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Abstract— Small-world graphs, exhibiting high clustering co-
efficients and small average path length, have been shown to
capture fundamental properties of a large number of natural and
man-made networks. In the context of communication networks,
navigable small-world topologies, i.e. those which admit efficient
distributed routing algorithms, are deemed particularly effective,
for example in resource discovery tasks and peer-to-peer applica-
tions. Intrigued by the fundamental limits of communication in
networks that exploit this type of topology, we study two classes of
navigable small-world networks from the point of view of network
information flow and provide inner and outer bounds for their
max-flow min-cut capacity. Our contribution is in contrast with
the standard approach to small world networks which privileges
parameters pertaining to connectivity.

I. INTRODUCTION

Random graphs play an important role as mathematically
tractable models for complex, large-scale networks. The most
recent addition to this set of tools is a class of objects
generally designated by small world graphs, which exhibit
high clustering coefficients (i.e. neighboring nodes are likely
to be connected) and small average path length — the diameter
of a graph with n nodes is in fact bounded by a polynomial
in log n. The term small-world graph itself was coined by
Watts and Strogatz, who in their seminal paper [1] defined a
class of models which interpolate between regular lattices and
random Erdös-Rényi graphs by adding long-range shortcuts
with a certain probability p, as illustrated in Fig. 1. The most
salient feature of these models is that for increasing values of
p the average shortest-path length diminishes sharply, whereas
the clustering coefficient remains practically constant during
this transition.

p=0 p=0.1 p=0.9

Fig. 1. Small-World model with added shortcuts for different values of the
adding probability p.
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Fig. 2. Kleinberg small-world model. Each node is directly connected to
all neighbors within h hops, and also to q more distant nodes through so
called shortcuts. In the shown example, where h = q = 1, lightly shaded
circles represent the nodes that are directly connected to node (i, j), i.e. the
four direct neighbors of (i, j) and one additional node (k, l) connected by a
shortcut.

Since their discovery, small-world graphs have been shown
to capture fundamental properties of relevant phenomena and
structures in sociology, biology, statistical physics and man-
made networks, with examples ranging from Milgram’s “six
degrees of separation” [2] between any two people in the
United States to such diverse networks [3] as the U.S. elec-
tric power grid, the nervous system of the nematode worm
Caenorhabditis elegans, food webs, telephone call graphs,
citation networks of scientists, and, most strikingly, the World
Wide Web [4].

It is therefore not surprising that key attributes of small-
world networks, such as the degree distribution of the nodes,
the clustering coefficient of the graph, the shortest path length
between two nodes, or the betweenness of a node (i.e. the total
number of shortest paths that pass trough it), have become the
focus of intense research (see e.g. [5] and references therein).

The combination of strong local connectivity and long-
range shortcut links renders small-world topologies potentially
attractive in the context of communication networks, either to
increase capacity or simplify certain tasks. Recent examples
include resource discovery in wireless networks [6] and design
of heterogeneous networks [7], [8]. Another relevant applica-
tion is related to overlay networks for peer-to-peer commu-
nications, for which small world properties are deemed to be
particularly useful [9].

When applying small-world principles to communication
networks, we would like not only that short paths exist
between any pairs of nodes, but also that such paths can easily
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be found using merely local information. In [10] Kleinberg
showed that this navigability property, which is key to the
existence of effective distributed routing algorithms, is lacking
in the small-world models of [1] and [11]. The alternative
navigable model presented in [10] consists of a grid to which
shortcuts are added not uniformly but according to a harmonic
distribution, such that the number of outgoing links per node is
fixed and the link probability depends on the distance between
the nodes, as illustrated in Fig. 2. For this class of small-world
networks a greedy routing algorithm, in which a message is
sent through the outgoing link that takes it closest to the
destination, was shown to be effective, thus opening the door
towards information flow in a distributed fashion.

Motivated by their potential to improve the transfer of data
in networks with multiple parties, we set out to investigate the
fundamental limits of network information flow in small world
networks. In [12], we focused on the original (non-navigable)
models of [1] and [11], and proved a high concentration
result that gives upper and lower bounds on the max-flow
min-cut capacity of said networks. The main goal of this
paper is to provide a preliminary characterization of the
capacity of navigable small-world networks, for which highly
efficient distributed routing algorithms are known to exist
and distributed network coding strategies (allowing processing
at intermediate nodes) are likely to be found. Our main
contributions are as follows:

• Capacity Bounds for Kleinberg Small-World Networks:
We construct upper and lower bounds for the max-flow
min-cut capacity of Kleinberg graphs derived from a
square lattice and illustrate how the choice of connectivity
parameters affects communication.

• Capacity Bounds for Navigable Small-World Networks
on Ring Lattices: Arguing that the corners present in
Kleinberg’s models introduced undesirable artefacts in the
computation of the capacity, we define a navigable small
world network based on a ring lattice and derive a high-
concentration result for the capacity of this instance, as
well.

The rest of the paper is organized as follows. Sec. II gives an
overview of related work pertaining the capacity of commu-
nication networks. Then, Sec. III provides precise definitions
for the two small-world models of interest in this work, so
that the main results can be stated and proved in Sec. IV. The
paper concludes with Sec. V.

II. OTHER RELATED WORK

Although the capacity of networks (described by general
graphs with or without edge capacities) supporting multi-
ple communicating parties is largely unknown, progress has
recently been reported in several relevant instances of this
problem. In the case where the network has one or more
independent sources of information but only one sink, it is
known that routing offers an optimal solution for transporting
messages [13] — in this case the transmitted information
behaves like water in pipes and the capacity can be obtained
by classical network flow methods. Specifically, the capacity

of the network follows from the well-known Ford-Fulkerson
max-flow min-cut theorem [14], which asserts that the maximal
amount of a flow (provided by the network) is equal to the
capacity of a minimal cut, i.e. a nontrivial partition of the graph
vertex set V into two parts such that the sum of the capacities
of the edges connecting the two parts (the cut capacity) is
minimum. In [15] it was shown that network flow methods
also yield the capacity for networks with multiple correlated
sources and one sink.

The case of general multicast networks, in which a single
source broadcasts a number of messages to a set of sinks,
is considered in [16], where it is shown that applying cod-
ing operations at intermediate nodes (i.e. network coding)
is necessary to achieve the max-flow/min-cut bound of the
network. In other words, if k messages are to be sent then the
minimum cut between the source and each sink must be of
size at least k. A converse proof for this problem, known as
the network information flow problem, was provided by [17],
whereas linear network codes were proposed and discussed
in [18] and [19]. Max-flow min-cut capacity bounds for Erdös-
Rényi graphs and random geometric graphs were presented
in [20].

Another problem in which network flow techniques have
been found useful is that of finding the maximum stable
throughput in certain networks. In this problem, posed by
Gupta and Kumar in [21], it is sought to determine the maxi-
mum rate at which nodes can inject bits into a network, while
keeping the system stable. This problem was reformulated
in [22] as a multicommodity flow problem, for which tight
bounds were obtained using elementary counting techniques.

Since small world graphs were proposed as models for
complex networks [1] and [11], most contributions in the
area of complex networks focus essentially on connectivity
parameters such as the degree distribution, the clustering
coefficient or the shortest path length between two nodes (see
e.g. [23]). In spite of its arguable relevance — particularly
where communication networks are concerned — the capacity
of small-world networks has, to the best of our knowledge, not
yet been studied in any depth by the scientific community.

III. NAVIGABLE SMALL-WORLD NETWORKS

We start by presenting rigorous definitions for the two small-
world models used in the rest of the paper. In the following,
we also assume that all edges have unitary weight.

Definition 1 (Kleinberg Small-World graph, see Fig. 2):
We begin from a two-dimensional grid and a set of nodes that
are identified with the set of lattice points in an n×n square,
{(x, y) : x ∈ {1, 2, ..., n}, y ∈ {1, 2, ..., n}}, and we define
the lattice distance between two nodes (x, y) and (w, z) to
be the number of lattice steps (or hops) separating them:
d((x, y), (w, z)) = |w−x|+ |z−y|. For a constant h ≥ 1, the
node (u1, u2) is connected to every other node within lattice
distance h (we denote the set of this initial edges as EL). For
universal constants q ≥ 0 and r ≥ 0, we also construct edges
from (u1, u2) to q other nodes using independent random
trials; the ith edge from (u1, u2) has endpoint (v1, v2) with
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probability proportional to [d((u1, u2), (v1, v2))]−r. To ensure
a valid probability distribution, we consider the set of nodes
that are not connected with (u1, u2) in the initial lattice, i.e.

N(u1,u2) = {(v1, v2) : d((u1, u2), (v1, v2)) > h}
and divide [d((u1, u2), (v1, v2))]−r by the appropriate normal-
izing constant

s(u1, u2) =
∑

(v1,v2)∈N(u1,u2)

[d((u1, u2), (v1, v2))]−r.

In the next section, we will see that this model exhibits
unexpected effects related to the corners of the chosen base lat-
tice. Motivated by this observation, we construct a somewhat
different model, which uses a ring lattice but still keeps the key
relationship between shortcut probability and node distance
that assures the navigability of the model. Before proceeding
with its definition, we require a precise notion of distance in
a ring.

Definition 2: Consider a set of n nodes connected by edges
that form a ring (see Fig. 3, left plot). The ring distance
between two nodes is defined as the minimum number of
hops from one node to the other. If we number the nodes
in clockwise direction, starting from any node, then the ring
distance between nodes i and j is given by d(i, j) = min{|i−
j|, n + i − j, n − |i − j|}.

Since the type of distance will always be clear from the
context, using the same notation for ring distance and lattice
distance does not cause confusion. For simplicity, we refer to
d(i, j) as the distance between i and j. Next, we define a
k-connected ring lattice.

Fig. 3. Illustration of a k-connected ring lattice: from left to right k = 2, 4, 12.

Definition 3: A k-connected ring lattice (see Fig. 3) is a
graph L = (VL, EL) with nodes VL and edges EL, in which
all nodes in VL are placed on a ring and are connected to all
the nodes within distance k

2 .
Notice that in the definition of a k-connected ring lattice,

all the nodes have degree k. Based on this topology, we can
now present a precise definition of an alternative model.

Definition 4 (Navigable Small-World Network): Starting
with a k-connected ring lattice, add one edge to each
node i randomly according to the probability distribution
p(i, j) = d(i, j)−r, where d(i, j) denotes the distance
between nodes i and j and r > 0 is a fixed parameter.

IV. MAX-FLOW MIN-CUT BOUNDS IN NAVIGABLE
SMALL-WORLD NETWORKS

In Sec. II, we argued that the max-flow min-cut capacity
provides the fundamental limit of communication for various

relevant network scenarios. Motivated by this observation, we
will now use network flow methods and random sampling
techniques in graphs to derive a set of bounds for the capacity
of the small-world network models presented in the previous
section.

A. Preliminaries

We start by introducing some notation. Let G be an
undirected and unweighted graph and let Gs be the graph
obtained by sampling on G, such that each edge e has sampling
probability pe. From G and Gs, we obtain Gw by assigning
to each edge e the weight pe, i.e. w(e) = pe,∀e. We denote
the global minimum cuts of Gs and Gw by cs and cw,
respectively. It is helpful to view a cut in Gs as a sum of
Bernoulli experiences, whose outcome determines if an edge
e connecting the two sides of the cut belongs to Gs or not.
It is not difficult to see that the value of a cut in Gw is the
expected value of the same cut in Gs.

The next theorem gives a characterization of how close a
cut in Gs will be with respect to its expected value.

Theorem 1 (From [24]): Let ε =
√

2(d + 2) ln(n)/cw.
Then, with probability 1−O(1/nd), every cut in Gs has value
between (1 − ε) and (1 + ε) times its expected value.

Notice that although d is a free parameter, there is a strict
relationship between the value of d and the value of ε. In
other words, the proximity to the expected value of the cut is
intertwined with how close the probability is to one. Theorem 1
yields also the following useful property.

Corollary 1: Let ε =
√

2(d + 2) ln(n)/cw. Then, with high
probability, the value of cs lies between (1−ε)cw and (1+ε)cw.

B. Capacity Bounds for Navigable Small-World Networks
based on Ring Lattices

We start with the somewhat simpler class of navigable
small-world networks based on ring lattices and prove the
following result.

Theorem 2: With high probability, the capacity of the
navigable small-world network has a value in the interval
[(1 − ε)cw, (1 + ε)cw], with ε =

√
2(d + 2) ln(n)/cw and

cw = k + (1 + an) · (n − an

2
)−r + 2 ·

n−an
2 −1∑

i=k+1

i−r,

where an = 1−(−1)n

2 .
Proof: Consider the fully connected graph Gw = (VL, E)

with weights defined as follows: the weights of edges (i, j) ∈
EL is set to one and those of (i, j) /∈ EL are equal to w(i, j) =
d(i, j)−r, i.e. the probability of adding edge (i, j). Notice that
the ring distance between two nodes does not depend on which
node is numbered first. It is therefore correct to state that all
the nodes have the same number of nodes at distance h. We
also have that all the edges in the ring lattice unitary weight.
Based on these two observations and the fact that Gw is a
fully connected graph, it is clear that the global minimum cut
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Fig. 4. Bounds for the capacity of a navigable small-world network for n =
1000, k = 20, d = 1, and different values of parameter r. The dashed line
represents the expected value of the capacity and the solid lines represent the
bounds. As expected, the capacity decreases sharply with higher r, because
increasing r decreases the probability of adding new edges.

in Gw, denoted cw, is a cut in which one of the partitions
consists of a single node, say node 1. Thus, we may write

cw = k +
∑

i∈A

d(1, i)−r,

with A = {i : (1, i) /∈ EL} = {i : d(1, i) > k}.
Now, we must distinguish between two different situations:
even n and odd n. If n is even, it is not difficult to see that
the single node that maximizes the distance to node 1 is node
n
2 + 1, with d(1, n

2 + 1) = n
2 . Notice that, for distances h

inferior to n
2 , there are two nodes at a distance h to node 1.

Therefore, if n is even, we have

cw = k + (
n

2
)−r + 2 ·

n
2 −1∑

i=k+1

i−r.

When n is odd, it is also easy to see that there are two nodes
that maximize the distance to node 1, nodes n+1

2 and n+3
2 ,

with the maximum distance being n−1
2 . Therefore, if n is odd,

cw = k + 2 ·
n−1

2∑

i=k+1

i−r.

Using Corollary 1 and observing that an = 1−(−1)n

2 is equal
to 1 if n is odd and equal to 0 if n is even, we obtain the
desired bounds.

The result is illustrated in Fig. 4.

C. Capacity of Kleinberg Small World Networks

Before proceeding with the bounds for the capacity of
Kleinberg small-world networks, we require an algorithm to
calculate the normalizing constants

s(x, y) =
∑

(i,j)∈N(x,y)

[d((x, y), (i, j))]−r,

for x, y ∈ {1, ...n}.. For this purpose, we note that the previous
sum can be written as

s(x, y) =
∑

(i,j)�=(x,y)

(|i − x| + |j − y|)−r

−
∑

(i,j)/∈N(x,y)

[d((i, j), (x, y))]−r.

Clearly, the first term can be easily calculated. Thus, the
challenging task is to present an algorithm that deals with
the calculation of

∑
(i,j)/∈N(x,y)

[d((i, j), (x, y))]−r . The nodes
(i, j) /∈ N(x,y) are the nodes initially connected to node (x, y),
i.e., the nodes at a distance t ≤ h from node (x, y). It is
not difficult to see that the nodes at a distance t from node
(x, y) are the nodes in the square line formed by the nodes
(x − t, y), (x + t, y), (x, y + t) and (x, y − t). Then, we
could just look at nodes in the square formed by the nodes
(x−h, y), (x+h, y), (x, y+h) and (x, y−h) and sum all the
corresponding distances to node (x, y). A corner effect occurs
when when this square lies outside the base lattice. Assume
that we start by calculating the distances to the nodes in line
y + i, with i ≥ 0.

To avoid calculating extra distances (i.e., distances of nodes
that are out of the grid), we must make sure that this line
verifies y + i ≤ n and also y + i ≤ h. For this reason, i must
vary according to i ∈ {0 . . . min{h, n−y}}. Now, in each line
y + i, we first look at the nodes in the right side of (x, y),
i.e., we calculate the distances of the nodes (x + j, y + i),
with j ≥ 0. Now, notice that in the line y, we have h points
on the right side of (x, y) that are in the square (regardless
of whether they are in the grid). Because the distance is the
minimum number of steps in the grid, we have that in line
y + i there are h − i points at the right side of (x, y) that
are inside the square. This way, j must be vary according
to j ∈ {0 . . . min{h − i, n − x}}. Now, when looking at the
nodes at the left side (i.e., the nodes (x−j, y+i), with i ≥ 1),
the idea is the same. The only difference is that, in this case,
the variation for j is j ∈ {1 . . . min{h − i, x − 1}}. Then,
we proceed analogously for the lines below (x, y), i.e., the
lines y − i, with i ∈ {1 . . . min{h, y − 1}}. This algorithm

TABLE I
ALGORITHM FOR COMPUTING NORMALIZING CONSTANTS

Algorithm 1:
z = [0]n×n

for i = 0 : min{h, n − y}
for j = 0 : min{h − i, n − x}

z(x + j, y + i) = (i + j)−r

for j = 1 : min{h − i, x − 1}
z(x − j, y + i) = (i + j)−r

for i = 1 : min{h, y − 1}
for j = 0 : min{h − i, n − x}

z(x + j, y − i) = (i + j)−r

for j = 1 : min{h − i, h − (m1 − i), x − 1}
z(x − j, y − i) = (i + j)−r

z(x, y) = 0
z =

� n
i=1

� n
j=1 z(i, j)

s(x, y) =
�

(i,j)�=(x,y)(|i − x| + |j − y|)−r − z
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is summarized in Table I. The matrix z is a buffer for the
distances, i.e., z(u1, u2) = d((x, y), (u1, u2)). We impose
z(x, y) = 0, because d((x, y), (x, y))−r is also calculated in
this procedure.

The following quantities will be instrumental towards char-
acterizing the capacity:

M = max
{

h(h + 3)
2

+ q, (1 − ε)cw

}

ε =
√

2(d + 2) ln(n2)/cw

cw =
h(h + 3)

2
+

h+1∑
x=1

n∑
y=h+2−x

f(x, y)

+
n∑

x=h+2

n∑
y=1

f(x, y) (1)

f(x, y) = q · (g(x,y)(1, 1) + g(x,y)(x, y)

g(x,y)(a, b) =
(

1 − (x + y − 2)−r

s(a, b)

)q−1

· (x + y − 2)−r

s(a, b)

s(1, 1) =
n−1∑

i=h+1

(i + 1) · i−r

+
n−2∑
i=0

(n − 1 − i) · (n + i)−r.

Recall that s(x, y) can be calculated using Algorithm 1. The
proof of the capacity will rely heavily on the following lemma.

Lemma 1: Let Gw be the weighted graph associated with
Kleinberg’s model of a small-world graph, and cw be the
global minimum cut in Gw. Then, for h < n− 1, cw is given
by (1).

Proof: All the edges e ∈ EL have weight 1 (because they
are never removed), all nodes in Gw have degree n2 − 1, and
the weights of these edges depend only on the distance be-
tween the nodes they connect. Therefore, the global minimum
cut in Gw must be a cut in which one of the partitions consists
of one node. Because the weight of an edge in Gw decreases
with the distance between the nodes that it connects, the global
minimum cut in Gw must be a cut in which one of the
partitions consists of a single node that maximizes the distance
to other nodes. Therefore, cw must be a cut in which one of
the partitions consists of a corner node: (1, 1), (1, n), (n, 1) or
(n, n).
Now, let w((u1, u2), (v1, v2)) be the weight of the edge
connecting the nodes (u1, u2) and (v1, v2). Assume, with-
out loss of generalization, that cw is the cut in which one
of the partitions consists of node (1, 1). This way, cw =∑

(u1,u2)�=(1,1) w((1, 1), (u1, u2)). Now, we must count how
many edges connecting node (1, 1) are in EL, therefore,
having weight 1. For this, we define an auxiliary way to
numerate diagonals: {(1, 1)} is the diagonal 0, {(1, 2), (2, 1)}
is diagonal 1, and so on.

It is not difficult to see that the nodes in the ith diagonal
have a distance i to node (1, 1) (i = 1, ..., 2(n−1)). Now, for
i ≤ n − 1, there are i + 1 nodes in the ith diagonal and, for

i = n + j (j = 0, ..., n − 2), there are n − 1 − j nodes in the
ith diagonal. Then, there are

∑h
i=1 i + 1 = h(h + 3)/2 nodes

initially connected to node (1, 1) (again, with h < n−1), then
there are h(h+3)/2 edges with weight 1. Therefore, we have
that:

cw =
h(h + 3)

2
+

h+1∑
x=1

n∑
y=h+2−x

w((1, 1), (x, y))

+
n∑

x=h+2

n∑
y=1

w((1, 1), (x, y)).

We can calculate s(1, 1) as

s(1, 1) =
n−1∑

i=h+1

(i + 1) · i−r +
n−2∑
i=0

(n − 1 − i) · (n + i)−r.

Next, we determine the weights, w((u1, u2), (v1, v2)). Con-
sider two nodes that are not connected initially, (u1, u2)
and (v1, v2), and the edge ((u1, u2), (v1, v2)). This edge can
be added in two different trials: one for node (u1, u2) and
another one for node (v1, v2). Because we do not consider
multiple edges, these can be viewed as two mutually exclusive
trials. Therefore, the weight of this edge is the sum of
the probabilities of adding this edge when looking at node
(u1, u2) and when looking at node (v1, v2). Let us focus on
node (u1, u2). The trial “add edge ((u1, u2), (v1, v2))” follows
a Binomial distribution, with q Bernoulli experiences, with
success probability

a(u1,u2)(v1, v2) =
[d((u1, u2), (v1, v2))]−r

s(u1, u2)

=
(|u1 − v1| + |u2 − v2|)−r

s(u1, u2)
.

Therefore, the weight of the edge ((u1, u2), (v1, v2)) is

w((u1, u2), (v1, v2))

= q · ((1 − a(u1,u2)(v1, v2))q−1 · a(u1,u2)(v1, v2)
+(1 − a(v1,v2)(u1, u2))q−1 · a(v1,v2)(u1, u2)).

Now, observing that a(1,1)(x, y) = x+y−2
s(1,1) and a(x,y)(1, 1) =

x+y−2
s(x,y) , and using expression (1) for cw, the result follows.

We are now ready to state our main result, which is
illustrated in Fig. 5..

Theorem 3: For h < n − 1 the capacity of a Kleinberg
small-world network graph lies, with high probability, in the
interval [M, (1 + ε)cw].

Proof: Using Lemma 1 and Corollary 1, we have that,
with high probability,

cs ∈ [(1 − ε)cw, (1 + ε)cw] .

A tighter lower bound can be obtained for cs as follows. Each
node has a number of initial edges, determined by h, and q
additional shortcut edges. The nodes with less initial edges
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Fig. 5. Bounds for the capacity of a navigable small-world network for n = 80
(i.e. 1600 nodes), h = 2, r = 2 e d = 1, and different values of the shortcut
parameter q. The white dots represent the expected value of the capacity and
the dark dots represent the bounds computed according to Theorem 3.

are obviously the corner nodes, which exhibit h(h+3)
2 initial

connections. Therefore, we have that

cs ≥ h(h + 3)
2

+ q,

and the result follows.

V. CONCLUDING REMARKS

We studied the max-flow min-cut capacity of two classes
of navigable small world networks. In both cases, we derived
upper and lower bounds and illustrated their dependency on
the parameters of the chosen topology.

In [10], Kleinberg explains that, in order to obtain a proba-
bility distribution, d((u1, u2), (v1, v2))−r should be divided by∑

(v1,v2)�=(u1,u2)
[d((u1, u2), (v1, v2))]−r. As we have shown,

the previous expression is not an accurate normalizing con-
stant, because the candidates for new connections from node
(u1, u2) are not all the nodes of the base lattice, but only those
nodes that are initially not connected to node (u1, u2). For the
goals of [10], this aspect is not very important, because in the
cases of interest for that particular work (very small values of
h relatively to the total number of nodes n2) the difference
between the two quantities is irrelevant in the construction of
the model. However, as our work shows, using the correct
normalizing factor is crucial towards bounding the capacity.
The main reason is that this normalizing constant differs
from node to node. In order to calculate the weights of the
edges connecting a single node, we need to compute this
normalizing constant for every node in the base lattice. Thus,
the accumulation of errors affects the calculation of cw, often
leading to erroneous bounds.

Possible directions for future work include tighter capacity
results, extensions to other classes of small-world networks
(e.g. weighted models and other navigable topologies used
in peer-to-peer networks [9]), and understanding if and how
small-world topologies can be exploited in the design of
capacity-attaining network codes and distributed network cod-
ing algorithms.
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