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Abstract 

Dementia is a very delicate disease that not only affects the patients, but also 

everyone around them. Nearly 36 million people live with dementia, and future does not 

appear to shine brighter since for the year 2050 the prognosis is that this number will 

triple. Alzheimer’s disease (AD) is the most prevalent form of dementia (75% of all cases), 

independently of age, and is mainly characterized by the presence of senile plaques (SPs) 

and neurofibrillary tangles (NFTs), accompanied by progressive dementia. Transthyretin 

(TTR) has been shown, through in vitro and in vivo studies, to exhibit a neuroprotective 

role in AD, however, its underlying mechanisms are still vastly unknown. With this project, 

we proposed a dual investigation: first, the study of two distinct proteins – sortilin (Sort1) 

and synaptophysin (Syp) – that were suggested to be altered in AD, and thus, assess its 

potential as a biomarker; and second, evaluate TTR’s role in disease and its effect on 

these prospective biomarkers. All the experiments were performed in a transgenic AD 

mouse model bearing different TTR genetic backgrounds (two copies of the mouse TTR 

gene – AD/TTR+/+, and one copy of the mouse TTR gene – AD/TTR+/-), which was 

previously described in our laboratory. All the results were obtained through Western Blot 

analysis, using 3- and 7-months old AD/TTR mice. From this analysis we show that Sort1 

is decreased at both ages in AD/TTR+/- mice, in relation to AD/TTR+/+, and suggest that 

due to its behavior, this protein could be used for early AD detection, even when β-

amyloid (Aβ) deposits are absent, and follow-up of therapies. Still regarding Sort1, female 

gender appears to be more affected since it showed a more accentuated decrease, 

compared to males. This is especially observed in older mice, thus showing the impact of 

aging in AD. As for Syp, we observed an increase in its expression for 3 months-old 

AD/TTR+/- mice, compared to AD/TTR+/+, contrary to 7 months-old mice that showed no 

significant differences. Thus, we suggested that this alteration was due to an overlapping 

effect of aging over TTR reduction. Nonetheless, we also propose that Syp should be 

considered for further studies as an early AD detection biomarker. Alterations observed 

for both Sort1 and Syp were not restored in AD/TTR+/- mice treated with iododiflunisal 

(IDIF), known to stabilize TTR and shown to improve AD features, namely Aβ levels and 

deposition in the brain, and cognition in this mouse model. This indicates that Sort1 and 

Syp are dependent on TTR quantity and that its stabilization was not sufficient to reverse 

the effects of the TTR genetically reduced levels. 

Keywords: Alzheimer’s disease; biomarker; transthyretin; sortilin; synaptophysin; 

transgenic mouse model.   
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Resumo 

Demência é uma condição bastante delicada que afeta não só o paciente, como 

também todos aqueles que o rodeiam. Aproximadamente 36 milhões de pessoas vivem 

com esta doença e o futuro não se apresenta brilhante, dado que o prognóstico para 

2050 é de que este número irá triplicar. A Doença de Alzheimer (DA) é a forma mais 

prevalente de demência (75% de todos os casos), independentemente da idade, e é 

principalmente caracterizada pela presença de placas senis e emaranhados 

neurofibrilares, acompanhados de uma demência progressiva. À proteína transtirretina foi 

associado um papel neuroprotetor na DA, através de estudos in vitro e in vivo, porém, os 

mecanismos moleculares responsáveis por este papel são ainda imensamente 

desconhecidos. Através deste projeto, propusemos uma investigação bi-objectiva: em 

primeiro lugar, estudar duas proteínas distintas – sortilina (Sort1) e sinaptofisina (Syp) – 

que se verificaram estar alteradas na DA, e assim, averiguar o seu potencial como 

possível biomarcador; e em segundo lugar, avaliar o papel da TTR nesta doença e o seu 

efeito nas proteínas atrás referidas. Todas as experiências foram realizadas usando um 

modelo de murganho transgénico para DA, com diferentes genótipos de TTR (duas 

cópias do gene TTR de murganho – AD/TTR+/+, e uma cópia do gene TTR de murganho 

– AD/TTR+/-), previamente descrito no nosso laboratório. Todos os resultados foram 

obtidos através de análise por Western Blot, usando murganhos AD/TTR de 3 e 7 meses 

de idade. Desta análise surgiu que a Sort1 se apresenta diminuída em ambas as idades, 

nos murganhos AD/TTR+/-, em comparação com os AD/TTR+/+, sendo possível sugerir 

que, dado o seu comportamento, esta proteína poderá ser usada na deteção precoce de 

DA, mesmo quando é ausente a deposição de β-amiloide. Ainda sobre a Sort1, observou-

se uma diminuição mais acentuada dos seus níveis no sexo feminino, em relação ao 

masculino, sugerindo então que o primeiro se encontra mais afetado. Esta diminuição 

encontra-se especialmente demarcada nos murganhos de 7 meses, o que demonstra o 

impacto do envelhecimento na DA. Em relação à Syp, observámos um aumento da sua 

expressão em murganhos AD/TTR+/- de 3 meses de idade, em oposição ao observado 

para murganhos de 7 meses, onde as diferenças não foram consideradas significativas. 

Sendo assim, sugerimos que esta alteração do comportamento de expressão da Syp é 

devida a um efeito do envelhecimento, que aparenta anular qualquer efeito proveniente 

da redução genética da TTR. No entanto, propomos que futuros estudos sobre a Syp 

(enquanto biomarcador) sejam realizados, uma vez que esta parece apropriada para a 

deteção de estádios precoces na DA. As alterações de expressão na Sort1 e Syp não 
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foram restauradas em murganhos AD/TTR+/- tratados com iododiflunisal (IDIF), um 

composto que promove a estabilização da TTR e o melhoramento das características da 

DA neste modelo animal (nomeadamente, níveis de Aβ e deposição no cérebro, e 

cognição). Tal indica que a Sort1 e a Syp são dependentes da quantidade de TTR e que 

mesmo a sua estabilização não é suficiente para reverter os efeitos da redução genética 

da TTR. 

Palavras-chave: Doença de Alzheimer; biomarcador; transtirretina; sortilina; 

sinaptofisina; modelo de murganho transgénico. 
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Introduction 

 

“If any one faculty of our nature may be called more wonderful than the rest, I do think 

it is memory. There seems something more speakingly incomprehensible in the powers, 

the failures, the inequalities of memory, than in any other of our intelligences. The memory 

is sometimes so retentive, so serviceable, so obedient; at others, so bewildered and so 

weak; and at others again, so tyrannic, so beyond control! We are, to be sure, a miracle 

every way; but our powers of recollecting and of forgetting do seem peculiarly past finding 

out.” 

by Jane Austen, Mansfield Park 

 

All around the world, dementia is one of the major concerns for society, independently 

of the socio-economic status. Nearly 36 million people live with dementia, and the 

prognosis is that by 2050 this number will triple (115 million)[2]. Within the cases of 

dementia, Alzheimer’s disease (AD) occupies a special place, counting up to 75% of all 

cases[3, 4]. Different kinds of dementia, in addition to AD, have been characterized and 

within this list we can find vascular dementia, dementia with Lewy bodies, mixed 

dementia, Parkinson’s disease, and Creutzfeldt-Jakob disease[5], among others. One of 

the major problems of AD, and other dementias, is the lack of early diagnosis techniques, 

whereas, in more late-stages AD is identified quite accurately by most clinicians[6]. In 

effect, definite AD (considered a dual clinicopathological entity[7]) is only diagnosed after 

postmortem evidence of extracellular amyloid (or senile) plaques and intracellular 

neurofibrillary tangles[8], presented with progressive dementia. They are considered 

pathognomonic signs (characteristic for a particular disease – from the Greek: páthos 

meaning “disease”, and gnõmon, meaning “judge”) for AD and so, after autopsy, their 

presence is used to verify the diagnosis. 

Therefore, the uncertainty of the underlying diagnosis is a tremendous hurdle in the 

development of new therapies[6]. Despite of all the efforts, AD is still an incurable 

neurodegenerative disease. 
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Introducing Alzheimer 

Alois Alzheimer (Figure 1) was born on 14 June 1864, in Marktbreit, Bavaria, and is 

considered one of the founding fathers of neuropathology. He was attributed the credits 

for discovering and describing a so-called “presenile dementia”, which would be later 

named after him, in 1910, by his colleague Emil Kraepelin[9, 10]. With the simplest 

sentence: “The clinical interpretation of this Alzheimer’s disease is still unclear.” of the 

famous Textbook of Psychiatry (Psychiatrie: Ein Lehrbuch fur Studierend and Aerzt)[11] 

Kraepelin immortalized Alois Alzheimer. Alzheimer made fundamental contributions to 

understand other diseases such as vascular dementia, Huntington’s disease, syphilis, 

brain tumors and epilepsy. He died from rheumatic endocarditis[9], curiously at the age of 

51. 

 

Alzheimer’s disease was first described in the 1907’s paper entitled "Uber eine 

eigenartige Erkankung der Hirnrinde", by Alois Alzheimer. In it, the author described the 

behavior of a 51-year-old female patient (Figure 1) of the insane asylum of Frankfurt am 

Main. She (Auguste Deter) presented several symptoms that caught Alzheimer’s 

attention, apart from the central nervous system anatomical characteristics. Among them, 

time and space disorientation, rapid loss of memory and mood swings were the most 

prominent symptoms[12]. In relation to pathological features, the observation of “thick 

bundles”[12] of fibrils (later known as senile/amyloid plaques and neurofibrillary 

tangles[13]) made AD a unique condition, distinguishing it from the other neurological 

conditions known[14]. 

After the initial work by Alois Alzheimer, scientists have been successively and 

continuously motivated to acquire the necessary knowledge to comprehend and unveil the 

  

Figure 1. Alois Alzheimer (left) and its first patient, Auguste Deter (right). 
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mysteries that surround this intriguing disease.  And so, due to the outstanding work made 

by Alois Alzheimer’s “followers”, advances have been made, leading them closer to a 

possible cure. Amyloid-beta (Aβ) immunotherapy[15, 16], gene therapy[17], and deep 

brain stimulation[18, 19] are good examples of scientists’ determination (in the most 

distinct fields) to achieve the ultimate goal, the cure for Alzheimer’s disease. 

 

By the eyes of Alzheimer 

Alzheimer’s disease is a progressive neurodegenerative disease and the most 

common case of dementia[20], covering a heterogeneous group of disorders[10] with 

increasing prevalence after the age 65[14]. Although AD is seen as an elderly disease due 

to its higher prevalence in the older population, it is also the most frequent form of 

dementia under the age of 65[21, 22]. More recently, in 2011, the National Institute of 

Aging and the Alzheimer’s Association recommended new diagnostic criteria and 

guidelines, proposing three different stages for AD: (1) preclinical Alzheimer’s disease; (2) 

mild cognitive impairment due to Alzheimer’s disease; and (3) dementia due to 

Alzheimer’s disease[5]. Genetically, AD is usually divided in two forms: autosomal 

dominant familial AD (FAD; Mendelian inheritance predominantly of early-onset – 

EOAD[23]) and sporadic AD (also called late-onset AD – LOAD), counting the latter as 

95% of all AD cases[7]. 

In FAD, autosomal mutations capable of triggering the disease were identified, mainly, 

in three distinct genes: amyloid precursor protein (APP)[24, 25] gene, presenilin 1 

(PSEN1) and presenilin 2 (PSEN2) genes[26], in chromosomes 21q, 14q and 1q, 

respectively. Together, these mutations (more than 200 mutations known) are responsible 

for less than 1% of all cases of AD (http://www.molgen.vib-ua.be/ADMutations/). Contrary 

to FAD, sporadic AD does not exhibit autosomal-dominant inheritance but up to 60%-80% 

of this form of AD is genetically determined[23]. Thus, genetic risk factors are extensively 

studied, being the apolipoprotein E (ApoE) gene, in chromosome 19, an excellent 

example.  

  

http://www.molgen.vib-ua.be/ADMutations/
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1. Increasing the risk 

ApoE exists as three isoforms ε2, ε3 and ε4, with ε3 having the highest prevalence, 

and it plays an important role in AD, since the risk of developing disease is increased in 

carriers of the ApoE-ε4 allele. In 1993 the group of E.H. Corder stated that individuals with 

one and two copies of the ε4 allele have, respectively, a 45% and 50–90% probability of 

developing AD[27], and that a double dose of ApoE-ε4 allele was nearly enough to cause 

AD by age 80[28]. Despite the broad molecular evidence about ApoE’s role in AD, its 

genetic variation is also present in other kinds of neurological disorders including 

Parkinson’s disease and multiple sclerosis[23]. In 2009, three novel AD genes were 

identified, presenting high degree of association: CLU (clusterin or apolipoprotein J – 

ApoJ), CR1 (complement component (3b/4b) receptor 1), and PICALM 

(phosphatidylinositol binding clathrin assembly protein)[23]. 

As Stephen King wrote in The Gunslinger: “Time's the thief of memory”. Thus, in 

addition to the genetic risk, a well established (and intuitive) risk factor is aging, since in 

every species age brings a slowing of brain function[29]. It is considered the most 

important factor specially due to the increasing of life expectancy worldwide, in addition to 

the increasing of population, which in turn can be attributed to the postwar “baby boom”. 

Other risk factors, such as: diabetes mellitus[30], obesity, hypertension, metabolic 

syndrome, hypercholesterolemia[31], Down’s syndrome[32], traumatic brain injury[33], 

gender, education[34] (female gender and low educational level with increased risk), 

social engagement, and diet, have been increasing evidence. Contrasting with the 

previous risk factors, wine consumption, coffee consumption, the use of non-steroidal anti-

inflammatory drugs (NSAIDs), and a good balance of metal ions [35] are associated with 

reduced risks, thus showing some protective effects[34]. 

2. Symptoms and afflictions 

In terms of symptoms, it is possible to divide and group them in three simple 

categories: (1) cognitive deficits that affect memory (amnesia and agnosia), speech 

(aphasia), and motor function (apraxia)[29]; (2) various psychiatric symptoms and 

behavioral disturbances such as depression, social withdrawal[8], personality changes, 

delusions, hallucinations, and misidentification[7, 20]; (3) difficulties with the daily living 

activities, such as driving, using the telephone, dealing with money and, later in the 

disease, all the basic needs (feeding, dressing, toileting)[20]. As one would expect, with 

disease progression the intensity of the symptoms increases and also, patients start to 
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become increasingly more dependent on others to do their every day chores. Hence, this 

disease does not just affect the life of patients but also the life of their caregivers.  

3. How does it work? 

All visible symptoms arise from the alteration and loss of structural complexity of our 

brain cells [29], which can begin as many as 20 years before symptoms appear[5]. Thus, 

all the above symptoms can be related to a series of pathological processes that appear 

to be altered in this dysfunction. AD is a complex multifactorial disorder in which protein 

alteration, oxidative stress, immune deregulation, neuronal inflammation, synaptic 

loss[36], defects in neurotransmission, disruption of neural network activity, and reduction 

of energy metabolism [19, 37] are considered triggering factors for neuronal degeneration. 

To increase the complexity of AD, the balance among these may vary from patient to 

patient[38]. Interestingly, the early symptoms of amnesia, if in the absence of any other 

clinical signs of brain injury, suggest that something is intermittently interrupting the 

function of synapses that help to encode new declarative memories, agreeing with the 

hypothesis that Alzheimer’s disease is a synaptic failure[39]. 

Neuroimaging enabled the identification of the areas of the brain that were undergoing 

morphological and volumetric structural changes. The major areas suffering from these 

alterations are the entorhinal cortex and hippocampus, showing some correlation between 

the extent of alteration and cognitive symptoms/disease severity[6, 40]. Despite the vast 

knowledge acquired along the past century, the molecular pathway for AD origin is still 

mostly unknown. 

 

“Aβ and Tau – cause or consequence?” 

Different lines of thinking try to explain the molecular pathogenesis of AD, yet none 

has already been completely proven. Among them, two hypothesis stand out, giving rise 

to long and hard arguments between their supporters. The central foundation of these two 

theories relies on one question: Are amyloid plaques or neurofibrillary tangles the cause 

or a consequence of AD? First of all, the definition of two fundamental terms, and their 

inherent concepts, is necessary to understand this complex pathology. 
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1. Amyloid definition 

The term amyloid (or a so-called amyloid state) was introduced by Virchow, in 1854, to 

denote a macroscopic tissue abnormality that exhibited a positive iodine staining 

reaction[41]. Currently, it is used to sort a class of proteins with a propensity to undergo 

conformational changes and share specific structural traits, resulting in insoluble fibril 

formation[41]. According to the Nomenclature Committee of the International Society of 

Amyloidosis, amyloid consists in extracellular depositions of protein fibrils with 

characteristic appearance in electron microscope, typical X-ray diffraction pattern (β-

sheet)[42], and affinity for thioflavin dyes[43] and Congo red[44] (producing an apple-

green birefringence). On electron microscopy, amyloid consists of rigid, linear, non-

branching, aggregated fibrils that are 7.5 – 10.0 nm in width and of indefinite length[45]. 

The deposition of amyloid fibrils is a 

consequence of the intermolecular 

hydrogen bonding of extended 

polypeptide strands that arise as a 

consequence of protein misfolding[46]. 

Out of curiosity, fewer than 25 amyloid-

forming proteins have been identified 

and associated with a unique clinical 

syndrome, such as: Aβ with AD, 

transthyretin (TTR) with familial 

amyloidotic polyneuropathy (FAP)[47], 

islet amyloid polypeptide (IAPP) with 

diabetes type 2, and prion protein (PrP) 

with the spongiform 

encephalopathies[48]. For the present 

work, we are only interested in amyloid 

deposits composed by Aβ peptide.  

Senile Plaques – Hallmark #1 

To Aβ amyloid deposits (Figure 2) 

was attributed the nomination of senile plaques (SPs), and they can be distinguished in 

different plaques subtypes, including neuritic, diffuse, primitive, compact, cored and 

cotton-wool[14] depending on their composition. Despite of the variety, neuritic and diffuse 

plaques are considered the two major subtypes in AD. Neuritic plaques are constituted by 

Figure 2. Senile plaques and neurofibrillary tangles.  Inferior 
temporal cortex immunolabeled for abundant amyoid plaque 
deposits (A), and abundant neurofibrillary tangles (B) (bar=10 
μm). (Adapted from Bennet et al., 2004)[1]. 
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the 40– and 42–amino acid (aa) β-amyloid (Aβ40 and Aβ42, respectively) peptides, of about 

4 kDa, surrounded by dystrophic neurites (axons and dendrites), microglia (monocyte- or 

macrophage-derived cells that reside in the brain), and reactive astrocytes[49, 50]. Diffuse 

deposits are mainly composed of Aβ42[51]  and lack the neuritic and glial components[52], 

but evolve over time with formation of discrete niduses that eventually become neuritic 

SPs[53]. 

2. APP and Aβ peptide: introducing concepts 

The β-amyloid precursor protein (APP) is a transmembrane receptor (Figure 3) 

expressed ubiquitously in both neuronal cells and extra-neuronal tissues[54]. In humans, 

the APP gene is located in the chromosome 21 and is composed of 18 exons[55]. Three 

major isoforms are expressed by alternative splicing: APP770 (full length), APP751 

(lacking exon 8), and APP695 (lacking exon 7 and exon 8)[56, 57], comprising mRNAs 

ratio of 1:10:20, respectively, in human cortex[54]. It belongs to a highly conserved family 

of type 1 transmembrane glycoproteins that extends also to invertebrate species, 

including the homologous: APL-1 (Caenorhabditis elegans), APPL (Drosophila), appa and 

appb (zebrafish), and APLP1 and APLP2 (in mammals, besides APP)[58]. APP770 and 

APP751 isoforms are expressed in most tissues and contain the Kunitz Protein Inhibitor 

(KPI) domain while APP695 isoform is mostly expressed in neurons and lacks this 

domain[57]. An interesting observation is that AD brain samples show increased levels of 

KPI-containing APP isoforms, thus suggesting that the balance between the KPI- and 

non-KPI-containing isoforms may be an important factor influencing Aβ deposition[59]. 

  

Figure 3. Schematic diagram of the amyloid precursor protein (APP) and its cleavage to give b-amyloid. (a) APP is 

an integral membrane, proteoglycan-like molecule of 700 amino acids (full length isoform); sulphation (SO4), 

phosphorylation (PO4) and carbohydrate attachment (CH2O) sites, the Kunitz-type protease inhibitor domain (KPI) and the 

secretory signal sequence (‘Signal’) are shown. (b) The protein is proteolytically processed by secretases in several 

different pathways. Cleavage of APP at the β and γ sites generates Aβ sequences of 40 or 42 residues (amino acids in 

single-letter code). The most common cleavage by α-secretase precludes Aβ formation. (Chen and Schubert, 2002)[60]. 
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The 4 kDa Aβ peptide, originated by the sequential cleavage of APP[61] (Figure 3), 

was first isolated and sequenced by Glenner and Wong, in 1984[62], and can be found in 

the plasma and cerebrospinal fluid (CSF) of healthy humans and other mammals[63]. It 

was described as a 24 aa peptide but later sequencing revealed that the peptide may 

actually comprise 36-43 aa[64], being the two major species Aβ40 and Aβ42. In healthy 

individuals, these two forms make up 90% and about 10%, respectively, of the Aβ 

peptides that are normally produced by brain cells[49]. Despite the little variation between 

forms, they differ greatly in properties. For example, Aβ42 is more hydrophobic, thus, more 

prone to aggregation (compared to the less hydrophobic Aβ40). In fact, it readily 

aggregates in vitro, being considered the more amyloidogenic and hence pathogenic 

species[65]. 

 

Figure 4. A simplified diagram of some of the principal routes of trafficking of the amyloid precursor protein (APP). 

After synthesis on ribosomes, APP is co-translationally translocated into the endoplasmic reticulum (ER) by its signal 

peptide and trafficks through the secretory pathway to the trans-Golgi network (TGN). A small portion of APP molecules 

reaches the plasma membrane, where the secretase cleavages can occur, generating soluble APP, α and β. Some cell 

surface holoproteins that remain uncleaved can be re-internalized via clathrin-coated pits and vesicles (CCVs) and enter the 

endosomal system. Here, they can be recycled to the cell surface, or enter late endosomes and lysosomes, presumably for 

degradation. Aβ40 can be generated in part during endosomal recycling and released at the surface. Aβ42 can be generated 

in considerable part in ER vesicles, and Golgi vesicles appear to contain both Aβ42 and Aβ40. However, our understanding of 

all of the sites in the cell for Aβ generation remains incomplete. (Adapted from Selkoe, 1998)[63]. 
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3. APP processing 

APP is co-translationally translocated into the endoplasmic reticulum (ER) (Figure 4) 

by its signal peptide and matures through the central secretory pathway, with only a small 

percentage of holoproteins reaching the cell surface[63]. During and after this trafficking 

through the ER, Golgi and trans-Golgi network (TGN), APP suffers specific 

endoproteolytic cleavages[63] that will originate several APP metabolites, among them the 

Aβ peptide. After reaching the membrane surface, APP can still undergo clathrin-mediated 

endocytosis and then rapidly recycle to the surface again[66], during which Aβ can also be 

produced[63]. 

Towards Amyloidogenicity or Non-amyloidogenicity? 

APP processing can originate different metabolites (with different functions) depending 

on the proteolysis pathway initiated. Whether the amyloidogenic or non-amyloidogenic 

pathway is followed (Figure 5) is defined by the protease that initially cleaves the Aβ 

precursor. 

The non-amyloidogenic pathway includes cleavage of APP by α-secretase, a zinc 

metalloproteinase of the ADAM family[57], followed by the action of γ-secretase[56], a 

high molecular weight complex of four proteins: presenilin 1 or 2 (PSEN1, PSEN2), 

nicastrin (NCT), anterior pharynx-defective 1 (APH1), and presenilin enhancer 2 

(PEN2)[31, 67]. The cleavage by the α-secretase at Lys687 abrogates the production of 

Aβ since the cleavage is within the Aβ domain, resulting in the release of a large soluble 

ectodomain of APP called sAPPα (~100 kDa)[57], leaving behind a 83-residue carboxi-

terminal fragment (CTFα, of ~10 kDa[68]). Then, γ-secretase acts in the CTFα, liberating 

the extracellular p3 peptide and the 50 aa APP intracellular domain[64] (AICD, of ~6 

kDa)[69]. 

On the other hand, well suggested by its name, the amyloidogenic pathway 

originates Aβ peptide and consists of two sequential cleavages, first by the β-secretase 

(beta-site APP–cleaving enzyme 1 – BACE-1), and then by γ-secretase[36], after which 

Aβ may first appear in soluble form either within neurons or in the extracellular space[70]. 

The first protease, β-secretase, cleaves APP at Met671, releasing a large soluble 

ectodomain of APP called sAPPβ[71] (similarly to what happens in the non-amyloidogenic 

pathway). The remainder 99 aa CTFβ (of ~13 kDa[68]) is then cleaved by the γ-secretase, 

which occurs in the middle of the membrane and liberates, as said above, the Aβ peptide 

and the AICD[72]. This process generates different species of Aβ with variable 
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hydrophobic C-termini (due to the various proteolysis sites of γ-secretase) (Figure 6) that 

present different propensity to oligomerize[72] and, consequently, to form SPs. As 

previously referred, PSEN1 and PSEN2 mutations are highly correlated with AD: these 

membrane proteins, mainly localized to the endoplasmic reticulum and Golgi, are 

components of the γ-secretase complex, thus AD-linked mutations selectively enhance γ-

secretase cleavage after residue 42 of Aβ[63]. 

 

Figure 5. Processing of Amyloid Precursor Protein. The cleavage by α-secretase, interior to the Aβ sequence, initiates 

non-amyloidogenic processing. A large amyloid precursor protein (sAPPα) ectodomain is released, leaving behind an 83-

residue carboxy-terminal fragment. C83 is then digested by γ-secretase, liberating extracellular p3 and the amyloid 

intracellular domain (AICD). Amyloidogenic processing is initiated by the β-secretase beta-site amyloid precursor protein-

cleaving enzyme 1 (BACE-1), releasing a shorter ectodomain, sAPPβ. The retained C99 is also a γ-secretase substrate, 

generating Aβ and AICD. AICD is a short tail (approximately 50 amino acids) that is released into the cytoplasm after 

cleavage by γ-secretase. AICD is targeted to the nucleus, signaling transcription activation. (Adapted from Querfurth and 

LaFerla, 2010)[64]. 

Figure 6. Various proposed sites of 

intramembrane proteolysis by γ-secretase. 

The amino-acid sequence around the cleavage 

sites of APP is shown (numbers refer to the 

sequence of Aβ; shaded amino acids are in the 

transmembrane domain). γ-secretase cuts its 

substrates several times and thus the cleavage 

sites are referred to as ε, ζ and γ (from the C- to 

N-terminal). The γ-site is variable and can occur 

at least after amino acids 38, 40 and 42. This 

cleavage is highly relevant for the subsequent 

aggregation propensity of Aβ. Some γ-

secretase-modifying drugs shift the cleavage at 

Aβ42 to amino acid 38, and the resultant peptide 

aggregates much less readily. (Adapted from 

Haass and Selkoe, 2007)[72] 
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APP metabolites 

In contrast to Aβ, the sAPPα metabolite has an important role in neuronal plasticity 

and survival[73] and acts as a protector against neuron insults (excitotoxicity and 

metabolic and oxidative insults)[74]. Interestingly, expression of sAPPα is sufficient, by 

itself, to rescue the abnormalities of APP-deficient mice, implying that most of APP’s 

physiological function is influenced by sAPPα levels[75]. Although sAPPβ only differs from 

sAPPα by lacking the Aβ:1-16 region at its carboxyl-terminus, sAPPβ was reported to 

function as a death receptor 6 ligand and to mediate axonal pruning and neuronal cell 

death[57]. The function of the AICD is unclear, nevertheless, it has been shown to 

translocate to the nucleus, forming a transcriptionally active complex with Fe65 and the 

chromatin-remodeling factor Tip60[58]. Concerning the small p3 peptide, despite existing 

evidences of its role as pro-inflammatory agent, its function has not been established[76]. 

This process is the basis of “amyloid cascade hypothesis”, which will be discussed 

forward. 

4. Aβ clearance 

Accumulation of Aβ is intimately related to the progression of neurodegeneration in AD 

and it may be seen as the rate of its generation versus clearance (elimination). This 

elimination process is achieved by two major pathways: proteolytic degradation and 

receptor-mediated transport from the brain[77] (Figure 7). In addition, and as curiosity, 

soluble Aβ can also be removed slowly, via interstitial fluid bulk flow, into the 

bloodstream[78]. However, this is responsible for the clearance of only 10–15% of the 

total Aβ in the brain[78]. 

Proteolytic degradation 

Aβ is degraded by several peptidases, principally two zinc metallo-endopeptidases 

referred to as neprilysin (NEP) and insulin-degrading enzyme (IDE)[77].  

NEP, possesses a catalytic site exposed extracellularly, which makes it a prime 

candidate for peptide degradation at extracellular sites of Aβ deposits[78]. In vivo studies 

revealed that inhibition of NEP protein or disruption of the NEP gene results in a defect in 

degradation and subsequent increased levels of Aβ[79, 80]. This suggests that age-

related decrease of NEP could lead to increased brain concentrations of Aβ, plaque 

formation, and AD[80]. IDE (similar to NEP) hydrolyzes several regulatory peptides, apart  
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Figure 7. Pathways involved in removal of brain Aβ. Soluble Aβ in the parenchyma of the brain can undergo two basic 

fates. It can aggregate into fibrillogenic species that can be ultimately deposited as β amyloid, fostered by interaction with 

heavy metals (zinc, copper, among others). Soluble Aβ can be removed from the brain via two basic pathways: (a) 

enzymatic degradation or (b) receptor-mediated clearance. (a) Soluble Aβ can be degraded by specific peptidases, such as 

IDE and NEP, and, in addition, Aβ can also be internalized and degraded by activated micoglia in the brain. The amyloid 

vaccine has been speculated to promote this activity. (b) In an alternative Aβ clearance pathway, the peptide can be 

transported across the BBB and exported out of the brain into the blood stream either by direct binding to LRP (and P-gp, 

not showed) or by first binding the LRP ligands/Aβ chaperones apoE and α2M. Once Aβ enters the bloodstream, it can 

reenter the brain via the RAGE receptor or be delivered, via chaperone molecules such as apoE or α2M, to peripheral sites 

of degradation, such as liver and kidney. Another proposed mechanism for Aβ clearance is one in which antibodies to β 

amyloid bind Aβ in the blood stream and prevent reentry back into the brain. Green arrows signify pathways that might be 

pharmacologically enhanced, while red arrows and slashed circles indicate pathways that might be blocked as potential 

therapeutic ap proaches for the treatment and prevention of AD. (Adapted from Tanzi et al., 2004)[77] 

from Aβ.  A very convincing evidence of IDE’s role in Aβ degradation came from a study in 

IDE knockout mice that revealed increased levels of Aβ (>50% decrease in Aβ 

degradation) and AICD peptides in the brain[81]. Increasing the evidence, epidemiological 

studies suggest that the gene encoding IDE in chromosome 10q, possesses genetic 

linkage for both LOAD and type 2 diabetes mellitus[78]. 
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Receptor-mediated transport 

 Efflux: LRP1/P-gp combination 

Aβ clearance from brain to blood has to be a two-step process. First it has to pass 

through the abluminal (brain side) and then the luminal (blood side) plasma membranes of 

the brain capillary endothelial cells that comprise the blood-brain barrier (BBB)[82]. The 

first step is suggested to be held by the low-density lipoprotein receptor related protein 1 

(LRP1), while the second still bears some doubts[82]. 

LRP1 is the major efflux transporter of Aβ across the BBB[83]. It is a member of the 

low density lipoprotein (LDL) receptor family and functions both as a multifunctional 

scavenger and signaling receptor, and as transporter and metabolizer of cholesterol and 

ApoE-containing lipoproteins[84]. LRP1 is localized predominantly on the abluminal side 

of the cerebral endothelium and is suggested as the major protein responsible for Aβ 

endocytosis and transcytosis across the BBB[85]. LRP1, in addition to Aβ and ApoE, 

binds several other ligands (approximately 40) such as: α2-Macroglobulin (α2M), tissue 

plasminogen activator (tPA), proteinase-inhibitors, APP, blood coagulation factors, growth 

factors, among others[85]. However, through in vitro ligand-binding affinities assays, LRP1 

was found to preferentially bind Aβ peptides as compared to other ligands[86]. It appears 

genetically linked to AD in epidemiological studies and is negatively regulated by Aβ 

levels[78]. 

P-glycoprotein 1 (P-gp, also known as ATP-binding cassette B1 (ABCB1)) is an ATP-

dependent efflux pump that, as well as mediating the removal of ingested toxic lipophilic 

metabolites[83], was suggested to be also an important (second step) active transporter of 

Aβ[87]. The conjugation of two results: a demonstration of direct interaction between Aβ 

and P-gp, and the post-mortem analyses of AD brain samples showing a negative 

correlation with Aβ deposition[88]; suggest that P-gp in directly involved in the clearance 

of Aβ. Another member of its family, cholesterol efflux regulatory protein (CERP, also 

known as ABCA1), has also been suggested to take part in this process. Contrary to P-gp, 

CERP controls Aβ clearance indirectly, via an ApoE dependent manner, thus enhancing 

its clearance from the brain[87]. 

This suggests that cooperation between LRP1 and P-gp is necessary for the efficient 

efflux of Aβ, thus, LRP1 should not be regarded as the only intervening. 
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 Influx: RAGE-mediated 

The receptor for advanced glycation end products (RAGE), is a multi-ligand and cell 

surface receptor that binds soluble Aβ, and a major transporter of pathophysiologically 

relevant concentrations of plasma Aβ across the BBB[78]. RAGE expression has been 

found to be increased in brain endothelial cells and vascular smooth muscle cells in 

animal models of aging as well as in AD patients[89]. Contrary to LRP1, RAGE expression 

is positively correlated and sustained at an elevated level by excess amounts of Aβ, 

through a positive-feedback mechanism[78]. 

“Sink” hypothesis 

The continuous removal of Aβ from the brain, blood and organs is essential for the 

regulation of Aβ brain levels. At the moment, a three-step process, dubbed as the “sink” 

hypothesis, is proposed to explain Aβ homeostasis. (1) Aβ binding to LRP1 at the cell 

membrane initiates rapid Aβ clearance across the BBB into the blood in vivo, followed by 

(2) circulating plasma soluble LRP1 (peripheral “sink” for brain Aβ) binding to and 

sequestering (>70% of) free Aβ in plasma, thus promoting continuous removal of Aβ from 

brain[89]. sLRP1 is the truncated extracellular domain of LRP1, after β-secretase 

cleavage of its β-chain[85]. Finally, (3) LRP1 localized to hepatic cells binds to and 

systemically clears circulating Aβ. In addition to the liver, sLRP1-Aβ complexes and free 

Aβ are also eliminated through the kidneys[89]. Sagare et al. showed that in AD patients 

the levels of sLRP1 were lower than in controls, plus, there was a huge increase in 

oxidized sLRP1 with very little affinity towards Aβ[86]. This will increase the Aβ free 

fraction promoting the influx from blood to brain. 

5. Tau protein: introducing concepts 

Tau protein was discovered in 1975 by the group of Marc W. Kirschener and belongs 

to the microtubule-associated protein (MAP) family[90, 91]. It is manly considered an 

axonal protein expressed in mature neurons[92] and defined as an essential protein for 

microtubules assembly and stability[90] and vesicle transport[64]. Tau can be found in 

many animal species such as Caenorhabditis elegans, Drosophila, goldfish, bullfrog, 

rodents, and human[93]. It is present as a single-copy gene (over 100kb)[94], localized on 

the long arm of chromosome 17q21[95] (MAPT gene[32]), and contain 16 exons (three of 

which are never present in mRNA of brain tissue – 4A, 6 and 8)[96]. In the central nervous 

system, alternative splicing of tau primary transcript generates six isoforms with an 
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apparent molecular weight between 60 and 74 kDa[97] and a natively unfolded 

conformation[98]. 

Tau – just medium phosphorylated 

Tau is a component of microtubules, which represent the internal support structures 

for transport of nutrients, vesicles, mitochondria and chromosomes from the cell body to 

the ends of the axon and back[99]. It binds to microtubules through repetitive regions in 

their C-terminal part encoded by exons 9-12[93] and is considered a highly soluble protein 

that shows hardly any tendency to assemble under physiological conditions[100]. The 

different states of tau phosphorylation result from the activity of specific kinases and 

phosphatases[93], thus, an imbalance between these two classes of proteins will affect 

tau’s biological function. In a hyperphosphorylated state, tau changes its native 

conformation and loses its affinity toward microtubules[101], thus being released in a 

soluble form[102]. Then, newly soluble tau proteins can be targeted for post-translational  

modifications (not necessarily just phosphorylation) that directly or indirectly alter tau 

conformation, promoting tau aggregation and paired helical filaments (PHFs) 

formation[97]. The longest form of tau (441 aa) possesses 85 putative phosphorylation 

sites (Figure 8)[103] (serine, threonine and tyrosine residues), which are available to 

numerous kinases, such as casein kinase 1 (CK1 – considered the major kinase of tau 

due to the)[97, 104], mitogen-acivated protein kinases (MAPKs), glycogen synthase 

kinase 3β (GSK3β), and cyclin-dependent kinase 5 (CDK5)[105]. Abnormal 

phosphorylation is not the only cause of tau’s conformational change. Mutant tau proteins 

may also have diminish affinity for microtubules and promote, consequently, tau 

aggregation into PHFs, specially when this occurs inside the microtubule-binding 

domain[100]. More than 30 mutations of tau gene have been described, nevertheless, 

tau’s mutations are not observed in AD[64]. Other mechanisms that promote tau 

aggregation have been proposed to involve several posttranslational modifications (such 

as ubiquitination, glycation, glycosylation, and transglutamination), the neuronal redox 

potential and the presence of cofactors (ApoE, and aluminium)[93].   
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Figure 8. Tau phosphorylation sites. Tau phosphorylation sites found in AD brains (in red), those found in normal brain (in 

green) and those present both in normal and AD brains (in blue) are indicated according to the longest tau isoform tau. 

Putative phosphorylation sites that have not yet been proven to be phophorylated in vitro or in vivo (in black). (Adapted from 

Martin et al., 2011)[97] 

Neurofibrillary tangles: Hallmark #2 

Neurofibrillary tangles (NFTs) are filamentous inclusions (intracellular lesions), 

preferentially observed in pyramidal neurons, composed of filamentous aggregates of 

abnormally hyperphosphorylated microtubule-associated protein tau[64, 106]. NFTS, are 

constituted by PHFs and by a minor class that does not exhibit the marked modulation in 

width of PHFs[107] – straight filaments (SFs). Like SPs, NFTs are hallmarks of AD and 

responsible for other neurodegenerative disorders termed tauopathies[108] (e.g. Pick’s 

disease, progressive supranuclear palsy, amyotrophic lateral sclerosis/parkinsonism–

dementia complex of Guam, and some frontotemporal dementias)[92, 93].  

Resuming to the explanation of AD pathogenesis, various hypotheses have been 

proposed with very different and plausible molecular mechanism, backing it up. Two 

hypotheses stand out, the “amyloid cascade hypothesis” and a so-called “tau and tangle 

hypothesis”, very likely due to the fact that they are centered in the two hallmarks of AD.  

6. Amyloid cascade hypothesis 

First of all, it is of great importance to mention that APP processing is a normal 

metabolic event and that Aβ  is a normal product of cellular metabolism throughout life 

and circulates as a soluble peptide in biological fluids[109]. Plus, Aβ deposition can also 

be found in the brain of non-demented elderly people. 

The most persuasive theory is the “amyloid cascade hypothesis”[110] (Figure 5) and it 

suggests that amyloid deposition is the first step of a cascade of processes that ultimately 

culminate in disease[1, 25]. More concretely, it is based on the effects that the highly 

insoluble forms of Aβ peptide (as SPs or as toxic oligomers) have in terms of 

neurotoxicity, due to a dysregulation in APP processing or Aβ clearance, early in the 
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disease process[111]. It was first suggested that this dysregulation would increase the 

Aβ42/Aβ40 ratio, in other words, promote the production of the most neurotoxic form (Aβ42). 

This would lead to aggregation and to SPs’ formation, which in turn would be responsible 

for the subsequent pathology (including tau aggregation, phosphorylation, neuronal 

attrition and clinical dementia)[111]. Nonetheless, amyloid fibrils are not the only form of 

Aβ possible to observe. Various species, including monomers, oligomers, and protofibrils 

(usually shorter and thinner than amyloid fibrils)[112], with different characteristics, are 

gaining interest as to explain the toxic effects of Aβ. The relationship between SPs and 

clinical manifestations or neurodegenerative changes is quite controversial. Thus, more 

recently, the attention has been deviated from the harmfull effects caused by SPs, giving 

prevalence to the toxic Aβ oligomer hypothesis. Perhaps due to a greater capacity for 

diffusion and larger collective surface area for interacting with neurones and glial cells[61]. 

Some suggest that Aβ toxicity functions in a plaque-independent manner[113], stating that 

oligomeric intermediates present higher toxicity to the cell and, in addition, this is not 

related to a specific prefibrillar aggregate (dimer, trimer, and so on) but rather to the 

propensity that each species has to grow and undergo fibril formation[114]. 

Several observations consistent with the amyloid cascade hypothesis are continuously 

being found, e.g. intraneuronal accumulation of Aβ oligomers can activate signalling 

pathways which cause tau hyperphosphorylation[61]. This particular discovery 

strengthens the hypothesis on one hand, and on the other discredits the “tau and tangle 

hypothesis” (discussed forward). Other serve as supplement for this hypothesis and can 

be grouped together as Aβ-related hypotheses. It is the case of biometals (Zn(II) and 

Cu(II)) involvement with Aβ, microglia-derived toxicity, or membrane permeabilization by 

Aβ oligomers. Concerning the first, several contradictions in the application of the amyloid 

hypothesis can be removed by considering the role of redox-active metals in plaques as 

primary toxic agents and biometals as the trigger of Aβ fibrillization, in the case of 

sporadic AD[115]. As for the second, the inflammation hypothesis states that active 

phagocytic microglia, triggered by Aβ oligomers, is the primary cause of early toxicity[61]. 

However, the role of the different Aβ forms inducing the microglial phagocytosis, 

generation of oxidative stress, and inflammatory response remain unclear[116]. Finally, 

membrane permeabilization by amyloid oligomers (after formation of discrete pores or 

single channels – “channel hypothesis”)[43], leading to an increasing in intracellular 

calcium concentration, has been proposed as the primary mechanism of 

pathogenesis[117]. Nevertheless, there is some disagreement as to the mechanism by 

which amyloid oligomers increase intracellular calcium[43]. 
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Karl Herrup, in 2010, proposed a new model for AD build on a 3 key event: (1) a 

precipitating injury (head trauma, vascular events, illness or stress could initiate a 

protective response) that may not cease due to age-related failure of the normal 

homeostatic mechanisms), triggers (2) chronic inflammation, which in turn leads to (3) 

major physiologic shift in neurons[29]. 

A more consensual vision about Aβ is that it possesses a dual role: a neurotrophic and 

a neuronal degeneration action (if in high concentrations) in mature neurons. This is not a 

theory too difficult to accept since in Nature everything that is exaggerated brings some 

degree of harm. Its neuroprotective role was suggested to act against excitotoxic death by 

activating the phosphatidylinositol-3-kinase (PI-3K) pathway, serving as a double 

prooxidant/antioxidant and shown to bind and remove harmful substances by blocking 

them in plaques[118]. 

There are still some that defend a more controversial hypothesis, the “alternate 

hypothesis”, which opposes the amyloid cascade hypothesis by proposing that Aβ is not 

as a harbinger of death but rather a protective response to neuronal insult[119]. Despite 

all the advances made, the source of Aβ toxicity still remains elusive. 

7. Tau and tangle hypothesis 

“Tauists”, defend a collection of related ideas that maintain the primacy of NFTs 

formation as the AD-causing event, which Mudher and Lovestone designated as the “tau 

and tangle hypothesis” (Figure 9)[111]. It has emerged due to solid evidence that SPs do 

not account for the complex pathophysiology of AD[38]. It argues that in AD the normal 

role of tau is impaired and that NFTs accumulate to occupy much of the neuron and 

apparently result in neuronal death, as extracellular tangles in the shape of neurons are 

abundant in late stages of disease[111]. Maccioni et al, postulated a much more 

embracing tau hypothesis, in which, a series of damage signals (Aβ oligomers, oxygen 

free radicals, iron overload, cholesterol levels in neuronal rafts, LDL species and 

homocysteine, among other) trigger, by innate immunity, the activation of microglial cells 

with the consequent release of pro-inflammatory cytokines that modify neuronal behavior 

through anomalous signaling cascades, which finally, promote tau 

hyperphosphorylation[38]. As described in the tau section, hyperphosphorylation leads to 

tau oligomerization and production of NFTs that, after neuronal death, are released to the 

extracellular environment (“ghost tangles”, remaining characteristically stable[105]), 

contributing to activation of microglial cells and stimulating the deleterious cycle, leading 

to progressive neuronal degeneration[38]. 
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Figure 9. Tau Structure and Function. Normal phosphorylation of tau occurs on serine and threonine residues. These 

amino acids can be phosphorylated by a series of kinases, such as: glycogen synthetase kinase 3 (GSK-3β), cyclin-

dependent kinase (cdk5) and its activator subunit p25 (shown), mitogen-activated protein kinase (MAPK), Akt, Fyn, and 

protein kinase A (PKA) (not shown). Tau binding promotes microtubule assembly and stability. Excessive phosphorylation of 

tau leads to decreased tau binding to microtubules, increasing free tau, which, under the appropriate conditions, will self-

aggregate to form insoluble PHFs (paired helical filaments). Loss of tau binding is predicted to result in loss of microtubule 

function. All this process leads to neuronal death, which might result in dementia. (Adapted from Querfurth and LaFerla, 

2010)[64]. 

The degree of tau phosphorylation in the AD brain is reasonably well correlated with 

the severity of AD symptoms. However, fetal tau, a much more phosphorylated form of tau 

than adult tau, does not induce AD-like pathology. In summary, there is no direct evidence 

for the neurotoxicity of hyperphosphorylated tau[105] (as in the case of Aβ toxicity). 

Whilst discovering what and how is causing this complex AD pathology is 

fundamental, the ultimate goal for every scientist is finding the cure, or if not possible, 

finding a suitable temporary treatment. 
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Finding the treatment 

Due to the complexity of AD, a vast number of targets and pathways may be chosen 

to intervene. Cholinergic degradation inhibitors, immunotherapy, secretase inhibitors, anti-

inflammatory drugs, tau- and Aβ-deposition interfering drugs, are a few examples of huge 

classes of drugs that are being tested at the moment[120].  A few options for therapies will 

be listed next, however, it is important to notice that they only aim to treat symptoms and 

not the cause of the disease. 

The first drugs developed for AD, acetylcholinesterase inhibitors (AchEI), aimed at  

increasing acetylcholine levels, previously demonstrated to be reduced in AD [7]. 

Currently, 5 drugs (FDA approved) are used for the “treatment” of AD in the initial stages: 

4 AchEI (Donepezil, Rivastigmine, Galantamine and Tacrine) and 1 NMDA receptor 

antagonist (Memantine) (http://www.alzforum.org). As referred above, they are not 

effective, so other targets must be searched. 

The first study to prove target engagement by a disease-modifying drug in living 

humans was reported by Rinne and colleagues, in 2010, using the monoclonal anti-Aβ 

antibody bapineuzumab[31, 121]. It revealed a reduction of fibrillar amyloid in the brain of 

AD individuals, but did not improve cognition or function[122]. Crenezumab is another 

antibody being used in pre-symptomatic treatment trials of Colombian mutant PSEN1 

kindred[31]. These are just two examples of an immense list of antibodies that are being 

studied at the moment. Intravenous immunoglobulins (IVIG) have been proposed as 

potential treatment based on the hypothesis that IVIG contains naturally occurring 

antibodies that specifically promote clearance of Aβ peptides from the brain[123]. 

Secretase modulators[31], tau deposition modulators (e.g., methylene blue[64]) and 

molecules addressing oxidative damage[7] are also potential drugs under study. 

Unfortunately, not everyone responds positively to drugs that halt the progression of the 

disease and, when they do, the protective effect runs off over time. Recently, the “return” 

of electric shock therapy – deep brain stimulation – by the group of Dr Lozano, from 

Toronto, gave some hope to the society[124]. Not only did it stop the progression of the 

disease as also, in less affected patients, suggests a likely improvement in condition[18, 

19]. Nevertheless, further work of this approach will be necessary. 

A general recommended therapy is Diet and Lifestyle, so that cardiovascular risk 

factors can be controlled. This will decrease cerebrovascular events, which, in turn, will 

lead to a reduction in both vascular dementia and the poorly understood contribution of 

vasculopathy to AD[31]. 

http://www.alzforum.org/
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Since no effective treatment has been developed, the best scenario is an early stage 

intervention. One common expression can be used to define the treatment approach in 

AD (and the rest of diseases): the sooner, the better, meaning that the sooner you 

discover the disease, the greater the odds of treating it. Thus, the search for proper 

(highly sensitive and specific) biomarkers is on constant demand, allowing a more 

effective and early stage intervention. 

 

Diagnosis and Biomarkers 

The search for early AD biomarkers has been highly targeted over the last years, as 

investigators believe that the generation of an effective treatment for AD is only possible if 

the disease is detected at very early stages. 

According to Phelps and colleagues, in 1998, the sensitivity of the clinical diagnosis of 

AD is 93% and the specificity is 55% (which varies with age)[125]. It is a high value but 

when used in combination with other characterizing techniques (as biomarkers) it is 

possible to predict/diagnose AD with a greater confidence. By definition, and according to 

the International Programme on Chemical Safety biomarker is “any substance, structure, 

or process that can be measured in the body or its products and influence or predict the 

incidence of outcome or disease”[126]. In AD, biomarkers are used to early diagnose the 

disease, by predicting who is going to develop AD from mild cognitive impairment 

(MCI)[127]. 

Neuroimaging, has recently been given some evidence in diagnosis (with 

improvement in PET and MRI spectroscopy resolution) due to the possibility of using 

specific tracers, such as a derivate of thioflavin T that crosses the BBB and binds 

selectively to Aβ (C11-labeled Pittsburgh Compound B – PiB[128]) that allow the 

identification of amyloid deposition in the brain in vivo [6] . In 2002, Klunk and colleagues 

reported a “definitive” diagnosis technique for AD – brain amyloid imaging (BAI) – using 

the PiB compound[128]. By 2010, the combination of increased BAI signal, low CSF Aβ42, 

and high CSF tau in a subject with dementia was recognized as diagnostic for AD, and 

patients with MCI and appropriate BAI and CSF profiles could be predicted to progress to 

frank dementia with high degree of confidence[31]. However, further studies showed the 

existence of some conflicting reports, since it was not always possible to differentiate 

symptomatic AD from asymptomatic controls with amyloid plaques[14]. The combination 
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of neuroimaging and biomarker profile increases the predictive value of AD diagnosis and 

may lead to a correct characterization of persons at risk, prior to the development of 

clinical symptoms[6]. 

There has been an increase in the search for solid AD biomarkers, starting with those 

who seem to be altered in this condition when compared to normality. Hansson and group 

stated that the combination of CSF total-tau, phospho-tau and Aβ42 yielded good 

sensitivity and specificity for detection of AD in patients with MCI[40, 127]. More recently, 

a model based on Aβ42 and total-tau levels was developed that could accurately 

discriminate AD from controls by means of a discrimination line. After autopsy validation 

the model revealed a sensitivity of 100% and specificity of 91%[129]. Another obvious 

candidate is the major susceptibility gene for AD, ApoE-ε4. When grouped on the basis of 

CSF tau and Aβ markers, the association of ApoE-ε4 with AD was twice as strong as 

compared to when classifying patients according to clinical status[130]. CSF BACE-1 (β-

secretase) is also being studied, demonstrating that (despite the small number of 

subjects) AD patients had increased BACE-1 activity compared with non-

demented[131].  Levels of CSF sAPPβ, when combined with CSF tau, have also been 

reported to be useful in predicting cognitive decline in MCI cohorts[132]. Transthyretin 

(TTR) in CSF has also been proposed as a biomarker and revealed a significant (and 

selective for AD) negative correlation between TTR CSF levels and disease severity in 

AD[133]. Other studies came to contradict this idea suggesting that TTR potential as 

biomarker raises some doubt since its levels appear to fluctuate substantially within a 

single individual over a 2-week interval[132].  

CSF biomarkers are very promising, although its collection is invasive and thus difficult 

to be a regular procedure in AD diagnosis. Plasma-derived biomarkers, such as Aβ42/Aβ40 

ratio may also be useful in the identification of increased risk for developing MCI or 

AD[134]. Other are under investigation, and for instance, TTR plasma levels also showed 

a negative correlation between with AD [27, 135], supporting the observations reported for 

CSF. 
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Transthyretin – FAP and then AD  

1. From component X to transthyretin  

TTR was described for the first time by Seibert and Nelson, in 1942, as an X 

component “which is slightly more mobile than albumin”[136], and thus called prealbumin. 

Its current name is derived from its primary function, transport of thyroxine (T4) and 

retinol, through the binding of retinol binding protein (RBP)[137]. TTR is a 55 kDa 

homotetrameric protein synthesized mainly by the liver and the choroid plexus[138] 

(corresponding to  20% of total protein synthesized[139]) and secreted into plasma and 

CSF, respectively. TTR is a single-copy gene mapped in chromosome 18 and its mRNA 

codifies a 147 aa peptide, corresponding to the TTR-monomer[140]. It is an evolutionary 

conserved protein and it is found in many vertebrates’ species[140] The four monomers 

within a TTR tetramer, form an open channel where T4 binds (Figure 10) while retinol 

interacts with only one of the dimers, at the surface[27]. 

Yet another TTR function was discovered: Liz et al. also established TTR as a cryptic 

protease of apoliprotein A1 (ApoA-1)[141] and later showed that TTR may affect HDL 

biology and the development of atherosclerosis by reducing cholesterol efflux and 

increasing the apoA-I amyloidogenic potential[142]. Thus, the possible protease role of 

TTR in the proven interaction with Aβ was addressed and it was observed that TTR was, 

indeed, able to proteolytically process Aβ in vitro [137]. In addition, cleaved Aβ peptides 

showed lower amyloidogenic potential than the full length counterpart[137]. 

2. TTR as a disease factor 

TTR is the key protein in familial amyloidotic polineuropathy (FAP), firstly described as 

“peculiar form of peripheral neuropathy”, in 1952 by the Portuguese professor Corino de 

Andrade[143], and associated to a deposition of TTR protein in 1978, by Costa et al.[144]. 

FAP is a hereditary autosomal dominant neurodegenerative disorder characterized by the 

presence of amyloid fibrils (Figure 10), especially through the peripheral nervous system, 

that leads to organ dysfunction and ultimately, death[145]. Several TTR mutations (over 

100) have been related to provoke amyloid deposition and disease[146], the most 

frequent being the substitution of a valine residue for a methionine at position 30 

(V30M)[147]. Other mutations should also be referred: T119M (substitution of threonine 

for methionine at position 119), a non-pathogenic variant presenting high binding affinity 

for T4 as compared to normal TTR[148]; and L55P and Y78F (substitution of leucine for 
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proline at position 55 and tyrosine for phenylalanine at position 78, respectively), two very 

aggressive pathogenic mutations that alter significantly TTR conformation[149, 150]. 

 

Figure 10. Transthyretin (TTR) structure and amyloidogenesis cascade. TTR is an homotetramer, with each monomer 

bearing 147 amino acid residues. The 4 monomers together form an open channel where T4 can bind. For amyloidogenesis 

to occur, the TTR tetramer must first dissociate into four folded monomers and undergo partial denaturation. These pieces 

then subsequently misassemble into a variety of aggregate structures including toxic amyloid fibrils. (Adapted from 

http://www.scripps.edu/newsandviews/e_20110905/diagram.html) 

It is believed that the amyloidogenic potential of the TTR variants is related to a 

decrease in tetrameric stability [151] and that the dissociation of the tetramer into 

monomers is the basis of a series of events that lead to the formation of TTR amyloid 

[152, 153]. Thus, TTR stabilization has been proposed as a key step for the inhibition of 

TTR fibril formation and has been the basis for FAP therapeutic strategies [154, 155]. 

Such stabilization can be achieved through the use of small compounds sharing molecular 

structural similarities with T4, mostly belonging to the NSAIDs and binding in the T4 central 

binding channel [156-160]. 

3. TTR as a protective molecule in AD 

The first report that associates TTR to Aβ and AD in the context of a protective 

molecule is from Schwarzman et al. which describes the capacity of normal CSF to inhibit 

amyloid formation[161]. Prior to this finding, TTR was found associated to SPs, NFTs and 

microangiopathic lesions[162]. Although it was already known that other proteins such as 

TTR monomersT4 binding pocket
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ApoE, ApoJ, gelsolin[163] and APP are able to sequester Aβ, contributing for the 

prevention of AD, Schwarzman and colleagues concluded that TTR was the major Aβ 

binding protein in the CSF[161]; TTR was also able to decrease the aggregation state of 

the peptide and to avoid its toxicity. The sequestration hypothesis was raised, suggesting 

that normally produced Aβ is sequestered by certain extracellular proteins, thereby 

preventing amyloid formation and Aβ cytotoxicity; when sequestration fails amyloid 

formation occurs[164]. The observation that TTR is reduced in the CSF of AD patients 

further supported the idea of a TTR protective role in this pathology[165]. Mammalian 

models have been used to mimic AD features but were never completely successful: AD 

transgenic mice did not show neurofibrillary tangles (NFTs) and demonstrate little or no 

neuronal cell loss[166-171]. However, in some of the models, animals showed increased 

TTR expression in the hippocampus; TTR was then described to be a survival gene[171] 

and although this work is controversial because TTR expression is thought to be confined 

to the choroid plexus and meninges (in the case of the brain), authors further showed that 

when a chronic infusion of an antibody against TTR was applied into the hippocampus of 

mice expressing human APP, an increase of Aβ, tau phosphorylation, neuronal loss and 

apoptosis was observed[172]. Underlying these observations is, according to authors, 

sAPPα that leads to increased expression of protective genes, such as TTR, to confer 

neuroprotection[172]. Other studies, using transgenic APP mice hemizygous for 

endogenous TTR showed accelerated Aβ deposition[67], while double transgenic mice for 

APP and TTR presented lower deposition[173]. However, in other models, TTR was 

described to have the opposite effect and was associated with increased vascular Aβ 

deposition[174]. More recently, Oliveira et al, reported findings on an APP/PSEN 

transgenic mouse model in different TTR backgrounds. In this study, it was stated that 

mice with genetic reduction of TTR showed increased Aβ brain levels, and that higher Aβ 

deposition was found in females, compared to males[175]. This work provided evidence 

for a gender-associated modulation of brain Aβ levels and brain sex steroid hormones by 

TTR, and suggests that reduced levels of brain testosterone and 17-estradiol in female 

mice with TTR genetic reduction might underlie their increased AD-like 

neuropathology[175]. 

Regarding the nature of TTR/Aβ interaction, different researchers confirmed TTR 

binding to Aβ[176-178], not only to the monomer but also to Aβ oligomers and fibrils, 

raising the hypothesis that TTR may be involved in the formation of senile plaques[137]; 

TTR was also able to inhibit and to disrupt Aβ fibrils. However, which TTR conformation 

binds Aβ peptide is still controversial. Du and Murphy claim that Aβ monomers bind more 

to TTR monomers than to TTR tetramers[179]; in this work, studies performed with WT 

TTR, T119M TTR and a double mutant (F87M/L110M TTR), which is a stable monomer 
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but a non-natural occurring mutation, authors showed that TTR tetramers interact 

preferably with Aβ aggregates rather than Aβ monomers enhancing Aβ aggregation, 

whereas TTR monomers arrest Aβ aggregate growth. Although interesting from a 

scientific point of view, the existence of functional biological active TTR monomers in vivo 

is far from established. Other studies indicated that amyloidogenic and unstable TTR 

mutants bind poorly to Aβ peptide [178, 180], suggesting that this interaction depends on 

the presence of the TTR tetramer. Very recently, genetic stabilization of TTR, through the 

presence of the T119M allele, which renders a more stable tetramer, has been associated 

with decreased risk of cerebrovascular disease and with increased life expectancy in the 

general population [181], further demonstrating the importance of the TTR tetramer in the 

protein biological activity.  

The discussion on the TTR interaction with Aβ and consequent inhibition of 

aggregation and toxicity reduction raised the hypothesis that mutations in the TTR gene or 

conformational changes in the protein induced by aging, could affect the sequestration 

properties. A studied was conducted with the aim of identifying mutations in the TTR gene 

in the AD population but no correlation was found[138]. More recently, polymorphisms in 

the TTR gene were associated to hippocampal atrophy although the study could not 

associate this alteration to AD[182]. Nevertheless, destabilization of the protein may result 

from other events, such as metal ions concentration and interaction with other proteins.  

Supporting the hypothesis that TTR might be destabilized in AD is, on one hand, the 

observation that TTR is early decreased in CSF and plasma of MCI and AD patients, and 

on the other hand, the lower levels of T4 transported by TTR in these groups of 

patients[27], raising the hypothesis that TTR destabilization in AD accelerates its 

clearance, thus explaining the lower levels found. Moreover, in vitro, it is possible to 

restore the ability of TTR amyloidogenic/destabilized mutations to bind to Aβ peptide 

through the use of NSAIDs[183]. Importantly, in vivo administration of iododiflunisal (IDIF), 

one of the drugs shown to strengthen TTR/Aβ interaction, to APP/PSEN transgenic 

female mice in a TTR hemizygous background (model characterized and described by 

Oliveira and colleagues) resulted in decreased Aβ brain levels and amyloid burden, 

amelioration of the cognitive function and lower Aβ plasma levels[184]. This consolidated 

the notion that TTR stabilization is an important factor in TTR protection in AD, and 

suggested that TTR promoted Aβ clearance from the brain and from the periphery [184]. 

Although a growing body of evidence suggests TTR as an important modulator of AD 

pathogenesis, the mechanism underlying the effects described in the literature is 

incompletely understood; proteolytic degradation of the peptide, sequestration and 
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promotion of its clearance either by promoting its efflux from the brain or its uptake by the 

liver, influence in APP processing, and the effect of sex hormones have already been 

hypothesized and need to be further explored. It is also possible that TTR protection in AD 

is also conferred by interference in other pathways/molecules known to be altered in AD, 

such as APP trafficking and synaptic formation, although not yet addressed. In this line of 

thoughts, the experimental work presented in the next sections aimed at investigating the 

behavior of sortilin and synaptophysin, in AD transgenic mice in different TTR 

backgrounds. The above mentioned proteins will be next described, and have been 

proved to affect APP/Aβ circulating levels and neurotransmitter liberation, respectively. In 

addition, and because it relates to APP/Aβ levels, we also evaluated APP expression and 

processing. 

 

Sortilin and Synaptophysin in AD 

1. Sortilin 

Sortilin (Sort1) is a member of the recently discovered family of Vps10p-domain 

receptors (of approximately 94 kDa)[185], and is expressed in neurons of the central and 

the peripheral nervous system, but also in extra-neuronal tissues including liver and 

fat[186]. It is an essential component for transmitting pro-neurotrophin–dependent death 

signals, and thus promotes apoptosis[187]. Agreeing with the latter, an important role of 

Sort1 in neurodegenerative disease has been proposed, by Al-Shawi et al., due to the 

observation of an age-related increase in its expression levels. Increased Sort1 levels, 

combined with also increased levels of proNGF (uncleaved precursor form of the nerve 

growth factor protein), suggest an influence of Sort1 in neuronal atrophy and cell death, in 

their older mice model[188]. After analysis, the authors observed no differences in Sort1 

expression between AD patients and age-matched controls, however, this results show 

that the role of Sort1 in aging should not be despised[188]. Another group has shown, in 

their analysis of AD post-mortem brain tissue, increased levels of Sort1 (compared to 

controls), and suggested a possible role in the development of AD-related pathological 

changes[189]. Then, Sort1 was shown to be a binding protein of APP, and so, its 

influence in the evolution of AD pathogenesis, positive or negative, started being 

investigated. 

Recently, more precisely in January of 2013, two interesting papers were published by 

the same journal. Gustafsen et al., suggested the role of Sort1 as a sorting protein in APP 
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processing. They were able to observe, in vitro, that when Sort1 was decreased, the 

levels of sAPPα were also decreased, suggesting an involvement in APP processing[190]. 

Thus, the proposed interaction of Sort1 with APP, in neurites, promotes α-secretase 

cleavage of APP (inhibiting Aβ production), and influences both production and cellular 

uptake of soluble forms of APP (leading to lysosomal degradation)[190]. The authors also 

commented that the previous findings from Finan et al., suggesting an increase in sortilin 

levels in AD patients, may be due to the use of a C-terminal tagging, which can affect the 

subcellular localization of Sort1. In the other publication, Carlo et al. denied the previous 

hypothesis and proposed Sort1 as a neuronal ApoE receptor, constituting a major 

endocytic pathway for clearance of ApoE/Aβ complexes[186]. Carlo’s group observed, 

using ApoE- and Sort1-deficient mouse models, that the lack of receptor expression in 

mice resulted in accumulation of ApoE and Aβ in the brain, with aggravated plaque 

burden[186]. Thus, these two groups propose a negative correlation of Sort1 and AD 

progression. 

A relationship between Sort1 and AD has been quite established, nonetheless, the 

exact mechanism underlying this involvement is not fully resolved, thus yielding distinct, 

and even sometimes contradictory, hypotheses. 

2. Synaptophysin  

Synaptophysin (Syp), a 38 kDa integral membrane protein, member of the MARVEL 

(MAL and related proteins for vesicle trafficking and membrane link)-domain family[191], 

is the most abundant integral synaptic vesicle protein and, therefore, is often measured in 

attempts to quantify synapses[192]. When bond to synaptobrevin (a protein of the SNARE 

complex), Syp inhibits the binding of the latter to SNARE complex, thus preventing the 

SNARE assembly and vesicle fusion[192, 193] (Figure 11). Since AD is characterized by 

an accentuated synaptic loss, the analysis of Syp’s expression and behavior in AD was 

accessed by several groups. Ishibashi et al. observed that synaptophysin was more 

abundant in AD brain cortex than in controls, but showed a somewhat irregular pattern of 

staining, since a marked decrease was observed in foci where oligomer Aβ 

accumulated[194], leading to loss of normal synaptic functions. Another group revealed a 

link between Aβ42 accumulation and loss of synaptophysin in a transgenic AD mouse 

model, however the expression of Syp in their AD model was decreased, compared to 

control littermates[195], opposing the results from Ishibashi and group. Other agreeing 

studies reveal reduced average levels of Syp in human hippocampus, when comparing 
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AD to control samples, and a correlation between Syp decreased levels and cognitive 

decline in AD[196]. 

 

 

Figure 11. Synaptophysin involvement in vesicle fusion.  Synaptophysin/synaptobrevin complex binds with syntaxin on 

the plasma membrane and forms a fusion pore. Then the tight formation of the SNARE complex disassociates 

synaptobrevin from sinaptophysin, thus weakening the synaptophysin complex and allowing the vesicle to fully fuse. 
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Objectives 

The aim of this study was the search for early TTR-related biomarkers in a transgenic 

mouse model, constituted by AD/TTR+/+ and AD/TTR+/- (bearing two copies of TTR and 

one copy of TTR, respectively) 3- and 7-months-old mice, by means of Western Blot 

analysis. For that we investigated: 

(1) sortilin expression; 

(2) synaptophysin expression; 

(3) APP expression, through evaluation of: 

i. APPfull length 

(4) APP processing, through evaluation of: 

i. CTFs levels 

ii. sAPP levels 

(5) the influence of age in our mouse model, and in the expression of the above 

mentioned proteins. 
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Material and methods 

Animals 

The mouse model AβPPswe/PSEN1A246E/TTR used in this study was established 

and characterized in the Molecular Neurobiology Laboratory at IBMC, Porto. The colony 

was generated by crossing AβPPswe/PSEN1A246E transgenic mice[197] (B6/C3H 

background), purchased from The Jackson Laboratory, with TTR-null mice (TTR-/-) 

(SV129 background)[198] as previously described[175]. Thus, we were able to generate 

AβPPswe/PSEN1A246E/TTR+/+ (carrying 2 copies of the TTR gene), 

AβPPswe/PSEN1A246E/TTR+/- (carrying only one copy of the TTR gene) and 

AβPPswe/PSEN1A246E/TTR-/- (without TTR), hereafter referred to as AD/TTR+/+, 

AD/TTR+/- and AD/TTR-/-, respectively. Animals were housed in a controlled environment 

(12-h light/dark cycle; temperature, 22±2°C; humidity, 45-65%), with freely available food 

and water. All procedures involving animals were carried out in accordance with National 

and European Union Guidelines for the care and handling of laboratory animals. 

In this study, we used two groups of cohorts of littermates. One group was composed 

by 3 months old male and female mice, as follow: 

3 male and 3 female AD/TTR+/+ mice;  

3 male and 3 female AD/TTR+/- mice;  

3 male and 2 female AD/TTR-/- mice. 

The other group was composed by 7 month-old female mice, that underwent IDIF 

administration in a previous study[184]: 

7 AD/TTR+/+ control (not submitted to treatment) mice;  

7 AD/TTR+/+ treated (with IDIF drug) mice;  

8 AD/TTR+/- control mice;  

9 AD/TTR+/- treated mice;  

3 AD/TTR-/- control mice. 

These mice started IDIF treatment at the age of 5 months, before the onset of 

deposition, which lasted for 2 months and thus animals were sacrificed at 7 months of 

age, after the start of Aβ deposition. With regard to this group of mice, brain tissue 

homogenized in Tris Buffer Saline (TBS) and frozen at -80 ºC was already available in the 

laboratory. 
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Tissue Processing 

Animals were sacrificed following anesthesia with a mixture of ketamine (75mg/kg) 

and medetomidine (1mg/kg) administrated by intraperitoneal injection. Efforts were made 

to minimize pain and distress; all animal experiments were carried out in accordance with 

the European Communities Council Directive. CSF was collected from the cisterna 

magna, assessed for blood contamination analysis as previously described[199] and 

stored at -80 °C. Blood was collected from the inferior vena cava in syringes containing 

EDTA as anticoagulant, followed by centrifugation at 1000 × g for 20 min at room 

temperature (RT). Plasma samples were then collected and stored at -80 °C. From each 

removed and dissected brain; hippocampus (divided in two halves) and cortex samples 

were collected and frozen immediately at -80 °C for biochemical analyses. As already 

described, tissue samples from mice that entered the IDIF study were already collected, 

corresponding to hemi-brains of each animal, thus the separation of the hippocampus was 

not possible at this stage. In the present study, only the hippocampus or all brain (for 3 

and 7 months-old mice, respectively), were used and analyzed in the subsequent assays. 

 

Sample preparation 

Hippocampus samples were homogeneized in 300 μL of kinexus lysis buffer (20 mM 

MOPS pH 7.0; 2 mM EGTA; 5 mM EDTA; 30 mM sodium fluoride; 60 mM β-

glycerophosphate pH 7.2; 20 mM sodium pyrophosphate; 1 mM sodium orthovanadate; 

1% Triton X-100) and 1mM phenylmethylsulphonyl fluoride (PMSF) and protease 

inhibitors (PIs – stock at 100x). In relation to the other group of mice and since the all 

brain samples had already been collected and frozen in 500 μL of a different lysis buffer 

(TBS 50mM pH 7.4; 0.2% Triton X-100; 4mM EDTA; and PIs), it was necessary to 

prepare a kinexus lysis buffer 2x. By adding 500 μL of kinexus 2x (plus 2 mM PMSF and 

2x PIs) we were able to equalize the conditions of the all brain and hippocampus samples. 

The homogenized samples were then centrifuged for 20 minutes at 14 rpm (4 °C), 

supernatants were collected and total protein concentration was determined using the 

Bradford method. After quantification, hippocampus and all brain samples were diluted to 

2 mg/mL and 3 mg/mL, respectively. All samples were then boiled for 5 minutes with 1x 

SDS buffer (125 mM Tris pH 6.8; 4% SDS; 20% glycerol; 10% β-mercaptoethanol; and 

0.08% bromophenol blue) and stored at -20 ºC for future analysis. 
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Western Blot 

Proteins were separated by 10% SDS-PAGE (200V; 25mA; ~1.30h), and transferred 

(100V; 400mA; 2h) to a nitrocellulose membrane (WhatmanTM GE Healthcare Life 

Sciences – Protran BA 83), using a wet system (Bio-Rad Criterion Blotter). Membranes 

were blocked using blocking buffer, 10% bovine serum albumin/nonfat dry milk (BSA/DM 

depending on the antibody) in phosphate-buffered saline containing 0.05% Tween-20 

(PBS-T), for 1 hour at room temperature with gentle shaking. Alternatively, samples were 

separated using commercial gradient gels – Criterion XT Precast Gel, 4-12% 

polyacrylamide Bis-Tris, 18 well (#345-0124 Bio-Rad) using the recommended XT MES 

Running Buffer (#161-0789 Bio-Rad). After the electrophoresis (200V; 250 (maximum) 

mA; ~35min), proteins were transferred (100V; 400mA; 2h) to a nitrocellulose membrane 

(WhatmanTM GE Healthcare Life Sciences – Protran BA 83), using a wet system (Bio-Rad 

Criterion Blotter). The membrane was dried, boiled 10 minutes with PBS, washed also 

with PBS, and followed the common protocol above specified. 

Antibody incubation 

After blocking, membranes were then incubated with primary antibodies against the 

proteins under study. After optimization of different variables such as dilution of primary 

and secondary antibodies, incubation conditions (solution and incubation time), type of gel 

and reference protein, the best conditions were established for each protein of interest 

and are summarized in Table 1. After the incubation with primary antibodies, membranes 

were washed 3 times for 10 minutes, followed by the suitable secondary antibody (anti-

rabbit-HRP conjugated – AP311; The Binding Site – or anti-mouse-HRP conjugated – 

#31432; Pierce Antibodies ) both diluted 1:5000, in 3% (1% when incubated with anti-α-

tubulin) DM/PBS-T, for 45min at RT with gentle shaking. The blots were developed using 

Immun-Star™ WesternC™ Chemiluminescence kit (Bio-Rad) and proteins were detected 

and visualized using a chemiluminescence detection system (ChemiDoc, BioRad). When 

necessary, membranes were stripped using a commercial stripping buffer (Re-Blot Plus 

Solution (10x) – Millipore) during 20min at RT with gentle shaking, for re-utilization of the 

membrane, according to the manufacturer’s instructions. Protein levels were normalized 

using the ratio between the protein of interest and α-tubulin. 
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Protein 
Primary 

Antibody 
Dilution 

Incubation 

conditions 

Protein loaded (μg) 

/ type of gel 

Sortilin 
rabbit - ab16640;  

Abcam 

1:1 000 / 

2 000* 

5% BSA/PBS-T, 

O/N at 4°C 

30 / 10% SDS-

PAGE 

Synaptophysin 

mouse - 

ab18008;  

Abcam 

1:2 000 / 

5 000* 

5% DM/PBS-T, 

O/N at 4°C 

30 / 10% SDS-

PAGE 

α-APP C-

terminal 

rabbit - A8717; 

Sigma 
1:10 000 

5% BSA/PBS-T, 

1h at RT 

50 / 4-12% PolyA 

Bis-Tris 

β-Amyloid N-

terminal 

mouse - A5213; 

Sigma 
1:10 000 

5% BSA/PBS-T, 

1h at RT 

50 / 4-12% PolyA 

Bis-Tris 

α-Tubulin 
mouse - T8203; 

Sigma 
1:10 000 

5% DM/PBS-T, 

1h at RT 

30 / 50** 

Table 1. List of antibodies used in Western Blot analyses. (*) Dilution of antibody suggested by the manufacturer / 

optimized dilution used in subsequent analysis. (**) The quantity of loaded protein varies according to the protein of interest 

being analyzed and type of gel necessary for this analysis. 

 

Statistical Analysis 

Quantitative data are presented as Mean ± SEM. Statistical analysis was carried out 

using Graphpad Prism 5 software. First of all, data was assessed whether it followed a 

Gaussian distribution by the Kolmogorov-Smirnov test. When found to follow Gaussian 

distribution, differences among groups were analyzed by one-way ANOVA (followed by 

Bonferroni's Multiple Comparison Test) and comparisons between two groups were made 

by Student’s t test. In the cases of non-Gaussian distribution, differences among groups 

were analyzed by non-parametric Kruskal-Wallis test (followed by Dunns test). p values 

lower than 0.05 were considered significant. 
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Results 

Previous work showed that the AD/TTR mouse colony established in our laboratory is 

a suitable model to study AD, in particular the neuroprotective role of TTR and gender 

differences in AD[175], as elevated brain levels of Aβ42 were observed in particular in 

AD/TTR+/- female mice as compared to their AD/TTR+/+ counterparts. AD/TTR-/- mice 

which are also generated in this colony, were also used in the present; however, and as 

previously described, the negative effects of the genetic reduction of TTR were not always 

observed in AD/TTR-/- animals compared to AD/TTR-/+ and AD/TTR+/+ littermates. This 

may be due to compensatory mechanisms generated by these animals as hypothesized 

by Oliveira and co-workers in the first characterization of this model[175]. Thus we choose 

not to present these data. 

 In the first characterization of this model, mice of 3, 6 and 10 months were evaluated 

for Aβ brain levels, as assessed by Aβ40 and Aβ42 peptides levels in brain homogenates, 

in two fractions: detergent-soluble fraction, corresponding to Aβ initial aggregates and 

oligomers; formic acid-soluble fraction, corresponding to higher ordered aggregates. In 

addition, Aβ burden was also evaluated by immunohistochesmistry, revealing that plaque 

formation started at the age of 6 months. Younger mice were only investigated for TTR 

levels in plasma, and compared to non-transgenic animals, revealing that TTR is early 

decreased, although its levels were raised in 10 months old mice, probably due to 

compensatory mechanism. However, the effects of TTR genetic reduction in pathways 

known to be altered in AD were not addressed in young mice, before the development of 

disease. As stated in the beginning of this thesis, Alois Alzheimer hypothesized that AD 

occurs due to neuronal failure, and thus this work focused on the search of AD biomarkers 

(proposed to be involved in neuronal failure) early affected by TTR, before Aβ deposition, 

using the AD mouse model described. Then, the results were compared to older mice, at 

an age known to already present Aβ deposition in the brain. In addition, mice that 

underwent treatment with IDIF, known to stabilize TTR and improve AD features, were 

also investigated to further validate the results, and to address the possibility of using 

these biomarkers for disease progression evaluation and follow-up of therapies. In 

particular we measured the levels of sortilin (Sort1), synaptophysin (Syp), APP expression 

and APP processing. 
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Sortilin: expression and quantification 

To investigate if TTR affects Sort1 levels in the brain, we used western blot analysis of 

brain extracts. Based on literature, Sort1 protein is expressed all over the brain, without a 

preferred expression area.  Nevertheless, it is necessary to take in account that AD is 

characterized mainly by alterations in the hippocampus, thus, the results obtained from all 

brain (7 months old mice, with and without IDIF treatment) must be compared to the ones 

in hippocampus, with caution. 

Analysis of sortilin expression in 3 month-old mice 

We started by analyzing Sort1 proteins levels in hippocampus of 3 months-old mice 

(Figure  12), and we found AD/TTR+/- mice presented significantly lower levels of sortilin 

when compared to AD/TTR+/+ animals (p<0.01), (Figure  12B, left panel). Further analysis 

of the results by gender showed no significant differences between AD/TTR+/+ and 

AD/TTR+/-, either in male and female (Figure 12B, right panel). It is important to refer that 

these results are probably influenced by the small number of animals (n=3), in each 

group. Nevertheless, we can observe that the levels of Sort1 tend to decrease from 

AD/TTR+/+ to AD/TTR+/- (male and female) and also vary in gender (lower levels of Sort1 

in female).  

Altogether, these results suggest that TTR influences Sort1 expression at this age, 

before Aβ deposition. 

Analysis of sortilin in 7 month-old mice 

To further understand if the effect of TTR genetic reduction on Sort1 levels was 

sustained overtime, we analyzed 7 months-old mice. Additionally, the study was also 

performed in brain tissue of 7 months-old animals that received IDIF, orally, for 2 months. 

As reported, IDIF administration resulted in lower Aβ deposition in the brain as well as 

cognitive improvements. Thus, we also intended at investigating the possibility of using 

Sort1 as a biomarker, both for disease progression and for follow-up of therapies. As 

already referred, brain tissue (all brain) was already available in the laboratory and 

originated only from females[184]. 

Our results (Figure 13) indicated that Sort1 was significantly decreased in AD/TTR+/- 

compared to AD/TTR+/+ female mice (p<0.001). This indicates that, either the difference 

was accentuated with ageing, or that we could not detect statistic differences in 3 months 
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old mice due to the lower number of samples, as already suggested. Control and treated 

mice, from the same genotype, showed no significant differences in Sort1 levels (Figure 

13B), indicating that TTR stabilization by IDIF did not affect sortilin. 

 

A 

 

B 

 

Figure 12. TTR influences sortilin expression in 3 months-old mice. Western blot analysis of sortilin expression (A) and 

respective quantification (B) grouped by genotype (left panel, n=6 in each group) and by gender (right panel, n=3 

male/female in each group). Data represent the means ± SEM. Error bars represent SEM. **p < 0.01 in a Student’s t test. 

Altogether, our results suggest that Sort1 is primarily affected by TTR quantity, and 

that TTR stabilization alone is not sufficient to recover Sort1 levels. In addition, it seems 

that Sort1 levels correlate positively with disease severity. 
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A 

 

B 

 

Figure 13. TTR influences sortilin expression in 7 months-old mice. Western blot analysis of sortilin expression (A) in 7 

months-old mice, and respective quantification (B) of AD/TTR
+/+

 control (n=7) and treated (n=7), and AD/TTR
+/-

 control (n=8) 

and treated (n=9) groups. Data represent the means ± SEM. Error bars represent SEM. ***p < 0.001 in one-way ANOVA, 

with Bonferroni’s post test. 

 

Synaptophysin: expression and quantification 

Similar to Sort1 quantification, we performed western blot analysis to investigate if 

TTR affects synaptophysin (Syp) levels in the brain (Figure 14A). Based on literature, Syp 

protein is expressed all over the brain, not having a special area of expression. Again, 

comparison between data obtained for the hippocampus and for all brain must be done 

with caution since, as referred, AD affects in first instance the hippocampus. 

Analysis of synaptophysin expression in 3 month-old mice 

Our results indicated that Syp levels were significantly elevated in hippocampus from 

AD/TTR+/- compared to AD/TTR+/+ mice (Figure 14B, left panel; p<0.05). In addition, it also 

seems that Syp’s levels tend to be increased in female mice (Figure 14B, right panel). 

Again, the low number of animals in each group might explain the lack of statistical 

significance. Thus, Syp expression is suggested to be affected by the variation of TTR 

expression. 
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Figure 14. TTR influences synaptophysin expression in 3 months-old mice. Western blot analysis of synaptophysin 

(Synapto) expression (A) and respective quantification (B) grouped by genotype (left panel, n=6 in each group) and by 

gender (right panel, n=3 male/female in each group). Data represent the means ± SEM. Error bars represent SEM. ***p < 

0.001 in a Student’s t test. 

 

Analysis of synaptophysin expression in 7 month-old mice 

Contrary to the differences observed between TTR/AD+/- and TTR/AD+/+ in 7 month-old 

mice for the expression of Sort1, Western Blot analysis (Figure 15A) of Syp in these 

animals did not show any significant differences between AD/TTR+/- and AD/TTR+/+ female 

mice (Figure 15B), although a trend was observed. IDIF administration produced no 

significant effects on Syp expression. 

Altogether, these observations indicate that the initial alterations in this protein were 

not maintained with ageing and its levels compensated. Curiously, this behavior might 

prompt Syp as an interesting biomarker allowing identification of early phases of disease 
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development, and distinguishing from advanced stages. Nevertheless, Syp will not serve 

as a biomarker for follow-up of therapies, at least the ones associated to TTR stabilization.  

 

A 

 

B 

 

Figure 15. Synaptophysin expression in 7 months-old mice. Western blot analysis of synaptophysin (Synapto) 

expression (A) in 7 months-old mice, and respective quantification (B) of AD/TTR
+/+

 control (n=6) and treated (n=7), and 

AD/TTR
+/-

 control (n=8) and treated (n=9) groups. Data represent the means ± SEM. Error bars represent SEM. 

 

APP expression and processing: C-terminal 

Since Aβ, the key peptide in AD and thought to be the causative agent in this disorder, 

is generated upon APP processing, which in turn can be affected by sortilin, we then 

inquire whether APP expression and APP processing was altered by genetic decrease of 

TTR, using for the purpose, an anti-APP antibody, which is specific to the C-terminal of 

human APP695 (amino acids 676-695). This sequence is identical in APP751 and APP770 

isoforms, corresponding to the last 20 aa, and thus enabling full lenght APP quantification. 

In addition to APP, it recognizes the C-Terminal Fragments (CTFs) – CTF-β (99 aa; MW 

~13 kDa ); CTF-α (83 aa; MW ~10 kDa ); and CTFγ (or AICD; 57 aa; MW ~6.5 kDa). This 

will allow us to deduce about the effect of TTR in APP processing, through the 

quantification of each CTFs. 
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Analysis of APP expression and processing in 3 month-old mice 

While analyzing the expression of APP in this cohort, we were not able to see 

significant differences between groups with different genotypes and genders (Figure 16A 

and B). Graphic analysis showed that the expression of APP is similar in the different 

groups, thus suggesting no influence of TTR in APP expression, as ascertained by 

Western Blot. In order to ascertain whether APP processing was influenced by TTR we 

started by analyzing the CTFs. Using the same blot membrane that was used for total 

APP expression (Figure 16A), but increasing exposure time,  we were able to observe 

with higher resolution two bands, of which we identified the first as being the CTF-β-

corresponding band. In addition, we suggest that the second band may be an N-terminally 

truncated APP CTF-β (CTF-β’, composed by 89 aa), a product of β-cleavage of APP at 

residue 10. The results are depicted in Figure 16C and are presented as a ratio between 

levels of CTFs and full lenght APP. No differences were observed between AD/TTR+/+ and 

AD/TTR+/- mice, neither for CTF-β (Figure16C left panel) nor for CTF-β’ (quantification 

data not shown) suggesting TTR does not influence APP processing, at this age. 

Analysis by gender also did not show any significant differences, although a trend for 

increased CTF-β can be considered in female when compared to male, and in AD/TTR+/- 

when compared to AD/TTR+/+ also in the female groups (Figure 16C right panel). If these 

results are confirmed, this indicates that in female and in particular in female AD/TTR+/-, 

APP preferentially undergoes the amyloidogenic processing, explaining the higher degree 

of AD-like disease described in this model. 

Analysis of APP expression and processing in 7 month-old mice  

Next, the same full length APP and CTFs analysis assessed by Western Blot was 

performed for the 7 months-old mice brain samples (Figure 17A), to further characterize 

the influence of TTR in APP expression and processing, as disease develops. In terms of 

APP protein levels, we found no significant differences between AD/TTR+/+ and AD/TTR+/- 

groups (Figure 17B, upper panel), thus, suggesting that TTR had no effect on APP 

expression. Following the same line of thought – considering that the two bands 

correspond to CTF-β and CTF-β’ (Figure 17A) – we were able to observe increased levels 

of both forms of CTFs in AD/TTR+/- female mice when compared to their littermates 

AD/TTR+/+ (Figure 17B, lower panels). This suggests that TTR influences APP processing, 

and that TTR reduction stimulated the formation of both CTF-β, thus promoting the 

amyloidogenic pathway. 
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C 

 

Figure 16. TTR effects on the amyloid precursor protein (APP) expression and processing in 3 months-old mice. 

Western blot analysis of APP and carboxi-terminal fragments (CTFs) expression (A) and respective quantification (B and C, 

respectively) grouped by genotype (left panel, n=6 in each group) and by gender (right panel, n=3 male/female in each 

group). Data represent the means ± SEM. Error bars represent SEM. 
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Analysis of IDIF treated mice samples revealed no differences when compared to the 

non-treated mice of the same age (data not shown), again suggesting that the quantity of 

TTR is determinant for its effects in APP processing, and stabilization of the protein per se 

does not compensate its genetic reduction. 

 

APP expression and processing: N-terminal 

APP processing also results in N-terminal fragments sAPPα or sAPPβ, depending if 

cleaved by α- or β-secretases, respectively. While sAPPα is considered neuroprotector 

and to induce the expression of survival genes, sAPPβ has been shown to act as a death 

receptor ligand, mediating neuronal death. 

To assess the levels of sAPPα as well as the levels of Aβ peptide, we performed 

Western Blot analysis using a specific antibody that recognizes amino acid residues 1-12 

of the Aβ peptide sequence. This antibody allows the recognition of sAPPα and Aβ 

peptide, as well as full lenght APP. 

Analysis of APP expression and processing in 3 month-old mice  

Despite using a specific antibody to detect the Aβ peptide, its corresponding band was 

not observed (data not shown), probably due to its normally low levels. However, we were 

able to detect and quantify the total APP and sAPPα bands (Figure 18A). While total APP 

levels were normalized using α-tubulin protein, sAPPα levels was again normalized using 

full lenght APP expression. 

Differences between AD/TTR+/+ and AD/TTR+/- were not significant, neither for full 

lenght APP (Figure 18B, left panel) nor for sAPPα (Figure 18B, right panel), suggesting 

that TTR does not influence neither APP expression (as seen in the previous section), nor 

APP processing (leading to the formation sAPPα), at this age. Analysis by gender also did 

not demonstrate significant differences between none of the groups (data not shown).  
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Figure 17. TTR influences APP processing, in 7 months-old mice. Western Blot analysis of 7 months-old AD/TTR
+/+

 

control (n=7) and AD/TTR
+/-

 control (n=8) mice groups, in terms of full length APP and CTFs (between 15 and 10 kDa) 

expression. Data represent the means ± SEM. Error bars represent SEM. *p < 0.05 in Student’s t test. CTFs values are 

show as a ratio between the quantification of the CTF-corresponding band and the quantification of APP-corresponding 

band. 
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Figure 18. TTR effects on APP processing and expression in 3 months-old mice. Western Blot analysis of full length 

APP and sAPPα expression (A) and respective quantification (B, left panel and right panel, respectively) grouped by 

genotype (n=6 in each group). CTFs bands were not possible to identify. Data represent the means ± SEM. Error bars 

represent SEM. 

Analysis of APP expression and processing in 7 month-old mice 

The same full length APP analysis was performed in 7 months-old AD/TTR+/+ and 

AD/TTR+/- mice samples (control and treated) (Figure 19A), and no significant differences 

were observed (Figure 19B). Curiously, and differently from the 3 month old mice, we 

could not detect the band corresponding to sAPPα (see Figure 19A). This may indicate 

that cleavage by α-secretase is decreased (in favor of β-secretase), thus explaining the 

increased Aβ brain levels found in these older mice and corresponding signs of AD-like 

disease. These findings are, apparently, unrelated to the TTR genetic reduction and to its 

conformational state (tetrameric stability), and appear to depend only on disease 
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progression, since we observed no differences neither between TTR/AD+/+ and TTR/AD+/- 

nor between treated and non-treated mice. It is also possible that the age/disease 

progression effect is stronger that the effect of TTR reduction, and thus subtle differences 

between genotypes were not detected. In this case, a new analysis using a different, more 

sensitive, antibody or loading higher amounts of total protein in the gel, may help 

answering to this question. 

 A 

 

B 

 

Figure 19. TTR effects on APP processing and expression in 7 months-old mice. Western Blot analysis in 7 months-

old mice of full length APP expression (A) and respective quantification (B). The analysis included AD/TTR
+/+

 control (n=7) 

and treated (n=7), and AD/TTR
+/-

 control (n=8) and treated (n=9) groups. In addition to the CTFs bands not possible to be 

identified, sAPPα bands were not observed. Data represent the means ± SEM. Error bars represent SEM. 
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Discussion 

Alzheimer’s disease is the most prevalent form of dementia, worldwide. However, due 

to its complexity, most of the molecular mechanisms responsible for the pathological 

features remain unsolved. In addition to the little existing knowledge of molecular 

mechanisms, there are not any efficient drugs to treat AD, merely its symptoms. 

Therefore, a logical option is to discover this condition in its early stages, when the 

“treatment” can be more effective, and so it urges to find specific biomarkers that can 

differentiate an early stage AD patient, from a control. A variety of factors can be involved 

in the initiation and progression of AD and, among them, TTR has been shown to be an 

important modulator of AD pathogenesis, using mouse models. Thus, in this project, we 

intended to draw some conclusions about the influence of TTR on some proposed 

biomarkers, using a transgenic AD mouse model in different TTR genetic backgrounds 

(AD/TTR)[175], previously described by Oliveira and group. In this model, mice in a TTR 

hemizygous background are presented with a more severe form of AD-like disease, in 

particular female mice [175]. 

We started to investigate whether TTR had any influence in sortilin (Sort1) 

expression in hippocampus/all brain samples of transgenic AD mice, and if this effect was 

modified with aging. Our analysis showed a significant decrease in Sort1 expression in 3 

and 7 months-old AD/TTR+/- animals, when compared to their AD/TTR+/+ littermates. This 

suggests that TTR, indeed, influences Sort1 expression, in a way that its genetic decrease 

correlates with decreased Sort1 levels. Our observations agree with several recent works, 

namely with Finan et al. study from 2011, in which the authors showed decreased levels 

of Sort1 in AD post-mortem brain samples, compared to control [189]. In our work we did 

not use non-transgenic mice and thus we cannot assert differences in Sort1 expression 

levels between controls and AD-like samples. Nevertheless, we were able to compare its 

expression in AD/TTR+/+ and AD/TTR+/- groups, establishing an inverse relation with 

disease progression, and thus, we hypothesized that Sort1 levels in control animals 

should be increased (agreeing with the literature). This is further supported by the 

observation that, in female, differences in Sort1 levels between AD/TTR+/+ and AD/TTR+/- 

are more pronounced in 7 months-old than in 3 months-old mice samples. Gustafsen et 

al. also stated a probable decrease of Sort1 expression in AD pathology, proposing Sort1 

as an APP sorting receptor, which promotes the cleavage by α-secretase, inhibiting Aβ 

formation [190]. In addition, they referred that Sort1 also interferes with the production of 

soluble forms of APP and its cellular uptake, guiding it to lysosomal degradation. Thus, a 
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decrease in Sort1 levels would diminish would interfere with the above mentioned 

pathways, consequently promoting Aβ production and the progression of the disease. In 

our work, we showed that APP expression was not altered at any ages, contrary to its 

processing. Although in 3 months-old mice, no significant differences were obtained for 

total CTFβ levels (in which we consider both CTFβ and CTFβ’), when considering TTR 

background, a trend for increased CTFβs was observed in female, compared to males, in 

particular in AD/TTR+/-. Importantly, significant differences were measured in 7 months-old 

animals as AD/TTR+/- presented higher levels of CTFβ and CTFβ’ than AD/TTR+/+ 

females, thus suggesting that besides age/disease progression, TTR also affects APP 

processing. In addition, in younger mice we were able to observe the sAPPα band, 

whereas in 7 months-old mice this band was absent. This meets the previous suggestion 

that a decrease of Sort1 would diminish α-secretase activity, and thus indirectly promoting 

the amyloidogenic pathway, showed by increased levels of CTFβ in AD/TTR+/- older mice. 

The presence of a visible sAPPα band in 3 months-old mice and its absence in 7 months-

old mice, shows a consistency in results. Younger mice, present, in both TTR genotypes, 

the sAPPα band but do not show any difference between CTFβ levels; the opposite is 

observed for older mice.  This shows that aging is an important factor that may overlap the 

influence of TTR reduction in APP processing, since both ages present decreased levels 

of Sort1 but only the 7 months-old mice suggest an unbalance in the amyloidogenic and 

non-amyloidogenic pathway. Another group also considered that Sort1 expression is 

diminished in AD, despite suggesting a different molecular mechanism for its relation with 

this disorder [186]. Carlo et al. suggest that Sort1 acts as a neuronal receptor for ApoE, 

thus being involved in ApoE/Aβ complex clearance from the brain; the lack of Sort1 

receptor expression leads to increased ApoE and Aβ accumulation in the brain, resulting 

in disease escalation. Plus, they noticed a two-fold lower Kd for binding to Sort1, by ApoE 

ε3 (44 nM) versus ApoE ε4 (114nM)[186], which might be related to the different isoforms’ 

risk in AD. In our work we did not assess ApoE levels, and thus we cannot infer on the 

mechanism underlying TTR/Sort1 relation. In the future, it would be interesting to 

investigate ApoE levels as well as a possible TTR/Sort1 interaction. In relation to the 

effects caused by the IDIF treatment, we show that no significant differences between 

control and treated mice, of the same genetic background, suggesting that despite TTR 

genetic reduction influenced Sort1 levels, its stabilization with IDIF was not enough to 

induce an alteration in Sort1 levels of treated mice. Thus we propose that the quantity of 

TTR, and not its stabilization state, is a major factor in the influence of Sort1. This also 

indicates that the beneficial effects of TTR stabilization by IDIF on AD features in this 

mouse model does not involve sort1, implying that TTR plays a role in AD pathogenesis 

via different pathways. 
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Data on the behavior of synaptophysin (Syp) expression is quite contradictory in the 

literature. While some suggest a decrease of Syp levels in AD, comparing to control[195, 

196], others argue the opposite, despite acknowledging a negative correlation between Aβ 

accumulation and a decrease in Syp expression[194, 195]. Another study has shown that 

Syp is a probable γ-secretase-associated protein since its inhibition (using siRNA) 

resulted in a decrease of Aβ40 and Aβ42 levels[200], demonstrating a positive correlation 

between Syp’s expression and Aβ levels. It goes without saying that this inconsistency is 

also the reflex of the lack of knowledge of Syp-related molecular mechanism in AD. Our 

results showed a significant increase in Syp expression in 3 months-old AD/TTR+/- mice, 

compared to AD/TTR+/+ littermates, suggesting that TTR genetic reduction influences Syp 

expression; again, female mice showed a trend for higher Syp levels. As for the 7 months-

old mice, no significant differences in Syp expression were observed between AD/TTR+/+ 

and AD/TTR+/- female mice, although a tendency for increased levels of Syp was 

observed in the later. Because we did not perform a comparative study for the same TTR 

background at the two different ages evaluated, we were not able to distinguish if Syp 

levels increased in AD/TTR+/+ or diminished in AD/TTR+/-, comparing the 3 month to the 7 

months-old animals. The inability to conclude on Syp behavior in our model is further 

complicated since we did not analyzed non transgenic animals, and therefore we did not 

ascertained Syp normal levels. In addition, the relative comparison between the two 

different ages evaluated is made between hippocampus and all brain, for the 3 and 7 

months-old mice, respectively, which might have influenced the results. This limitation 

applies to all analysis performed and should be properly addressed in future experiments. 

Again, with regard to the effects of IDIF administration on the molecules under study, our 

data clearly indicated that TTR stabilization was not sufficient to restore their levels, and 

that TTR quantity is, at least in a first instance, a limiting factor, in opposition to effects on 

Aβ levels and deposition which were decreased in AD/TTR+/- IDIF treated mice when 

compared to non-treated[184]. In our opinion, AD-increased Syp levels are easily 

accepted, if one only looks at its molecular mechanism: if Syp expression ought to be 

increased, neurotransmission would be compromised, which would lead to the 

characteristic synaptic failure in AD. However, with the pathological evolution of AD 

(oxidative stress, SPs and NFTs formation, etc), the death of neurons and, subsequently, 

the destruction of synapses will lead to a natural decrease in Syp levels. In relation to the 

possible role of Syp as a γ-secretase-associated protein, we only observe a coherent 

behavior in 3 months-old mice[200]. Nonetheless, it is important to take into account that 

their study was performed in vitro, and that compensatory mechanism are triggered very 

often in vivo, especially in such complex diseases. Altogether, these observations prompt 
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Syp as a prospective and interesting biomarker that would allow the highly desirable 

detection of AD at its earliest stages. 

In summary, our results showed differences in Sort1, Syp and APP processing 

dependent on the TTR background, further highlighting the importance of TTR in AD. Our 

observations also strengthened the in vivo evidence that this model is suitable for the 

study of the neuroprotective role of TTR and gender differences in AD as, in general, 

females showed more accentuated differences, thus recapitulating the trend observed for 

humans[201]. 
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Conclusions 

Two important notions to retain through the analysis of this work are: it is based on a 

single technique – Western Blot – which is a poor technique for the quantification of small 

changes, and on the analysis of hippocampus versus all brain, from mice of 3 and 7 

months of age, respectively.  The study performed in all brain can potentially result in the 

loss of specific alterations in the hippocampus, known to be particularly and early affected 

in AD. Future research should address this limitation and a higher number of mice 

hippocampus samples of different ages should be evaluated. In addition, future work 

should also include non-transgenic mice allowing the determination of Sort1 and Syp 

normal levels in the strain of mice used, in order to correctly conclude on the increase or 

decrease of these molecules in AD/TTR+/+ versus AD/TTR+/- animals. 

With regard to the influence of TTR in Sort1 and Syp expression and in APP 

processing, interaction studies between TTR and Sort1/Syp proteins are necessary to 

access whether their alteration is a direct or indirect effect caused by TTR genetic 

reduction. Cellular studies, in a more controlled environment, should also be engaged and 

would also enable us to confirm the effects of TTR in these molecules. 

Sort1 showed to be influenced by TTR and presented some features that could allow 

Sort1 to be considered a biomarker for early detection of AD and for follow-up of AD 

therapies. As for Syp, it also showed to be influenced by TTR (in younger mice) and, 

interestingly, it showed to be highly affected by aging, independent of TTR genotype. This 

feature could allow Syp to be used as an early AD detection biomarker, prior to Aβ 

accumulation. The alterations in each molecule must be specific of AD and being AD such 

a complex disorder, association and combination of biomarkers will increase the chances 

of success. 
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