions, the procedure of evaluation of 

averaged vibration amplitude described in Chapter 3 is applied to continuous monitoring 

signals. Figure 5.33 (a) shows the distribution of averaged acceleration amplitudes from each 

accelerometer in one day. Averaged acceleration amplitudes from the four accelerometers are 

averaged again to approximately evaluate vibration levels in every hour, as shown in Figure 

33 (b). It is observed that the values are much lower at night (from 00.00 to 6.00 and from 

19.00-23.00), and that the averaged vibration amplitude in each accelerometer increases in the 

morning and decreases in the afternoon. The peaks appear around noon since more people 

cross the bridge to commute between the main buildings of FEUP and the canteen, which 

agrees with the observation from the waterfall plot in Figure 5.31. Figure 33 (c) plots the 

averaged acceleration amplitudes in one month. It is clearly observed that consecutive peaks 

are presented in five working days and low vibration levels are exhibited during weekends. 

Figure 33 (d) depicts the annual variation of the averaged vibration amplitude, an operational 

factor that is influenced by the change of the number of peoples crossing the footbridge along 

the academic year. In effect, the very significant reduction of vibration levels during August, 

early period of September and at the end of the year early stems from the occurrence of 

Summer and Christmas holidays periods, in which only very few pedestrians use this campus 

footbridge. Large numbers of pedestrians during the five working days and rare people at 

weekends result in significant fluctuations of vibration levels. Figures 34 (a) and (b) show 

responses corresponding to the maximum and minimum hourly averaged accelerations from 

June 2009 to May 2010. They were captured at 13.00-14.00 on the 16th Nov 2009 and at 
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4.00-5.00 on the 8th Aug 2009, respectively.  

 

 

 

 

     (c) Monthly averaged acceleration amplitudes   

 

 

             (d) Annual averaged acceleration amplitude from 1st June 2009 to 31st May 2010 

 Figure 5.33 Averaged acceleration amplitudes 

Figure 34 (a) reveals that the maximum averaged vibration level results from constant 

high acceleration along one hour caused by relatively stable streams of pedestrian crossing the 

Jun/09 Jul Agu Sep Oct Nov Dec Jan/10 Feb Mar Apr May Jun/10 
Months 

(a)Averaged acceleration amplitudes  

at each accelerometers 

(b)Averaged acceleration amplitudes  

from the 4 accelerometers 
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footbridge during launch time. On the contrary, Figure 34 (b) reflects that the minimum 

response is composed of intermittent micro vibration that may result from frequently gentle 

breeze or passages of cars under the bridge before dawn of quiet summer night.  

 

 

      
    Figure 5.34 Acceleration signals acquired in the hour when 

     maximum and minimum averaged acceleration was observed  

According to Figures 5.33 and 5.34, the vibration levels under normal operational 

conditions are appraised efficiently by hourly averaged acceleration. It is also reasonably 

assumed that the hourly averaged acceleration is correlated with the number of pedestrians 

crossing the footbridge.  

 

 

 

 

 

 

 

Figure 35 Typical stabilization diagram generated  

by the automatic SSI-COV algorithm using one hour signals 

The automatic SSI-COV procedure implemented in CSMI toolkit was applied to the 

continuous monitored signals. Figure 5.35 displays a typical stabilization diagram and 

overlapped ANPSD. It is noticed that the alignments of stable poles around frequencies of 

different modes are clear except for the modes around 2Hz. The probable explanation is that 

noise poles are introduced due to pedestrian pace frequencies of about 2Hz, which further 

results in the difficulty of accurate identification of modal parameters around 2Hz. 

(a)Signals corresponding to the maximum 

averaged vertical accelerations 

(b)Signals corresponding to the minimum 

 averaged vertical accelerations 
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 (a) All identified frequency estimates 

 
 (b) 1st frequency                       (c) 5th and 6th frequencies 

 
          (d) 7th and 8th frequencies                  (e) 9th and 10th frequencies  

Figure 5.36 Identified frequencies from 1st June 2009 to 31st May 2010 

All identified frequency estimates of 12 modes in the range of 0-20Hz from June 2009 to 

May 2010 are shown in Figure 5.36. The variations of frequency estimates of high order 

modes are quite clear. The tendency of increasing in Winter time and decreasing in Summer 

time reflects the seasonal environmental effects. In particular, the analysis of the temperature 

effect on the 1st mode by comparing OMA results from two tests performed in different years 

is clarified in section 4.4. Figures 5.36 (b)-(e) show the annual variation of frequencies of 

lower order modes, revealing that they are also susceptible to environmental effects.  
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Table 5.5 Statistics of the identified natural frequencies 

 

 

 

 

 

 

 

 

Table 5.5 lists the statistical information of all identified frequencies, indicating that the 

annual maximum relative difference of frequency estimates in mode of different orders varies 

from 14.0% to 20.6%. It further proves the dependence of natural frequencies with regard to 

environmental factors under normal operational conditions. 

 
 

 
(a) 1st modal damping ratio estimates   (b) Histogram of 1st modal damping ratio estimates 

Figure 5.37 1st modal damping ratio estimates and corresponding histogram  

from 1st June 2009 to 31st May 2010  

Figure 5.37 (a) and (b) plots the annual variation of the 1st modal damping ratio and 

corresponding histogram. Daily averaged damping ratios are also plotted as red line in Figure 

5.37 (a), in order to clarify the tendency of the annual modal damping ratio estimates.  No 

clear relation between damping ratios and environmental factors is observed from Figure 5.37 

(a) as will be discussed in later. Inspection of Figure 5.37 (b) shows that the long term modal 
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damping ratio estimates vary around 0.94% (annual averaged damping ratio), slightly smaller 

than 1.15% which is the averaged value of damping ratio estimated by 3 modal tests 

performed in different time (Table 4.5, Page 135).  

c)Correlation between environmental/operational factors and modal parameters 

In order to understand the long term behaviour of FEUP campus footbridge under 

changing environmental conditions, the effects of both temperature and vibration level on 

continuous monitoring frequencies were investigated.   

In Figure 38, the relations between averaged concrete temperature values from the four 

thermal sensors and natural frequencies of different modes are analyzed. Generally, the 

frequency decreases when the temperature increases, but there is a ‘turning point’ 

approximately situated around 30°C. Similar nonlinear relations are also observed for the 

other modes. Below 30°C, the bridge stiffness normally increases with decreasing temperature 

in a linear manner. While above 30°C, the identified frequencies of all modes do not change 

and seem stable with increasing temperature. The particular phenomenon may be further 

explained by considering the effect of pedestrian traffic. 

 

 

(a) 1st frequency                          (b) 5th frequency 

 

(c) 6th frequency                          (d) 7th frequency 
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   (e) 8th frequency                          (f) 9th frequency 

 

(g) 10th frequency                          (h) 11th frequency 

 

(i) 12th frequency                          (j) 13th frequency 

 

(k) 14th frequency                          (l) 15th frequency 

Figure 5.38 Identified frequencies versus averaged temperature record 

 from 1st June 2009 to 31st May 2010  
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    (a) 1st frequency vs ambient temperature in one year    

  
 

 
(b) 1st frequency vs averaged acceleration amplitude in one year  

 
 

 

(c) Relation between 1st frequency and temperate as well as 

averaged vibration level from June/2009 to September/2009 

  Figure 5.39 Evolution of the 1st frequency estimates versus 

 temperature and averaged acceleration amplitude during one month 
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Figure 5.39 compares the time evolution of the 1st frequency estimates versus concrete 

temperature and the averaged acceleration amplitude. The subplots (a) and (b) investigate the 

annual variation of these three attributes, while subplot (c) only focuses their local changes 

from June to September in 2009. The black line in Figure 5.39 shows the variation of the 1st 

natural frequency estimates, and the lines in red and blue are overlapped to reflect the 

corresponding changes of temperature and averaged acceleration amplitudes, respectively. 

Figure 5.39 (a) shows that generally the frequency and the temperature change in an opposite 

way. On the contrary, it is noted from Figure 5.39 (b) that no obvious trend between vibration 

level and frequency can be observed over the period of one year. As a result, one conclusion 

may be that from long term monitoring point of view concrete temperature has a stronger 

influence on the annual variation of the structural natural frequencies. Taking that into account, 

as the temperature records during the Summer Holiday (August) are higher, lower values of 

the natural frequencies were expected during this period. However, it is observed in Figure 

5.39 that during the Summer Holiday the lower bound of the frequency results is even higher, 

conflicting with that expectation. Such observation could be further clarified by overlapping 

the three variables and inspecting them in the period of June/2009-September/2009 as shown 

in Figure 5.39 (c). For example, it is noticed that the temperature in August (around 1750 

hours) is higher than in June (around 450 hours), whereas the lower bound of frequencies in 

the former period is obvious higher than in the latter. This may stem from the lower vibration 

levels of the footbridge due to very few pedestrians in Summer holidays. At the same time, it 

is also interesting to refer that the low bound of frequencies in August seems rather stable and 

unchanged with regard to the variation of temperature, comparing with the one in June, July 

and September. However, the high bound that reflects the bridge properties at nighttime, still 

exhibits the tendency of frequencies decrease with increase of temperature, regardless of 

difference of averaged accelerations. This could be further clarified by correlating individual 

monthly results of temperature and identified frequencies.  

Figure 5.40 (a)-(d) present correlation plots using monthly variations of temperature and 

of the 1st frequency estimates. Inspection of these plots shows a clear ‘turning point’ at about 

30ºC. It is also observed that the plots corresponding to June, July and September exhibit 

similar relations, whereas some difference between them and the plot of August is also noted, 
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as the low boundary of the correlation plot of August is higher than the plots of other months. 

To illustrate the difference, Figure 5.40 (e) overlaps the correlation plots of June and August. 

It is obvious that the low boundary of the plot of June is lower than the one of August, which 

argues with the observation reflected by Figure 5.39 and may be partially explained by the 

effect of higher averaged accelerations in June, July and October. 

 
(a) June                                (b) July    

 
(c) August                              (d) September  

 
(e) Comparison of correlation plots of both June and August  

Figure 5.40 Correlation between temperature and the 1st frequency estimates 
using individual monthly results  

All those observations from Figures 5.39 and 5.40 suggest that for this stress-ribbon 

footbridge, vibration level may also affect the change of frequencies beyond temperature. 

Moreover, the nonlinear relation between frequency estimates and temperature exhibits some 
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turning point in temperature at around 30ºC, which probably stems from the geometric 

nonlinear behaviour of this structure. This aspect was not explored in this thesis, but deserves 

further research in the near future. 

 

(a) 1st frequency 

 

(b) 15th frequency 

Figure 5.41 Effect of averaged acceleration amplitude and temperature on identified frequencies 

With intention to further manifest the effect of vibration level, the one year monitoring 

frequency estimates were objectively divided into three clusters, according to the 

corresponding vibration levels. One of them corresponds to the frequency results estimated 

from footbridge responses in one hour when the averaged acceleration amplitude is lower than 

0.002m/s2. The second cluster is a group of frequency results whose corresponding hourly 

averaged acceleration amplitude is larger than 0.1m/s2. The last cluster is formed by the 

remaining frequency results reflecting the medium vibration levels. The correlation plots 

between hourly averaged amplitude and frequency (1st and 15th orders as examples), shown in 

the left side graphs of Figure 5.41, reveal the distribution of frequency results in terms of the 

corresponding vibration levels. The clusters in black, red and blue represent annual frequency 

results with low, medium and high hourly averaged vibration amplitude, respectively. 

Combining with the corresponding temperature records of these three clusters, the correlation 

plots between temperature and frequency (1st and 15th orders as examples) are characterized 

by the right side graphs of Figure 5.41. It is observed that the frequency results with low 
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vibration levels (in black) scatter along the high boundary of the graphs whereas the 

frequency results representing high vibration level distribute in the low bound (in blue), 

suggesting the effects of the hourly averaged accelerations on frequencies. Such observation 

also prove the conclusion drawn from comparison of correlations between temperature and 

the 1st frequency estimates in terms of monthly monitoring results from June 2009 to 

September 2009 (Figure 5.40).  

Finally, it is important to state that, though the raising vibration levels are believed to 

reduce frequencies according to the above analysis, the true reasons are still uncertain. That 

can probably result from the fact that higher values of averaged acceleration amplitudes are 

caused by a larger number of pedestrians, which may not only add mass to the structure, but 

also induce some slight nonlinear behaviour of this stress-ribbon footbridge. 

In order to compare the effects of temperature and vibration levels, the scales of Y axis 

(Frequency) used in Figure 5.42 are considered the same as those used in Figure 5.38. 

Comparison of these two figures indicates that from the long term monitoring point of view 

the effects of vibration level on frequencies are far less obvious than those caused by 

temperature, which coincides with the conclusions drawn from analysis of continuous 

monitoring results of Pedro e Inês footbridge and other cases summarized in section of 

Introduction. 

 

(a) 1st frequency                          (b) 5th frequency 

   

(c) 6th frequency                          (d) 7th frequency 
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(e) 8th frequency                          (f) 9th frequency 

 

(g) 10th frequency                         (h) 11th frequency 

 

(i) 12th frequency                          (j) 13th frequency 

 

(k) 14th frequency                          (l) 15th frequency 

Figure 5.42 Identified frequencies versus hourly averaged acceleration amplitude 

 from 1st June 2009 to 31st May 2010  

Beyond the investigation of the effect of environmental factors on resonant frequencies, 

the relations between vibration levels and the first modal damping ratio estimates were also 

analyzed. Figure 5.43 displays the correlation plots between all hourly averaged accelerations 

in one year. No obvious tendency is observed.  
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Figure 43 Identified 1st modal damping ratio versus hourly averaged acceleration amplitude 

from 1st, June, 2009 to 31st May 2010 

5.3.4 Summary 

In this section, efforts were developed to investigate the continuous dynamic monitoring 

results of FEUP campus footbridge, as well as the effect of environmental factors on dynamic 

properties. Firstly, a compact continuous dynamic monitoring system is described, mainly 

consisting of signal acquisition, transmission and processing modules. The potential and 

efficiency of this system is illustrated by the annual monitoring of vertical accelerations and 

temperature starting on the 1st June 2009. Subsequently, the maximum daily vertical vibration 

levels are presented as a serviceability index for footbridge under normal use. It is found that 

the daily maximum accelerations in 117 days of one year exceed 1 m/s2 (maximum limit for 

medium degree of comfort) and that the maximum vibration level reached 5.7m/s2, indicating 

the bridge is prone to high acceleration levels induced by vandal loads . Frequency domain 

analysis reveals that modes around 2Hz are easily excited, because they tend to coincide with 

the pacing rate of pedestrians. Hourly averaged vertical accelerations are used to 

approximately characterize the response levels of the footbridge and evaluate the traffic 

intensity. The proposed method reflected reasonable daily variations of vibrations and showed 

that the estimated response levels in working days are more significant than those observed in 

weekends or in holidays. In the third part of this section, the annual variation of temperature, 

hourly averaged vertical accelerations and modal parameters are analyzed and estimated with 

intention of depicting the environmental effects on dynamic properties under operational 

conditions. This investigation shows that the identified frequencies of 10 modes are all 

sensitive with variation of temperature, the corresponding estimates presenting an annual 

maximum relative difference oscillating between 14% and 20.6%. Similar nonlinear relations 
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between concrete temperature and frequencies are examined with a clear ‘turning point’ 

situated approximately around 30ºC. Additionally, relatively slight effects of pedestrian loads 

on frequencies are also observed though the degree of influence is less apparent than 

temperature. Conclusion is drawn that, from the continuous monitoring point of view, 

temperature has a primary influence on the variation of frequencies of all modes. 

5.4 CONCLUSION  

In the context of investigation of long term behaviour of bridges and special structures, 

compact and economic continuous dynamic monitoring systems were applied at the Pedro e 

Inês footbridge, in Coimbra, and at FEUP campus footbridge, in Porto. They consist of data 

acquisition and transmission hardware, as well as the CSMI toolkit for the processing of 

collected signals and organization of results. It is demonstrated that such systems can provide 

not only important instantaneous dynamic information about the footbridge, but also serves as 

an effective tool for long term bridge health monitoring.  

Continuous dynamic monitoring results are presented, including accelerations and 

temperature. Regarding the Pedro e Inês footbridge, in Coimbra, the maximum recorded 

vertical and lateral vibration levels are 0.849m/s2 and 0.099m/s2, during 3 years, much less 

than 1.94m/s2 and 1.2/m/s2, which were the corresponding maximum responses observed 

during a crowd test performed before installation of control devices. Those values evidenced 

the efficiency of the TMDs under operational conditions. At FEUP campus footbridge, the 

maximum vertical vibration level reached 5.7m/s2 during one year, certainly induced by 

vandal loads. In addition, in 352 days of one year the recorded maximum daily vertical 

vibration levels are clearly below 2.5m/s2, which means that unacceptable vertical vibrations 

do not frequently occur, according to guidelines, such as of Service d’Études Techniques des 

Routes et Autoroutes (SETRA,2007) and Human induced Vibration of Steel Structures 

(HIVOSS, 2007). Maximum vertical accelerations clearly above the limits are induced by 

vandal loads, as described in (Caetano and Cunha, 2005). 

The frequency domain analysis of time series collected at these two footbridges shows 

that the higher levels of vibration recorded are caused by some resonance related with one or 
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more modes of vibration, as some bridge natural frequencies are close to the dominant 

frequencies of the human-induced excitation. With regard to Pedro e Inês footbridge, in 

Coimbra, the most easily excited vertical frequency range is around 3Hz, which not only 

accords with running or jumping behaviour of pedestrians but also coincides with bridge 

natural frequencies around 3Hz. This observation also confirms the predictions from the 

preliminary design of the control devices. Regarding to FEUP campus footbridge, the 

frequency domain analysis shows that peaks around 2Hz are most frequently observed due to 

the proximity between step frequencies of pedestrians and bridge natural frequencies around 

2Hz. 

Hourly averaged acceleration amplitude was used to evaluate the vibration levels, 

preparing for the correlation analysis with modal parameters estimated from structural 

response collected in one hour. The efficiency of this method is illustrated by reasonable daily 

and seasonal variations of vibration level. Long term variations of temperature information 

are also presented. It is concluded that the temperature records from different positions have 

different tendencies, depending on the orientation of the bridge and solar angle, as well as 

leading to diverse effects on frequencies. 

Modal parameters were identified automatically by application of SSI-COV algorithm 

implemented in the CSMI toolkit. Frequencies of a significant number of modes are estimated 

by hourly accelerations recorded from the Pedro e Inês footbridge in Coimbra and the FEUP 

campus footbridge in Porto. Approximately linear and nonlinear relations between frequencies 

and temperature are observed in these two footbridges. With raising temperature, the 

frequencies of all modes decrease. Temperature is also concluded as the primary 

environmental factor affecting variation of frequencies of different modes. Statistical analysis 

of frequency results shows that the maximum relative difference of frequency estimates of 

Pedro e Inês footbridge oscillates in the range 2.7%-3.9%, far less than 14%-20.6%, which is 

the counterpart of FEUP campus footbridge. 

In addition, vibration levels evaluated by hourly averaged accelerations are also proved 

to affect frequency estimates of the first two modes of Pedro e Inês footbridge and of all 

modes of FEUP campus footbridge. The tendency of reduction of frequency estimates with 

increasing vibration levels is observed in both footbridges. Although the effects of frequencies 
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from vibration levels are promising, the true reason is still uncertain and worth further 

investigation in future. 
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6 
  DAMAGE DETECTION USING 

CONTINUOUS DYNAMIC MONITORING DATA 

 

 

6.1 INTRODUCTION 

Detection of slightly abnormal structural changes under normal operational conditions, 

rather than fatal damage leading to a transient loss of structural resistance, is vital for 

structural health monitoring. In reality, environmental and operational parameters oscillate in 

time, and induce alterations of vibration features. Unfortunately, the changes of features 

caused by environmental and operational parameters may be of an order of magnitude equal 

or even greater than those induced by slight structural damage. If the effects of those 

parameters are not taken into account in the damage detection process, false damage 

diagnoses on the basis of continuous dynamic monitoring data may occur and thus it becomes 

unreliable. Accordingly, it is critical to remove such adverse effects from environmental and 

operational factors and build a reliable healthy indicator which is sensitive to early abnormal 

structural modification (Deraemaeker et al, 2007). 

The several approaches to solve such problem may be generally classified in three types. 

The first one attempts to directly model the environmental and operational influences on the 

dynamic characteristics of the structure. It is a difficult procedure because, on the one hand, 

many environmental and operational factors may be considered, and on the other hand, the 

accurate environmental model is still unknown. To overcome this difficulty, instead of 



Chapter 6 

198 

building the mathematical model, an alternative method consists in identifying it on the basis 

of the ‘input’ (environmental variable) and the ‘output’ (dynamic features). It returns to the 

‘system identification’ problem, as described at the beginning of Chapter 2. The models 

representing accurately the relationship between input and output can be identified. Examples 

of this method are the use of a linear filter for the Alamosa Canyon bridge (Sohn et al, 1999), 

the application of an Auto Regressive model for the Z24 bridge (Peeters and De Roeck, 2001) 

and the implementation of Support Vector Machine for the Ting Kau bridge (Ni et al, 2005). 

In these cases, the authors restricted their investigations to the modelling of the relationship 

between temperature and the first frequency. However, one drawback of this method is that 

the model can not be derived from a physical law and thus the meaning of the models is not 

clear. Moreover, the optimal locations of temperature sensors may be difficult to determine or 

reach (Kullaa, 2001). For example, in (Ni et al, 2005), 20 temperature measurements were 

selected among a set of 83 temperature sensors installed on a cable-stayed bridge. Also, as 

mentioned in Chapter 5, some difference was observed in only 6 thermal sensors mounted in 

the Pedro e Inês footbridge. In order to overcome these drawbacks, a set of methods have 

been proposed to remove the environmental variables without measuring them. For example, 

a linear factor analysis is applied to eliminate environmental and operational effects from the 

healthy system (Kullaa, 2001). A more popular approach is based on Principal Component 

Analysis (PCA). In this method, the measurement of the environmental variables is not 

required because the environmental effects are treated as embedded variables. The underlying 

assumption of this method is that changes in the measurement features due to environmental 

variations are different from those caused by structural damage, and may be accounted for 

using PCA and can be distinguished. Considerable research efforts have been devoted to the 

application of this method. It has been applied to the monitoring data of a composite panel in 

an environmental chamber (Mason, 2002). It is reported in (Yan et al, 2005a, b) that this 

approach was implemented in a scaled laboratory model and further developed the non-linear 

PCA technique to identify the damage in Z24 bridge. This method was implemented in 

(Deraemaeker et al, 2007) to detect the simulated damage on a numerical model of a bridge 

subject to environmental change. In (Girado et al, 2006), a PCA-based method is developed to 

locate the damage of an analytical model of a four story building under varying environmental 
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conditions. Recently, this approach was applied to remove the unknown environmental and 

operational effects after linear regression analysis (Magalhães, 2010). The efficiency and 

robustness of the PCA-based method was verified, with the purpose of removing the 

environmental effects and detect structural damage. However, the applications of this 

technique using continuous dynamic monitoring data are still rare. In reality, it seems that the 

environmental factors have specific effects on different structures. For example, in Chapter 5, 

the linear effects on the frequencies are observed in Pedro e Inês footbridge while a nonlinear 

trend is noticed in FEUP campus footbridge. In this thesis, an effort of implementation of 

PCA-based methodology in the continuous monitoring of these two footbridges is presented. 

This chapter mainly consists of three parts: The first part is dedicated to generally model 

the environmental effects from the point of view of statistical analysis, with intention of 

removing the environmental and operational effects. It should be noted that it is not strictly a 

mathematical model characterizing the relations between environmental variables and 

dynamic features, or a model describing the relations between input and output referred in 

system identification. The general model intends to assist to understand the PCA based 

method for removal of the environmental effects. Subsequently, the theory is introduced. To 

illustrate the complex equations, a geometrical interpretation is also presented in order to 

highlight the essence of this method. In the second part, the proposed methodology is applied 

to the continuous monitoring data of the two footbridges in order to remove the environmental 

and operational effects and detect simulated damage. Finally, some conclusions are 

summarized. 

6.2 GENERAL ENVIRONMENTAL MODEL AND REMOVAL  

OF ENVIRONMENTAL EFFECTS 

6.2.1 General environmental model  

Due to the difficulty of accurately modelling the influence of environmental factors on 

the extracted features, it is expected to remove such influence without measuring 

environmental variables. The basic idea is that changes in the extracted features due to 
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environmental variations are different from those caused by structural damages. The former 

may be accounted for using PCA by identifying the linear subspace where the environmental 

effects exist. Projecting the features in the subspace orthogonal to the identified linear 

subspace allows removing the environmental effects. Moreover, the effect of noise or 

occasional abnormal identification may be mitigated when a large number of samples is 

employed for statistical analysis. A general environmental model proposed in (Deraemaeker et 

al, 2007) is presented to illustrate the underlying physical meaning of PCA-based method. 

It is assumed that all features are collected in a matrix Y   

Y=f (T, L, W…) +g(η)                       (6.1) 

where f (T, L,W…) is a function of the environmental and operational variables (i.e. 

temperature T, traffic intensity L, wind W, ….) as well as η is a variable which is associated 

with structural damages and noise. It is noted that it is difficult to derive the theoretical 

function f directly. However, the general function f can be approximately decomposed into 

two mappings as shown in Figure 6.1.  

 

 

 

 

Figure 6.1 Function f decomposed into a nonlinear mapping M and a linear mapping Λ 

The environmental and operational factors (T, L, W…) are transformed into unobservable 

factors ζ by means of a non-linear mapping M: 

  f (T, L,W…)= Λ(M(T, L,W…))                 (6.2) 

The nonlinear mapping is generally unknown and does not need to be identified. The 

unobservable factors ζ are assumed to be statistically zero-mean independent variables. A 

linear mapping Λ is used between the unobservable factors and the vibration features, then 

equation (6.1) becoming  

Y=Λζ+g(η)                             (6.3) 

In order to identify the linear mapping Λ between the unobservable factors and the 

features, it is necessary to measure the features vector from the healthy structure under 

operational conditions for a full period of time that manifest the environmental effects, for 

T, L, W… Y 

M, nonlinear Λ, linear 

ζ 
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example, continuous monitoring a bridge after construction during a one year period of time, 

whereas the influence of the other factors η is relatively small. It could be expressed as 

residual part ε: 

ε=g(η)«Λζ                              (6.4) 

and equation (6.3) becomes: 

Y=Λζ+ε                               (6.5) 

The relations underlying equation (6.5) can be further illustrated by Figure 6.2. 

 

 

 

 

 

 

 

 

 

 

Figure 6.2 Representation of feature matrix Y  

using a linear mapping of unobservable factors ζ and a residual part ε 

It should be emphasised that the linear mapping Λ can be identified by Principal 

Component Analysis (PCA), only if the number of ζ factors is smaller than the number of 

features. If the number of unobservable factors is equal to the number of features, the new 

mapping Λ is identical to function f and ε=0. In this case, the environmental factors can not be 

removed. Therefore, the restriction of PCA based method is that the dimension of 

unobservable factors ζ must be smaller than the number of features. 

6.2.2 Removal of environmental effects 

Let us consider the matrix NnRY ×∈ , whose column vectors ky  are the identified 

n-order natural frequencies at time tk (k=1,2,…..,N) during a cycle of monitoring time. The 

covariance matrix between feature matrices Y is given by: 

... ζ1 ζ2 ζm 

... y1 y2 yp 

ε1 ε2 ... 

λ11 λ21 

λp1 

λ22 

λ12 
λp2 

λ1m 

λ2m 
λpm 

linear  

mapping Λ 

εp 
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Σ=E[YYT]=E[(Λζ+ε)(Λζ+ε)]                     (6.6) 

where E is the mathematical expectation. It is assumed that unobservable factors ζ have 

zero-mean and its covariance matrix is identity, as well as the residual part is far small as ε«Λζ. 

Equation (6.6) becomes: 

Σ=ΛΛT+Ψ                            (6.7) 

where Ψ is the covariance matrix of residual part ε. On the basis of above equation, it is 

possible to split the covariance matrix of features into the contribution of environment and the 

residual part. 

A singular value decomposition of the covariance matrix of Y is expressed as   

   Σ=USUT                             (6.8) 









=

2

1

0

0

S

S
S , UTU=I                      (6.9) 

where U is an orthonormal matrix ( IUU T = ), whose columns define the principal 

components and form a subspace spanning the data, and S is the singular values matrix 

representing the active energy of the associated principal components. Matrix S can be split in 

two parts: )...,( 22
2

2
11 mdiagS σσσ=  is a diagonal matrix with the square of the first m singular 

values on the diagonal, ranked by decreasing order, and )...,( 22
2

2
12 nmmdiagS σσσ ++= . In 

practice, the elements of S2 are much smaller comparing with elements of S1. However, they 

are not equal to zero due to the influences of noise or the minor nonlinear effects. An indicator 

can be defined as: 

∑∑= ==
n
i i

m
i iI 1

2
1

2 σσ                         (6.10) 

Parameter m is determined as the lowest integer such as I>e (%), where e is a threshold 

value (e.g. 95%). The meaning of this threshold is the following: m unobserved factors 

contribute to e% of the variance in the observed data. In other words, m factors have a strong 

influence on the variation of the vibration features and have to be retained, whereas the other 

factors whose influence may be negligible (e.g., noise). From the point of view of geometry, 

the extracted features of the structure vary mainly along the directions of the m principal 

components associated with the highest energies, that is, the extracted features approximately 
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remain in the hyper-plane defined by the m principal components. For example, in some cases 

temperature may be the only significant environmental and operational factor, which means 

that m is equal to 1 (Yan et al, 2005a).  

Accordingly, matrix U is also split in two parts as: 

U= [U1 U2]                              (6.11) 

where U1 is the first m columns of U.  

This splitting allows to identify the Λ and Ψ 

Λ=U1 1S                               (6.12) 

Ψ= U2S2U2
T                                            (6.13) 

In order to remove the environmental/operational effects, unobservable factors ζ can further 

solved by classical least-square estimator by minimizing 

Y-Λζ                                  (6.14) 

ζ can be estimated as the Moore-Penrose pseudo-inverse of Λ 

ζ~ = (ΛT
Λ)-1
Λ

TY                             (6.15) 

The estimated Λζ  can be given by substituting equation (6.12) into (6.15) 

Λζ~ = Λ (ΛT
Λ)-1
Λ

TY                           (6.16) 

Because of the properties of the SVD (U1
TU1=I), this expression reduces to 

Λζ~ = U1 1S ( 1S TU1
T U1 1S )-1

1S  U1
TY 

=U1U1
TY                                         (6.17) 

According to (6.5), the new feature matrix is given by ε 

ε=Y-Λζ~ =Y-U1U1
TY                          (6.18) 

It corresponds to the dynamic features from which the environmental effects have been 

removed.  

6.2.3 Damage detection 

The Novelty Detection technique can be applied to analyse the residual error ε in order to 

detect possible structural damage. Initially, Novelty Detection is simply to identify from 
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measured data if a machine or structure has deviated from normal condition, that is if the data 

is novel. The concept of Novelty Detection is not entirely new, however, the new terminology 

is justified by the fact that novelty detection provides a unifying framework for techniques 

from a wide range of disciplines involving with condition monitoring, pattern recognition and 

multivariate statistics. (Worden et al, 2000). 

In the procedure of damage detection, Novelty Detection first builds an internal 

representation of system’s normal condition, and then examines subsequent data to observe if 

they significantly depart from the normal condition. It can be summarized as following steps: 

1. The Mahalanobis norm of residual error matrix ε is calculated as Novelty Index (NI): 

   k
T
kk RNI εε 1−=                          (6.19) 

where R is given by equation R=(YYT)/N.  

    2. Once Mahalanobis norm is computed, the control chart (Montgomery, 2005) is used 

to process the calculated NI vector. In statistical analysis, control charts plot some relevant 

index as a function of the samples. The charts have low and upper limits, which are 

computed from those samples, recorded when the process is assumed to be in control. When 

unusual sources of variability are present, sample statistics will deviate from controlled state 

and plot outside the control limits. In (Kullaa, 2003), several univariate and multivariate 

control charts for damage detections are compared. 

To detect possible damage, an X-bar control chart (Yan et al, 2005; Giraldo et al, 2006) 

is constructed by drawing two lines: a centre line (CL) and an additional horizontal line 

corresponding to an upper limit (UCL), which are given by: 

NICL =                               (6.20) 

ασ+= NIUCL                           (6.21) 

where NI and σ are the mean value and the standard deviation of NI in the reference healthy 

state, respectively. In the present application α  is taken as 3, which corresponds to 99.7% 

confidence. 
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Two criteria can be employed as damage warning: (1) outlier analysis, counting for the 

percentage of the NI laying outside the UCL and (2) ratio of NI between healthy and damage 

state. In the healthy state, the new vibration features should stay in the hyperplane spanned by 

the features in reference state, so the percentage of the NI overpassing UCL should be small 

and ratio of 1→NI . On the contrary, with the emergence of damage, the new vibration 

features will depart from the hyper-plane in the reference healthy state, which will cause the 

percentage of outlier to increase significantly and lead to relatively large ratio ofNI (Worden 

et al, 2000; Yan et al, 2005; Giraldo et al, 2006) . 

6.2.4 Geometric interpretation  

In order to better understand the methodology, a simple two-dimensional example is 

presented to help visualizing how the principal components characterize the variation of the 

extracted features when affected by environmental factors, and how this technique can be 

used to distinguish their effects. Similar explanations can be also found in (Yan et al, 2005; 

Giraldo et al, 2006). 

Figure 6.3 shows a geometric interpretation of a two-dimensional case (two features y1 

and y2). The circles (in black) represent the distributions of features y1 and y2 in healthy state. 

A single point Z (a cross in red) is identified in damage state and the corresponding point in 

healthy state is a circle Y (a circle in red). It is assumed that the data is affected by multiple 

environmental factors.  

The application of PCA determines two principal components (PC-I and PC-II) in terms 

of which the data in healthy state disperses. PC-I is associated with the higher singular value 

and is responsible for the great variation of the features and corresponds to the main 

environmental factor, while PC-II represents the effect of other factors. Due to the existence 

of the main environmental factor, the circles vary along the PC-I, whereas other factors make 

these circles slightly vary in other direction. This step of application of PCA corresponds to 

the equations (6.6-6.11). 
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Figure 6.3 Features of the two-dimensional example 

Using equation (6.12), these data in healthy state can be expressed in terms of the 

principal components. The point Y (the circle in red) is taken as an example. Using only the 

first principal component, it is projected into a new space spanned by PC-I resulting in a 

scalar equal to OX1. The point X1 is remapped into the original 2D space and the point Y1 is 

obtained. The corresponding residual error defined by equation (6.18) can be evaluated by the 

length of segment Y1Y in the original 2D space spanned by two features y1 and y2. If the 

damage occurs, the new features depend in a different way on the environmental factors 

comparing with the reference feature. For example, the point Y shifts to point Z. Applying the 

similar projection procedure of point Y according to equations (6.16-6.18) leads to new 

residual error Z1Z. It increases significantly comparing with the Y1Y in healthy state. It is 

pointed out that all points in healthy state would shift to new positions because of the 

structural damage. By comparing their residual errors in both healthy and damage states, the 

environmental effects are approximately eliminated and damage may be detected.  

In this section, the general environmental model is proposed to illustrate the PCA-based 

method of removal of the environmental effect, which also is described. The geometry 

interpretation assists to clarify the several steps of the proposed methodology. After 

eliminating the environmental effects, the statistical indicator is only sensitive with the 

structural change or damage. In the next section, this method will be applied to continuous 

dynamic monitoring results, in order to remove the environmental effects and detect simulated 

damage. 
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PC-II 
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6.3 REMOVAL OF ENVIRONMENTAL EFFECTS AND  

DAMAGE DETECTION  

6.3.1 Application to continuous dynamic monitoring results from Pedro e 

Inês footbridge  

It is recalled that, in section 5.2.3 of Chapter 5, the approximate linear effects of 

environmental and operational factors, on the natural frequencies of Pedro e Inês footbridge are 

observed and frequencies of higher modes (f12-f17) are sensitive to the change of temperature. 

The corresponding maximum relative difference in three years varies from 2.7%-3.9% and may 

mask the subtle changes caused by structural damage. As a result, the frequency estimates of 

f12-f17 are used to constitute the frequency matrix Y, in order to apply PCA to remove 

environmental effects and prepare for damage detection. As Pedro e Inês footbridge is a new 

structure and no obvious structural damage is observed, possible damage was simulated based 

on the modification of the finite element model. As described in Chapter 4, the central arch is 

supported by two groups of vertical piles with a depth of about 30m. The stiffness provided by 

these foundations is low due to poor mechanical characteristics of soil layers beneath the river 

bed. The supports provided at the abutments allow the longitudinal displacement of the deck 

and block the transversal movements. Thus, in the finite element analysis, boundary conditions 

of support of the arch were simulated with spring elements in the horizontal and longitudinal 

directions, and the supports of the left abutment were only modelled with longitudinal spring 

element. Due to the inaccuracy of numerical simulation results associated with frequencies of 

relatively higher modes, for example, f16 and f17 , the features matrix Y was established with 

f12-f15 and corresponding mean frequencies (4.81Hz, 5.97Hz, 6.52Hz and 7.53Hz,respectively).  

In the finite element analysis, the transversal and longitudinal boundary conditions at the 

supports of the arch, as well as at the supports of the left abutment are modelled with spring 

elements. The simulated damage scenarios are created by decreasing their stiffness 5%, 10%, 

15%, 20% and 30% of the original values. The induced changes of calculated frequencies are 

listed in Table 6.1. 
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Table 6.1 Change of calculated natural frequencies caused by simulated damage 

(Percentage of mean identified frequencies) 

The continuous monitoring results during the 1st year (from June 2007 to May 2008) are 

selected as reference and the frequency results f12-f15 in the second year (from June 2008 to May 

2009) are affected with the change of these frequencies caused by simulated damage. 

Calculation of equations (6.6-6.10) using continuous monitoring results leads to the square 

of singular values (157.6, 2.6E-4, 1.9E-4 and 8.3E-5, respectively), demonstrating that the first 

singular value makes I>99.99%, which indicates only one factor, certainly, temperature, having 

a primary effect on the long term frequency results. It agrees with the analysis in section 5.2.3.  

One principal component is considered in the application of equations (6.12-6.21). Novelty 

index NI (grey points) and centre line CL (in different colours) in reference state for different 

damage levels are plotted in Figure 6.4-6.6. The corresponding damage detections based on 

outlier analysis and ratio of NI  are characterised in Table 6.2-6.4. The upper limit (UCL) is 

defined with CL and σ of the reference state on the basis of equation (6.21). 

Natural frequencies f12 f13 f14 f15 

5% 0.000 0.012 0.003 0.080 

10% 0.000 0.024 0.006 0.192 

15% 0.000 0.037 0.011 0.347 

20% 0.000 0.051 0.017 0.592 

Decrease of longitudinal stiffness 

(arch) 

30% 0.000 0.083 0.034 1.056 

5% 0.002 0.027 0.002 0.075 

10% 0.002 0.068 0.005 0.249 

15% 0.002 0.137 0.013 0.461 

20% 0.004 0.269 0.025 0.640 

Decrease of  

transversal stiffness 

(arch) 

30% 0.006 1.618 0.029 0.844 

5% 0.031 0.000 0.003 0.025 

10% 0.076 0.002 0.006 0.055 

15% 0.120 0.003 0.011 0.090 

20% 0.166 0.003 0.015 0.130 

Decrease of longitudinal stiffness 

(abutment) 

30% 0.269 0.007 0.025 0.236 
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Figure 6.4 Detection of simulated damage by decreasing the stiffness of  

longitudinal spring element of support of the arch  

 

Table 6.2 Outlier analysis and ratio of mean of NI of different damage scenarios  

shown in Figure 6.4 

 

 

Figure 6.5 Detection of simulated damage by decreasing the stiffness of  

   transversal spring element of support of the arch  

 

 

Damage Ref 5% 10% 15% 20% 30% 

Outlier analysis 1.8% 1.8% 2.2% 3.6% 13.4% 88.9% 

Ratio of NI  1 1.05 1.21 1.62 2.35 4.17 

Ref 5% 10% 15% 20% 30% 

Ref 5% 10% 15% 20% 30% 
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Table 6.3 Outlier analysis and ratio of mean of NI of different damage scenarios  

shown in Figure 6.5 

 

 

Figure 6.6 Detection of simulated damage by decreasing the stiffness of spring element in 

supports of left abutment 

 

Table 6.4 Outlier analysis and ratio of mean of NI of different damage scenarios  

shown in Figure 6.6 

Regarding the simulated damage in the longitudinal and transversal springs of support of 

the arch, it is shown in Table 6.2-6.3 that, with the increasing reduction from 5% to 30% of 

original stiffness of the spring elements in different positions, the ratios of NI  increase from 

1.05 to 4.17 and from 1.09 to 6.74, as well as the outlier analysis presents similar trends. In 

Damage Ref 5% 10% 15% 20% 30% 

Outlier analysis 1.8% 1.9% 1.9% 3.4% 9.2% 99.9% 

Ratio of NI  1 1.09 1.30 1.78 2.24 6.74 

Damage Ref 5% 10% 15% 20% 30% 

Outlier analysis 1.8% 1.8% 1.8% 1.9% 2.0% 2.4% 

Ratio of NI  1 1.04 1.03 1.04 1.09 1.27 

Ref 5% 10% 15% 20% 30% 
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Figures 6.4-6.5, the CL lines also deviate clearly from the reference state. So, the simulated 

damages in different levels are efficiency detected by the PCA-based method. 

On the contrary, regarding the longitudinal spring on the abutment, there is only a slightly 

difference in the ratio of NI  and outlier analysis, as well as a not significant departure of the 

CL for the increasing damage degrees, as shown in Table 6.4 and Figure 6.6. The possible 

reason may be that only frequencies of higher modes are sensitive to the change of longitudinal 

spring elements on the abutment, but these frequency results were not included in the present 

investigation of damage detection. Inspection of Table 6.1 also shows that in the situation of 

reduction of spring stiffness from 5% to 30% of original stiffness of the spring elements, the 

induced maximum variation of the frequencies is only 0.269%, which is far less than the 

counterpart of other damage scenarios with respect to the reduction of spring elements in arch 

support. 

The application of PCA-based method to 3 years monitoring frequency results leads to 

the Novelty Index (NI) and centre line (CL) for each year shown in Figure 6.7. It is noted that no 

clear long term variation of Novelty Index are observed and thus the environmental effects are 

removed. The healthy indicator CL is nearly at the same level during the three years and the 

outlier analysis evidences a similar trend, as listed in Table 6.5. It may be inferred that from 

June 2007 to May 2010 no obvious damage is observed and the footbridge continues in a 

healthy condition. 

 

 

Figure 6.7 Calculated Novelty Index and center lines using 3-years frequency results 

 

Samples 

June/07-May/08 June/08-May/09 June/09-May/10 
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Table 6.5 Outlier analysis and ratio of mean of NI of different years  

 

 

 

 

6.3.2 Application to continuous dynamic monitoring results from FEUP 

campus footbridge  

In (Hu et al, 2011), continuous monitoring data from June 2009 to March 2011 are 

reported. The environmental and operational nonlinear effects on natural frequencies of 

different model orders are similar to those observed in Chapter 5. The corresponding maximum 

relative difference in nearly two years varies from 15.3%-21.4% and certainly mask the early 

changes caused by structural damage.  

Although temperature and pedestrian traffic affect the natural frequencies in a nonlinear 

manner, the strong linear relations between frequencies of different modes are observed, as 

proved by the large correlation coefficients listed in Table 6.6 (the correlation coefficients 

matrix is symmetrical and only the upper parts are retained). Beyond the large correlation 

coefficients, the correlation plots between frequencies of different modes also demonstrate the 

strong linear relations. For example, Figure 6.8 displays the correlation plot between the 

normalized 1st natural frequency estimates and the 5th, as well as 15th natural frequency 

estimates, respectively. Therefore, it may be concluded that although the nonlinear 

environmental and operational effects on all frequency results are observed, the linear subspace 

Λ representing environmental and operational variables (independent variables) exists and can 

still be identified by linear PCA, as well as such effects can be also removed by projecting the 

vibration features into the space of the independent variables. 

A three dimensional finite element model of FEUP Campus footbridge was developed 

and conveniently calibrated on the basis of modal identification tests with the purpose of 

investigating the dynamic behaviour of this bridge under the crossing of groups and flows of 

pedestrians, as well as of vandal loads (Caetano et al, 2005). In the current research, this finite 

Damage June/07-May/08 June/08-May/09 June/09-May/10 

Outlier analysis 1.8% 1.9% 1.9% 

Ratio of NI  1 1.03 1.03 
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element model is used to simulate the possible occurrence of structural damage. 

 Table 6.6 Correlation coefficients between the frequency estimates of different modes 

 

              

(a) The 1st versus 5th frequency                (b) The 1st versus 15th frequency  

   Figure 6.8 Linear relations between the 1st natural frequency estimates and 

    the 5th and the 15th natural frequency estimates 

On the basis of the structural features introduced in section 4.4.1, two series of parallel 

truss elements at a distance of 3.80m are used to idealize the four cables, with an initial tension 

of about 2000kN and clamped in both abutments. Beam and shell elements with a length of 

0.99m alternate with beam and shell elements 0.01m long, the former simulating the concrete 

deck and the latter representing the joints between precast elements. 

 f1 f5 f6 f7 f8 f9 f10 f11 f12 f13 f14 f15 

f1 1.00 0.93 0.95 0.90 0.94 0.92 0.94 0.93 0.95 0.93 0.96 0.93 

f5 / 1.00 0.92 0.85 0.90 0.91 0.91 0.92 0.93 0.93 0.93 0.93 

f6 / / 1.00 0.84 0.92 0.91 0.93 0.92 0.94 0.93 0.94 0.92 

f7 / / / 1.00 0.85 0.84 0.84 0.85 0.86 0.86 0.85 0.85 

f8 / / / / 1.00 0.90 0.92 0.91 0.94 0.91 0.94 0.91 

f9 / / / / / 1.00 0.91 0.92 0.92 0.93 0.93 0.93 

f10 / / / / / / 1.00 0.92 0.95 0.93 0.95 0.92 

f11 / / / / / / / 1.00 0.93 0.94 0.93 0.94 

f12 / / / / / / / / 1.00 0.94 0.96 0.94 

f13 / / / / / / / / / 1.00 0.95 0.95 

f14 / / / / / / / / / / 1.00 0.94 

f15 / /  / / / / / / / / 1.00 
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Possible damage scenarios are simulated by replacing the clamped boundary conditions 

with spring elements. In order to represent different levels of damage, the corresponding 

stiffness constants are defined as K1= 1E13 kN·m/rad, K2= 1E10 kN·m/rad and K3= 1E7 

kN·m/rad. The induced changes of percentage of the corresponding mean frequencies are listed 

in Table 6.7. The continuous monitoring results during the 1st year (from June 2009 to March 

2010) are selected as reference and the frequency estimated in the second year (from June 2010 

to March 2011) are loaded with the change of these frequencies caused by simulated damage. 

  Table 6.7 Change of calculated natural frequencies caused by simulated damage 

   (Percentage of mean identified frequencies) 

 

 

 

 

 

 

 

 

 

 

Equations (6.6-6.10) lead to squares of the singular values as: 1264.290, 0.031, 0.020, 

0.014, 0.011, 0.010, 0.009, 0.006, 0.005, 0.002, 0.001 and 0.0007. This suggests that the 

variations of frequency estimates can be explained just by one environmental factor. As 

indicated in section 5.3.3 of Chapter 5, from the point of view of continuous monitoring, 

ambient temperature may be the primary influence source though the relatively weak effects 

from pedestrian traffic are also noted. However, in the current analysis the first two principal 

components are retained with attempt to efficiently remove the effects of both temperature 

and pedestrian traffic.  

Figure 6.9 shows the Novelty index NI (grey points) and centre line CL of reference state 

(in red) and three different damage scenarios (in blue, purple and black, respectively). 

Obvious deviation of CL comparing with the reference state is noted when releasing the 

Mode K1 K2 K3 

1 1.60 5.6 12.5 

5 0.07 5.0 9.8 

6 3.13 6.1 10.1 

7 0.06 5.2 9.2 

8 3.35 6.2 9.3 

9 0.06 5.1 8.3 

10 3.42 6.0 8.4 

11 0.07 5.0 7.7 

12 3.47 5.8 7.8 

13 0.06 4.1 6.3 

14 2.25 2.6 3.1 

15 0.04 1.9 3.5 
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rotation with decreasing stiffness constants of spring elements at both abutments. It is shown 

in Table 6.8 that the corresponding ratios of NI  increase from 1.39 to 3.31 and the outlier 

analysis presents similar trend. It means that such damage can be clearly detected. 

 

 

 Figure 6.9 Detection of simulated damage by decreasing the stiffness of spring element in abutment 

Table 6.8 Outlier analysis and ratio of mean of NI of different damage scenarios shown in Figure 6.10 

 

 

 

 

 

 

 

Figure 6.10 Calculated Novelty Index and centre lines using nearly two years frequency estimates 
   

Damage Ref K1 K2 K3 

Outlier analysis  1.1%  2.1%  7.1%  9.2% 

Ratio of NI  1.00 1.39 1.93 3.31 

Samples 
Ref K1 K2 K3 

June/09-March/10 June/10-March/11 
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Table 6.9 Outlier analysis and ratio of mean of NI of different years 

 

 

 

 

Figure 6.10 shows the Novelty Index (NI) and centre line (CL) for each year calculated 

on the basis of frequency estimates in nearly two years. The environmental and operational 

effects are efficiently removed because no obvious variations of NI are noted. It is observed 

from Table 6.9 that the healthy indicators CL in two years are at the same level and the outlier 

analysis evidences a similar trend. It may be concluded that from June 2010 to March 2011 

there is not obvious structural changes, comparing with the reference state from June 2009 to 

March 2010.  

6.4 CONCLUSION 

This chapter is focused on investigations for detection of simulated structural damage, on 

the basis of continuous dynamic monitoring data of two lively footbridges under operational 

conditions. It begins with the introduction of PCA-based methodology. The general 

environmental model and geometry interpretation assist to help clarifying the theory of this 

proposed method.  

In Chapter 5, correlation analysis between natural frequencies and temperature, as well 

as vibration levels, reveals that from the point of view of long term monitoring, temperature 

has a primary effect on the variations of frequencies, in a linear manner for Pedro e Inês 

footbridge whereas nonlinear manner for FEUP campus footbridge. Due to the linear influence 

of environmental and operational factors regarding the Pedro e Inês footbridge, linear PCA 

naturally is used to remove such adverse effects and simulated damage is successfully detected 

according to 3 years monitoring results. Moreover, although nonlinear effects of those factors 

are observed in the long term monitoring results of FEUP campus footbridge, the linear 

relations between frequencies of different orders indicate the possibility of application of linear 

Damage June/09-March/10 June/10-May/11 

Outlier analysis 1.1% 1.2% 

Ratio of NI  1 1.01 
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PCA. Such feasibility is validated by the efficiency of removal of environmental effects and 

detection of simulated damage using nearly two years monitoring results. 
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7 
  CONCLUSIONS AND FUTURE WORKS 

 

 

7.1 CONCLUSIONS 

This thesis is focused on the following main points: 

• development of LabVIEW based toolkits for OMA and automated OMA;  

• implementation of continuous dynamic monitoring systems;  

• investigation on a PCA-based damage detection procedure and its application on two 

existing lively footbridges in Portugal, with the purpose of establishing a 

vibration-based SHM system for footbridges, capable of not only providing accurate 

information regarding the long term dynamic behaviour, but also evaluating the 

current health state of the footbridges under operational conditions.  

The main conclusions of this research can be summarized as: 

(i) Based on PCB vibration measurement equipments and National Instruments data 

acquisition and transmission hardware, economical and compact continuous dynamic 

monitoring systems were implemented in two footbridges and have been operating efficiently 

for a relatively long period of time. The nearly real-time acceleration signals and ambient 

temperature information are continuously collected by accelerometers and thermal sensors 

respectively, and are automatically transmitted through Internet from the bridges to FEUP in 

Porto, preparing for further processing and analysis; 

(ii) Nearly all frontier output-only modal identification methods are summarized. The 

corresponding theoretical basis is clarified by application to the experimental data from an 
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ambient vibration test of a metallic frame performed in the laboratory. A toolkit for ambient 

vibration testing is developed by implementing PP, EFDD, SSI-COV and SSI-DATA methods 

and is applied to OMA of different bridges. By balancing the efficiency and accuracy of 

different approaches, a toolkit mainly dedicated to automated OMA is further implemented on 

the basis of SSI-COV method by interpreting the stabilization diagrams excluding user 

interactions. Combining with other functions, such as detection of maximum vibration level, 

evaluation of averaged vibration level and production of waterfall plot, this toolkit becomes 

an automatic signal processing sub-toolkit that is a core part in vibration-based SHM systems; 

(iii) By comparing the frequencies results estimated by OMA of ambient vibration test 

data of Pinhão bridge before and after rehabilitation, as well as of Pedro e Inês footbridge 

before and after installation of TMDs, it is concluded that natural frequencies are efficient 

features reflecting structural modifications. However, the significant environmental effects 

under operational conditions are also observed by OMA of experimental data of FEUP 

campus footbridge; 

(iv) The serviceability of two footbridges under operational conditions was assessed on 

the basis of the continuous monitoring data. Regarding the Pedro e Inês footbridge, in 

Coimbra, the maximum recorded vertical and lateral vibration levels are 0.849m/s2 and 

0.099m/s2 during 3 years. Comparing with the different comfort limits recommended by 

HIVOSS and SETRA guidelines, it is found that all maximum lateral and nearly all vertical 

acceleration fall in the range of the medium comfort acceleration limits. It can be concluded 

that no serviceability problem is observed in this footbridge under normal operational 

conditions during these 3 years, as consequence of implementation of the corresponding 

control devices. For FEUP campus footbridge, the maximum vertical vibration level reached 

5.7m/s2 during one year, certainly induced by vandal loads. In addition, in 352 days of one 

year the recorded maximum daily vertical vibration levels are clearly below 2.5m/s2, which 

mean that unacceptable vertical vibrations do not frequently occur. 

(v) The frequency domain analysis of time series collected at these two footbridges 

shows that the higher levels of vibration recorded are associated to some resonance related 

with one or more modes of vibration, as some bridge natural frequencies are close to the 

dominant frequencies of the human-induced excitation. With regard to Pedro e Inês footbridge, 
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in Coimbra, the main vertical bridge responses are dominated by frequencies at around 3Hz, 

which not only accords with running or jumping behaviour of pedestrians but also coincides 

with bridge natural frequencies around 3Hz. While for FEUP campus footbridge the recorded 

daily maximum vertical vibration signals are mainly dominated by frequency components 

around 2Hz due to the proximity between step frequencies of walking pedestrians and bridge 

natural frequencies around 2 Hz. 

(vi) Modal parameters are continuously identified automatically by SSI-COV algorithm. 

Frequencies of a significant number of modes are estimated based on hourly acceleration 

records from the Pedro e Inês and the FEUP campus footbridges. Statistical analysis of 

frequency results shows that the maximum relative difference of frequency estimates of Pedro 

e Inês footbridge varies from 2.7% to 3.9%, far less than the variation of 14%-20.6% of FEUP 

campus footbridge, meaning that the influence of temperature on modal frequencies is much 

more relevant in this case. Approximately linear and nonlinear relations between modal 

frequencies and temperature are observed in these two footbridges. Temperature is also 

identified as the primary environmental factor affecting variation of frequencies of different 

modes, though the resonant frequencies of the first two modes of Pedro e Inês footbridge and 

those of all modes of FEUP campus footbridge are also influenced by the vibration levels; 

(vii) An attempt to remove the influences of environmental and operational factors on 

natural frequency estimates was performed by applying linear PCA and novelty analysis on the 

residual errors to build a statistical damage indicator for long term structural health monitoring. 

In the application of Pedro e Inês footbridge, the linear environmental and operational effects 

are efficiently removed by PCA and simulated progressive damages are successfully detected. 

Regarding FEUP campus footbridge, PCA-based approach is still effective to remove the 

observed nonlinear influences of environmental and operational factors due to the high linear 

relations between frequencies of different orders. Such feasibility is validated by the efficiency 

of removal of environmental effects and detection of simulated damages using monitoring 

results in nearly two years. 
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7.2 FUTURE WORKS 

The final purpose of vibration-based SHM is to build a robust, automatic and generally 

applicable system in order to determine the system health condition and quantify the extent of 

damage. In the sequence of the present research, the following aspects can be further 

explored: 

(i) A more complete continuous dynamic monitoring system can be developed by 

integrating more data acquisition hardware in order to provide more complete information 

regarding the structural response and environmental factors. For example, wind speed 

measurements are needed in order to investigate the influence of wind on structural dynamic 

properties. A video camera system can be used to quantify the relation between pedestrian 

traffic and the structural response under operational conditions. The monitoring of dynamic 

strain in critical cross sections can be also useful for fatigue assessment. 

(ii) An innovative frequency domain modal identification algorithm, p-LSCF, can be 

implemented in the toolkits for ambient vibration testing and automated OMA considering its 

better performance in the identification of modal damping ratios. The estimation results can 

be tested by the continuous dynamic monitoring data from the two footbridges analysed and 

compared with those from SSI-COV methods in time domain. Furthermore, it has been 

demonstrated that the automatic identification of modal properties has to be complemented 

with algorithms for extraction of the influence of environmental variables, like temperature, 

and operational factors, like the traffic intensity, so that changes of modal parameters can be 

well correlated with structural damages. It is then expected that a computational model to 

eliminate the environmental effects, sufficiently robust to work on an on-line or nearly real 

time basis, can be improved in order to determine the structural health state efficiently and 

confidently. 

(iii) In this thesis, the purpose has been only to detect whether the damage occurs or not, 

based on resonant frequencies shifts. It would be important to extend the monitoring 

capabilities, combining the mode shape information and analytical models, trying to localize 

and quantify the structural damage. 
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