
LogCHEM: Interactive Discriminative Mining of Chemical
Structure ∗

Vı́tor Santos Costa
DCC-FCUP & CRACS

Universidade do Porto, Portugal
vsc@dcc.fc.up.pt

Nuno A. Fonseca
Instituto de Biologia Molecular e Celular (IBMC) & CRACS

Universidade do Porto, Portugal
nf@ibmc.up.pt

Rui Camacho
FEUP & LIAAD

Universidade do Porto, Portugal
rcamacho@fe.up.pt

Abstract

One of the most well known successes of Inductive Logic
Programming (ILP) is on Structure-Activity Relationship
(SAR) problems. In such problems, ILP has proved sev-
eral times to be capable of constructing expert compre-
hensible models that help to explain the activity of chem-
ical compounds based on their structure and properties.
However, despite its successes on SAR problems, ILP has
severe scalability problems that prevent its application on
larger datasets. In this paper we present LogCHEM, an ILP
based tool for discriminative interactive mining of chem-
ical fragments. LogCHEM tackles ILP’s scalability issues
in the context of SAR applications. We show that LogCHEM
benefits from the flexibility of ILP, both by its ability to
quickly extend the original mining model, and by its ability
to interface with external tools. Furthermore, we demon-
strate that LogCHEM can be used to mine effectively large
chemoinformatics datasets, namely several datasets from
EPA’s DSSTox database and on a HIV dataset based on the
DTP AIDS anti-viral screen.

1 Introduction

One of the most important tasks in chemoinformatics is
the task of structural activity prediction given a set of small
compounds, or drugs, one wants to predict a property of in-
terest. This task can be seen as an instance of a more general
∗This work has been partially supported by by Fundação para a Ciência

e Tecnologia and projects STAMPA (PTDC/EIA/67738/2006) and ILP-
Web-Service (PTDC/EIA/70841/2006). Nuno A. Fonseca is funded by
FCT grant SFRH/BPD/26737/2006.

task, structural activity regression (SAR), where one aims
at predicting activity of a compound under certain condi-
tions, given structural data on the compound. Ideally, sys-
tems that address this task should be able to identify an
interpretable discriminative structure which describes the
most discriminant structural elements with respect to some
target.

In order to build such a system, the first problem that one
has to address is how to describe molecules. Coordinate-
based representations usually operate by generating features
from a molecule’s 3D-structure [13]. The number of fea-
tures of interest can grow very quickly, hence the prob-
lem that these systems need to address is how to select the
most interesting features and build a classifier from them.
Coordinate-free representations can use atom pair descrip-
tors or just the atom-bond structure of the molecule. In
the latter case, finding a discriminative component quite of-
ten reduces to the problem of finding a Maximum Common
Substructure (MCS).

Exact MCS search in a molecule represented as a set of
atoms and bonds can be seen as a graph-mining task. In this
case, a molecule is represented as a graph GM = (V,E)
where V , the vertices, are atom labels, and E, the edges,
are bonds. The search can be improved by adding atom and
bond properties. The earliest approaches to search for com-
mon substructures or fragments were based on ideas from
Inductive Logic Programming (ILP). ILP techniques are
very appealing because they are based on a very expressive
representation language, first order logic, but they have been
criticized for exhibiting significant efficiency problems. As
stated by Karwath and De Raedt [11], “their application has
been restricted to finding relatively small fragments in rel-
atively small databases”. Specialized graph miners have

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Open Repository of the University of Porto

https://core.ac.uk/display/302945562?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

therefore become quite popular. Systems such as SUB-
DUE [3] started from the empty graph and then generate
refinements either using beam-search or breadth-first. More
recent systems such as MoFa [2], gSpan [20], FFSM [9],
Gaston [16], and SMIREP [11], use depth-first search, and
use compact and efficient representations, such as SMILES,
for which matching and canonical forms algorithms exist.
Arguably, although such systems differ widely, they all use
three main principles: (i) only refine fragments that appear
in the database; (ii) filter duplicates; and (iii) perform effi-
cient homomorphism testing.

In this work we present LogCHEM, a tool for dis-
criminative interactive mining of chemical fragments.
LogCHEM leverages the flexibility of ILP while address-
ing the three main principles enunciated above. We demon-
strate that LogCHEM can be used to mine effectively
large chemoinformatics datasets, such as the DTP AIDS
dataset [4]. On the other hand, we demonstrate how
LogCHEM can benefit from the flexibility of its represen-
tation. LogCHEM can input data from chemical repre-
sentations, such as MDL’s SDF file format, and displays
molecules and matching patterns through tools such as
VMD [10]. In general, our goal is for LogCHEM to be-
come an ideal system for interactive drug discovery.

The main contributions of this work are as follows. We
contribute techniques that allow LogCHEM to mine pat-
terns from large chemical datasets effectively. We show that
LogCHEM benefits from the flexibility of ILP, both by its
ability to quickly extend the original mining model, and by
its ability to interface with external tools.

The rest of the paper is structured as follows. In Sec-
tion 2 we present and explain the LogCHEM architecture.
Section 2.1 introduces the ILP framework used in our exper-
iments. Section 2.2 explains our approach to the problem of
mining 2D chemical structures. Section 3 reports on the ex-
periments done and discusses the results obtained. We draw
some conclusion in Section 4.

2 The LogCHEM System

LogCHEM system is a tool for discriminative interactive
mining of chemical fragments. The interaction with the sys-
tem is made through a user interface. The system requires
two input files: one is a SDF format with atom and bond
data on a set of molecules; the other is a file which labels
(discriminates) the compounds. We use SDF because it is
highly popular and because it can convey 3D structure in-
formation. Other formats, such as SML can be translated to
SDF through tools such as OpenBabel [6]. Also note that
some datasets, such as the DSSTox collection of datasets,
include 2D and 3D information in the SDF format.

The input files are processed and given as input to a rule
discovery algorithm, that is implemented as an extension of

an ILP system (currently Aleph [17]). We significantly im-
proved the ILP search algorithm for this task, as explained
in the next section. The ILP engine allows the introduc-
tion of extra background knowledge for rule discovery. As
an example, we take advantage of this flexibility by allow-
ing the user to introduce well-known molecular structures
in the search process. This is supported through a macro
mechanism where the user provides a pattern which is used
to control rule refinement.

The output of the ILP system will be a set of rules, or
theory. Most often, chemists will be interested in looking at
individual rules. LogCHEM first matches the rules against
the database, and then allows the user to navigate through
the list of matches and visualize visualize them. LogCHEM
uses VMD [10] to display the molecules and the matching
substructures.

2.1 Rule Discovery

The key component of LogCHEM is rule discovery.
From a number of ILP algorithms, we chose to base our
work on Progol’s greedy cover algorithm with Mode Di-
rected Inverse Entailment algorithm (MDIE) [15], as im-
plemented in the Progol, April and Aleph systems [17]. We
rely on MDIE to achieve directed search, and we use greedy
cover removal as a natural algorithm for finding interesting
patterns.

induce(B, E)
Input: Background knowledgeB, and a finite training setE = E+∪E−.
Output: A set of rules H .
1. H = ∅
2. do

3. e+ = Select an Example from E+

4. ⊥= Saturate(B, e+)

5. h = Search(B,E+ ∪ E−,⊥)

6. H = H ∪ h
7. Ecovered = {e | e ∈ E+ ∧B ∪Hi � e}
8. E+ = E+ \ Ecovered

9. until E+ = ∅
10. returnH

Figure 1. LogCHEM’s default algorithm: MDIE
plus Greedy Cover Removal.

The theory induction algorithm we use is shown in Fig-
ure 1. The algorithm receives a set of examples E =
E+ ∪ E−, where E+ is the set of positive examples, typi-
cally a set of active molecules in LogCHEM, andE− the set
of negative examples, and B the knowledge base. Figure 1
shows the implementation of the standard greedy cover re-
moval algorithm. The algorithm starts from the empty set of
rules and tries to explain every example in E+ by searching
for good rules. Each time a new rule h is found (step 5),

2

Figure 2. Molecular and graph represen-
tation of the chemical compound (Sal-
icylic acid) represented by the SMILE
OC(=O)c1ccccc1O.

the rule h is added to H (step 6), the examples h explains,
Ecovered, are removed from the set E (steps 7 − 8). The
process terminates when every example is explained (step
9) by returning the set of rules H (step 10).

The algorithm presented so far is not specific to ILP. In
contrast, steps 3 − 5 are specific to ILP and, more specif-
ically, to the MDIE algorithm. Step 3 selects a molecule:
by default, Aleph and thus LogCHEM selects the first non-
explained molecule. Step 4 is the saturation operation: in-
tuitively, it finds a graph, bottom-clause or⊥, with the inter-
esting properties of the example. In LogCHEM, we wrote
the background knowledge so that ⊥ is just a logical repre-
sentation of the undirected graph where the vertices are the
atoms and the edges are the bonds between atoms. As an
example, consider Figure 2: the saturated clause ⊥ will in-
clude all 16 atoms and 16 bonds. Each bond is represented
as two different edges, so the bottom clause will consist of
16 + 16×2 = 48 elements. Step 5 is the critical step in this
algorithm: it searches for a good clause h by generating and
scoring clauses. The process executes until finding the best
possible clause, or until reaching an user-predefined limit.
As usual, Aleph, and thus LogCHEM, perform general to
specific search: they start from very small patterns and re-
fine the patterns by adding extra edges, usually one by one.

2.2 Search in LogCHEM

In order to scale up, a graph mining system must re-
spect three principles: only refine fragments that match the
database; avoid duplicates; and, check how many molecules
match the patter efficiently. ILP’s MDIE provides a natu-
ral solution to the first problem: by enumerating patterns
from the bottom-clause ⊥ we guarantee that one example
at least will be covered. The second problem is known as
redundancy in ILP, and is the main question we address in
LogCHEM. The last problem is called coverage calculation

in ILP. Most ILP systems rely on Prolog. LogCHEM ben-
efits from recent progress in Prolog technology that allows
efficient querying of large datasets of compounds.

2.2.1 Pattern Enumeration

LogCHEM enumerates patterns (or sub-graphs) contained
in an example molecule, the seed. LogCHEM builds on an
underlying ILP system that enumerates from general to spe-
cific. Such systems start from the empty pattern and refine it
by adding edges or nodes. In the case of an ILP system such
as Aleph, and referring back to Figure 2, by default Aleph
will start by considering 16 atoms in the molecule, and use
each one to generate a pattern; this results in 16 patterns,
of which only 3 are different: C, H , and O. In the next
step, Aleph system will extend the pattern with more atoms
or with more bonds. The process is highly redundant: the
pattern C ∨ C will be generated in 7 × 6 = 42 instances,
and the pattern CC will be generated 12 times.

refine(π,⊥)
Input: a pattern π and an example’s bottom-clause ⊥
Output: set of patterns Π

1. Π = ∅
2. forall{Atom | Atom ∈ π}
3. while Bond = Match(⊥, π, Atom)

4. π′ = π ∪Bond
5. if Filter(π′) then
6. Π = Π ∪ π′
7. return Π

Figure 3. LogCHEM’s refinement algorithm

LogCHEM uses a domain-specific refinement operator
designed to generate all contiguous patterns in the molecule.
The algorithm is presented in Figure 3. Given an initial pat-
tern π, it returns a set of patterns, Π. Each new pattern π′ in
Π results from adding an extra edge from the seed molecule
to π. This is implemented as follows. First, Π is set to ∅
(step 1). Next, we consider each atom from the pattern (step
2). Step 3 then searches for a bondBondwhich matches the
atom Atom and⊥ and which is not in π. Step 4 extends the
pattern to form a new pattern π′. Step 5 is critical to the
performance of LogCHEM: it verifies whether the pattern
π′ has been generated before. If this is not the case, the
algorithm adds π′ to Π.

The Match and Filter functions are critical to
LogCHEM. It relies on the ILP engine to implementMatch
through a mechanism known as a user-refinement [17]. The
mechanism is extremely efficient because the ILP engine
remembers how π was generated. More precisely, it main-
tains how π was embedded in the example molecule. The
Match function therefore just has to enumerate open edges
in the graph.

3

2.2.2 Pruning

The Filter function discards redundant rules. While
searching for rules, we maintain a store Π0 with all rules
found so far. Filter receives a new rule π′ and succeeds if
π′ is not in the store, and fails otherwise.

Unfortunately, verifying whether two rules match corre-
sponds to the graph homomorphism problem, which is NP-
complete. LogCHEM tries to achieve a balance between the
cost of finding an exact solution and the cost of allowing re-
dundant patterns. It proceeds in two steps: first, it generates
a canonical form; second, it matches the canonical (normal)
form against a database Π0.

LogCHEM uses a variant of Morgan’s algorithm to ob-
tain normal forms of molecules [14]. Although Morgan’s
algorithm is non-deterministic, we try to break ambiguities
by exploring information regarding atom’s type, the atoms’s
bonds, and the types of the immediate neighbors. As a last
resort, if ambiguities remain, we pick one element arbitrar-
ily.

Pattern Matching Given a new pattern, we are inter-
ested in finding out how many molecules support the pat-
tern. ILP systems rely on refutation for this purpose: a
pattern matches if the corresponding clause succeeds in the
example. However, there is a gap between the patterns
LogCHEM generates and the standard usage of unification
in logic programming.

To understand the problem, consider the clause:
active(C)←

atom(C, Id1, c)∧
atom bond(C, Id1, Id2, c, n, 2)∧
atom bond(C, Id1, Id3, c, n, 2)

Figure 4. An Example Pattern from a Small
Organic Molecule: A-alpha-C.

that represents a N = C = N pattern. Figure 4 matches
the molecule A-alpha-C against the pattern. Clearly, there is
no match. Unfortunately, Prolog finds a match by matching
the same nitrogen against the pattern twice. Although this
is legitimate in Logic Programming, it is not the intended
meaning for patterns.

We would like that different variables match different
atoms in the molecule. The standard solution is to rewrite
the program to guarantee different variables take different
values. Doing so results in the following clause:
active(C)←

atom(C, Id1, c)∧
atom bond(C, Id1, Id2, c, n, 1)∧
Id1 6= Id2∧
atom bond(C, Id1, Id3, c, n, 1)∧
Id1 6= Id3 ∧ Id2 6= Id3

It should be obvious that two variables with different
types cannot bind to the same atom. Moreover, two vari-
ables on different sides of a bond can never take the same
value. If we apply these principles, we get:

active(C)←
atom(C, Id1, c)∧
atom bond(C, Id1, Id2, c, n, 1)∧
atom bond(C, Id1, Id3, c, n, 1)∧
Id2 6= Id3

A second problem concerns pattern evaluation: Prolog
will try to build a match step by step. At any point it fails,
it will backtrack to the previous match with alternatives.
In general, we found out that this works out quite well if
the first element in the pattern is unfrequent type, e.g., Cu
or even S, as this reduces the number of hypothesis from
the very beginning. Indeed, as LogCHEM by default uses
greedy search, experience has shown that most patterns do
indeed start from such an element. On the other, if the pat-
tern does not start in this way, execution will be less efficient
(we may have to try to match every C in a molecule). To en-
sure that this is taken advantage of, we implemented two
pattern optimisation algorithms:

• BF chooses the rarest node first and then rewrites the
pattern in breadth-first order;

• DF also chooses the less frequent atom first, but then
generates goals depth-first.

We implement BF pattern rewriting by default.
LogCHEM includes a number of further optimisations.

Namely, we rewrite bond information in such a way as to
minimise backtracking. Also, by default, LogCHEM com-
piles every pattern, instead of interpreting them, as usual in
ILP.

3 Experimental Evaluation

Data and Settings Data for the experiments are from 7
problems. Four datasets were created using data from the
EPA’s DSSTox database [1]. CPDBAS includes informa-
tion on different chemical properties: we chose to try to pre-
dict mutagenicity (other alternatives would be carcinogenic
activity in mice and hamsters). DPBCAN concerns car-
cinogenicity of water disinfection by-products. FDAMDD
dataset concerns predicting the activity category of the max-
imum daily dosage of chemicals. NCTRER concerns FDA
National Center for Toxicological Research Estrogen Re-
ceptor Binding. Note that we do only use structural-activity
relationships and that we do not try to predict QSAR: we
only implement the classification task. We did not use
EPAFHM due to very high class skew in a small dataset.

The NCI-HIV is based on the October 1999 DTP AIDS
antiviral screen, that checked tens of thousands of com-
pounds for evidence of anti-HIV activity [4]. Versions of

4

this dataset have been used in the graph-mining commu-
nity [12, 11] and for classification purposes [5, 8, 7]. The
task we study here is active against inactive; we ignore
“somewhat active” compounds.

Finally, the two other datasets are taken from the ILP
literature, The mutagenesis dataset is a a dataset of muta-
genic nitroaromatics [19], and it includes a subset known
to be regression friendly. The carcinogenesis dataset con-
cerns the well-known problem of predicting carcinogenicity
test outcomes on rodents [18].

Table 1 characterizes the datasets in terms of number
of positive and negative examples as well as maximum
molecules size (number of atoms). The total number of ex-
amples ranges from 188 in Mutagenesis regression-friendly
(RF) up to 42682 in HIV-A/I. The size of molecules varies
widely. As a case in point, almost every molecule in the
HIV dataset has at least 20 atoms, 30% have at least 50, and
3% have more than 100 atoms.

Data set | E+ | | E− | |MaxAtoms |
mutagenesis RF 125 63 40
mutagenesis 138 92 40
carcinogenesis 182 148 214
CPDBAS 806 738 93
DPBCAN 74 97 26
FDAMDD 575 496 92
NCTRER 96 76 42
HIV-A/I 422 41179 438

Table 1. Data sets (E+ is the number of pos-
itive examples, E− is the number of nega-
tive examples, and | MaxAtoms | the size
of the molecule with most atoms). RF
stands for Regression Friendly and A/I for
Active/Inactive.

For each application we performed 10-fold cross-
validation. We evaluate clauses using m-estimate with
m being computed automatically: the exceptions were
carcino and mutagenesis were we followed com-
mon practice and used compression. All experiments were
run on an AMD Athlon(tm) 64 X2 Dual Core
Processor 4600+ with 2GB of SDRAM memory un-
der the Linux operating system and Ubuntu distribution.
The machine was being used as a workstation We used
YAP-5.1.3 (CVS) 1 compiled under 32-bit mode.

Performance Table 2 shows accuracy and timing results
for the benchmarks. The best results were obtained in
mutagenesis RF, where accuracy is close to 80%, in
DPBCAN, where accuracy is close to 90%, and in NCTRER
where accuracy is close to 80%. The worst results were ob-
tained in carcinogenesis, where LogCHEM does not

1http://www.dcc.fc.up.pt/˜vsc/Yap.

perform much better than default, and in CPDBAS, where
accuracy was close to 57%. These results are comparable
to results reported by SMIREP on the HIV dataset. Notice
that LogCHEM tends to do better in terms of precision than
in recall: this is because LogCHEM was set to find precise
rules, and we could not find such rules for every example.

The results in Table 2 show that LogCHEM is quite
fast for most benchmarks, taking a few seconds to process
small benchmarks such as CPDBAS. The system tends to
run faster if it can find good rules, as it will need to exper-
iment with less seeds. For example, carcinogenesis
and mutagenesis have similar number of examples, but
have very different run-times.

Arguably, the AIDS domain is the most challenging one,
both in terms of size of molecules and in terms of num-
ber of examples. In general, LogCHEM finds rules that are
remarkably consistent across folds. Moreover, our results
show classifier performance to be similar between training
and test set. This suggests that the rules may be generalizing
well. Some of the patterns we found have high selectivity
and come across most folds (some of them were previously
reported in previous work [11]). The pattern was found in
molecule m34931: it connects a sulphur with three oxygens
to an aromatic ring and thence to a nitrogen and to a car-
bon opposed. A second common pattern we found links a
N = N pair to a furan.

4 Conclusions and Future Work

We present LogCHEM, an integrated system that re-
ceives descriptions of molecules and can find interesting
discriminative patterns. Our results show that an ILP sys-
tem is able to find structurally large multi-relational con-
cepts, even in large sets of molecules. The concepts found
can be interpreted graphically, and seem to provide some
insight into the diverse domains. Moreover, the accuracy of
the generated theories is close to state-of-the-art systems.

LogCHEM benefits from the logical representation in a
number of ways. Although our representation is less com-
pact than a specialized representation such as as SMILES,
used in MOLFEA [12] and SMIREP [11], it offers a num-
ber of important advantages. First, it is possible to store
information both on atoms and on their location: this is use-
ful for interfacing with external tools. Second, LogCHEM
can take advantage of the large number of search algorithms
implemented in ILP. Third, given that we implement the ba-
sic operations efficiently, we can now take advantage of the
flexibility of our framework to implement structured infor-
mation. We have already taken advantage of this to sup-
port macro structures, such as rings used in MoFa [2] in a
straightforward fashion. Initial results show that LogCHEM
does capture rings while maintaining similar running times.

5

Data set Accuracy Recall Precision Time
mutagenesis RF 0.78 ± 0.10 0.70 ± 0.16 0.94 ± 0.09 38 ± 16

mutagenesis 0.70 ± 0.08 0.56 ± 0.15 0.91 ± 0.06 39 ± 23

carcinogenesis 0.56 ± 0.09 0.47 ± 0.14 0.64 ± 0.12 129 ± 45

CPDBAS 0.57 ± 0.02 0.3 ± 0.05 0.71 ± 0.04 1.3 ± 0.6

DPBCAN 0.89 ± 0.06 0.84 ± 0.13 0.90 ± 0.10 1145 ± 57

FDAMDD 0.65 ± 0.04 0.41 ± 0.09 0.71 ± 0.06 848 ± 205

NCTRER 0.76 ± 0.12 0.69 ± 0.22 0.86 ± 0.10 8.8 ± 8

AIDS-A/I 0.99 ± 0.00 0.45 ± 0.07 0.34 ± 0.06 12257 ± 1207

Table 2. Benchmark Performance of LogCHEM. Accuracy, Recall and Precision are given as fractions.
Times are given in seconds.

References

[1] R. AM. DSSTox update & future plans. QSAR and Mod-
elling Society Newsletter, 15:34–36, 2004.

[2] C. Borgelt and M. R. Berthold. Mining molecular fragments:
Finding relevant substructures of molecules. In Proceedings
of the 2002 IEEE International Conference on Data Mining
(ICDM 2002), 9-12 December 2002, Maebashi City, Japan,
pages 51–58. IEEE Computer Society, 2002.

[3] R. N. Chittimoori, L. B. Holder, and D. J. Cook. Apply-
ing the subdue substructure discovery system to the chemi-
cal toxicity domain. In A. N. Kumar and I. Russell, editors,
Proceedings of the Twelfth International Florida Artificial
Intelligence Research Society Conference, May 1-5, 1999,
Orlando, Florida, USA, pages 90–94. AAAI Press, 1999.

[4] J. M. Collins. The DTP AIDS antiviral screen program,
1999.

[5] M. Deshpande, M. Kuramochi, and G. Karypis. Fre-
quent sub-structure-based approaches for classifying chem-
ical compounds. In Proceedings of the 3rd IEEE Interna-
tional Conference on Data Mining (ICDM 2003), 19-22 De-
cember 2003, Melbourne, Florida, USA, pages 35–42. IEEE
Computer Society, 2003.

[6] R. Guha, M. T. Howard, G. R. Hutchison, P. Murray-Rust,
H. Rzepa, C. Steinbeck, J. K. Wegner, and E. L. Willigha-
gen. The Blue Obelisk–Interoperability in Chemical Infor-
matics. Journal of Chemical Information and Modeling,
46:991–998, 2006.

[7] T. Grtner. Predictive graph mining with kernel methods. In
Advanced Methods for Knowledge Discovery from Complex
Data. 2005.

[8] T. Horváth, T. Gärtner, and S. Wrobel. Cyclic pattern kernels
for predictive graph mining. In KDD ’04: Proceedings of the
tenth ACM SIGKDD international conference on Knowledge
discovery and data mining, pages 158–167, New York, NY,
USA, 2004. ACM.

[9] J. Huan, W. Wang, and J. Prins. Efficient mining of frequent
subgraphs in the presence of isomorphism. In Proceedings
of the 3rd IEEE International Conference on Data Mining
(ICDM 2003), 19-22 December 2003, Melbourne, Florida,
USA, pages 549–552. IEEE Computer Society, 2003.

[10] W. Humphrey, A. Dalke, and K. Schulten. VMD – Vi-
sual Molecular Dynamics. Journal of Molecular Graphics,
14:33–38, 1996.

[11] A. Karwath and L. D. Raedt. Predictive graph mining. In
E. Suzuki and S. Arikawa, editors, Discovery Science, 7th

International Conference, DS 2004, Padova, Italy, October
2-5, 2004, Proceedings, volume 3245 of Lecture Notes in
Computer Science, pages 1–15. Springer, 2004.

[12] S. Kramer, L. D. Raedt, and C. Helma. Molecular feature
mining in hiv data. In KDD ’01: Proceedings of the sev-
enth ACM SIGKDD international conference on Knowledge
discovery and data mining, pages 136–143, New York, NY,
USA, 2001. ACM.

[13] G. M. Maggiora, V. Shanmugasundaram, M. J. Lajiness,
T. N. Doman, and M. W. Schultz. A practical strategy for di-
rected compound acquisition, pages 315–332. Wiley-VCH,
2004.

[14] H. L. Morgan. The generation of a unique machine descrip-
tion for chemical structures-a technique developed at chem-
ical abstracts service. Journal of Chemical Documentation,
5(2):107–113, 1965.

[15] S. Muggleton. Inverse entailment and Progol. New Genera-
tion Computing, Special issue on Inductive Logic Program-
ming, 13(3-4):245–286, 1995.

[16] S. Nijssen and J. N. Kok. Frequent graph mining and its
application to molecular databases. In Proceedings of the
IEEE International Conference on Systems, Man & Cyber-
netics: The Hague, Netherlands, 10-13 October 2004, pages
4571–4577. IEEE, 2004.

[17] A. Srinivasan. The Aleph Manual, 2003. Avail-
able from http://web.comlab.ox.ac.uk/oucl/
research/areas/machlearn/Aleph.

[18] A. Srinivasan, R. D. King, S. Muggleton, and M. J. E. Stern-
berg. Carcinogenesis predictions using ILP. In S. Džeroski
and N. Lavrač, editors, Proceedings of the 7th International
Workshop on Inductive Logic Programming, volume 1297,
pages 273–287. Springer-Verlag, 1997.

[19] A. Srinivasan, S. Muggleton, R. King, and M. Sternberg.
Mutagenesis: ILP experiments in a non-determinate biologi-
cal domain. In S. Wrobel, editor, Proceedings of the 4th In-
ternational Workshop on Inductive Logic Programming, vol-
ume 237 of GMD-Studien, pages 217–232, 1994.

[20] X. Yan and J. Han. gspan: Graph-based substructure pattern
mining. In Proceedings of the 2002 IEEE International Con-
ference on Data Mining (ICDM 2002), 9-12 December 2002,
Maebashi City, Japan, pages 721–724, 2002.

6

