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Abstract

In a wide range of problems involving deformable bodies undergoing finite strains
and experiencing inelastic material behavior, frictional contact and wear are in-
evitably present. These types of problems are very common in engineering practice
and are of the utmost importance in forming operations, machine design and struc-
tural engineering. Therefore, a numerical strategy developed for the analysis of this
variety of applications requires appropriate consideration of both theoretical and
algorithmic issues.

The present work is concerned with the development of two energy-based formu-
lations for the numerical simulation of frictional contact problems, at finite inelastic
strains and fretting wear conditions. The first formulation, is a nested (two-step)
scheme, while the second one is a single step fully implicit strategy. Both frameworks
are based on the Mortar method of enforcement for the constraints [9]. In partic-
ular, lagrangian multipliers described in a dual-basis [83] associated with quadratic
finite elements are employed. Element technology capable of dealing with plastic
incompressibility and avoiding volumetric locking [15] is also included.

The contact and finite frictional sliding inequality constraints are reformulated
in a set of so-called complementarity functions as in [33]. When combined with
the equilibrium equations, which include nonlinear constitutive material behav-
ior at finite strains [14, 20, 59, 69, 81], this leads to a system of nonlinear and
non-differentiable equations that can be solved in terms of a semi-smooth New-
ton method. The resulting primal-dual active set strategy (PDASS) deals with
nonlinearities stemming from contact (search for inactive, stick and slip set) and all
other nonlinearities (i.e. geometrical and material) in one single iterative scheme.
The consistent linearization of all terms of the framework (i.e. material, kinematic,
frictional contact and wear) yields a robust, accurate and highly efficient approach
for the numerical solution of frictional contact problems with deformable solids un-
dergoing finite strains with inelastic behavior and able to account for material loss.

In order to evaluate fretting wear effects, a new numerical formulation based on
the Dissipated energy method [28, 66, 79] is introduced. This formulation is able
to model the fretting wear phenomena even when the boundary conditions (i.e.
contact pressure, sliding distance, etc) are evolving. A new method for topography
update of the contact interface is also described. Associated with a multi-directional
frictional function, this method enables the solid’s discretized shape to mimic real
material behavior while preserving the aspect ratio of the finite elements involved
in the degeneration process.

Within this thesis, several numerical examples are provided. They are used to
investigate the performance, the accuracy and robustness of the presented formula-
tions throughout comparison against experimental data and a classical formulation,
the Archard method [2].
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Resumo

Em um grande número de problemas envolvendo corpos sólidos sob o efeito de
grandes deformações em regime inelástico, é inevitável a presença de contacto com
atrito e desgaste. Estes problemas são de grande importância em processos de de
conformação mecânica, maquinagem e engenharia estrutural. Portanto, estratégias
visando a análise deste tipo de problema requerem abordagens apropriadas, tanto
no aspecto teórico quanto numérico.

Neste trabalho são desenvolvidas duas formulações, baseadas no prinćıpio de
conservação de energia, voltadas à simulação numérica de problemas de contacto
com atrito e sob condições de desgaste. A primeira formulação possui dois pas-
sos de solução iterativa, já a segunda possui um único passo de cálculo totalmente
impĺıcito. Ambas as estratégias computacionais são baseadas no método Mortar
de imposição das condições de contacto [9]. Em particular, foram utilizados multi-
plicadores de Lagrange descritos em uma base dual em associação com elementos
finitos de segunda ordem [83]. Adicionalmente, é também utilizada tecnologia de
elementos [15] capaz de operar em regime de incompressibilidade e evitar distorções
volumétricas.

As inequações de contacto e deslocamento com atrito são reformuladas utilizando
funções de complementaridade [33]. Essas funções, quando combinadas com as
equações de equiĺıbrio que incluam modelagem constitutiva de materiais não-lineares
em regime de grandes deformações [14,20,59,69,81], geram um sistema de equações
não-linear e não-diferenciável passivo de solução através do método semi-smooth de
Newton. A estratégia de ativação nodal primal-dual (PDASS) resultante é capaz
de lidar com a não-linearidade proveniente do contacto (busca e activação de nós) e
demais não-linearidades (i.e. geométricas, material) em um único passo iterativo. A
linearização consistente de todos os termos desta formulação (material, cinemática,
atrito e desgaste) produz um método robusto, exato e muito eficiente para a solução
de problemas de contacto com atrito, com grandes deformações inelásticas e com
perda de material.

Para analisar os efeitos do desgaste, é apresentada uma nova formulação numérica
baseada no método da energia dissipada [28, 66, 79]. Esta formulação é capaz de
modelar o fenómeno de desgaste por fretting mesmo quando as condições de con-
torno iniciais (i.e. pressão, amplitude de deslocamento, etc) são alteradas ao longo
da solução. Também é descrita um novo método de atualização da topografia da
interface de contacto. Em associação com uma função de atrito multi-direcional,
este método permite que a forma discretizada do sólido imite o comportamento real
de materiais ao mesmo tempo em que preserva as caracteŕısticas volumétricas dos
elementos finitos envolvidos no processo de desgaste.

Nesta tese, diversos exemplos numéricos são disponibilizados. Eles são utilizados
para investigar a desempenho, exatidão e robustez da presente formulação através de
comparação com dados experimentais e com formulações clássicas, nomeadamente
o método de Archard [2].
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Chapter 1

Introduction

1.1 Motivation

Contact mechanics phenomena arise in almost all manufacturing processes, natural
phenomena and in our daily activities. Contact is almost a requirement to promote
deformation and movement. It is essential to build a car, to predict an earthquake,
to produce a biomechanical implant, to make a comfortable chair or even good shoes.
To imagine an industrial process without contact arising during at least one of its
stages is barely impossible. However, to visualize contact problems in our lives is
much simpler than to model them.

Contact mechanics involves several sources of nonlinearity, which makes these
problems extremely difficult to solve without resorting to finite element computa-
tions. Therefore, the interest of conducting research on robust and efficient numeri-
cal schemes to solve this class of problems is very high due to many reasons. Firstly,
the range of contact problems that can be solved by analytical procedures is very
limited. Secondly, experimental research on this subject is very expensive and/or
time consuming (i.e. car crash tests and jewelery manufacture). Thirdly, due to
the fact that some conditions are unpractical to be reproduced inside a laboratory:
the contact of a turbine blade and it’s frame case or the contact of the inner parts
of a submerged drill, for example. Nevertheless, numerical simulations also have
some shortcomings. The contact between solid bodies originates a highly nonlin-
ear problem with a vast number of variables. In addition, the contact area has a
nonlinear evolution (geometrical nonlinearity) and there is the well known nonlinear
behavior due to the energy dissipation associated to the contact interaction (phe-
nomenological nonlinearity). Finally, the material model, damage evolution and
thermomechanical effects also increase the non-linearity of the problem.

A long path has been covered leading to the development of several commercial
packages including contact algorithms. Ansys Workbench by Ansys solutions Inc.,
MSC Marc from MSC Software Co., Abaqus by Dassault systems and Elfen by
Rockfield software LTD are examples of popular available packages, offering several
types of contact formulations. However, some problems remained unsolved due to
inability of these finite element codes to properly deal with complex geometries,
energy dissipation, fracture, wear, crack propagation and many other phenomena.

1



1.2. Literature overview: Contact formulations

1.2 Literature overview: Contact formulations

The study of contact phenomena started in the ancient Egypt with empirical ap-
proaches. By applying basic concepts of lubrication and rollers it was possible to
reduce the frictional force developed in the contact interface of large stone blocks
and ground. During the 15th century these concepts were explored by Da Vinci,
Amontons and Coulomb resulting in the well know “Coulomb’s friction law”. This
approach considers bodies as non-deformable, which clearly restricts it’s application
to the solution of a small number of problems since the deformations and stresses
inside the bodies can not be predicted. Another liability relies on the fact that the
frictional force was treated only as a function of the friction coefficient (excluding
surface roughness effects) reducing even more the application field.

A more realistic approach was later developed by Hertz [38] when the theory
of elasticity was applied to obtain an analytical solution to describe stresses and
deformations near the contact point. Half a century later, Signorini [68] devised a
general formulation for frictionless contact problems establishing the boundary con-
ditions for an elastic/rigid contact between two bodies, which leaded to works such
as the ones conducted by Goldsmith [34]. He analyzed several elastic contact/impact
problems supported by experimental tests. However, due to the complexity of the
treatment of the non-linearity associated with the contact area, the number of prob-
lems that could be solved analytically with this formulation was relatively small.

In the first applications of the finite elements method (FEM) into contact prob-
lems of two deformable bodies, only small changes in the geometry were assumed
such that the geometrically linear theory could be applied. In this case, it is pos-
sible to incorporate the contact constraints on a purely nodal basis, see e.g. Fran-
cavilla & Zienkiewicz [30]. Later, contact elements accounting for element degen-
eration/distortion were developed, see e.g. Stadter & Weiss [74]. A mathematical
study of these classes of elements which also accounts for the correct integration
rules, can be found in Oden [55]. All of the above mentioned elements need a dis-
cretization where the element nodes match each other at the contact interface. For
the general case of nodes being arbitrarily distributed along the possible contact
interface between two bodies, which can occur when automatic meshing is used for
two different bodies, Simo et al. [72] developed a segment approach to discretize the
contact interface. For further information on early treatments of contact problems
with the finite element method, the reader is referred to Wilson & Parsons [82],
Timoshenko [76], Johnson [46], Belytschko et al. [8] and Hughes et al. [44].

In the early seventies, an initial formulation, accounting for frictional behavior
and limited to elastic response, was proposed by Fredriksson [31]. Later, the devel-
opment of theories of plasticity and linear viscoelasticity enabled the appropriate
treatment of problems involving frictional contact of inelastic bodies (e.g. Bathe &
Chaudhary [4], Ju & Taylor [47] and Wriggers et al [87]). Hence, with the progress
of digital computers and finite element codes, formulations mainly based on the
Penalty and Lagrangian multiplier methods, allowed the numerical solution of a
much larger number of contact problems (see Kikuchi & Oden [48] and Simo &
Hughes [70]).
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Over the 20th century, several algorithms have been proposed for the numeri-
cal treatment of frictional contact conditions and deformable bodies [50, 85]. The
contact formulations were initially based on the node-to-segment (NTS) approach,
which has been extended and generalized by numerous authors [19, 36, 75, 87]. Al-
though quite popular and widely used, there are well known limitations in the ro-
bustness of NTS formulations. It has been shown in Papadopoulos & Taylor [57]
that the so-called single pass algorithms do not satisfy the contact patch test and
there is a degradation of spatial convergence rates. Furthermore, non-physical jumps
in the contact forces can occur when finite sliding situations occur due to the non-
smoothness of the discretized contact surfaces. Several strategies have been proposed
to overcome these issues [64,73,86], leading to more elaborated algorithms.

Early in this decade, alternative methods for discretizing the contact surface
based on the so-called segment-to-segment (STS) approaches, where introduced.
For instance, the Mortar element method introduced by Bernardi et al. [9] has be-
come very popular. It was originally designed as a domain decomposition technique
and is particularly suited for the exchange of information between non-conforming
meshes [6, 7]. It introduces the continuity condition at the interface in an integral
form, rather than as nodal constrains. Of particular importance is the fact that
this enforcement method preserves optimal convergence rates from the finite ele-
ment method as long as suitable mortar spaces are chosen. Belgacem et al. [5] and
McDewitt & Laursen [54] were among the first researchers applying these concepts
to contact mechanics.

The search for improvements on the field of domain decomposition leaded to
the formulation of the so-called dual Mortar method. This approach, proposed by
Wohlmuth [83] employ dual spaces for the Lagrange multipliers, which applied to
the contact environment allows for the local elimination of the contact constraints.
As a consequence, the Lagrangian multipliers can be conveniently condensed and
no additional equations are needed for the solution of the global system of equa-
tions [23,84]. The remaining problem is positive definite and the unknowns are the
displacements only. The reformulation of the frictional contact constraints into so-
called complementarity functions [1,49] allows rewriting the inequality constraints as
equalities. The combination of this set of equalities with the equilibrium equations
leads to a system of nonlinear equations that can be solved with the semi-smooth
Newton method [11, 21] or be equivalently interpreted as a primal-dual active set
strategy (PDASS) [39,42]

The first implementations of the PDASS, in the context of small deformation
frictional contact, has been introduced by Hüeber et al. [41]. This strategy was
latter applied to nonlinear material problems at small strains in Brunssen et al. [10]
and in Hager & Wohlmuth [35]. While the solution of dynamic contact problems
can be found in Hartmann et al. [37]. In the recent years, through the addition
of complementarity parameters, consistently linearized formulations for the solution
frictionless contact were introduced in Popp et al. [62] and for frictional contact in
Gitterle et al. [33].
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1.3 Literature overview: Fretting Wear formula-

tions

Wear has been subject of intense research for over 40 years, especially for the study
of metal coatings and elastomeric protective layers. Although most of the studies
on this topic are experimentally based, numerical simulation of such a class of prob-
lems has had a significant growth over the recent years. In particular, formulations
employing the Archard method [2] combined with the classical NTS contact formu-
lation [17, 53, 60]. The Archard method uses the input variables from the contact
setting (i.e. prescribed normal load, displacement amplitude, friction coefficient,
etc) to calculate the wear loss. Consequently, the Archard coefficient becomes de-
pendent of the problem’s initial conditions [45]. This liability limits the range of
applications of the Archard method to problems that do not experience changes in
the loading conditions. For such a class of problems, the energy-based methods has
shown better results [25,58,66]. For instance, the Dissipated energy method [27,28]
only uses the measurements of the contact problem. In particular, the friction force
and the displacement. During this evaluation a friction map [78], containing the in-
formation about the total amount of energy lost, is created. Finally, this dissipated
energy is related to the material worn using an independent parameter: the energy
wear coefficient.

1.4 Objectives

The mortar formulation employing dual spaces for the Lagrange multipliers com-
bined with the PDASS for the enforcement of constraints has undergone substantial
progress in the last years. An extension of this formulation to include both finite
strain inelastic material behavior and finite frictional sliding is still not available in
the literature. A contact formulation that includes all the features stated above has
been presented in [18] and will be discussed here. In addition, the Mortar method
with quadratic dual-basis for the lagrangian multipliers with second order finite
elements is studied and compared to other methods of constraint enforcement.

Despite the fact that many works aim to model the fretting wear phenomena,
very few actually address deformation and fretting wear simultaneously. In most
predictive tools available in the literature, the contact laws are restricted to the
enforcement of the non-penetration rule. Moreover, the level of contact forces are
kept so small that they become insignificant when compared with the wear depth
evolution. This leads to the material being removed without ever reaching finite
levels of strain. Also very common, are formulations that make use of the analytical
solution for the contact pressure (i.e Hertz formulae in the context of small strains)
in the first loading cycle, ignoring the wear effect and the removal of material in
the subsequent cycles. Inevitably, these approaches provide inaccurate results. In
addition, the available methods are mainly focused on the two-dimensional wear
analysis of a single solid. In this work, a framework crafted for the analysis of two-
and three-dimensional finite strain frictional contact problems including solutions
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for the analysis of the fretting wear phenomena, for multiple bodies, is introduced.

1.5 Outline

This work is structured as follows:

Chapter 2
Describes the physical laws that govern the contact mechanics of frictional solid
bodies in the context of finite strains and fretting wear condition. It also contains
an extension of the Coulomb friction conditions to the three dimensional setting, in
order to allow the analysis of wear problems.

Chapter 3
Introduces the general definitions concerning the wear phenomena are provided.
Additionally, a new energy-based fretting wear formulation, in conjunction with
methods for shape representation of worn surfaces.

Chapter 4
The numerical implementation of the frictional contact problem with finite strains
and fretting wear is presented. It includes the weak formulation problem, the in-
troduction of the Mortar method concepts for segmentation of the contact interface
and the reformulations of the contact constraints and frictional conditions, for both
two- and three-dimensional analysis.

Chapter 5
Contains the algebraic form of the consistently linearized contact problem alongside
with two different ways of solving the residual system of equations.

Chapter 6
To validate and access the performance of the proposed methods, a vast collection
of numerical examples is discussed in this chapter.

Chapter 7
This chapter summarizes the conclusions drawn during this work. It also contains
final remarks concerning the results obtained in the preceding chapter and the per-
spectives of future work.

Appendices
Appendix A presents the Total Lagrange formulation employed for the evaluation
of the internal forces.
Appendix B introduces the most relevant directional derivatives required for the
incremental solution.
Appendix C gives a brief overview of the Penalty method.
Appendix D illustrates two patch tests.
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Chapter 2

Contact mechanics of solid bodies

Contact mechanics is the study of the stresses and deformations which arise when
multiples bodies in space are brought in contact. In this chapter, the physical laws
that govern the contact between solid bodies are provided. Both friction and fret-
ting Wear phenomena are also covered. The Section 2.1 provides the equations that
govern the kinematics of the frictional contact problem and the topographic update
of the contact surfaces due to fretting Wear. The Section 2.2 presents the strong
formulation of the problem. Section 2.3 describes the equations employed for the en-
forcement of the contact constrains and update of the wear depth. Lastly, Section 2.4
addresses the constitutive material models commonly employed to characterize the
mechanical behavior of solids.

2.1 Kinematic description

The kinematical description of the contact problem with finite strains, finite sliding
and topographic wear update is given in Figure 2.1. The motion, x, is described
by a mapping ϕ between the reference configuration X (at time 0) and the current
configuration x (at time t),

x = ϕ (X, t) . (2.1)

Therefore, the vector of nodal displacements, u, is obtained from the reference
configuration, as follows,

u (X, t) = x (X, t)−X. (2.2)

It is assumed that the bodies are only subjected to body forces, b, and applied
boundary traction, t̂. The solid bodies in the reference configuration, are denoted by
Ωs

0 and Ωm
0 , {Ωs

0∪Ωm
0 = Ω0 : Ω ⊂ Rndim}, where ndim denotes the spatial dimension.

The superscripts s and m represent the common nomenclature employed in contact
mechanics of a Slave and a Master body. Γ

D
represents the Dirichlet boundary while

γ
N

is defined as the Neumann boundary The potential contact zone is represented
by, Γc = {Γsc ∪ Γmc } and the spatial counterparts of the three boundaries are denoted
by γc, γN and γ

D
, respectively.
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time = 0 time = t

Figure 2.1: Illustration of a two bodies contact problem.

2.2 Strong form

The strong form of the frictional contact problem is stated here. The Boundary
Value Problem (BVP), defined in terms of the displacement vector u and the Cauchy
stress tensor, σ, in the current configuration, is given as follows:

div (σi(u)) + bi = 0 in Ωi
t,

σi(u)ηi = t̂i on γi
N

ui = ûi on γi
D
, i = s,m.

(2.3)

where ûi and ηi represents the prescribed displacement and the current outward
unit normal vector, respectively. Index i emphasizes that the BVP condition must
be attained for all bodies involved. Furthermore, the deformation gradient, F, with
respect to the reference configuration, Ω0, is given by

F = ∇ϕ(X, t) =
∂ϕ(X, t)

∂X
=
∂x

∂X
, (2.4)

and its used to define the right Cauchy-Green, Ci, and the Green-Lagrange, Ei,
strain tensors,

Ci =
[
Fi
]T

Fi, (2.5)

Ei =
1

2

{[
Fi
]T

Fi − I
}
. (2.6)

The determinant of the deformation gradient has to be greater than zero, J =
det (F), in order for the motion of the bodies to be meaningful.

Further details on the solution of the boundary value problem, in the context a
a Total Lagrange formulation, can be found in Appendix A.

7



2.3. Contact constraints and wear depth

2.3 Contact constraints and wear depth

For enforcing the contact constraints at normal and tangential directions in a three-
dimensional domain, the surface tractions defined on the slave surface, tsc, are de-
composed as follows,

tsc = pηη + tξττ
ξ + tχτ τ

χ, pη = tsc · η, tξτ = tsc · τ ξ, tχτ = tsc · τ χ, (2.7)

where the current outward unit normal, η, defined on the slave surface, γsc , in
conjunction with unit tangential vectors τ ξ and τ χ produce an orthonormal basis
in xs point, as seen in Figure 2.1.

2.3.1 Normal constraints

Constraints in the normal direction are fulfilled by a non-penetration condition which
evaluates the relative distance (gap) between, xs, on the slave surface and, x̂m, over
the master surface in the current configuration – see Figure 2.1. The caret represents
that x̂m is the closest projection of xs onto the master surface, γmc . This gap vector
is obtained, in the current configuration, as follows,

g(Xs, t) = [xs(Xs, t)− x̂m(X̂m, t)]. (2.8)

Furthermore, the computation of the normal distance between xs and x̂m yields the
definition of the scalar-valued gap function,

g(Xs, t) = −η (xs(Xs, t)) · g(Xs, t). (2.9)

Together with the definition of a non-positive normal contact traction, pη, and a
positive wear depth state variable, h(Xs, t), the following set of inequalities must be
attained:

g(Xs, t) + h(Xs, t) ≥ 0, pη ≤ 0, pη[g(Xs, t) + h(Xs, t)] := 0. (2.10)

2.3.2 Tangential constraints

The frictional conditions, for the two-dimensional domain, are fulfilled by employing
the standard Coulomb’s law:

F := |tτ | − µ|pη| ≤ 0, ∀ Ω0 ∈ R2. (2.11)

ϑτ (Xs, t) + βtτ = 0, ∀ β ≥ 0, (2.12)

where µ ≥ 0 represents the coefficient of friction given by the ratio of the normal and
tangential forces, depicted in Figure 2.2. The relative tangential velocity, ϑτ (X

s, t),
is defined as the rate of change:

·
(∗)= d(∗)

dt
≈ (∗)t − (∗)0

∆t
, (2.13)
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2.3. Contact constraints and wear depth

tξτ

ϑτ

µpη

Figure 2.2: Coulomb’s frictional contact conditions.

of the gap vector in the tangential direction, Equation (2.8),

ϑτ (X
s, t) = τ (xs(Xs, t)) · ġ(Xs, t). (2.14)

Tangential stresses below the Coulomb threshold, F < 0, Equation (2.11), imply
a tangential velocity, ϑτ , equal to zero, commonly called as stick/static state. When
tangential stresses are at the Coulomb limit, they are opposed by the relative tan-
gential velocity. In this case, we have a slip/kinectic state. The association of these
two definitions generates the following state equation,

Fβ = 0. (2.15)

2.3.3 Modified Coulomb’s frictional condition

Due to the cyclical nature of the fretting wear phenomena, sudden changes on the
tangential traction’s orientation and direction (i.e. reciprocating motion, axis rota-
tion, radial rotation) are very common. Therefore, in order to maintain the frictional
force directions while the surface topography is updated, a modified version of the
Coulomb function must be introduced. For the analysis of three-dimensional fret-
ting wear problems, the tangential constraints must be fulfilled in a two-dimensional
space (τ ξ,τ χ). Therefore, in this work a parameterized function, F̄ is employed,

F̄
(
x = ϑτ , y = χξ, z = µ|pη|

)
≤ 0, ∀ Ω0 ∈ R3 (2.16)

The definition of this tri-directional frictional function enforces a smoother tran-
sition from the stick state to the slip state while also maintaining the direction of the
material removal process. The constants a, b, c and the directional parameters [u, v]
employed in the function, were specifically designed to reproduce reciprocating, cir-
cular motion, axis rotation and combination of these three, in an accurate manner.
However, by choosing appropriate values for these constants, elliptical motion can
be addressed as well.

The direction, z is used to describe the relation between the friction force and
the normal force for a uni-direction motion. Therefore, the function z(u, v) can
be interpreted as an approximation of the standard Coulomb’s friction, as depicted

9
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tξτ

ϑτ

µpη

Figure 2.3: Continuous friction function - X-Z plot.

in Figure 2.3. The functions x(u, v) and y(u, v) are employed to describe circular
motion and axis rotation, respectively. Their values are given as follows,

x(u, v) = au[1− cos(v)],

y(u, v) = bu[sin(v)],

z(u, v) = c[u]7, (2.17)

where a = 1
8
; b = 1

4
; c = 1

50000
for u ∈ [−1, 1] and v ∈ [0, 2π].

It is important to remark that for solving uni-directional two-dimensional contact
problems, one may set the parameter y = 0 and recover the standard Coulomb’s
condition on the two-dimensional domain, F̄ = F, as stated in Equation (2.11)
and shown in Figure 2.2. Furthermore, setting parameter z = 0, a frictionless
formulation (µ = 0) is obtained. Moreover, the wear phenomena can benefit from
the smoother transition between stick and slip states provided by the continuous
function z(u, v). The surface plot given by the set of frictional conditions in the
three-dimensional domain is depicted in Figure 2.4.

A summarized statement of the frictional contact constraints for the modified
Coulomb friction is given by,

F̄(x, y, z) ≤ 0 ∀ Ω0 ⊂ R3;

F̄(x, 0, z) = F ≤ 0 ∀ Ω0 ⊂ R2;

ϑτ (Xs, t)− βtτ = 0, ∧ β ≥ 0 ∴ F̄β = 0. (2.18)

More details about the topography update procedure are provided in Chapter 3.

2.4 Constitutive modelling

The modelling of nonlinear solid material behavior has undergone substantial de-
velopment over the last decades and, as result, a wide range of material models,
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Figure 2.4: Three-dimensional continuous friction function.

incorporating elastic, viscoelastic and viscoplastic material behavior are currently
available [13,16].

2.4.1 Finite Inelastic deformations

A class of isotropic hyperelastic based finite strain inelastic constitutive models, for-
mulated in the spatial configuration, is considered here. A more detailed discussion
of the approach, which is well established and widely accepted for the description
of finitely deforming solids, can be found in [13,16].

The main hypothesis underlying this class of models is the multiplicative de-
composition of the deformation gradient, F, into an elastic, Fe, and a plastic, Fp,
contributions,

F = FeFp (2.19)

which was first introduced by Lee [52] and admits the existence of a local unstressed
intermediate-configuration defined by the plastic deformation gradient, Fp. The
polar decomposition of the elastic and plastic deformation gradients leads to:

Fe = ReUe = VeRe, Fp = RpUp = VpRp, (2.20)

where Ue and Up are the elastic and the plastic right stretch tensors, Ve and Vp

are the elastic and plastic left stretch tensors and Re and Rp the elastic and plastic
rotation tensors.

The velocity gradient, L = ḞF−1, can be decomposed additively as,

L = Le + FeLp [Fe]−1 , (2.21)
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where the elastic, Le, and plastic, Lp, velocity gradients are defined by:

Le = Ḟe [Fe]−1 , Lp = Ḟp [Fp]−1 . (2.22)

The plastic stretch, Dp, and the plastic spin, Wp, tensors can also be defined as:

Dp = sym (Lp) , Wp = skew (Lp) . (2.23)

The rotation of the plastic stretch, Dp, to the deformed configuration lead us to:

dp = ReDp [Re]T = Resym
(

Ḟp [Fp]−1
)

[Re]T . (2.24)

Following the formalism of thermodynamics with internal variables, an isotropic
hyperelastic constitutive equation can be obtained:

T = ρ̄
∂ψe

∂εe
= De : εe = [2GI + ς [I⊗ I]] : εe (2.25)

where T = Jσ is the Kirchhoff stress, ρ̄ is the reference mass density, De denotes the
fourth-order isotropic constant elastic tensor with I and I given in component form
as Iij = δij and Iijkl = 1

2
[δikδjl + δilδjk]. Equation (2.25) is derived from the so-called

Henky strain energy function, ψe(εe), which is generally accepted for a wide range
of applications, given by,

ψe (ςe1 , ς
e
2 , ς

e
3) = G

[
ln (ςe1)2 + ln (ςe2)2 + ln (ςe3)2 +

1

2
ς ln (Je)2

]
, (2.26)

where G and ς are positive material constants (principal stretches and Bulk modulus,
respectively) and Je = ςe1ς

e
2ς
e
3 is the Jacobian. The Eulerian logarithmic elastic strain

tensor is employed as strain measure, which can be defined by,

εe = ln (Ve) =
1

2
ln (Be) =

1

2
ln
(
Fe[Fe]T

)
, (2.27)

where ln(·) denotes the tensorial logarithm of (·) and Be = [Ve]2 is the elastic
Cauchy-Green strain tensor.

The evolution law for the plastic deformation gradient, Fp, adopted here, is
defined in terms of the plastic multiplier, γ̇p, and of a generic plastic flow potential,
ψ (T, A), expressed as a function of the Kirchhoff stress and the thermodynamic
force set, A:

dp = γ̇p
∂ψ (T, A)

∂T
. (2.28)

Combining the definition of the rotated plastic strech, Equation (2.24), with the
constitutive law, Equation (2.28), and the assumption of zero plastic spin, Wp = 0,
the following evolution for the plastic deformation gradient can be obtained:

Ḟp [Fp]−1 = γ̇p [Re]T
∂ψ

∂T
Re. (2.29)
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Table 2.1: General isotropic finite strain multiplicative elasto-plastic model.

1. Multiplicative decomposition of the deformation gradient, F,

F := FeFp.

where the elastic, Fe, and the plastic parts, Fp, are obtained by perform-
ing the polar decompositions.

2. Evolution equations for Fp,

Ḟp [Fp]−1 = γ̇ [Re]T ∂Ψ
∂τ

Re,

3. Hardening law,

α̇ := γ̇pH(σ, A).

4. Loading/unloading criterion (plasticity set of Kuhn-Karush-Tucker con-
ditions),

Φ ≤ 0, γ̇p ≥ 0, γ̇pΦ = 0.

The evolution equation for the set of internal variables is given by,

α̇ = γ̇pH (T, A) , (2.30)

where H (T, A), represents a constitutive function and γ̇p is the plastic multiplier.
In order to define the onset of plastic flow, a general yield function, Φ (T, A), is
introduced. Together with the plastic multiplier, the yield function must comply
with the standard complementarity relations (loading/unloading criterion),

Φ ≤ 0, γ̇p ≥ 0, γ̇pΦ = 0. (2.31)

The finite strain hyperelastic-based model described here permits a convenient
extension of the general isotropic infinitesimal elasto-plastic models to the finite
strain range. The set of conditions described above are summarized in Table 2.1.

2.4.2 Material model

One of the most widespread phenomenological models for inelastic deformations is
the classical von Mises model, [13, 16]. This model, which will be adopted here,
assumes that plastic yielding occurs when the second invariant of the deviatoric
stress tensor, J2 = 1

2
[s : s], reaches a critical value.
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The elastic strain-energy, ψe, of this particular model can be decomposed as the
sum of the distortional, ψed, and volumetric, ψev, contributions

ψe = ψed + ψev =
1

G
J2 +

1

K
p2, (2.32)

with G and K representing, respectively, the shear and the bulk modulus. The
deviatoric stress tensor, s, can be expressed in terms of the Cauchy stress tensor
and the hydrostatic pressure, p = 1

3
σ : I, as:

s(σ) = σ − pI. (2.33)

The definition of the yield function for the von Mises criterion, is given by,

Φ (σ) =
√

3J2 (s(σ))− σy, (2.34)

where σy is the uni-axial yield stress.
Taking the von Mises yield function, Equation (2.34), as the flow potential, the

Prandtl-Reuss plastic flow rule is obtained:

ε̇p = γ̇p
∂Φ

∂σ
= γ̇p

∂

∂σ

[√
3J2 (s)

]
= γ̇p

√
3

2

s

‖s‖
. (2.35)

The assumption of isotropic strain hardening leads to the von Mises accumulated
plastic strain, defined as

ε̄p =

∫ t

0

√
2

3
[ε̇p : ε̇p] dt =

∫ t

0

√
2

3
‖ε̇p‖ dt. (2.36)

By letting the uni-axial yield stress be a function of the accumulated plastic strain,
a von Mises isotropic strain hardening model is obtained,

σy = σy (ε̄p) . (2.37)

The von Mises model defined by the elastic potential, Equation (2.32), the yield
function, Equation (2.34), and the flow potential – which is the von Mises yield
function – can be extended to finite strains by adopting the same functional structure
described in Subsection 2.4.1.
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Chapter 3

Fretting wear phenomena

This Chapter introduces the energy-based formulation employed for solving the fric-
tional contact problem. In Section 3.1, a brief overview on the principal wear me-
chanics definitions and fretting formulations is presented. In Section 3.2, the Dis-
sipated energy method is detailed. The material removal strategy is the subject of
Section 3.3.

3.1 Wear mechanics

The interface of solid bodies under interaction often displays complex physical phe-
nomena. Surfaces in motion and in contact are bound to friction, which may lead
to volume variations due to Wear and/or Adhesion. Moreover, the interface may
present a material flux caused by chemical reactions such as ion-coupled electron
transfer or due to mechanical processes like welding.

fretting wear is defined as the degeneration process of a solid body under the
effects of frictional forces. This mechanical material removal from a body may occur
in several different ways [46,65]. The first and most usual one is known as Abrasive
wear, which repeated in a cyclical way is defined as fretting wear [80]. In this case
third bodies are formed due to detachment of particles from the contact surface. A
second case occurs when material is transferred from a body to another, which is
referred as Adhesive wear. In both these situations, the contact forces can also lead
to crack nucleation, which may initiate another failure mechanism known as fretting
fatigue [79]. Corrosive wear may also occur if materials prone to chemically react
are in place. Another distinction, made within wear mechanisms, is the fretting
regime. According with Vingsbo and Soderberg [78], fretting can be divided into
three regimes and one intermediate phase: stick regime, mixed stick-slip regime,
gross slip regime and reciprocating sliding regime. The fretting regime is identified
by a fretting map, which shows the effect of the friction force versus the sliding
amplitude. The influence of the fretting regime acts on the wear scar profile, on the
worn volume and also on the chemical composition of the scar and debris.

The two most commonly used methods to predict the wear kinetics of a contact
problem are the so-called Archard method [2] and the Dissipated energy method [29].
The Archard method uses the input variables from the contact setting (i.e. pre-

15



3.2. Dissipated energy method

(a) fretting map. (b) Friction trace.
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Figure 3.1: Energy dissipated by the frictional force.

scribed normal load, displacement amplitude, etc.) to calculate the wear loss.
Therefore, the Archard coefficient becomes dependent of the initial problem con-
ditions. On the other hand, the Dissipated energy method uses the measurements
obtained from the contact problem. The frictional force is measured at every in-
crement of displacement, which at the end of a loading cycle enables the creation
of the so-called Friction trace. The Friction trace represents the total amount of
energy lost in a given loading cycle, see Figure 3.1(b). This energy is later related
to the material loss using an independent coefficient: the energy wear coefficient.
After many loading cycles are performed, a loading history of dissipated energy is
created. This history is known as the fretting map depicted in Figure 3.1(a).

3.2 Dissipated energy method

The dissipated energy method for prediction of wear postulates [26, 66] that the
material loss, w, is proportional to the energy lost due to friction, in the following
way,

w = αwΠw. (3.1)

where the energy wear coefficient, αw, is a material parameter obtained during the
same procedure usually employed to evaluate the coefficient of friction of a specific
pair of surfaces. Πw is the total energy dissipated by friction over the ncyc loading
cycles,

Πw =

ncyc∑
i=1

{Πτ}i , (3.2)

where, Πτ , is the work done by the frictional forces when loading cycle i is performed.

The main advantage of this method relies on the possibility of using the same
wear coefficient for any normal load, displacement amplitude, or load frequency
even if they change during the simulation. Moreover, the influence of the wear
conditions are accounted as the energy is dissipated through the process of sliding
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3.3. Material removal strategy

and it’s evolution is obtained knowing only the time history of displacement and the
frictional force (i.e fretting map).

It is important to emphasize that this proposed implementation of Dissipated
energy method assumes that the friction coefficient remains constant during the wear
evaluation. Only changes of regime state (i.e stick or slip) are considered. Moreover,
it is assumed that the frequency of the loading cycles are low enough such that the
thermomechanical effects can be disregarded.

3.3 Material removal strategy

At the point where the quantity of material lost is know, a suitable procedure for
updating the contact surfaces must be introduced. The most coarse strategy for
updating the finite element mesh would be removing the volume from the contact
elements. However, since the fretting mechanism is a recurring process that often
leads to the loss of a substantial quantity of material, this could be a constant
source of computational instability. In particular, the finite elements at hand could
be completely worn out of the structure, as seen in Figure 3.2. The picture shows a
cubic structure being worn to 50% of it’s initial height. In this scenario, the absence
of mesh treatment would lead to the complete removal of both first and second finite
element layers. From a finite element perspective, there are several strategies that
can be adopted for dealing with such a problem. Many of these are based on the
concept of remeshing.

3.3.1 Shape update methods

The available remeshing methods are mainly focused in the treatment of distortion
and high level of deformation, often creating new elements by dividing the existing
ones. From a contact formulation viewpoint, the removal or the creation of new
elements is a very costly and inefficient strategy. The new contact candidates would
add to both time search and matrices size. Moreover, since the process of remesh-
ing must happen during the iterative solution of the problem (a requirement for
precise computation of fretting Wear) the convergence rate of the solution would
also be impacted. Additionally, since the contact interface is usually a rather small
part of the whole structure, the use of such methods would lead to an unnecessary
increase in the computational cost. In order to circumvent these shortcomings, a
local topography update working in synergy with the contact search might be more
appropriate.

Therefore, ruling out the remeshing schemes that generate new elements, the
methods that remain are nodal re-collocations methods and Arbitrary Lagrangean-
Eulerian (ALE) strategies [3, 8]. A standard nodal re-collocation solution, when
employed throughout a whole solid body, would produce results similar to the ones
depicted in Figure 3.3. In this case, the wear depth is shared by all layers, which
helps to preserve the number of elements in the structure and the good aspect
ratio of the elements over the contact surface. This is basically the same concept
employed to average displacements in a given mesh. However, by adopting this
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3.3. Material removal strategy

Figure 3.2: Complete removal of finite elements.

Figure 3.3: Wear depth equally balanced over all layers.

method, properties like effective plastic strain on the contact elements would no
longer be precisely described.

A third scenario is the adaptive balance of the wear depth. In this case, the
aspect ratio of the finite elements and it’s relative position in regard to the interface
have direct correlation with the material lost in the layer under consideration, see
Figure 3.4.

Throughout this work, an adaptive approach coupled with a Wear Box concept
is favored.

3.3.2 Wear box concept

In this approach, a bounding box surrounding an appropriate number of finite el-
ements is defined as the area of interest, such as the finite elements highlighted
in blue Figure 3.5. For instance, these highlighted finite elements represent both
the set contact candidates elements (elements at the the contact interface) and the
element passive to the wear balance procedure. The material lost, w, defined in
Equation (3.1), is shared by the nboxe finite elements defined within the wear box, as

Figure 3.4: Adaptive balance of the worn volume.
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3.3. Material removal strategy

Figure 3.5: Wear Box.

follows,

w =

nboxe∑
e=1

we. (3.3)

The subdivision of the material lost among the finite elements in contact is guided by
the normal reactions on each contact node j, such that the element worn volume, we,
of each finite element, e, has a direct dependency of the contact load. This procedure
assures that finite elements experiencing higher load condition will display higher
levels of degeneration while preserving their aspect ratio. Figure 3.6 shows the
problem geometry undergoing the material removal balance procedure followed by
the shape update. In this work, focused is given to quadrilateral and hexahedral
finite elements. Nevertheless, the concepts employed here can be extended to any
finite element type. The weighting balance of the material lost is given by,

we =

[ ∑nnod
j=1 {pη}j∑ne

e=1

∑nnod
j=1 {pη}j

]
w. (3.4)

where nnod are the number of contacting nodes and ne represents the number of
elements within the wear box.

In addition, due to the nature of the finite element type chosen to discretize the
contacting bodies (quadrilaterals or hexahedrals elements in this case), the element
worn volume must respect a second geometrical rule,

we =

[∑nenod
j hj

nenod

]
Ae. (3.5)

where nenod is the number of nodes of the element e. The scalar Ae represents the sec-
tion area (or the length, in case of two-dimensional meshes) of element e. The wear
depth, hj, is also balanced using the same procedure employed in Equation (3.4),

hj∑ne
e=1

∑nadjnod
j=1 h

e
j

≡
{pη}j∑ne

e=1

∑nadjnod
j=1 {pη}

e
j

. (3.6)

where nadjnod is the number of adjacents nodes of node j. Moreover, combination of
Equations. (3.4 - 3.6) yields an expression for wear depth, hj, in terms of the normal
pressure, {pη}j, and the material lost, w,

hj =
w {pη}j

neAe
∑ne

e=1

∑nadjnod
j=1 {pη}

e
j

. (3.7)
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3.3. Material removal strategy

Ae+2Ae+1Ae

we+2we+1we
hj hj+1 hj+2 hj+3

{pη}j+3{pη}j+2{pη}j+1{pη}j

Figure 3.6: Removal of worn area.

Figure 3.7: Topography update of a surface under a wide spectrum of forces.

3.3.3 Aspect ratio algorithm

Following the evaluation of the wear depth, the topography of the contact surface
must be updated. However, in order to maintain the aspect ratio of the worn
elements in the contact zone, an algorithm for preserving a minimal set of dimensions
is required. The first item that is analyzed when enforcing the material removal is
the ratio between the finite element height and its cross-sectional area. Furthermore,
once a volumetric condition is met, the balance procedure is enabled. Herein, the
desired aspect ratio for the contact elements must respect the conditions stated at
Table 3.1. This set of new methods for performing the update of the geometrical
shape of the contact elements under fretting wear results in a very robust framework.
The wear height is computed in a point-wise manner while still considering the
repercussion on the adjacent nodes. Therefore, complex topographies, such as the
one depicted in Figure 3.7, can be obtained a very small impact on the overall
solution the problem.
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3.3. Material removal strategy

Table 3.1: Wear volume balance procedures.

IF h̄e/(A
i
e) > 0.1 THEN Remove the allowed

quantity from layer i,

hij = h̄e − 0.1Aie,

ELSE

1. Keep the required wear depth,

rij = hij,

2. Remove the allowed quantity, hij, from layer
i,

hij = h̄e − 0.1Aie,

3. Remove the remaining wear depth from the
elements at the lower layers (i+1), according
with the balance method employed,

Evenly balanced

hi+1
j = rij/nlrs,

Adaptive method

hi+1
j = rij[nlrs − i− 1]/2nlrs,

where h̄e is the average height of element e
and nlrs is the number of layers within the
“wear box”.

END
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Chapter 4

Numerical formulation

In this chapter the weak and discrete forms of the frictional contact problem with
wear, presented in Chapters 2 and 3 are derived. The Section 4.1 is concerned with
the virtual work done by the tractions, the contact constraints and the dissipated
energy. The basic steps for performing an incremental solution are shown in the
Section 4.2. The spatial discretization of the solid bodies is covered in the third
section. Lastly, a summary of the discretized is problem is given in Section 4.4.

4.1 Weak form

Following the definition of an energy-based problem, a variational method is em-
ployed to obtain the weak form of the contact virtual work together with the KKT
conditions. In particular, for solving the Boundary Value Problem, Equation (2.3),
the principle of virtual work is applied. However, in order to do so, a vector valued
solution space and a weighting space must be introduced. The vector valued solu-
tion space, u ⊂ {us ∪ um}, containing the admissible displacement field, must be
defined on the Sobolev space of functions, H1, such that,

U i :=

{
uij ∈

[
H1
(
Ωi
)]

: uij
∣∣
Γi
D

= uij

}
, (4.1)

while the weighting space for the incremental displacements, δu, is given by,

V i :=

{
δuij ∈

[
H1
(
Ωi
)]

: δui
∣∣
Γi
D

= 0

}
. (4.2)

Furthermore, by employing test functions vi ∈ H1(Ωi) one can state the energy
problem, in terms of the displacement field u, as follows,

δΠ (u, δu) =δΠ
int,ext

(u, δu) + δΠc (u, δu)

+δΠw (u, δu) = 0, ∀
{
δui ∈ V i

}
, (4.3)

where δΠint,ext (u, δu) is the standard virtual work from the internal and external
forces, δΠc (u, δu), represents the contact virtual work and δΠw (u, δu) is the poten-
tial energy related to the material removed from the physical system. The former
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4.1. Weak form

can be computed for each body as:

δΠi
int,ext

(
ui, δui

)
=

∫
ϕ(Ωi0)

σi · grad
(
δui
)
dΩ

−
∫
ϕ(Ωi0)

bi · δui dΩ

−
∫
ϕ(Γi

N)

t̂i · δui dγ
N
, (4.4)

The contact virtual work, δΠc (u, δu), is obtained as the integral – over the slave
side – of the work done by the contact traction tsc, by applying a balance of linear
momentum at the contact interface, tscdγ

s
c = tmc dγ

m
c , as follows,

δΠc (u, δu) = −
∫
γsc

tsc · [δus − δum] dγsc . (4.5)

Since in the Dissipated energy method is related to the energy lost due to wear, δΠw,
as the energy dissipated by the frictional force, from Equation (3.2) it is possible to
write a weak form for the Wear energy, such that,

δΠw (u, δu) =

∫
γsc

µ [ηtsc] · [δus − δum] dγsc ≤ 0. (4.6)

The first step towards the definition of the weak form of the contact conditions
is attained by replacing the normal contact pressure and the tangential tractions by
lagrangian multipliers, such that,

λ = −tsc ∵ λn = −pη, λξη = tξτ , λ
χ
η = tχτ . (4.7)

Therefore, a modified set of KKT conditions can be rewritten in terms of the la-
grangian multipliers, as follows,

g(Xs, t) + h(Xs, t) ≥ 0, λη ≥ 0, λη [g(X, t) + h(Xs, t)] = 0. (4.8)

Same procedure can be applied to the Coulomb’s function, which yields,

F := |λτ | − µ(x, y, z)|λη| ≤ 0. (4.9)

Furthermore, the strong pointwise conditions stated in Equation (4.8) can be re-
placed by a weak integral condition, over δγsc ,

δg =

∫
γsc

δλη [g(X, t)] dγsc , ∀ {δλη ∈M} , (4.10)

whereM represents the chosen space for the lagrangian multipliers. The weak form
of the contact conditions, in the tangential direction, is given by,∫

γsc

δλτ [(ϑτ (X, t)− βλτ )] dγsc , ∀ {δλτ ∈M} . (4.11)
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4.2. Incremental form

Next, by introducing the lagrangian multipliers into Equation (4.5) and Equa-
tion (4.6) yields the following expression for the contact virtual work with wear,

δΠc (u, δu,λ) + δΠw (u, δu,λ) =

∫
γsc

[λ− µλ · η] · [δus − δum]dγsc . (4.12)

Finally, by introducing the dissipated energy, δΠw into the definition of wear volume,
w, it’s weak form is obtained,

δw = αw {δΠw} = αw

∫
γsc

µλη[δu
s − δum]dγsc . (4.13)

4.2 Incremental form

4.2.1 Numerical integration algorithm

The solution of the constitutive model, described in Section 2.4, defined by the
corresponding rate constitutive equations and a set of initial conditions is not usually
known for complex deformation paths. Therefore, the use of a numerical algorithm
for integration of the rate constitutive equations is essential.

Algorithms based on the operator split methodology are particularly suitable
for numerical integration of the evolution problem and have been widely used in
computational plasticity, [13,16]. Here, such an operator split method is used in the
numerical integration of the elasto-plastic constitutive equations. An essential point
in the derivation of the algorithm is the exponential approximation employed in the
discretization of the plastic flow rule, in the plastic corrector stage, which was firstly
employed in the computational literature by Webber and Anand [81]. It leads to
the following incremental evolution equation:

Fpn+1 = exp

(
∆γp

[
Ren+1

]T ∂Φ

∂T

∣∣∣∣
n+1

Ren+1

)
Fpn

=
[
Ren+1

]T
exp

(
∆γp

∂Φ

∂T

∣∣∣∣
n+1

)
Ren+1Fpn. (4.14)

In addition, a one step backward Euler scheme is used to integrate the evolution
equation for the internal variable,

ε̄pn+1 = ε̄pn −∆γp
∂Φ

∂T

∣∣∣∣
n+1

. (4.15)

It can be shown that the approximation of Equation (4.14) results in the following
simpler update formula in terms of the logarithm eulerian strain tensor:

εen+1 = εe trial
n+1 −∆γp

∂Φ

∂T

∣∣∣∣
n+1

, (4.16)

which is valid whenever the elastic right Cauchy-Green tensor Ce trial
n+1 =

[
Fe trial
n+1

]T
Fe trial
n+1

and ∂Φ
∂T

∣∣
n+1

commute. Using Equation (4.16) and imposing the elastic law at tn+1,
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4.3. Incremental form

the following expression for the stress tensor consistent with the exponential approx-
imation, Equation (4.14), is obtained,

Tn+1 = De :

[
εe trial
n+1 −∆γp

∂Φ

∂T

∣∣∣∣
n+1

]
. (4.17)

Consequently, the Cauchy stress is given by:

σn+1 = Ren+1Tn+1

[
Ren+1

]
/ det

(
Ue
n+1

)
. (4.18)

Therefore, due to the use of logarithmic strains to describe elasticity together with
the exponential approximation, the stress updating procedure can be written in
the same format as the classical return mapping schemes of infinitesimal elasto-
plasticity, see Ortiz and Popov [56], Simo & Hughes [70], Souza Neto et al. [16].
Here, the numerical integration of the small strain von Mises constitutive equations
was undertaken with the backward Euler scheme.

4.2.2 Incremental boundary value problem

Assuming that the values of Fp and ε̄p are known at a certain time tn, the deformation
ϕn+1 at a subsequent time tn+1 will determine uniquely the value of σ at time
tn+1, through the integration algorithm. This defines the incremental constitutive
relation:

σn+1 = σ̂ (Fpn, ε̄
p
n, ϕn+1) . (4.19)

Including Equation (4.19) in the weak form of the equilibrium, the incremental
boundary value problem can be stated as follows: given Fp and ε̄p at time tn and
given the body force and surface traction fields at time tn+1, find the kinematically
admissible configuration ϕ (Ω0)|n+1, such that,

s,m∑
i


∫
ϕ(Ωi0)|n+1

σ̂i · grad
(
δui
)
dΩ −

∫
ϕ(Ωi0)|n+1

bin+1 · δui dΩ

−
∫
ϕ(Γi

N )|
n+1

t̂in+1 · δui dγN

−
∫
ϕ(Γsc)|n+1

λn+1 [δus − δum] dγsc

= 0, ∀
{
δui ∈ V i

}
. (4.20)

The equations employed to discretize the body’s geometry, the kinematic equa-
tions, the inequalities related to the contact constraints and the virtual work vari-
ables in Equation (4.3), are the subject of the following section.
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4.3. Spatial discretization

4.3 Spatial discretization

Herein, the Finite Element method is employed for the spatial discretization of
the variables contained in the virtual work, Equation (4.3), and the variables in
the enforced contact constraints, Equations. (4.8-4.11). Two distinct approaches
are undertaken for each spatial dimension and they are detailed in the following
sections.

4.3.1 Finite elements for 2D analysis

Two types of finite elements were chosen for the analysis of two-dimensional prob-
lems. The first one is the 2D bi-linear F-bar finite element [15]. This finite element
is know for it’s improved behavior under nearly isochoric deformations. An F-bar
element is obtained from the standard finite element by replacing the volumetric
component of the deformation gradient, F, by the volumetric component of the
deformation gradient at the centroid of the element, {F0}v. Therefore, the F-bar
deformation gradient, at a specific Gauss point, is the product of the isochoric com-
ponent of F with the volumetric component of F0:

Fbar = Fiso {F0}v =

[
det(F0)

det(F)

]1/3

F. (4.21)

Particularly important in the present context is the fact that this element can be
used with any material model, can produce solutions with reasonably sized meshes,
is able to avoid volumetric locking and is suitable to capture strains locally. The
F-bar element has got exactly the same shape functions as the conventional 4-noded
quadrilateral finite element (quad4fbar), which are displayed in Figure 4.1a. The
second finite element type chosen for 2D analysis was the standard isoparametric
8-noded element (quad8). The additional number of degrees of freedom, in this
particular element, allows for a better enforcement of the contact constraints and
balance of the wear depth. Geometry and shape function for the quad8 element are
detailed in Figure 4.1b.

4.3.2 Finite elements for 3D analysis

For the three-dimensional case, the 8-noded tri-linear F-bar hexahedral element
(hexa8fbar) is employed for the discretization of the solid bodies, Ωi

0, i = s,m. This
finite element can provide accurate results for both large inelastic contact problems
and fretting wear problems therefore being a standard choice for 3D analysis. The
geometry as well the shape functions for this element type are depicted in Figure 4.1c.

4.3.3 Geometrical interpolations

Having defined the finite element type to be employed, the geometrical coordinates,
x, are approximated by interpolation of the nodal coordinates using the given shape
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4.3. Spatial discretization

(a) 2D F-bar element - quad4fbar

N1 = 1
4 (1− ξ) (1− η); N2 = 1

4 (1 + ξ) (1− η);

N3 = 1
4 (1 + ξ) (1 + η); N4 = 1

4 (1− ξ) (1 + η);

(b) 2D 8-Noded element - quad8

N1 = −1
4 (1− ξ) (1− η) (1 + ξ + η); N2 = −1

4 (1 + ξ) (1− η) (1− ξ + η);

N3 = −1
4 (1 + ξ) (1 + η) (1− ξ − η); N4 = −1

4 (1− ξ) (1 + η) (1 + ξ − η);

N5 = 1
2

(
1− ξ2

)
(1− η); N6 = 1

2 (1 + ξ)
(
1− η2

)
;

N7 = 1
2

(
1− ξ2

)
(1 + η); N8 = 1

2 (1− ξ)
(
1− η2

)

(c) 3D F-bar element - hexa8fbar

N1 = 1
8 (1− ξ) (1− η) (1− ζ); N2 = 1

8 (1 + ξ) (1− η) (1− ζ);

N3 = 1
8 (1 + ξ) (1 + η) (1− ζ); N4 = 1

8 (1− ξ) (1 + η) (1− ζ);

N5 = 1
8 (1− ξ) (1− η) (1 + ζ); N6 = 1

8 (1 + ξ) (1− η) (1 + ζ);

N7 = 1
8 (1 + ξ) (1 + η) (1 + ζ); N8 = 1

8 (1− ξ) (1 + η) (1 + ζ);

ξ = [−1,+1]; η = [−1,+1]; ζ = [−1,+1].

Figure 4.1: Finite elements types and shape functions.
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4.3. Spatial discretization

functions, N i(ξi),

xs|
{Γsc}
≈ {xs}h

∣∣∣
{Γsc}

h
=

ns∑
k=1

{N s
k(ξs)xsk} , (4.22)

xm|
{Γmc }
≈ {xm}h

∣∣∣
{Γmc }

h
=

nm∑
l=1

{Nm
l (ξm)xml } , (4.23)

while the displacement interpolations are obtained from the nodal displacements, d,
in a similar way,

us|
{Γsc}
≈ {us}h

∣∣∣
{Γsc}

h
=

ns∑
k=1

{N s
l (ξs)dsk} , (4.24)

um|
{Γmc }
≈ {um}h

∣∣∣
{Γmc }

h
=

nm∑
l=1

{Nm
l (ξm)dml } , (4.25)

where ns and nm denote the number of nodes on the slave and master boundary
side, respectively. The slave and master element shape functions are represented by
N i and the surface element parametrization, ξ, as defined by,

ξi = ξi, ∀ Ωi
0 ⊂ R2, i = s,m, (4.26)

ξi = (ξi, ηi), ∀ Ωi
0 ⊂ R3, i = s,m. (4.27)

The solution of the Boundary Value Problem, Equation (2.3), is undertaken
by approximating u with a virtual displacements vector uh ∈ Uh, where Uh =
span {Nk}. The discretized space of test functions must then fulfill the condition
uh=uh on the Dirichlet boundary Γ

D
.

4.3.4 Lagrange multipliers discretization

Following a mortar formulation, the set of lagrangian multipliers λ is approximated
by a discretized space Mh = span

{
φj(ξ

s)
}

, where φj is chosen to be the so-called
dual shape functions [83]. Consequently, the discretized form of the lagrangian
multipliers is defined as,

λh =
ns∑
j=1

{
φj (ξs (X)) zj

}
, (4.28)

where, zj is the lagrangian multiplier on the slave node j = {1, ..., ns} while ns
represents the number of nodes on the slave side. The dual shape functions must
fulfill the so-called bi-orthogonality condition, as follows,∫

{γsc}h

φjN
s
k (ξs(Xs)) dγsc = δjk

∫
{γsc}h

N s
k (ξs(Xs)) dγsc , (4.29)

where δjk is the Kronecker delta. It is important to remark that, for practical
reasons, the bi-orthogonality condition is defined on the slave side boundary, γsc .
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4.3. Spatial discretization

In the context of the quad4fbar element, since the Jacobian of the linear shaped
mortar segments is constant, the following piecewise linear dual shape functions can
be obtained from Equation 4.29,

φ1 =
1

2
(1− 3ξ) , φ2 =

1

2
(1 + 3ξ) . (4.30)

The quad8 element have a non-constant element Jacobian determinant. Therefore,
it’s associated dual shape functions are element specific [84]. In the context of two-
dimensional analysis of an undistorted element, the quadratic dual shape functions
can be defined as,

φ1 =
1

4

[
5ξ2 − 2ξ − 1

]
, φ2 =

1

2

[
3− 5ξ2

]
, φ3 =

1

4

[
5ξ2 + 2ξ − 1

]
. (4.31)

while in the general cases, it can be obtained by solving the following equation
system:

φj(ξ, η) = ajkN
s
k(ξ, η), Ae = DeM

−1
e = [ajk] ∈ Rmse×mse (4.32)

where ms
e, represents the number of nodes in this specific element e facet. While,

De = δjk
∫
e
N s
k(ξ, η)J(ξ, η) de and Me =

∫
e
N s
j (ξ, η)N s

k(ξ, η)J(ξ, η) de are, respec-
tively, the element entry of the non-mortar and the mortar matrices, which will be
further explained in the following sections.

A similar situation applies to the 3D case. The first-order interpolation of the
hexa8fbar element leads to quad4 surface facets which may have a non-constant
element Jacobian determinant. Thus, the solution of Equation (4.32) is also required.

4.3.5 Evaluation of the mortar integrals for 2D analysis

The segmentation method adopted here was proposed by [88]. It is based in a
continuous normal field, defined on the slave (i.e. non-mortar) surface, which is
used to obtain both sets of projections. However, rather than using first order
mortar elements we employ second order finite elements and a quadratic dual basis
for the lagrangian multipliers, Fig. 4.2 illustrates the segments generated by the
continuous field of normal vectors in this specific condition.

To find a projection of a slave node with coordinates, xs1, onto a master element,
with nodal coordinates xm1 and xm2 , one must fulfill the following inner product,

[Nm
1 (ξm) xm1 +Nm

2 (ξm)xm2 − xs1]× ηs1 = 0, (4.33)

where Nm
1,2 are shape functions defined on the master side local coordinate system

and ξm is the unknown local coordinate.
The normal vector ηs1 is defined on the slave surface and is given by the average

of its two adjacent slave segments (i.e. in a two-dimension domain), as follows,

ηsj =
l2
l1
ηseg1 + l1

l2
ηseg2∥∥∥ l2l1ηseg1 + l1

l2
ηseg2

∥∥∥ , ∀ Ωs
0 ⊂ R2. (4.34)
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ξsbξsa

ξma ξbm

γs

γm

Ωs

Ωm

ηadj2

ηadj1
ηsj=1

Nm
2Nm

1 Nm
3

N s
1 N s

2 N s
3

φs1 φs2 φs3

l1
l2

Figure 4.2: Continuous normal field Mortar segmentation method.

Here, ηseg1,2 are the unit vectors normal to the segments adjacent to the slave node
with coordinates xs1 and l1,2 are the respective lengths of these segments.

On the other hand, the projection of the master node, xm2 , onto a slave element,
with nodal coordinates xs1 and xs2, is given by,

[N s
1 (ξs)xs1 +N s

2 (ξs)xs2 − xm2 ]× [N s
1 (ξs)ηs1 +N s

2 (ξs)ηs2] = 0, (4.35)

where N s
1,2 are the shape functions defined on slave side local coordinate system and,

ξs, is the unknown projection coordinate defined on the slave side local coordinate
system.

The vectors ηs1,2 are the normal vectors associated with the two slaves nodes
adjacent to the mortar element in question. A segment parametrization ζ ∈ [−1,+1]
is introduced for every segment, where the end points are defined by the local element
coordinates of the slave side, ξsa and ξsb , and master side, ξma and ξmb . Therefore,
employing the segment coordinates, ζ, it is possible to define a mapping from element
coordinates, ξi, i = {s,m}, to the segment coordinates, ζ,

ξi =
1

2
[1− ζ] ξia +

1

2
[1 + ζ] ξib. (4.36)

Finally, segment contributions are summed on both sides of the contact surface
(element by element), for all contact segments, nmseg, respecting Eq. (4.29),

D[j,k] =

∫
{γsc}h

φjN
s
kdγ

s
c I2 =

∫
{γsc}h

N s
j dγ

s
c I2 = D[j,j] I2,

D[j,j] =

nsele∑
e=1

∫ +1

−1

N s
j (ξse)

∥∥∥∥ ∂x

∂ξse

∥∥∥∥ dξse =

nsele∑
e=1

le
2
, (4.37)
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4.3. Spatial discretization

M[j,l] =

∫
{γsc}h

φjN
m
l dγsc I2 = M[j,l] I2,

M[j,l] =

nsele∑
e=1

nmseg∑
m=1

∫ +1

−1

φj (ξse (ζm))Nm
j (ξse (ζm))

∥∥∥∥ ∂x

∂ξse

∥∥∥∥ ∂ξse
∂ζm

dζm

=

nsele∑
e=1

nmseg∑
m=1

ngp∑
gp=1

φj (ξse (ζgpm ))Nm
j (ξse (ζgpm ))

∥∥∥∥ ∂x

∂ξse

∥∥∥∥ ∂ξse
∂ζm

wgp. (4.38)

where, D ∈ R{2ns}×{2ns} and M ∈ R{2ns}×{2nm} are known as mortar matrices and
I2 is the second order identity tensor. Mortar matrices must be pulled back to the
reference configuration using the mapping operator ϕ in order to respect the Total
Lagrangian formulation detailed in Appendix A.

As mentioned in Section 2.3, the computation of the unit tangential vector can be
recovered directly from its orthonormal relation with the normal vector, as follows,

τ = e3 × η, ∀ Ωs
0 ⊂ R2. (4.39)

4.3.6 Evaluation of the mortar integrals for 3D analysis

In the three-dimensional domain, the computation of surface unit normal vectors,
are obtained following the same concept presented in Equation (4.34): by averaging
the element adjacent normals, ηadje ,

ηs1 =

∑nadje
e=1 (ηe1)∥∥∥∑nadje
e=1 (ηe1)

∥∥∥ , ∀ Ωs
0 ⊂ R3. (4.40)

However, within this work, the relative dimension of the finite elements employed for
the discretization of the 3D solids has made the inclusion of lenght and width of finite
element e (i.e. weighting balance) irrelevant to the computation of Equation 4.40.
Therefore, this aspect is disregarded. Again, the surface unit tangential vectors are
obtained from the orthonormal relation with the normal direction, such that,

ηj × τ
ξ
j = τ χj , ηj · τ

ξ
j = 0, ηj · τ

χ
j = 0, ∀ Ωs

0 ⊂ R3. (4.41)

Since the overlapped region of contact between three-dimensional bodies gen-
erates polygon areas, the numerical integration of the mortar operators, matrices
D ∈ R{3ns}×{3ns} and M ∈ R{3ns}×{3nm}, requires a more complex approach. In order
to obtain the mortar matrices within a three-dimensional domain, one can employ
the so-called Mortar coupling algorithm, introduced by Puso & Laursen [63], and
described as follows,

1. Start loop over non-mortar side elements k = 1, ..., nse, where nse is the number
of elements on non-mortar side,
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4.3. Spatial discretization

2. Create an auxiliary plane p from the unit normal vector η and the point, x0,
at the geometric center of element k,

3. Obtain the projected slave nodes, x̃sk, by mirroring the slave element nodes
(from facet k onto plane p), xsk, k = 1, ..., nsseg, along the unit normal vector,
η,

4. Obtain the projected master nodes, x̃ml , by mirroring the master element nodes
(from facet l onto plane p), xml , l = 1, ..., nme , along the unit normal vector, η,

5. Use a clipping algorithm [24] to create the polygon formed by k̃∩ l̃ (Figure 4.3).

6. Apply Delaunay triangulation: Locate geometric center of polygon, xq =∑3
q=1Nq(ξ)x

cell
q , by dividing the polygon into ncell triangular cells (Figure 4.3)

and parametrize each triangle q using it’s vertices, xcellq , q = 1, ..., 3, and trian-

gular shape functions Nq within the parent domain ξ = [ξ1, ξ2]T ,

7. Employ Gauss-Radau [12] to locate the Gauss points, ngp, and the integration
weights, wgp, for each triangular cell.

8. Obtain the matrices Ds,m
[j,k] and M s,m

[j,l] , for k = 1, ..., nes and l = 1, ..., nem by
performing a gaussian integration on all triangular cells, such that,

Ds,m
[j,k] =

∑ncell
c=1

[∑ngp
g=1wgpφ

s
j(ξ

s)N s
k(ξs)Jc

]
,

M s,m
[j,l] =

∑ncell
c=1

[∑ngp
g=1wgpφ

s
j(ξ

s)Nm
l (ξm)Jc

]
,

where Jc, c = 1, ..., ncell is the Jacobian determinant of the integration cell.

k̃

l

k

l̃

k̃ ∩ l̃

q

pp

η

xs

Figure 4.3: Clipping procedure employed to evaluate the Mortar integrals.

4.3.7 Discretization of the contact virtual work with wear

Replacing the displacement, u, the incremental displacement, δu, and the vector
of lagrangian multipliers, λ, in Equation (4.12) by their respective interpolations,
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4.3. Spatial discretization

yields the discretized form of the contact virtual work with wear,

δΠc + δΠw ≈ δΠh
c + δΠh

w =

∫
{γsc}h

[1− µ ‖η‖]λh ·
[
{δus}h − {δum}h

]
dγsc

=
ns∑
j=1

{
ns∑
k=1

[δdsk]
T

∫
{γsc}h

φjN
s
k dγ

s
c

−
nm∑
l=1

[δdml ]T
∫
{γsc}h

φjN
m
l dγsc

}
[1− µ ‖η‖] zj. (4.42)

Moreover, by introducing the Mortar matrices, D ∈ R{2ns}×{2ns} and M ∈ R{2ns}×{2nm},

D[j,k] =

∫
{γsc}h

φjN
s
k dγ

s
c I2, (4.43)

M[j,l] =

∫
{γsc}h

φjN
m
l dγsc I2, (4.44)

it is possible to rewrite Equation (4.42), in it’s algebraic form,

δΠh
c + δΠh

w =
{

[δds]T D− [δdm]T MT
}

[z− µz · η] , (4.45)

where I2 is the identity matrix in R2×2. The nodal test function values and the
discrete nodal values are conveniently expressed in matrix notation by the global
vectors δds, δdm and z.

4.3.8 Discretization of the contact constraints and wear depth

The discretization of the contact constraints in the normal direction is performed by
introducing the interpolation of displacements and lagrangian multipliers into Equa-
tion (4.10), which yields the following discretized form of the weak non-penetration
condition [62],

δg ≈ δgh = −
∫
{γsc}h

{δλη}h η
[
{xs}h − {x̂m}h

]
dγsc

= −
ns∑
j=1

{
ns∑
k=1

{δzη}j
∫
{γsc}h

φjN
s
kη

T
j dγ

s
c xsk

}

+
ns∑
j=1

{
nm∑
l=1

{δzη}j
∫
{γsc}h

φjN
m
l η

T
j dγ

s
c xml

}
≥ 0. (4.46)

Hence, introducing a vector of discretized weighted gaps, g̃ ∈ Rns , and a vector of
nodal values of the normal contact stresses, δz ∈ Rns , yields the algebraic form of
Equation (4.46),

δg̃h = [δz]T g̃, (4.47)
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4.3. Spatial discretization

which single entry, g̃j, is given by,

g̃j =−
[
ηj
]T {

D[j,j]

[
xsj
]
−

nm∑
l=1

M[j,l] [xml ]

}
. (4.48)

The discretized form of total wear volume, δw̃, is obtained from the evaluation
of the dissipated energy, such that,

δw̃ ≈ δwh = αw

∫
{γsc}h

{δµλη}h η
[
{xs}h − {x̂m}h

]
dγsc

=
ns∑
j=1

{
ns∑
k=1

{δzη}j
∫
{γsc}h

φjN
s
kη

T
j dγ

s
c xsk

}

−
ns∑
j=1

{
nm∑
l=1

{δzη}j
∫
{γsc}h

φjN
m
l η

T
j dγ

s
c xml

}
≥ 0. (4.49)

Hence, employing the relations defined in Subsection 3.3.2 the single entry h̃j, can
be obtained,

h̃j =
δw̃ {zη}j

neAe
∑ne

e=1

∑nadje
j=1

(
{zη}j

) . (4.50)

where the zη is the normal part of the discrete nodal values of the lagrangian mul-
tipliers, zj, such that,

zj = {zη}j ηj +
{
zξτ
}
j
τ ξj + {zχτ }j τ

χ
j ;

{zη}j = zj · ηj,
{
zξτ
}
j

= zξj · τ
ξ
j , {zχτ }j = zχj · τ

χ
j . (4.51)

The discretization of the tangential contact constraints adopted here has been
proposed in Gitterle et al. [33] and is only briefly addressed. For the tangential
direction, an additional interpolation βh of β, Equation (2.12), is required

β ≈ βh =
ns∑
b=1

ρb (ξs (Xs)) βb, (4.52)

where βb are discrete nodal values and ρb are the shape functions, which fulfill an
additional condition in order to decouple the lagrangian multipliers [33]. Replacing
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4.4. Discretized problem

the terms of Equation (4.11) by their interpolated forms, yields,∫
γsc

δλτ [ϑτ (X, t)− βλτ ] dγsc ,

≈
∫
{γsc}h

δλhτ
[
ϑhτ (X, t)− βhλhτ

]
dγsc ,

=
ns∑
j=1

ns∑
k=1

{δzτ}j [τ j]
T

∫
{γsc}h

φjN
s
kdγ

s
c ẋ

s
k

−
ns∑
j=1

nm∑
l=1

{δzτ}j [τ j]
T

∫
{γsc}h

φjN
m
l dγ

s
c ẋ

m
l

−
ns∑
j=1

ns∑
b=1

ns∑
p=1

{δzτ}j [τ j]
T

∫
{γsc}h

φjρbφpβbzp dγ
s
c = 0, (4.53)

which in nodal form is denoted by,

− [τ j]
T D[j,j]

[
ẋsj
]

+ [τ j]
T

nm∑
l=1

M[j,l] [ẋml ]

− [τ j]
T

ns∑
b=1

ns∑
p=1

∫
{γsc}h

φjρbφpβbzp dγ
s
c = 0. (4.54)

Furthermore, by employing an appropriate measure for the tangential velocity,
ϑ̃τ , and a backward Euler scheme, it is possible to obtain the discretized form of the
weak tangential condition, at a time tn, for each slave node j,

−{[τ j]T Ḋ[j,j]

[
Xs
j + dsj

]
− [τ j]

T
nm∑
l=1

Ṁ[j,l] [Xm
l + dml ]} ·∆tn

−{[τ j]T
∫
{γsc}h

φjβj dγ
s
c}zj∆tn = 0, (4.55)

which can be written in the following condensed form:

{ũτ}j −
{
β̃τ

}
j
{zτ}j = 0. (4.56)

4.4 Discretized problem

In order to make the notation clearer, the finite element nodes of the problem are
grouped into three subsets: the setM of potential contact nodes on the mortar side,
the set S of potential contact nodes on the slave side and the set N of all remaining
nodes. Therefore, the vector of global nodal displacements can be represented by:

d = [dN , dM , dS ]T . (4.57)
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4.4. Discretized problem

An equivalent notation is employed for the geometry and virtual displacements.
Consequently, the discretized contact virtual work, Equation (4.12), can be ex-
pressed in matrix form,

δΠh
c = [δd]T

[
D−MT

]
z, (4.58)

from where the contact forces can be retrieved,

fc(d, z) =
[
0, −MT , D

]
z. (4.59)

The weak form of equilibrium, Equation (4.20), can then be expressed by the
following non-linear algebraic system:

fint(d)− fext + fc(d, z) = 0, (4.60)

where fint and fext are, respectively, internal and external global force vectors result-
ing from assemblage of the element vectors for each body:

f
i(e)
int =

∫
ϕ(Ω

i(e)
0 )

[B]T Sn+1 dΩi, (4.61)

f
i(e)
ext =

∫
ϕ(Ω

i(e)
0 )

[N]T bn+1 dΩi +

∫
ϕ(Ω

i(e)
0 )

[N]T t̂n+1 dγ
i
N , (4.62)

with B and N being the standard discrete symmetric gradient operators and the
interpolation matrix of the element (e), respectively. The vector Sn+1 contains the
Cauchy stress components delivered by the algorithmic constitutive function.

It is important to remark that Equation (4.60) is highly non-linear. From one
side, the internal force vector is a non-linear function of the displacements due to the
finite inelastic deformations involved. On the ther hand, the contact force vector also
depends nonlinearly on the displacements since the mortar matrices are computed
over the deformed configuration.

The overall discretized problem is composed by the discretized equilibrium equa-
tions, Equation (4.60), the discretized Karush-Kuhn-Tucker conditions:

[g̃j + h̃j] ≥ 0, {zη}j ≥ 0, {zη}j [g̃j + h̃j] = 0. (4.63)

and the discretized relation for the tangential contact stresses:

{ũτ}j −
{
β̃τ

}
j
{zτ}j = 0, F̄j ≤ 0,{

β̃τ

}
j
≥ 0,

F̄j

{
β̃τ

}
j

= 0. (4.64)

The contact constraints Equation (4.63) and Equation (4.64) are expressed by
a set of inequality conditions which need to be solved with an appropriate solution
strategy.
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Chapter 5

Solution procedure

The solution procedure employed for solving the discrete frictional contact problem
in a fretting wear condition, presented in Chapter 4, is described here. In Section 5.1,
the algebraic form of the minimization problem is introduced while Section 5.2
address the different approaches undertaken to solve it. A brief overview on the
matrix representation of the residual problem is presented in Section 5.3.

5.1 Algebraic form

The frictional contact problem, which is described by the discretized system of
equations (4.60) and constraints (4.63) and (4.64), is essentially a minimization
problem with inequality constraints. This problem can be solved with a primal-dual
active set strategy proposed by Hintermüller et al. [39] and first applied to contact
problems by Hüeber et al. [43]. It consists in finding the set of active contacting
nodes, A, and the set of inactive nodes, I, of the slave set S = {A ∪ I} while
minimizing the contact constraints. The search for the sets A and I is performed
by solving the non-penetration function for every slave node, j,

g̃j = 0, ∀ {j ∈ A} . (5.1)

This search can be extended to include the subset of active contact nodes sticking,
Q, and the subset of active contact nodes sliding, L. This can be achieved by solving
the frictional condition, Equation (4.64)1, for every slave node, j.

The determination of the sets I and A, together with the subsets Q and L,
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5.1. Algebraic form

allows the problem to be stated with equality conditions:

r = fint (d)− fext + fc (d, z) ,

g̃j = 0, ∀ {j ∈ A} ,
h̃j = 0, ∀ {j ∈ A} ,

{zη}j = 0, ∀ {j ∈ I} ,{
β̃τ

}
j

= 0, ∀ {j ∈ Q}

F̄(x, y, z) = 0, ∀ {j ∈ S}

{ũτ}j −
{
β̃τ

}
j
{zτ}j = 0, ∀ {j ∈ L} . (5.2)

To solve the frictional problem with a semi-smooth Newton method, two comple-
mentarity functions for the frictional constraints must be introduced. The comple-
mentarity functions are non-continuous relations used to verify the frictional state
of the contacting nodes. They implicit incorporate the distinction between inactive
nodes, active sticking nodes and active sliding nodes. This concept was first intro-
duced to a Dual Mortar formulation by Hüeber et al. [41], for the Tresca frictional
case. Later, complementarity functions for Coulomb’s friction were proposed by Git-
terle et al. [33]. The complementarity function for the normal contact conditions,
which is described in detail in [62], is defined for each slave node j ∈ S as:

{Cη}j (d, z) = {zη}j −max
(

0, {zη}j − cng̃j
)
, (5.3)

For the tangential contact conditions, the complementarity functions given in [33]
are defined for each slave node j ∈ S as:

{Cτ}j (d, z) = {zτ}j max
(
µ
[
{zη}j − cηg̃j

]
,
∣∣∣{zτ}j + cτ {ũτ}j

∣∣∣)
−µ
[
{zτ}j + cτ ũj

]
max

(
0,
[
{zη}j − cτ g̃j

])
. (5.4)

The parameters cη and cτ are positive constants that do not affect the solution
results but can influence the convergence behavior. In the numerical examples, the
impact of these parameters in the solution of the class of problems addressed in this
work will be studied in detail.

The combination of the equilibrium equation (4.60) with the complementarity
functions for the contact conditions in the normal, expression (5.3), and tangential,
expression (5.4), directions leads to the following nonlinear system of equations:

r = fint (d)− fext + fc (d, z) = 0,

{Cη}j (d, z) = 0, ∀ {j ∈ S} ,
{Cτ}j (d, z) = 0, ∀ {j ∈ S} . (5.5)

Due to the max-operator and the Euclidian norm employed in the two com-
plementarity functions, they are continuous but non-smooth and not uniquely dif-
ferentiable. Therefore, this justifies the application of the semi-smooth Newton-
Method [11, 39]. The generalized derivative for the max-function [62], is defined
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5.2. Primal-dual active set algorithms

as:

f(x) = max(a, x)→ ∆f(x) =

{
0, if x ≤ a,
1, if x > a.

(5.6)

Therefore, the solution of the system of equations (5.5) treats material and geomet-
rical nonlinearities as well as nonlinearities emerging from contact and friction.

5.2 Primal-dual active set algorithms

The solution of the frictional contact problem, with the so-called primal-dual active
set strategy (PDASS), can be obtained by solving either the system of equations (5.2)
or (5.5). In the first case, due to the possibility of linearizing the system of equa-
tions (5.5), an algorithm with a single iteration loop for the solution of all sources of
nonlinearity is obtained, see Table 5.1. This strategy has been employed by several
authors and proven to be very efficient [33, 41, 62]. In the second case, two nested
iterative schemes are necessary. An inner iteration for the nonlinear finite element
problem having the active set fixed followed by an outer loop for solving the ac-
tive set and update the geometries for removing the worn material, see Table 5.2.
This strategy has been employed for the solution of dynamic problems [37] and non-
linear material behavior with multigrid methods in [10], among others. Here, both
PDASS will be applied to the simulation of frictional contact problems undergoing
finite strains and inelastic material behavior. In the following, these two schemes
are detailed and their algorithms presented.

5.2.1 Fully implicit scheme

The fully implicit scheme consists in the solution of both contact constraints and
fretting wear variables in a single iterative step within a fully linearized tangent
matrix. Therefore, in this strategy the energy lost due to wear and the subsequent
wear depth are updated together with the gap and the primal-dual pair (i.e. in
the same iteration k). It is important to remark that this strategy can only be
applied to problems where the wear coefficient αw is relatively small or if small load
increments are employed. This restriction is required due to the high sensitivity of
the PDASS to active set changes, which might happen frequently if large amounts
of material are removed in each load step. Employing the PDASS together with a
linear form of the system of equations (5.2), allows the derivation of a single iteration
loop algorithm for the solution of all sources of nonlinearity the contact problem.
Table 5.1 summarizes this solution procedure.

5.2.2 Nested scheme

The nested scheme, as the name implies, is obtained by splitting the convergence
check into two different iterative steps. The first pseudo-time step, I, is used for
finding the primal-dual pair, ∆dI+1, zI+1. The pseudo-time step, I, is nested into an
outter step, k, which is used for solving the active set alongside with the topography
update (i.e. wear depth, h) of the geometry. This procedure is as detailed in
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5.2. Primal-dual active set algorithms

Table 5.1: Single iterative strategy within a load step.

1. Set k = 0 and initial conditions d0, z0. Initialize A0 and I0, such that S= A0 ∪ I0,
A0 ∩ I0 = ∅ and A= Q0 ∪ L0.

2. Loop over k.

3. Solve the linearization of (5.2) for (∆dk+1, zk+1):

∆r
(
dk, zk

)
= −rk,

zk+1
j = 0, ∀

{
j ∈ Ik

}
,

∆g̃kj = −g̃kj , ∀
{
j ∈ Ak},

∆h̃kj = −h̃kj , ∀
{
j ∈ Ak},

∆ {Cτ}kj = −{Cτ}kj , ∀
{
j ∈ Lk} ∨ {j ∈Qk} ,

4. Update nodal displacements: dk+1= dk + ∆dk+1.

5. Set Ak+1, Ik+1, Qk+1 and Lk+1 to

Ak+1 :=
{
j ∈ S | {zη}k+1

j > cη g̃
k+1
j

}
,

Ik+1 := S/Ak+1,

Qk+1 :=
{
j ∈ Ak+1 | µ

[
{zη}k+1

j − cη g̃k+1
j

]
>
∣∣∣{zτ}k+1

j + cτ {ũτ}k+1
j

∣∣∣} ,
Lk+1 :=

{
j ∈ Ak+1 | µ

[
{zη}k+1

j − cη g̃k+1
j

]
≤
∣∣∣{zτ}k+1

j + cτ {ũτ}k+1
j

∣∣∣}.

6. Convergence check

IF Ik+1=Ik, Qk+1=Qk, Lk+1=Lk and
∥∥rktot∥∥ ≤ Er, THEN GOTO Next increment

ELSE set k := k + 1 and GOTO 2.
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5.2. Primal-dual active set algorithms

Table 5.2: Nested iterative strategy within a load step.

1. Set I = 0 and k = 0. Initialize d0, z0, A0 and I0, such that S= A0 ∪I0, A0 ∩I0 = ∅
and A0= Q0 ∪ L0.

2. Loop over the active set k,

3. Loop over I,

4. Solve the linearization of (5.2) for (∆dI+1, zI+1):

∆r
(
dI, zI

)
= rI,

∆g̃Ij = −g̃Ij , ∀
{
j ∈ Ak},

{zn}I+1
j = 0, ∀

{
j ∈ Ik

}
,{

β̃τ

}I

j
= 0, ∀

{
j ∈Qk},

{ũτ}Ij −
{
β̃τ

}I

j
{zτ}I+1

j = 0, ∀
{
j ∈ Lk}.

5. Update dI+1= dI + ∆dI+1

6. Update the sets Ak+1, Ik+1, Qk+1 and Lk+1 with

Ak+1 :=
{
j ∈ S | {zn}I+1

j ≥
[
∆g̃I+1

j − dI+1 · n
]}

Ik+1 := S/Ak+1,

Qk+1 :=
{
j ∈ Ak+1 | µ

[
{zη}I+1

j

]
≤ {zτ}k+1

j

}
,

Lk+1 := Ak+1/Qk+1.

7. Active set check

IF Ik+1=Ik, Qk+1=Qk and Lk+1=Lk THEN GOTO 8
ELSE Set I = 0, k = k + 1 and GOTO 2.

8. Wear depth evaluation:

h̃k+1 = h̃k + ∆h̃k+1

9. Convergence check

IF ‖rtot‖ ≤ Er, THEN GOTO Next increment
ELSE set I := I + 1 and GOTO 3.
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5.3. Matrix representation

Table 5.2. Although in this scheme, the number of steps required to solve a single
load increment is higher and often the computation of the wear depth must be
undertaken more than once per increment, the different sources of nonlinearity are
detached. Therefore, the number of iterations in each pseudo-time step is reduced.
Overall, for problems with a significantly large contact surface (particularly in 3D
problems) and small load increments, this scheme can actually be very efficient.

5.3 Matrix representation

In order to solve the nonlinear system of equations (5.5) with a semi-smooth Newton
algorithm, it is necessary to perform the full linearization of r, Cη and Cτ and
then convert the linear system into an algebraic form. In the following, a matrix
representation of these directional derivatives is provided and a detailed linearization
of each term can be found in [33,41,62]. The linearization of r includes the derivation
of the internal force vector fint(d) and the contact force vector fc(d, z) since we
assume that the external loads are independent of the displacement d. Therefore,
the derivation of the internal force vector fint(d) leads to the corresponding tangent
stiffness matrix K ∈ R(2nx2n) which, in the case of the F-BAR formulation employed
in this work, is obtained by the assemblage of the element stiffness matrices [15]:

Ke =

∫
ϕ(Ωe0)

GT [a][G]dΩ +

∫
ϕ(Ωe0)

GT [q][G0 − G]dΩ, (5.7)

where G is the standard discrete spatial gradient operator, G0, is the gradient oper-
ator at the element centroid, a denotes the matrix form of the fourth order spatial
elasticity tensor evaluated at F = F̄,

[a]ijkl =
1

det(F)
FjpFtqAipkq, (5.8)

and q is the matrix form of the fourth order tensor defined by:

q =
1

3
a : [I⊗ I]− 2

3
[σ ⊗ I], (5.9)

also computed at F = F̄. In expression (5.8), Aipkq denotes the components of the
first elasticity tensor.

The linearization of the contact forces fc(d, z), defined in Equation( 4.59), can
be expressed for a generic iteration k by:

∆fkc (d, z) = [0,−∆MT ,∆D]zk := C̃[∆dk
S + ∆dk

M], (5.10)

with the matrix C̃ ∈ R(ndimns+ndimnm)×(ndimns+ndimnm) containing the directional
derivatives of the mortar matrices D and M [62, 88] together with the vector of
nodal lagrangian multipliers, z. The vectors ∆dS ∈ Rndimns and ∆dM ∈ Rndimnm

are subsets of the global displacement incremental vector, ∆d, given by,

∆d =
[
∆dN , ∆dM, ∆dI, ∆dQ, ∆dL

]T
, (5.11)
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5.3. Matrix representation

where the set of potential slave nodes, S, has been decomposed into an inactive set,
I, a set of sticking activenodes, Q and a set of sliding active nodes, L. The slave
(non-mortar) side and master (mortar) side mortar matrices are also modified,

D =

 DI 0 0
0 DL 0
0 0 DQ

 , (5.12)

M =
[
MI , MQ , ML

]
. (5.13)

The linearization of Cη consists on the directional derivative of the weighted
normal gap g̃, which can be defined, for the normal constraints of the active nodes,
j ∈ A, as in [62]:

na

A
(
{∆g̃}kj

)
:= D̃

Ak∆dk
S

+ M̃
Ak∆dk

M
, {j ∈ A} ,

j=1

(5.14)

with D̃ ∈ R(na×ndimnm) and M̃ ∈ R(na×ndimnm). The quantity na is the number of
active slave nodes and the symbol A denotes the finite element assembly operator.

When employing the single step strategy, the evaluation of the nodal wear depth
hj is performed within each iteration. Therefore, an appropriate weighted wear
depth vector, h̃, must be associated to the weighted normal gap, g̃. This vector is
obtained from the assemblage of each contribution of we (described in Section 3.3.2)
and is defined as follows,

na

A
({

∆h̃
}k

j

)
:= αw

1

nadjnod
µ ‖zj · η‖

[
D̃
Ak∆dk

S
+ M̃

Ak∆dk
M

]
, {j ∈ A} ,

j=1

(5.15)

The directional derivatives obtained from the linearization of Equation (5.4), are
defined in terms of two sets of matrices. The first set is concerned with the stick
condition:

FQ ∈ R(nq×ndimns), HQ ∈ R(nq×ndimnm) and QQ ∈ R(nq×ndimnq),

and the second set is concerned with the slip condition:

GL ∈ R(nl×ndimns),JL ∈ R(nl×ndimnm) and LL ∈ R(nl×ndimnl).

Then, two systems – that must be solve within the Equation (4.60) for every iteration
k – are created,

nq

A
(

∆{Cτ}kq
)

:= FQ∆dk
S

+ HQ∆dk
M

+ QQz
k+1
Q
, {q ∈ Q} ,

q=1

(5.16)

nl

A
(

∆{Cτ}kl
)

:= GL∆dk
S

+ JL∆dk
M

+ LLz
k+1
L
, {l ∈ L} .

l=1

(5.17)
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5.3. Matrix representation

The assemblage of the vector of unknowns (primal-dual pair), the right-hand side
vector (residual forces, non-penetration functions and complementarity functions)
and the stiffness matrix leads to the following iterative global system of equations:

Kk [∆dk + zk+1
]

= −
[
r + g̃ + h̃ + Cτ

]k
. (5.18)

Then, subdividing the surface domain into the five different subsets {N , M, I, Q, L},
the following equation system is obtained,

KNN KNM KNI KNQ KNL 0 0 0

KMN K̃MM K̃MI K̃MQ K̃ML−MT
I
−MT

Q
−MT

L

KIN K̃IM K̃II K̃IQ K̃IL DI 0 0

KQN K̃QM K̃QI K̃QQ K̃QL 0 DQ 0

KLN K̃LM K̃LI K̃LQ K̃LL 0 0 DL
0 0 0 0 0 II 0 0

0 M̃A D̃AI D̃AQ D̃AL 0 0 0
0 HQ FQI FQQ FQL 0 QQ 0
0 JL GLI GLQ GLL 0 0 LL


·



∆dN
∆dM
∆dI
∆dQ
∆dL
zI
zQ
zL



=
[

rN , rM , rI , rQ , rL , 0, g̃A + h̃A , {Cτ}Q , {Cτ}L
]T
. (5.19)

The matrices K and C̃ contain the linearization of the internal force vector and
the contact force vector, respectively. The blocks K̃ı are the sum of the aforemen-
tioned matrices, for different combinations of subsets {ı,  ∈M∪ S},

K̃ı = Kı + C̃ı. (5.20)

The first five rows of the system (5.19) represent the force equilibrium, Equa-
tion (4.60). The sixth row enforces the contact constraints over the inactive nodes,
while the seventh row is concerned with the non-penetration condition on the active
nodes. Matrices D̃ and M̃ are obtained from the linearization of Equation (4.43)
and Equation (4.44), respectively. Eight and Ninth rows enforce the tangential
conditions for both sticking, Q, and sliding, L, contact nodes.

The global system depicted in Equation (5.19) displays an increase of bandwidth
(lagrangian multipliers) from the initial non-constrained form. However, the key
asset of introducing a dual basis for the lagrangian multipliers is that they can be
locally removed from Equation (5.19), such that,

z = −D
−1
[
rS + K̃SN∆dN + K̃SM∆dM + K̃SS∆dS

]
. (5.21)

Hence, the equations related to the enforcement of contact constraints on the inactive
set can be eliminated from the system and a pure displacement problem is obtained,

KNN KNM KNI KNQ KNL
K̂AN K̂AM K̂AI K̂AQ K̂AL
KIN K̃IM K̃II K̃IQ K̃IL

0 M̃A D̃AI D̃AQ D̃AL
ǨQN ǨQM−HQ ǨQI− FQI ǨQQ− FQQ ǨQL− FQL
ǨLN ǨLM− JL ǨLI−GLI ǨLQ−GLQ ǨLL−GLL


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5.3. Matrix representation

·


∆dN
∆dM
∆dI
∆dQ
∆dL

 = −



rN

rM +
[
D
−1

A
MA

]T
rA

rI
g̃A + h̃A

QQD
−1

Q
rQ − {Cτ}Q

LLD
−1

L
rL − {Cτ}L


(5.22)

where the two matricial functions, K̂A and Ǩı, are introduced to facilitate the
notation of this condensed system. They are constructed from the primary matrices
in Equation (5.19) and described by suitable combinations of the subsets ı and , as
follows,

K̂A =

{
KM

+ D
−1

A
MT
A
KA for { =N} ,

K̃M
+ D

−1

A
MT
A
K̃A for { 6=N} . (5.23)

Ǩı =


PıD

−1

ı Kı for {ı =Q} ∧ { =N} ,
PıD

−1

ı K̃ı for {ı =Q} ∧ { 6=N} ,
LıD

−1

ı Kı for {ı = L} ∧ { =N} ,
LıD

−1

ı K̃ı for {ı = L} ∧ { 6=N} .

(5.24)

At last, the condensed equation system can be solved for the incremental nodal
displacement, ∆d, and then an appropriate integration algorithm (Section 2.4.2)can
update the strains and stresses. In the nested scheme, the wear effects (i.e. com-
putation of the dissipated energy, wear volume and wear depth) are accounted for
after the solution of the residual problem. Therefore, the matricial representation of
the nested scheme can be recovered by eliminating the wear depth vector, h̃, from
the (Equation 5.22). It is important to emphasize that, during the wear evalua-
tion procedure (i.e. step 8 of the nested scheme and 3 the single step strategy),
the stiffness matrices of all finite elements involved in the wear balance are directly
affected by the wear depth. This consideration gives a rather physical sense to the
wear evaluation, since changes in the solid’s stiffness yields repercussions into the
majority of the problem’s variables.

In the following chapters, an extensive comparison of nested and the single step
fully implicit approaches is conducted throughout numerical problems containing
friction, large inelastic strain and fretting wear evolution. Comparisons with the
results provided by the Penalty method are presented. A brief description of this
method is given in Appendix C

45



Chapter 6

Numerical examples

In this Chapter, a comprehensive set of numerical examples is presented: six are
two-dimensions and three are on three dimensions. These problems are used to
demonstrate the accuracy and efficiency of the Dual-Mortar approach against the
traditional node-to-segment penalty contact formulation, widely used in commer-
cial finite element codes. Furthermore, the performance of the solution methods
described in Section 5.2 will also be addressed for frictional contact problems with
deformable bodies undergoing finite strains with inelastic material behavior and
fretting wear.

In the first two problems, several enforcement methods are discussed. Problems
three to five are focused on the computation of the tangential forces in the presence of
finite strains, while the remaining examples are mainly concerned with the fretting
wear phenomena. In summary, the examples are presented in such a way that
the degree of nonlinearity (i.e. deformability, friction, inelastic material behavior,
presence of fretting wear, geometrical shape, etc) increases problem by problem.

Table 6.1: Mechanical properties of the materials employed.

Mechanical properties
Materials E(GPa) G(GPa) ν σy(MPa) A(MPa) b

Pure aluminum 68.96 26 0.32 31 1574 0.220
Aluminum alloy 71.15 26 0.30 370 550 0.223

Hard steel 210 76 0.33 830 600 0.210
Elastomer 4 2.8 0.29 510 410 0.08

Tungsten alloy 400 85 0.33 880 700 0.205
Mild steel 200 75 0.3 490 585 0.25
Titanium 121 44 0.29 950 1470 0.14

Several materials were employed in this Chapter. In order to facilitate the read-
ability, names were given to some of them: aluminum alloy, pure aluminum, elas-
tomer, hard steel, tungsten alloy, mild steel and titanium. Their mechanical prop-
erties and coefficients A and b for the solution of the Ludwik-Hollomon equation
(σ = σy + Aεb) are listed in Table 6.1. All the simulations presented in this section
were performed with an implicit quasi-static finite element framework. Unless oth-
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6.1. Pressurized hollow spheres

erwise mentioned, the values chosen for the Penalty multipliers were εn = ετ = 104

and for the complementarity parameters were cη = cτ = 1.

6.1 Pressurized hollow spheres

R
1

R 2

R3

Figure 6.1: Pressurized hollow spheres - geometry and FE discretization.

The first example is the two-dimensional simplification of the pressurized spheres
contact problem presented in [51]. In this problem, the contact surfaces are tied.
Therefore, as long the contact forces are transmitted properly, the two spheres are
expected to behave as a single structure. The simulation is performed assuming
y-axial symmetry, see Figure 6.1.

The dimensions of the spheres are: R1 = 20mm, R2 = 15mm and R3 = 10mm.
A distributed pressure of 690MPa is applied to the inner sphere within 50 equal
pseudo-time increments of ∆P = 13.8MPa. At the final step, the whole structure
is expected to be under plastic deformation. The material chosen for both spheres
was the Aluminum alloy and no friction is considered in this example.

The results for both methods (i.e. Penalty method and Dual-Mortar single step
strategy) have a good agreement during most part of the simulation. Figure 6.2
shows the results obtained for the equivalent stress distribution at the last step of the
simulation with the single step dual mortar method. There was no appreciable differ-
ence in the equivalent stress contour between both methods. Nevertheless, the same
conclusion does not hold for the enforcement of contact constraints. In fact, there
was no relative displacement between the contact surfaces while the deformation
remained within the elastic domain, which occurs for loads below 310MPa. How-
ever, the value initially chosen for the penalty multiplier is no longer large enough to
enforce the contact constraints as soon as plastic strains are reached. This led to the
small penetration shown in Figure 6.3b. Increasing the normal penalty multiplier,
εη, to 107 improves the results obtained by the method, which become very similar
to the ones obtained by the Dual-Mortar method, see Figure 6.3a. Nevertheless,
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6.2. Pressurized hollow spheres

Figure 6.2: Pressurized hollow spheres - equivalent stress distribution for the Dual
Mortar method.

(a) Dual-Mortar method (b) Penalty method

Figure 6.3: Pressurized hollow spheres - contact interface.

due to this increase of the normal penalty multiplier the first increments presented
convergence difficulties since the stiffness matrix becomes slightly ill-conditioned.
In this example, it became clear that the Dual Mortar method was able to enforce
the contact constraints more accurately and efficiently over the entire loading path.
Two patch tests for the evaluation of the constraint enforcement are presented in
the Appendix D.
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6.2. Disc in contact with a half ring

6.2 Disc in contact with a half ring

R2R1

ûy

Figure 6.4: Disc in contact with a half ring - geometry and FE discretization

This example features the contact between a cylinder disc and a half ring. This
problem was employed to study surface smoothing strategies by M. Tur et al. [77].
Here, it is used to study the precision of the enforcement method in the solution
of problems with curved surfaces. Figure 6.4 shows the problem geometry and the
mesh discretization adopted.

The dimensions of this problem are: disc outer radius/half ring inner radius,
R1 = 50mm; Half ring outer radius, R2 = 125mm. The solids are described
by the Neo-Hookean material model with the Young’s modulus for the disc being
E1 = 105MPa while the half ring have a Young’s modulus of E2 = 103MPa. Poisson
ratio for both bodies are equal to 0.3. A displacement equal to ûy = −90mm is
applied to the disc, this load is divided into 20 equal pseudo-time increments. Fric-
tionless contact is assumed and the value chosen for the normal complementarity
parameter was cη = 103. During this analysis a comparison of four different enforce-
ment methods is addressed: a) standard mortar method, b) dual mortar method, c)
quadratic dual mortar method, d) smooth formulation by M. Tur et al. [77].

In order to employ an energy approach to evaluate the fretting wear mechanics
of a contact problem, it is crucial that the contact forces are correctly computed
during the whole simulation. The slightest error on the enforcement of constraints
can lead to a significant variation of the wear depth when a large number of loading
cycles occurs. Therefore, the objective of this example is to verify if this require-
ment is meet, by analyzing the contact pressure distribution over the contact zone.
Figure 6.5 and Figure 6.6show a side-by-side comparison for the first steps of the
simulation.
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6.2. Disc in contact with a half ring

(a) T=1

(b) T=2

(c) T=5

Figure 6.5: Disc in contact with a half ring - Contact pressure distribution – mortar
standard basis (left) vs mortar dual basis (right).
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(a) T=1

(b) T=2

(c) T=5

Figure 6.6: Disc in contact with a half ring - Contact pressure distribution – mortar
dual basis with quadratic elements (left) vs smoothing [77] (right).

Despite the fact that all aforementioned methods provide a correct value and a
smooth distribution of the contact pressure at the end of the simulation (as seen

51



6.3. Conical extrusion

in Figures 6.5(c) and 6.6(c)), there is a direct relation between the level of surface
discretization and the smoothness of the pressure distribution. For the first incre-
ment, it is possible to conclude that the mortar method with dual basis garantees
a better enforcement of the contact than the standard basis. Furthermore, it has a
performance equivalent to the smoothing strategy. Therefore, in cases where multi-
ple loading stages occurs, enforcing the contact conditions with the standand mortar
method would require the selection of a smoother mesh and/or significantly smaller
increments in order to have a precise contact pressure distribution.

6.3 Conical extrusion

L1
ûy

L2

L3

H
1

H
2

(a) Geometry and FE discretization.
(b) Effective plastic strain contour at
ûy = 177.8mm.

Figure 6.7: Conical extrusion - initial conditions and numerical results.
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6.3. Conical extrusion

Figure 6.8: Conical extrusion - evolution of the extrusion force.

In this example, the frictional elasto-plastic stress analysis of a cylindrical billet
[71] is presented. The billet is pushed across a total distance of ûy = 177.8mm
through a rigid conical die, which has a wall angle of 5 degrees, see Figure 6.7(a).
The geometrical dimensions for this problem are: H1 = 700mm, H2 = 254mm,
L1 = 73.02mm, L2 = 50.8mm, L3 = 123.02mm. The billet is discretized with 80
4-noded F-bar elements.

Due to the presence of high frictional contact forces and the development of finite
plastic strains in the billet, this example will allow the assessment of the performance
of Penalty and the Dual-Mortar methods under finite frictional sliding coupled with
finite strain inelastic material behavior. In particular, the displacement field of the
billet, the evolution of the extrusion and tangential forces and the distribution of
the plastic strain, will be analyzed for both methods. Material properties of the
pure aluminum employed for this simulation are presented in Table 6.1.

Sliding forces are the principal cause of deformation in this example and therefore
shear effects over the contact surface are expected. The die is regarded as a rigid
body and the coefficient of friction adopted was µ = 0.1. The values for the penalty
multipliers selected for this problem were εη = 108 and ετ = 105. In the simulation,
the displacement load applied was divided into 200 increments. The equivalent
plastic strain distribution at the final step obtained by the single step strategy is
shown in Figure 6.7(b).

As expected, the higher plastic deformation level is found at the upper left side
of the billet with a maximal value of 1.39. There was no appreciable difference in
the equivalent plastic strain contour obtained by the two methods. The final contact
surface length is equal to 257.33mm. A graphical representation of the extrusion
force, measured from the reaction at the billet bottom, is shown in Figure 6.8. The
difference between the two methods is negligible. The convergence rate of both
methods is listed in Table 6.2 for increments 1, 100 and 200.

Nevertheless, the evolution of the frictional force obtained with the Penalty
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6.4. Frictional beam problem

Figure 6.9: Conical extrusion - evolution of the frictional force.

method, see Figure 6.9, shows the typical non-physical oscillation due to the non-
smoothness of finite element discretization along the contact surface. This drawback
is mitigated by the continuous normal field provided by the Mortar segmentation,
where no oscillations are observed. One advantage of performing the simulation
with a rigid body is that, since the non-mortar surface is composed by a single seg-
ment of the die, the segmentation does not change, even when plastic strains are
in place. Therefore, the active set is kept the same during the whole simulation,
which provides optimal convergence rates for the Dual-Mortar method, as seen in
Table 6.2.

6.4 Frictional beam problem

The analysis of an elasto-plastic frictional beam contact problem [88] is presented
next. The objective of this analysis is to investigate the influence of the parameters
cη, cτ , employed in the definition of the non-complementarity conditions of the Dual-
Mortar method, together with the parameters εη and ετ , employed in the enforcement
of contact constraints of the NTS-Penalty method, when finite frictional sliding
and finite strain elasto-plastic material behavior are present. Due to the different
sources of nonlinearity involved (geometrical, material and contact), this is also a
good problem to test the robustness of the approach presented.

The problem is composed by two beams: a straight beam and a curved beam,
which are represented in Figure 6.10. The straight beam is simply supported and
the curved beam is fixed on the left end in the yy direction and subjected to a
vertical displacement ûy = 1.2t at the right end. In addition, a prescribed horizontal
displacement of ûx = 2.0t is applied to both left and right ends. The geometrical
dimensions are: L1 = 30mm, L2 = 23mm, H = 1.75mm, R1 = 10mm and R2 =
8mm. Due to the curvature and boundary conditions the curved beam has a high
structural stiffness and, therefore, the straight beam is more prone to deform.

54



6.4. Frictional beam problem

Table 6.2: Conical extrusion - residual norm convergence behavior.

Penalty Dual Mortar
tn k Relative Residual Norm (%)

1 0.612567E+02 0.110718E+01
2 0.179956E+02 0.806609E+00
3 0.845863E+00 0.173512E-02

001 4 0.233792E-02 0.990222E-07
5 0.950268E-06 0.192286E-11
6 0.326588E-11 -
1 0.856247E+03 0.280271E+01
2 0.625483E+01 0.158554E+01

100 3 0.215140E-02 0.436638E-01
4 0.269871E-04 0.274675E-04
5 0.112124E-08 0.246126E-10
1 0.425783E+02 0.862577E+01
2 0.914758E+00 0.150099E+00

200 3 0.667821E-02 0.546990E-01
4 0.299631E-04 0.734911E-04
5 0.141457E-06 0.149939E-09
6 0.784265E-08 -∑

(k) 1215 981

L1

L2

ûx,ûy

H

R 1

R2

Figure 6.10: Frictional beam problem - geometry and FE discretization.

Both beams are assumed to be made of aluminum alloy, whose properties are
listed in Table 6.1, with a coefficient of friction equal to µ = 0.3. The total prescribed
displacement, which is set to be equal to ûx = 16mm, was applied over 320 equally
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6.4. Frictional beam problem

spaced pseudo-time increments of ∆t = 0.025.

Figure 6.11: Frictional beam problem - effective plastic strain at t=4s.

6.4.1 Results and performance

The evolution of the effective plastic strain provided by the Dual Mortar method is
shown in Figure 6.11 for t=4s and in Figure 6.12 for the final configuration at t=8s.
There was no noticeable difference in the effective plastic strain contour between
both methods. During the first 2 pseudo-seconds of the simulation, the majority
of the displacement and deformation are undergone by the bottom beam. At t=4s,
the contact surface already presents significant levels of plastic strain. The presence
of high frictional force causes shear distortion of the finite elements on the contact
region and the bending process induces the growth of the contact area.

At the end of the simulation (t=8s), the upper beam has considerable deforma-
tion levels at the right corner due to the prescribed displacement ûx, while the lower
beam shows moderate levels of strain at the contact surface. The spatial rate of
convergence of the relative residual norm, for representative steps of this analysis, is
shown in Table 6.3. In this table, it is possible to observe that the Penalty method is
able to solve the entire problem when employing εη = ετ = 104. However when the
curved beam starts to experience high levels of plastic deformation, the convergence
rate of this method is compromised (see increment 160 in Table 6.3).

On the other hand, the Dual-Mortar method converges reasonably well during
all the simulation. Nevertheless, the convergence of the single iteration PDASS algo-
rithm is also affected when the upper beam undergoes plastic strains. In particular,
multiple attempts to find the correct subset for the mortar segmentation occur af-
ter a given configuration update, which leads to changes on the contact pairs and
consequently the active set. In addition, the finite elements at the most outer-left
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6.4. Frictional beam problem

Figure 6.12: Frictional beam problem - effective plastic strain at t=8s.

section of the upper beam get significantly distorted due to the boundary conditions,
leading to the computation of negative Jacobians during the analysis.

With regard to the computational time required for carrying out the analysis,
it is possible to conclude that the total number of iterations to attain convergence
with the NTS-Penalty method, for each increment, is always higher than the Dual-
Mortar method. Although the computational cost of each iteration of the Penalty
formulation is cheaper, the additional number of iterations makes the method more
expensive. Furthermore, the NTS method also requires considerably smaller time
steps in order to converge in both elastic and plastic domains when compared with
the Dual-Mortar method which, in an overall sense, is significantly more efficient.

6.4.2 Influence of parameters cη, cτ and εη, ετ

Finally, with this example, the influence of the parameters cη and cτ – introduced
with the complementarity functions in Chapter 5 – is investigated. These parameters
were defined within the context of small deformations in [41] and analyzed at finite
strains in [33]. The parameter cη is a positive constant that relates the different
physical units of zη and g̃. Therefore, it seems logical to choose cη such that the
values of zη and g̃ are balanced and several authors [40, 41, 43, 62] have suggested
cη to be of the order of the Elasticity modulus of the contact bodies. The same
reasoning applies to the positive constant cτ , i.e. it is logical to choose cτ such that
zτ and ũτ are balanced. Nevertheless, the conditions on the tangential directions that
result from the applied Coulomb’s friction law are also related to the parameter cη.
Consequently, cτ is also suggested to reflect the material parameters of the contacting
bodies [41, 62]. The convergence behavior of the single step PDASS algorithm for
different values of cη and cτ is illustrated in Table 6.4. The number of Newton steps
required to reach convergence for two representative steps, one within the elastic
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6.4. Frictional beam problem

Table 6.3: Frictional beam problem - residual norm convergence behavior.

Penalty Dual Mortar
εη = ετ = 104 cη = cτ = 1

tn k Relative Residual Norm (%)
1 0.457532E+02 0.945446E+01
2 0.145766E+00 0.298134E+01

001 3 0.303347E-01 0.262611E-04
4 0.198423E-02 0.444629E-10
5 0.435333E-04 -
6 0.254868E-10 -
1 0.412056E+02 0.145941E+01(*)
2 0.211690E+00 0.112458E-01
3 0.125627E-01 0.138134E-02

160 4 0.506982E-02 0.138134E-02
5 0.022463E-03 0.262611E-04
6 0.174102E-04 0.444629E-10
7 0.512961E-06 -
8 0.512961E-09 -
1 0.842507E+01 0.226485E+01(*)
2 0.631476E-01 0.286545E-01
3 0.400189E-02 0.754524E-04

320 4 0.229077E-03 0.917062E-08
5 0.990173E-04 0.896271E-12
6 0.303569E-06 -
7 0.131313E-09 -∑

(k) 2281 1756
(*) Change on the active set.

and other within the plastic domain, is investigated. It can be observed that, within
the elastic domain, there is almost no degradation of the convergence rate for a
wide range of cη and cτ . Therefore, the sensitivity of the algorithm, with regard to
the choice of cη and cτ , is low within the elastic domain. For the plastic domain,
there is still a reasonable range of cη and cτ that do not affect the convergence rate.
Nevertheless, the spectrum of complementarity parameters for which there is no
deterioration of the convergence rate is noticeably more limited.

The additional source of non-linearity caused by the material behavior signifi-
cantly affects the number of iterations needed to achieve convergence and the number
of active set changes. These results suggest that the values of cη and cτ should reflect
the plastic material parameters of the bodies in contact.

It is important to emphasize that the choice of cη and cτ only enhances or deteri-
orates convergence of the Dual-Mortar method and not the accuracy of the results.
On the other hand, the choice of penalty multipliers, εη and ετ , has a great influ-
ence on the accuracy of the method. In Table 6.5, the convergence behavior of the
NTS-Penalty formulation for different values of εη and ετ is illustrated. Again, the
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6.4. Frictional beam problem

Table 6.4: Frictional beam problem - influence of the parameters cη and cτ .

Elastic domain: tn = 10 Plastic domain: tn = 300
cτ cτ

cn 10−2 100 102 104 106 10−2 100 102 104 106

10−2 5 4 4 - * 6 6 6 - *
100 4 4 4 6 * 6 7(1) 7(1) 7(1) *
102 4 4 5(1) 7(1) * 7(1) 7(1) 7(1) 8(2) *
104 5 5 6(1) 7(1) * 7(1) 7(1) 9(3) 10(3) *
106 * * 8(1) 9(2) * * * * * *

(*) More than 10 iterations and 3 changes of active set.

Table 6.5: Frictional beam problem - influence of the parameters εη and ετ .

Elastic domain: tn = 10 Plastic domain: tn = 300
ετ ετ

εn 102 104 106 108 102 104 106 108

102 ** ** ** *** ** ** ** **
104 8 7 6 8 ** 9 10 10
106 7 7 7 *** 8 9 9 ***
108 8 *** 8 *** 8 10 10 ***
(**) Penetration over than 10% of the finite element height.
(***) Locking/overconstraint.

number of Newton steps needed to attain convergence for two representative steps,
one elastic and one plastic, is investigated.

Within both the elastic and plastic domains, it is possible to observe the well-
known behavior of the NTS-Penalty method. For low values of εη and ετ the pene-
tration can be significant and the frictional constraints are not fulfilled. On the other
hand, high values of these parameters lead to locking and/or overconstraint, which
prevent the problem to be solved. Therefore, the selection of the penalty parameters
is a compromise between the accuracy of the solution and finding a solution for the
problem.
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6.5. Cylinder-to-block problem

6.5 Cylinder-to-block problem

L1

H1

Fy

ûx

R1

Figure 6.13: Cylinder-to-block problem - geometry and FE discretization.

The following problem is a well known benchmark widely employed for testing
both contact and fretting formulations. It belongs to the Hertizian class of contact
problems, which can be solved analytically. However, the analytical solution is
only valid as long the deformation is kept within the elastic domain. It features a
Hard steel cylinder that is pressed and pushed against an aluminium alloy block,
whose properties are listed in Table 6.1. The initial contact area is very small (non-
conforming contact point) and a curved contact surface is present. The simulation
is conducted with the two-dimensional plane-strain assumption.

The geometry of the problem and finite element mesh, employed to discretize the
geometry, are depicted in Figure 6.13. Radius of the cylinder is R1 = 50mm while
the dimensions of the block are H1 = 100mm and H2 = 200mm. A total number of
660 4-noded F-bar quadrilateral elements was employed to discretize the block and
888 elements for the discretization of the cylinder. A friction coefficient µ = 0.1 is
adopted in this analysis.

6.5.1 Equations for analytical solution

The analytical solution for this problem was derived from the Hertizian contact
formulae [38, 46] for two cylinders, which defines the maximum contact pressure,
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6.5. Cylinder-to-block problem

Pmax, the contact width, a, and the contact pressure along x-coordinate P as:

Pmax =

√
FE∗

2πR∗
, (6.1)

a =

√
8FR∗

πE∗
, (6.2)

P = Pmax

√
1−

(x
a

)
, (6.3)

where the combined elasticity modulus, E∗, is obtained from the material parameters
of the cylinder (Ec) and the block (Eb) as follows:

E∗ =
2EpEb

Ec (1− ν2
b ) + Eb (1− ν2

c )
, (6.4)

and the combined radius, R∗, is evaluated from the radius of the cylinder, R1, and
block, R2, in a similar way. Nevertheless, since R2 → ∞, the combined radius is
reduced to the cylinder’s radius,

R∗ = lim
R2→∞

R1R2

R1 +R2

= lim
R2→∞

R1

R1/R2 + 1
= R1. (6.5)

In order to compare the numerical results with the analytical solution, the anal-
ysis was divided in two phases. In the first phase, a compressive point load of
Fy = 5kN is applied to the top of the cylinder. Under this load, only elastic strains
will occur, which allows a direct comparison with the analytical solution. For the
given numerical parameters, the expected analytical results are:

Pmax = 1577.32N/mm2 ;

a = 2.018mm ;

P = 1577.32

√
1−

(x
a

)2

.

In the second phase of the analysis, the point load is increased to Fy = 12.5kN,
which leads to the appearance of plastic strain on both bodies. For this phase the
analytical solution no longer holds.

6.5.2 Elastic domain

In the first phase of the case study, the applied load yields a maximal equivalent
stress at x = 0 equal to 327MPa. This pressure is below the yield stress of both
materials employed, which guarantees that no plastic strains are developed. In
addition, at this point, frictional forces are negligible.

The load between the contact surfaces is well transferred and the convergence
of the problem for the elastic increment, which is the first increment depicted in
Table 6.6, is quadratic for both methods. The relative residual norm is below 10−10

in 4 iterations for the Penalty method and 3 iterations for the Dual Mortar method.
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6.5. Cylinder-to-block problem

Figure 6.14: Cylinder-to-block problem - contact pressure evolution.

(a) Elastic domain.

(b) Plastic domain.
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6.5. Cylinder-to-block problem

A comparison between the analytical solution for the normal force with the
results obtained by the numerical simulations, with both methods, is depicted in
Figure 6.14(a). Despite the small differences on the normal forces, both methods
have a reasonable agreement.

Table 6.6: Cylinder-to-block problem - residual norm convergence behavior.

Penalty Dual Mortar
εη = ετ = 104 cη = cτ = 1

a [mm] 3.176 3.198
tn k Relative Residual Norm (%)

1 0.626481E-01 0.836091E-02
001 2 0.156492E-04 0.739726E-06

3 0.269254E-06 0.922262E-10
4 0.198423E-10
1 0.269482E-01 0.223108E-03

100 2 0.589423E-04 0.198341E-07
3 0.394568E-09 0.135704E-11
4 0.142679E-12
1 0.452691E+01 0.226485E-02
2 0.264821E-01 0.754524E-04

200 3 0.485938E-03 0.917062E-08
4 0.337746E-06 0.896271E-12
5 0.852251E-11∑

(k) 968 685

6.5.3 Plastic domain

In the second phase, under the action of a vertical force equal to Fy = 12.5kN,
the contact surfaces develop plastic deformation. For this phase, the excessive non-
physical oscillation of normal forces predicted by the NTS-Penalty method makes
it no longer reliable, see Figure 6.14b. The convergence rate also decreases for the
penalty method, as can be observed for increments 100 and 200 in Table 6.6. In
contrast, the Dual-Mortar method preserves the spatial convergence rate regardless
the presence of plastic strains. It is important to remark that the relative residual
norm of the Dual Mortar method is always smaller than the penalty method, which
helps the convergence. Due to the increase on the load, the number of nodes in
contact also increases. This leads to the appearance of differences in the accuracy
of the two methods since the Dual-Mortar method has a better distribution of loads
over the contact surfaces and a relatively smoother pattern for the evolution of the
normal pressure, which can be seen in Figure 6.14(b).
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6.5. Cylinder-to-block problem

Table 6.7: Cylinder-to-block problem - fretting wear conditions.

Conditions I.R. McColl (2004) C. Paulin (2008)
Cylinder radius, R (mm) 12 10
Flat base length, L (mm) 24 20
Flat base / cylinder width, B (mm) 10 3
Indentation Force, F (N) 185 400
Displacement amplitude, ±ûx (µm) 50 75
Number of loading cycles, ncyc 18000 20000
Base material, Mild steel Titanium
Coefficient of friction, µL 0.8 0.8
Energy wear coefficient, αw (µm3/J) 660 415
Complementarity parameters, cη, cτ 10,10 10,10

(a) Comparison with experimental data
from C. Paulin et al. [58].

(b) Comparison with results from I.R.
McColl et al. [53].

Figure 6.15: Cylinder-to-block problem - half-length of contact zone.

6.5.4 Fretting wear evaluation

Two new sets of conditions were employed to analyze the fretting wear evolution
in this numerical example. They can be found in Table 6.7. These conditions were
previously employed in the works of I.R. McColl et al. [53] and C. Paulin et al. [58].
Their works are also used as reference for comparison against the results obtained
with the single step strategy. In this analysis, the cylinder is set to displace in
it’s horizontal axis after the indentation force is applied. Friction is considered in
this analysis and the amplitude of the horizontal displacement is kept low in order
to simulate fretting within the stick regime. In accordance with the conclusions
obtained with the analysis in Section 6.2, second order dual-basis is employed in
this example.

The numerical results obtained for the half-length of the contact zone are shown
in Figure 6.15. They were compatible with both the experimental results provided
in [58] and the numerical solution obtained by [53], which shows the accuracy of the
energy wear approach employed here.

The evolution of the wear depth given by the energy method is slightly more
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6.5. Cylinder-to-block problem

(a) Comparison with experimental data
from C. Paulin et al. [58].

(b) Comparison with results from I.R.
McColl et al. [53].

Figure 6.16: Cylinder-to-block problem - wear depth evolution.

conservative than the one obtained by the Archard method, as can be seen in Fig-
ure 6.16(b). Nevertheless, comparison between the single step strategy and the
experimental data from [58], Figure 6.16(a), shows a good agreement. The con-
vergence rates of the residual forces was kept fairly similar to the one shown in
Table 6.6: an average of 4 iterations per increment.
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6.6. Ironing problem

6.6 Ironing problem

ûx,ûy

L1

H
1

H
2

R 1

Figure 6.17: Ironing problem - geometry and FE discretization.

The so-called Ironing problem [22,33] is a variation of the cylinder-to-block Her-
tizian contact problem, where after the indentation stage the tool is set to slide over
the block. This combination of displacements generates high levels of deformation.
The geometry, the finite element discretization and the loads of this problem are
depicted in Figure 6.17. The dimensions of the tool and the base are: L1 = 12mm,
H1 = 4mm, H2 = 2mm and R1 = 1mm.

The simulation is divided in two stages. In the first stage, the semi-circular
tool, already in contact with the base, is vertically pushed against the base ûy =
0.3mm. This stage is set to take 30 increments. During the second stage, the tool
is horizontally displaced by ûx = 9.6mm. This load is equally divided into 400
increments. For this simulation, the values chosen for the penalty multipliers were
εη = ετ = 109 and for the complementarity parameters cη = cτ = 10−1. A static
coefficient of friction equal to µQ = 0.4 and a kinetic coefficient of friction of µL = 0.3
are considered. The materials chosen for the tool and the block were, respectively,
the Tungsten alloy and the Aluminum alloy (Table 6.1).

6.6.1 Evolution of the effective plastic strain

During the simulation, a layer of plastic deformation develops along the contact
surface and the active set changes more than once for most increments. This hap-
pens due to the fact that once a given node at the left side of the contact surface
reaches the yield stress it no longer recovers from the deformation, leading to it’s
deactivation. However, at the right side, material is being accumulated and new
contact nodes become active. This constant change of the contact surface length
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6.6. Ironing problem

Figure 6.18: Ironing problem - effective plastic strain at dx = 4.8mm and dy =
0.3mm.

and the number of contact nodes during a single increment poses additional chal-
lenges to the performance of the solution algorithms, as shown in Table 6.8. The
accumulated material on the right hand side also produces a high tangential load
on the tool, which leads to it’s distortion and plastic deformation. Figure 6.18 and
Figure 6.19 show the effective strain at steps 230 and 430, respectively. Reducing
the load of each increment helps to mitigate this phenomena, however as soon the
material reaches the plastic domain even small loads incur in large distortions of the
finite element mesh and consequently changes on the contact pairs occur.

6.6.2 Performance analysis

The convergence evolution of the relative residual norm is listed in Table 6.8, for
three representative steps and for three solution strategies: the Penalty method,
the nested iterative strategy described in Table 5.2 and single iterative strategy
described in Table 5.1. From Table 6.8, it is possible to see that Penalty method
is able to solve the problem when employing high values for the penalty multipliers
(εη = ετ = 109). Nevertheless, the convergence rate of the NTS method is poor
when compared with the primal-dual active set strategies. Furthermore, the level
of penetration becomes erratic during the solution and it is difficult to know in
advance whether a given set of penalty multipliers will lead to the solution of the
problem or not. The convergence evolution provided by the PDASS algorithms were
similar. This happens due to the very small size of the increments. Therefore, in
order to enable a more detailed comparison between those methods, the number of
increments is reduced by half and each increment is raised to twice their initial size
(i.e., phase I: 15 increments with ∆ûy = 0.02mm; phase II: 200 increments with
∆ûx = 0.096mm).
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6.6. Ironing problem

Table 6.8: Ironing problem - residual norm convergence behavior.

Penalty Single step Nested step
εη = ετ = 109 cη = cτ = 10−1

tn k Relative Residual Norm (%)
1 0.285466E+02 0.772309E+01 0.772308E+01
2 0.125468E+00 0.392728E+00 0.392728E+00
3 0.861073E-01 0.337489E-03 0.337488E-03

030 4 0.973016E-02 0.229909E-09 0.229908E-09
5 0.744196E-03 0.111215E-11 0.111214E-11
6 0.726018E-04 - -
7 0.186181E-09 - -
1 0.626103E+01 0.280271E+01(*) 0.280271E+01
2 0.124845E+00 0.158554E+01 0.220156E+01
3 0.920084E-01 0.436638E-01 0.112644E+00

230 4 0.108697E-02 0.125687E-02 0.612545E-02
5 0.783435E-03 0.274675E-04 0.266750E-04
6 0.226584E-06 0.246126E-10 0.422109E-07
7 0.141980E-09 - 0.199088E-11
1 0.958624E+02 0.706285E+03(*) 0.706285E+03
2 0.111254E+01 0.256844E+02(*) 0.298211E+01
3 0.128455E+00 0.862577E+01 0.116925E-01
4 0.547556E-01 0.150099E+00 0.138852E-02

430 5 0.343761E-02 0.546990E-01 0.623577E-04
6 0.517235E-03 0.734911E-04 0.421596E-07
7 0.436580E-04 0.149939E-09 0.336952E-09(+1)
8 0.140885E-06 - -
9 0.269842E-09 - -∑

(k) 3452 2600 3258(**)
(*) Change in active set.
(+1) Check of active contact set failed, Newton cycle has to be repeated.
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6.6. Ironing problem

Figure 6.19: Ironing problem - effective plastic strain at dx = 9.6mm and dy =
0.3mm.

Table 6.9 shows the convergence results provided by this new set of loading
conditions. It is possible to observe that due to the increase of the load increment,
the convergence rate of both strategies is deteriorated. In particular, at the plastic
regime the nested strategy becomes more costly since the changes of active set require
new Newton cycles to be performed. On the other hand, the single step strategy
also reveals a disadvantage: at the plastic regime, the contact pair changes more
frequently during a single increment than that at the elastic regime. Therefore,
due to sensitivity of this approach to changes of the active set, it’s convergence
rate is severely deteriorated. Furthermore, depending on geometry discretization
and increment loading size the constant changes of active set may prevent to find a
solution to the problem without significantly reducing the load increment.

6.6.3 Reaction forces

Figure 6.20 displays the behavior of the total reactions over the top surface of the
tool obtained with the Penalty method and the single step scheme. Forces increase
during the indentation phase and stay relatively constant while the tool is sliding.
However, a small oscillation of the horizontal force is expected since the amount of
material accumulated at the right hand side of the tool changes over the simulation.
Both methods yield similar results for the vertical reactions. However the horizontal
reactions provided by the Penalty method became erratic at the last quarter of the
simulation, when the highest levels of shear are attained.

6.6.4 Fretting wear evaluation

Since in this problem there is a combination of an indentation and finite slip process,
by repeating these two phases in a cyclical way, the fretting wear phenomena can be
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Table 6.9: Ironing problem - comparison of PDASS algorithms.

Nested step Single step
cη = cτ = 10−1

tn k Relative Residual Norm (%)
1 0.46320E+02 0.39452E+02
2 0.21169E+01 0.62015E+00
3 0.10101E+00 0.30008E-02

015 4 0.36045E-02 0.19961E-04
5 0.18604E-04 0.85600E-09
6 0.45969E-06 0.79367E-11
7 0.20781E-11 -
1 0.10007E+03 0.20508E+02
2 0.49089E+02 0.95486E+01(*)
3 0.19065E+01 0.89068E+01(*)
4 0.56002E+01 0.78886E+01

115 5 0.27951E-02 0.30219E+00
6 0.13355E-04 0.11298E-01
7 0.80743E-08 0.52594E-04
8 0.31092E-11 0.61413E-06
9 - 0.46302E-09
1 0.96452E+02 0.99564E+02(*)
2 0.38491E+01 0.49261E+02(*)
3 0.16482E+00 0.22279E+01(*)
4 0.79050E-01 0.31859E-00

215 5 0.31105E-02 0.13692E-01
6 0.15924E-04 0.39562E-02
7 0.36294E-06 0.92615E-04
8 0.14820E-08 0.41105E-06
9 0.46594E-10(+1) 0.26941E-08
10 - 0.12943E-11∑

(k) 1908 1819
(*) Change in active set.
(+1) Check of active contact set failed,
Newton cycle has to be repeated.
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Figure 6.20: Ironing problem - Reaction forces

simulated. A more refined mesh is employed in this analysis. A total of 150 4-noded
quadrilateral F-bar elements are used for the discretization of the tool, while the
base is discretized with 1600 elements. The loads ûx and ûy at the top surface of
the tool are applied within four stages. The vertical displacement, ûy = −0.04mm,
is applied at both the first stage and the third stage. The horizontal displacement,
ûx = 9.6mm, is applied in stage 2 towards the x-direction while in stage 4 the tool
is brought back to the origin. Stages 1 and 3 are equally divided into 25 increments,
stages 2 and 4 have 100 increments each. Next, these four stages are regarded as one
cycle, which is repeated 100 times. Both solids are set to worn in this example. The
material chosen for the tool and the base and the respective energy wear coefficient,
αw, are: Titanium, 415 · 10−6mm3/J and Aluminum alloy, 840 · 10−6mm3/J . The
complementarity parameters were set to cη = cτ = 10. The wear depth is balanced
among the first 5 upper FE layers of the base surface and 3 lower FE of the tool.

In Figure 6.21, the plot of the friction force versus the sliding displacement for 4
number of cycles (i.e. sample of the fretting map) is shown. At the 5th cycle both
the friction force and the energy dissipated over per cycle are relatively small. The
frictional force increases in a linear way until the 50th cycle, when it stabilizes. At
this point the finite elements of the base are on the plastic regime of deformation and
therefore the increment of force required to further deform the structure becomes
much smaller. Figure 6.22 displays the stress distribution at final configuration. The
levels of strain together with the wear depth create a large scar. In fact, during the
last 20 cycles the size of the scar becomes deep enough to create small jumps on the
friction force. This happens because the side of the tool starts to hit the corners
of the scar, which leads to sudden increases of the tangential reaction that creates
sharp peeks at the end of the cycles (see Figure 6.21). This effect is commonly seen
in fretting experiments and does not provide any significant influence in the results.

The initial residual force changed several times during the simulation. This
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Figure 6.21: Ironing problem - Fretting map samples.

Figure 6.22: Ironing problem - stress distribution at ncyc = 100, k = 250.
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6.7. Round pin to flat problem

Table 6.10: Ironing problem - residual norm convergence behavior.

tn ncyc = 1, k = 1 ncyc = 5, k = 125 ncyc = 10, k = 250 ncyc = 50, k = 125 ncyc = 100, k = 1
1 110.136 11.9434 99.5383 1.44039 12.8832
2 20.1235 1.05039 20.0256 0.679160E-02 1.93006
3 5.69351 0.8788E-01 3.75213 0.772553E-03 0.110024E-01
4 0.395176 0.1929E-04 0.372059 0.697208E-08 0.705730E-06
5 0.2914E-01 0.8626E-10 0.3966E-01 0.144469E-12 0.802187E-10
6 0.1067E-04 - 0.3044E-04 - -
7 0.8972E-10 - 0.1046E-09 - -

happened mostly due to the growth of the contact surface and to the change of
deformation regime. Nevertheless, quadratic rate of convergence is achieved within
6-7 pseudo-times steps as seen in the increments shown in Table 6.10.

6.7 Round pin to flat problem

ø

H
1

H
2

L

W

Figure 6.23: Round pin to flat problem - geometry and FE discretization.

This examples presents a benchmark often used to approximate practical prob-
lems that involve several contact phenomena, such as turbine blades, drilling screws
and tyres. Here, the main goal is to compare the two active set strategies presented
in Chapter 5 with experimental results in order to access their accuracy. It features
a Rounded pin and flat surface, see Figure 6.23. Dimensions chosen for this analysis
are: ø=5mm, H1 = 10mm, H2 = 5mm, W = 10mm and L = 30mm. A total of
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576 linear hexahedral F-bar elements were employed for the discretization of the pin
while the base contains 12000 elements.

In the first stage, the round pin is pressed against the flat surface. The applied
normal pressure is pn = 1.3MPa. Next, the rounded pin is set to describe a recip-
rocating motion leading to the development of fretting fatigue and material loss.
In this example, the amplitude of the reciprocating movement applied to the pin
is equal to δ± = ±10mm, representing one loading cycle. A total number of cycles
of ncyc = 18, 000 were conducted. Each stage is divided into 25 equal incremental
displacements of 0.4mm. Therefore, the number of increments per cycle is equal to
50 and the total number of increments is equal to 900,000. The materials employed
for the pin and the flat surface are Hard steel and hydrogenated nitrile elastomer,
respectively. The elastomer is a very resilient material when employed in a lubri-
cated environment. However, under the assumption of dry friction (µ = 0.8) it’s
wear coefficient is extremely high, αw = 15 · 10−3mm3.

Since the flat surface material is highly elastic and the applied pressure is small,
the presence of plastic strains in this example is minor. Therefore, the great major-
ity of the nodal displacements at the contact interface is due to the fretting wear
topography update. The displacement field for the final configuration of the flat
surface is given by Figure 6.24.

Both length and depth of scar have a good agreement with the experimental
results. For a qualitative comparison, the scar profile of the experimental specimen
is shown in Figure 6.25.

Wear rates have a moderate increase during the simulation. The results obtained,
with both nested and single step methods, have a very good agreement with exper-
imental data. The total volume lost over the simulation was equal to 135.86mm3,
only 2.5% less than the experimental value of 139.27mm3. This suggests that in the
lack of significant levels of plastic strain both methods can reproduce the fretting
phenomena accurately. The comparison between the numerical simulation results for
the wear depth and it’s experimental data counterpart is presented in Figure 6.26.

Since the contact area remains fairly constant during the simulation, the contact
pairs and the active set are also kept the same throughout the incremental solution.
In this particular situation, both methods show a quadratic convergence rate to a
residual force as low as E-12, as displayed in Table 6.11.

6.8 Round pin to disc problem

This problem is basically a variation of the previous example, where instead of a
reciprocating motion, the round pin prescribes a circular movement over a disc. This
configuration is often used to study brake systems and other sliding mechanisms.
The problem’s geometry and mesh discretization are given in Figure 6.27. The
dimensions of the round pin and the disc are: ø=600mm, L=300mm, H1 = 150mm,
H2 = 60mm, and R = 100mm.

The total number of finite elements used for the discretization of the pin and the
flat surface is equal to 576 and 10125 linear F-bar hexahedral elements, respectively.
The materials chosen for the round pin and disc were, Hard steel and aluminium
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6.8. Round pin to disc problem

Figure 6.24: Round pin to flat problem - final configuration.

(a) Specimen with debris. (b) Clean specimen.

Figure 6.25: Round pin to flat problem - elastomer specimen after testing.
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6.8. Round pin to disc problem

Figure 6.26: Round pin to flat problem - wear depth.

Table 6.11: Round pin to flat problem - residual norm convergence behavior.

Nested step Single step
1000tn k Relative Residual Norm (%)

1 1.31E+01 1.91E+00
2 1.02E+00 7.19E-03

300 3 8.56E-03 1.27E-07
4 1.33E-06 5.10E-13
5 4.68E-13 -
1 2.52E+01 1.44E+00
2 1.10E+00 5.82E-03

600 3 1.20E-02 1.11E-07
4 4.44E-06 4.78E-13
5 1.03E-12 -
1 2.81E+01 1.17E+00
2 1.14E+00 5.51E-03

900 3 1.20E-02 1.02E-07
4 4.44E-06 4.38E-13
5 1.03E-12 -∑

(k) 4,352,113 4,012,745
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6.8. Round pin to disc problem

L
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1

H
2

ø

R

Figure 6.27: Round to disc problem - geometry and FE discretization.

alloy, respectively. The coefficient of friction assumed for the surfaces is equal to
µ = 0.7 and the energy wear coefficient, αw, for the disc is equal to 840 ·10−6mm3/J .

In the first stage, a normal pressure pn = 600MPa is applied to the top of
the rounded pin within 20 equal pseudo-time steps. In the second stage, a radial
displacement is prescribed the rounded pin such that it completes a circular path
over the disc (one loading cycle). This loading stage is applied within 72 increments
of 5 degrees each. Moreover, to reproduce the fretting wear phenomena, the second
loading stage is repeated 20,000 times.

Different from the first example, the continuous nature of the circumferential
cyclical motion gives to this problem a smoother behavior for the tangential forces.
The average value for the friction force over the contact zone is 7.53kN and it re-
mains fairly constant during the second stage of the numerical simulation. However,
since the disc is made from a metallic material, the strains have a much more im-
portant role in this example. The pressure applied over the pin, pn = 600MPa,
develops plastic strains over the contact zone. At the end of the first stage, the
total indentation displacement imposed to the disc is equal do 6.7mm (almost 12%
of it’s initial height). During the second stage, a total volume of 68325mm3 of the
disc is removed from it’s surface (representing 2% of it’s initial volume). At the end
of the simulation the wear scar has a total depth of 9.8mm, from which 2.9mm are
related to the material removal (i.e. wear depth). The final configuration of the
disc, obtained with the fully implicit scheme, is depicted at Figure 6.28.

Comparing the obtained results for the wear depth – with the two schemes- -
over the loading cycles, it is possible to observe that during the simulation the values
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6.8. Round pin to disc problem

Figure 6.28: Round pin to disc problem - final configuration.

78



6.9. Sphere in contact with a half hollow sphere

Figure 6.29: Round pin to disc problem - wear depth evolution.

provided by the Nested method are not as accurate. This happens due to the fact
that the wear evaluation is done apart from the contact constraints, which leads
to a non synchronized output, as can be observed in Figure 6.29. However, as the
simulation continues, both methods converge to a close result.

The inelastic strains have a great impact on the convergence rates of the residual
force in this example, especially those obtained with the Nested scheme. From Ta-
ble 6.12 it is possible to conclude that as the simulation progresses, the required num-
ber of iterations for minimizing the residual force increases for the nested scheme.
While the single step strategy maintain an average of 5-6 iterations per increment.
Moreover, the total number of increments required by the nested scheme is over 16%
higher when compared to the single step scheme. Nevertheless, due to the small size
of the increments employed in this example, both methods shows a stable behavior.
This is because there were very few active set changes on the single step scheme and
there was no repetition of the Newton step on the nested scheme.

6.9 Sphere in contact with a half hollow sphere

This last numerical example presents a sphere being fretted against a hollow half-
sphere base. The goal is to verify the reliability and performance of the solution
schemes when dealing with highly curved surfaces. The problem geometry and
respective mesh discretization are presented in Figure 6.30. For better visualization,
only one-quarter of the hollow sphere is depicted.

The diameter of the sphere is ø=20mm while the outer radius of the half hollow
sphere is R = 20mm. A fillet of θ = 5 degrees is made to the top of the hollow
sphere. This was done to avoid stability issues (due to the constant change on the
active set) that would occur if the last nodes at the far end of the inner surface were
considered as contact candidates. A total of 2048 linear hexahedral F-bar elements
were employed for the discretization of the sphere while the base contains 2000
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6.9. Sphere in contact with a half hollow sphere

Table 6.12: Round pin to disc problem - residual norm convergence behavior.

Nested step scheme
ncyc
k 5000 10000 15000 20000
1 2.576E+2 1.676E+2 0.632E+2 1.919E+3
2 1.135E+1 0.891E+1 0.132E+1 0.344E+2
3 0.371E+0 0.569E+0 0.959E+0 0.649E+1
4 1.478E-2 0.312E-1 0.402E-1 0.102E+0
5 1.125E-4 2.090E-2 0.908E-2 0.266E-1
6 0.429E-9 0.235E-4 1.985E-4 0.701E-3
7 0.601E-12 0.103E-8 0.782E-7 0.823E-5
8 - 0.235E-12 0.755E-9 0.409E-8
9 - - 0.302E-11 0.871E-10
10 - - 0.166E-13 0.218E-12∑
(k) 15,065,643

Single step scheme
ncyc
k 5000 10000 15000 20000
1 0.581E+3 1.097E+2 0.313E+2 2.777E+3
2 0.707E+1 0.702E+1 0.109E+1 1.649E+1
3 0.815E-1 0.989E-1 0.321E+0 0.962E+0
4 0.871E-4 0.882E-2 1.091E-2 0.331E-2
5 1.541E-8 1.529E-4 0.525E-4 0.884E-5
6 0.312E-12 0.735E-7 0.656E-8 0.529E-8
7 - 0.303E-11 0.707E-12 0.902E-12∑
(k) 12,976,081

80



6.9. Sphere in contact with a half hollow sphere

ø

R

θ

Figure 6.30: Sphere in contact with a half hollow sphere - geometry and FE dis-
cretization.

elements. A vertical force Fy = 10kN is applied to the top of the sphere and the
bottom of the base (outer radius surface) is fully constrained. The circular motion
prescribed to the sphere is applied in 36 increments of π

18
radians and repeated in a

total number of revolutions ncyc = 1000.
In Figure 6.31 the history of the contact surface topography, obtained with the

single step strategy, is shown. During the course of the fretting process, a wear
depth of 0.48mm is reached. This value represents 2.45% of the sphere’s initial
radius. In Figure 6.32, it is observed a significant difference in the wear depth results
at the initial stages of the loading process. Although at the end of the simulation
both methods present a fairly similar result, the single step scheme shows both
better performance and accuracy, as seen in Table 6.13. The nested step strategy
undergoes multiple Newton steps re-calculations and the absence of a fully linearized
set constraints yield an slower solution of such a highly nonlinear problem.

In a final note, although the cost of the presented frameworks is much higher
than the standard solutions. The examples shown in this chapter demonstrated that
even in such an overwhelming set of conditions, such as the one presented in this last
example, both frameworks still show a good satisfying performance. Furthermore,
there is a large number of improvements to be made. They are addressed in the
following chapter.
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6.9. Sphere in contact with a half hollow sphere

Figure 6.31: Sphere in contact with a half hollow sphere - Topography evolution for
the single step scheme.

Figure 6.32: Comparison of the wear depth progression.
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6.9. Sphere in contact with a half hollow sphere

Table 6.13: Sphere in contact with a half hollow sphere - residual norm convergence
behavior.

Nested step scheme
ncyc
k 250 500 750 1000
1 1.091E+4 2.187E+5 1.567E+5 1.423E+5
2 1.923E+3 1.089E+3 0.983E+4 0.719E+5(*)
3 0.675E+2 1.012E+2 0.429E+3 0.492E+3
4 0.303E+1 0.875E+1 0.221E+2(*) 0.301E+2
5 0.341E+0 0.341E+0 0.145E+0 0.167E+2(*)
6 0.989E-1 0.177E-1 0.761E-1 0.559E+2
7 0.385E-3 0.898E-2 0.306E-3 0.328E-2
8 0.267E-5 0.309E-4 0.166E-6 0.781E-4
9 0.521E-9 0.183E-7 0.842E-8 0.895E-7
10 0.401E-12 0.923E-10 0.384E-9 0.386E-10
11 - 1.213E-13 0.387E-11 0.791E-12
12 - - - 0.671E-13(+1)∑
(k) 411,368

Single step scheme
ncyc
k 250 500 750 1000
1 0.921E+3 1.625E+3 1.230E+4(*) 1.581E+4(*)
2 0.368E+2 0.891E+2 0.873E+4(*) 2.049E+4(*)
3 0.287E+1 0.454E+1 0.499E+3 1.091E+2
4 0.155E+0 0.258E+0 0.303E+2 0.937E+0
5 0.703E-1 0.962E-2 0.582E+0 0.382E-2
6 0.358E-2 0.421E-4 0.845E-2 0.274E-4
7 0.167E-4 0.304E-9 0.926E-4 0.561E-8
8 0.592E-8 0.991E-12 0.267E-8(+1) 0.628E-11
9 0.304E-12 - - 0.729E-13∑
(k) 338,952

(*) Change in active set.
(+1) Check of active contact set failed, Newton cycle has to
be repeated.
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Chapter 7

Final remarks

7.1 Summary

This thesis is devoted to the formulation and analysis of robust numerical algorithms
for the solution of multibody frictional contact problems, which include fretting wear
and finite strains with inelastic material behavior. Therefore, two numerical frame-
works are presented that cover the modeling of finite inelastic deformation, the
numerical threatment of frictional contact conditions and the modeling of fretting
wear phenomena. Several well-established and new models are employed for each of
these building blocks, in order to capture the distinct features of the deformation
behavior. In this regard, a new method for the numerical evaluation of the dissi-
pated energy and the material volume lost due to the fretting wear phenomena is
introduced. Furthermore, different schemes for performing the geometrical update
of the contact surface topography are presented. A multi-directional function able
to guide the evolution of the scar profile is another novelty described in this work.

Additionally, many aspects of the latest contact constraints enforcement formu-
lations are discussed in detail. An extensive study of the performance of the Mortar
method with dual-basis for the lagrangian multipliers, in the finite strain context,
has been presented.

A wide range of numerical examples has been included for better comprehension
of the solution procedures and to demonstrate the performance of the proposed
algorithms.

7.2 Conclusions

The most important conclusions can be summarized as follows:

• The results obtained with the Dual-Mortar method emphasized the benefits of
using this formulation in contact problems involving inelastic material behav-
ior. The superior correlation between the contacting surfaces provided by the
mortar segmentation promotes a smaller initial value for the residual forces,
which leads to a faster solution in every increment. On the other hand, the
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7.3. Outlook

NTS-Penalty method was not able to fulfill the contact conditions in either an
accurate or stable manner.

• In the context of accurate enforcement of contact constraints and computation
of the contact pressure, it was observed that the dual basis plays a significant
role. This is true for both small and finite strains.

• The complementarity parameters employed in the definition of the nonlinear
complementarity functions do not affect the accuracy of the solution as oc-
curs with the penalty multipliers in the NTS formulation. Nevertheless, the
selection of complementarity parameters has a significant impact in the effi-
ciency of the solution whether the material behavior is within the elastic or
plastic domains. Due to the (possibly) strongly nonlinear nature of problem,
the optimal convergence rate is only preserved when relatively low values for
the complementarity parameters are used, particularly in the plastic domain,
and small incremental steps are prescribed.

• Two primal-dual active set strategies (PDASS) have been discussed and ap-
plied for the solution of the class of problems addressed. Results obtained
for the simulation of contact benchmarks, comparison with experimental data
and other wear formulations were very satisfying. While, within the plastic
domain, the single step strategy was generally more efficient than the nested
iterative scheme, the robustness of the latter was usually greater than the for-
mer. However, the nested scheme struggles to deliver accurate results through-
out the simulation. In particular, at the first stages of the solution process.
Nevertheless, the final results obtained with this method are in relative good
agreement with those obtained by the single step strategy. In summary, the
nested scheme is recommended for problems with constant change of the con-
tact pairs/active set. On the other hand, the single step strategy is suggested
when dealing with complex geometries and high levels of finite strain and/or
when precise computation of the Fretting wear effects, at each pseudo-time
step, is demanded.

7.3 Outlook

A significant progress has been achieved in the field of fretting wear simulation with
the developed framework. Nonetheless, many aspects require further examination.
An investigation of the complementarity parameters influence, in problems in a finite
strain regime and/or fretting wear condition, is required. Since there are indications
that these parameters could be affect by the levels of strain to which the solids
bodies are submitted. An adaptive strategy to compute the ideal complementarity
parameters during the analysis, while considering the magnitudes of the mechanical
properties of the solids in question, is currently under research.

For enhancing the evaluation of fretting wear effects, additional multi-directional
friction functions should be explored. Moreover, in order to include adhesion effects,
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anisotropic friction and a non-constant friction coefficient, the whole Coulomb fric-
tion concept should be re-examined. This would shed additional light on the stabil-
ity issues that emerge in the frictional and in the highly curved three-dimensional
numerical examples.

In order to accommodate large-scale finite element meshes and problems where
the contact surface evolves in a completely unpredictable way during the simulation,
the topography update scheme must be improved. For instance, an extension of the
existing method, for treatment of problems where the contact zone might change in
different parts of the structure or with multiple zones of contact, is already under
development.

Although the proposed methods are able to deal with a large spectrum of con-
tact problems, additional physical conditions such as fluid-structure interaction [61]
and thermomechanical effects [32] must be included. Furthermore, applications that
require analysis on both macroscopic and microscopic levels (i.e. surface roughness)
may require a suitable multi-scale approach [67,87]. The recent improvements intro-
duced to stabilize the constraint fields of enriched interfaces in XFEM and embedded
interfaces [51] might have enabled the treatment of another topic: the development
and propagation of cracks.

For analysis of real engineering applications, several aspects of the computational
implementation must be addressed. In particular, the framework would vastly ben-
efit from a suitable parallel architecture. Both in scalability and efficiency. Faster
contact detection methods would also be an interesting topic of further research.
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Appendix A

Total Lagrange Formulation

The BVP is solved by imposing a energy balance and a force equilibrium over Γ,
such that,

Π = Πint,ext + Πc − Πw, (A.1)

∑
γ
C
∪ γ

D
∪ γ

N

{f} = 0 ∴ fc − fw = fext − fint. (A.2)

The external forces are obtained directly from the prescribed tractions. The internal
forces, in a Total Lagrangian framework, are obtained by pulling back the stress
tensor and the test functions, v, from the current configuration (Ωt) to the initial
configuration (Ω0) as follows,

fint =

∫
Ωt

σIt :
[
∇0

(
v(ϕ−1)

)]T
dΩt,

=

∫
Ω0

J It σ
I
t : [∇0 (v)]T dΩ0,

=

∫
Ω0

[
FI+1

0 PI+1
0

]
: [∇0 (v)]T

[
FI+1

0

]−1
dΩ0,

=

∫
Ω0

PIt : [∇t(v)]T dΩ0,

=

∫
Ω0

SIt :
[
FI+1

0

]T
[∇t(v)]T dΩ0,

=

∫
Ω0

SIt :
[
EI+1

0

]
dΩ0, (A.3)

where upper index represents the pseudo-time step (“iteration” I) and the values of
v denotes iterative solutions (virtual displacements) for the displacements u. The
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contact tractions, T, are also mapped back to the initial referential, such that,∫
{Γc}t

TI
t

(
ϕ−1

)
· v
(
ϕ−1

)
d {Γc}t ,

=

∫
{Γc}t

[
σItηt

] (
ϕ−1

)
· v
(
ϕ−1

)
d {Γc}t ,

=

∫
{Γc}0

[
σI0
[
J I0
]−1

η0

]
(X) · v (X) d {Γc}0 ,

=

∫
{Γc}0

[
PI0η0

]
(X) · v (X) d {Γc}0 ,

=

∫
{Γc}0

TI+1
0 (X) · v (X) d {Γc}0 . (A.4)

The mapping of the normal unit vector, η, is obtained by applying the Nanson’s
formula,

ηt d {Γc}t =
[
J
(
FI0
)]−1

η0 d {Γc}0 . (A.5)
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Appendix B

Linearizations

In this appendix a brief list containing the most important linearizations required
for obtaining the directional derivatives is presented.

Unnormalized nodal normal for two dimensional problems

η̂j =
1

l1j
η̂1
j +

1

l2j
η̂2
j . (B.1)

Directional derivative of nj with respect to the nodal displacements d

∆ηj = ∆

(
η̂j∥∥η̂j∥∥

)
=

∆η̂j∥∥η̂j∥∥ −
[
η̂j ·∆η̂1

j

]
η̂j∥∥η̂j∥∥3 . (B.2)

Directional derivative of the tangential vector

∆τ j = e3 ×∆ηj (B.3)

2D Directional derivative of matrix D

∆Djk =

ngp∑
g=1

wgp∆φj(ξ
s)N s

k(ξs)J ((ξs))
ξsb − ξsa

2

+

ngp∑
g=1

wgpφj(ξ
s)∆N s

k(ξs)J ((ξs))
ξsb − ξsa

2

+

ngp∑
g=1

wgpφj(ξ
s)N s

k(ξs)∆J ((ξs))
ξsb − ξsa

2

+

ngp∑
g=1

wgpφj(ξ
s)∆N s

k(ξs) J ((ξs))
∆ξsb −∆ξsa

2
. (B.4)
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2D Directional derivatives of one entry of M

∆Mjl =

ngp∑
g=1

wgp∆φj(ξ
s)Nm

l (ξm)J ((ξs))
ξsb − ξsa

2

+

ngp∑
g=1

wgpφj(ξ
s)∆Nm

l (ξm)J ((ξs))
ξsb − ξsa

2

+

ngp∑
g=1

wgpφj(ξ
s)Nm

l (ξm)∆J ((ξs))
ξsb − ξsa

2

+

ngp∑
g=1

wgpφj(ξ
s)Nm

l (ξm)J ((ξs))
∆ξsb −∆ξsa

2
. (B.5)

3D Directional derivative of matrix D

∆Djk =

ngp∑
g=1

wgp∆φj(ξ
s)N s

k(ξs)Jcell

+

ngp∑
g=1

wgpφj(ξ
s)∆N s

k(ξs)Jcell

+

ngp∑
g=1

wgpφj(ξ
s)N s

k(ξs)∆Jcell. (B.6)

3D Directional derivatives of one entry of M

∆Mjk =

ngp∑
g=1

wgp∆φj(ξ
s)Nm

l (ξm)Jcell

+

ngp∑
g=1

wgpφj(ξ
s)∆Nm

l (ξm)Jcell

+

ngp∑
g=1

wgpφj(ξ
s)Nm

l (ξm)∆Jcell. (B.7)

where the dual-basis functions φ are defined obtained by solving the bi-orthogonality
condition at the element level, ∆φ1 (ξs)

...
∆φnse (ξs)

 = ∆Ae

 N s
1 (ξs)

...
N s
nse

(ξs)

 . (B.8)

Jacobian

J (ξ) =

∥∥∥∥∥
nes∑
k=1

N s
k xsk

∥∥∥∥∥ . (B.9)
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Directional derivative of J

∆J (ξ) =
1

J (ξ)

[
nes∑
k=1

N s
k xsk

]
·

[
nes∑
k=1

N s
k ∆xsk +

nes∑
k=1

Nk∆xsk

]
. (B.10)

Directional derivative of the discrete weighted gap g̃j:

∆g̃j =−
[
ηj
]T { ns∑

k=1

{
D[j,k]∆dsk

}
−

nm∑
l=1

{
M[j,l]∆dml

}}

−
[
∆ηj

]T { ns∑
k=1

{
D[j,k]x

s
k

}
−

nm∑
l=1

{
M[j,l]x

m
l

}}

−
[
ηj
]T { ns∑

k=1

{
∆D[j,k]x

s
k

}
−

nm∑
l=1

{
∆M[j,l]x

m
l

}}
. (B.11)

Directional derivative of the wear depth, {ũτ}j:

{ũτ}kj =−
[
τ k
j

] {
D [j, j]k −D [j, j]

}
∆
{
dsj
}k

+
[
τ k
j

] nm∑
l=1

{
M [j, l]k −M [j, l]

}
∆ {dml }

k

−
[
∆τ k

j

] {
D [j, j]k −D [j, j]

}{
xsj
}k

+
[
∆τ k

j

] nm∑
l=1

{
M [j, l]k −M [j, l]

}
{xml }

k

−
[
τ k
j

]{
∆D [j, j]k +

nm∑
l=1

∆D [j, j]

}
∆
{
dsj
}k
. (B.12)

Directional derivative of the wear depth, h̃j:

∆h̃j =
µαw

nadjnod

∥∥∥{zη}j∥∥∥ [ηj]T
{

ns∑
k=1

{
D[j,k]∆dsk

}
+

nm∑
l=1

{
M[j,l]∆dml

}}

+
µαw

nadjnod

∥∥∥{zη}j∥∥∥ [∆ηj]T
{

ns∑
k=1

{
D[j,k]x

s
k

}
+

nm∑
l=1

{
M[j,l]x

m
l

}}

+
µαw

nadjnod

∥∥∥∆ {zη}j
∥∥∥ [ηj]T

{
ns∑
k=1

{
D[j,k]x

s
k

}
+

nm∑
l=1

{
M[j,l]x

m
l

}}

+
µαw

nadjnod

∥∥∥{zη}j∥∥∥ [ηj]T
{

ns∑
k=1

{
∆D[j,k]x

s
k

}
+

nm∑
l=1

{
∆M[j,l]x

m
l

}}
. (B.13)
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Appendix C

Penalty method

The so-called Penalty method is obtained by basically the addition of penalty pa-
rameters in the weak form in order to satisfy the constraints conditions,

Π(u)PM = Π(u) +
1

2
gT εηg

= Π(u) +
1

2

∫
Γ

([
εη
(
gη
)2
]

+ ετ gτ · gτ
)
dA, εη, ετ > 0. (C.1)

where ε and ετ represent the penalty parameters, gτ is the tangential displacement
while gη is defined as the normal penetration function which has the magnitude of
gη and the direction of n1

gη =
{

[(xm−xs)·ns]ns if (xm−xs)·ns<0,
0, otherwise. (C.2)

The most important feature of this regularization method consist in the direct def-
inition of the normal contact force and tangential contact force by means of the
normal penetration function gη and the tangential displacement gτ respectively,

Fη = εηgη; Fτ = ετgτ . (C.3)

The addiction of these “penalities” has got the objective of decreasing the in-
fluence of the element stiffness of the contacting nodes and creating a relationship
among them. The constraint formulation for the penalty method is obtained from
the variation of Equation (C.4) in terms of the nodal displacements

∂Π(u)PM = ∂Π(u) +

∫
Γ

(
εηgη δgη + ετ gτ · δgτ

)
dA = 0. (C.4)

Further development of Eq. (C.4) will lead to its discretized form:[
Ku−R +

(
εη

[
∂gη
∂u

] [
∂gη
∂u

]T
+ ετ

[
∂gτ
∂u

] [
∂gτ
∂u

]T)
u

]
[∂u]T = 0
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[
K +

(
εη

[
∂gη
∂u

] [
∂gη
∂u

]T
+ ετ

[
∂gτ
∂u

] [
∂gτ
∂u

]T)]
u = R

⇒ [K + KPM] u = R (C.5)

The force vector R for the Penalty method can be split in two members: Rext,
which is related to the external forces, and Rct, that represents the contact forces,

Rct = εηgη + ετgτ . (C.6)

From Eq. (C.5) it is possible observe that the main advantages of the penalty
method rely on the maintenance of the total number of degrees of freedom (and so
the number of equations in the system) and the fact that the normal contact force,
Fη, can be expressed only in terms of g. Nevertheless the constraints are satisfied
in an approximate manner and only if the correct range of penalty parameters is
chosen. The penetration depends upon the value of penalty parameter and the
constraint equation is only fulfilled in the limit ε→∞. Hence, one can distinguish
the penalty method in two cases:

• If ε is too low the constraints are poorly satisfied leading to a high penetration;

• For a large value of the penalty parameter, ε, the penetration remains small and
better is the given solution obtained in terms of contact enforcement. However
if the penalty value is too high the stiffness matrix becomes ill conditioned and
harder to solve.
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Patch tests

Two patch tests are presented in this Appendix. They show the difficulties presented
by the NTS Penalty method to correctly enforce the contact constraints.

In both tests, the solids are discretized with 4-noded quadrilateral elements.
Frictionless contact is assumed. The normal penalty multipliers is set to εη = 105

while the normal complementarity parameter is cη = 100. The material properties
of the solids are: E = 210GPa, G = 76GPa, ν = 0.33, σy = 830MPa and σ =
σy + 600ε0.21.

The geometry and the mesh discretization used for the first test is shown in
Figure D.1. A distributed load equal to 1kN/mm is applied within 20 equally
divided increments.

16

40

10
20

Figure D.1: Patch test 1 - geometry and FE discretization.

It is possible to observe from Figure D.2a when the structure reaches the plastic
regime of deformation the values chosen for the penalty parameters are not high
enough to avoid penetration between solids. The results shown by the Dual Mortar
method are much more consistent, as can be seen in Figure D.2b.

94



D.0. APPENDIX D. PATCH TESTS

(a) Penalty method.

(b) Dual-Mortar method.

Figure D.2: Patch test 1 - Displacement field.

The second patch test is depicted in Figure D.3. In this test, a prescribed vertical
displacement equal to −15mm. is applied to the top of the structure. Symmetry in
x-direction is assumed.

Once again, the structure shows penetration (see Figure D.4a) at the interface
of the solids when employing the NTS Penalty method. However, the Dual Mor-
tar method displays a correct constraint enforcement, as observed in Figure D.5a.
The penetration observed in the results provided by the NTS Penalty method com-
promise the correct evaluation of the stress distribution, see Figures D.4b. On the
other hand, the Dual Mortar method provides a perfect distribution over the struc-
ture. These results indicate that the penalty parameters are more unstable than the
complementarity parameters when solids are undergoing plastic deformation.
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40

20

Figure D.3: Patch test 2 - geometry and FE discretization.

(a) Penalty method. (b) Dual Mortar method.

Figure D.4: Patch test 2 - Displacement field.
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(a) Penalty method. (b) Dual-Mortar method.

Figure D.5: Patch test 2 - Stress distribution.
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