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Abstract 

Face Recognition has suffered tremendous improvements in the past few years; it 

has developed a very strong community and is currently a very hot topic. The ad-

vances in performance of Face Recognition models have allowed its integration in 

day-to-day tasks. 

This work studies the Face Recognition problem, covering a variety of different 

systems. These systems are tested under standard benchmarks and on a proposed 

protocol. The main goal of this research is to show that it is possible to achieve 

competitive results on standard Face Recognition benchmarks using a mid-range 

personal machine. The effectiveness and efficiency of the developed systems are 

presented proving that such goal can be achieved. 

Keywords: Face recognition; Deep learning; Convolutional Neural Networks. 
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1 Introduction 

The evolution in computer vision is staggering. Deep learning based methods have 

achieved state-of-the-art performance in a very small time gap. The way image pro-

cessing is studied has suffered considerable changes over the years (Learned-Miller et 

al., 2016; Rui & Huang, 1999). Many research fields have developed amazingly, such 

as image segmentation, object localization and classification and face recognition (He et 

al., 2017; Redmon & Farhadi, 2016, 2018; Schroff et al., 2015) thanks to the advances 

in computer hardware and the availability of information.  

Face recognition is a challenging and amazing task that consists in classifying face im-

ages with a known identity. This problem can be addressed by performing the so-called 

'face verification': having two images, the task is to determine whether the two images 

belong to the same person or not. Recent studies and evolution in computer hardware 

decreased the gap between computer and human-level performance in face recognition 

(Taigman et al., 2014). The human-level performance in face verification is approxi-

mately ninety-eight per cent (Deng et al., 2017; Taigman et al., 2014). A model present-

ed by a Google research team, FaceNet (Schroff et al., 2015), surpassed human-level 

performance. A more recent work by the Chinese group, Tencent YouTu Lab (Tencent, 

2018), has outperformed FaceNet, yet this work is proprietary and closed. Some very 

recent state-of-the-art models have been proposed where the models’ architecture and 

the training method are freely and publicly available (Deng et al., 2018; Liu et al., 2017; 

Wen et al., 2016) 

This masters’ thesis is organized as follows. In section 2, image processing is addressed, 

where popular methods and their respective foundations are described. Succeeding, the 

task of face recognition in contemplated, where the respective challenges and related 

works are explained. Hereafter, Section 3 describes popular datasets that have been used 

in face recognition problems. Section 4 presents the technologies that were used in the 
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development of the software. Section 5 exposes the methodology and approaches that 

were considered in the development of the face recognition system, showing the ob-

tained results and its discussion. 

1.1 Motivation 

The applications of face recognition technology are immense. Innovative products like 

Lighthouse (2018) allow intelligent house monitoring. The system consists in a camera 

that is able to recognize a house’s most frequent visitors, recognizing children, adults, 

animals and thieves. A more familiar example is Facebook, that uses face recognition 

algorithms (Taigman et al., 2014) to automatically tag friends on posted photos. Anoth-

er developed work, FaceTime (Arsenovic et al., 2017), incorporates this kind of tech-

nology to account employees working hours. Tencent (2018), the Chinese group that 

holds one of the highest performing face recognition algorithms, offers a variety of ser-

vices: face detection, attribute detection and identification. 

Motivated by both the good results and the availability of out-of-the-bag machine learn-

ing algorithms, it was established that face recognition would be a tremendous theme to 

be deeply studied. Works like FaceTime (Arsenovic et al., 2017) use solely pre-trained 

models, achieving a considerable performance. With all this rich information freely 

available and a sense of business opportunity, the will to develop such systems grew. 

1.2 Problem Definition 

Face recognition consists in attributing a known identity to a face image. To that end, a 

set of known subjects must exist. The process largely depends on the face representation 

that must capture each face’s unique features. The problem also involves the classifica-

tion/search task that allows the system to separate individuals. Thus, the problem con-

sists in the development of a face representation method and face representation classi-

fier. Several methods (Deng et al., 2018; Schroff et al., 2015; Taigman et al., 2014; Wen 

et al., 2016) have achieved remarkable performances. They all use neural networks to 



 

3 

extract face features, with different architectures, but relying on different classification 

methods. The work in (Schroff et al., 2015) compares face representations by using a 

distance threshold, while the works in (Taigman et al., 2014; Wen et al., 2016) use an 

end-to-end deep neural network model that performs multi-class classification. The pro-

posed work for the masters’ thesis is the study of the face recognition problem. Differ-

ent systems were tested by using a public and well-known face recognition dataset.  
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2 Face Recognition 

This research refers to the problem of face recognition that can be addressed by the par-

adigms of face verification and identification (Learned-Miller et al., 2016). Verification 

refers to the task of analyzing two face images and decide whether the two images rep-

resent the same person or not (Learned-Miller et al., 2016). Identification problem con-

sists in deciding which images of the gallery, set of images representing a group of in-

dividuals, are represented by the probe, an image or set of images (Learned-Miller et 

al., 2016). Face recognition is the task of attributing a known identity to a face image 

from a set of known classes. 

To solve the problem of face recognition with unconstrained images one must solve a 

set of related problems: face localization, alignment, representation and comparison. 

The best performing methods utilize convolution neural  networks (CNNs) to solve this 

problem (Deng et al., 2018; Schroff et al., 2015; Wen et al., 2016) although other ap-

proaches have achieved good results (Devi & Hemachandran, 2016). To resolve the 

referred sub-problems the characteristics of images must be considered. 

 

2.1 Image Processing 

Image processing is the process of manipulating digital images. An image can be pro-

cessed by using either parametric or non-parametric analytical methods (Ballard, 1981; 

Chuang et al., 1996), probabilistic distributions (Martin et al., 2012; Stricker & Orengo, 

1995), gradients (Dalal & Triggs, 2004), machine learning (He et al., 2017; Kazemi & 

Sullivan, 2014; Simonyan & Zisserman, 2015; Taigman et al., 2014) and others (Lowe, 

2004). The utilized methods depend both on the patterns that one desires to study and 

on the task. 

The complexity of the problem is large since the dimension of digital images is rather 

high and requires fairly expensive computations. 
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There are multiple problems in image processing, being the following ones among the 

most popular: object detection, classification, transformation, pattern recognition, fea-

ture extraction and image retrieval. When addressing the face recognition problem, one 

can’t simply compare the raw pixels of two face images. Therefore, the features of each 

image must be extracted, in order to compare them. This way, the extracted features of 

each image are compared instead of the raw pixels. Thus, feature extraction and com-

parison techniques need to be considered 

Feature Extraction and Representation 

Raw pixels must be represented in a way that allows one to study characteristics among 

images. Features may be represented through text, like annotations and keywords, 

and/or by visual features (Rui & Huang, 1999). Features that represent images as text 

are known as text-based features. Bag-of-Visual-Words is a popular text representation 

of images (Yang et al., 2007), yet it can use a large memory space and it doesn’t allow a 

direct image search like content base image retrieval (CBIR) (Barz & Denzler, 2017). 

Moreover, images with an unknown class might exist just like complex and cluttered 

images, making the image search and representation very difficult or even impossible 

(Barz & Denzler, 2017) . 

When extracting features from images one can divide these visual features in two cate-

gories. Low-level features refer to extracted information from pixels by the computer, 

like color-histograms, gradient orientation and others. High-level features address the 

features perceived by humans, attributing sense to the image. An example of a High-

level feature can be contemplated in Figure 6, where the system detects the presence and 

localization of a face in an image. A Low-level feature descriptor HoG example is pre-

sented in Figure 1.  
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Figure 1 - Low-level face image feature descriptor example using HoG. Left bar graph-

ic represents a pixel's gradient orientation in 20º intervals. Right image yields a visual 

representation of the extracted HoG. 

The low-level level features can be further categorized as general or domain-specific 

features. General features don’t require any specific domain knowledge, being present 

across all images. Domain-specific features are application dependent; this may include 

faces, dog breeds and finger-prints, among others. 

Visual features include color, shape, texture, color-layout and segmentation; where the 

first three are global features and the last two are local features. 

The characteristics of the features depend on the task, for example, in object detection 

one requires for the shape representation to be invariant to scale, rotation and transla-

tion. Color, texture and shape are widely used in image classification and retrieval tasks 

(Jain & Vailaya, 1995; Niblack, 1993).  

Color is present in all images and it can be described using one or three channels, grey 

scale and colored respectively. Furthermore, it is independent of image size and orienta-

tion. A very popular feature representation method for color is the color histograms (Rui 

& Huang, 1999). Color histograms simply represent the color distribution in an image. 

This process focuses on the complete image and not on any of its parts specifically. An-

other approach consists in using color moments (Stricker & Orengo, 1995). Once again 
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this method extracts the color distribution in the image and is widely used in image re-

trieval, mainly used for indexing. 

Shape is an important visual feature that allows one to accurately identify, detect and 

describe an object. When localizing or identifying an object in an image it is desirable 

for the method to be invariant to scale, rotation and translation. Identification consists in 

indicating the presence of an object, while localization a bounding box surrounding the 

object must be provided. Popular methods include Histogram of oriented Gradients 

(HoG) with linear SVM classifier (Dalal & Triggs, 2004), Scale Invariant Feature 

Transformation (SIFT) (Lowe, 2004) and neural networks (He et al., 2017; Redmon & 

Farhadi, 2016). HoG combined with SVM as baseline is a popular way of detecting ob-

jects (Dalal & Triggs, 2004). HoG detect the changes in pixel intensities, calculating the 

gradient of an image where it extracts the direction and magnitude of color changes. 

This is achieved by applying a kernel filter, like the Sobel mask, and Gaussian smooth-

ing. The gradients are later represented as a histogram dived in several blocks, repre-

senting angle ranges.  A Support Vector Machine (SVM) is a popular machine learning 

algorithm (Dalal & Triggs, 2004; Devi & Hemachandran, 2016). The goal of a SVM is 

to find a hyperplane able to separate different labeled data points. Hence the desirable 

hyperplane represents the largest separations distance between different labeled data 

points (Smola & Schölkopf, 2004). On the previous method, HoG with SVM classifier, 

the SVM must be able to draw a hyperplane able to separate a face and a non-face HoG 

descriptor. SIFT is a powerful method that extracts features and allows image matching 

in real-time. It is a very involving and complex algorithm that can be divided into the 

following stages. Scale space construction, LoG approximation, keypoints localization, 

most representative keypoints extraction, keypoints orientation calculation and genera-

tion of SIFT features. Each stage of the process relates to one of the invariance goals: 

scale, translation and rotation. Finally, the most recent methods in object detection and 

recognition involve deep neural networks based methods (He et al., 2017; Redmon & 

Farhadi, 2016, 2018). These methods achieve state-of-the-art accuracy. YOLO9000 
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(Redmon & Farhadi, 2016) is capable of distinguishing nine thousand different classes 

of objects in real-time. 

Texture refers to the visual patterns that have a homogeneous behavior that doesn’t re-

sult from the presence of a single color or intensity (Rui & Huang, 1999). The study of 

texture focuses on the problem of finding relationships between pixels. A common and 

early method is co-occurrence matrix. The main idea is to extract the distance and orien-

tation between pixels and then compute representative statistics from the matrix to rep-

resent texture. 

Color-layout resembles to the problem of studying color in sub-regions. Two main ap-

proaches were proposed. Subblock-based is when the color distribution of an image is 

studied by dividing the original image into smaller subimages. Another method is to 

study only a few subimages. This method is more sophisticated since the image has to 

be segmented into regions, yet the information retrieved can take smaller spaces of 

memory and be more representative. 

Segmentation is present in many computer vision problems and it is essential when one 

desires to consider only parts of the image. These methods can be automatic or semi-

automatic, meaning that they may use apriori knowledge or user feedback (Rui & 

Huang, 1999). Although many methods have been proposed most recent works that 

achieve state-of-the-art performance are based on deep neural networks (Bulat & 

Tzimiropoulos, 2017; He et al., 2017; Redmon & Farhadi, 2016; Ren et al., 2016). Good 

segmentation is very important in object recognition and the problem is very challeng-

ing. Methods based on selective search and neural networks have shown to have good 

results (Girshick et al., 2012), yet the community walks into complete end-to-end mod-

els using only a deep network (He et al., 2017). 

In sum, feature extraction allows one to create a feature map of an image. This process 

allows image comparison, thus when applied to face images one may extract unique 

face features from different identities, targeting the face recognition problem. 
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Image Comparison in Large Dimension Spaces 

It is necessary to apply efficient and effective multi-dimensional indexing methods in 

order to obtain scalable systems in large databases (Chuang et al., 1996). The dimen-

sionality of the feature vectors is large and in image retrieval or in clustering problems 

one may not use Euclidean distances. Thus, when solving, for instance, an image re-

trieval or clustering problem, a promising approach is to perform dimension reduction 

and use the appropriate indexing methods (Rui & Huang, 1999). Dimension reduction is 

common in computer vision and it has been successfully used on face recognition tasks 

and object detection and recognition (Devi & Hemachandran, 2016; He et al., 2017; 

Redmon & Farhadi, 2016). When addressing the face recognition problem a face feature 

vector may have to be compared with others, thus the performance of a system depends 

largely on the image comparison and indexing techniques. 

Similarity and Distance Measures 

There are a wide number of similarity and distance measures. These measures may be 

Euclidean or non-Euclidean.  

Although Euclidean distances may not capture the human perception (Rui & Huang, 

1999), some Euclidean distances like the L2 norm have been successfully applied (Barz 

& Denzler, 2017) just like the squared L2 distance (Schroff et al., 2015).  

Some common non-Euclidean measures are: cosine, correlation, histogram intersection 

among others (Rui & Huang, 1999). The work in (Jégou & Zisserman, 2014) proved 

that discarding the magnitude of the features vector and concentrating only on the direc-

tion is beneficial for capturing image sense.  

Metric Learning 

Metric learning is a field of machine learning with multiple application in computer vi-

sion, it has been used in face recognition (Schroff et al., 2015) and image retrieval. The-

se methods use apriori information, labels, to learn a distance function that maximizes 

performance. This means that observations that have the same labels should have a 

small distance, in contrast to observations with different labels. 
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The Mahalanobis metric learning based techniques reveal a very satisfactory perfor-

mance. The Mahalonobis metric can be corresponded to the covariance matrix. The goal 

of this approach is to learn a linear transformation where the most relevant features take 

a greater importance than irrelevant ones (Martin et al., 2012).  

Large Margin Nearest Neighbor (LMNN) (Weinberger & Saul, 2009) metric is among 

the most popular metric learning techniques (Martin et al., 2012). The main goal is to 

optimize the K-NN algorithm. It uses a triplet loss-function based on equations 16 and 

17. Conceptually the networks presented in (Schroff et al., 2015) are trained based on 

the LMNN loss-function. The algorithm computes the k-nearest neighbors for every 

observation. Then a perimeter that includes the nearest neighbors that have the same 

label as the seed, target neighbors, is defined. The samples that have different labels 

from the seed which invade the perimeter are penalized. This way the correlation be-

tween target neighbors strengthens. 

2.2 Deep Learning and Computer Vision 

Deep Learning (DL) refers to a machine learning field that operates with neural net-

works that have more than two layers, known as deep networks (Le, 2014). DL based 

systems have been successfully applied in multiple fields, including natural language 

processing (Mikolov et al., 2013; Pennington et al., 2014), object localization and 

recognition (Redmon et al., 2016), time series prediction (Qin et al., 2017) and face 

recognition (Howard et al., 2017; Schroff et al., 2015).  

Ever since AlexNet won the ImageNet Challenge: ILSVRC 2012 (Krizhevsky et al., 

2012), Convolutional Neural Networks have become very popular and are the state-of-

the-art in several computer vision tasks (Chollet, 2017; Howard et al., 2017; Huang et 

al., 2017).  

To this date, the most promising methods in face recognition are implemented under the 

deep learning paradigm. They utilize a type of neural networks to extract the features of 

faces that are able to accurately separate identities. 
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Neural Networks 

A Neural Network (NN) is a machine learning model inspired by the human brain. The-

se systems are constructed by stacking multiple layers of neurons. In a typical feedfor-

ward NN the neurons of contiguous layers are fully connected. This type of layer is re-

ferred as fully connected layer, which is the simplest architecture. A NN can be seen as 

a graph, where the neurons are the vertices and the connections are weighted edges. The 

input data gets transformed across the layers by applying the edges’ weights; this is 

done through matrix multiplication. Moreover, neuron units apply an activation func-

tion, also called squashing function, and a bias term. The application of the activation 

function allows the introduction of non-linarites, like the sigmoid function (Cybenko, 

1989) or the rectifier linear unit (ReLU) (Krizhevsky et al., 2012). The process of apply-

ing the connections’ weights followed by the bias addition and activation is referred as 

the feedforward pass. The bias term and the weights are parameters of the network that 

must be learnt. Training a NN involves computing the feedforward pass followed by the 

application of the backpropagation algorithm, this process accounts for a full iteration in 

training which is known as epoch. 

 
 

Figure 2 - Neural network with one hidden layer that accepts inputs of spatial dimen-

sion four and outputs a single value (Gupta, 2017). 

 



 

12 

Feedforward Pass 

Let X be the network’s multivariate input with     ,    
 the weight of the i

th
 connec-

tion of the j
th

 neuron of the l
th 

layer and   
  the bias term of the j

th
 neuron of the l

th
 layer. 

Furthermore, the neurons apply an activation function  , this may be, for example, a 

sigmoid, tanh or ReLU function. The feedforward pass can be expressed by the follow-

ing equations: 

   
                    (1) 

   
    

       
  (2) 

   
   (∑   

  
      

 ) (3) 

 
Figure 3 - Feedforward pass of a single neuron, where b is the bias term, xi the i

th
 varia-

ble of the input, wi the i
th

 weight of the neuron and f the activation function (Gupta, 

2017). 

Backpropagation and Optimization 

The backpropagation algorithm is used to find the values of the NN’s parameters (Le, 

2014). This is achieved by computing the gradient of an objective function  ( ) with 

respect to the network’s parameters. Backpropagation is nothing more than the chain 

rule applied to neural networks, since the final output is a composed function derived 

from all the previous layers. In a simple feedforward NN the error is propagated from 

the output to the input layer. 

In order to update the parameters, backpropagation supports optimization algorithms 

typically based on Gradient Descent (GD) (Le, 2014). The most popular optimization 

algorithms are: Stochastic Gradient Descent (SGD), Mini-Batch GD, RMS-Prop, Adam 
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and GD with Momentum (Ruder, 2016). SGD is the simplest algorithm and the founda-

tion of the other referred optimization processes. This algorithm uses the gradient value 

to update the parameters of the network by subtracting or adding it to their current val-

ues, depending if it is a minimization or a maximization problem respectively, at each 

training example. When training a network one must select the learning rate  , which is 

the step of the gradient. 

Using the feedforward pass notation, introducing the learning rate   and a loss function 

J the SGD algorithm can be expressed by the equations 4 and 5. 

    
     

    
  

    
  (4) 

   
    

    
  

   
  (5) 

Convolution Neural Networks 

Convolutional Neural Networks are a type of neural networks that have been very suc-

cessful and ubiquitous (Howard et al., 2017) in computer vision (He et al., 2017; 

Redmon & Farhadi, 2018; Schroff et al., 2015). They have achieved state-of-the-art per-

formance in image classification (Zoph et al., 2017), face localization (Zhang et al., 

2016) and recognition (Chen et al., 2018; Deng et al., 2018; Schroff et al., 2015), among 

other tasks (He et al., 2017; Qin et al., 2017). A CNN is constituted by one or more 

convolutional and pooling layers, this way a CNN can be built by stacking multiple 

convolutional-pooling layers blocks. These blocks are used to transform the image data 

that will later flow, traditionally, through a fully connected layer for classification. 

In face recognition, CNNs, are mostly responsible for extracting the unique features of a 

face, i.e. extract a face feature map. CNN extracted features have achieved the most no-

table results on this task (Schroff et al., 2015; Taigman et al., 2014). The community 

navigates to more complete systems able to solve all of face recognition’s sub-problems 

using a single network, referred as end-to-end networks (Zhong et al., 2017). This type 
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of neural networks is currently the most widely used method in face recognition, since it 

has been accomplishing constant break troughs.  

Convolutional Layer 

The convolutional layer contains a set of learnable filters that are responsible for ex-

tracting useful information from the input. A simple convolution will produce a two 

dimensional feature map via point wise multiplication followed by addition across the 

input channels. When using multiple filters one simply stacks the produced feature 

maps, hence the number of channels of the output is defined by the number of filters 

used in the convolutional layer. A typical filter has spatial dimension       or 

     , where   is the number of channels of the input, in a color image it would be 

equal to 3. A filter must slide across the image at a specified stride. The stride defines 

the step size that the filter must take vertical and horizontally in order to navigate the 

image, being 1 a typical value. The stride and convolution combination must be capable 

of covering the input completely without ever crossing its limits. 

There is a broad type of convolutions that have been successfully applied in computer 

vision besides simple convolutions including: depth-wise separable (Chollet, 2017; 

Sandler et al., 2018), grouped (Xie et al, 2017) and others (Lin et al., 2014; Zhang et al., 

2017). 

Padding 

Padding involves filling the image borders with a specific value. The most popular ver-

sion is zero-padding that involves filling the borders with zeros. Thus, padding allows 

controlling the spatial size of the data across the network. This way with a specified 

padding of  , with    , an input with dimension      after applying padding will 

have dimension (   )  (   ). 

Pooling 

Pooling operations are commonly used after successive convolutions. The goal of this 

operation is to reduce the spatial dimension of the input, hence reduce the number of 
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parameters and computations in the network. Normally, pooling layers apply filters of 

size     with stride of 2 that reduces the spatial dimension of the input by half. Alt-

hough there are several pooling operations, like average, max pooling is the most com-

mon one. Max pooling involves selecting the maximum value present in the filter, if one 

were to use a     kernel it would involve selecting the maximum value over 4 num-

bers at every step. 

 

Figure 4 - Application of a 3x3 filter. Right most term of the convolution operation, 

over an input of dimension 5x5, the leftmost term of the convolution operation, using 

stride 1 that results in a 3x3 feature map (in yellow). The example is frozen at the last 

convolution operation, showing the covered surface by the filter on the input (blue re-

gion of the input) that results in the bottom right most value of the feature map (Gupta, 

2017). 

 

 

Figure 5 - Max pooling operation over an input of spatial dimension 4x4 using a 2x2 

kernel with a stride 2 that results in a 2x2 output volume. The filter is applied four times 

over the input; the stages are separated by color. At each stage, the maximum value that 

will be part of the output is inside a circumference (Gupta, 2017). 
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Although new training approaches and novel loss functions have been suggested 

(Schroff et al., 2015; Ioffe et al., 2015), the CNNs’ architecture has have an obvious 

impact on the deep learning community. The research and evolution of network archi-

tecture has led to improvements on different computer vision tasks (Redmon & Farhadi, 

2018; Zoph et al., 2017). The reason for such an impact lays on the fact that new archi-

tectures allow deeper and more complex models, reduce convergence and inference 

time and diminish memory footprint (Chollet, 2017; Iandola et al., 2016). It is clear that 

the systems that achieved the highest performances in a target task combine state-of-

the-art loss functions and CNN architectures (Chen et al., 2018; Schroff et al., 2015). 

The evolution of CNN architectures has gone from building very deep and computa-

tionally heavy models, VGG net (Simonyan & Zisserman, 2015), ResNet (He et al., 

2015) and Inception (Szegedy et al., 2015), to shallower, lighter and more sophisticated 

models that can achieve the same level of performance of much deeper models, but 

largely reducing the number of parameters, Xception net (Chollet, 2017), MobileNet 

(Howard et al., 2017) and SqueezeNet (Iandola et al., 2016). A clear example is 

SqueezeNet that contains 50 times less parameters than AlexNet, but achieves the same 

level of accuracy. There is a large adoption by the computer vision community of the 

newest best performing network architectures, being them normally ImageNet Chal-

lenge winners. Since 2012, all the winning models of this challenge have been CNNs: 

AlexNet (Krizhevsky et al., 2012), ZFNet (Zeiler & Fergus, 2014), VGG (Simonyan & 

Zisserman, 2015), GoogLeNet (Inception) (Szegedy et al., 2015), ResNet (He et al., 

2015) and NasNet (Zoph et al., 2017). Since 2015, when the Inception architecture was 

introduced, the proposals for new network architectures has shifted from building deep-

er CNNs to the implementation of different types of connections (He et al., 2015) and 

convolution operations (Chollet, 2017), moving to more innovative ways of building 

CNNs (Huang et al., 2017; Szegedy et al., 2016) instead of simply stacking simple con-

volution-pooling layers (Simonyan & Zisserman, 2015). Although ImageNet Challenge 

winners represent the state-of-the-art in image classification, the winning models take 
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large amounts of memory and computational power (Howard et al., 2017). This way, 

smaller high performing models have been developed (Arriagaet al., 2017; Howard et 

al., 2017) that are able to run on mobile devices and to be used in real world applica-

tions (Chen et al., 2018; Sandler et al., 2018). 

2.3 Face Localization 

Face localization consists in outputting the bounding box that surrounds a face. Many 

approaches have been presented being, among the most popular, the Viola-Jones face 

detector (Viola & Jones, 2001), HoG and Linear SVM object detector (Dalal & Triggs, 

2004) and CNN based methods (Jiang & Learned-Miller, 2017; Zhang et al., 2016). 

The work in (Dalal & Triggs, 2004) combines HoG with a linear SVM. The method 

represents the image with HoG followed by a binary classification using a linear SVM. 

The binary classification consists in classifying the HoG as person or non-person. 

The Viola-Jones object detector was the first method to provide good results in real-

time (Viola & Jones, 2001). The method uses a HaaR feature representation, AdaBoost 

classifiers and a cascade of classifiers. A cascade of classifiers is a type of ensemble 

learning, but instead of votes the system is divided by stages. Each stage has its own 

classifier that uses the output information of the previous stage’s classifier output, add-

ing information to the input. 

Deep learning methods have accomplished extraordinary results in object detection 

(Redmon & Farhadi, 2018; Zhang et al., 2016). DL based systems use CNNs to localize 

faces in an image and can address this problem in real time. Some recent and popular 

methods include Faster R-CNN (Jiang & Learned-Miller, 2017) and MTCNN (Zhang et 

al., 2016). 

Among these methods the Multi-Task CNN (MTCNN) has been successfully used in 

different face recognition systems (David Sandberg, 2018; Zhong et al., 2017). The 

model consists of three CNNs: Proposal Net (P-Net), Refine Net (R-Net) and Output 

Net (O-Net). Each network has a different architecture and only 3x3 and 2x2 filters are 
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used. The networks’ architectures can be visualized in figure 21. The PReLu activation 

function is applied after every convolution and fully connected layers, excluding the 

output layer. Moreover, non-max suppression (NMS) is performed on every network 

output. Non-max suppression consists in eliminating bounding boxes that overlay each 

other’s area in more than 50%, hence only the largest bounding box is preserved. Natu-

rally this is performed on proposals of the same image. An image pyramid is fed to the 

system, meaning that the same image in different sizes is considered. The MTCNN 

training consists of three tasks: face/non-face classification, bounding box regression, 

and facial landmark localization. The model is trained using data from WIDER FACE 

(Yang et al., 2016) and CelebA (Liu et al., 2015). The face classification is a binary 

problem and the cross-entropy loss is minimized, where    is the probability of image    

being a face and   
      *   + is the label of image i: 

  
       (  

        (  )  (    
     )(     (  ))) (6) 

The bounding boxes are referred as: left, top, height and width. Let  ̂ 
     the estimated 

bounding box of image i and   
    the bounding box true values, with   

            . 

For this task the Euclidean loss is employed: 

   
    ‖ ̂ 

      
   ‖

 

 
 (7) 

The final task, landmarks estimation, also minimizes the Euclidean loss. The landmarks 

are represented by five points: the center of each eye, nose tip and mouth left and right 

corners. Let   
             , using the same notation as equation 7, the loss function 

can be defined as: 

   
          ‖ ̂ 

            
         ‖

 

 
 (8) 

Finally, the overall training target can be defined as: 

   ∑ (        
       

            
     

                
           

         ) 
    (9) 
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Where N is the number of training samples,    is the task importance and   
 
 *   + is 

the sample type indicator. Since different tasks are trained, different images are used for 

training, i.e. face/non-face image and partially aligned images. Different values of    

are employed, for P-Net and R-Net the same values are used, concentrating more on the 

face classification task (                                ) while in O-Net the 

landmarks are more deeply considered (                                 ). 

The MTCNN pipeline can be observed more intuitively in figure 6. 

 

Figure 6 - MTCNN pipeline (Zhang et al., 2016). 
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Figure 7 - Face localization with the respective bounding boxes (Geitgey, 2016). 

2.4 Face Alignment 

Face alignment is the problem of centering a face in an image and perform a transfor-

mation that can project the face landmarks in a frontal-view without deforming the im-

age; an example is contemplated in figure 9. Some promising methods and widely used 

were proposed in literature: 2D face alignment using an ensemble of regressive boost 

trees (Kazemi & Sullivan, 2014), 2D/3D face alignment using deep neural networks 

(Bulat & Tzimiropoulos, 2017) and MTCNN (Zhang et al., 2016). 

The work in (Kazemi & Sullivan, 2014) uses a cascade of regressors, specifically an 

ensemble of regressive boost trees to estimate face landmark of 194 points (Figure 8). 

Beforehand, regressive boost trees is a machine learning algorithm that combines deci-

sion trees (Friedman, 1999) for regression with the gradient boosting algorithm. Deci-

sion Trees is a machine learning model that builds a path based on the variables’ values 

split in order to obtain a decision, originating a tree structure. The decision tree model 

(Figure 22) splits variables’ values in ranges originating branches. Each node represents 

a variable and there is only one node per variable, thus the edges (branches) of a node 

represent a variable’s values split. The leaf nodes represent a final decision, in the case 
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of regressive trees a continuous value. Gradient Boosting (Friedman, 1999) is a machine 

learning technique that uses an ensemble of weak learners to create a strong one. Since 

the technique uses boosting, it means that miss-classified observations at stage t are 

most likely to be used as input at stage t+1. The model ensemble is organized stage-

wise, where the model at stage t fits the residuals (called pseudo-residuals) of model t-

1. This way it has been shown that this process is equivalent to computing the gradient 

of the loss function at each step (Friedman, 1999). Thus, gradient boost trees combines 

and ensemble of regressive trees with gradient boosting. The regressive boost trees 

landmarks estimator (Kazemi & Sullivan, 2014) trains directly on the pixel intensities, 

meaning that no feature extraction is needed. The system is capable of detecting the fa-

cial landmarks with very high quality in real-time, in fact it only takes 1 millisecond to 

align and detect the facial features (Kazemi & Sullivan, 2014). The system trains on the 

popular HELEN dataset (Le et al., 2012) that evaluates 194 points landmarks. The mod-

el is trained by minimizing the square error between the predicted landmarks and the 

ground truth. Let       define the landmarks’ coordinates,   (  
      

 )      

represent the landmarks of face I and rt be the regressor of stage t. This way the predict-

ed landmarks  ̂( ) at stage t can be defined as: 

  ̂(   )   ̂( )    (   ̂
( )) (10) 

Function 10 yields a clear special case for    . This way r0 must be initialized. Let n 

be the number of images, R be the number of initializations per image Ii and     , 

thus for         r0 can be initialized as follows: 

    *    + (11) 

  ̂( )  *       +    
 (12) 

    
( )

    
  ̂ 

( )
 (13) 

This way, for     the residuals of regressor rt are defined as: 

    
(   )

    
  ̂ 

(   )
 (14) 
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Equations 10 to 14 are applied iteratively for the cascade T regressors (r0,…,rT-1 ) using 

gradient boosting, minimizing the squared error: 

  (    ̂ 
( ))     ∑ ‖   

( )
  ‖

 

          
    (15) 

The trees’ splits are chosen, greedily, from a set of randomly generated splits that min-

imize the sum of square error. 

Face Alignment Network (FAN) (Bulat & Tzimiropoulos, 2017) uses deep neural net-

works to estimate 2D 68 points face landmarks and 3D face landmarks. This method 

achieved extraordinary results. The work presents three independent networks based on 

Hour Glass (HG) network architecture (Carreira et al., 2016). A network learns 2D face 

landmarks, another one learns 3D face landmark and finally there’s a network that 

learns how to map 2D to 3D face landmarks. Since the networks are independent it’s 

possible to align a face based on 2D or 3D landmarks. 

Multi Task Convolutional Neural Networks (MTCNN) (Zhang et al., 2016) performs 

face localization and landmarks estimation using a cascade of CNNs. As previously 

mentioned, the cascade consists of three CNNs: Proposal Net (P-Net), Refine Net (R-

Net) and Output Net (O-Net), in this particular order. MTCNN outputs a face’s bound-

ing box and five points landmarks – the center of each eye, nose tip and mouth left and 

right corners. The alignment can be later performed through affine transformation. 
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Figure 8 - HELEN face image example with respective 194 face landmarks (Le et al., 

2012). 

 

Figure 9 - Face Alignment (Murray, 2017). 

2.5 Face Representation 

To study a face, the computer must represent the pixels as a feature vector. The repre-

sentation must capture the faces’ main details so that different subjects can be distin-

guished. The most recent state-of-the-art methods refer to deep learning methods (Deng 

et al., 2018; Schroff et al., 2015; Wen et al., 2016). These methods perform face em-

bedding, by training the network on a ―fake task‖. This task works only for the purpose 

of training the network, since the last layer, the output layer, is removed in order to ob-
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tain the embedding of a face, i.e. feature map. Thus the weights of the network act as a 

look-up table for the embedding map. There have been notable works in this subject: 

DeepFace (Taigman et al., 2014), DeepID3/2 (Sun et al., 2015; Sun et al., 2014), 

FaceNet (Schroff et al., 2015), Center Loss with Softmax (Wen et al., 2016) and 

ArcFace (Deng et al., 2018). 

DeepFace (Taigman et al., 2014), developed by Facebook, was the first work to achieve 

human-level performance, slightly worse, in face recognition. The work proposed a 

deep learning end-to-end framework that performed 3D alignment followed by embed-

ding. Finally, the face’s feature vector is fed into a k-way softmax for classifying the 

label of the face image.  The network was trained on four million Facebook images. 

FaceNet (Schroff et al., 2015), developed by Google, proposed a novel loss function and 

training method for face recognition by training the network with a triplet loss-function 

based on LMNN (Weinberger & Saul, 2009). The work studies different CNN architec-

tures deeply and concludes that ZF-Net (Zeiler & Fergus, 2014) performs best. The 

model was trained with 200 million images from a private dataset and achieved 

99.63±0.09% accuracy score on LFW. The motivation for the loss function is that faces 

of the same subject are close and of different subjects are distant. This way the distance 

between the anchor image and a positive image, image that represents the same subject 

of the anchor image, is small; and the distance to a negative image is large. Moreover, 

images must comply with constraint displayed on equation 16 that states that the dis-

tance between positive pairs plus a margin, α, is lesser than the distance between nega-

tive pairs. The loss-function can be seen in a more intuitive way in equation 17. Here   
  

is the anchor image,   
 
 the positive image,   

  the negative image and Φ the set of im-

ages. 
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The triplet-loss function has a very discriminative power and it still represents the state-

of-the-art in face recognition (Chen et al., 2018; Deng et al., 2018; Wen et al., 2016). 

Yet, it is very hard to train a network based on this loss function due to the hard posi-

tives and hard negatives search and to its slow convergence (Deng et al., 2018). 

More recently, some promising methods that can surpass FaceNet in some challenges 

with only a fraction of the data have been proposed (Deng et al., 2018; Wen et al., 

2016). 

The work in (Wen et al., 2016) proposes an end-to-end learning framework with a novel 

loss function named center loss. This loss function aims to reduce the distance of intra-

class feature vectors. A feature vector, with the same dimension as the face feature vec-

tor (deep feature), is learnt and updated along the training process for each class center 

while minimizing the distance of the deep features to the respective class centers. To 

discriminate the features from different classes the center loss is combined with soft-

max. The joint supervision of the two function results in an enlargement of the distances 

of features from different classes while reducing the distances of features from the same 

class. The proposed model achieved 99.28% accuracy in LFW using only 0.7 million 

images to train the network, outperforming DeepFace and getting really close to 

FaceNet on this challenge with only a fraction of the training data. Consider    as the 

center loss,     as the softmax loss function and L the joint supervision of the two func-

tions. Omitting the layer superscript from notation let    
 be the feature vector of the   

th
 

class center,    the i
th

 face feature vector,   the bias term,    the weights of the j
th

 neu-

ron and a scalar   that is used to balance the two loss functions. The formulation is ex-

pressed by the equations 18 to 19. 
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Very recently DeepInSight deployed a model, ArcFace, that achieved state-of-the-art 

performance in face recognition obtaining an accuracy of 99.83% on the LFW bench-

mark (J. Deng et al., 2018). ArcFace separates faces based on arc/angular margin and is 

largely inspired by the works of (Liu et al., 2017) and (Wang et al., 2018) that use mul-

tiplicative angular margin and additive cosine margin respectively. The work proposed 

by (W. Liu et al., 2017), SphereFace, introduces a parameter m that controls the angular 

margin. The multiplicative angular margin is combined with softmax to discriminate 

different classes. Softmax supervision is integrated in training to guarantee conver-

gence, turning the model somewhat tricky to train. CosineFace (Wang et al., 2018) is 

based on additive cosine margin and also separates classes using softmax. This work is 

easy to implement, has no need for softmax supervision and outperforms SphereFace. 

Although both works seem very similar the decision boundaries of the models are quite 

different. The angular margin allows a more clear geometric interpretation (Deng et al., 

2018). ArcFace is based on additive angular margin, combining the ideas from both of 

the previous works and uses a ResNet (He et al., 2015). The authors further enhance the 

model by introducing the triplet-loss function, evidencing the contribution of (Schroff et 

al., 2015). Using the notation of the joint supervision function 20, let s be the hy-

persphere’s radius, m the angular margin and    the angle between    and  . This way, 

the ArcFace loss function can be expressed by equations 21 and 22: 
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The decision boundaries of the different methods and the respective illustrations are 

provided in table 1 and figure 10, receptively. 
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Table 1 - Decision boundaries of different functions on a binary classification example, 

where ϴi is the angle between Wi and x, m is the margin and s is the hypersphere radius 

(Deng et al., 2018). 

Loss Functions Decision Boundaries 

Softmax (     )          

SphereFace (W. Liu et al., 2017) ‖ ‖(            )    

CosineFace (Wang et al., 2018)  (             )    

ArcFace (J. Deng et al., 2018)  (   (    )       )    

 
Figure 10 - Decision boundaries for SphereFace, CosineFace and ArcFace (Deng et al., 

2018). 

Although the accuracy of face recognition models has been evolving, there hasn’t been 

a great effort in enhancing the networks efficiency with respect to speed and size 

(Howard et al., 2017). Yet, different systems have been proposed using the presented 

loss functions achieving very good results (Chen et al., 2018; Zhong et al., 2017), com-

bining the shown loss function with more recent network architectures and training 

methods that require lesser data and achieve the same level of performance as the origi-

nal proposed models. A very recent work, MobileFaceNets (Chen et al., 2018), com-

bines the ArcFace loss function (Deng et al., 2018) with a network architecture inspired 

on MobileNetV2 (Sandler et al., 2018). The model trains on the VGG2 dataset (Cao et 

al., 2018), has less than a million parameters, occupies 4MB of memory space, is two 

times faster than MobileNetV2, has an inference time of 24 milliseconds and achieves 

an accuracy score of 99.55% on LFW. 

Table 2 shows the size, training data and LFW accuracy score of different face recogni-

tion models. It further confirms that state-of-the-art models do not concern the net-
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works’ size. Moreover, MobileFaceNet can outperform ArcFace when the models are 

trained using the same dataset, VGG2 (Cao et al., 2018), evidencing the impact of the 

network architecture on the face recognition task. 

Table 2 - Models and respective training data size and LFW accuracy score. Number of 

Models refers to the number of models used in the ensemble. 
1 

Private dataset. 
2 

Web-

Face (Yi et al., 2014). 
3 

VGG2 (Cao et al., 2018). 
4 

MS-CELEB-1M (Guo et al., 2016). 

Methods Model Size #Models Dataset Size LFW Acc. 

DeepFace (Taigman et al., 2014) - 3 4M
1
 97.35% 

FaceNet (Schroff et al., 2015) 30MB 1 200M
1
 99.63% 

Softmax + CenterLoss (Wen et al., 2016) 250MB 1 >0.4M
2
 99.28% 

SphereFace (W. Liu et al., 2017) - 1 >0.4M
2
 99.42% 

ArcFace (J. Deng et al., 2018) 112MB 1 >13M
3,4

 99.83% 

ArcFace (J. Deng et al., 2018) 112MB 1 3.8M
4
 99.50% 

MobileFaceNet (S. Chen et al., 2018) 4.0MB 1 3.8M
4
 99.55% 

Face Comparison 

In face recognition face comparison can be divided in distance based and classification 

based methods (Deng et al., 2018; Schroff et al., 2015; Taigman et al., 2014; Wen et al., 

2016). The image comparison stage must consider the feature representation, since they 

may not be compatible (Barz & Denzler, 2017). 

In (Schroff et al., 2015) a nearest neighbor search approach is followed by learning a 

distance threshold that can maximize the face verification task. 

In (Devi & Hemachandran, 2016) the authors use a hybrid method, combining CBIR 

with a SVM binary classifier. The system collects the closest images to the input face 

and then performs a binary classification on a one-vs-all approach, comparing each one 

of the faces returned by the CBIR system with the input image, outputting if two faces 

represent or not the same subject. 

In (Deng et al., 2018; Taigman et al., 2014; Wen et al., 2016) a classification based ap-

proach is taken by training the networks with a softmax loss function or by feeding the 

feature representation into a k-fold softmax function. 
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Figure 11 - Face embedding workflow (Amos, 2016). 
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3 Datasets 

When developing a face recognition model one can choose from a variety of databases 

in which to train and test the model. Multiple datasets from several different sources 

exist. There are unconstrained images, colored or grey scaled, funneled, aligned faces 

and more. Although there is a vast number of datasets, this work will focus on those that 

have been the standard in face recognition works and are publicly available.  

3.1 VGGFace 1/2 

The VGGFace dataset (Parkhi et al., 2015), from VGG (Visual Geometry Group), is a 

large scale dataset built of 2.6M images of 2.6K celebrities, 375 images per person. The 

data was collected combining automation and human in a loop. The motivation for the 

construction of this dataset is the importance of large quantities of training data in face 

recognition models (Parkhi et al., 2015). Moreover, the group is moved by the access 

that large companies have to enormous quantities of private data, such as Google; al-

lowing the company to train FaceNet on 200M images of 8M identities. This way, VGG 

contributed with a large scale, high quality face image dataset that further allowed the 

group to train a state-of-the-art face recognition model (Parkhi et al., 2015). 

More recently, VGG released a larger dataset, VGGFace2 (Cao et al., 2018). VGG-

Face2 contains 3.31M images of about 9K subjects. The images were downloaded from 

Google Image and have large variation in pose, ethnicity, illumination and profession. 

VGGFace2 delivers a dataset with a large number of identities and images per identity 

(average 362.6 images per person), large range of illumination, pose and ethnicity and 

low label noise. The work in (Cao et al., 2018) evidences the quality of the VGGFace2 

by showing the enhancement of the studied models when trained on VGGFace2. Alt-

hough it is a very recent dataset is has gained some notorious popularity, being used in a 

variety of projects (Grewal, 2018). 
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3.2 CASIA-WebFace 

CASIA-WebFace (Yi et al., 2014) is a public dataset, commonly referred as WebFace, 

built of almost 500k images of about 10k subjects. Although it is a small dataset when 

compared to MS-Celeb-1M (Guo et al., 2016) or MF1/2 (Kemelmacher-shlizerman, 

Seitz, Miller, & Brossard, 2016; Nech & Kemelmacher-shlizerman, 2016) it is possible 

to train state-of-the-art models using its data (W. Liu et al., 2017; Wen et al., 2016; Yi 

et al., 2014). 

3.3 Labeled Faces in the Wild 

The Labeled Faces in the Wild (LFW) database (Huang et al., 2007) is the standard da-

taset for unconstrained face verification (Deng et al., 2017). It contains face photo-

graphs designed for studying the problem of unconstrained face recognition. The dataset 

contains 13233 images of faces collected from the web. There are 5749 different identi-

ties. Each face has been labeled with the name of the person pictured. A total of 1068 of 

the people pictured have two or more distinct photos in the dataset. The only constraint 

on these faces is that they were detected by the Viola-Jones face detector. The dataset is 

highly unbalanced with respect to sex, since it contains more than 10000 images of 

males and less than 3000 images of females. 

There are four different sets of LFW images including the original and three different 

types of aligned images. The aligned images include funneled images (ICCV 2007), 

LFW-a, which uses an unpublished method of alignment, and deep funneled images 

(NIPS 2012). Among these, LFW-a and the deep funneled images produce superior re-

sults for most face verification algorithms over the original images and over the fun-

neled images (ICCV 2007). Moreover, the LFW database already contains pairs of 

matched and mismatched images for train and test, see figure 23.  
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3.4 Fine-grained Labeled Faces in the Wild 

Fine-grained LFW (FGLFW) database is a renovation of LFW (Deng et al., 2017). The 

FGLFW database was developed by that fact that almost all the negative face pairs of 

LFW are quite easy to distinguish (Deng et al., 2017). The negative pairs are randomly 

selected from different individuals, and it is common that two random individuals have 

large differences in appearance. Many face pairs even have different genders. These 

differences in appearance can be seen easily in figure 23. Thus, verification is, by its 

nature a problem in which many examples are very easy with large inter-class variance. 

Since FGLFW only modifies the mismatched face samples from LFW, the images from 

the last are directly used. FGLFW offers a text file in the form of a 10-fold cross valida-

tion using splits founded by LFW. There are ten sets, every of which consists of three 

hundred matched pairs and three hundred mismatched pairs. The list is formatted as 

follows: ten sets are arranged in order. The differences in LFW and FGLFW mis-

matched pairs can be contemplated in figure 24. The accuracy of this dataset hasn’t 

been verified neither its reliability by LFW’s team. 
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LFW vs. FGLFW 

Although incredible results have been achieved with state-of-the-art models for the 

standard dataset LFW, their performance drop about ten to twenty percent when per-

forming face verification on the FGLFW database. These methods include state-of-the-

art deep learning, metric-learning and face descriptors methods. It is contemplated in 

table 3 that the methods that deteriorate the most from LFW to FGLFW are deep learn-

ing based methods. 

Table 3 - Verification accuracy (%) on datasets LFW and FGLFW under image unre-

stricted setting using labeled outside data (Zhong & Deng, 2017). 

Method Training images LFW FGLFW 

DeepFace (Taigman et al., 2014) 0.5M 92.87% 78.78% 

DeepID2 (Sun et al., 2014) 0.2M 95.00% 78.25% 

VGG-Face (Simonyan & 

Zisserman, 2015) 

2.6M 96.70% 85.78% 

DCMN (W. Deng et al., 2017) 0.5M 98.03% 91.00% 

Noisy Softmax (Chen et al., 2017) 0.5M 99.18% 94.50% 

Human (W. Deng et al., 2017) n/a 99.85% 92% 
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4 Technology Stack 

Different technologies are used to solve the proposed face recognition problem. 

The developed software uses the Python programming language (2018) version 3.6.2. 

This language is highly portable, powerful and fast. It is largely used by the machine 

learning and data mining community and has a wide number of libraries that permit ef-

ficient data manipulation and out-of-the-bag models. 

Several projects have used this language and its libraries to address the face recognition 

problem effectively (Amos, 2016; Murray, 2017; Sandberg, 2018), showing that it is 

possible to achieve state-of-the-art results under the proposed conditions. 

4.1 General Purpose Libraries 

This work uses the following libraries. NumPy (2018) is a fundamental package for sci-

entific computing with Python. It offers a powerful N-dimensional array object manipu-

lation, linear algebra functions, among other things. OpenCV (2018) is a computer vi-

sion and machine learning library that contains thousands of optimized algorithms. It is 

available in multiple programming languages. Dlib-ml is a machine learning toolkit de-

veloped in C++ aimed for those who need to develop complex software and solve real 

world problems (King, 2009). Although it is targeted for C++ developers it is available 

in other programming languages. This library offers a great number of machine learning 

and optimization algorithms and optimized linear algebra operations. Scikit-learn is a 

python library that disposes out-of-the-box machine learning models, like SVM, and a 

set of utility functions, including pre-processing methods, evaluation metrics, etc 

(Pedregosa et al., 2010). 

4.2 Deep Learning Libraries 

TensorFlow is a library for numerical computation using data flow graphs (Abadi et al., 

2016). It has a flexible architecture that allows one to deploy computations to the CPU 

or GPU. It was developed by the Google Brain Team for the purpose of conducting ma-
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chine learning and deep neural networks research. Keras is a high level python API that 

uses TensorFlow, CNTK or Theano as a backend. It offers an intuitive interface for de-

velopment and training of deep neural networks while providing a set of data modeling 

tools. It was developed with a focus on enabling fast experimentations. 

Table 4 - Used libraries and respective versions. 

Libraries Versions 

Dlib 1.19 

TensoFlow GPU 1.5.0 

Numpy 1.14 

OpenCV 3.4.0.12 

CUDA 9.0 

CuDNN 7 

Keras 2.1.3 

Scikit-learn 0.19.1 
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5 Experimental Results 

The work uses the technologies presented in Section 4, to address the face recognition 

problem. The methods used during the experiments have been explained deeply in pre-

vious Sections. 

The goal of the masters’ thesis is to achieve high subject verification performance. But 

as it was presented throughout this thesis state-of-the-art methods use enormous 

amounts of data and require immense computational power. It has been shown that such 

methods take a long time to train, from several days to even months, making it infeasi-

ble for one to train a model from scratch in the context of a master thesis that must be 

developed in approximately six months. This way, the proposed work will use transfer 

learning, like pre-trained models and pre-computed weights. 

Although the proposed goal is very challenging, recent works suggest that face recogni-

tion using transfer learning and open source libraries to achieve very accurate results, 

with accuracy larger than ninety percent, is possible in personal powerful machines. 

Thereby, the objective of the master’s thesis is to develop computer software capable of 

distinguishing different subjects with a high accuracy rate.  

 

Figure 12 - General application diagram. 
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5.1 Method 

The developed work focuses on face recognition. The main goal is to accurately identify 

the identity of a face image. The problem is challenging and requires one to solve a set 

of related problems. Yet, the work will mainly study the face representation and com-

parison problems. The problems can be divided into four sub-problems. 

First, one must detect faces in the image. In this work an image with a single face will 

be fed into the system as input. It is intended to use the images of the LFW and FGLFW 

databases. Moreover, this task will also involve giving to the system input images with 

no faces. The complexity of the problem is reduced, since the problem of detecting mul-

tiple subjects in an image won’t be addressed. The HoG with SVM face detector (Dalal 

& Triggs, 2004) and MTCNN (Zhang et al., 2016) were considered in this stage. 

Second, the face must be aligned. The system must be invariant to pose and rotations of 

faces, in order to efficiently distinguish different subjects. Although LFW provides the 

necessary adjustments to produce thumbnails from the face images, this work intends to 

build a complete system that does not require anything more than a face image as input 

and a face images database with the respective labels. The system will rely on two mod-

els to localize a face’s landmarks: ensemble of regressive boost trees (Kazemi & 

Sullivan, 2014) and MTCNN (Zhang et al., 2016).  

Third, the system must learn the features of a face. For this purpose, a face encoding 

will be performed, more specifically a face embedding into a Euclidean space. Since it 

is infeasible to train a model from scratch, pre-trained models for the purpose of em-

bedding the faces will be used. As previously discussed, FaceNet achieves state-of-the-

art accuracy by embedding a face into a 128 dimension vector. The work also provides 

a way to verify faces by simply using nearest neighbour search with a distance thresh-

old, thus the face representations with distances greater than the computed threshold are 

classified as not being the same subject. Thereby, the models FaceNet (Schroff et al., 

2015) and dlib’s CNN face encoder (King, 2017) are used for the purpose of face em-

bedding. 
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Finally, the face representations must be compared, so that the subjects can be correctly 

identified. As contemplated on the previous step, one can use the approach adopted by 

FaceNet that has shown extraordinary results. Other techniques will also be considered 

like the one based on CBIR and SVM. 

In the context Convolutional Neural Networks transfer learning may consist in the three 

major scenarios. CNN feature extraction consists in extracting the last fully connected 

layer from the network, then consider the rest of network as a fixed feature extractor. 

Another scenario would be fine-tuning of a network; this involves updating the weights 

of the networking by providing additional data. Finally, one can use the whole model, 

since training a model from scratch takes a large amount of time. It is intuitive to see 

that these scenarios can translate to any other model, where one can reuse, fine-tune or 

extract weights/coefficients. The guide provided by Stanford University for transfer 

learning will be taken into account (Karpathy, 2018). 

Data 

During the development and evaluation phases the LFW and FGLFW were considered 

as the main data sources. The LFW database was considered, since it is the de facto 

benchmark for face recognition and verification (Learned-Miller et al., 2016). Since it 

was shown that many algorithms have better performance on LFW’s test set than on the 

FGLFW, the last one is also considered for performance comparison. The goal is to 

study the impact of the pairs on the systems. 

The models are evaluated using 10-fold cross-validation provided by LFW. Each fold 

contains 300 positive pairs and 300 negative pairs, hence each folds contains 600 pairs, 

i.e. 1200 images. The pairs were obtained randomly. 

FGLFW also provides a pre-computed 10-fold for cross-validation. Yet the pairs are 

carefully selected, so that each pair can be very similar, turning the verification task 

harder. As LFW’s 10-fold, FGLFW’s contains 300 positive and negative pairs per fold. 

The FGLFW set is more balanced than LFW considering subjects’ sex. On average 
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LFW’s cross-validation set has 3.9 times more male subjects than female subjects. 

Meanwhile on FGLFW the number of female subjects per fold is, on average, 2.4 times 

smaller than the number male subjects. Moreover, FGLFW considers 1.5 more identi-

ties per fold the LFW. This way FGLFW is a more balanced and diversified set than 

LFW.  

Table 5 - LFW 10-fold cross-validation statistics. 

LFW/Fold 1 2 3 4 5 6 7 8 9 10 Mean 

#females 286 332 325 298 292 330 316 292 312 274 305.7 

#males 914 868 875 902 908 870 884 908 888 926 894.3 

#identities 435 409 397 423 422 422 443 443 439 451 428.4 

Table 6 - FGLFW 10-fold cross-validation statistics. 

FGLFW/Fold 1 2 3 4 5 6 7 8 9 10 Mean 

#females 276 399 423 334 335 328 346 345 407 286 347.9 

#males 924 801 777 866 865 872 854 855 793 914 852.1 

#identities 293 275 265 279 270 272 311 270 285 290 281 

In addition, different systems are evaluated on the test set. The test set consists of 500 

positive and negative pairs, which is rather small. Although a training set is also provid-

ed, this was only used to train a SVM binary classifier. The training set contains 1100 

positive and negative pairs, i.e. 2200 pairs. Hence the LFW dataset, when compared to 

other databases, like VGG2 or CASIA-WebFace, is indeed a very small. Furthermore, 

although LFW contains 13233 images, only a small fraction is considered for test and 

training. The training set contains little more than 1500 identities. Both training and test 

sets are very unbalanced with respect to the subjects’ sex. On both sets the number of 

male face images is about three times greater than the number of female images, which 

is on the same level of disparity of the cross-validation set. The training set has 3.9 im-

ages per identity while test has 3. 
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Table 7 - LFW’s training and test set statistics. 

Dataset #females #males #identities  

Training 1150 3250 1519 

Test 568 1549 696 

Models 

As previously explained in the beginning of this Section, the system will have four dif-

ferent stages, being stage three and four deeply considered. The data flow between each 

stage should be independent of the models used on each one, this way different ap-

proaches can be studied easily, simplifying the development and comparison of differ-

ent methods. Most of the tested methods were previously trained by the referred au-

thors, taking advantage of transfer-learning. 

Face Detection 

The first stage involves detecting faces in the input image. As anteriorly stated, the sys-

tem will only consider a single face per image, if multiple faces are detected the largest 

one is considered, in order to diminish the problem complexity. Negative samples were 

also fed to the system, i.e. images without a face. The methods must be capable of stop-

ping the process when a face isn’t found; otherwise a cropped image, thumbnail, will be 

given as input to the next stage. 

Several promising methods have been proposed. Since it is desirable to verify a subject 

identity in real-time, this work will consider the following methods. HoG with SVM 

face detector (Dalal & Triggs, 2004) and MTCNN (Zhang et al., 2016). There are mul-

tiple sources containing these models pre-trained freely on the web and in several pack-

ages. This phase won’t be deeply considered since, surprisingly, it has been shown that 

variations in face localization bounding boxes doesn’t affect the face recognition task 

significantly (Zhong et al., 2017). Moreover, the MTCNN model has shown to be a 
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good model for localizing faces on the studied task (Zhong et al., 2017). Thus the HoG 

based face detector will solely be used as a baseline comparison. 

The HoG with linear SVM was considered as a baseline detector. A pre-trained model 

was collected from Dlib. The training process is as follows. The model computes the 

HoG descriptor of 3000 LFW images. Each descriptor is later fed to a linear SVM that 

classifies it as person or non-person. 

Also, a pre-trained MTCNN model is used. It is implemented in Tensorflow and is 

freely available (Sandberg, 2018), yet the training process isn’t disclosed. There are bet-

ter performing MTCNN models, but they are implemented in a different deep neural 

networks framework, Matlab/Caffe. Since the work in (Zhong et al., 2017) shows that 

the variation of the bounding boxes does not have a significant impact on the face 

recognition task, having the fittest bounding boxes isn’t a main concern. Furthermore, 

the face encoder is also implemented in Tensorflow, which facilitates the workflow of 

the system. 

Face Alignment  

The second stage assures that the system is invariant to face pose, rotation and transla-

tion. Here the system gets a face thumbnail as input, derived from stage one. The sys-

tem will transform each picture so that the face landmarks are always in the same place 

in the image. To do so a model for estimating the localization of the face landmarks and 

to center and project the face must be taken into account. 

The face landmarks can be found using the method proposed in (Kazemi & Sullivan, 

2014) that uses an ensemble of regression trees to estimate the face landmarks. The sys-

tem is capable of estimating the face landmarks in one millisecond. Finally, the face can 

be centered. Another method was considered, MTCNN (Zhang et al., 2016), that out-

puts a face’s bounding box and five points landmarks. Only 2D face alignment will be 

considered since 3D face alignment has revealed to not increase face recognition per-

formance significantly (Banerjee et al., 2018). 
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Dlib offers a pre-trained facial features estimator, referred as Dlib_68, and aligner. The 

facial features are estimated using an ensemble of regressive boost trees. The model is 

trained similarly to the one presented on the original work (Kazemi & Sullivan, 2014), 

only differing on the training set; Dlib’s model trains on the iBUG 300-W dataset 

(Sagonas et al., 2015). This way, the model outputs 68 points face landmarks as shown 

in figure 13 opposing to the 194 of the original model. 

 

Figure 13 - 2D sixty-eight points face landmarks (Rosebrock, 2017). 

As previously referred, the MTCNN model used doesn’t disclose training details. This 

model has the advantage of outputting both the bounding boxes and landmarks of a 

face, excluding the need for a face landmarks estimator model, thus simplifying the pro-

cess. 

Face Representation  

In this stage the system has already transformed the image completely. The input is now 

an aligned face that will serve as input to the model that will learn a new representation 

for the face images. The learned representation must be able to capture unique face fea-

tures that will permit to distinguish the different subjects. 

Incredible methods, close to human capabilities (Taigman et al., 2014), some surpassing 

them (Deng et al., 2018; Schroff et al., 2015; Wen et al., 2016), have been developed. 

The scores obtained on the dataset Unconstrained LFW are the standard for face verifi-
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cation. As presented before, these methods take a lot of time to train making it impossi-

ble for one to train a model from scratch on a personal machine. For this reason, transfer 

learning will be used. Several pre-trained networks trained using different loss function 

are freely available on the web (Amos et al., 2016; Sandberg, 2018). 

Since FaceNet still represents state-of-the-art in face recognition (Deng et al., 2018; 

Wen et al., 2016) the pre-computed weights of this model are used. The work of 

(Sandberg, 2018), offers a set of pre-trained networks trained using the triplet-loss. The-

se models are trained on the VGGFace2 and CASIA-WebFace datasets using Tensor-

flow, and will be referred as CNN_VGG2 and CNN_CASIA respectively. This way, the 

impact of the training data can be evaluated at test time. Both of the models use the In-

ception-ResNet-V1 architecture (Szegedy et al., 2016) and use the same training proce-

dure, thus they only differ on the data used for training. Both of the models were trained 

on an Nvidia Pascal Titan X GPU, Tensorflow r1.7, CUDA 8.0 and CuDNN 6.0. They 

use a learning rate of 0.05. To avoid overfitting, Dropout (Srivastava et al., 2014) is 

used, which consist in deactivating, with a certain probability, each neuron of the net-

work; a Dropout of 0.4 is used. Moreover a data augmentation technique referred as 

random flip is included. This technique flips an image horizontally with a certain prob-

ability, commonly 0.5. Hence a random flip with 50% probability is applied to the train-

ing data. Finally, for optimization the Adam algorithm was selected (Kingma & Ba, 

2014). Using this training conditions, CNN_VGG took 30 hours to train, CNN_CASIA 

training times isn’t disclosed. 

Dlib’s face encoder (King, 2017) is also considered for testing, referred as CNN_Dlib. 

This model is a ResNet network (He et al., 2015) with twenty nine convolutional layers. 

The network was trained on the VGGFace dataset (Parkhi et al., 2015), FaceScrub da-

taset (Ng & Winkler, 2014) and scraped images by the author. The model is implement-

ed using Dlib’s neural network framework. The loss function tries to project the identi-

ties into non-overlapping spheres of radius 0.6 and includes hard-negative and hard-
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positive mining; unfortunately the loss function isn’t explicitly mentioned neither other 

training specifications. 

Table 8 - The used embedding models and respective information. 

Model Network 

Architecture 

Size 

(MB) 

Loading 

Time 

Training 

Data 

Loss 

function 

Embedding 

Size 

CNN_Dlib  ResNet 21.4 1.256 VGG, 

FaceScrub, 

Scrapped 

data 

- 128 

CNN_CASIA Incepition-

ResNet-V1 

93.5 19 CASIA-

WebFace 

Triplet-

loss 

512 

CNN_VGG2 Incepition-

ResNet-V1 

91.3 21 VGG2 Triplet-

loss 

512 

Subject Identification 

Finally, after obtaining the face embedding representation the system must now correct-

ly identify the subject face. Each face image in the database will be labeled with the 

respective identity. Thus the number of labels is equal to number of subjects. 

There are numerous approaches for face recognition, including nearest neighbor search 

(Schroff et al., 2015), CBIR with SVM (Devi & Hemachandran, 2016) and neural net-

works (Deng et al., 2018; Taigman et al., 2014; Wen et al., 2016). FaceNet uses a near-

est neighbor approach by introducing a distance threshold of 1.242, which is obtained 

by detecting the optimal split between subjects. Different thresholds can be computed, 

since it depends on the data. The problem can also be addressed as a multi-class classi-

fication problem by using a SVM for subject classification. The work in (Devi & 

Hemachandran, 2016) uses a hybrid approach, based on CBIR and SVM. On a first 

phase the system collects a set of face images that are close to the input face image with 

a nearest neighbor approach, thus using CBIR. Finally, the system uses a SVM that 
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makes a binary classification, outputting if two images represent the same subject or 

not. This way the system can reduce the computational cost of comparing the input im-

age to the whole database, since it only compares the input image to the images returned 

by the CBIR system. This work will consider the threshold, SVM and CBIR with SVM 

approaches. 

Evaluation Metrics  

To evaluate the performance of the models different metrics must be taken into account.  

To estimate the models’ efficiency and effectiveness the computational time used dur-

ing the test phase and multiple classification metrics must be contemplated, using dif-

ferent model complexities and data sizes. It is intended to identify which of the stages is 

the system’s bottleneck. For this reason, each stage must be evaluated individually. 

Several metrics that are commonly present in object and face recognition literature will 

be considered to evaluate the models. These metrics are: Precision, Recall, ROC curves 

and accuracy (He et al., 2017; Redmon & Farhadi, 2016; Simonyan & Zisserman, 2015; 

Viola & Jones, 2001).  

 

Figure 14 - Detailed application diagram. 
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5.2 Experimental Results 

All the obtained results were computed using the author’s personal machine, an ASUS 

ROG Strix GL553VW, running the Ubuntu 16.04 LTS operating system. The specifica-

tions of the machine can be contemplated in table 9. 

Table 9 - Machine specifications. 

Part Model 

CPU Intel® Core™ i7-6700HQ @ 2.60GHz 

GPU NVIDIA® GeForce® GTX 960M, VRAM GDDR5 4GB 2500 MHz 

Memory DDR4 16GB (1066 MHz) 

Disk 1TB HDD 

The machine has a fairly nice computational power and can run the evaluated models in 

real time with no hassle. The computations, face localization, landmarks detection and 

face embedding, are computed by the GPU that has a computing capability of 5.0, ac-

cording to NVIDIA’s evaluation benchmark. 

The different stages of the face recognition process were evaluated separately; naturally 

the performance of a single stage depends on the models used in previous ones, exclud-

ing face localization.  

Evaluating the computational cost of each model is straight forward and the Python li-

brary time was used for this purpose. Common input image sizes include: 96x96 

(Schroff et al., 2015), about 128x128 (J. Deng et al., 2018; Schroff et al., 2015; Zhong 

et al., 2017) and 224x224 (Krizhevsky et al., 2012; Schroff et al., 2015). The system 

was tested on images of size 250x250, the original size of LFW’s images. Note that this 

is the size that is fed to the face localization models. The images are cropped, using the 

obtained bounding boxes, in order to produce a face thumbnail; hence the size will be 

smaller than the original one. The thumbnails are resized using bilinear interpolation to 

180x180. Furthermore, since the performance of the complete system depends on its 

parts, the combination of multiple models will be studied as a whole and stage-wise. 
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Implementation Details  

While developing the face recognition system flexibility was a primary concern, so that 

different model combinations could be tested easily. This way, an API was developed to 

abstract and facilitate testing. The implementation consists of multiple functions, one 

for each stage and common computations such as reading images from a database. The 

models used in each stage can be easily changed by simply modifying a function’s ar-

gument, as other parameters such as the image size used. Hence the system is flexible 

and allows one to rapidly test different system combinations. 

When testing the different models it was deeply desirable that repeated computations 

didn’t occur, this includes: face localization, landmarks estimation and face alignment 

and face representation. As seen all the stages’ computations, except the fourth, can be 

recycled. This way, the face thumbnails for both the HoG with SVM and MTCNN 

models were saved. Furthermore, the aligned faces produced by the regressive trees and 

MTCNN were also saved. Finally, considering MTCNN and regressive trees face align-

ers over the MTCNN thumbnails were embedded using the three proposed methods and 

later serialized using the pickle library. While classifying each pair the desirable em-

bedding for each face image can be easily obtained by accessing the serialized object. 

Each embedding object is a Python dictionary, which is a Hash Table implementation. 

This way, an embedding of an image is indexed by its name that turns the retrieval of 

the face representation fast and easy. Hence, most of the computations are recycled. 

Experimental Results Evaluation 

Only two databases for the face recognition task are considered for this work - LFW and 

FGLFW. The system is evaluated as a whole. Nevertheless, the contribution of a stage’s 

model for the face recognition task can be evaluated. This is done by changing the mod-

el used on a single stage. Hence the impact of a model for the face recognition task is 

addressed. 

The time of each model is evaluated excluding intermediate computations between 

stages, such as image resizing. This way, the time of each model can be evaluated by 
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simply introducing a timestamp at the beginning and ending of a model’s computation, 

considering a function call time irrelevant. 

Face Localization 

In this stage two models were tested on the whole LFW dataset. Not surprisingly the 

HoG with SVM model turned out to be a bad choice to integrate the system. When lo-

calizing faces, this model failed to detect 58 faces, taking, on average, 0.0393s of infer-

ence time per image. In contrast MTCNN was able to detect all the faces and still be 

faster than the previous model, taking 0.0309s per image, on average. MTCNN consid-

ers an image pyramid and it consists of a cascade of three CNNs, so it is surprising that 

it can be faster than the other considered model. A possible reason for this behaviour 

relies on the fact that MTCNN runs on the GPU while HoG with SVM runs on the 

CPU. This way, MTCNN reveals to be a very appealing method. Even more, it has the 

ability of also outputting a face’s features, removing the need for applying a model for 

face landmarks estimations, thus reducing computational time.  

Table 10 – Face localization inference time per face and number failed faces on the 

LFW dataset. 

Models Average Inference Time (s) #Failed Faces 

HoG + SVM 0.0393 58 

MTCNN 0.0309 0 

Since MTCNN didn’t fail any example and is faster than the other method, all the next 

stages solely use faces localized by the MTCNN model. 

Face Landmarks Detection and Alignment 

Dlib’s regressive boost trees implementation for face landmarks estimation (Dlib_68) 

was applied to the face thumbnails produced by MTCNN. Just like MTCNN, Dlib_68 is 
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able to estimate every face pose. Moreover, it reveals to be extremely fast, taking on 

average 0.0028s to estimate the 68 face landmarks per image. 

Table 11 – Inference time per face and failed facial features on the LFW dataset. 

Models Average Inference 

Time (s) 

#Failed Faces Localization + Land-

marks Estimation 

Time (s) 

Dlib_68 0.0028 0 0.0338 

MTCNN - 0 0.0309 

After detecting the face landmarks using Dlib_68, Dlib’s face aligner was used to align 

the thumbnails. The aligner is very fast, since it only takes 0.0016s to align a thumbnail. 

Naturally, Dlib’s face aligner cannot be used with MTCNN 5 points face landmarks, 

since it expects to receive facial features built of 68 points. Thus, the aligner was only 

tested using Dlib_68’s estimations. 

Table 12 - Inference time per face, number of failed face alignments and Stage 1 and 2 

combined times on the LFW dataset. 

Models Average Inference 

Time (s) 

#Failed Faces Stage1 + Stage2 Time 

(s) 

Dlib’s Aligner 0.0016 0 0.0354 

MTCNN 0.0309 0 0.0309 

Face Representation 

All three models were applied on MTCNN and Dlib aligned images, resulting in 6 dif-

ferent embedding sets. All three models use the GPU during inference time, yet 
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CNN_Dlib is not implemented using the same library as CNN_VGG and CNN_CASIA. 

They have yet another difference, CNN_Dlib outputs 128 feature vectors while 

CNN_VGG and CNN_CASIA output 512 feature vectors. 

At inference time, all the models were all faster when computing the feature maps on 

the Dlib aligned thumbnails, 0.001s faster on average. This is a consistent behavior that 

might be caused by the way that the Dlib library generates its thumbnails. Yet, the im-

pact isn’t concerning. Furthermore, CNN_Dlib is considerably faster than the other 

models, about 2.5 times faster. CNN_CASIA is slightly faster than CNN_VGG, which 

surprising since the training conditions and architectures are exactly the same, exclud-

ing the training set. While CNN_Dlib uses a small ResNet arquitecture, CNN_CASIA 

and CNN_VGG use the original Inception-ResNet-V1 architecture which is indeed very 

deep. Thus it is natural for CNN_Dlib to be faster than the other models. 

Table 13 - Embeddings’ inference time and Stage 1, 2 and 3 combined times. 

Models Stage 2 Models Inference 

Time (s) 

Stage 1 + Stage 2 + 

Stage 3 Time (s) 

CNN_Dlib Dlib_68 + Dlib Aligner 0.0089 0.0443 

CNN_Dlib MTCNN 0.0091 0.0400 

CNN_CASIA Dlib_68 + Dlib Aligner 0.0227 0.0581 

CNN_CASIA MTCNN 0.0243 0.0552 

CNN_VGG Dlib_68 + Dlib Aligner 0.0235 0.0589 

CNN_VGG MTCNN 0.0247 0.0556 

Subject Identification 

For this stage different approaches were studied. This includes two different 10-fold 

cross-validation sets, LFW and FGLFW. The face recognition system is tested using 

distance thresholds and SVM classification. The last is only tested on LFW’s test set 

due to training conditions. Still, the threshold approach is also conducted on the test set. 
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Firstly, subject identification using a threshold is addressed. Let     , where M is the 

set of face images, and   an embedding function such that  (  )    , where       is 

the feature vector representation of   . Two face images represent the same identity if 

their distance e lesser or equal than a defined threshold. For this purpose, the Euclidean 

distance was employed. Hence, considering a threshold     , the face verification 

task decision can be defined as follows: 

  (     )  ‖     ‖ 

 
              (23) 

 {
 (     )                                           

                                                   
 (24) 

For CNN_VGG and CNN_CASIA the upper bound of the considered thresholds was 

based on FaceNet’s proposed thresholds: 1.1 and 1.242. Thus, the tested thresholds for 

these two models range from 0.7 to 2.0 with a 0.001 step, hence each test considered 

1300 thresholds. Meanwhile, for CNN_Dlib, the thresholds’ values range should be up-

per bounded by 0.6, since the same identities lye in a ball of 0.6 radius. Yet, a 0.7 upper 

bound was considered and a lower bound of 0. Also, a 0.001 step was considered, thus 

700 thresholds were considered per test. The best performing threshold, i.e. the thresh-

old that has the largest mean accuracy over the 10-fold cross-validation set, is reported 

for each model. 

Generally the best performing face encoder is CNN_VGG, followed by CNN_CASIA 

and finally CNN_Dlib on the LFW cross-validation set. CNN_Dlib performs very badly 

under Dlib’s face aligner. Dlib’s face alignment method outputs far worse results in face 

verification, CNN_Dlib’s accuracy increases 36 percent points, while the other methods 

increase 10 percent points when switching from Dlib’s face aligner to MTCNN’s. The 

standard deviation of the accuracy score suffers a great decrease from the Dlib to the 

MTCNN method, showing that the results of the last are more consistent. Since Dlib’s 

face aligner is clearly worse than MTCNN’s, the ROC analysis is performed using 

MTCNN face alignment only. All the models output large areas under the curves 
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(AUC), at least 0.97. Although the regressive boost trees face landmarks estimator and 

aligner seemed very promising the MTCNN face aligner achieved far better results, 

yielding a very large accuracy gap between the two. It is also interesting to notice that 

CNN_Dlib best performing threshold on LFW’s cross-validation set under MTCNN’s 

face aligner is greater than 0.6. This means that the model isn’t able to separate well 

different identities, specifically the same identity may be in different hyperspheres, 

meaning that different identities are not separated by the system. 

Table 14 - CNN face embeddings top performing threshold using Dlib_68 and Dlib’s 

face aligner on LFW’s 10-fold cross validation data.
1
Threshold.

 

Models Th.
1
 Acc. 

(Mean) 

Acc. 

(Std) 

Recall 

(Mean) 

Recall 

(Std) 

Precision 

(Mean) 

Precision 

(Std) 

CNN_Dlib 0.589 0.604 0.015 0.527 0.018 0.624 0.022 

CNN_CASIA 1.155 0.876 0.008 0.862 0.024 0.888 0.013 

CNN_VGG 1.148 0.884 0.013 0.860 0.023 0.904 0.011 

Table 15 - CNN face embeddings top performing threshold using MTCNN face align-

ment on LFW’s 10-fold cross validation data. 
1
Threshold. 

Models Th.
1
 Acc. 

(Mean) 

Acc. 

(Std) 

Recall 

(Mean) 

Recall 

(Std) 

Precision 

(Mean) 

Precision 

(Std) 

CNN_Dlib 0.634 0.966 0.009 0.960 0.015 0.970 0.007 

CNN_CASIA 1.079 0.974 0.007 0.967 0.012 0.980 0.007 

CNN_VGG 1.115 0.985 0.004 0.984 0.008 0.987 0.006 
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Figure 15 - LFW’s 10-fold cross validation curves. Top left: CNN_Dlib ROC curves. 

Top right: CNN_CASIA ROC curves. Bottom center: CNN_VGG ROC Curves. 

All the models’ thresholds decrease from the LFW to the FGLFW dataset. This is ex-

pected since FGLFW’s pairs are more similar than LFW’s. Thus, the distance between 

FGLFW’s pairs is smaller, therefore the threshold distance that is able to better separate 

a pair of identities decreases. Even though the CNN_Dlib has very low performance 

using Dlib_68 on LFW, the model is able to achieve a very similar performance to 

CNN_CASIA. CNN_Dlib is able to outperform all tested methods on FGLFW using 

Dlib_68 by 10 percent. This behavior is very surprising, since CNN_Dlib is the worst 

performing model in every test. It’s also astonishing that CNN_Dlib performs better 

using Dlib_68 on FGLFW than LFW, except for this special case all the other methods 

perform worse on FGLFW. Moreover, the models show larger standard deviation accu-
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racy on FGLFW than on LFW, indicating that the performance is more inconsistent. 

ROC analysis also outputs smaller AUCs. 

Table 16 - CNN face embeddings top performing threshold using Dlib_68 and Dlib’s 

face aligner on FGLFW’s 10-fold cross validation data. 
1
Threshold. 

Models Th.
1
 Acc. 

(Mean) 

Acc. 

(Std) 

Recall 

(Mean) 

Recall 

(Std) 

Precision 

(Mean) 

Precision 

(Std) 

CNN_Dlib 0.557 0.878 0.013 0.859 0.031 0.893 0.022 

CNN_CASIA 1.065 0.762 0.018 0.725 0.022 0.783 0.025 

CNN_VGG 0.997 0.755 0.018 0.662 0.022 0.813 0.024 

Table 17 - CNN face embeddings top performing threshold using MTCNN face align-

ment on FGLFW’s 10-fold cross validation data. 
1
Threshold. 

Models Th.
1
 Acc. 

(Mean) 

Acc. 

(Std) 

Recall 

(Mean) 

Recall 

(Std) 

Precision 

(Mean) 

Precision 

(Std) 

CNN_Dlib 0.561 0.878 0.016 0.867 0.016 0.887 0.026 

CNN_CASIA 0.988 0.897 0.012 0.895 0.011 0.898 0.021 

CNN_VGG 0.970 0.912 0.012 0.913 0.013 0.911 0.019 
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Figure 16 - FGLFW’s 10-fold cross validation curves. Top left: CNN_Dlib ROC 

curves. Top right: CNN_CASIA ROC curves. Bottom center: CNN_VGG ROC Curves. 

The best performing models on both LFW and FGLFW cross-validation sets were se-

lected for testing. Thus a total of 6 models were considered, 3 from each set. All the 

tested models use MTCNN face aligner. Although CNN_Dlib has the same mean accu-

racy on FGLFW when using Dlib_68 or MTCNN, when using Dlib_68 it has lower 

standard deviation, -0.001. This difference is insignificant, yet for comparison purposes, 

CNN_Dlib with MTCNN face aligner is considered. The test set is provided by LFW 

and contains 1000 face image pairs. The FGLFW thresholds perform worse than LFW 

thresholds. Since this is a LFW test this is expected, since LFW pairs are more distant 

than the ones in FGLW. Hence, as contemplated the number of false negatives increases 

and the number of false positives decreases when using FGLFW’s thresholds. This is a 

natural result triggered by the smaller thresholds.  



 

56 

Contemplating the results, it can be stated that CNN_VGG is the best performing mod-

el. CNN_VGG is able to outperform CNN_CASIA that is trained under the same condi-

tions, showing the impact of training data at test time. Yet the difference in performance 

is very small, thus the following questions remain: Does triplet-loss has enough discrim-

inative power? Is the quality of CASIA-WebFace superior to VGGFace2?  

Although CNN_Dlib performs worse than the other models, it revealed very competi-

tive results, while being two times faster.  

Table 18 – LFW’s best performing threshold score under the face recognition protocol. 

Models Accuracy #TP #FP #TN #FN 

CNN_Dlib 0.953 479 26 474 21 

CNN_CASIA 0.971 482 11 489 18 

CNN_VGG 0.975 491 16 484 9 

Table 19 – FGLFW’s best performing threshold score under the face recognition proto-

col. 

Models Accuracy #TP #FP #TN #FN 

CNN_Dlib 0.945 447 2 498 53 

CNN_CASIA 0.944 444 0 500 56 

CNN_VGG 0.963 463 0 500 56 

Finally, regarding the test set pairs provided by LFW, a linear SVM binary classifier 

was trained. The SVM is implemented under Scikit-learn, turning the model easy to test 

and train. The SVMs are trained on LFW’s training set. The SVM must train on the 
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pairs face representations, this way the SVM looks at two faces at once. The training 

and test sets were obtained by concatenating the face pairs’ embeddings into one. The 

concatenated vectors are labelled as 0 and 1, different and same identity. Since the fea-

ture maps obtained from the MTCNN aligner by CNN_Dlib, CNN_CASIA and 

CNN_VGG were the best performing ones during cross-validation and test, they’re in-

cluded on the SVM classification task. Hence, three SVMs were trained. A stratified 10-

fold cross-validation was generated with the training data, leaving 20% for validation.  

The learning curves of the three SVM all have the same behaviour (Figure 17). Both 

validation and cross-validation scores converge to a very low value, approximately 

50%, with the increasing size of the training set. Thus, there wouldn’t be great benefits 

with more training data. This way, the learning curves suggest that the linear SVM isn’t 

a good model for this task. Further parameterization of the model or even a different 

estimator could leave to a lower bias. 
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Figure 17 - SVMs’ learning curve. Top left uses CNN_CASIA embeddings. Top right 

uses CNN_Dlib embeddings. Bottom center uses CNN_VGG embeddings. The lines in 

red represent the training score, while the green lines represent the cross-validation 

score. 

The differences between face verification and recognitions were addressed. It is very 

intriguing how face recognition models are tested under face verification constraints 

(Deng et al., 2018; Schroff et al., 2015; Wen et al., 2016; Zhong et al., 2017). From the 

presented approaches only one performs real face recognition: the CBIR with SVM ap-

proach (Devi & Hemachandran, 2016). The work presents a face recognition pipeline 

based on CBIR. Given a face image to the system; it will retrieve a set of images based 

on a similarity measure (CBIR). Using a SVM the system performs face verification 

using the set of returned face images and the input image. 

For the face recognition task none of the presented works provided a protocol to test a 

model under such conditions. For that reason, a simple test protocol was created. To test 
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the face recognition system a complete database is considered, in this case the LFW 

dataset. The system will iterate over every image of the database once. For each image 

the system will try to search its identity in the database by comparing the input’s em-

bedding with all the other images’ embedding, excluding the input image itself. Consid-

er a database D, where image      and      be the embedding of face image Ii, 

where V is the set of embeddings of the face images in D. Consider a system S such 

that: 

  (  )        ‖     ‖ 

 
                  *  + (25) 

Following the proposed protocol this work tests two different methods, threshold based 

and CBIR with SVM based. For this task only the face representations collected from 

CNN_VGG under MTCNN’s face aligner were considered. For each system the number 

of false and true positive and negative predictions are presented. The LFW database has 

4069 identities that have only one image sample; this way for these images’ embeddings 

no identity should be returned. This means that there should be 4049 true negatives. 

For the threshold based only, the CNN_VGG face encoder with the MTCNN face 

aligner system was tested, using the best performing thresholds for this system on LFW 

and FGLFW, 1.115 and 0.970. The system searches every embedding in the database in 

a naïve way, i.e. sequentially. After verifying every distance the system returns the vec-

tor that is closest to the input, like in equation 25. Finally, if the computed distance is 

lesser or equal than the defined threshold the input image is classified with the same 

identity as the returned vector. 

Table 20, shows that the largest threshold is far too lose, since it has no false or true 

negative. This means that the system is always able to find a representation that is at a 

distance to the target face vector that is lesser or equal than the threshold. Hence 1.115 

is a very large threshold for the face recognition task. The smallest threshold outputs 

better results and is able to detect negative pairs, yet the difference in accuracy is very 

small. The results show that using a shortest threshold may reduce the number of false 
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positives. As expected searching times are very poor, once the systems searches the 

complete database, taking a fifth of second to return an identity. 

Table 20 - Face recognition benchmarks using different thresholds. 
1
Average search 

time per input image. 

Threshold #TP #FP #TN #FN Accuracy Search time
1
 (s) 

1.115 8491 4742 0 0 0.642 0.209 

0.970 8487 4645 97 4 0.649 0.209 

Regarding the CBIR with SVM system, the goal of the SVM is to reduce the number of 

false positive and negatives. For that purpose the previously presented SVM trained on 

LFW under CNN_VGG embedding is used. No distance threshold was used, since the 

use of SVM is solely to study its impact as a performance enhancer. Thus the SVM 

classifies the vector that is at a minimum distance to the input vector. From previous 

results (Table 20) it is known that for every image embedding there’s always another 

embedding of a different image that is at a maximum distance of 1.115. The results in 

table 21 show that using a SVM classifier results in a drop of accuracy of more than 

10%, making it a poor choice for this task. Yet, this system performed very similarly on 

the face verification task in contrast to the threshold based system. 

Table 21 - Face recognition benchmarks using CBIR with SVM. 
1
Average search time 

per input image. 

Model #TP #FP #TN #FN Accuracy Search time
1
 (s) 

CBIR + SVM 3926 1444 3298 4565 0.546 0.197 

When comparing the results of the proposed face recognition protocol and LFW’s face 

verification task a huge drop in accuracy is contemplated. The models’ accuracy scores 

decrease about 30% using the same thresholds. The results show that face recognition 

needs a greater discriminative power than face verification.  
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6 Conclusion 

This work addressed the problem of face recognition. The challenges of this task were 

exposed by analyzing each of its stages independently. Different methods were 

presented and the respective state-of-the-art models were explained. Multiple face 

recognition systems were tested, varying the face localization, landmarks detection, 

encoding and comparison algorithms. The tests reveal that it is possible to develop a 

very high performing system on standard face recognition benchmarks on a personal 

machine through transfer learning. Furthermore, the work shows the great difference in 

performance between face verification and recognition. For this purpose a test protocol 

was proposed. This way, the goal of the masters’ thesis was achieved, since high levels 

of accuracy were achieved on face recognition benchmarks in real time.  
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Appendix 

 
 

 

Figure 18 - Inception Network (GoogLeNet) building block (Szegedy et al., 2015). 

 
Figure 19 - ResNet (He et al., 2015) building block (Szegedy et al., 2016). 
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Figure 20 - Inception-ResNet-V1 block example (Szegedy et al., 2016). 

 

Figure 21 - MTCNN’s P-Net, R-Net and O-Net architectures (Zhang et al., 2016). 
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1.  
Figure 22 - Regressive Tree car price prediction example (Cosma & Shalizi, 2006). 

 
Figure 23 - LFW’s training set sample, matched and mismatched pairs (―LFW,‖ n.d.),         

non- aligned faces. 
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Figure 24 - On the left: mismatched LFW’s pairs; on the right: mismatched FGLFW’s 

pairs (Zhong & Deng, 2017). 

 
 

 


