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Abstract

Current recommenders concentrate on the immediate needs of users. This is insu�cient for

achieving long term goals. Therefore, we propose Long Term Recommender Systems (LTRS)

that besides satisfying immediate needs of users, drive them toward a prede�ned long term

goal by generating a set of relevant recommendations step by step. LTRS can be applied in

di�erent domains such as music, tourism, and E-learning.

One of the main challenges in E-learning is recommending learning materials that students

can timely complete. Ful�lling this requirement becomes more challenging when students are

not able to devote enough time. Thus, to study, a student faces two main questions: (1) What

am I able to learn from a course in my limited time? (2) Do the learning outcomes (e.g. score)

justify the time that I spend? Therefore, in this thesis we introduce two approaches, which

are instances of LTRS, to maximize the students' grades from a course while satisfying their

requirements and constraints. These approaches recommend potentially successful paths

based on the available time and knowledge background of a student. The �rst approach uses

a one-layer directed graph (course graph) to generate paths while the second one is based on

a two-layered course graph to cover the problems of the �rst approach. In the course graphs,

vertices show the learning objects (LO) or lessons while the edges indicate the precedence

relations among them.

These approaches start by generating paths considering the knowledge background of a

student. Paths are generated from the course graphs. These approaches then estimate

time and score for the paths using the same estimation methods. Furthermore, they use

identical methods to estimate the probability of underachieving the estimated score for a

path, and also of not completing a path under a time constraint of the student. Finally, they

recommend a path that satis�es the limited time of the student while maximizing the score.

The evaluation of the proposed approaches was twofold. Firstly, we assessed the quality

of time and score estimation methods using o�ine approaches. Secondly, we evaluated the

quality of the approach based on a two-layered course graph in a live environment. For that,

we implemented and embedded it in an E-learning system. We then performed an experiment

to compare the performance of two groups.
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Resumo

Os atuais sistemas de recomendação concentram-se nas necessidades imediatas dos uti-

lizadores. Isso é insu�ciente para alcançar objectivos de longo prazo. Para esse �m, propomos

os Sistemas de Recomendação de Longo Prazo (Long Term Recommender Systems - LTRS)

que, além de satisfazer as necessidades imediatas dos utilizadores, os direccionam para um

objetivo prede�nido de longo prazo, gerando um conjunto de recomendações relevantes passo

a passo. LTRS podem ser aplicados em diferentes domínios, como música, turismo e E-

learning.

Um dos principais desa�os em E-learning é recomendar conteúdos que os alunos possam

concluir em tempo útil. Cumprir esse requisito torna-se mais desa�ante quando os alunos

não são capazes de lhe dedicar tempo su�ciente. Assim, para estudar, um aluno enfrenta duas

questões principais: (1) O que sou capaz de aprender com um curso, em tempo limitado? (2)

Os resultados da aprendizagem (por exemplo a classi�cação) justi�cam o tempo gasto? Nesta

tese introduzimos duas abordagens, que são instâncias de LTRS, para maximizar as notas dos

alunos de um curso, enquanto se satisfazem os seus requisitos e restrições. Essas abordagens

recomendam trajetos potencialmente bem sucedidos com base no tempo disponível e nos

conhecimentos do aluno. A primeira abordagem utiliza um grafo direccionado de uma camada

(grafo do curso) para gerar trajetos, enquanto a segunda abordagem é baseada num grafo

do curso de duas camadas, para cobrir os problemas da primeira abordagem. Nos grafos

do curso, os vértices representam os Objectos de Aprendizagem (Learning Objects - LO) ou

aulas, enquanto as arestas indicam a relação de precedência entre eles.

Essas abordagens começam por gerar trajetos considerando os conhecimentos prévios de um

aluno. Os trajetos são gerados a partir dos grafos do curso. Essas abordagens estimam o

tempo e a classi�cação para os trajectos que foram gerados, utilizando os mesmos métodos

de estimativa. Além disso, eles utilizam métodos idênticos para estimar a probabilidade de

não alcançar a classi�cação estimada por um trajeto, e também de não completar um trajeto,

devido a restrições de tempo do aluno. Finalmente, recomenda um trajecto que satisfaça as

restrições de tempo do aluno, enquanto maximiza a classi�cação.

As abordagens propostas foram avaliadas duplamente. Primeiro, avaliámos a qualidade dos

métodos que estimam o tempo e a classi�cação, utilizando abordagens o�-line. Depois,
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avaliámos a qualidade da abordagem com base num grafo do curso de duas camadas, num

ambiente real. Para isso, foi implementada e incorporada num sistema de E-learning. Em

seguida, realizámos uma experiência para comparar o desempenho de dois grupos.
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Chapter 1

Introduction

With the emergence of complex E-learning environments, characterized by large-scale infor-

mation, high interactivity and no space-time constraints [ACBT04, MS04], personalization

is becoming a signi�cant feature in E-learning systems. Users of these systems have di�erent

goals, background, capabilities, and personalities. Personalized learning occurs when E-

learning systems are designed regarding educational experiences that match the requirements,

goals, and interests of the users. The personalization can be obtained using recommendation

techniques.

Recommendation techniques and algorithms are proposed for managing information overload

by autonomously collecting information and proactively tailoring it to individual interests

[AT05], e.g., what item to purchase (Amazon), what music to listen to (Last.fm), which

place to visit (TripAdvisor). Currently, the main search engines, such as Google, and e-

shopping websites like Amazon have applied recommendation techniques in their services for

personalizing their results for the users. Unfortunately, the regular recommenders' techniques

and algorithms are not directly applicable in E-learning area [KMIN15]. For instance, music

recommenders rely on the tastes and the interests of the users, while preferred learning

activities might not be educationally su�cient for the users [CLA+03]. Even for users with

similar interests, we may require to recommend di�erent learning materials and activities,

considering their pro�ciency levels and learning goals. For example, users with no prior

knowledge in a speci�c area initially should be advised to learn basic learning materials

while advanced users need to receive more complex materials.

Researchers have introduced various algorithms and techniques to recommend learning mate-

rials or optimum browsing path to users, considering their preferences, knowledge [LOdP11],

and the browsing history of other users with similar features [DOS+10]. In an ideal manner,

E-learning recommenders should help users in performing relevant learning activities that

match the users' pro�les. These recommendations need to be made at the right time and

in the right context while keeping the users motivated and enable them to complete their

1
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learning activities e�ciently [TM05].

In order to design an e�ective E-learning recommender, it is signi�cant to determine users'

characteristics [GRVDC09, DHK08], such as learning goal, knowledge background, rated

learning activities, and learning restrictions (i.e., learning time). E-learning systems need to

be capable of recognizing and exploiting these characteristics that can be used for design-

ing the frameworks and implementing the platform for e�ective E-learning recommenders

[ANRR01, ZL01, SGS07].

1.1 Motivation

Current recommenders focus on the immediate needs of users and do not usually take into

account long term interests. These are, however, often important. For instance, when a user

needs to learn a concept, current recommenders can recommend learning materials regarding

his/her level of knowledge. Assuming this user intends to learn a concept that with his/her

current knowledge and background, the user would not be able to learn it. Therefore, the

main task of the recommender would be recommending learnable (for the user) learning

materials successively while promoting own knowledge in a way that he/she can learn the

target concept (long term goal). Most of the current recommenders do not have such a

strategy and are not able to satisfy these kinds of requirements and goals. To this end, we

propose Long Term Recommender Systems (LTRS) that besides satisfying immediate needs

of users, conduct them toward a prede�ned long term goal by generating a set of relevant

recommendations step by step. This goal is domain dependent and can be de�ned by the

owner of the system or by users.

LTRS can be applied in di�erent domains. For instance, in E-learning domain, LTRS

aid users (e.g. teachers and learners) to have more productive activities (teaching and

learning) meanwhile consuming less time. In this case, a long term goal can be de�ned

by a teacher as doing a relevant assignment or passing an exam after getting a long sequence

of recommendations.

Another example is in music domain. For example, a music company may be interested in

promoting a certain artist or genre. In this situation, the company may use LTRS to guide

the users from a preferred music genre to a target genre for enhancing its pro�t on selected

products. In this case, LTRS can gradually in�uence users' interests through time.

The main task in LTRS is: how to generate recommendation sequences that successfully

conduct the user to a target area in the item space or lead to the attainment of broad goals,

while satisfying immediate user needs?. A goal can be de�ned as a predetermined area (in

case of music, the area can be a speci�c genre of music) in the item space of interest to

both the user and the platform manager. To achieve a long term goal, a recommendation
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algorithm must act strategically and not simply tactically. Our main objective by introducing

the LTRS is to design a recommendation method that is able to attain strategic goals of users

and platform managers.

In this thesis, due to the importance of the E-learning domain, our expertise on it, and our

access to an E-learning environment, we have decided to focus on implementing LTRS for

the E-learning domain.

1.2 Research Objectives

The main research question in LTRS is: �How can we produce recommendation sequences

that successfully conduct users toward a long term goal, while satisfying their requirements?�.

Subsequently, the main research objective in LTRS is to design a sequential recommendation

method that is able to attain strategic goals of users and platform managers. As explained

in the previous section, in this thesis, we concentrate on implementing a LTRS for the E-

learning domain. Hence, we de�ne our main research question as follows: �How can we

generate recommendation sequences (learning paths) that maximize a user's score under

a given time restriction?�. Our main objective is to design a sequential recommendation

method that is able to maximize a user's score while satisfying his/her available time.

The detailed objectives of this thesis are:

1. Providing a systematic review on learning path personalization methods. For that, we

need to:

(a) Identify the main concepts in E-learning, such as learning objects (LO) and

learning path.

(b) Identify the main parameters that are used to personalize the learning paths, such

as competency level and learning style.

(c) Present the methods and algorithms that are used to personalize learning paths

as well as the methods that are used to evaluate the personalization methods.

(d) Find the most important challenges of path personalization methods.

2. Designing a method for generating sequences (paths) that maximize a user's score in a

limited time. Therefore, to achieve this objective we plan to:

(a) Identify the required information from a user to generate paths.

(b) Identify algorithms and techniques that can be useful for designing a method to

generate personalized paths. Our aim is to design an adaptive method, which

modi�es a learning path regarding a user's feedbacks during his/her learning

process.
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(c) Design a method to estimate learning time and score for the learning paths.

(d) Design a method to estimate the probability of error for the estimated learning

time and score for the generated paths.

3. Using appropriate evaluation measures and methodologies for assessing the success of

the proposed method.

1.3 Contributions

In this thesis, we provide four contributions. These contributions are published. The

publications are listed in section 1.4.

1. We survey the state-of-the-art on learning path personalization methods as well as

detailing their advantages and disadvantages. In addition, we highlight the most

signi�cant challenges of these methods, which need to be tackled in order to enhance

the quality of the personalization (5'th paper in section 1.4.1).

2. We propose an adaptive learning path generation method that takes into consideration

a user's feedbacks (e.g. score), restriction and background. It uses an algorithm to

recommend learning paths to users and if they could not learn the recommendations,

it recommends auxiliary LO (3'rd and 4'th papers in section 1.4.1).

3. We develop various methods to estimate time and score for paths for each user using

Item Response Theories [AY14], Clustering techniques [JK13] , Matrix Factorization

[KBV09] (3'rd and 4'th papers in section 1.4.1). Researchers often use static learning

time values that are speci�ed by a course expert and mentioned in the metadata of LO

for estimating the time for paths.

4. We have implemented our recommender using R programming language (6'th item in

section 1.4.1). For that, we used the SQLite, which is a free library that implements a

self-contained SQL database engine. We also have recoded our recommender method

in Java and embedded it in Enki. Enki is a web-based learning environment for

programming languages. We expect this system will be used at the department of

computer science of the University of Porto to help students for learning programming

languages.

1.4 Publications and Applications

This section provides a list of the author's publications and applications that are produced

during his Ph.D. The listed published papers are divided in two parts, the works that are

used directly in this Ph.D. thesis and the ones that are not used.
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1.4.1 Works included in this thesis

1. [NJL15a] Nabizadeh, A. H., Jorge, A. M., & Leal, J. P. (2015). Long Term Goal

Oriented Recommender Systems. In WEBIST (pp. 552-557).

2. [NJL15b] Nabizadeh, A. H., Jorge, A. M., & Leal, J. P. (2015). Long Term Goal

Oriented Recommender Systems. In European Conference on Machine Learning and

Principles and Practice of Knowledge Discovery in Databases (ECML-PKDD), Ph.D.

consortium.

3. [NMJPL17] Nabizadeh, A. H., Mário Jorge, A., & Paulo Leal, J. (2017, July). RU-

TICO: Recommending Successful Learning Paths Under Time Constraints. In Adjunct

Publication of the 25th Conference on User Modeling, Adaptation and Personaliza-

tion(pp. 153-158). ACM.

4. Nabizadeh AH, Jorge AM, Leal JP. Estimating time and score uncertainty in gener-

ating successful learning paths under time constraints. Expert Systems. 2018;e12351.

https://doi.org/10.1111/exsy.12351.

5. Nabizadeh, A. H., Mário Jorge, A., & Paulo Leal, J. (2018). Learning path personal-

ization and recommendation methods: a survey of the state-of-the-art. Submitted to

the IEEE Transactions on Learning Technologies.

6. E-learning recommender system. Implementing our learning path recommender ap-

proach using R programming language. We also implemented and embedded it in

Enki [PLQ16], which is a web-based learning environment for programming languages.

This system is a part of Mooshak 2.0, a web environment for automated assessment in

computer science (https://mooshak2.dcc.fc.up.pt/rutico).

In [NJL15a] and [NJL15b], we present the main idea of Long Term Goal Recommender

Systems (LTRS), which directly is related to this thesis. We also introduce the research areas

that can be used for developing LTRS, and the methods that can be applied to evaluate the

quality of this system.

In [NMJPL17], we present RUTICO, which is an example of Long Term goal Recommender

Systems (LTRS). RUTICO utilizes a Depth-�rst search (DFS) algorithm to �nd all possible

paths for a learner given a time restriction. It also estimates learning time and score for the

paths and �nally, it recommends a path with the maximum score that satis�es the learner

time restriction.

In "Estimating Time and Score Uncertainty in Generating Successful Learning Paths under

Time Constraints", we extend the idea of RUTICO. In this paper, in addition to introducing

several methods for estimating time and score for the generated learning paths, we present

probability of order for the estimated time and score for the paths. The probability of error
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for score is the probability of underachieving the estimated score for a learning path by the

user. The probability of error for time indicates the probability of not completing a learning

path in the user's limited time.

In our survey, which is on the learning path personalization methods, we present an overview

of the methods that are applied to personalize learning paths as well as their advantages

and disadvantages. We also describe the main parameters for personalizing learning paths.

In addition, we present approaches that are used to evaluate path personalization methods.

Finally, we highlight the most signi�cant challenges of these methods.

The last item is an E-learning recommender system that we have developed based on paper

number 5. We plan to use our recommender in order to help students in their studies.

1.4.2 Works not included in this thesis

1. [NJTY16] Nabizadeh, A. H., Jorge, A. M., Tang, S., & Yu, Y. (2016, July). Predicting

User Preference Based on Matrix Factorization by Exploiting Music Attributes. In

Proceedings of the Ninth International C* Conference on Computer Science & Software

Engineering (pp. 61-66). ACM.

In this paper, we propose a method for predicting preferred music feature's value (e.g. Genre

as a feature has di�erent values like Pop, Rock, etc.) of users by modeling not only usage

information, but also music description features (music attribute information and usage data

are typically dealt with separately). Our method is based on Matrix Factorization (MF) and

considers music feature's values as virtual users and retrieves the preferred feature's value

for real target users.

1.5 Thesis Outline

The thesis structure is as follows.

• Chapter 2 provides the related work on learning path personalization methods and

explains the parameters that these methods used to personalize paths. In addition, it

describes the approaches that are applied to evaluate the learning path personalization

methods. Finally, it highlights the most signi�cant challenges of these methods.

• Chapter 3 details the main objective of this thesis. It also explains the main problem

that needs to be solved during this Ph.D. thesis. In this chapter, our main problem is

also divided into sub-problems and each of them is explained in detail.

• Chapter 4 presents two methods for generating learning paths as well as the proposed

approaches for estimating time, score and probability of errors for the paths. This
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chapter �rst explains a method that uses a one-layer course graph to generate paths,

and describes its drawbacks. It then details the second method, which is based on a

two-layered course graph, to cover the problems of the �rst method.

• Chapter 5 presents the quality assessment of time and score estimation methods that

are presented in chapter 4. In this chapter, we also describe the datasets that we have

used for our evaluation.

• Chapter 6 details an experiment that is performed to compare the performance of our

recommender with another E-learning system that delivers LO to users without any

recommendation. This chapter also explains the development of our recommender as

well as tools that are used to implement it.

• Chapter 7 concludes the work, describes the main limitations and suggests future

research directions.
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Chapter 2

State of the art

Technological and pedagogical innovations are rede�ning education. At the nexus of this

convergence is E-learning. Nowadays using E-learning systems such as Intelligent Tutoring

Systems (ITS) [PR13] has become a routine. These systems aim to deliver educational

resources to users [NMJPL17]. They have several advantages over the traditional learning

methods where a teacher was playing the main role and controlling a classroom. The

main advantages are availability, reduced cost, improved collaboration, enhanced �exibility

(students learn at their own convenience). [TJ15, DSM12].

In the traditional form of E-learning systems, these often caused learning disorientation

and cognitive overload by providing users with a bag of disorganized learning materials

[BBR13, YLH10]. These problems could become nontrivial when the users had a restricted

learning experience, particularly when they were not familiar with a course, or when they

had limited time to learn a course [Nai16].

Hence, during the early 1960s, E-learning systems started using a directional sequence of

learning materials [YLH10, YD16], and became relying on curriculum sequencing mecha-

nisms. These mechanisms provided users a learning path through learning materials [Chi10,

MKKP10]. By generating the learning paths, the E-learning systems o�ered a "one size �ts

all" approach, since they provided the same educational resources in the same way to users

with di�erent pro�les.

"One size �ts all" causes several problems. One of the problems is frequent users' failure, since

by using this approach the E-learning systems simply ignore the users' knowledge background

and their ability to learn. Thus, users are at risk of wasting time with the materials that they

are not able to learn. Inability to persuade the users and engage them with the system is

another problem, since the users' preferences (e.g. learning style) are disregarded by using the

"one size �ts all". Another problem is ignoring the users' progresses and changes during the

learning process, which negatively in�uences the e�ciency of the E-learning systems [KS05].

All mentioned problems cause users' abstention from using the system before completing a

9
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learning process. This incident is called dropout [MLO+16], and its high rate indicates users'

dissatisfaction or mismatch with the learning process and method [KS05].

Personalized learning is proposed as an alternative to the "one size �ts all", in order to

cover the mentioned problems [VA13]. It refers to approaches that generate learning paths

considering the individual di�erences in learning preferences, goals, abilities, knowledge

background, etc [DHC17]. Since the late 1960s, researchers have attempted to address the

personalization, using di�erent parameters and approaches, but they faced di�erent problems

and challenges. In this section, a systematic and comprehensive research on learning path

personalization methods is presented. We expect that after reading this chapter the reader

will have a fairly broad background on the recent personalization studies (main focus is on

the studies after 2010), and is able to understand:

• The key concepts in E-learning, such as learning object, learning path, etc.

• The main parameters to personalize the learning paths, such as users' learning style,

competency level.

• The methods and algorithms that are proposed to personalize the learning paths.

• The approaches and techniques to evaluate these methods.

• The most signi�cant challenges of these methods.

In addition to this chapter, Appendix A provides more information about the main studies

that are explained in this chapter. The remainder of this chapter is structured as follows.

In section 2.1, we present the terminology that is commonly used in the E-learning area.

Section 2.2 highlights the parameters that are applied for personalizing the learning paths.

This section is followed by section 2.3, which covers the main personalization methods (Course

Generation (CG), Sequential Pattern Recognition (SPR), and Course Sequence (CS)), as well

as their advantages and disadvantages. Section 2.4 describes the methods that are used to

evaluate the learning path personalization methods. In section 2.5, we present the main

challenges that the personalization methods are facing.

2.1 Terminology

Currently, a large variety of terms is used in the literature on E-learning systems. We start

by providing a set of operational de�nitions on some of the main terms. For this purpose,

we use a modular content hierarchy, which is de�ned by the standard Autodesk structure

[Hod06, DH03]. In this hierarchy, the contents are divided into �ve abstraction levels, but we

only describe three of them: learning object (LO), Lesson, and Course. The two other levels
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(i.e., Raw content, Information object) are disregarded since they have never been mentioned

in any path personalization study. Furthermore, reviewing the literature enabled us to add

one more level, called Topic, to the modular content hierarchy (�gure 2.1).

1. Course: In the course level, which is the topmost level, the collections are gathered

from the topic level (regarding a large objective) in order to build a thematic course.

A course might be mentioned as a "subject" in some studies. The courses are often

represented as oriented graphs. In these graphs, vertices indicate the LO or topics

(depending on the abstraction level), and directed edges represent the prerequisite

relations among the vertices [NMJPL17].

2. Topic: A course is composed of a few learning units called topics. Each topic covers

a unique concept. For example, in the C programming language course the topics are

arrays, data types, pointers, functions, loops, etc. The topics might be referred as

"chapters" or "learning units".

3. Lesson: Each course needs several lessons in order to be learnt, and each lesson can

cover one or more topics of a course. For instance, in the C programming language

course, the loop topic needs a lesson, while several topics, such as data types and arrays,

require one lesson.

4. Learning object: LO are the small units of learning content that are reusable and

constructed regarding a certain learning objective [BDL14, DG13]. A LO might appear

in di�erent form, such as a text �le, a power point, an audio, a video, etc. In some

studies, LO are referred as "learning materials" or "knowledge units".

Any sequence of the mentioned contents (LO, topics, etc.) that satis�es their (LO, topics,

etc.) prerequisites, while guiding the users in order to accomplish the learning goals, is called

a learning path [MZB+16, AK16]. Generating a path that satis�es the preferences and

requirements of a user is the main goal of path personalization methods. For this purpose,

the personalization parameters are applied to determine the users' characteristics and

needs. These parameters explain the users' requirements and their divergent features, such as

learning styles, knowledge background, etc., and are applied to deliver personalized learning

scenarios [EAJ+10]. Learning scenarios help not only focus on generating a path to

keep the users motivated and engaged with the learning process, but also providing them

with the best possible educational materials that e�ectively improve their knowledge. The

combination of the personalization parameters to personalize the learning scenarios is called

personalization strategy [EAJ+10].
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Figure 2.1: Content hierarchy.

2.2 Personalization parameters

As mentioned before, personalization parameters are critical for providing essential infor-

mation to personalize the learning paths. These parameters describe various characteristics

and requirements of the users, such as users' knowledge background, their goals and learning

styles, etc. [EAJ+10, ZTPS07]. In this section, we detail the personalization parameters that

are mainly used in path personalization methods.

Several researchers have considered di�erent personalization parameters to personalize the

learning paths, but all can be classi�ed into three main classes (Figure 2.2). Any personal-

ization parameter responds to one of these questions (1) why to learn?, (2) what to learn?,

or (3) how to learn?. The parameters that respond to "why to learn" question, consider the

learning goal and the motivation of the users, while those that concern "what to learn", enable

personalizing by taking into account the users' knowledge background and their competency

level. The ones that answer to "how to learn?", consider the users' preferences (e.g. learning

style) [EAJ+15, Jin11]. Although researchers, such as [EAJ+10, AJ09], have considered

di�erent personalization parameters, according to our survey the most signi�cant ones are

as follows:

1. Users' time limitations: This refers to a user's available time [LPK16, NMJPL17].

In existing path personalization methods, if users intend to learn a path, they are

required to spend a speci�ed amount of time, which is often �xed and given by the

method. Due to various reasons, a user might not be able to allocate enough time



2.2. PERSONALIZATION PARAMETERS 13

to follow an entire path. Some of the main reasons are: user's lack of time because

of multitasking, mismanaging time, etc. Hence, the information that this parameter

provides is used to generate a path that a user is able to learn properly in his/her

available time.

2. Users' mastery learning: Mastery learning, which is a stringent form of competency-

based education, indicates how much the users have mastered the knowledge and skills

(competencies) required for a particular course or task [MIBW14]. This is a dynamic

parameter that might change during the learning process.

3. Users' learning style: This is an important parameter that indicates how a user

learns and likes to learn [DG13]. There are several well-known learning style theories

and indexes that are used by researchers, such as La Garanderie, Honey-Mumford,

Kolb, and Felder and Silverman, which are described in [EAJ+10, KMVIB11]. Ac-

cording to our survey, the Felder and Silverman is the most frequent used index in the

path personalization area. This index assesses variations in individual learning style

preferences across four dimensions: Active/Re�ective users, Sensing/Intuitive users,

Visual/Verbal users, and Sequential /Global users.

4. Users' knowledge background: It considers the knowledge that the users obtained

before receiving the recommendations. This knowledge has several bene�ts such as

easing the learning process, improving reading comprehension, etc. [AK16, GMS12].

It can be divided in two di�erent types:

(a) Objective pre-knowledge level : Objective data such as user's grades on a past

course, or pre-test scores on a course.

(b) Subjective pre-knowledge level : Users specify their pre-knowledge levels explicitly

with respect to their own understanding [XZW+17, FXP+10].

5. Users' goal: Learning goals are applied to design and plan the learning process, and

to arrange the LO in the form of paths that satisfy the users' goals. Depending on the

users, the learning goals might be di�erent. Goals can be deadline-driven, when a user

intends to complete a learning process by a given time [LPK16]. They can be score-

driven, when a user aims to maximize his score [NMJPL17]. Learning rewards [DLK11],

users' competency [BDL14, Chi10], and length of the paths (i.e., shortest path) [BDL14]

are other types of goals that have already been considered by the researchers.

It should be clear that some of the personalization parameters are dynamic (e.g. learning

style, mastery learning) and their values might change during the learning process. Further-

more, some of the parameters (e.g. knowledge level) might not be identi�ed accurately in

advance, but only during the users' interactions with the system. Therefore, a user pro�le,
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Figure 2.2: Personalization parameters classi�cation.

which is modeled based on the personalization parameters, needs to be contemplated and

updated regularly [DG13, IALS12].

Finally, the personalization parameters that are used by the researchers (main focus is on the

studies after 2010) are summarized in table 2.1. As it is shown in this table, Mastery level

is the most frequently used parameter, while time and knowledge background are the ones

that are used the least (less than 30 % of the studies used these two parameters). In this

table, the learning goal was omitted since each paper has its own learning goals, and only

the type of goal is di�erent. In complement to table 2.1, �gure 2.3 presents the proportion

of personalization parameters that are used by researchers per year.

Table 2.1: Personalization parameters that are used in the studies. In this table, column

"Type" indicates the type of personalization methods (CG, SPR, CS) that are used in the

studies.

Ref. Type Time Mastery Style Know. Back Ref. Type Time Mastery Style Know. Back

[BDL14] CG X [FXP+10] CG X X X

[LPK16] CG X [YLH10] CG X

[AK16] CG X X X [CLM10] CG X X

[DBL13] CG X [GMS12] CG X X

[GFM+13] CG X X [SRR12] CG X

[YLL14] CG X [EAJ+10] CG X X X

[DG13] CG X X [DLK11] CG X X

[YLL10] CG X [KMVIB11] SPR X X

[XXVDS16] CG X X X [VMIB13] SPR X X X

[XZW+17] CG X X [FVFNN10] SPR X

[JBH+10] CG X [YJT13] CS X X

[SP15] CG X [LCCT12] CS X X

[YHY13] CG X [GO13] CS X

[Chi10] CG X [UM10] CS X

[BDCS10] CG X [GK+16] CS X

[BBR13] CG X [CDSG14] CS X X X

[NMJPL17] CG X X [SÖY13] CS X

[AJ09] CG X X X X [YLL12] CS X
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Figure 2.3: Proportion of personalization parameters that are used by publication year.

2.3 Personalization methods

Automatic generation and personalization of a learning path, based on a user's learning goals

and preferences, is the main task of path personalization methods. Given a set of LO (lessons

or courses) and personalization parameters, researchers have proposed various approaches

that automatically generate a personalized learning path for a user. The quality of these

methods' outcomes depends highly on the quality of the path personalizer method per se,

on the LO, and on the parameters that are used for personalization. These personalization

methods automatically retrieve the LO (lessons or courses) from a repository and assemble

them in the form of learning paths. Selecting and assembling LO needs to support the users'

goal. Such goals require a concise and clear de�nition and representation.

Since the late 1960s and early 1970s, various learning path personalization methods have been

proposed, using di�erent sets of goals, parameters, techniques, and algorithms. According to

[NMJPL17, NJL15a], path personalization methods can be categorized into two main classes:

(1) course generation, and (2) course sequence. In this section, we describe recent learning

path personalization methods in detail, as well as their advantages and disadvantages.

2.3.1 Course Generation (CG)

In the Course Generation methods (CG), after determining a user's characteristics and

requirements, the entire learning path is generated and recommended to him/her in a single
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recommendation [BDL14, BDCS10, CLM10]. Some researchers focused on the course gen-

eration to facilitate a group of users rather than a single user [KEI14, XZW+17, FXP+10].

To this end, Kardan et al. presented a method called ACO-Map, which generates paths

in two stages [KEI14]. In the �rst stage, K-means algorithm [Jai10] is applied to divide

users into groups based on the results of a pre-test. In the second stage, the ant colony

optimization method [DS10] is used to generate a path for each group. Groupized learning

path discovering (GLPD), which was introduced by Feng et al. in 2010, is another CG group

recommender method. In this method, a topic graph is initially generated, and pre-knowledge

and preferences of the users are collected. The GLDP then estimates the temporal boundaries

for a group of users (max and min time to learn a path). Finally, regarding the estimated

temporal boundaries for a group and the required time to learn a path, a corresponding

strategy is selected to discover a path [FXP+10].

Other methods, instead of generating a path for a group of users, concentrate on personalizing

a path for a single user. For instance, Belacel et al. proposed a CG method based on graph

theory. In their graph, the LO are vertices and the edges present the dependency relations

among vertices (prerequisite). Their method starts with reducing the solution space by

obtaining an induced sub-graph of the learning graph (eliminating LO that are irrelevant to

obtain the goal). It then utilizes the branch-and-bound algorithm in the sub-graph to �nd

the shortest path by minimizing the number of required competencies [BDL14].

Another CG method that is based on graph theory is called CourseNavigator [LPK16]. This

method is based on a graph search algorithm. It generates all paths given a set of users'

inputs. The users' inputs are constraints (e.g., maximum number of courses to take per

semester, courses to avoid), learning goals (e.g., graduation semester, a set of desired courses),

users' enrollment status (e.g. starting point), and their preferred ranking for the output paths

(e.g., shortest, most reliable, etc.). Given the set of inputs, this method is able to generate

three types of learning paths: (a) deadline-driven paths, (b) goal-driven paths and (c) ranked

paths (regarding the user's ordering preferences). In the CourseNavigator, a recommended

path is a sequence of semesters. In each semester a user needs to take a number of courses.

In this method, the researchers do not estimate how much time a single course might take for

a user, and therefore, the learning time of a course is the same for all users. Similar to the

CourseNavigator method, Xu et al. developed an automated method to generate a sequence

of courses for a user [XXVDS16]. The main goal of this method is to minimize the graduation

time of the users while maximizing their overall GPA. In this method, a forward-search is

�rst executed, from quarter 1 (each academic year consists of four quarters) to quarter T ,

to identify all possible course states that can be in a path. Then, a backward-induction

is performed, from quarter T to 1, to compute the optimal set of courses that should be

considered in each possible course state. Finally, an algorithm, which was developed using

multi-armed bandits [GGW11], recommends a course sequence that reduces the graduation

time while increasing the overall GPA of a target user. However, in both CourseNavigator



2.3. PERSONALIZATION METHODS 17

and the method that is proposed by Xu et al., the researchers do not take into account how

much time a single course takes for a user in a semester (i.e., learning time of a course is a

�xed value for all users).

Educational Concept Map (ECM) [AK15] is also employed successfully in CG methods. As an

example of an ECM based method, we can refer to Adorni and Koceva's, which is presented

in [AK16]. In their method, a user initially determines his/her knowledge background by

selecting a set of topics from ECM, which trims the known topics from the map. The output

of the trimming process is checked by an expert, and �nally, after the user chooses the

initial and target topics, the paths are generated using ENCODE [Koc16], which executes

an algorithm to linearize the map.

The methods that we have detailed so far, are mainly focused on generating learning paths,

regardless of the user's time restriction to learn them. There are some methods that take into

account this limitation, such as [GFM+13, BBR13, NMJPL17]. For example, in this thesis we

introduced a method called RUTICO, which is an example of Long Term goal Recommender

Systems (LTRS) [NJL15a]. The main goal of RUTICO is to generate a path that maximizes

a user's score under a time restriction. In this method, after locating a user in the course

graph, a Depth First Search (DFS) algorithm is applied to �nd all possible paths for a user,

given a time restriction. RUTICO also estimates learning time and score for the generated

paths, and �nally, recommends the path with the maximum score that satis�es the user's

time restriction. Basu et al. also developed a CG system to recommend a path to a user that

satis�es his/her time restriction [BBR13]. Their system consists of two major components:

Learning Path Indicator (LPI) generating component and Learning Path Generating (LPG)

component. In this system, a function is initially de�ned based on three system parameters

: (1) number of post-requisite of a subject (course), (2) learning time of a subject (course),

and (3) number of credit for a subject (course). Then, a �tness function is de�ned regarding

personal restrictions and preferences of a user, such as a�ordable time. Ultimately, a LPI is

generated using the estimated values from the �tness function and the system parameters'

function. The generated LPI is passed to the LPG component to formulate a path for a user.

In the LPG, to generate a path, each subject (course) is chosen by applying a forward greedy

algorithm on the LPI values.

In addition to the mentioned studies, there are other CG methods that have been proposed

using di�erent algorithms and techniques : a decision tree classi�er [LYHC13], a markov

decision process [DLK11], greedy algorithms [DBL13, BBR13], a Hierarchical Task Network

(HTN) [GFM+13], a Case-Based Reasoning/Planning [DG13, GMS12], genetic algorithms

[BDCS10, TLF12], a Planning Domain De�nition Language (PDDL) [GMS12, GFM+13],

a Bayesian network [SRR12], etc. In table 2.2, we have summarized the techniques and

algorithms that have been used by researchers.

Although CG methods are widely used by researchers to generate learning paths, they have



18 CHAPTER 2. STATE OF THE ART

several drawbacks. One of the main disadvantages is ignoring a user performance and the

changes that occur during the learning process. Thus, users are at risk of wasting time, by

receiving a wrong path or a path that they are not able to follow. Also, these methods often

become slow when they receive a large amount of data (e.g. large number of LO and users).

Therefore, they might not be able to respond quickly enough to keep the users engaged.

2.3.1.1 Sequential Pattern Recognition (SPR)

Sequential Pattern Recognition methods (SPR), which are a subset of CG methods, are less

used than the other learning path personalization methods. In these methods, sequential

pattern mining approaches [AS95] are mainly applied to discover a learning path for a user

from the transactions of similar users. Users are similar if they have similar initial states,

preferences, goals, etc. In comparison with the CG methods that are able to generate paths

even without users' transactions data, SPR methods require transactions data for the path

generation.

There are a few studies that used SPR methods, such as [KMVIB11, VMIB13, FVFNN10].

As an example, we refer to the Protus method that was introduced by Vesin et al. in 2013

[VMIB13]. In Protus, users are clustered regarding their common attributes (e.g. age, class,

etc.) and preferences. Then, the method �nds a cluster for a target user and considers the

sequence of lessons that each member in that cluster selected (lessons are rated by users and

based on sequences which successfully guided the users). Finally, Protus uses association

rule mining to �nd all successful sequences of the target cluster, and recommends a sequence

based on users' ratings. As another example, we explain the Fournier-Viger et al. proposal

[FVFNN10] that is illustrated in the context of CanadarmTutor [KNB05]. CanadarmTutor

is an Intelligent Tutoring Systems (ITS) [PR13] to learn how to control a robotic arm. This

system initially (in the observing phase) records the solutions of the users to move the arm

from an initial con�guration to a goal con�guration. In the next phase (learning phase),

an algorithm [FVNN08] is applied to �nd all sequences with a support higher or equal to a

minimal support (support is the proportion of transaction in the data in which a sequence X

appears). In the �nal phase (application phase), the system provides assistance to a target

user by using the knowledge that was gained in the second phase. The assistance is provided

by recognizing a user's plan.

In SPR methods, researchers apply sequential pattern mining methods and algorithms, such

as Apriori [AS95], to mine patterns from transactions data, but they often face two main

problems. First, current pattern recognition methods such as Apriori might require a lot of

memory, and second, they �nd frequent patterns and rare cases are ignored.
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2.3.2 Course Sequence (CS)

Unlike CG methods, Course Sequence approaches (CS) recommend a path LO by LO, as a

user progresses in the learning path [KS05, NMJPL17, NJL15a]. Di�erent CS approaches

have been proposed: using an Association Link Network (ALN) [YLL12], Evolutionary

Algorithms (EAs) [LCCT12, GK+16], Item Response Theory (IRT) [YJT13, SÖY13], Bayes

theorem [XWCH12], etc. In 2016, Govindarajan et al. applied an evolutionary algorithm

(Parallel Particle Swarm Optimization) to predict a dynamic path for users [GK+16]. Their

method clusters users into four groups according to their pro�ciency level. The pro�ciency

comprises both measuring a target outcome achievement, and the competence and meta-

competence changes during the learning process for each de�ned learning outcome. Then,

the method predicts a dynamic path based on the clustered information.

Similarly, two evolutionary algorithms were used by Li et al. to develop a CS method.

In their method, learning concepts are composed in the form of a sequence, which is the

base for presenting a sequence of LO. Next, the collaborative voting method is applied to

automatically adjust the di�culty level of LO according to the users' feedback (step 2). In

step 3, Maximum Likelihood Estimation (MLE) is used to analyze the users' ability and goals.

Finally, a Genetic Algorithm (GA) and Particle Swarm Optimization (PSO) are applied to

generate a path using the results obtained in step 3. Once a user completes a LO, the

feedback information will be used to adjust the di�culty level of LO in step 2, and update

the user's ability and goals in step 3 [LCCT12]. The users' ability is also noted by [YJT13]

to personalize learning paths. In this study, an adaptive e-learning system is proposed using

an ontology-based knowledge modeling. This system receives the user's ability, knowledge

background, learning style and preferences as inputs and recommends a path. It then analysis

the user's responses using the Item Response Theory (IRT) [AY14] and updates the user's

ability. The updated data is used to modify the path by recommending the LO that matches

the user's ability.

Another system that uses the Item Response Theory was proposed by Salahli et al. [SÖY13].

Their system takes a few steps for path personalization. Initially, the topics are identi�ed,

their relations and di�culties are determined, and the users' pro�les are also generated. Item

Response Theory (IRT) [AY14] is then applied to estimate the understanding degrees of the

topics for each knowledge level. In the next step, when a target user starts using the system,

his/her knowledge level and the di�culty of a selected topic are retrieved to estimate his/her

understanding degree. Then, the LO are recommended to the user according to his/her

understanding degree. After completing a LO, the system checks if the user understood the

LO. If the user was able to understand the LO, the user's knowledge on the topic is tested,

and his/her knowledge level is re-estimated. Accordingly, the understanding level of the user

is re-estimated with the Law of Total Probability (LTP) [Khr10]. If the understanding degree

is low, the system recommends the LO to improve the user's knowledge on the prior topics.
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Figure 2.4: Proportion of personalization methods per year.

Although CS methods take into account the users' progresses and changes during the learning

process, which is one of the main problems with CG methods, they still have several problems

that need to be considered. The �rst one is estimating a personalized time period to evaluate

the user's knowledge and updating his/her pro�le. The current studies consider a �xed

amount of time for all users to evaluate and update their pro�les. Evaluating a user and

updating his/her pro�le is time consuming and might be unnecessary, while postponing the

tasks might result in recommending improper LO (mismatching the user's ability), which

causes misleading the user and wasting his/her time. In addition, identifying the critical

information that needs to be updated is important because the personalization parameters

may have di�erent weights for di�erent users.

After describing di�erent types of learning path personalization methods (CG, SPR and

CS), we present in table 2.2 the main algorithms/methods/techniques that were used by

researchers mainly after 2010. In the same table, we describe the recommendation strategies

that were used in these studies, as well as their types. In addition, �gure 2.4 presents the

proportion of personalization methods used by researchers per year.

2.4 Evaluation methods

Evaluation is always one of the main challenging phases in the learning path personalization

methods. Besides o�ine evaluation, these methods must be evaluated with real users in a

live environment. Researchers evaluated these methods with Information Retrieval measures
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(Precision, Recall, etc.) [GK+16], Machine Learning measures (RSME, MAE, etc.)

[NMJPL17, KMVIB11] and Decision Support System (DSS) approaches (e.g. measuring

user satisfaction, user loyalty, etc.) [EAJ+10]. Although path personalization methods are

often evaluated by IR and ML measures, it is important to monitor the users' transactions

and measure their satisfaction. This is important because if users are unsatis�ed with the

recommendations, they might drop out [MLO+16, LC11], and subsequently the learning goal

might not be accomplished.

In this section, we describe the experiments that are applied to evaluate learning path person-

alization methods and categorize them into four main classes: o�ine, system performance,

online and user study experiments. We start with o�ine experiments, which do not require

live users interactions and are easier to perform. We then describe the system performance

experiments, which aim at attaining the highest performance for the method. System

performance experiments are followed by online evaluation, which are the most reliable

experiments when the users of the path personalization method are not informed about

the evaluation. Finally, we describe the user study evaluation, where a path personalization

method is tested by users in a controlled environment. The users then report according to

their experience.

2.4.1 O�ine evaluation

O�ine experiments simulate the users' behavior with the path personalization method. The

main assumption of these experiments is that the users have similar behavior during the data

collection phase and when they are using the method. Being standalone is one of the main

advantages of these experiments, which do not require live users' interactions. In addition,

this advantage allows us to compare the performance of various algorithms and methods with

a small cost [SG11].

Although measures such as Precision, Recall, MeanAbsoluteError (MAE) are required to

assess the path personalization methods, they are only used by a few studies. For example,

Kla²nja-Mili¢evi¢ et al. [KMVIB11] applied the Mean Absolute Error (MAE) [WM05] to

measure the deviation of recommendations from their true user-speci�ed values. Similarly,

the MAE is used by Nabizadeh et al. [NMJPL17] to evaluate the quality of methods that

are proposed to estimate the learning time and score for generated paths.

Despite being easy to use and having a low implementation cost, this type of experiments

present some reliability risks, since the users' behaviors might change during the learning

process and these experiments do not take these changes into account.
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2.4.2 System performance

The main goal of the system performance experiments is to measure the performance of

the system. These experiments are used in response to questions such as "How fast is

the system?" (response time), "Does the system work with large datasets?" (scalability),

or some other questions that address the performance quality of the system. They are

often performed after o�ine experiments, since we initially need to be sure that the system

generates acceptable results, and then we attempt to evaluate and improve the performance

of the system.

In the learning path personalization methods, some studies such as [LPK16, CLM10, LCCT12,

JBH+10] employed system performance evaluations. For instance, in [DBL13], the authors

measured the average calculation time for learning paths. Similarly, Li et al. assessed their

method by analyzing the execution time [LCCT12]. In this study, the execution time of

two evolutionary algorithms (GA [KHUG10] and PSO [Ken11]) were compared regarding

di�erent numbers of LO. Another example is measuring the stability, which was performed

by Garrido et al. in 2012 [GMS12]. In their study, the path stability was evaluated regarding

the number of changes (expressed in terms of number of LO) between the generated path

and the referenced one. They also evaluated the system scalability by considering the time

that a CPU takes to generate a path.

In this section, we attempted to mention various experiments that were performed on the

system performance. A glance at the literature indicates that researchers often used these ex-

periments to analyze the required time for generating paths. Despite having a low evaluation

cost when compared with the online evaluation, system performance experiments present

some di�culties. First, it is not an easy task to determine the critical parts of the method

that need to be improved, and second, evaluating the detected parts to achieve optimum

performance is time consuming and not a trivial task.

2.4.3 Online evaluation

The main objective of learning path personalization methods is to enhance the users' knowl-

edge and skills. In order to evaluate how much a method was successful in accomplishing

this goal, it is necessary to measure the users' improvement when they are using the method.

For this purpose, online experiments can be used. These experiments provide more reliable

results than o�ine experiments since, in these experiments, the method is used by real users

performing real tasks.

Online experiments were used in several studies, such as [UM10, VMIB13, YHY13]. In

[KMVIB11], the successful completion of a course was used to assess the method. In this

study, users were divided into two groups when using the method (control and experimental

groups). The results of the experiment show that the users in the experimental group
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were able to complete a course in less time than the users in the control group. Xu et al.

compared the performance of the C programs that were written by the users in two di�erent

groups (control and experimental groups) [XWCH12]. In the same study, the researchers

also compared the grades' di�erences in two groups. Similarly, [CDSG14] and [FXP+10]

compared the grades of the users in two groups to evaluate their methods.

Although online experiments provide the most reliable results about the method and assisting

to prevent users' dissatisfaction, these evaluations are time consuming and have a high

performance cost.

2.4.4 User study

Another type of evaluation is the user study, which can be used as a complement to online

evaluation. In this type of evaluation, a controlled experiment is performed by asking a group

of users to perform a set of prede�ned tasks. This evaluation enables us to analyze the users'

interactions with a method. It also allows us to collect both quantitative and qualitative

information about the method. In order to collect the qualitative information, we might use

the questionnaires and ask the users to answer some questions like "Did you have enough

time to follow the path?" or "Do you think the presented task was easy to complete?", etc.

These questions can be asked before, during and after completing a task. The quantitative

information, such as time to perform a task, can be collected based on the quantities achieved

for a task [RRS11, SG11].

As mentioned above, distributing questionnaires among the users in order to report on their

experiences, is one of the main methods to conduct the user study. It facilitates collecting

information about the users' experiences with the method. For example, in [LCCT12], the

researchers designed a questionnaire that is composed of �ve questions (questions are in a

�ve-point scale) to evaluate the users' satisfaction. Their evaluation was conducted in two

stages. In the �rst stage, the feedback information from 41 users was collected to adjust

the di�culty level of LO. In the second stage, after adjusting the di�culty level of LO, the

feedback from 62 users, who did not participate in the �rst stage, was collected. In 2011,

Kla²nja-Mili¢evi¢ et al. evaluated the users' satisfaction regarding four main features of their

system (speed, accuracy, adaptive, convenience) by means of a non-mandatory questionnaire

[KMVIB11].

Although user studies might provide information about aspects that are hard to evaluate,

such as users' satisfaction, these experiments have several drawbacks. First, user studies

are costly to conduct both in terms of time and money. Second, due to the di�culty and

high cost, normally user studies are conducted on a small portion of the users and tasks.

Therefore, the results of user studies cannot be trustable and generalized for all the users.

To overcome this problem, the population size of the experiment should be large enough
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to represent the users of the method in a real environment (i.e., represent a real situation).

Selecting such a population to perform the experiments is not a trivial task.

2.4.5 Evaluation methods summary

After describing the evaluation methods, we have summarized the type of evaluations that

were used by researchers. This information is presented in table 2.3. As shown in the

table, the system performance experiments were frequently used by researchers, while o�ine

experiments were only used a few times. Table 2.3 also shows that, in nine studies, the

researchers did not assess their methods with any type of evaluation. Figure 2.5 shows the

proportion of evaluation methods that were used by researchers per year.

Table 2.3: The evaluation methods that were used in studies. Column "Type" indicates the

type of personalization methods (CG, SPR, CS) that were used in the studies.

Ref. Type O�ine Performance Online User study Ref. Type O�ine Performance Online User study

[BDL14] CG [YLH10] CG

[LPK16] CG X [CLM10] CG X

[AK16] CG [GMS12] CG X X

[DBL13] CG X [NMJPL17] CG X X

[GFM+13] CG X X [AJ09] CG X

[YLL14] CG X X [TLF12] CG X

[HKYC10] CG X X X [DLK11] CG

[TLF14] CG X [SRR12] CG X

[KEI14] CG [EAJ+10] CG X

[DG13] CG X X [FVFNN10]* SPR X

[YLL10] CG X [KMVIB11] SPR X X X

[XXVDS16] CG X X [VMIB13] SPR X X

[LYHC13] CG X [YJT13] CS

[XZW+17] CG X X [LCCT12] CS X X

[JBH+10] CG X X [GO13] CS X X

[SP15] CG X [UM10] CS X

[YHY13] CG X X [GK+16] CS X X

[Chi10] CG [XWCH12] CS X

[BDCS10] CG [CDSG14] CS X

[BBR13] CG [SÖY13] CS X

[FXP+10] CG X [YLL12] CS X X

* We consider the proposal that is illustrated in the context of CanadarmTutor.

Finally, all mentioned evaluation methods are not solely enough, and cannot provide trustable

results. To this end, researchers often use more than one evaluation method to assess their

path personalization methods. Furthermore, the lack of a general evaluation framework that

enables us to compare di�erent path personalization methods, is another di�culty in the

evaluation.
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Figure 2.5: Proportion of evaluation methods per year.

2.5 Challenges

Although there are several studies that were conducted on learning path personalization

methods, there are still a set of limitations and challenges with regard to these methods.

Introducing these challenges can help researchers addressing current drawbacks and give rise

to signi�cant results. We previously mentioned several challenges and di�culties regarding

path personalization methods, but in this section we present additional challenges, which we

consider important for the development of the research on these methods.

2.5.1 Users' time restrictions

One of the main users' requirements is to learn a path that they are able to timely complete.

Satisfying this requirement and recommending such paths becomes more challenging when a

user is not able to devote enough time to learn a path. A user might not have enough time

due to di�erent reasons, such as mismanaging time, multitasking, etc. Therefore, we require

a path personalization method that takes into account the users' time constraints.

There are a few studies that consider this limitation, such as [GFM+13, LPK16, XXVDS16].

CourseNavigator [LPK16], which was proposed in 2016, is able to generate deadline driven

paths. In this method, given a deadline by a user, the method generates a path that consists

of a sequence of semesters, each semester presenting a number of courses that the user needs

to take regardless of the time that each course might take in that semester. Similarly, Xu et
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al. proposed a method to generate a sequence of courses for a user given a time-to-completion

[XXVDS16]. In [DLK11], the researchers introduced another system that recommends a path

taking into account the time constraint of a user. In this study, the available time of a user

is represented in minutes.

Despite addressing the users' time restrictions, in the aforementioned studies the learning

time of a LO or a course is often assigned by an expert and is �xed for all users. Hence,

estimating a learning time for a LO or a course taking into account the users' responses and

abilities can help generate more e�cient paths for the limited time of the users.

2.5.2 Scalability

The amount of data used as input to the learning path personalization methods is growing,

as more users and LO are added. Subsequently, the size of stored users' interactions data

can be large. Despite the large amount of data, the path personalization methods aim to

respond quickly in order to keep users engaged. Therefore, a key challenge is designing

scalable methods that can cope with the large scale datasets. Although scalability is one of

the main problems in learning path personalization methods, it is addressed only by a few

studies, such as [DBL13, GMS12, GFM+13].

In path personalization methods, scalability is often measured by checking a method's re-

sponses and resources consumption during the scaling up task (i.e., increasing the number of

LO and users) [GO13, DBL13]. For example, Garrido et al. evaluated the scalability of their

method by generating paths with 1, 2, 4, 8, 16, 32 and 64 users while measuring the execution

time [GFM+13]. In [GMS12], the researchers assessed the scalability by estimating the time

that a CPU required to obtain the paths. As another example, we can refer to [DBL13],

where the researchers measured the average calculation time for learning paths given a set

of LO.

Although researchers often measure the technical e�ects of the scalability on the methods,

such as running time of the methods, it is signi�cant to measure the side e�ects that the scal-

ability imposes on the methods, such as its in�uence on the accuracy of the recommendations.

Such analysis provides valuable information for future research direction.

2.5.3 Updating users' pro�les

The users' progresses, abilities and preferences might change during the learning process. In

addition, some of the users' characteristics, such as their knowledge level, cannot always be

identi�ed precisely in advance, and their actual values can be exposed during the learning

process. Therefore, the users' pro�les should be updatable, taking into account the users'

responses and changes during the learning process. This would enable us to generate paths
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that �t the users' requirements.

There are methods, such as the CS methods, that update the users' pro�les during the

learning process (CS methods are explained in section 2.3.2). These methods apply explicit

or implicit feedback to update the users' pro�les. Implicit feedback is derived from the users'

interactions with the path personalizer, such as the time that a user spends on a LO, or

which LO are not selected by the user. Although the information that the implicit feedback

provides cannot be obtained explicitly, the implicit feedback is more di�cult to collect than

the explicit one. Explicit feedback is obtained through the users' rates and comments. In

spite of being easy to collect, it does not always represent the actual information about a

user. Therefore, it is a nontrivial task to determine which type of feedback can be more

useful to update the users' pro�les.

Besides the ones mentioned, there are other challenges when updating the pro�les of the

users. Some of these challenges are represented in the questions that are listed below:

1. When does a user pro�le need to be updated? Should it happen after the same amount

of time for all users or does it depend on the user? Determining the updating time is a

challenging task since evaluating a user and updating his/her pro�le frequently is time

consuming and might not be necessary, while delaying it might result in recommending

improper LO (not �t to that user), which causes misleading the user and wasting

his/her time.

2. Which information in a user's pro�le needs to be updated?

3. Do the updated users' characteristics have the same importance when generating rec-

ommendations? Is there a ranking (weight) among them?

4. How can we check the validity of the updated information?

2.5.4 Course graph

In current studies, a course is often designed manually, in a di�cult and time consuming

task. A course, which is designed by a teacher, is a static graph, not changeable, and it

will be the same (regarding graph topology, weights for edges and nodes, etc.) for all users.

This means we have a graph that is teacher-centered rather than user-centered [Ahm13].

The teacher-centered design can be problematic, since the way that the users follow the

LO/lessons/courses might be di�erent from the paths that the teacher designed. Therefore, it

is of interest to design a course taking into account the collected information from the users,

including the one collected from the users' interactions with the path personalizer (i.e., similar

to the SPR methods where a path is generated considering the users' transactions).



2.6. SUMMARY 29

2.5.5 Evaluation

Due to various reasons, the evaluation is always a challenging task in learning path personal-

ization methods. One reason is the lack of a general evaluation framework that would allow us

to compare di�erent path personalization methods. Another reason is the unavailability of a

benchmark dataset to evaluate the methods. The available datasets are often proprietary and

cannot be released due to privacy concerns. Therefore, they cannot be used as benchmark

datasets. The availability of such datasets would allow researchers to compare their methods

accurately. A third reason is that, to have reliable evaluation results, path personalization

methods need to be evaluated with real users in a live environment. Hence, conducting such

an evaluation is time consuming and has a high cost of performance.

2.6 Summary

Lack of enough time for users to learn an entire learning path (course) motivates the de-

velopment of methods that generate learning paths under a limited time of a user. In

this thesis, we concentrate on developing a LTRS in E-learning domain, which generates

paths that maximize a user's score under a given time restriction. In this chapter, we have

made an introduction to learning path recommendation methods. Then, we have presented

the terminology that is commonly used in the E-learning domain. In addition, we have

described parameters that are used by researchers for personalizing the learning paths, such

as learning style, users' knowledge background, etc. We also have provided an overview

of the main personalization methods (CG, SPR, CS), and explained their advantages and

disadvantages. We then have detailed evaluation methods that are used to assess the quality

of learning path personalization methods. Finally, we have described challenges that the

learning path personalization methods are facing. All the terms and methods introduced

here are fundamental to understand the remainder of this thesis.



30 CHAPTER 2. STATE OF THE ART



Chapter 3

Long Term Goal Recommenders

Various approaches are introduced to generate learning paths based on attributes that char-

acterize learning contents and users' characteristics. A number of these approaches, which

are applied to generate a learning path for a user, are described in the previous chapter. A

learning path (course or curriculum sequence) includes steps for guiding a user to e�ectively

build up skills and knowledge.

Although existing learning path personalization methods, in particular course generation and

sequential pattern recognition methods, provide learning paths to support users during their

learning process, most of them do not take into consideration users' feedback, changes and

progresses. On the other hand, they often ignore the users available time, and mostly con-

centrate on what learning content needs to be delivered at each step of the path. Regarding

the mentioned limitations, in this thesis we aim to generate learning paths (courses) that

maximize users' scores in their available time.

This chapter describes Long Term Goal Recommender Systems (LTRS) and provides mo-

tivation for using these systems as well as proposing several use cases for LTRS. We then

illustrate a domain that we have selected for implementing the LTRS (E-learning) and provide

our main reasons for our selection. Next, the main challenge in this domain is detailed, which

is generating recommendations that guide users to obtain a long term goal while satisfying

their requirements and constraints. Finally, we divide our main problem into sub-problems

and brie�y explain the tasks for each of them.

3.1 LTRS - Problem Statement

Recommenders often focus on the immediate value of recommendations and are evaluated

as such. This is inadequate for obtaining long term goals, either de�ned by users or by

platform managers. For example, in case of music, current recommenders suggest a track

31
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(or a list of tracks) that a user might like. Suppose that we are managing a music company

that produces music tracks in a speci�c genre and due to some reasons we expect to change

the music genre of company to another one. As a consequence, we might lose a part of

our music market. So, our company looks for solutions to retain its market and keep the

same level of selling after changing its music genre. One of the solutions can be diversifying

the customers' taste in a way that they also follow the new music genre of the company.

In�uencing the tastes of customers takes time and need to be done through time since a

direct and quick taste's in�uencing might not be accepted by customers. This task cannot

be performed by using the current music recommenders. One solution can be recommending

music tracks that are close to the customers' tastes while in�uencing their tastes toward the

target genre of music through time. As another instance, when a student needs to learn

a concept, current recommender systems suggest learning materials regarding his/her level

of knowledge. Assuming this student intends to learn a concept that with his/her current

knowledge and background, he/she would not be able to learn it. Therefore, the main task of

the recommender system would be recommending adequate learning materials successively

while promoting his/her knowledge in a way that he/she can learn the target concept (long

term goal).

To this end, we propose Long Term Goal Recommender Systems (LTRS) that are able

to guide users toward a prede�ned goal while satisfying their immediate requirements and

constraints. In such a proposal, users' guidance is achieved by generating a sequence of

relevant recommendations through time. Figure 3.1 shows a conceptual view of the LTRS

in the case of music where a customer is guided toward a long term goal (target genre) by

generating a set of recommendations (seven recommendations). In this �gure, we can see

how the genre taste of a customer is in�uenced and expanded through time using a LTRS. By

each recommendation, LTRS suggested a set of music to a customer that resulted in slightly

broadening his/her genre of music. After generating a sequence of recommendations that

drove the customer toward the target genre (highlighted in green), a customer started using

the target genre.

LTRS can be applied to di�erent domains. Tourism is one of these domains. Currently, in-

formation about travel destinations and their associated resources, such as accommodations,

parks, restaurants, bars, museums or events are usually searched by tourists to plan their

trips. However, the list of possibilities o�ered by websites (even specialized traveling websites)

can be overwhelming. Visiting all options mentioned in the list might need much time and a

huge amount of money while tourists often have a limited budget and time. In this situation,

LTRS can be applied to assist tourists in maximizing their experience during their trips (e.g.

visiting di�erent places, eating traditional dishes) while satisfying their constraints. Also,

LTRS can be used in movie domain, where companies use these systems for guiding the

users from a preferred movie genre to a target genre. In this case, these systems gradually

in�uence users' interests through time for improving the pro�t on selected products (e.g. new
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Music with different genres

Current genre of user 

1´st recommendationInitial situation

Targeted Genre

2'nd recommendation 3'rd recommendation

4'th recommendation 5'th recommendation

6'th recommendation 7'th recommendation

Figure 3.1: Conceptual view of LTRS in music domain.

products or products of a new segment). Another example for the potential application of

LTRS is in E-learning. In this example, learning materials can be recommended to students

with a higher level objective in view. By applying a LTRS system in the scope of learning,

the activities (i.e., teaching and learning) can be more productive and less time consuming

for students and teachers.

3.2 LTRS - Our Goal and Domain

In an abstract way, in LTRS the main research question is: how can we generate recommen-

dation sequences that successfully guide users to a goal (a long term one), while satisfying

their requirements and constraints? To be successful a long term recommender must act

strategically and not merely tactically. This way, a user is guided towards the accomplishment
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of the goal (de�ned by a user or a platform manager) instead of merely satisfying immediate

preferences.

As mentioned previously, LTRS can be used for di�erent purposes and in various domains.

In this thesis, we concentrate on the E-learning area and implement our LTRS recommender

for this domain. Education and training is poised as one of the largest domains in the world

economy [GMR07], and the expansion of E-learning products and the provision of E-learning

opportunities is one of the most rapidly evolving domains of education and training, in both

education and industry [Ime02].

In E-learning, users come from diverse academic backgrounds while having di�erent ages,

professions, social persuasions and abilities. Therefore, an E-learning system must allow all

kinds of users to access information that they need in their available time. In spite of the

necessity of such a system, current E-learning systems mostly o�er a course which requires

a �xed amount of learning time for all users. Such a course o�ering disregards the available

time of the users while it is expected that they all do not have the same amount of available

time for learning a course. Besides having di�erent available time, the users all intend to

enhance their knowledge (can be measured using the obtained scores on the course) as much

as possible in their available time. Hence, in this thesis we propose a LTRS method for

generating learning paths that maximize users' scores while satisfying their time constraints.

According to our main objective, we formalize our learning path recommendation problem

in the following form:

Maximize Score of P where Tu > Tp (3.1)

In equation 3.1, P refers to a path that is generated for a user, Tu indicates the available

time of the user while Tp is the expected time (estimated time) to complete the path. To

accommodate uncertainty in time and score, we will also take into account the probability of

not completing the learning path in the limited time of the user (Rt), and also the probability

of not completing the path with the expected score (estimated score) for the path (Rs).

In order to generate learning paths, we use a structure that de�nes the prerequisite relations

among di�erent parts of a course, such as the relations among the LO or the relations among

the lessons (Course, LO, and lessons are explained in chapter 2). This avoids the generation of

paths that do not present a sensible sequence. In addition, this structure covers information

about the type of di�erent parts. This information is used to recommend appropriate learning

materials to a user since during the learning process a user performs a certain task at each

moment, such as learning a concept or answering a question. So, lack of such information

might result in recommending a learning material which is not appropriate for a certain task,

such as recommending a video instead of providing a question for a user. One of the main
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parts that its type is speci�ed is the LO. A LO can be presented in di�erent forms such as pdf,

video, audio, or powerpoint but all of them are categorized in two main classes : expository

LO and the evaluative ones. Expository LO are the ones that are learned (watch/read) by

a user to answer the evaluative LO. A user is graded considering his/her answers to the

evaluative LO. So, such a structure is useful for our learning path recommendation method.

This structure can be presented in the form of a directed graph (�gure 3.2), which vertices

present di�erent parts of a course (e.g. LO or lessons) and edges show the prerequisite

relations among them. This graph, which is known as a course graph, also contains metadata

about each part, such as its type, title, and learning resources.

integer

string

float

if

if -
else

double

...

If-
elseif-
else

...

C# course

...
...

Figure 3.2: A conceptual example of a course graph for C#. In this course graph, vertices

are the LO.

This graph can be arranged in di�erent ways. It can be organized in one level as all parts

and their relations are presented in a single level (�gure 3.2), or can be structured in a more

complex way (i.e., having a hierarchy structure like �gure 3.3). For instance, all lessons and

their relations can be presented in one level while their LO are presented in another level,

and these two levels are connected considering the relevancy among lessons and LO.

Having the course graph, we now de�ne a method (or methods) to generate learning paths.

Moreover, the generated paths must satisfy the time constraints provided by the user.

Therefore, we will have to be able to estimate the time that a user takes to complete the

recommended paths. We also use approaches to estimate their learning score because we

are interested in maximizing the learning score of a user. In addition, we use approaches

for estimating the probability of error for time and score for the learning paths (i.e., Rt and

Rs). These components result in an algorithm to recommend a generated path to a user.

After recommending a path, how we can be sure that a user is able to follow it. Therefore,

we require a strategy to keep tracking users after recommending a path. This strategy is for
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C#

Variables Loops Conditions

Integer String Float Double For While Do-
While If If -

else
If -

else if
- else
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Figure 3.3: An example of a complex course graph for C#. In this graph, dash lines present

the prerequisite relations among the lessons while the small squares present the LO for each

lesson.

early detection of users disability in following a path and to adapt the path regarding their

progress. In the next section, we detail the main problem of generating personalized learning

paths for users and divide it into sub-problems and describe each of them shortly.

3.2.1 Sub-Problems Statement

We previously stated our problem of generating personalized learning paths under the time

constraints of the users. In order to tackle the problem, we will �rst answer the following

questions:

• What is the structure of our course graph for generating the paths?

• How can paths be generated?

• How do we estimate learning time and score for the paths?

• How do we estimate the probability of error for the estimated time and score (i.e., Rt
and Rs)?

• How do we recommend a generated path to a user?

• If a user could not follow the path,

∗ How can we know it?

∗ What would be our solution for it?
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• How do we evaluate the quality of our recommender?

In order to answer the questions, we break the main problem into sub-problems and tackle

them one by one. The sub-problems are listed below. In addition, we provide a brief

explanation about each of them. All these sub-problems are tackled in the following chapters.

1. Course graph construction:

As explained already in this chapter, we can have di�erent structures for a course graph.

It can be designed in one layer where all LO and their precedence relations are shown in

a single level (�gure 3.2). Although this type of course graph has a simple structure and

is easy to build, it has some de�ciencies. For instance, with this type of course graph,

it is not a trivial task to control what are the concepts that a user is learning in a path,

or whether all LO of a path cover the same concepts or not. For example, in �gure

3.2, "integer, �oat, double" is a path that covers a single concept (data type) , while

"integer, if" is a path that covers two di�erent concepts (data type and condition).

Course graphs also can be designed in a more complex way to re�ect di�erent relations

among LO. In spite of having a complex structure, these graphs have some bene�ts,

such as allowing to have a controlled environment for the path recommendation. Such a

structure can also ensure that di�erent LO of a path cover various concepts rather than

a single concept (a user learns more concepts rather than a signle one). For instance, a

graph for a C# programming course can be structured in two layers, one layer presents

the lessons and their relations (e.g. "loop" is a lesson) while the other layer shows the

associated LO with the lessons, such as "For loop", "Do-While loop" and "While loop"

(�gures 3.3 and 3.4). In this thesis, we propose two methods that use the mentioned

course graphs to generate paths (explained in the next chapter).

2. Path generation: Generating all paths (P ) from the course graph (G) for a user u.

These paths need to be generated considering the available time (Tu) and the knowledge

background (sp) of the user. One possible solution to generate learning paths is using

graph search algorithms (e.g. Breadth First Search, Depth First search) which traverse

a course graph to �nd paths.

3. Learning score estimation: Since the generated paths should maximize the learning

score of the users, we need to know what is the score for each path. So, we need to

estimate the learning score for paths (Sp). In order to estimate score for a path, we

initially estimate the learning score for each LO in that path. Then, the score for the

path is obtained by accumulating the learning score of all LO in that path (explained

in chapter 4).

4. Learning time estimation: Our paths should be generated under the time constraint

of the user. So, we need to estimate how much time is going to be taken for learning a
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Figure 3.4: Two-layered course graph.

path by a user (Tp). Similar to the score estimation, for estimating time of a path we

need to estimate the time of each LO in that path and then accumulate them (described

in chapter 4).

5. Estimating probability of error for learning score: Estimating the probability

of underachieving the estimated learning score for a path by a user (Rs). Our method

to estimate Rs is detailed in chapter 4.

6. Estimating probability of error for learning time: Estimating the probability of

not completing a path in the available time of a user (Rt). For that, we apply the same

method as Rs for estimating Rt (presented in chapter 4).

7. Recommending algorithm: Designing an algorithm to recommend a generated path.

This algorithm allows us to have a control on our recommendations while enabling us to

collect information about user's progress during the learning process. This information

will be used to adapt the path for the user (described in chapter 4).

8. Selecting auxiliary LO: These LO (Laux) are not in the initial generated path and

they will be generated and recommended to a user whenever he/she is not able to learn

a lesson properly (underachieving the estimated score for a lesson). These LO are used

in the approach that uses a two-layered course graph. Laux generation is detailed in

chapter 4).

9. Recommender evaluation: Our evaluation is twofold. We initially evaluate the qual-

ity of methods that are introduced to estimate learning time and score for paths (these
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methods are explained in chapter 4). Next, we assess the quality of our recommender

approach, which works based on a two-layered course graph, in a live environment.

This approach is evaluated since it is an enhanced version of the other approach. For

this purpose, we implement and embed our recommender in an E-learning system, and

then perform an experiment to compare the performance of two groups. One group

uses our recommender while another group uses an E-learning system that does not

use recommendation. Our evaluation is explained in chapters 5 and 6.

3.3 Summary

In chapter 1, we described our motivation, research objectives and questions for this thesis.

We also detailed the approaches and algorithms that are introduced by researchers to generate

learning paths and the methods that are used to evaluate them in chapter 2. In the same

chapter, we also highlighted the main challenges in path personalization methods. In this

chapter, we have focused on describing our main goal and de�ned several questions that

should be answered in order to achieve the goal. In addition, we detailed the main problem

that we intend to tackle in this thesis and divided it into sub-problems.
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Chapter 4

Path Generation and

Recommendation

In chapter 2, we have described a number of methods and algorithms, which are proposed for

generating and recommending learning paths to users. As mentioned in chapter 1, our main

goal is to generate learning paths that maximize a user's learning score under a given time

constraint. To this end, we propose two methods that generate learning paths regarding a

user's time restriction and his/her knowledge background. These methods are explained in

this chapter. This chapter consists of two main sections. In section 4.1, we explain a method

to generate and recommend learning paths using a one-layer course graph. We initially

present how we generate paths from the course graph that is designed by a course expert

and describe nine di�erent approaches, which are applied to estimate learning time and score

for paths. We also introduce two methods for measuring the probability of error for the

estimated score and time for paths. Finally, we highlight the drawbacks of this method.

In section 4.2, we present an enhanced version of the previous method for covering its

problems. The second method is a lesson-based one which generates paths from a two-

layered course graph. It uses the same methods as the previous method to estimate time,

score, and the probability of error for the paths. For this method, we �rst explain how paths

are generated from a two-layered course graph (each path is a sequence of lessons). We

then explain how the initial LO are selected for each lesson of a path. We also describe our

recommendation algorithm, which is designed for recommending a generated path to a user

lesson by lesson. This recommendation algorithm enables the recommender to collect data

about a user's progress for adapting the path for him/her. Finally, we describe a method that

is used for generating auxiliary LO for a lesson. These LO are not in the initially generated

path for a user, and they will be generated and recommended when a user could not learn a

lesson properly (not obtaining the estimated score from a lesson).

In the following sections, we describe two methods for recommending a path that maximizes

41
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a user's score under a given time constraint. We �rst describe a method that uses a one-

layer course graph to generate paths and explain its drawbacks. We then explain the second

method which uses a two-layered course graph to cover the problems of the �rst method.

4.1 Method using a one-layer course graph

In this section, we explain the method that uses a one-layer course graph (Algorithms 1 and

2), describe how it generates the paths from the course graph and estimates the learning score

and time for them. Furthermore, we describe our approaches to estimate the probability of

error for the estimated score and time for a learning path. Figure 4.1 shows a general view

of our method along with the steps that our method takes to personalize learning paths.

Figure 4.1: General view of our method using one-layer course graph. In the course graph,

each LO has two attributes: time and score.

4.1.1 Learning path generation

In our method, after identifying the initial point sp by a user u (line 2 in algorithm 2),

the depth-�rst-search (DFS) is applied to generate all learning paths (a sequence of LO)

that start by sp from the course graph G (algorithm 1). Selecting the sp implicitly de�nes

the knowledge background of a user since there are prerequisite relations among the LO of

a course graph, and when a user speci�es a LO as the starting point for paths (the LO

that he/she wants to learn) we can conclude that he/she already knew the prior LO. In our

approach, the DFS algorithm is selected to generate paths since as we exhaustively search the

graph and enumerate all possible paths, DFS tends to consume less memory in comparison

to the Breadth First Search (BFS) algorithm [BW84]. Dijkstra's algorithm [Joh73] is also

conceptually a BFS that takes into account edge costs. Dijkstra is not selected since for using
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it we need to estimate the time and score for all edges of the course graph which might not

be necessary and results in a high cost both in terms of time and computation. Therefore,

for scalability reasons (the BFS may need too much memory and impractical to use) and

avoiding a time consuming and costly computation the DFS is chosen. Steps 1 to 3 in �gure

4.1 refer to the path generation phase.

Concurrent with traversing the course graph for generating paths, our method estimates

time and score (algorithm 1) for them by means of our time and score estimation approaches

(explained in sections 4.1.2 and 4.1.3). After generating paths and estimating time and

score for them, our method estimates probability of not completing a path in the limited

time of the user (Rt), and also the probability of not completing a path with the expected

score (estimated score) for that path (Rs). Algorithms 1 and 2 represent our method, which

uses a one-layer course graph. In the following sections, we explain in detail the di�erent

components of these algorithms.

Algorithm 1: DFS Algorithm for one-layer course graph (DFSone).
Input: node, Tu, G, D, SP , TP , Rt, Rs, P , i.

Output: Generate all paths under Tu.

1 if (edgelist of node = empty) then

2 Recom[i] ← (P, TP , SP , Rt(P ), Rs(P )); . Recom is a list to contain the paths.

3 i++ ;

4 else

5 foreach (Newnode in edgelist of node) do

6 if (TP + Tnewnode <= Tu) then

7 TP+ = Estimating T for Newnode;

8 SP+ = Estimating S for Newnode;

9 P ← P +Newnode;

10 DFSone (Newnode, Tu, G,D, i, P, TP , SP );

11 else

12 Rt(P ) ← Estimating Rt for P ;

13 Rs(P ) ← Estimating Rs for P ;

14 Recom[i] ← (P, TP , SP , Rt(P ), Rs(P ));

15 i++ ;

16 Return Recom;

4.1.2 Time estimation approaches

The time for a path is computed by estimating the time of each LO, given the collection

of previous interactions. For this purpose, we have considered nine di�erent approaches.

Median and Mean are two simple approaches, which are applied to estimate the time of

each LO. In these approaches, after identifying the users that have visited a target LO, their

time's median and mean are estimated and assigned as the learning time of a target LO for

a target user.
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Algorithm 2: Path generation algorithm using the one-layer course graph.
Input: u, sp, Tu, G, D.

Output: The path with the max score.

1 node ← sp; . sp:starting point.

2 P ← [sp]; . P is a list.

3 i ← 1;

4 TP ← Estimating T for sp; . T:time.

5 SP ← Estimating S for sp; . S:score.

6 Rt(P )← Estimating Rt for sp; . Rt:probability of error for time.

7 Rs(P )← Estimating Rs for sp; . Rs:probability of error for score.

8 AllPaths ← DFSone (node, Tu, G, D, SP , TP , Rt, Rs, P , i); . Algorithm 1.

9 Pmax ← Select the path with the max score from AllPaths;

10 Return Pmax;

4.1.2.1 User Adjusted.Median and User Adjusted.Mean

In addition to the Median and Mean approaches, we proposed another approach based

on equations 4.1 and 4.2. This approach is called User Adjusted.Mean (UA.Mean). The

main motivation for presenting the UA.Mean for time estimation is to determine how much

time a target user takes in comparison to the rest of the users in learning a LO.

In equation 4.1, the numerator (tuLOi) indicates the time that a user u has spent for LO i,

and the denominator (mean(t.LOi)) shows the average time that users have spent (excluding

a target user) to learn the LO i. In this equation, n shows the total number of LO that are

visited by u.

Ru =
1

n

n∑
i=1

tuLOi
mean(t.LOi)

(4.1)

After estimating the Ru, the time of the target LOtgt (unseen by u) is estimated using

equation 4.2. Based on this equation, the time of LOtgt is obtained by multiplying Ru and

the average time of users (seen the LOtgt) on the LOtgt.

Ttgt = Ru ×mean(t.LOtgt) (4.2)

Another time estimation approach is User Adjusted.Median (UA.Median), which is the

same as UA.Mean but using the median instead of mean.

4.1.2.2 Clust.Mean and Clust.Median approaches

Another approach used to estimate the learning time employs a clustering algorithm. In this

approach, which is called Clust.Mean, we �rst identify all LO that are seen by a target user

u. Then, we identify users that have seen those LO. Next, the identi�ed users are divided
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into three groups with respect to their learning time on LO. Our idea for dividing the users

into three groups is to segment the users based on their learning speed (slow, normal, and

quick users). In a situation where there is not enough data to generate three clusters (such

as estimating score for a user having users' binary scores for only one LO), we generate two

(slow and quick users). For clustering, we have used the k-means algorithm [HW79]. Finally,

to estimate the learning time of a target LO, we estimate the average time of the users (who

are in the same cluster as u and have seen the target LO) on the target LO (algorithm 3).

Algorithm 3: Clust.Mean algorithm.
Input: User u, Transaction data D, target LOtgt (unvisited by U)

Output: Estimated time/score for LOtgt.

1 Seenu ← Determing all LO seen by u.

2 ALLseen ← Determing users that have visited Seenu.

3 Clust← Clustering (ALLseen + Seenu) into 3 (or 2) clusters using K.Means and their time/score.

4 Clusttgt ← Find the target cluster (includes u) from Clust and then drop u from that cluster.

5 Ttgt ← Average time/score of users in Clusttgt on LOtgt.

6 Return Ttgt

Although other clustering algorithms could have been used, we have selected K-means, due

to its simple implementation and e�ciency[RM05].

Clust.Median is another approach for estimating learning time. This approach is similar

to Clust.Mean but it uses the median instead of mean.

4.1.2.3 MF.Predict approach

We have also used a Matrix Factorization (MF) approach [KBV09] to estimate learning time

for a path. This approach is selected since it has been successful in dealing with Scalability

and Sparsity problems [Gil12]. Sparsity occurs when a user selected a few LO (a small

portion of the LO) while dealing with high volumes of data (users and LO) causes the

Scalability problem [Bur02].

MF discovers latent relations between LO and users [NJTY16, Kor08]. Assume that T is a

matrix that contains n users (as rows) and m LO (as columns), while each entry presents

the learning time of a user for a LO. This matrix will be decomposed into two matrices by

applying a MF technique (�gure 4.2):

T ≈ T̂ = A ·BT (4.3)

In equation 4.3, A indicates a user matrix with n rows (as users) and f columns (as latent

factors), while B is a LO matrix, which is composed of m LO (as rows) and f columns

(as latent factors). f presents the total number of latent factors that are learned from past

responses of users. Finally, we use a dot product (as shown in equation 4.4) to predict the

learning time of a LO i for a user u.
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Figure 4.2: Decomposing a matrix into matrices A and B using MF technique.

T̂ui = Au ·BT
i (4.4)

In order to generate matrices A and B, the regularized squared error of known entries in T

is minimized using equation 4.5.

minA.,B.
∑

(u,i)∈T

(Tui −Au ·BT
i ) + λ(||Au||2 + ||Bi||2) (4.5)

In equation 4.5, λ presents a regularization parameter while λ(||Au||2 + ||Bi||2) is applied to

prevent over�tting. Over�tting is avoided by penalizing high values for each parameter.

4.1.2.4 IRT.Predict method

Up to now, the approaches that we have proposed to estimate learning time do not take into

account the users' ability and the di�culty level of the LO. To this end, we have adopted a

time estimation approach which is based on Item Response Theory (IRT) [AY14, JMW06].

Item response theory (IRT) models are a class of statistical models that are able to explain

the response behaviors of users to a set of questions by taking into account the users ability

and di�culty level of questions [Joh04].

IRT models can be categorized in two main classes: unidimensional models, such as Rasch

model [Joh04, AY14], and multidimensional models, such as 2 and 3 parameters logistic

models (2PL, 3PL). The former models are generated based on one parameter (users' ability),

and their assumption is : the discrimination level of LO is similar. Contrary to the former

models, the latter ones consider more than one parameter to build a model. In these

models, the 2PL uses two parameters (discrimination and di�culty), while the 3PL uses three

parameters (discrimination, di�culty, and guessing) to build a model. The discrimination

parameter (a) shows the di�erential capability of a LO while the di�culty parameter (b)

presents the probability of a correct response to a LO. The guess parameter (c) shows that

when a user does not know the correct answer in a multiple choice test, he/she guesses the

answer.
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The discrimination parameter (a) ranges from 0.5 to about 2.5. A value of a equal to about

1.0 is typical of many test items (LO), while values below 0.5 are insu�ciently discriminating

for most testing purposes, and values above 2.0 are infrequently found. The theoretical range

of ability (di�culty parameter b) is from negative in�nity to positive in�nity, but practical

considerations usually limit the range of values from -3 to +3. As explained previously, the

guessing parameter (c) is generally interpreted as the probability of selecting the correct

item-option by chance alone. Most test items (LO) have c parameters greater than 0.0 and

less than or equal to 0.30 [Ree79, Bak01].

The S-shaped curve in �gure 4.3 shows the relationship between the probability of correct

response to a LO and the ability scale. In this �gure, the horizontal axis is scaled in units of

ability and the vertical axis is the probability of answering the item correctly. In IRT, this

curve is known as the item characteristic curve (ICC). In �gure 4.3, solid curved line shows

an ICC for a LO. In this �gure, we also have shown how three parameters are estimated for

a LO.

Figure 4.3: How to estimate 3 parameters (a: discrimination, b: di�culty, and c: guessing)

for a LO. In this example, a=1.0, b=0.0, and c=0.2.

In this thesis, our assumption is : the LO do not have similar discrimination level. Hence,

we select one of the multidimensional IRT approaches (2PL or 3PL) to generate the models.

Regarding the results of our analysis, which are shown in section 5.3.1.2, the 2PL builds the

most adequate models for our datasets. Therefore, we utilized the 2PL on the transaction

data for estimating the discrimination and di�culty parameters of all LO (lines 1 and 2 in

algorithm 4). Then, the estimated parameters and a target user's transaction data are used

for estimating his/her ability (θ̂u). The ability of the user is estimated using the Marginal

Maximum Likelihood Estimation (MMLE) [J+07] (equation 4.6, line 4 in algorithm 4). In

equation 4.6, ri shows the user's learning time (or learning score) for LOi, k refers to the

number of LO that are seen by u, and L addresses the marginal likelihood.

θ̂u = argmaxθuL(θu|{ri}, {ai}, {bi}) where 1 6 i 6 k. (4.6)

Finally, the obtained user's ability along with parameters a and b from a LO (LOtgt) are
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used for estimating the learning time of the LOtgt (line 5 in algorithm 4). For this purpose,

we utilized the basic equation of 2PL (equation 4.7). This equation estimates the learning

time that a user u with ability θ̂u requires for learning the LOtgt correctly. In equation 4.7,

the atgt and btgt indicate the parameters a and b for the LOtgt.

Ttgt(θu,atgt,btgt) =
1

1 + exp(atgt∗(btgt−θu))
(4.7)

Algorithm 4: IRT.Predict algorithm.
Input: User u, Transaction data D, Target LOtgt unvisited by u.

Output: Estimated learning time/score of LOtgt for a learner u.

1 for ( i = 1 to n (number of LO in D)) do

2 (ai, bi)← Estimating parameters a and b for LOi using D and 2PL.

3 k ← number of LO in D that are seen by u . k<n.

4 θ̂u ← Use MMLE given {(r1, a1, b1), ..., (rk, ak, bk)} . Equation 4.6.ri:user's time (or score) for

LOi.1 6 i 6 k.

5 Etgt ← Ttgt
(θ̂u,atgt,btgt)

. Equation 4.7. LOtgt is in D.

6 Return Etgt.

In this thesis, to develop the IRT.Predict for estimating learning time, we have used the

package EstCRM [Zop12], which is available in R programming language. This package is

designed for continuous variables.

4.1.2.5 Johns Method (IRT 3PL)

As another possibility for estimating time and score for the LO, we have used a method

proposed by Johns et al. [JMW06]. This method is based on IRT and uses a three parameters

logistic model for the estimation. In this method, �rst, 3PL model is used to estimate three

LO parameters (a: discrimination, b: di�culty, and c: guessing) using learners' transaction

data. Then, these parameters together with a target learner's transaction data are used to

estimate his/her ability (θu). Finally, the fundamental equation of 3PL (equation 4.8) is used

to predict the learning score of a LO. After predicting the score, the following rule is applied

in order to obtain the �nal score of the LO.

Stgt(θu,atgt,btgt,ctgt) = ctgt +
1− ctgt

1 + exp(atgt∗(btgt−θu))
(4.8)

Score estimation rule :

{
ifPrediction > 0.5→ score = 1

ifPrediction < 0.5→ score = 0

Although Johns et al. only presented their method to estimate score, we have used it without

applying the aforementioned rule to estimate learning time of LO. To estimate time, Johns
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method is implemented using the EstCRM [Zop12] package in R while for score estimation

ltm package (designed for binary variables) is used.

4.1.3 Score estimation approaches

We applied similar approaches as learning time estimation for estimating learning score while

using the users' score instead of time. In our datasets, score is presented as a binary variable

(1: Success, 0: Failure). Therefore, a learning score indicates the ability of a user to correctly

complete a LO. So, for estimating score, UA.Median and UA.Mean approaches imply the

ability of a user for completing a LO.

In order to estimate the learning score using the IRT.Predict method, we used the same

approach that we have used for estimating time. In score estimation, the equation 4.7 and 4.8

results in a user's score for a LO. Note that the IRT.Predict method for score estimation

is implemented using the ltm package in R, which is available for binary variables.

4.1.4 Time and score for a path

By estimating the learning time and score of each LO in a path using the mentioned

approaches, the learning time and score of the path are obtained by accumulating the learning

time and score of all LO in that path. Our path generation approach, which is detailed in

algorithms 1 and 2, keeps adding LO to a path as long as the estimated learning time of the

path (TP ) satis�es the learning time condition (Tu > TP ).

4.1.5 Estimating Probability of error

In the previous sections, we have proposed di�erent approaches to estimate time and score

for a path, but a user might underachieve the estimated score or not be able to complete a

path in his/her available time [NJL18]. Therefore, in this section we estimate the probability

of error for the estimated learning time and score for learning paths. The probability of error

for score (Rs) is the probability of underachieving the estimated score for a learning path

by a target user, while the probability of error for time (Rt) indicates the probability of not

completing a learning path in a user's limited time.

4.1.5.1 Aggregating probability distributions of LO

In order to estimate the probability of error for a path, we �rst estimate the probability

distribution of time (or score) of each LO in the path. Next, we aggregate the probability

distributions of LO. For the aggregation of distributions, we use an e�cient sampling ap-

proach (algorithm 5) where we randomly select several samples from each distribution to
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aggregate. Obviously, selecting more samples provides more accurate result. By aggregating

the probability distribution of LO in a path, we obtain the users' time (or score) distribution

for the entire path.

Algorithm 5: Aggregation of distributions.
Input: Path P , Transaction data D, Number of samples x.

Output: Aggregated probability distribution of LO of a path (fagg).

1 for ( i = 1 to n (number of LOs in P)) do

2 Pdi ← Estimating the probability distribution of LOi using D; . using density function in R.

3 Si ← Randomly select x samples from Pdi;

4 for ( j = 1 to x) do

5 Tj ← sum (S(1,j), ..., S(n,j)); . j:samples' indices. n:number of LO in P.

6 fagg ← Probability distribution of T ;

7 Return fagg ;

4.1.5.2 Probability of error for time (Rt)

One solution to estimate the probability of error regarding learning time is to compute the

total percentage of users that could not complete a target path in the available time of a

target user (Tu). To this end, after estimating the aggregated distribution of time for a path,

we compute the total distribution area that is located between the user's time constraint

(Tu) and +∞. This area, which presents the probability of not completing a path in a user's

time constraint (�gure 4.4-a), is given in equation 4.9.

Rt =

∫ +∞

Tu

fagg(x)dx (4.9)

Figure 4.4-a shows an example of estimating probability of error for time for a path. In our

example, the path comprises 6 LO that the probability distribution of time of each LO is

presented in a separated graph. The total time distribution is obtained using the sampling

method (algorithm 5). In the total distribution graph, TP indicates the estimated time for a

target user for the path by means of our estimation methods, while the Tu refers to the user's

time constraint. As shown in this �gure, the area of the orange highlighted parts corresponds

to the probability of error for time for the path, which will be presented in percentile. It is

provided in percentile to present the percentage of the users that already took the path but

could not complete it in the time Tu. In �gure 4.4-a, the probability of error for time could

be close to zero if the Tu was more than ≈ 500 minutes.

4.1.5.3 Probability of error for score (Rs)

To estimate the probability of error for the score, we proceed in a similar manner as with

time. We initially estimate the aggregated distribution of score for a path using the sampling
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method. After obtaining the aggregated distribution, the distribution area that is located

between −∞ and the estimated score for the path (SP ) indicates the probability of error

for the score for that path (equation 4.10). This area presents the percentage of users that

completed a target path while obtaining a score lower than the estimated score for that path

for the target user (Sp). Like probability of error for time, the probability of error for score

will be presented in percentile to show the percentage of the users that completed a target

path by underachieving the estimated score for that path.

Rs =

∫ Sp

−∞
fagg(x)dx (4.10)

In �gure 4.4-b, the path is composed of 6 LO. The probability distribution of score of each

LO is presented in a separated bar chart (in our datasets score is a binary variable). The

total score distribution is obtained using the sampling method. As shown in this �gure, the

orange highlighted part indicates the probability of error for score for the path, which is the

area between −∞ and the estimated score for the path (SP ).

(a) For time. A path with 6 LO. TP : estimated time

for the path, Tu: user's time constraint, orange-

colored part:Rt.

(b) For score. A path with 6 LO. SP : estimated

score for the path. orange-colored part: Rs.

Figure 4.4: Example of estimating probability of error.

After estimating the probability of error for time and score for a path, a path as well as

the errors that are estimated for that path (Rt and Rs) will be provided to a target user.
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This information assists a user to make an informed decision about the generated path. For

instance, a path might provide a high score for a target user but the estimated Rt and Rs
for that path are also high. So, it can be risky for the user to take that path since he/she

might spend time for a path that can not learn properly while is not able to complete it on

time. While another path which is generated for the same user provides a lower score in

comparison with the previous path but it has lower Rt and Rs. Therefore, it would be useful

to provide such information for the user that can help to make a knowledgeable decision.

Figure 4.5 shows an example of how the estimated probability of error for time and score are

provided for a user.

4.1.6 Illustrative example

Figure 4.5 presents an example of our method to generate paths, estimate time, score and

probability of error for the estimated time and score for paths. In this example, a target user

already knows the LO 1, 3, 4, 5, and 9 (Known LO), his/her available time is 30 minutes,

and he/she selects the LO 13 as his/her starting point for the paths. As shown in �gure

4.5, our method generates 9 paths using the DFS algorithm and estimates time and score

for them. The estimated time of each LO is presented on top of each LO (�gure 4.5). The

time for a path, as mentioned in section 4.1.4, is computed by summing the time of all LO

in that path. For example, in the case of Path 1, the total time to complete the entire

path (i.e., LO 13, 14, 15, 22, 21, and 26) is equal to 39 minutes, which is more than the

user's available time. Therefore, the LO 21 and 26 are dropped. The red-dash line shows the

LO that need to be ignored in order to not exceed the limited time of the user. Like time,

the score for a path is obtained by accumulating the score of LO in that path. Finally, the

estimated score for a path as well as the estimated probability of errors for time and score

for the path (Rt and Rs) are presented in front of that path. The Rt presents the percentage

of users that already took the path but could not complete it in the available time Tu, while

Rs highlights the percentage of users that completed a target path by obtaining a score lower

than the estimated score for that path. The estimated Rt and Rs helps the user to make an

informed decision about a course registration. Finally, our method recommends a path with

the maximum score to the user.

4.1.7 Drawbacks of our method using one-layer course graph

Although the presented method has some advantages such as estimating time, score and

probability of errors for the estimated time and score for the paths, it has a few drawbacks

which need to be covered. The main shortcomings are listed below:

• Time consuming and computationally expensive. In this method, adding more

LO to the course graph can increase the number of paths exponentially, which makes the
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Figure 4.5: Example of method using one-layer course graph.

process of path generation time consuming and computationally expensive (searching

graph and estimating time and score for the paths). For instance, the time complexity

of searching a graph using DFS with branch factor (out-going degree) of b and the

maximum depth of d is equal to bd, and increasing the maximum depth of the graph

(d) exponentially increase the time complexity. This problem can become a non-trivial

one when we are dealing with a large-scale graph and the number of paths can be large.

In addition, since the time and score for all paths need to be estimated, it makes the

problem even harder. In the following section, we will propose a solution for keeping

the search space restricted.

• Proceeding on a single concept (lesson) rather than the whole course. In

this method, since there is not any control on recommending LO of di�erent concepts

(lessons), all the recommended LO in a path could cover the same concept (covering a

single lesson). Therefore, the recommended path results in maximizing a user's score

on a single lesson rather than a course. For instance, in the case of a programming

language course, all the recommended LO of a path could cover the "loop" concept

(for loop, while loop, do-while loop) while other important lessons for that course are

ignored, such as "conditions" and "arrays".

To tackle the mentioned problems, we propose a method based on a two-layered course graph

which is presented in the following section.
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4.2 Method using a two-layered course graph

As mentioned in section 4.1.7, the previous method has a few de�ciencies. To overcome

the mentioned problems, we propose a lesson-based method that generates learning paths

through the lessons rather than the LO. The course graph for this method is designed in two

layers, a lesson layer and a LO layer. Lessons and their precedence relations are presented

in the lesson layer while the LO layer includes the LO that are associated with the lessons

(�gure 4.6). In this method, since a path is made of lessons, therefore, learning a path ensures

that a user is learning di�erent concepts (not sticking to a single lesson). Furthermore, in

this method the lesson layer is searched to �nd paths, which has a more restricted space

than the LO graph (used in the previous method). Therefore, it results in reducing the cost

of path generation both in terms of time and computation (searching paths and estimating

time and score for them). In this method, lessons are sets of LO and a few of LO will be

recommended to a user per lesson.

This lesson-based method uses the DFS algorithm to �nd the paths and estimate time and

score for them (time and score estimation methods are explained in sections 4.1.2 and 4.1.3).

In addition, it estimates the probability of error for the estimated time and score for the

paths using the presented methods for them (section 4.1.5). In the following sections, we

explain how this method selects LO for each lesson of a path. Furthermore, we introduce a

method to update a path whenever a user is not able to follow it.

4.2.1 Learning path generation

We initially describe how we generate paths from a two-layered course graph and compute

learning time and score for them. To generate learning paths using our approach, �rst,

a target user selects a lesson as a starting point (sp) for the paths (line 2 in Algorithm

7). Selecting the sp implicitly de�nes the knowledge background of a user since there are

prerequisite relations among the lessons in the lesson layer, and when a user speci�es a lesson

as the starting point for paths (the lessons that he/she wants to learn) we can conclude that

he/she already knew the prior lessons. After specifying the sp, our approach applies the

DFS algorithm [Tar71] to extract all lesson sequences (paths) from the lesson layer of a

course graph (Algorithm 6). These extracted paths must satisfy the available time of the

user (time estimation is explained in section 4.1.2). In �gure 4.6, we present a general view of

path generation approach that uses a two-layered course graph as well as the steps taken for

generating personalized learning paths for a user. In this �gure, the �rst three steps address

the learning path generation phase.
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Figure 4.6: General view of path generation method using a two-layered course graph. Each

block in the path indicates a lesson. Ex and Ev refer to the expository and evaluative LO.

4.2.1.1 LO selection for each lesson

The DFS algorithm is used to generate all possible lesson sequences (paths) which start with

the sp. For each lesson of each path, there is a set of LO that can be selected and learned.

Regarding the main goal of this thesis, the selected LO for each lesson should maximize a

user's score while their accumulated time with the other LO of the path (LO that are already

added to a path) needs to satisfy the time restriction of the user. In this thesis, two LO (LO

which are related to a lesson) are assigned for each lesson of the path, one expository and

one evaluative LO. Two LO are selected since the concepts that various LO of a lesson are

delivering are related, such as explaining di�erent kinds of �Loop�, while knowing one type

of loop is su�cient to answer all practical questions about the loop (number of selected LO

can be modi�ed regarding the course). These LO are selected regarding our main objective,

which is recommending a path that satis�es a user's time constraint while maximizing the

expected score. So, among a set of LO for a lesson those will be selected that a user most

likely is able to learn them successfully in his/her available time (Tu). Therefore, we formalize

our LO selection for a lesson as follows:

Maximize
(
S(LOex∈L) ∗W (LOex∈L) + S(LOev∈L) ∗W (LOev∈L)

)
where TP︸︷︷︸

Path

+(TLOex + TLOev )︸ ︷︷ ︸
Tnewnode in alg 6

6 Tu

(4.11)

In equation 4.11, L indicates a lesson of a course, S refers to the estimated score for a LO,

LOex and LOev are the expository and evaluative LO, and W addresses the weight of LO. In

our method, the weights of all expository and evaluative LO are considered equal, and also



56 CHAPTER 4. PATH GENERATION AND RECOMMENDATION

expository LO have no score (zero score). Since in our method lessons are added to a path

P one by one, hence TP is the accumulated time of the lessons that are already added to P ,

and L is a lesson that might be added to P if it satis�es the time restriction of the user.

To select LO, since there would be a possibility of ties in the learning score of LO (having

di�erent LO with the same score), the learning time is used to break the ties (minimizing

time). If the time of LO are also tied, the completion rate of LO and later on (if needed) the

visited rate of LO are used to break the tie (maximizing these two rates). The completion

rate shows how many times other users were successful in completing a LO while visited rate

indicates how many times a LO is visited by the users.

Algorithm 6: DFS algorithm for two-layered course graph (DFStwo).
Input: node, Tu, G, D, SP , TP , Rt, Rs, P , i.

Output: Generate all paths under Tu.

1 if (edgelist of node = empty) then

2 Recom[i] ← (P, TP , SP , Rt(P ), Rs(P )); . Recom is a list to contain the paths.

3 i++ ;

4 else

5 foreach (Newnode in edgelist of node) do

6 LOall ← Estimate time and score for LO of Newnode; . Newnode is a lesson.

7 LOselected ← Select LOex and LOev from LOall; . LO selection : Section 4.2.1.1.

8 Snewnode ← Accumulating the score of LOselected;

9 Tnewnode ← Accumulating the time of LOselected;

10 if (TP + Tnewnode <= Tu) then

11 Assign LOselected to Newnode;

12 TP+ = Tnewnode;

13 SP+ = Snewnode;

14 P ← P +Newnode;

15 DFStwo (Newnode, Tu, G,D, P, TP , SP , i);

16 else

17 Rt(P ) ← Estimating Rt for P ;

18 Rs(P ) ← Estimating Rs for P ;

19 Recom[i] ← (P, TP , SP , Rt(P ), Rs(P ));

20 i++ ;

21 Return Recom;

4.2.1.2 Illustrative example of path generation

Figure 4.7 presents an example of the method that uses a two-layered course graph to generate

paths, estimate time, score and probability of error for them. In this example, the available

time of the target user is 50 minutes, and he/she selects the lesson B as his/her starting

point for the paths. As shown in �gure 4.7, our method generates 6 paths using the DFS

algorithm and estimates learning time and score for them. The estimated time of each LO

is presented on top of each LO (�gure 4.7). The time for each path, as mentioned in section

4.1.4, is computed by summing the time of all LO in that path. For example, in the case

of Path 1, the total time to complete the entire path (i.e., LO 13, 14, 15, 22, 5, 9, 4, and
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Algorithm 7: Path generation algorithm using the a two-layered course graph.
Input: u, sp, Tu, G, D.

Output: The path with the max score.

1 node ← sp; . sp:starting point.

2 P ← [sp]; . P is a list.

3 Select initial LO for P; . LO selection : Section 4.2.1.1.

4 i ← 1;

5 TP ← Estimating T for sp; . T:time.

6 SP ← Estimating S for sp; . S:score.

7 Rt(P )← Estimating Rt for sp; . Rt:probability of error for time.

8 Rs(P )← Estimating Rs for sp; . Rs:probability of error for score.

9 AllPaths ← DFStwo(node, Tu, G, D, SP , TP , Rt, Rs, P , i); . Algorithm 6.

10 Pmax ← Select the path with the max score from the AllPaths;

11 Return Pmax;
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Figure 4.7: Example of our path generation method. Red dash-line shows the dropped LO

while the blue dash-line shows the ignored lessons.

10) is equal to 60 minutes, which is more than the user's available time. Therefore, the last

lesson is dropped (includes LO 4 and 10). The red dash-line shows the LO that need to be

ignored in order to not exceed the limited time of the user (blue dash-line shows the ignored

lessons). Like time, the score for a path is obtained by accumulating the score of LO in that

path. Finally, the estimated score for a path as well as the estimated probability of errors

for time and score for the path (Rt and Rs) are presented in front of that path.

4.2.2 Path recommendation

After assigning LO to each lesson of a path, estimating learning time, score and their

probabilities of errors (using the methods in sections 4.1.2, 4.1.3 and 4.1.5), a path will

be recommended to a user lesson by lesson (algorithm 8). This algorithm allows the recom-

mender to monitor a user's progress while collecting information about his/her interactions

with a course, such as his/her learning score and time for each lesson, which has two main

bene�ts:
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1. Monitoring users constantly enables the recommender to detect a user's failure in early

stages and avoid wasting time of a user by adjusting the recommended path.

2. Collected users information helps to recommend a path that �ts a user's competency

level. It results in enhancing the users' satisfaction and keeping them engaged with the

system.

As mentioned previously, in this method (uses a two-layered course graph) a user receives

a path lesson by lesson. By completing a lesson, a user's obtained score for the lesson (Us)

is compared with the estimated (expected) score (Es) for that lesson. If the user could

accomplish the lesson with the estimated score for that lesson (Us > Es), he/she will receive

LO for the next lesson, otherwise, the obtained score (Us) needs to be analyzed. To this end,

a score threshold (δs) is considered in our recommender. This threshold is determined by a

course expert considering the usual educational principles to pass a lesson or a course, and

it is equal to the minimum score to pass a lesson (i.e., 50% of the maximum possible score).

If δs is higher than the obtained score for a lesson (Us < δs), it means that the user could

not learn the lesson. Therefore, the recommender reshows the LO that are visited by the

user for that lesson. In a situation that δs 6 Us < Es, auxiliary LO will be recommended to

help the user on a target lesson. Auxiliary LO as well as our approach to estimate them are

explained in section 4.2.2.1.

For each Lesson =


if Us > Es → Next lesson

if δs 6 Us < Es → Auxiliary LO

if Us < δs → Reshow the LO

4.2.2.1 Auxiliary LO

As explained in the previous chapter, auxiliary LO are the ones that are not in the initial generated

path for a user, and they will be recommended to a user when he/she could not learn a lesson properly

and did not accomplish it with an estimated (expected) score (Es). To generate auxiliary LO for a

lesson, our approach considers a score threshold (δs). If an obtained user's score for a lesson (Us)

is more than the δs and less than the expected score for that lesson (δs 6 Us < Es), our approach

generates auxiliary LO for that lesson.

To generate auxiliary LO, our recommender uses a similar method that is used to identify the initial

LO for a Lesson (explained in section 4.2.1.1). For this purpose, whenever auxiliary LO are needed

our recommender generates two ranking lists for LO of a lesson using the method in section 4.2.1.1.

Two lists are generated since there are two types of LO for each lesson, expository and evaluative.

To recommend auxiliary LO for a lesson, the recommender goes through each ranking list and

recommends LO with the highest rank which are not recommended to a target user. Whenever that

recommending auxiliary LO result in exceeding the available time of the user (Tu), our recommender

algorithm ignores the lessons from the end of the path that exceed the time restriction of the user.

Algorithm 9 details our method to recommend auxiliary LO for a lesson.



4.2. METHOD USING A TWO-LAYERED COURSE GRAPH 59

Algorithm 8: Path Recommendation algorithm.
Input: Path P , User available time Tu, transaction data D.

1 for (i = 1 to number of lesson in P ) do

2 Recommend LO of Li to u; . L indicates a lesson.

3 Us ← Obtained score of u on Li;

4 δs ← Minimum score to pass a lesson;

5 if (Us > Es) then

6 Tu ← Tu − TLi ; . Es Estimated score for a lesson. TLi:Time that U spent on Li.

7 if (Tu < TLi+1
) then

8 Terminate; . TLi+1
:Estimated (expected) time for the next lesson.

9 else if (δs 6 Us < Es) then

10 Laux ← Estimating auxiliary LO using algorithm 9;

11 Taux ← Estimating time for Laux;

12 if (Taux 6 Tu) then

13 Recommend Laux;

14 Tu ← Tu − Taux;
15 Usaux ← Obtained score of u on Laux;

16 if (Usaux > Es) then

17 Go to Line 1;

18 else if (δs 6 Usaux < Es) then

19 Go to Line 9;

20 else

21 Go to Line 24;

22 else

23 Terminate;

24 else

25 Treshow ← Time to re-read the same LO;

26 if (Treshow 6 Tu) then

27 Reshow the same LO;

28 Tu ← Tu − Treshow;
29 Usre ← Obtained score of u on same LO;

30 if (Usre > Es) then

31 Go to Line 1;

32 else if (δs 6 Usre < Es) then

33 Go to Line 9;

34 else

35 Go to Line 24;

36 else

37 Terminate;
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Algorithm 9: Generating auxiliary LO for a lesson.
Input: User u, Lesson L, Score threshold δs, Transaction data D, Estimated score for L (Es), Obtained score

for L (us).

Output: Auxiliary LO for a lesson.

1 LOEx ← Select all Ex LO of L ; . Ex: Expository LO.

2 LOEv ← Select all Ev LO of L ; . Ev: Evaluative LO.

3 if (δs 6 us < Es) then

4 for ( i = 1 to n (number of Ex LO)) do

5 Ti ← Estimating time for Exi using D;

6 Vi ← Estimating visited rate for Exi using D ; . For expository LO, score and completion rate

are ignored since they do not have such information.

7 AuxEx ← Selecting a LO using T and V which is unvisited by u ; . LO selection is explained in

4.2.1.1.

8 for ( j = 1 to m (number of Ev LO)) do

9 Sj ← Estimating score for Exj using D;

10 Tj ← Estimating time for Exj using D;

11 Cj ← Estimating completion rate for Exj using D;

12 Vj ← Estimating visited rate for Exj using D;

13 AuxEv ← Selecting a LO using S, T , C and V which is unvisited by u ; . LO selection is explained in

4.2.1.1.

14 Return (AuxEx, AuxEv);

4.3 Summary

In this chapter, we present two methods for generating paths that maximize a user's score under

a given time constraint. We �rst detail a method that works based on a one-layer course graph.

For that, we initially explain how it generates all paths from a course graph. Next, we explain the

methods to estimate the time and score for the generated paths. We then describe two methods

that are proposed for estimating the probability of error for the estimated time and score for the

paths. The probability of error for time (Rt) addresses the probability of not completing a path in

a user's available time, while the probability of error for the score (Rs) presents the probability of

underachieving the estimated score for a path. The idea by providing the Rt and Rs is to assist a

user in making an informed decision about selecting a learning path. Finally, we highlight the main

drawbacks of this method which uses a one-layer course graph.

We then detail the second method, which is an enhanced version of the �rst method. The second

method is a lesson-based one which generates paths from a two-layered course graph. It uses the

same methods as the previous method to estimate time, score, and the probability of error for the

paths. For this method, we �rst present how it generates paths (lesson sequences) from the course

graph and selects LO for each lesson of a path. We then explain an algorithm that is used by this

method to recommend a path to a user lesson by lesson. This algorithm allows the recommender to

update a path regarding a user's progress. Finally, we explain our approach to estimate auxiliary LO

for a lesson when a user could not learn a lesson correctly.



Chapter 5

Evaluating Estimation Methods

Up to this chapter, we have explained our main objective and research questions. In addition, we

have introduced two methods to obtain our main goal. In this chapter, we assess the quality of

learning time and score estimation methods, which are introduced in chapter 4. For that, we initially

describe the methodology that we have used for our evaluation. We then describe the two datasets

that we have utilized for the evaluation. In order to have a better understanding of the datasets, we

also analyze them in detail. We then compare the performance of the estimation methods using the

Mean Absolute Error (MAE) and Average MAE measures. Furthermore, we evaluate our methods

in the case of overestimating and underestimating learning time and score for the paths.

5.1 Evaluation Methodology

In order to assess the performance of our estimation approaches for a particular user, we determine

a sequence of LO (path) that the user already selected and visited. We then ignore (hide) the

learning time and score of some of the LO from the sequence (always last LO in the sequence) and

consider them as unobserved LO (�gure 5.1), and attempt to estimate the learning time and score

of unobserved LO (unobserved LO: test set, observed LO: train set). The sequence of unobserved

LO are set as a window. Experimentally, the window's size ranges from 1 to 10. For each window,

we estimate time and score for unobserved LO. We then use MAE to assess the performance of the

estimation. The reason for considering di�erent window sizes is to compare estimation approaches

under varying estimation horizon conditions.

In detail, we perform the following tasks in our evaluation methodology:

1. Find users having enough transactions. For example, when the window size is set to 5, we need

to �nd users that already visited more than 5 LO, so, when the time and score of 5 LO are

ignored, they still have visited LO.

2. Identify a sequence of LO that each of these users have already selected.

3. For each user, we hide the score (or time) of LO from the end of the sequence considering the

size of the window (unobserved LO). For instance, if the window size is 5, we hide the learning

score (or time) of 5 LO from the end of a sequence for a user.
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4. For each unobserved LO for a user, we use the learning score (or time) of other users that

have already visited that LO, and estimate score (or time) for it by means of our estimation

methods.

5. Calculate the error between two vectors, the one that contains the actual score (or time) of

unobserved LO and the one that contains the estimated ones. Each element in the estimated

vector is an estimation for the corresponding element in the actual vector. In this thesis, since

we use the MAE, the error computation is estimating the average error for a user for a window

size.

Figure 5.1: Example of our evaluation method. For a sequence, learning time and score of

observed LO are used to estimate the time and score for unobserved LO. Window size=4.

5.2 Dataset Description

In order to conduct the evaluation and assess the quality of learning time and score estimation

methods, we use two datasets. One of the datasets is taken from Enki, which is a web-based learning

environment [PLQ16]. This data is for an open course on C# that was organized by the Polytechnic

Institute of Porto for a week in 2015-2016. The Enki dataset includes two kinds of data, usage data

and a course graph.

The second dataset is from Mooshak, which is a system for managing programming contests on the

web and also can be used as a pedagogical tool [LS03]. This data is for a regular database course

which was organized by the Faculty of Science of the University of Porto in the second semester of

2016-2017. The users are the second year undergraduate students in computer science �eld.

Table 5.1 summarizes the information about the Mooshak and Enki datasets that we have used in

this thesis.
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Attributes Mooshak Enki

T
ra
n
sa
c
ti
o
n
d
a
ta

# Users 144 61

# LO 31 59

# Transactions 2646 917

LO type Ev Ex - Ev

Time range (1,93) (1,490)

Time scale Minute Minute

Score scale Binary Binary

Sparsity degree 40.72% 74.52%

C
o
u
rs
e

g
ra
p
h

# Nodes (LO) 31 59

# Lessons - 5

# Links - 9

Table 5.1: Datasets description. Ex and Ev refer to the expository and evaluative LO. Links

indicate the precedence relation among the lessons. In score, 0 means fail to learn a LO while

1 means successful to correctly learn a LO by a user.

5.2.1 Data analysis

In order to have a more clear view of the datasets and assess how the users interacted with the

Mooshak and Enki courses, we analyze them in this section. This analysis also assists us to have a

better understanding of the evaluation results that we are going to get later on for the time and score

estimation methods. In this analysis, we aim to answer the following questions:

1. How users interacted with the LO of each system?

2. How much time did users spend on each LO?

3. What was the success rate of users for each LO?

For that, we investigate each dataset and visualize the results in the form of di�erent graphs. Figure

5.2 presents how users interacted with LO in each system and how dense are the datasets. In this

�gure, the horizontal axis presents the ID of each LO, the vertical axis is the users' ID, and each

point (circle) in the �gure shows the selection of a LO by a user. As shown in this �gure, users

attempted almost all available LO in Mooshak, while in Enki users mainly selected and learned a few

�rst LO which are presented to them at the beginning of the learning process, and then they quitted

the system.
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Figure 5.2: Users interactions with LO in Mooshak and Enki systems.

Figure 5.3 shows the time variation of users on di�erent LO for both Enki and Mooshak. In this �gure,

the horizontal axis shows the ID of each LO while the vertical axis presents the time variation of users

on each LO. In Mooshak, since users have access to LO one after another and all LO are available

for users until a speci�ed date (all LO have almost similar availability deadline), the learning time of

LO gets less variation over time, while in Enki LO are available for users without any restriction.

Figure 5.4 shows the success rate of users on di�erent LO in Enki and Mooshak. As in �gure 5.3,

the horizontal axis indicates the ID of each LO while the vertical axis shows the success rate for LO,

which means how many times a LO is answered correctly by users. In Enki, since there are two types

of LO, expository and evaluative, the expository type has no score, therefore the success rate of this
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Figure 5.3: Learning time variation of users on di�erent LO in Mooshak and Enki systems.

To have a more clear view, the boxplots are presented in di�erent colors.
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type is equal to zero, while in Mooshak all LO need to be answered and they have score.
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Figure 5.4: Success rate of users on di�erent LO in Mooshak and Enki systems.

5.3 Results and Discussions

We describe and discuss our experiments in this section. In brief, the evaluations that are presented

in this chapter are as follows:

1. To generate a model for the MF.Predict approach (MF.Predict is based on MF method), we

need to determine the optimum values for its parameters, which are regularization, learning
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rate, number of factors, and number of iterations. For this purpose, we have used the

cross-validation technique which is explained in section 5.3.1.1.

2. Comparing the goodness of �t of the generated 2PL and 3PL IRT models for each dataset

(analysis of variance).

3. Comparing the performance of nine methods for estimating time and score.

4. Evaluating our best estimation methods (Clust.Mean and Clust.Median) in the case of

underestimation and overestimation of time and score.

5.3.1 Generating models for MF.Predict and IRT.Predict

Before evaluating the performance of the introduced approaches for estimating time and score, we

aim to generate a model for the MF.Predict, and also choose an IRT model for the IRT.Predict

approach.

5.3.1.1 Generating MF.Predict model

In order to generate a model for the MF.Predict approach we initially need to determine optimum

values for the regularization (λ), learning rate (η), number of factors (f), and number of iteration

(iter) parameters. The role of the regularization parameter is to avoid over�tting to training data

while the η is useful, especially when the training data is large. It is typically set to lower values to

ensure that the algorithm does not miss a local optimum. As a consequence, the algorithm may take

several iterations (i.e., take much time) to converge. Therefore, the selection of η value is important

to keep the balance between the recommendation accuracy and convergence rate [LXZ13].

To determine the optimum values for MF parameters, we have used the cross-validation technique

[NJTY16]. For that, we have changed one parameter at the time while other parameters were �xed.

Every time the MF model was trained using a training set while the test set was used to assess how

well the MF model was trained. The MF.Predict models were generated using the MyMediaLite

framework [GRFST11]. Table 5.2 shows the optimum values to generate models for both datasets.

For each dataset, we have used the same parameters to generate models for time and score.

Table 5.2: Optimum MF parameters for Mooshak and Enki.

Datasets λ η f iter

Mooshak 0.09 0.01 10 60

Enki 0.01 0.09 5 30

5.3.1.2 Evaluating 3PL and 2PL IRT models

As explained in section 4.1.2.4, we assume that all LO have di�erent discrimination level, therefore,

we use a multidimensional IRT to generate our models. There are two multidimensional IRT models:

2PL and 3PL. In order to select one of these models (2PL or 3PL), we use the analysis of variance

(ANOVA) [Gui00] to compare the goodness of �t of models for each dataset. The results of ANOVA
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are presented in table 5.3. In this table, the Akaike information criterion (AIC) is a measure that

given a set of models for a dataset, selects the best-�tting model that uses the fewest parameters.

The Bayesian information criterion (BIC), which is also a criterion for model selection among a set

of models, penalizes complex models more than the AIC and selects a simpler model (less complex).

In both AIC and BIC, a model with the lowest value will be selected [Sta17, BA04]. Therefore,

according to our results, we select the 2PL to model our datasets.

Table 5.3: ANOVA results for comparing the generated models using 2PL and 3PL.

Datasets Models AIC BIC

Mooshak
3PL 1124.04 1400.23

2PL 1072.47 1256.6

Enki
3PL 461.85 688.04

2PL 405.67 556.47

5.3.2 Evaluating estimation approaches

In this section, we evaluate the quality of our estimation approaches. For this purpose, we use the

method that we have introduced in section 5.1. Regarding the evaluation results that are shown in

�gures 5.5a and 5.5b, MF.Predict approach performs worse than the others in score estimation. It

can have two reasons: MF-based methods require enough data to train; or MF-based methods often

perform well for sparse data.

In score estimation, determining an approach which outperforms the other ones is not clear. To this

end, we estimated the average of each boxplot (boxplots of �gure 5.5) and presented in �gure 5.6. As

presented in this �gure, a few approaches perform better than the others for each dataset. Among

these approaches, the Clust.Median performs well for both datasets.

In time estimation as in score estimation, we show MAE results in the form of boxplots for the two

datasets (�gure 5.7). According to our results, the performance of a few approaches are competitive

in both datasets. To have a more clear view of the results, we estimated the average of MAE for each

boxplot and presented in the form of a line graph (�gure 5.8). Regarding the results in �gure 5.8,

Median, Mean, Clust.Median and Clust.Mean outperform the rest of approaches in Mooshak

data, while in Enki it is not clear which methods perform better. Among the mentioned methods,

Clust.Mean and Clust.Median are the ones that performed well in estimating score for both

datasets. Although IRT-3PL also performed well in estimating score for both datasets, it mainly

generated more outliers than the Clust.Mean and Clust.Median (�gure 5.5). So, to estimate the

learning time and score, we need to select one of the two approaches, Clust.Mean orClust.Median.

For that, we conduct another evaluation, which is explained in section 5.3.3.

To obtain the results that are shown in �gures 5.5 to 5.8, we have used the approach presented in

section 5.1. In this method, increasing the size of window results in decreasing the number of observed

LO. Subsequently, the number of training cases decreases. Having a larger training set often results

in more accurate results but in this case this is not clear because the amount of data is not su�cient

to monitor how the size of the window a�ects the evaluation results.
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Figure 5.5: Mean Absolute Error results for score estimation approaches.
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Figure 5.6: Average MAE for score estimation.
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Figure 5.7: Mean Absolute Error (MAE) for estimating time.
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Figure 5.8: Average MAE for time estimation.

5.3.3 Underestimation and overestimation assessment

As mentioned in the previous section, both Clust.Median and Clust.Mean are performing well

in time and score estimation for both datasets. In order to select one of them, we evaluate them

in the case of overestimation and underestimation learning time and score. The main reason of this

evaluation is, for time, underestimation implies higher risk than overestimation because a user might

not be able to complete a learning path in the estimated time. Contrary to time, score overestimation
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implies higher risk since a user might not attain the estimated score for a generated path.

The results are shown in the form of probability density for the two datasets (�gures 5.9, 5.10, 5.11,

and 5.12) to show the percentage of overestimation (estimated values> real values) and underesti-

mation (estimated values < real values) of the selected methods.
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Figure 5.9: Score overestimating and underestimating using Clust.Median approach.
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Figure 5.10: Score overestimating and underestimating using Clust.Mean approach.

In these �gures, the blue highlighted part presents the overestimation region while the orange-colored

part shows the underestimation region. Regarding the results, although both methods perform

well in time estimation, Clust.Mean performs better than Clust.Median in score estimation

(Underestimation error in Enki: Clust.Median:12 %, Clust.Mean: 20.2%, in Mooshak: Clust.Median:

10%, Clust.Mean: 9.1%). Therefore, according to the results which are presented in this and previous

sections, we select Clust.Mean to estimate learning time and score for users. Complementary

overestimation and underestimation results are mentioned in appendix B.
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Figure 5.11: Time overestimating and underestimating using Clust.Median approach.
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Figure 5.12: Time overestimating and underestimating using Clust.Mean approach.

5.4 Summary

In this chapter, we evaluate the quality of nine di�erent methods that are introduced for estimating

the learning time and score for the learning paths (explained in chapter 4). To this end, we �rst

detailed our evaluation methodology that we have used to assess our estimation methods. Next, we

explain two datasets that are used for the evaluation. One of these datasets is from a C# course which

is taken from Enki system, and the second one is for a database course that is taken from Mooshak.

These datasets are also statistically analyzed for providing a better understanding of them. Finally,

we compare the performance of the estimation methods using MAE and Average MAE, and also

assess them in terms of overestimating and underestimating time and score for the learning paths.



Chapter 6

Recommender Evaluation

Our goal is to generate learning paths that maximize a user's score under a given time restriction. For

this purpose, we introduced two approaches to generate learning paths considering the knowledge

background and time restriction of a user. The �rst approach uses a one-layer course graph to

generate paths while the second one is based on a two-layered course graph. The second approach

is introduced to cover the problems of the �rst approach. In the previous chapter, we assessed

the quality of di�erent methods for estimating learning time and score for the paths. Based on

experimental results, Clust.Mean was selected for time and score estimation.

In this chapter, we aim to assess the quality of the recommender approach, which is based on a

two-layered course graph. This approach is evaluated since it is an enhanced version of the other

approach (using one-layer course graph). For that, we developed our approach and integrated it with

an E-learning system, called Enki, to generate learning paths for target users. Therefore, we initially

describe the architecture of our system, detail its design and implementation. We then explain an

experiment that we have conducted to assess the quality of the recommender. For this purpose, we

selected 32 participants and divided them in two groups (a control group and an experimental group)

to attend a short course. Both groups used two di�erent versions of the same system (Enki). The

experimental group used the version that guided participants using recommendations while control

group used the version of the system that delivered LO without using recommendations. Finally, we

compared the performance of the two groups.

6.1 E-Learning System Integration

As explained previously, our approach (using a two-layered course graph) is integrated with a system

(Enki) in order to generate and recommend paths that maximize users' score while satisfying their

time constraints. Our system blends learning and assessment, and is able to present di�erent content

formats (e.g. hypertext, video, etc.) and exercises. It is also an adaptive system, which adjusts

a generated path according to the users' feedback. In addition, this system includes interfaces for

teachers to author and manage both exercises and content, as well as to browse assessment results and

users' pro�les. The next subsections present the architecture of our system and its main components,

and describe its implementation.
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6.1.1 Architecture

Our approach is embedded in the Enki system. Enki is a part of Mooshak 2.0 [LS03], a web

environment for automated assessment in computer science. Mooshak has interoperability features

that enable it to interact with other E-learning tools such as Learning Management Systems (LMS).

Enki takes advantage of Mooshak 2.0 to have a pivotal role in a network of E-learning systems,

coordinating the communication with all external components as depicted by the Uni�ed Modeling

Language (UML) components diagram in �gure 6.1.

Exercise  
creator

LO 
 Repository 

Evaluator 
Engine 

Enki 
Educational  
Resources  

Sequencing Service 

Mooshak 2.0

LMS 
LTI (LMS)

Path 
Recommendation 

Figure 6.1: Components diagram of the network of Enki where Mooshak 2.0 acts as a tool

provider for an LMS. The gray component (recommender) is implemented and added to Enki.

The next sub-subsections explain in detail the types of systems and tools that build the network

presented in �gure 6.1.

6.1.1.1 Learning Management System (LMS)

An LMS is a software application for administration, documentation, tracking and reporting; used

in training programs and classrooms [Ell09]. Typically it is used by two types of users: learners and

teachers. The learners apply the LMS to plan their learning experience and to collaborate with their

colleagues, while teachers deliver educational content and track, analyze and report the learners'

evolution within an institute/organization.

An LMS often plays a central role in an E-learning architecture, but it still cannot be isolated

from other systems in an educational institution. Therefore, the potential for interoperability is an

important aspect of an LMS [LQ11]. To this end, we integrate our E-learning recommender based

on an LMS (e.g. Moodle). For this reason, our recommender bene�ts from the interoperability

mechanisms inherited from Mooshak 2.0 to provide authentication directly from the LMS and to

submit grades of exercises to the LMS, using the Learning Tools Interoperability (LTI) speci�cation.
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6.1.1.2 Path Recommender (PR)

The Path Recommendation (PR) generates paths regarding knowledge background (i.e., starting

point) and time restriction of a user. It performs the following tasks:

1. Receive time constraint and the starting point (sp) of a user.

2. Generate a path that maximizes a user's score under his/her available time.

3. Estimate time, score, and the probability of error for the estimated time and score for a path.

4. Generate auxiliary LO for a lesson whenever it is required.

6.1.1.3 Educational Resources Sequencing Service (ERSS)

The role of ERSS is to present a sequence of concepts that matches the learning goal and then

select learning resources for each concept of that sequence. The selected ERSS is Seqins, which

contains a simple and �exible sequencing model that fosters users to learn at di�erent rhythms

[QLC14]. Precedence among units of a course (LO and lessons), users' progress and assessment

results are delivered to the Seqins by Enki, and Seqins generates an XML �le which includes the

representation of the resources for a target user. This XML �le is generated using the results of the

Path Recommendation (explained in section 6.1.1.2).

6.1.1.4 Evaluator Engine (EE)

The main goal of EE is to mark and grade exercises (i.e., evaluative LO). It is provided by Mooshak

2.0 and performs four tasks:

1. Receive a reference of an exercise (evaluative LO) and a reference of a user that submits an

answer (e.g. a code) as well as the answer of the user.

2. Load the exercise from the LOR (LOR is explained in section 6.1.1.6) using the given reference.

3. Compile the solution and run the tests, related to the exercise, against the answer of the user.

4. Generate an evaluation report with feedback and, possibly, corrections.

The main feature of EE is the automatic evaluation of exercises, providing better feedback and

support for di�erent exercise types.

6.1.1.5 Exercise Creator (EC)

An EC enables teachers to generate a complete exercise package, including a statement, a solution,

tests, skeletons, and a manifest �le describing the contents of a package. The generated package

needs to follow the same package characteristics as the LOR (LOR is explained in section 6.1.1.6).

Similar to EE, the EC is also provided by Mooshak 2.0.
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Figure 6.2: Interface of our recommender for users.

6.1.1.6 Learning Objects Repository (LOR)

A Learning Objects Repository (LOR) stores educational resources (LO) and enables users to share,

manage and use them. These resources (or LO) are small, self-contained and reusable learning units

which, typically, have additional metadata to catalog and search them. Similar to EE and EC, LOR

is also provided by Mooshak 2.0.

6.1.2 Graphical User Interface

Our recommender is implemented using Google Web Toolkit (GWT), an open source software

development framework that allows a fast and easy development of AJAX applications in Java [HT07].

One of the special components of our recommender is the user interface, shown in �gure 6.2, which

emulates an integrated development environment (IDE). Through this interface, users can rearrange

panels and tabs to their requirements, by drag-and drop and resizing features, which are provided by

the Enki.

In �gure 6.2, every level of the Resources tab, such as Data Types and Variables, presents a lesson

that includes several LO. These LO can have various types, such as text (HTML or PDF), multimedia

(video), and exercises (evaluative LO). A recommended LO is initially colored with yellow and has a

star over its icon. Once a user visits a recommended LO, the yellow color turns into green.
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6.2 Experimental Methodology

After implementing our recommender and embedding it in Enki, we designed a short course on the

C# programming language and o�ered it to participants using two di�erent versions of the same

system. One of the versions used our recommender approach and the other version delivered the

course to participants without any recommendation.

Learners use a learning system when it makes the learning process more e�cient, e�ective and

attractive. These three are the common measures in educational researches [VMIB13]. E�ectiveness

indicates the number of correctly completed LO and lessons by participants during the learning

process. E�ciency implies the time that learners spend to obtain their goals (study time). Finally,

the last measure (attractiveness) shows the learners' satisfaction of an E-learning system. In the

following, we use these measures to assess the performance of both groups on the course and the �nal

exam and to validate the following hypotheses:

1. Our recommender promotes a higher lesson coverage than the baseline (assessing the e�ective-

ness and e�ciency on the course).

2. Users of our recommender get better scores on the �nal exam than the ones without recom-

mendation (assessing the e�ectiveness on the �nal exam).

3. Considering the time of the course, users of our recommender are more satis�ed with their

scores for the exam than the ones without recommendation (assessing the attractiveness).

The level of the C# course was basic and it included 5 lessons, which were Data types and variables,

Conditions, Loops, Arrays, and Strings, and contained 59 LO. The experiment was conducted for

32 participants in June 2018. In our experiment, participants were separated in two groups: 16

participants in a control group and 16 participants in an experimental group. In the control group,

participants followed a prede�ned order (designed by a course expert) for lessons and LO and did

not receive any recommendation or personalized guidance through the course. In the experimental

group, participants used our recommender. To assign the participants to the experimental and

control groups, the standard practice is to assign them randomly. In our experiment, we had a small

number of participants while they were very diverse and they could not attend at the same time (32

participants attended in 5 di�erent times). Therefore, in order to be sure that both groups were

similar or had negligible di�erences, we selected and assigned participants to groups manually. For

this purpose, we have considered three criteria for assigning participants to the groups: (1) level of

programming skill, (2) gender, and (3) familiarity with the Portuguese language. The last criteria

is considered (familarity with portugesse language) since the course was in Portuguese, therefore,

we assumed knowing Portuguese can a�ect the performance of the participants. Statistics of both

groups are presented in table 6.1.

Since the experiment was conducted in a controlled environment, participants in both groups did

not take any other parallel courses or activities. Also, they were asked not to use any extra learning

materials or help except using google translator, since some of the participants were foreigners living

in Portugal and were not familiar with the Portuguese language for understanding the questions

(questions were in Portuguese).

The experiment consisted of three main phases. In the �rst phase, participants from both groups were
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Table 6.1: Statistics of experimental and control groups. In this table, we also test the

homogeneity of two groups. For that, we estimated the p-value using the Fisher exact test

[RR95, McD09]. The estimated p-values do not reject the null hypothesis, which is "two

groups are similar".

Gender Portugese Level Coding Level

M F Know Not Knowing Not Know coding Know coding Know C#

Control 13 3 14 2 5 11 0

Experimental 13 3 10 6 7 9 0

P-value = 1 P-value = 0.22 P-value = 0.716

asked to follow the course for 2 hours. In the second phase, after taking the course, all participants

were asked to attend a small �nal test (equal for both groups) to assess their knowledge on the lessons

that they learned during the course. The duration of the test was 1 hour and it included �ve practical

questions that the participants were required to provide correct compilable solutions for them. In the

last phase, participants in both groups answered two di�erent short questionnaires to provide their

opinions about the baseline (a version of the system that did not use the resommendations) and the

recommender (2 questions for the control group, 5 questions for the experimental group). The �nal

test and the questionnaires were integrated into the system. Figure 6.3 shows a graphical view of our

experimental procedure.

Groups formation

Experimental Group 
16 users 

Control Group 
16 users 

 
Course 

No Recommendation 
2 hours 

 

Course 
Recommendation 

2 hours 

Final test 
1 hour 

Questionnaire 
5 Questions 

Questionnaire 
2 Questiones 

Figure 6.3: Graphic depictions of the experimental procedures.
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6.3 Course Performance

To assess which system (baseline or our recommender) promotes a higher lesson coverage, we moni-

tored and compared the completion of LO and lessons by the participants in both groups (assessing

the e�ectiveness). For that, the grades for LO and lessons were made after completing each of

them. The experiment results shown in �gure 6.4 indicate that within the available time for the

course, participants in the control group could complete more LO from the �rst two lessons while

the participants in the experimental group were able to learn and complete more lessons than the

participants in the control group. One possible reason is, in the control group a participant received

the LO sequentially regardless of the fact that he/she might not need to learn all LO to learn a lesson.

In this group, a participant learned and answered the LO as he/she received them while a participant

in the experimental group received and completed only those LO that were necessary for him/her to

learn a lesson in the available time. Therefore, the participants in the experimental group were able

to complete more lessons than the participants in the control group.
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Figure 6.4: Comparing the e�ectiveness of both groups on di�erent LO and lessons.

In addition, we assessed both groups in terms of e�ciency for the course coverage. For this purpose,

we calculated the time that the participants of both groups have spent on each LO and lesson. The
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results are presented in �gures 6.5 and 6.6 . Regarding the results, the participants in the control

group could mostly focus on the �rst two lessons while the participants in the experimental group

were able to learn four lessons within the same amount of time. Therefore, according to the results

presented in �gures 6.4 to 6.6, the e�ciency and the e�ectiveness of participants in the experimental

group are highly enhanced in compare to the participants in the control group.
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Figure 6.5: Comparing the e�ciency of both groups on di�erent LO and lessons.

In order to assess how signi�cant is the di�erence between the course coverage of two groups (�rst

hypothesis mentioned in section 6.2), we estimated the p-value [WL+16] using the learning time

of the participants (�gures 6.5 and 6.6 shows the groups' learning time on each lesson and LO).
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Figure 6.6: Sum of time that participants spent on each lesson.

To this end, we counted the lessons that a participant could spend more than 5 minutes for them.

The threshold was set to 5 minutes since for each lesson a participant needed to learn two LO, an

expository one (watching a video around 3 to 4 minutes) and answering an evaluative LO (at least 1

minute). Then, we made two samples of 16 values, each obtained by counting the lessons accessed by

each participant. Finally, we compared two samples using the Wilcoxon-Mann-Whitney [Neu11] and

Kruskal-Wallis tests [MN10]. These tests can be used if the two samples are independent and the

variables are continuous or at least ordinal. The obtained p-value 0.001024 (same results for both

tests) strongly rejects the null hypothesis for a signi�cance level of 0.1, which is �our recommender

and the baseline systems promote similar course coverage�.

For the �rst hypothesis, we also did the same test using the learning score of participants (in �gure

6.4 the groups' scores are compared). For that, we counted, for each participant, how many lessons

had at least one LO graded. We then generated two samples of 16 values, each obtained by counting

the lessons graded by each participant. The estimated p-value 0.07727 (same results for both tests)

rejects the null hypothesis. Therefore, according to the obtained p-values we can conclude that the

e�ciency and the e�ectiveness of our recommender are signi�cantly higher than the baseline for a

signi�cance level of 0.1.

6.4 Final Exam Performance

Similar to the course performance assessment, in the �nal exam, we also analyzed and compared the

e�ectiveness of the participants in both groups. In the �nal exam, the time that participants spent

on each question or the whole exam was not of our interest since in all educational exams participants

have a similar amount of time and they are allowed to allocate their time for the questions as they

want.



84 CHAPTER 6. RECOMMENDER EVALUATION

The exam was similar for both groups and it included 5 coding questions (one question per lesson).

The participants were requested to provide compilable solutions that gave the correct results. The

exam duration was 1 hour and the participants had no restrictions on how to devote their time to

di�erent questions. In order to control confounding variables related to the participants' performance,

no other C# lessons were taught during the exam.

After the �nal exam, we assessed if the participants in the experimental group obtained a higher score

than the participants in the control group. This comparison of the results allowed us to assess not

only the di�erence between the gained knowledge but also to determine how much the recommender

was successful in achieving the main goal of this thesis.

Regarding the results presented in �gure 6.7, all participants in the experimental group could answer

the �rst question correctly. They also had a better performance than the participants in the control

group in answering all questions except the second question. The reason is, each question was

associated with a lesson of the course and the participants in the control group could learn the

second lesson better than the participants in the experimental group (�gure 6.4).
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Figure 6.7: Sum of the participants' scores on each question.Correct answer=1, otherwise 0.

The minimum and the maximum possible scores for the exam (for a participant) were 0 and 5, since

there were �ve questions in the �nal exam, and a participant gained 1 score by providing a correct

answer for a question. Figure 6.8 shows the frequency of the �nal scores that the participants of both

groups could obtain from the �nal exam. The worst result was made by a participant from the control

group, while a participant from the experimental group obtained the best possible score. Apart from

that, more participants in the experimental group got "4" than the participants in the control group

but the number of the participants that their �nal scores were equal or less than 2 (9 participants for

both groups), and more than 2 (7 participants for both groups) is equal for both groups. Therefore,

although the participants in the experimental group could complete the exam with better scores in 4

and 5, if we consider 3 as the minimum score to pass the exam, the participants in both groups had

almost a similar performance.
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Figure 6.8: Frequency of �nal scores for participants in both groups.

In order to evaluate how signi�cant is the di�erence between the obtained �nal scores of the partic-

ipants in two groups (second hypothesis in section 6.2), we compared two groups using their �nal

grades on the exam. For that, we applied a similar methodology as we used for comparing the

course coverage of two groups (using score's data) since the samples had the same structures and

nature. The obtained p-values using the Wilcoxon-Mann-Whitney and Kruskal-Wallis tests are equal

(0.9571). A brief look at the results presented in �gure 6.8 shows that although participants of the

recommender obtained higher scores than the participants in the control group, this di�erence is not

statistically signi�cant. We believe that the relatively small size of the samples may partly explain

this lack of observable signi�cance.

6.5 Participants' Satisfaction Assessment

The participants' satisfaction was evaluated in two steps. In the �rst step, after completing the �nal

exam, we provided a short questionnaire to collect the participants' opinions about the quality of our

recommender and the generated recommendations. This questionnaire was only for the participants

in the experimental group since they were the ones that used the recommender. Participants were

asked to rate the statements using a �ve-point Likert scale. This questionnaire had the following

statements:

1. Recommendations were generated quickly.

2. Recommendations were helpful for completing the course.

3. The additional generated recommendations for a lesson were helpful to understand the lesson

and answer the questions.

We limited our questionnaire to these statements since any other statement could be related to the

Enki and not to the recommender (our recommender is integrated with Enki). Therefore, in order
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to not having misleading data, we only focused on the quality of the recommender and distributed

the questionnaire among the participants of the experimental group.

Figure 6.9 shows the participants' opinions about the quality of the recommender and recommenda-

tions. As presented in this �gure, almost all participants had positive opinions (agreed or strongly

agreed) about the quickness of the recommender. In addition, 50% of the participants were satis�ed

with the relevancy and usefulness of the recommended LO (expository and evaluative) in completing

the course (question 2). Also, 75% of the participants "agreed" or "strongly agreed" with the

usefulness of the generated auxiliary LO for each lesson (question 3).
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Figure 6.9: Participants' opinions about the quality of the recommender.

The main goal of our recommender is to maximize the expected score of a user in a restricted

learning time. So, in the second step, we collected the participants' opinions about the success of

the recommender and the baseline (not using the recommendation) in achieving the mentioned goal.

To this end, we designed two statements and asked the participants from both groups to rate the

statements using a �ve-point Likert scale. The two statements were:

1. I could understand most of the course within time.

2. Regarding the time that I have spent on the course, I am satis�ed with my �nal score.

Figure 6.10 shows the participants' opinions about the mentioned statements. The results of the �rst

statement show that the participants in the control group were more satis�ed with the amount of the

course that they could learn (course coverage) than the participants in the experimental group. It is

the opposite of the results that are presented in �gures 6.4 to 6.6, which show that the participants

in the experimental group had a higher course coverage than the ones in the control group. One

reason can be that the participants were not careful enough in providing their opinions for the �rst

statement and they answered the questionnaire mechanically.
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The results for the second statement are almost similar for both groups. These results comply with

the results that are presented in �gure 6.8. Figure 6.8 also shows similar results for both groups in

the �nal exam. Also, as a reason for having such results for the second statement is, confusing the

course's score with the exam's score by the participants. Hence, since some of the participants in the

control group had a good performance on the course, they might give a high rate to this statement.

Therefore, the third hypothesis (mentioned in section 6.2) could not be tested because of having the

mentioned problem in the data collection process that compromised the conclusions.
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Figure 6.10: Participants' opinions about the success of the recommender and the baseline

in achieving the goal.

6.6 Experiment Observation

Up to now, we have explained how we performed an experiment to evaluate the quality of our

recommender. In addition to assessing our recommender, this experiment allowed us to study

participants' behaviors (in the experimental group) and monitor how they interacted with our

recommender. During the observation, we could recognize four di�erent types of participants in

the experimental group. These groups were:

1. Advanced participants: These participants knew how to code, and asked few questions from

us during the course and exam. They were able to follow the course and answer the questions

with minimal guidance. They almost completed all the lessons of the course and got the best

scores for the exam (i.e., 4 and 5).

2. Good participants: These participants had some experience in coding but they still had some

di�culties. These users asked a few questions through the course but they managed to complete

most of the lessons. They mainly got good scores for the �nal exam (i.e., more than 3).

3. Keen participants: They knew the basics of coding. During the course, they frequently asked

questions (needed much help), and they were keen to answer the questions of the course and

the �nal exam. In spite of their attempts, they were mostly not able to complete most of the

lessons and their scores for the �nal exam were not good (i.e., less than 3).
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4. Novice participants: They were not familiar with coding. During the course, these participants

usually did not ask any question and mostly spent their time on the �rst lesson. They often

got the minimum scores for the �nal exam (i.e., 0 and 1).

In order to con�rm the validity of this observation, we used a clustering technique on the obtained

scores by the participants through the course and the �nal exam (scores of the experimental group).

To this end, we followed a data preparation method that was used in [BGJG14]. Hence, we initially

accumulated the participants' scores over the LO (for the course and �nal exam). We then proceeded

to cluster analysis, by using accumulated scores on LO as attributes, to group participants by

similarities of score acquisition. K-means [HW79] was the selected clustering algorithm since it

has a linear complexity, easy implementation and interpretation [RM05].

Our selected method to validate the number of clusters was the elbow method. The idea of the elbow

method is to run K-means clustering on the data for a range of K values (e.g. K from 1 to 7), and

for each value of K calculate the sum of squared errors (SSE). The results for �nding the optimal

number of the cluster among the participants in the experimental group is presented in �gure 6.11.

1 2 3 4 5 6 7

50
0

10
00

15
00

Number of Clusters

W
ith

in
 g

ro
up

s 
su

m
 o

f s
qu

ar
es

(a) Number of clusters on course.

1 2 3 4 5 6 7

0
10

20
30

40
50

Number of Clusters

W
ith

in
 g

ro
up

s 
su

m
 o

f s
qu

ar
es

(b) Number of clusters on exam.

Figure 6.11: Optimal number of clusters for the participants in the experimental group.

According to the results presented in �gure 6.11, "4" is one of the most promising values for the

number of the clusters. Interestingly, our results are compatible with the results that are presented

in [BGJG14]. In this paper, considering the performance of the participants on a course, they

are classi�ed into four di�erent groups. The �rst group of participants are "Achievers", which their

performance matches the performance of the participants in our advanced group. "Regular Students"

are the second best group of participants that they performed well on the course but not as good as

the "Achievers". This group can be compared with our "Good participants" group, which had some

di�culties to answer the questions. Next group is called "Halfhearted Students" that their scores

are less than the scores of "Achievers" and "Regular Students". Their performance is compatible

with the participants in the "keen group". Finally, the participants in the novice group have similar

performance to the "Underachievers" group presented in the paper.

In order to assess if these groups were evenly distributed among the experimental and control groups,

we performed the same clustering technique on the obtained scores of the control group for the course
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Figure 6.12: Optimal number of clusters for the participants in the control group.

and the exam. Similar to the experimental group, "4" is one of the most promising values for the

number of the clusters (�gure 6.12). In �gure 6.12, the maximum number of clusters for the exam is

set to 6 since there was no more than 6 clusters (clusters' centers) in the exam data.

6.7 Summary

In this chapter, we initially explain how we implemented our recommender approach (uses a two-

layered course graph) and embedded it in an E-learning system called Enki. We then describe an

experiment that was performed to assess the quality of the recommender. For that, we organized a

short course on C# programing language. Then, 32 participants were selected and divided in two

groups, a control group and an experimental group. These groups used two di�erent versions of the

same system (Enki). The experimental group used the version that utilized our recommender method

while control group used the version of the system that delivered LO without using recommendations.

After completing the course, all participants attended a short exam for one hour, which was equal

for both groups. Finally, we compared the performance of the participants in both groups on the

course and on the exam. In addition, we collected participants' comments about the recommender

using a short questionnaire.
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Chapter 7

Conclusion

In this thesis, we introduce Long Term Goal Recommender Systems (LTRS) that in addition to sat-

isfying prompt needs of users, guide them toward a pre-determined long term objective by generating

a set of relevant recommendations in successive moments. LTRS can be applied in various domains,

such as tourism, music, E-learning. In this thesis, we have concentrated on the E-learning domain.

In this domain, one of the signi�cant challenges is recommending learning materials that a user is

able to complete timely. This challenge becomes more di�cult when users cannot devote su�cient

time to learn an entire course (path).

Therefore, in this thesis, we present two approaches, that are examples of LTRS, for generating and

recommending paths (courses) when users have speci�c time constraints. In our approaches, we

recommend paths regarding knowledge background and available time of users. In these methods,

paths are generated from di�erent types of course graphs. The �rst approach uses a one-layer course

graph to generate paths while the second one is based on a two-layered course graph to cover the

problems of the �rst approach.

In the �rst approach, a user �rst needs to specify his/her knowledge background by identifying a LO

in the course graph. This method then �nds all paths (LO sequences) using a DFS algorithm, and

estimates time and score for them. It also estimates the probability of underachieving the estimated

score for a path (probability of error for score) as well as the probability of not completing a path

in the available time of a user (probability of error for time). Finally, it recommends a path that

satis�es the time constraint of the user while maximizing the expected score.

In the second approach, we have tried to cover the problems of the �rst approach. After specifying the

knowledge background of a user (selecting a lesson), this approach applies a DFS to �nd all lesson-

sequences that start by the selected lesson. It then uses the same methods as the previous approach

to estimate time, score, and the probability of error for the paths. Finally, a path that satis�es the

time constraint of a user while maximizing the expected score is recommended. To recommend the

path, it applies an algorithm, which allows it to iterate over each lesson of the path and recommend

the associated LO.

To evaluate the recommender approaches, we �rst evaluate the quality of time and score estimation

methods using o�ine approaches. Then, we assess the quality of the recommender approach, which

works based on a two-layered course graph, in a live environment. This approach is evaluated since

91
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it is an enhanced version of the other one (�rst recommender approach).

7.1 Research Contributions

In this thesis, we aim at generating learning paths for users that satisfy their available learning time

while maximizing their learning score. Here, we summarize and discuss the main contributions of this

thesis, addressing the research goal. These contributions are organized according to their signi�cance

level.

1. We present two approaches for generating learning paths considering a user's time restriction

and knowledge background. The approach, which uses a two-layered course graph, is able

to adapt a path using a user's transactions data. Furthermore, it applies an algorithm to

recommend a path lesson by lesson, which results in early detection of users' disability in

learning a path. In a situation that a user could not follow the recommended LO for a lesson,

it recommends auxiliary LO. These LO are the ones that are not in the initial path, and they

are generated to assist a user to learn a lesson correctly. They help that instead of generating a

new path, which is time-consuming and computationally expensive, we guide users by providing

more LO on a lesson that they could not learn.

2. We implement and evaluate the quality of nine di�erent methods for estimating learning time

and score for learning paths. These methods are implemented using various techniques and

algorithms, such as MF.Predict that is developed using machine learning techniques, or

IRT.Predict which is implemented using statistical models. Researchers often use static

learning time values, which are speci�ed by a course expert and mentioned in the metadata of

LO, for estimating the time for paths.

3. We also present a comprehensive overview of the learning path personalization methods as well

as their advantages and disadvantages. The main parameters for personalizing paths are also

described. In addition, we present approaches that are used to evaluate path personalization

methods. Finally, we highlight the most signi�cant challenges of these methods, which need to

be tackled to enhance the quality of the personalization.

4. We have developed our recommender using R programming language. For that, we have used

SQLite, which is a free library that implements a self-contained SQL database engine. In

addition, we have developed a version of our recommender approach in Java and embedding

it in a system called Enki. We plan to use our recommender at the Departement of computer

science of the University of Porto in order to assist students in learning programming languages.

7.2 Research Limitations

Although we were able to generate learning paths for users and maximize their learning score under

their given time, our approaches su�er from a few drawbacks. In this section, we highlight the main

limitations of this thesis.
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7.2.1 Availability of datasets

One of the main di�culties that we had during this research was the scarcity of publicly available data

in E-learning domain, which contains the learning time and score of users per LO or lesson. Although

there were a vast amount of data relevant to this domain, these datasets were often proprietary and

could not be released because of privacy concerns, and therefore, they were unavailable to us. Hence,

due to lack of such datasets, we were not able to conduct extensive experiments (i.e., o�ine evaluation)

and assess our methods in the case of scalability problem. So, we used two relatively small datasets

that we obtained from our own systems for the o�ine evaluation. Apart from that, in this thesis, the

analysis of the Mooshak dataset, as presented in section 5.2.1, reveals a strange pattern in learning

time of LO (the maximum learning time of all LO is almost the same), which might mislead us in

determining our best estimation method.

7.2.2 Size of experiments

In an experiment involving human subjects, selecting a proper sample size is a pivotal issue. An

under-sized experiment might not challenge the methods enough in order to show their de�ciencies

while an over-sized experiment in addition to being expensive, both in terms of time and money, might

not be necessary. Although in this thesis we have conducted both o�ine and controlled experiments,

the work would bene�t from experiments with more users and with longer duration.

7.2.3 Estimation methods

As presented in chapter 4, we have introduced nine di�erent approaches for estimating score and time

for learning paths. Although the evaluation results, which are presented in chapter 6, shows that

the selected method (i.e., Clust.Mean) is able to estimate time and score, it still generates some

outliers (bad estimation) that need to be considered. In addition, regarding the evaluation results for

the overestimation and underestimation of time and score, the selected method performs noticeably

well in estimating time (overestimating more than underestimating) while the performance of this

method is not as expected in score estimation (it overestimates rather than underestimating).

7.2.4 Demonstrating only in a single domain

As mentioned in chapter 1, the LTRS can be applied in di�erent domains, such as music where a

LTRS can be applied to diversify users' tastes or in�uencing their tastes to follow and buy a speci�c

genre of music, or in tourism where these systems are capable of maximizing tourists experiences

(e.g. visiting places, eating traditional dishes, etc.) in their available time and budget. In spite of

the applicability of LTRS in di�erent domains, due to lack of time and datasets we were not able to

develop our approach in other domains.
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7.3 Future work

The contributions proposed in this thesis and the obtained results as well as the mentioned limitations

suggest additional research directions. The most promising ones are listed as follow:

7.3.1 Cold start problem

We selected the Clust.Mean method to estimate learning time and score for the generated learning

paths. This method, as presented in chapter 4, requires su�cient data from a target user and LO

in order to estimate learning time and score. Hence, in a situation that there is not enough data

for estimation, this method su�ers from Cold-start problem. In our recommender approaches, this

problem describes the di�culty of learning time and score estimation when users or LO are new or

there is not su�cient data about them to estimate their time and score.

7.3.2 Take advantage of users and LO metadata

A minimal information on users (i.e., the time and score of users) is needed to estimate their learning

time and score for paths. The minimal information is used since users often do not want to share

additional information, such as their feedbacks on the di�culty and the quality of LO. It is of interest

to analyze the in�uence of applying di�erent kind of users and LO information (e.g. number of users'

attempts to complete a LO, or users' rates on the di�culty level of LO) in improving the accuracy

of estimation results.

7.3.3 Big data and Scalability

One of the main features of learning path recommenders is to react rapidly in order to keep users

engaged with the system. This feature can be in�uenced by large scale datasets. Hence, it is signi�cant

to design a scalable learning path recommender method that handles this kind of data. Although

our estimation method, which is based on clustering technique, theoretically should be able to cope

with the large scale datasets, due to unavailability of large datasets (for o�ine evaluation) and not

having a large number of users in our controlled experiment, we could not con�rm the scalability of

our recommender approaches.

7.3.4 Update scheduling

In the lesson-based approach, we update users' time and score after completion of each lesson without

considering any precedence to score or time. It is of interest to �nd a proper time to update each

user's pro�le since users have di�erent progress speed, which a repeated updating procedure might

not be necessary meanwhile it is computationally costly while postponing it might mislead the user.

In addition, di�erent information that is used to generate a path can have di�erent priorities for

users, hence, it can be important to generate learning paths and update users' pro�les regarding

these priorities.
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7.3.5 User-centered course structure

In our recommender approaches, two course graphs, which are constructed by a course expert, are

used to generate learning paths for all users. Therefore, the structure of these courses that are used

for recommendation will be the same for all users. It is important to generate paths taking into

consideration the users' preferences for following a course since users might not always follow the

same structure as a course expert to learn a course. For example, for each lesson in our lesson-based

approach, expository LO will be recommended to users �rst while users might prefer a di�erent way

(e.g. Socratic order/method [Lam11]) to receive the recommendations for learning a course.

7.3.6 Evaluation framework

One of the most important shortcomings in these recommenders is the lack of a general framework

that researchers can apply to evaluate and compare their learning path recommender methods. This

framework can include the key factors that need to be evaluated (e.g. grade), the required information

as well as the methods that need to be used for the evaluation. It can be signi�cantly useful in

promoting the research in this domain.
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Acronym list

LTRS Long Term Goal Oriented Recommender System

RS Recommender System

CF Collaborative Filtering

CB Content-Based Filtering

DFS Depth-First Search

BFS Breadth-First Search

LO Learning Objects

SP Starting Point

CG Course Generation

CS Course Sequence

SPR Sequential Pattern Recognition

ITS Intelligent Tutoring System

IRT Item Response Theory

ICC Item Characteristic Curve

2PL Two parameters logistic model

3PL Three parameters logistic model

MF Matrix Factorization

MAE Mean Absolute Error

RMSE Root Mean Square Error
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Appendix A

Summarized studies

In this appendix, we have summarized the papers that we have presented in chapter 2 of this thesis

(Table A.1). Take into consideration that this information was collected until the middle of October

2017. In table A.1, column "Country" refers to the country of the �rst author. Furthermore, in

this table, the learning goal (one of the personalization parameters) is ignored since all papers have

learning goals, and only the type of goal might be di�erent.
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Appendix B

Complementary Overestimation and

Underestimation Results

In this appendix, we have presented the overestimation and underestimation results for the compet-

itive approaches (regarding the results in �gures 5.5,5.6, 5.7, and 5.8). In estimating learning score,

the results of Clust.Median, Clust.Mean, IRT.predict and IRT-3PL (Johns) were competi-

tive, while for time estimation Clust.Median, Clust.Mean, Mean, and Median approaches had

competitive results. Since we have shown the overestimation and underestimation results for the two

approaches, Clust.Median and Clust.Mean in section 5.3.3, here, we present the results of the

rest of competitive approaches.

B.1 IRT.Predict and IRT-3PL (Johns) Methods for Score Es-

timation
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Figure B.1: Score overestimating and underestimating using IRT.Predict approach.
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Figure B.2: Score overestimating and underestimating using IRT-3PL (Johns) approach.

B.2 Mean and Median Methods for Time Estimation
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Figure B.3: Time overestimating and underestimating using Median approach.
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Figure B.4: Time overestimating and underestimating using Mean approach.
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