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vacuum pressure swing adsorption (VPSA) technology and high-purity oxygen PSA 

units. 

 This thesis comprises four scientific articles submitted for publication during 

the PhD period.  

 



 



  i 
 

Abstract 

 High-purity oxygen (≥ 99 %) is required for several industrial, military, medical 

or aerospace applications. Oxygen generation from air by conventional pressure 

swing adsorption (PSA) or vacuum pressure swing adsorption (VPSA) has noticeably 

increased in the past decade. However, until now, single-stage PSA units have been 

limited to the production of oxygen with a maximum concentration of 95 % (balanced 

with argon) since commercial adsorbents do not exhibit argon/oxygen selectivity 

above 1. Presently, purer oxygen streams are only possible using two-stage PSA/VPSA 

technologies, which are far more complex.  

 Motivated by the significant demand for 99+% oxygen, this thesis targets the 

development of a single-stage VPSA for the production of high-purity oxygen from air. 

Additionally, two-stage VPSA processes were considered and studied to produce 

higher oxygen purities (≥ 99.5 %). 

 Argon/oxygen selective lithium low silica-X silver-based zeolite, AgLiLSX, was 

characterized to assess its potential for high-purity oxygen production in a single-

stage VPSA unit. Nitrogen, oxygen and argon adsorption isotherms, uptake curves and 

breakthroughs were obtained at different temperature conditions. Moderate 

argon/oxygen selectivity, 
2Ar O  = 1.14 at 1 bar and 25 ○C, and high working capacity, 

0.45 mol·kg-1 for nitrogen between 1.4 bar and 0.2 bar at 25 ○C, were observed. 

Water vapor and carbon dioxide isotherms were obtained on AgLiLSX and a 

deactivation study was conducted to evaluate the extent of adsorbent contamination 

and consequent loss of capacity and selectivity when exposed to untreated 

atmospheric air. Since carbon dioxide and water vapor present in atmosphere were 

found to act as contaminants deactivating AgLiLSX, a protective layer must be applied. 

Two 13X-type zeolites, one activated alumina and one silica were characterized and 
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their ability for carbon dioxide and water vapor removal assessed. Cyclic adsorption 

isotherms and breakthrough curves were obtained and effective adsorption isotherms 

and transport properties were computed.  

 A compact, lightweight and low energy consuming stand-alone single-stage 

VPSA unit for producing 1 LSTP·min-1 of high-purity oxygen from air was designed, 

assembled, studied and optimized. The VPSA main columns were loaded with AgLiLSX. 

Layered adsorption pre-columns containing silica, KC-Trockenperlen WS 2050, and 

13X-type zeolite, ZEOX OII, were used for protecting AgLiLSX absorbent from 

deactivating. An innovative and very efficient cycle was developed to synchronize the 

pre-columns four-step cycle for carbon dioxide and water vapor removal (< 5 ppm of 

CO2 and – 40 ○C of dew point) with the main columns seven-step cycle. RSM 

methodology applied to the experimental set-up and developed ASPEN-based 

simulator were used to study the role of several operating variables on the product 

purity and recovery and to optimize the performance of the unit. For a product 

concentration of 99.13 % oxygen, the recovery obtained was 6.2 % and the 

productivity was 9.0 m3·hr-1·ton-1. 

Targeting higher oxygen purities, several two-stage VPSA processes, 

combining equilibrium based PSA (EPSA) or kinetic based PSA (KPSA) with VPSA using 

AgLiLSX, were studied and optimized. ASPEN simulator was used to study the role of 

several operating variables on product purity and recovery. A KPSA/RP/VPSA – a 

configuration with an intermediate blower to repressurize (RP) the product stream 

from the KPSA to feed the VPSA unit – was proposed and experimentally validated to 

produce 99.5 % oxygen from air with a recovery of 14.2 % and (AgLiLSX stage) 

productivity of 25.4 m3·hr-1·ton-1. 
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Sumário 

 O oxigénio de elevada pureza (≥ 99 %) é utilizado em diversas aplicações, tais 

como aplicações industriais, militares, médicas ou aeroespaciais. A produção de 

oxigénio a partir do ar, a partir de processos convencionais de adsorpção com 

modulação de pressão (PSA) ou adsorção com modulação de pressão e vácuo (VPSA), 

aumentou significativamente na última década. Porém, até hoje, as unidades PSA de 

estágio único estavam limitadas a uma produção de oxigénio com uma concentração 

máxima de 95 % (sendo o restante argon) uma vez que os adsorventes comerciais não 

apresentam selectividade argon/oxigénio. O obtenção de correntes de oxigénio mais 

puras apenas era possível recorrendo à tecnologia de PSA/VPSA de dois estágios, 

consideravelmente mais complexa. 

 Motivada pela crescente procura por oxigénio com concentração superior a 

99 %, esta tese tem como objectivo o desenvolvimento de uma unidade VPSA de 

estágio simples para produção de oxigénio de elevada pureza a partir do ar. Além 

disso, duas unidades VPSA de estágio duplo foram consideradas e estudadas para 

produzir oxigénio com purezas mais elevadas (≥ 99.5 %). 

 O adsorvente zeólito AgLiLSX foi caracterizado para avaliar o seu potencial 

para produção de oxigénio de elevada pureza numa unidade VPSA de estágio simples. 

Isotérmicas de adsorção, curvas de carga e curvas de cedência para o azoto, oxigénio 

e árgon foram obtidas a diferentes temperaturas. Observou-se que este possui uma 

selectividade argon/oxigénio moderada, 
2Ar O = 1.14 a 1 bar e 25 ○C, e elevada 

capacidade em operação, 0.45 mol·kg-1 para o azoto entre 1.4 bar e 0.2 bar a 25 ○C. 

 Determinaram-se isotérmicas de adsorção do dióxido de carbono e do vapor 

de água no AgLiLSX e foi feito um estudo de desactivação para avaliar a extensão da 

contaminação do adsorvente e consequente perda de capacidade de adsorção e de 
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selecitividade quando exposto ao ar atmosférico não tratado. Uma vez que o dióxido 

de carbono e o vapor de água presentes na atmosfera actuam como contaminantes, 

desactivando o adsorvente AgLiLSX, dois zeólitos do tipo 13X, uma alumina activada e 

uma sílica foram caracterizados e a sua capacidade para remoção do dióxido de 

carbono e de vapor de água atmosféricos avaliada. Procedeu-se também à 

determinação de isotérmicas de adsorção e curvas de cedência cíclicas até obtenção 

das isotérmicas de adsorção e coeficientes de difusão efectivos. 

 Uma unidade VPSA de estágio simples, autónoma, compacta, leve e de baixo 

consumo energético foi concebida, assemblada, estudada e optimizada para a 

produção de 1 LPTN·min-1 de oxigénio de elevada pureza a partir do ar. As colunas 

principais da unidade VPSA foram empacotadas com AgLiLSX. As pré-colunas, 

contendo duas camadas, uma de sílica, KC-Trockenperlen WS 2050, e outra de zeólito 

do tipo 13X, ZEOX OII, foram usadas para proteger o adsorvente AgLiLSX de 

desactivação. Um ciclo inovador e muito eficiente foi desenvolvido para sincronizar o 

ciclo de quatro etapas das pré-colunas para remoção do dióxido de carbono e vapor 

de água (abaixo dos 5 ppm de CO2 e – 40 ○C de ponto de orvalho) com o ciclo de sete 

etapas das colunas principais. A metodologia de superfície de resposta (RSM) aplicada 

à unidade experimental e o simulador desenvolvido com base no software ASPEN 

foram usados para estudar o papel de diversas variáveis de operação na pureza e 

recuperação da corrente de producto, assim como para optimizar o desempenho da 

unidade. Para uma concentração de producto de 99.13 % de oxigénio, a recuperação 

obtida foi de 6.2 % e a productividade foi de 9.0 m3·hr-1·ton-1. 

 Tendo ainda em vista a obtenção de purezas de oxigénio superiores, 

estudaram-se e optimizaram-se diferentes processos VPSA de dois estágios, 

combinando separação de equilíbrio (EPSA) ou separação cinética (KPSA) com um 

VPSA usando AgLiLSX. O simulador ASPEN foi usado para estudar a influência de 

diversas variáveis de operação na pureza e recuperação do producto. Uma unidade 
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KPSA/RP/VPSA – uma configuração que inclui um compressor intermédio para 

repressurizar (RP) o produto da unidade KPSA e alimentá-lo à unidade VPSA – foi 

proposta e experimentalmente validada  para produzir 99.5 % de oxigénio a partir do 

ar, com uma recuperação de 14.2 % e uma productividade (do adsorvente AgLiLSX) de 

25.4 m3·hr-1·ton-1. 
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1 Introduction 

 

The industry of gas separation and purification has been searching for more 

efficient processes in terms of energy-consumption, environmental impact and costs. 

Cryogenic distillation is widely recognized as the most used gas separation process 

[1]. The widespread use of the cryogenic distillation is due to its simplicity and ability 

to produce high-purity products. Despite these advantages, it is fundamentally an 

energy-intensive and very expensive process [2]. Pressure swing adsorption (PSA) is a 

cyclic adsorption process that has been emerged as an energy and cost efficient 

alternative for many gas separation and purification applications [3, 4]. The onset 

commercialization of PSA units has started in the 1970s [4]. PSA has become the 

state-of-the-art separation technology in several areas, mainly for small and medium-

scale applications [3]. 

PSA processes have been developed for a variety of applications, such as air 

drying, air separation, hydrogen separation from reformate streams, mostly methane 

steam reforming, and from petroleum refinery off-gases, separation of methane from 

landfill gas, carbon dioxide-hydrogen separation, normal and iso-paraffins separation, 

noble gases purification and alcohol dehydration, among others (Table 1.1). There are 

several hundred thousand PSA units operating all over the world [3]. Sysadvance, a 

spin-off of FEUP, is the only Portuguese company producing and commercializing PSA 

units. Throughout the years, Sysadvance installed PSA units into different industrial 

processes, which resulted in a broad portfolio of solutions for nitrogen and oxygen 

generation (respectively up to 99.999 % and 95 %), helium purification, methane 

separation from landfill gas and purification of fluorinated gases. Sysadvance is, in 

fact, the PSA manufacturer leader in the Iberian Peninsula region, exporting for more 

than 35 countries all over the world. 
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Table 1.1 – Major applications of pressure swing adsorption technology. 

Gas drying  

Air drying [5-8] 

Alcohol dehydration  [9-14] 

Air separation  

Production of oxygen (≤ 95 %) from air [15-23] 

Production of high-purity oxygen (> 95 %) from air [24-31] 

Production of nitrogen from air [2, 4, 32-41] 

Landfill gas upgrading [42-49] 

Carbon monoxide recovery [50, 51] 

Carbon dioxide recovery and removal [4, 36, 52-55] 

Hydrogen recovery and purification [56-63] 

Separation of normal and iso-paraffins  [64-67] 

Hydrocarbons purification [68-72] 

Noble gases purification  

Helium purification [73-78] 

Xenon purification [79, 80] 

Argon purification [81-83] 

Fluorinated gases purification [84] 

Purification of ammonia syngas [85-87] 

 

 

1.1 Pressure swing adsorption and its evolution 

The basic principles of PSA technology are described in a patent disclosed by 

Finlayson and Sharp, in 1932 [4]. Despite, Skarstrom [15], Montgareuil and Dominé 

[88] often receive the credits for inventing the PSA technology, apparently because of 

the thoroughness of their patents, simultaneously filled in 1958. Skarstrom’s patent 
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discloses a unit (Figure 1.1) made of two beds packed with an adsorbent, zeolite 4A, 

running a four-step cycle comprising: 

1. pressurization; 

2. adsorption (also known as production); 

3. counter-current blowdown;  

4. counter-current purge. 

The original Skarstrom cycle was used for oxygen enrichment from air (up to 

85 % with very low recovery) [4]. 

 

Figure 1.1 – Sketch of Skarstrom two-bed pressure swing adsorption (adapted from [4]). 

 

The individual half-cycle steps are illustrated in Figure 1.2. In step 1, bed 1 is 

pressurized with feed to the higher operating pressure while bed 2 is counter-

currently blowdown to the atmospheric pressure. In step 2, high-pressure feed flows 

through bed 1. The more adsorbed component, in this case nitrogen, is retained in 

the bed and a gas stream enriched in the less adsorbed component, in this case 

oxygen, leaves as product at a pressure only slightly below that of the feed – raffinate. 
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During this step, a fraction of the product stream is used to counter-currently purge 

bed 2 at low operating pressure. Steps 3 and 4 follow a symmetric sequence. 

 

Figure 1.2 – Sequence steps of the original Skarstrom half-cycle (adapted from [4]). The other 

half-cycle is symmetric to the above-illustrated one. 

 

Montgareuil and Dominé also disclosed a unit for oxygen enrichment, 98 %, 

from air (without argon), made of two beds packed with 5A, 10X or 13X-type zeolite 

(Figure 1.3) [88]. Despite the similarities with Skarstrom’s patent, Montgareuil and 

Dominé proposed the use of vacuum during the regeneration (with the discharge end 

located at the middle of the bed), thus introducing the concept of vacuum swing 

adsorption (VSA). In fact, the simplest way to understand a VSA cycle is to consider it 

as PSA cycle in which the blowdown step is replaced by a vacuum desorption: the 

product end of the adsorption column is kept closed while vacuum is applied on the 

column through the feed end [4].  
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Figure 1.3 – Sketch of the two-bed VSA patented by Montgareuil and Dominé. 

 

The recovery obtained by Montgareuil and Dominé, 51 % for 85 % purity 

oxygen [88], is undoubtedly superior to the performance obtained by Skarstrom [15]. 

However, the VSA unit had the great disadvantage of the product being delivered at 

sub-atmospheric pressure. Here, the gain in raffinate recovery was reached at the 

expense of additional mechanical energy required for the evacuation step, since the 

loss of the less favorably adsorbed species during the evacuation step (VSA operation) 

is normally less than the corresponding loss in the blowdown step [4]. Thus, the VSA 

cycle by Montgareuil and Dominé over-performed the PSA cycle by Skarstrom 

assuming that a near-ambient product is acceptable. In fact, concerning PSA/VSA 

operation, is the pressure ratio (the swing) and not the individual high and low 

pressure levels that determines the achievable purity and recovery [4]. Although 

promising, the VSA technology had no further chapters until the 1980s, because of 

the lack of adsorbents able to perform an efficient separation in such a low pressure 

swing operation. Contrarily, the PSA technology became fully commercial in the 

1970s. 
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In 1966, Berlin and Matawan filed a patent, also concerning oxygen enrichment 

from air, disclosing an improvement to the original Skarstrom cycle [89]: the 

introduction of a pressure equalization step. After one of the beds has completed the 

high-pressure adsorption step and the other has been purged, the two beds are 

connected through their product ends to equalize the pressure. This means that part 

of the gas that normally would be loss in the blowdown step is used to pressurize the 

other column. This step, besides saving mechanical energy, increases the process 

recovery since the equalization stream is richer in oxygen than the feed. This new 

cycle is depicted in Figure 1.4.  

 

Figure 1.4 – Sequence steps of Skarstrom half-cycle with top equalization step. The other half-

cycle is symmetric of the above-illustrated one. 

 

Nowadays, equalization step is a well-establish step in the PSA cycles for 

several applications and different equalizations can be performed depending on the 

process [22, 44, 55, 63, 90-96]. Besides the aforementioned equalization through the 

top of both columns (top equalization) [31, 90, 97], bottom equalization [98], cross 

equalization [29] and total equalization (or dual-ended equalization) [4] were already 

reported. 
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In mid-1960s, a new PSA process emerged that introduced some improvements 

to the PSA technology. The increasing demand of high-purity hydrogen (99.9999 %) 

provided a strong economic motivation to develop PSA cycles to recover and purify 

hydrogen from petroleum refinery off-gases, reformate streams, etc. [4, 99-102]. 

Since hydrogen barely adsorbs compared to most of gases, this level of purity was 

easy to attain, whereas the challenge was to maximize the product recovery. 

Accordingly, multiple-bed cycles were developed, such as the one disclosed by 

Wagner and Lackawanna concerning a four-bed PSA for upgrading a reformate stream 

(77 % hydrogen, 22.5 % carbon dioxide and traces of other components) to an 

ultimate purity of 99.9999+% of hydrogen with 76+% recovery. In the late 1970s, new 

processes were developed employing up to twelve beds and comprising several 

equalization steps to attain recoveries between 85 – 90 % [103]. In fact, when more 

than two columns are employed, several pressure equalization steps can be done and, 

as a consequence, the overall recovery is increased [96]. 

Another novelty introduced by the hydrogen PSA separation technology was 

the use of layered beds, usually beds with a layer of activated carbon followed by 

zeolite 5A, as disclosed by Wagner and Lackawanna’s patent, to accomplish the 

desired separation [102]. Also, in such cases, the use of a high-capacity adsorbent 

preceded by a high-selectivity adsorbent could result in better performance 

compared to that achieved using single-layered beds of either of the two adsorbents 

[96, 104, 105]. This novelty was quickly assimilated by other existing PSA process, 

such as for oxygen production and air drying [2, 6, 106]. In oxygen PSA processes the 

use of a small layer of alumina or silica to act as a desiccant and protect the second 

layer of zeolite became common [18, 21].  

In the early-1970s, the development and commercialization of carbon 

molecular sieves (CMS) led to a significant evolution of the PSA technology [4]. CMS 

are carbonaceous adsorbents with a very narrow pore size distribution that allows 

small molecules to enter in the pores rather than larger molecules (kinetic selectivity). 
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In 1977, the first kinetic-based PSA (KPSA) was proposed by Munzner et al. [32, 33] for 

nitrogen production from air. The authors explored the differences between diffusion 

rate of oxygen and nitrogen on CMS to develop a KPSA unit which is able to produce 

99.9 % of nitrogen from air with nearly 40 % of recovery. Since then, other kinetic 

processes were developed such as methane separation from landfill gas [48] or argon 

purification [82]. The adsorption cycle in KPSA processes should be adapted, since the 

contact time between feed gas and the adsorbent is critical: short enough to prevent 

the system from reaching equilibrium but not so short as to preclude significant 

uptake [15]. Nevertheless, with properly selected step times and the necessary 

adjustments specific to each process, the Skarstrom cycle can be applied to a kinetic 

PSA separation. 

During the 1980s, a new generation of zeolite adsorbents was developed with 

very high capacity and selectivity, at low pressure range, towards the air separation 

[107]. The development of these new adsorbents, such as Li-exchanged X-type (LiX) 

zeolites, low-silica X-type (LSX) zeolites, and Li-exchanged LSX-type (LiLSX), was a 

major advance to VSA technology and VSA units for oxygen production from air 

became widely used and commercialized [4, 18, 108]. In 1988, Sircar disclosed a 

patent concerning a new process, vacuum pressure swing adsorption (VPSA), for the 

production of 95 % oxygen from air, where the adsorption step is carried between 

1.5 bar and 8.1 bar and the regeneration step between 0.1 bar and 0.4 bar [21]. Since 

then, several processes were disclosed using vacuum conditions [19, 25, 30, 97, 109-

113]. Provided that quite often the designation of such processes was ambiguous, 

Sircar provided a definition, distinguishing between PSA, VSA and VPSA [3]. According 

to that definition, PSA process is the one in which the adsorption step is carried at 

super-ambient pressure and desorption step is achieved at near-ambient pressure 

level. VSA process is the one in which the adsorption step is carried at a near-ambient 

pressure level and desorption is achieved under vacuum. It is considered a VPSA 

process, the process that uses the benefits of both PSA and VSA concepts [3]. The 
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selection on which process should be used should depend on the product desired, on 

the intended specifications and on the adsorbents selected to accomplish the 

separation, assuming that each process has its own advantages [19, 114-116].  

Meanwhile, still in the 1980s, a new improvement to the original Skarstrom 

cycle was proposed by Russell [117]. This improvement was initially proposed to 

faster achieving the stationary state and to attain pre-selected high-purity levels of 

oxygen at the PSA start-up. During operation, the product stream is collected in a 

backfill/product vessel and part is used to counter-currently purge and afterwards 

pressurize the beds at shutdown and at the start-up. Later on, this step, named 

backfill step, became widely used in PSA cycles for oxygen production, when high-

purity products need to be obtained. During backfill step – which occurs precisely 

before pressurization step – part of the product stored in a storage column (often 

referred as backfill column), is used to counter-currently pressurize the adsorption 

bed, increasing the product purity as far as possible (see Figure 1.5) [118]. 

 

Figure 1.5 – Sketch of the backfill step in bed 1. 
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Also in the 1980s, a new process called rapid PSA (RPSA), was disclosed by 

Jones et al. [119] pushing the fast cycling of kinetic-selective PSA processes close to 

the limits allowed by fluid mechanics and valve dynamics. The RPSA proposed 

employed step times of about 0.5 to 2.0 s and a total cycle time of less than 30 s. As a 

result of rapid cycling, the RPSA unit showed unique advantages such as nearly 

isothermal operation, or, the most important, higher adsorbent productivity at equal 

purity and recovery [2, 120]. 

The RPSA technology has seen new developments in the past decade, after 

several patents being filled concerning a rotary multiport valve [121-123]. The use of 

a multiport rotary valve in RPSA replaces the complex and bulky network of piping 

and valves used in conventional PSA systems [23]. Despite the process simplicity 

provided by the introduction of a rotary multiport valve, this technology also allow 

fast cycling and high precision, since the change of the events taking place in all the 

columns occurs at the exact same time. Using a normal valve array, a failure of one 

second in opening or closing one of the valves can happen, resulting on a significant 

impact in a RPSA cycle and consequent decrease in product purity and recovery [96]. 

New PSA-based processes, such as VPSA, RPSA and combined processes, are 

being continuously disclosed and introduced in the market, making PSA a very 

dynamic area [14, 22, 23, 53, 55, 65, 67, 73, 74, 77, 96, 124-130]. These new 

processes target decreasing the energy consumption or the unit costs, but also target 

new gas separations such as high-purity oxygen (> 95 %), biogas upgrading and 

purification, helium or fluorinates recovery and purification, among others [96, 131]. 

The new PSA-based units result from a very dynamic interaction between the 

development of new adsorbents and the corresponding optimized PSA cycles and 

vice-versa. 
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1.1.1 Adsorbents 

The adsorbent or adsorbents are the heart of a PSA unit. Several well-known 

adsorbents were commercially available prior to the development of PSA technology, 

but it was undoubtedly the PSA that led to the development of new and better fitted 

adsorbents for gas separations [2, 95, 132]. Indeed, synthetic zeolites are being 

produced since 1950s, initially as catalysts for petrochemical reactions [133]. The 

development of new adsorbents was so intense after Skarstrom patent that resulted 

in the discovery of many porous materials nowadays used for gas separations [132, 

134]. 

 

Figure 1.6 – Zeolite (ZEOX OII, sample from Zeochem). 

 

Zeolite adsorbents are crystalline aluminosilicates that have microporous 

frameworks with well-defined and uniform pore structure, between 3 and 11 Å of 

pore opening [132]. The framework structures of these zeolites consist of 

tetrahedrally assemblages of SiO2 and AlO2 units [4]. While SiO2 groups are neutral, 

(AlO2)
- groups introduce a negative charge to the structure which is compensated by 

the presence of cations such as Na+, Li+, K+ or Ca2+ [135]. The first synthetic zeolites 

produced were from A-type, such as zeolite 4A used in Skarstrom patent, and zeolite 

5A used in Montgareuil and Dominé patent. 4A and 5A zeolites allow only modest 
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O2/N2 adsorption selectivity originating low efficient PSA units for the oxygen 

production. The development of PSA technology led to the synthesis of new 

adsorbents such as X-type zeolites and later, in 1988, a new generation of zeolites 

with very high capacity and selectivity towards air separation [107], the lithium-

exchanged X-type (LiX) zeolites, low-silica X-type (LSX) zeolites, and lithium-exchanged 

low-silica X-type (LiLSX) zeolites. 

Pelletized zeolites have commonly about 20 wt.% of an inert binder, which has 

the function of binding the zeolite crystallites with particle sizes in the range of 

2.5 µm into millimeter-size particles that allow fill packed bed columns with optimized 

pressure drop [135]. The addition of binder, however, reduces the adsorption 

capacity between 15 and 20 % [107], so, in the recent years, several zeolites were 

developed with a reduced amount of binder, the so called binderless zeolites, which 

even so keep the mechanical strength of the previous composite adsorbents. 

Presently, the zeolites industry continues to develop new and promising 

materials regarding, for example, air separation [124, 136, 137]. Silver exchanged 

zeolites, such as AgLiLSX-type zeolite, was one of the most recent developments, 

allowing the production of oxygen streams of 95+% never before possible with the 

existing commercial adsorbents [136]. 

 

Figure 1.7 – AgLiLSX-type zeolite (sample from AirProducts). 
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Zeolites used in air separation are very sensitive to water vapor, easily 

deactivating when exposed to atmospheric air [132, 138-140]. Because of that, in the 

1960s, several oxygen PSA units were disclosed using a small first layer of desiccant, 

such as alumina or silica, to reduce the water content in the feed stream down to 

parts per million (ppm) levels and therefore protect the nitrogen/oxygen selective 

layer, placed above the desiccant layer. Also, between 1965 and 1970 the first air 

drying PSA units were commercialized, using alumina or silica as adsorbents [2, 4, 36]. 

 

Figure 1.8 – Silica (KC-Trokenperlen WS 2050, sample from BASF). 

 

Silica is the most used desiccant because of its large capacity for water and easy 

regeneration [132]. Silica adsorbents are amorphous aluminosilicates with a high 

content of SiO2, and essentially mesoporous (pores > 20 Å). There are several 

preparation methods which result in different pore structures, however the most 

common type of silica, silica gel, is generally prepared by mixing a sodium silicate 

solution with a mineral acid such as sulfuric or hydrochloric acid [132]. 

Activated alumina is also widely used as desiccant, with practically the same 

advantages referred for silica [132]. It is also an amorphous aluminosilicate with 

essentially a mesoporous structure but unlike silica, alumina has a high content of 
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AlO2. The surface chemistry and pore structure of alumina adsorbent can be modified 

by chemical or controlled thermal treatment [2].  

 

Figure 1.9 – Activated alumina (F200 7x14 Tyler Mesh, sample from BASF). 

 

Carbonaceous adsorbents, a large group of the available adsorbents, were used 

in PSA for the first time in 1965 for hydrogen purification [4, 36]. This material is one 

of the most versatile adsorbents because of its extremely high surface area and 

micropore volume but also because its tunability [4]. The structure of activated 

carbon is complex and it is basically composed of an amorphous and a graphite-like 

microcrystalline domains [141]. The activated carbon frameworks contains 

interconnected micro and mesopores, slit-shaped, with various shapes and sizes 

(between 0.3 and 10 nm) [132]. Depending on the raw material used, the desired 

pore size distributions are created by a carbonization followed by thermal activation 

steps. The precursors for activated carbon are carbonaceous materials such as wood, 

peat, coals, petroleum coke, bones, coconut shell and fruit nuts [4]. Manufacturing 

processes basically involve the following steps: raw material gridding and sieving, 

carbonization and thermal activation [4]. The manufacturing parameters are 

controlled to achieve the desired pore network morphology and surface chemistry 

and mechanical strength. The nature of the final product depends on both the 

starting material and the manufacturing procedure [4].  
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Figure 1.10 – Carbon molecular sieve (CMS-D, sample from Carbotech). 

 

One of the most significant PSA developments would not be possible without 

the synthesis of carbon molecular sieves (CMS) in the early-1970s [4, 36]. Carbon 

molecular sieves, like activated carbon, are manufactured from a variety of 

precursors, such as coal, coconut shell, polymers and biomass materials [142]. The 

unique kinetic properties of these materials are due to the very narrow pore size 

distribution (pore width usually are in the range of 0.3 and 0.5 nm) [143, 144]. The 

pore size distribution of CMS are controlled by varying the precursor, the 

carbonization conditions and pre- and post-treatments like activation procedure, 

carbon vapor deposition and passivation techniques [142]. However, the key step for 

making CMSs – different from the steam activation step for activated carbons – is the 

carbon deposition step [132]. This step involves cracking a hydrocarbon under an 

inert atmosphere so that carbon is deposited at the pore mouths. For a given 

hydrocarbon, this step is accomplished by careful control of a set of operating 

variables, including concentration, temperature, and time [132]. The manufacturing 

process has great impact on shape, size and robustness of adsorbent. CMS 

adsorbents, unlike previous adsorbents, base their separation ability in the kinetic 

selectivity towards the components of the feed stream rather than in the equilibrium 
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selectivity [96, 145-147]. In such cases and for a binary mixture, one of the 

components of feed mixture experiences a very low diffusivity compared with the 

other and it is produced during the high-pressure step – production step [4]. CMSs 

were first used for producing nitrogen from air [32-34]. Nitrogen, together with 

argon, present a low diffusivity compared with oxygen, and leave the PSA column at 

high pressure during the production step. Oxygen, on the other hand, is removed 

during the despressurization and purge steps. CMS adsorbents opened the PSA 

technology to a completely new world now embracing both equilibrium and kinetic 

based gas separations [42-49]. Carbonaceous adsorbents show high resistance to 

moisture and low heat capacity. Consequently, when used in a PSA unit a desiccant 

layer is not needed [2].  

In the past decade, a new class of synthetic porous materials emerged, the 

metal-organic frameworks (MOFs), an highly tunable material [148]. MOFs are 

inorganic-organic hybrid materials comprised of single metal ions or polynuclear 

metal clusters linked by organic ligands principally through coordination bonds [149-

151]. Due to the strength of these coordination bonds, MOFs are geometrically and 

crystallographically well-defined framework structures though they may present a 

significant flexibility. As potential adsorbents, MOFs have attracted a great deal of 

interest, especially in the separation of hydrocarbons and normal and iso-paraffins 

[65, 149-154]. 

Hydrophobic dipeptides were very recently considered for adsorption based 

gas separations [155-157]. Also, titanium-silicates molecular sieves, such as Ag-

exchanged ETS-10, were synthesized and studied for high-purity oxygen production 

by PSA [126, 158]. New adsorbents with high selectivity and fast kinetics are being 

developed for RPSA processes [159]. These new adsorbents will enable the 

development of high performance PSA units with significantly higher productivities. 

Nowadays, several companies are trying to develop new adsorbents with high 

resistance to contaminants and easiness of regeneration, high durability, and well 
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controlled microporosity, capable of better performances. Such materials have been 

studied and soon new adsorbents and resulting new processes will be 

commercialized. 

 

1.2 High-purity oxygen  

Oxygen generation technology by PSA has remarkably improved since 

Skarstrom pioneer work [15, 26]. In 1966, Berlin disclosed a PSA unit for the 

production of 93 % oxygen (balanced with argon) with unspecified recovery, using a 

strontium-exchanged X-type zeolite [160]. In 1970, two years after the 

commercialization of the first large-scale PSA unit for oxygen production [4, 135], a 

few processes were developed for medical use [4] and military applications [161]. In 

the 1980s a new generation of adsorbents, LiX-, LSX- LiLSX-type zeolites, was 

developed with very high capacity and selectivity towards air separation [108, 109, 

132, 162-164]. These new adsorbents coupled with optimized PSA units, namely VSA 

and VPSA, allow to obtain higher purities, better productivity and the reduction of the 

operation costs [26, 41, 107, 109]. However, present PSA units are limited to a 

maximum oxygen concentration of 95 % (balanced mostly with argon [165]) since 

commercial adsorbents did not exhibit Ar/O2 adsorption equilibrium selectivity above 

1 [4, 18, 21, 166]. Still, a significant demand for high-purity oxygen (≥ 99 %) for 

applications such as medical surgeries – where the minimum concentration required 

is 99.5 % in Europe, 99.0 % in USA and 99.6 % in Japan [26]; military and aerospace 

applications requiring a minimum concentration of 99.5 %; or filling oxygen cylinders 

[167] for welding and cutting processes [168] that required a concentration of 99+ %, 

led to the development of PSA based processes meeting these objectives. In the 

present work, high-purity oxygen means concentrations not lower than 99 % [26].  
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In 1980, Armond et al. [27] disclosed the first two-stage process for high-purity 

oxygen consisting of a PSA unit packed with CMS followed by another PSA unit packed 

with zeolite. The CMS stage served to kinetically remove argon and the second stage 

produces oxygen from an argon free air stream. Since then, several processes have 

been disclosed related to this two-stage PSA technology for high-purity oxygen 

production [28-30, 97, 169-171]. Lee and co-workers conducted in the past decade a 

comprehensive study on the use of two-stage PSA units for producing high-purity 

oxygen [19, 31, 111, 145, 147, 167, 168, 172, 173]. These authors disclosed an 

optimized three-bed two stage VPSA unit producing 99 % oxygen with 47 % of 

recovery, in which the equilibrium stage comes first, followed by kinetic-stage [174]; 

these results were possible because of the use of a very high selective CMS adsorbent 

[168]. 

Together with the development of two-stage PSA processes for high-purity 

oxygen production, another two-stage technology emerged as an alternative: 

equilibrium PSA combined with continuous membrane column (CMC). Membrane 

separations have drawn great attention in the research field of gas separations [175-

180] and air separation was a potential separation field in which membrane 

technology could be successfully applied [181]. In 1994, Mercea and Hwang found 

that it was possible to obtain a high-purity of oxygen from air combining a PSA with a 

CMC units [182]. In the same year, Tsuru and Hwang succeeded to obtain a 

continuous current of 99 % oxygen combining a PSA and a CMC units, this last 

consisting of three modules of polyimide hollow fibers [181]. Oxygen recoveries are 

not reported. 

Despite the existing alternatives for producing high-purity oxygen from air, two-

stage processes are far more complex and often unattractive. Therefore, the 

production of high-purity oxygen using a single-stage PSA remained a goal. In 1990, 

Wilkerson prepared a silver-mordenite adsorbent with two different silver-exchanged 

concentrations (concentrations not reported) and studied the adsorption equilibrium 
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of argon and oxygen [183]. The more thoroughly exchanged silver-mordenite showed 

equilibrium selectivity of argon towards oxygen. Following, in 1993, Knaebel and 

Kandybin disclosed an equilibrium-based PSA, packed with silver-mordenite 

adsorbent, which reached a product concentration of 99.6 % from a feed of 95 % of 

oxygen balanced with argon [24]. Silver-exchanged molecular sieves have since been 

investigated to accomplish the argon/oxygen separation in single-stage PSA units 

[126, 158, 184]. In 2000, in two consecutive works [185, 186], Hutson et al. studied 

the addition of silver to LiX-type zeolites for improving the adsorption capacity 

towards air separation. Although in their study adsorbents did not actually present 

Ar/O2 selectivity, the argon adsorption capacity increased slightly. In 2002, Air 

Products and Chemicals, Inc. patented an Ar/O2 selective zeolite, named AgLiLSX 

(lithium low silica-X type silver based zeolite), with a silver exchanged content of 20 – 

70 % [136]. This patent refers that the new adsorbent is useful for high-purity oxygen 

production in a single-stage PSA or VPSA processes. In 2003, the same company 

disclosed a four-step VPSA unit that, accordingly to patent, could produce a stream of 

99 % oxygen from air, using the newly developed AgLiLSX adsorbent [25]. In 2007, 

Santos et al. briefly characterized the AgLiLSX adsorbent and simulated a PSA unit for 

producing 98.7 % oxygen, operating between 1 and 3 bar, at 30 ○C and, with a 

recovery of ca. 6 % [26]. Following, Sebastian and Jasra [184] prepared and 

characterized several silver-exchanged zeolites and namely obtained the 

argon/oxygen adsorption selectivity. AgA, AgX, AgY, AgMordenite among others were 

reported to show some degree of adsorption selectivity of argon over oxygen. The 

authors concluded that AgA zeolite exhibited very high N2/O2 and Ar/O2 adsorption 

selectivities compatible with the use in a single-stage PSA unit for producing higher 

purity oxygen (> 95 %). In 2008, Ansón et al. studied a 30 mol% silver exchanged 

ETS-10 and compared it with silver exchanged mordenite [158]. The authors found 

Ag-ETS-10 to have an equilibrium argon/oxygen selectivity of 1.28 at 1 bar and 30 ○C. 

However, despite promising, the adsorbent showed limitations such as low N2/O2 
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selectivity and smaller adsorption capacity when compared with conventional LiLSX 

adsorbents. More recently, Shi et al. synthesized a composite adsorbent of Ag-ETS-10 

and Ludox HS-40 colloidal silica, weight ratio of 12:5, and obtained an adsorbent that 

has a high nitrogen/oxygen equilibrium selectivity and adsorption capacity, 

maintaining the high argon/oxygen equilibrium selectivity previously reported [126]. 

Very recently Afonso et al. [156] reported a new class of materials that can be 

used as adsorbents for air separation, VA-class hydrophobic dipeptides. These Ag-free 

materials were characterized and reported to have an Ar/O2 maximum equilibrium 

selectivity of 1.30 at 5 ○C, one of the highest values ever measured in equilibrium 

selective adsorbents [156]. However, these materials show several limitations such as 

low adsorption loading and N2/O2 equilibrium selectivity lower than 1. Nonetheless, 

this indicates that costless materials may be developed showing the up to now rarely 

observed Ar/O2 adsorption selectivity. New low cost and highly performing materials 

and optimized PSA cycles should soon allow the development of a single-stage PSA 

unit for the production of high-purity oxygen.  

 

1.3 Motivation and outline 

The present work was developed under the framework of the cooperation 

protocol between FEUP (Faculty of Engineering of University of Porto) and Sysadvance 

S.A. The present thesis was driven by the significant demand for PSA units to produce 

high-purity oxygen (≥ 99 %). There are several applications that require oxygen 

purities of 99+% such as for medical surgeries, military and aerospace applications, 

filling of cylinders, and for welding and cutting processes. The existing two-stage PSA 

technology is complex and only very few companies worldwide offer it. In addition, 

there are several applications that require simple and compact units, i.e. field 

hospitals, submarines, air force aircrafts, etc. Despite that, till the present day, no 
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single-stage PSA/VPSA units producing 99 % of oxygen from air were found and the 

very few existing patents and papers refer only process simulations [25, 26, 126]. 

The present work benefited also from the collaboration with NASA (Wyle 

Integrated Science and Engineering Laboratories). This institution contracted the 

development of a single-stage PSA unit for producing an oxygen stream of 99.0 % 

from air. This request also stimulated the start up of a research project, founded by 

AdI, entitled “High-Purity Oxygen by Vacuum Pressure Swing Adsorption”, that 

allowed Sysadvance to expand its portfolio of solutions and rely on a line of high-

purity oxygen PSA units, as well as VPSA technology. Several VPSA solutions were 

investigated to provide high-purity oxygen products with reasonable throughputs.  

 

This thesis is divided in six chapters as follows: 

Chapter I frames the work developed and reviews the relevant literature. This 

chapter includes an overview on high-purity oxygen production by PSA. 

Chapter II characterizes several adsorbents (activated alumina F200, silica KC-

Trokenperlen WS 2050, and 13X-type zeolites, Z10-02ND and ZEOX OII) targeting their 

use for humidity and carbon dioxide removal when inserted in a PSA column. 

Chapter III fully characterizes an AgLiLSX zeolite. Adsorption equilibrium 

isotherms of nitrogen, oxygen, argon, carbon dioxide and water vapor are presented. 

In this chapter mono and multicomponent breakthrough experiments are reported 

and simulated to assess the adsorption kinetics and separation performance when 

inserted in a PSA unit. This chapter also presents a deactivation study of AgLiLSX 

zeolite by carbon dioxide and water vapor. 

Chapter IV addresses the study and optimization of a stand-alone single-stage 

VPSA unit for the production of 1 LSTP·min-1 of high-purity oxygen, using AgLiLSX 

zeolite. The stand-alone VPSA unit was designed based on experimental and ASPEN 
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simulation results obtained with a lab-scale unit.  The stand-alone unit assembled 

includes an air pre-treatment stage running an innovative cycle to continuously 

supply treated feed air to the AgLiLSX beds. 

Chapter V describes the study and optimization of two-stage VPSA alternatives 

for producing 99.5 % oxygen from air. In this chapter, different energy-efficient two-

stage VPSA configurations are presented combining equilibrium based PSA or kinetic 

based PSA with VPSA using AgLiLSX. 

Finally, Chapter VI summarizes the main conclusions of this work and provides 

suggestions for future work. 
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2 Study of pre-adsorbents for water vapor 

and carbon dioxide removal 

 

Abstract 

Pre-treatment stage is usually a requirement for any adsorption based air 

separation process. Carbon dioxide and water vapor present in atmosphere act as 

contaminants, deactivating adsorbents, particularly zeolites used in oxygen pressure 

swing adsorption processes. Such systems usually present one or more pre-layers to 

ensure full removal of these two contaminants, protecting the oxygen/nitrogen 

selective layer. In this section, two 13X-type zeolites, one activated alumina and one 

highly pure silica are compared in terms of capacity for water vapor and carbon 

dioxide removal from air. Water and carbon dioxide adsorb irreversibly on these 

adsorbents up to a certain extension and then effective adsorption isotherms and 

breakthroughs curves were obtained. The effective properties were attained after 

three cycles under close to vacuum pressure swing adsorption conditions. A 

combination of two layers for the pre-columns is suggested: the first, composed by 

either silica or alumina to remove most of the water without significant loss of cyclic 

adsorption capacity, and a second, composed by zeolite, to reduce the amount of 

water and carbon dioxide down to ppm levels. These should prevent contamination 

and consequent loss of efficiency in the nitrogen/oxygen selective layer. 
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2.1 Introduction 

Over the past decade, oxygen production by equilibrium-based vacuum 

pressure swing adsorption (VPSA) has increased significantly, limited by a maximum 

oxygen concentration of 95 % (balanced mostly by argon) [1] in a single-stage. Higher 

oxygen concentration is not possible because commercial adsorbents do not exhibit 

Ar/O2 adsorption selectivity above 1 [2]. However, in 2003, Air Products and 

Chemicals, Inc.® reported a VPSA for the production of high-purity oxygen from air 

using a new argon/oxygen selective zeolite, a AgLiLSX (lithium low silica-X silver-based 

zeolite) [3, 4]. 

It is known that impurities such as carbon dioxide and water vapor are found to 

adsorb strongly, and to some extent, irreversibly on the adsorbents used in air 

separation, affecting drastically both capacity and selectivity [5]. Furthermore, these 

species usually have high heat of adsorption causing large temperature variations 

along the adsorption and desorption steps of VPSA operation [5]. Oxygen/nitrogen 

selective adsorbents, such as LiLSX-type zeolites, and particularly AgLiLSX, are very 

sensitive to water vapor and carbon dioxide contamination, deactivating when 

exposed to atmospheric air. Accordingly, a VPSA unit including such adsorbents 

should consider pre-treating the feed air to reduce carbon dioxide and water vapor 

contents to the lowest possible levels [6], besides removing possible hydrocarbon 

contaminants. 

In pre-treatment adsorption-based processes, it is important to choose proper 

adsorbents for the removal of such components from the air feed. For coarse water 

vapor removal, the most common adsorbent is silica gel and activated alumina, 

because of its large adsorption capacity and easy regeneration. For residual water 

vapor removal, down to parts per million (ppm) levels, zeolites are preferred [7, 8]. 

Zeolites are also the normally chosen adsorbents for carbon dioxide removal. A 
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significant number of patents concerning air pre-purification processes revealed that 

the most common adsorbents for water vapor and carbon dioxide removal by PSA are 

activated alumina and zeolites such as 13X-type zeolite (also known as NaX) [9-11]. 

Most PSA air treatment designs include a layered bed configuration composed 

of a combination of adsorbents to minimize purges losses and to keep temperature 

excursions as low as possible during the pressure swing cycle [5]. Usually, beds with a 

layer of silica or alumina followed by a zeolite are used to remove water and carbon 

dioxide. 

In 2000, Rege et al. [5] studied two conventional adsorbents for air pre-

purification by PSA, a 13X zeolite (Linde) and activated alumina PSD 350 (Alcoa Inc.). 

These authors found that the adsorption kinetics of carbon dioxide and water vapor 

on the adsorbents considered is fast enough to assume instantaneous equilibrium and 

13X zeolite is ideal for carbon dioxide removal. Later on, the same authors [12] 

concluded that the overall performance of a layered bed of activated alumina/13X 

zeolite was better than using the same volume of either adsorbent. Many other 

studies of carbon dioxide and water vapor adsorption on different adsorbents can be 

found in the literature [7, 8, 13-20].  

All these studies report equilibrium and kinetic data obtained from experiments 

using fresh adsorbents, i.e.     n   t d  dso b nts o  “ s   c  v d”  How v    in 

cyclic adsorption processes, such as VPSA, adsorbents are submitted to cyclic pressure 

operation, in which, after saturation, the adsorbent is partially or totally regenerated 

by reducing total pressure and by purging with a fraction of the product stream [21]. 

Therefore, adsorbents submitted to contaminants in cyclic operation, such as carbon 

dioxide and water vapor, experience some irreversible adsorption and, consequently, 

some loss of capacity after just a few adsorption/desorption cycles. This process is 

progressive and it usually stabilizes after some cycles. 
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In 2000, Gales et al. [22] studied and discussed the adsorption behavior of 

acetone, ethanol and ethyl acetate on activated carbon when adsorption/desorption 

cycles are applied, and they concluded that, after ~ 5 cycles, the system reaches a 

“stationary state”, where adsorption and desorption branches cannot be 

distinguished within experimental error. This new adsorption isotherm mirrors the 

effective adsorption capacity of the adsorbent when inserted in a cycle adsorption 

process. On the other hand, when designing cyclic adsorption units based only on 

adsorbents properties obtained using fresh samples results is an overestimation of 

the efficiency of pre-treatment stage. In the present work we suggest the use of an 

effective adsorption isotherm obtained after making the adsorbent to contact with 

similar cyclic boundary conditions to those observed in the adsorption process for 

several adsorption/desorption cycles, until a “stationary state” was reached. 

Since, the adsorption kinetics of carbon dioxide and water vapor on the 

adsorbents is considered to be fast enough to assume instantaneous equilibrium, 

frequently kinetic adsorption is not reported in literature [23-28]. In the present work, 

the same concept proposed for obtained the effective adsorption isotherms was 

applied to breakthrough experiments. Then, effective breakthrough curves were 

obtained after reaching a steady behavior which accounts for both adsorption 

equilibrium and kinetics. 

The present work concerns the characterization of several adsorbents in terms 

of capability for water vapor and carbon dioxide removal as part of a pre-treatment 

solution of a VPSA unit (operating between 0.2 and 1.4 bar) for oxygen production. 

Effective adsorption isotherms were obtained to assess the effective adsorption 

capacity of the adsorbents towards water vapor and carbon dioxide. Also, a set of 

effective breakthrough runs were carried out to assess the performance of the 

adsorbents in cyclic operating conditions. 
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2.2 Experimental 

2.2.1 Materials 

The following adsorbents were selected for the present work: adsorbents 

13X-type zeolites ZEOX OII and Z10-02ND (Zeochem), activated alumina F200 7x14 

Tyler mesh (BASF), and highly pure silica KC-Trockenperlen WS 2050 (BASF). 

Accordingly to the information from the producers, the Z10-02ND adsorbent is a 

specially enhanced zeolite for better removal of carbon dioxide; medical-grade ZEOX 

OII zeolite is used in small PSA oxygen units and can withstand air operation with little 

pre-treatment; F-200 is one of the most used activated aluminas in the market; and 

KC-Trockenperlen is a special silica developed to resist to large loadings of water.  

Helium picnometry was used to determine the real density of the samples. 

Surface area, pore volume and average pore diameter, excluding microporosity, and 

apparent density was determined by mercury porosimetry. The physical properties of 

the adsorbents are listed in Table 2.1. The adsorbents, as received, were regenerated 

at high temperature (375 ○C for zeolites, 150 ○C for alumina and silica) for 6 h in a 

nitrogen atmosphere with a minimum flowrate of 1 LSTP·min-1 for each kilogram of 

adsorbent. 

Table 2.1 – Physical properties of the adsorbents. 

Property ZEOX OII Z10-02ND Alumina Silica 

Geometry spherical spherical spherical spherical 

average pellet radius, mm 0.40 1.05 1.15 1.85 

pellet crushing strength, N 1.0 9.5 60 220 

apparent density, g∙cm-3 1.101 1.047 1.412 0.994 

total surface area, m2∙g-1 7.1 15.4 157.5 45.7 

pore volume, cm3∙g-1 0.309 0.327 0.265 0.147 

structural density, g∙cm-3  2.320 2.830 2.967 2.193 

meso/macro porosity, %  0.53 0.63 0.52 0.55 
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2.2.2 Methods 

The volumetric method was used to determine the carbon dioxide adsorption 

isotherms. This method is based on pressure variation of the relevant gas after an 

expansion [29]. Knowing the pressure decrease and assuming ideal gas behavior for 

the system under study, it is possible to determine the concentration of the solute 

adsorbed. The apparatus used, illustrated in Figure 2.1, is composed by two stainless 

steel tanks, three pressure transducers (Drück PMP 4010, range 0 – 7 bar, 0 – 2 bar 

and 0 – 350 mbar, ± 0.08 % FS), a vacuum pump (Vacuubrand, model RZ 2.5) and a 

thermostatic bath (Huber, model CC2+K12) to maintain the temperature inside the 

system constant. 

 

Figure 2.1 – Schematic representation of the volumetric apparatus. 

 

The determination of water vapor equilibrium isotherms was conducted using 

the gravimetric method, implemented in a magnetic suspension balance from 

Rubotherm® (metal version and 10-5 g of precision). The gravimetric method consists 

in measuring the adsorbent weight variation when a perturbation is made to the gas 

pressure in contact with the adsorbent [29]. The variation of mass allows the 



Study of pre-adsorbents for water vapor and carbon dioxide removal 

 

Chapter II 47 

 

determination of the adsorbed amount. The experimental set-up, illustrated in 

Figure 2.2, consists on the magnetic suspension balance, a 5 L stainless steel buffer 

tank, two pressure sensors (Drück PMP 4010, range 0 – 7 bar and 0 – 350 mbar, 

± 0.08 % FS), a vacuum pump (Edwards, model RV5) and a thermostatic bath (Huber, 

model CC1+K6) for circulating water in the jacket of the system. 

 

Figure 2.2 – Schematic representation of the gravimetric apparatus [30]. 

 

Experiments for obtaining the isotherms were preceded by heating up the 

sample inside the relevant vessel at 90 ○C, using helium followed by vacuum 

< 0.01 mbar. The procedure was performed repeatedly for 8 times over a period of 

4 h to remove any adsorbed contaminant present after the regenerating step. 

The breakthrough curves were determined in an in-house built experimental 

setup, sketched in Figure 2.3. The setup is placed inside of a thermostatic chamber (to 

ensure isothermal operation). It consists of a column filled with adsorbent, where two 
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thermocouples were inserted – one at the entrance and the other at the exit – two 

pressure transducers (Druck PMP 4010, range 0 – 7 bar, ± 0.08 % FS), one feed mass 

flow controller (Bronkhorst El-flow, 100 mLSTP·min-1 and range 0 – 2 LSTP·min-1, ± 0.5 % 

Rd plus ± 0.1 % FS), an exit mass flow meter (Bronkhorst El-flow, 0 – 10 LSTP·min-1 

± 0.5 % Rd plus ± 0.1 % FS), and a vacuum pump (Ilmvac, MPC201T) for the desorption 

step under low-pressure conditions. The water vapor and carbon dioxide 

compositions of the outlet flow were determined using a hygrometer (Vaisala 

DMP74b) and carbon dioxide analyser (Vaisala GMP70), respectively. The bed 

characteristics and experimental conditions are summarized in Table 2.2. 

 

Figure 2.3 – Sketch of the breakthrough apparatus. 
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Table 2.2 – Conditions for breakthrough experiments. 

parameter value/remark 

bed length, cm 31.0 

bed diameter, cm 3.15  

column volume, cm3 241.6 

inlet dew point, ○C 5 

CO2 composition, ppm 450 

temperature, ○C 27 

adsorption conditions  

flow rate, LSTP·min-1 5.2  

pressure, bar 1.4 

desorption conditions  

flow rate, LSTP·min-1 0.8 (nitrogen) 

pressure, bar 0.2 

 

2.3 Results and discussion 

2.3.1 Adsorption equilibrium 

In the present study, the carbon dioxide adsorption isotherms were obtained at 

three temperatures – 15 ○C, 35 ○C and 55 ○C – using fresh adsorbents. Concerning the 

water vapor adsorption isotherms, they were obtained at 35 ○C, also using fresh 

adsorbents. The adsorption equilibrium isotherms for carbon dioxide on the 13X-type 

zeolites, activated alumina and silica are plotted in Figure 2.4 and Figure 2.5. 
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Figure 2.4 – Carbon dioxide isotherms on ZEOX OII (at: , 15 
○
C; , 35 

○
C; and , 55 

○
C) and 

Z10-02ND (at: , 15 
○
C; , 35 

○
C; and , 55 

○
C). The dashed line represents the multi-

temperature Toth isotherm fitting. 

 

 

Figure 2.5 – Carbon dioxide isotherms on silica (at: , 15 
○
C; , 35 

○
C; and , 55 

○
C) and alumina 

(at: , 15 
○
C; , 35 

○
C; and , 55 

○
C). The solid line represents multi-temperature Langmuir 

isotherm fitting; dashed line represents multi-temperature Toth isotherm fitting. 
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Zeolites show similar carbon dioxide adsorption isotherms while alumina and 

silica have considerably less adsorption capacity. Silica exhibits the least adsorption 

capacity for low pressures, and, compared to silica, alumina has the most favorable 

isotherms. Figure 2.6 shows the carbon dioxide isotherms at 35 ○C on the fresh 

adsorbents on a log-log scale. This figure indicates that zeolites exhibit significantly 

higher carbon dioxide loadings than alumina or silica. Therefore, based on 

equilibrium, the selected zeolites are better adsorbents for carbon dioxide removal 

than silica or alumina.  

 

Figure 2.6 – Carbon dioxide isotherms at 35 
○
C, in log-log scale, on fresh adsorbents:  

, ZEOX OII; , Z10-02ND; , alumina; and , silica. 

 

Wang and LeVan [8] and Lee et al. [13] measured the carbon dioxide adsorption 

on 13X zeolites. The experimental data obtained in these studies were fitted using the 

Toth multi-temperature model. Adsorption loadings of 3.44 mol·kg-1 [8] and 

2.46 mol·kg-1 [13] at 0.3 bar and 35 ○C were reported. In the present work, under 

similar conditions, the adsorption loading obtained for ZEOX OII was 4.01 mol·kg-1 and 
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for Z10-02ND was 4.18 mol·kg-1. Wang and LeVan reported also isotherms of carbon 

dioxide on silica gel, referring an adsorption loading of 0.310 mol·kg-1 at 0.3 bar and 

35 ○C. Under similar conditions, an adsorption loading of 0.203 mol·kg-1 was obtained 

for silica. Rege et al. [5] studied carbon dioxide adsorption on several adsorbents 

 nc ud n  γ-alumina, and they obtained an adsorption loading of 0.455 mol·kg-1 for the 

previously mentioned conditions, which is similar to the adsorption loading obtained 

in the present work for alumina, 0.401 mol·kg-1. The broad amplitude of results is to 

be expected, considering that materials obtained from different suppliers undergo 

different production processes. One of the key factors in these processes is the 

binding material; although inert, it is pertinent for the mechanical resistance of the 

pellets. ZEOX OII is a almost-binderless material, therefore presenting higher 

adsorption capacities than most of the similar zeolites. 

The strongly favorable curvature of carbon dioxide isotherms on zeolites 

indicates some extent of irreversible adsorption. Effective isotherms, which are the 

isotherms accounting for partial adsorption deactivation when the material 

undergoes cyclic pressure operation, were then obtained, up to 0.7 mbar – 

atmospheric carbon dioxide partial pressure at 1.4 bar. The carbon dioxide effective 

isotherms were obtained by running various adsorption/desorption cycles until a 

“st t on  y st t ” was attained. Between adsorption cycles, the adsorbents were 

regenerated during overnight, using vacuum-only conditions (ca. 0.01 mbar). The 

adsorption cycles were performed up to a maximum total pressure of 0.7 mbar. 

The adsorption isotherms, obtained by adsorption/desorption cycles, of carbon 

dioxide on zeolites ZEOX OII and Z10-02ND at 35 ○C are shown in Figure 2.7 and 

Figure 2.8, respectively. At low pressure, ZEOX OII exhibited the highest carbon 

dioxide adsorption capacity and smallest deactivation; therefore, it is the best 

adsorbent for carbon dioxide removal. 
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Figure 2.7 – Carbon dioxide isotherms on ZEOX OII at 35 
○
C ( , isotherm of fresh adsorbent; 

, isotherm after first adsorption/desorption cycle; and , effective isotherm). The dashed 

line represents Toth isotherm fitting. 

 

 

Figure 2.8 – Carbon dioxide isotherms on Z10-02ND at 35 
○
C ( , isotherm of fresh adsorbent; 

, isotherm after first adsorption/desorption cycle; and , effective isotherm). The dashed 

line represents Toth isotherm fitting. 
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Adsorption/desorption isotherm cycles of carbon dioxide on alumina and silica 

have not been determined, because they are not suitable for carbon dioxide removal 

(small adsorption capacity and slow kinetics). 

Concerning water vapor adsorption equilibrium, isotherms were obtained at 

35 ○C. The results are shown in Figures 2.9 – 2.11. The adsorption equilibrium data 

was measured to relative pressures up to P/P0 = 0.4, which corresponds to the 

maximum relative humidity that can be expected in the air compressor outlet. The 

adsorption isotherms of water vapor on zeolites, ZEOX OII and Z10-02ND, are shown 

in Figure 2.9. Both isotherms show Type I behavior. The adsorption isotherms of 

water vapor on alumina and silica are plotted on Figure 2.10 and Figure 2.11. The 

shape of these isotherms results from two adsorption mechanisms of water vapor. At 

low partial pressures, water molecules chemisorb to the surface of the adsorbent, 

but, as the relative pressure increases, water molecules physisorb on the already 

chemisorbed molecules. 

 

Figure 2.9 – Water vapor isotherms on ZEOX OII at 35 
○
C ( , adsorption on fresh adsorbent, 

and , desorption, and , effective isotherm) and on Z10-02ND at 35 
○
C ( , adsorption on 

fresh adsorbent, and , desorption, and , effective isotherm). The dashed line represents 

Toth isotherm fitting. 
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Figure 2.10 – Water vapor isotherms on alumina at 35 
○
C ( , adsorption on fresh adsorbent, 

and , desorption, and , effective isotherm). The dashed line represents the 

Aranovich-Donohue-Langmuir fitting. 

 

 

Figure 2.11 – Water vapor isotherms on silica at 35 
○
C ( , adsorption on fresh adsorbent, and 

, desorption, and , effective isotherm). The dashed line represents the 

Aranovich-Donohue-Langmuir fitting. 
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Evacuation alone does not remove all of the adsorbed water vapor. The 

amount of chemisorbed water remains as residual at the end of desorption isotherm, 

and depends on the adsorbent. Silica, for instance, shows the smallest residual 

loading, 1.00 mol·kg-1, for alumina, the residual loading is 2.47 mol·kg-1. The zeolites 

have the highest residual loading: 6.76 mol·kg-1 and 11.2 mol·kg-1, respectively ZEOX 

OII and Z10-02ND.  

The strongly favorable curvature for water vapor isotherms on zeolites 

indicates some extent of irreversibility. Equilibrium isotherms, obtained by 

adsorption/desorption cycles, for ZEOX OII, Z10-02ND, alumina and silica were 

obtained up to relative pressures of P/P0 = 0.4, to assess the extent of deactivation 

caused by water vapor. Between isotherm determinations, adsorbents were 

regenerated under vacuum overnight. The decision about the best adsorbent for 

water vapor removal should be based not only on the fresh adsorbents isotherms, 

but, essentially, on effective isotherms. Those are represented by cross dots in Figures 

2.9 – 2.11. Water vapor affects the capacity of alumina, ZEOX OII, and especially Z10-

02ND, while silica shows no deactivation at all. 

Figure 2.12 shows the water vapor effective isotherms at 35 ○C. At low relative 

pressures, both zeolites exhibit better water vapor removal ability than alumina and 

silica. For higher pressures, alumina and especially silica show an increasing ability to 

remove water vapor, and, at a relative pressure of P/P0 = 0.4, silica have the highest 

adsorption capacity for water vapor, 10.3 mol·kg-1, followed by ZEOX OII, 

6.19 mol·kg-1. 

Although water vapor adsorption results are not common in literature, Wang 

and LeVan [8], Kim et al. [14] and Serbezov [15] reported isotherms for water vapor 

on several adsorbents including several 13X-type zeolites, aluminas and one silica gel. 

In these studies, aluminas show a Type II isotherm and silica exhibits a Type IV 
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isotherm. These are consistent with the results obtained in the present work. 

Furthermore, in the reported studies, zeolites present a Type I behavior with a high 

adsorption capacity, even at very low relative pressures.  

 

Figure 2.12 – Water vapor effective isotherms at 35 
○
C on: , ZEOX OII; , Z10-02ND;  

, alumina; and , silica. The solid line represents the Aranovich-Donohue-Langmuir fitting; 

dashed line represents Toth isotherm fitting. 

 

In the present work, the experimental adsorption equilibrium data obtained 

was fitted to an isotherm model. To fit the carbon dioxide adsorption equilibrium 

results, they were used two conventional equations: Langmuir and Toth. The 

Langmuir equation has a relatively simple mathematical formulation, which is 

thermodynamically consistent [31]: 

Langmuir isotherm 

1
m

bP
q q

bP



        (2.1) 

where q  is the adsorbed concentration, P  is the equilibrium pressure, mq  is the 

saturation adsorbed concentration and b  is the adsorption affinity constant. 
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The Toth equation is a semi-empirical model that is thermodynamically 

consistent [31]. This equation has one more parameter than the Langmuir equation 

and is a good alternative when the Langmuir equation does not fit accurately the 

data. Toth equation writes as follows: 

Toth isotherm 

 
1

1
m t

t

bP
q q

bP


 
 

        (2.2) 

where t  is the extra parameter of the Toth equation. When t  is equal to the unity, 

the Toth equation renders Langmuir equation. 

The Langmuir and Toth equations can be modified to become temperature 

dependent, introducing the following relation [31]: 

exp
H

b b
T

  
  

 
        (2.3) 

where b
 is the adsorption affinity constant at infinite temperature, H  is the 

adsorption heat,   is the gas constant and T  is the absolute temperature. 

The Toth equation was used to fit the water vapor equilibrium data on zeolites. 

Water isotherms on alumina and silica have a sigmoidal shape, with an inflection 

point at intermediate relative pressure. Aranovich and Donohue [14] proposed an 

adsorption equation of the following form: 

 

 01
d

f P
q

P P

  

       (2.4) 

where 0P P  is the relative pressure, and d  is a model parameter. Substituting  f P  

by the Langmuir equation, eqs. (2.4) can be rewritten as 
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   01 1
m d

bP
q q

bP P P


   

       (2.5) 

The Dubinin-Astakhov (DA) equation [31], which is a generalized Dubinin-

Radushkevich model, is suited to fit the adsorption equilibrium data of microporous 

sorbents for low pressures. This equation is written as 

0

exp ln

m

m

T P
q q

E P

    
     

     

      (2.6) 

where E  is the characteristic energy and m  represents the surface heterogeneity. 

Small m  values are found for adsorbents with wide ranges of pore sizes, whereas 

large m  values are related to adsorbents with a narrow pore size distribution of 

micropores. The DA equation was used to fit the experimental equilibrium values for 

water vapor on all adsorbents. 

Also, in the case of water vapor adsorption on alumina and silica, the BET 

equation [31], which is frequently employed to fit Type II isotherms, was used. The 

BET equation is written as 

 
 
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m

C P P
q q

P P C P P
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    (2.7) 

where BETC  is the BET fitting parameter that is associated with the convexity of the 

isotherm at low relative pressures, and mq  is related to the monolayer coverage. 

A   f tt n  p   m t  s w     obt  n d by m n m z n  t       t v  d v  t ons (Δq) 

between experimental data and fitting equations: 
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(2.8) 
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where exp

jq  is the adsorbed concentration experimentally obtained, cal

jq  is the 

adsorbed concentration obtained by fitting the adsorption equilibrium equations, and 

k  is the number of observations. 

All experimental equilibrium adsorption data are well described by selected 

equations and the parameters obtained are listed in Tables 2.3 – 2.5. 

 

Table 2.3 - Toth equation parameters of carbon dioxide adsorption isotherms on the fresh 

adsorbents studied. 

parameter ZEOX OII Z10-02ND alumina silica
a
 

mq , mol·kg-1 8.62 6.45 12.9 2.11 

b  x 10-4, bar-1 1.45 1.09 15.4 0.194 

H x 103, J·mol-1 37.2 34.2 29.8 25.1 

t   0.301 0.481 0.133 1 

q , % 3.4 2.9 4.8 4.8 
a 

fitted to Langmuir isotherm. 
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Table 2.4 – Parameters of water vapor adsorption equilibrium isotherms on the fresh 

adsorbents studied. 

parameter ZEOX OII Z10-02ND alumina silica 

 Toth Isotherm 

mq , mol·kg-1 16.3 23.1 ___ ___ 

b ,  bar-1 9.04 x 105 3.66 x 1010 ___ ___ 

t   0.257 0.131 ___ ___ 

q , % 1.6 1.5 ___ ___ 

 Aranovich-Donohue-Langmuir model 

mq , mol·kg-1 ___ ___ 4.55 2.66 

b ,  bar-1 
___ ___ 3.06 x 102 2.57 x 102 

d   
___ ___ 1.47 3.12 

q , % ___ ___ 3.8 4.2 

 Dubinin-Astakhov model 

mq , mol·kg-1 13.0 15.5 15.0 205.5 

E  x 103, J·mol-1 22.8 28.5 3.72 0.186 

m   1.20 1.00 0.901 0.440 

q , % 1.9 0.4 2.2 3.3 

 BET isotherm 

mq , mol·kg-1 ___ ___ 5.11 12.9 

BETC  ___ ___ 14.639 1.359 

q , % ___ ___ 7.0 16.1 
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Table 2.5 – Parameters of (a) water vapor and (b) carbon dioxide effective isotherms on 

the adsorbents studied. 

 (a) Water vapor effective isotherms 

parameter ZEOX OII Z10-02ND alumina silica 

 Toth isotherm 

mq , mol·kg-1 17.5 11.3 ___ ___ 

b ,  bar-1 2.15 x 103 7.14 x 103 ___ ___ 

t   0.281 0.241 ___ ___ 

q , % 1.9 1.0 ___ ___ 

 
Aranovich-Donohue-Langmuir model 

mq , mol·kg-1 ___ ___ 3.41 3.47 

b ,  bar-1 
___ ___ 2.82 x 102 1.47 x 102 

d   
___ ___ 1.15 2.63 

q , % ___ ___ 0.7 2.3 

 (b) Carbon dioxide effective isotherms 

parameter ZEOX OII Z10-02ND  

 Toth isotherm 

mq , mol·kg-1 26.5 15.5  

b ,  bar-1 9.55 x 101 2.11 x 101  

t   0.214 0.288  

q , % 0.6 1.6  

 
 

2.3.2 Column dynamics 

A set of cyclic adsorption/desorption breakthrough experiments was performed 

to assess the behavior of the selected adsorbents concerning air contaminants, water 

vapor and carbon dioxide. The adsorption/desorption breakthroughs cycles were 



Study of pre-adsorbents for water vapor and carbon dioxide removal 

 

Chapter II 63 

 

performed for each adsorbent, starting from a fresh sample in equilibrium with a 

nitrogen atmosphere until “stationary state” is attained (effective breakthroughs). 

The adsorption experiments were performed using air containing 450 ppm of 

carbon dioxide and a dew point of 5 ○C at 5.2 LSTP·min-1, 1.4 bar and 27 ○C. After which, 

the bed was regenerated between adsorption cycles with nitrogen at 0.8 LSTP·min-1 

and at 200 mbar during the same period of time of the first adsorption breakthrough. 

The experimental results for cyclic breakthroughs with zeolites, ZEOX OII and 

Z10-02ND, alumina and silica are shown in Figures 2.13 – 2.18. 

Figure 2.13 and Figure 2.14 plot the cyclic breakthroughs of water vapor and 

carbon dioxide on ZEOX OII, respectively. The adsorption curves exhibit a compressive 

shape characteristic of favorable isotherms; the adsorption breakthrough of carbon 

dioxide exits before the corresponding water vapor. The carbon dioxide concentration 

front travels faster in the column, exiting the column before the corresponding water 

vapor front. The water adsorption front pushes carbon dioxide out from adsorption 

sites, originating a concentration peak (focusing effect [32]). The fresh adsorbent, first 

adsorption cycle, removes carbon dioxide to < 5 ppm and simultaneously originates a 

stream with a dew point below – 45 ○C. The effective breakthrough was obtained 

after just two cycles. At this stage, the adsorbent retains ca. 19 % of the original 

capacity for removing water and ca. 6 % for removing carbon dioxide, originating a 

stream with a dew point of ca. – 39 ○C and 5 ppm of carbon dioxide. 
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Figure 2.13 – Water vapor cyclic breakthrough curves obtained for air with 450 ppm of carbon 

dioxide and a dew point of 5 
○
C at 27 

○
C on ZEOX OII ( , breakthrough on fresh adsorbent;  

──  b   kt  ou    ft   f  st  dso pt on/d so pt on cyc  ;  nd , effective breakthrough). 

 

 

Figure 2.14 – Carbon dioxide cyclic breakthrough curves obtained for air with 450 ppm of 

carbon dioxide and a dew point of 5 
○
C at 27 

○
C on ZEOX OII ( , breakthrough on fresh 

 dso b nt; ──  b   kt  ou    ft   f  st  dso pt on/d so pt on cyc  ;  nd , effective 

breakthrough). 
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Figure 2.15 – Water vapor cyclic breakthrough curves obtained for air with 450 ppm of carbon 

dioxide and a dew point of 5 
○
C at 27 

○
C on Z10-02ND ( , breakthrough on fresh adsorbent;  

──  b   kt  ou    ft   f  st  dso pt on/d so pt on cyc  ;  nd , effective breakthrough). 

 

 

Figure 2.16 – Carbon dioxide cyclic breakthrough curves obtained for air with 450 ppm of 

carbon dioxide and a dew point of 5 
○
C at 27 

○
C on Z10-02ND ( , breakthrough on fresh 

 dso b nt; ──  b   kt  ou    ft   f  st  dso pt on/d so pt on cyc  ;  nd , effective 

breakthrough). 
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Figure 2.15 and Figure 2.16 show the cyclic breakthroughs of water vapor and 

carbon dioxide for Z10-02ND, respectively. The first adsorption cycle originated a 

stream with a dew point of ca. – 53 ○C and < 5 ppm of carbon dioxide. The effective 

breakthrough was obtained after two cycles, and, at this stage, the adsorption 

capacity of the adsorbent for removing water was ca. 11 % of the original, and for 

removing carbon dioxide was ca. 4 % of the original. The stream produced has a dew 

point of ca. – 20 ○C and 30 ppm of carbon dioxide. 

 

Figure 2.17 – Water vapor cyclic breakthrough curves obtained for air with 450 ppm of carbon 

dioxide and a dew point of 5 
○
C at 27 

○
C on alumina (   b   kt  ou   on f  s   dso b nt; ──  

breakthrough after first adsorption/desorption cycle; and , effective breakthrough). 

 

Figure 2.17 shows the cyclic breakthroughs of water vapor for alumina. Carbon 

dioxide breakthroughs were not recorded, since the adsorption capacity of this specie 

is negligible – see Figure 2.5. The water front shows a dispersive shape, characteristic 

of an unfavorable isotherm. Indeed, the adsorption isotherm shows two branches, 

one of which has an unfavorable shape – see Figure 2.10. Fresh adsorbent produced a 

stream with a dew point of ca. – 36 ○C. The effective breakthrough, obtained after just 
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two cycles, shows an adsorption capacity for removing water ca. 29 % of the original. 

The stream produced has a dew point of ca. – 31 ○C.  

Cyclic breakthroughs of water vapor for silica are represented in Figure 2.18. 

Carbon dioxide breakthroughs were not considered, since the adsorption capacity of 

this specie on silica is negligible – see Figure 2.5. The water front shows a dispersive 

wave, characteristic of an unfavorable isotherm. In fact, the adsorption isotherm 

shows two branches, one of which has an unfavorable shape – see Figure 2.11. The 

effective breakthrough is obtained after just two cycles. The adsorbent, at this stage, 

shows an adsorption capacity of ca. 18 % of the original for removing water 

originating a stream of dew point of ca. – 18 ○C. 

 

Figure 2.18 – Water vapor cyclic breakthrough curves obtained for air with 450 ppm of carbon 

dioxide and a dew point of 5 
○
C at 27 

○
C on silica (   b   kt  ou   on f  s   dso b nt; ──  

breakthrough after first adsorption/desorption cycle; and , effective breakthrough). 

 

Table 2.6 summarizes the effective remaining adsorption capacity of the 

adsorbents for removing carbon dioxide and water vapor. As can be seen, the 
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simultaneously presence of carbon dioxide and water vapor causes a higher 

deactivation than each of these contaminants alone. The adsorbent capacity of silica 

is not significantly affected by the water vapor or carbon dioxide individually. 

However, Table 2.6 and Figure 2.17 – 2.18 show that the effective breakthrough time 

of silica is highly affected by water vapor, unlike alumina. Indeed, the breakthrough 

depends on both adsorption equilibrium and adsorption kinetics and alumina is faster 

adsorbing water vapor than silica within the relevant region for cyclic adsorption 

processes – see Figure 2.19. This figure shows the fractional uptake of water vapor on 

alumina and silica. 

Table 2.6 – Effective adsorption capacity of the adsorbents for removing carbon dioxide and 

water vapor. 

 effective adsorption capacity (%) 

 Isotherms breakthroughs 

adsorbent CO2 H2O CO2 + H2O 

ZEOX OII 54 47 6  19 

Z10-02ND 38 25 4  11 

alumina ___ 66 ___  29 

silica ___ 96 ___  18 

 

Zeolite ZEOX OII is the best adsorbent for removing water vapor and carbon 

dioxide in the studied conditions. This conclusion is consistence with results from 

adsorption equilibrium and breakthroughs. The design of the pre-treatment unit 

should then consider the use of ZEOX OII. Nevertheless, to protect this zeolite from 

possible large percents of water in the feed current, it is strongly suggested to use a 

previous small layer of a highly water-resistant sorbent, such as silica or alumina, to 

lower the dew point to acceptable values. 
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Figure 2.19 – Fractional uptake versus time for water vapor. The gray line indicates the first 

equilibrium point on alumina. The black line indicates the first equilibrium point on silica. 

 

2.4 Conclusions 

Adsorption equilibrium isotherms for carbon dioxide and water vapor were 

obtained for four commercial adsorbents: two 13X-type zeolites, activated alumina 

and silica. Carbon dioxide isotherms were determined at 15 ○C, 35 ○C and 55 ○C, using 

the volumetric method, and water vapor isotherms at 35 ○C, using the gravimetric 

method. 

Zeolites exhibit higher carbon dioxide adsorption capacity than alumina or 

silica. Adsorption isotherms up to 0.7 mbar of carbon dioxide and at 35 ○C on zeolites 

were obtained, after several adsorption/desorption cycles under close to real 

operating conditions (effective adsorption isotherms). For such conditions, ZEOX OII 

exhibited both the highest carbon dioxide capacity and smallest deactivation up to 

the effective isotherm, and therefore is the best adsorbent for carbon dioxide 

removal. 
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Water vapor adsorption equilibrium isotherms were also obtained at 35 ○C on 

the same adsorbents. Both zeolites show a Type I isotherm, while alumina and silica, 

exhibit a sigmoidal shape adsorption isotherm with an inflection point at an 

intermediate relative pressure. Therefore, zeolites exhibit better water vapor removal 

ability at low relative pressures; however, for higher pressures, this ability in alumina, 

and especially silica, increases significantly. Water vapor adsorption/desorption 

isotherm cycles, up to relative pressure of P/P0 = 0.4 and at 35 ○C, were obtained and 

it is possible to conclude that water vapor affects the capacity of zeolites, especially 

Z10-02ND, and alumina, but causes no deactivation on silica.  

Cyclic breakthrough experiments were also conducted to assess the behavior of 

the adsorbents concerning water vapor and carbon dioxide. The adsorption steps 

were performed with air containing 450 ppm of carbon dioxide and a dew point of 

5 ○C at 5.2 LSTP·min-1, 1.4 bar and 27 ○C, and the regeneration was performed with 

nitrogen at 0.8 LSTP·min-1 and 200 mbar during the same period of time of the first 

adsorption breakthrough. The effective breakthrough was reached after only just two 

cycles for all adsorbents. At the studied conditions, ZEOX OII was the best adsorbent 

for removing water vapor and carbon dioxide, originating a stream with a dew point 

of ca. – 39 ○C and 5 ppm of carbon dioxide.  

It was concluded that a pre-treatment vacuum pressure swing adsorption 

(VPSA) unit should contain layered beds composed by two adsorbents: an initial layer 

of silica or alumina, to remove condensable water, acting as a protecting layer of the 

following one, which should be of ZEOX OII to reduce water and carbon dioxide 

concentrations to ppm levels. It is important to underline that the choice of material 

for the first layer should depend on a risk assessment of the VPSA operation. The 

studied silica was found to have a remarkable resistance to water (even liquid water) 

without losing capacity. Regarding the second layer, it is important to pinpoint that 
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ZEOX OII pellets have a considerably smaller size than Z10-02ND, facilitating 

significantly the mass transfer. However, due to its size, a considerable pressure drop 

along the columns may be observed. 
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3 Study and characterization of AgLiLSX 

zeolite 

 

Abstract 

 Commercial adsorbents do not exhibit argon/oxygen equilibrium selectivity 

above 1. However, in the past decade, Air Products and Chemicals developed an 

argon/oxygen selective silver-based zeolite, AgLiLSX. In this work, the authors studied 

and characterized the AgLiLSX adsorbent to provide fundamental data to evaluate its 

potential for high-purity oxygen production in a single-stage PSA unit. Oxygen, 

nitrogen and argon adsorption isotherms and breakthroughs curves were obtained 

and moderate equilibrium selectivity (
2 2N O = 4.98 and 

2Ar O = 1.14 at 1 bar and 

25 ○C), high working capacity (0.45 mol·kg-1 for nitrogen, between 1.4 bar and 0.2 bar 

at 25 ○C), and superior performance were observed. It was found that this adsorbent 

can allow the production of a 95+% oxygen stream in a single-stage PSA operation. It 

was also found that the adsorbent is very sensitive to carbon dioxide and water vapor, 

and also shows low mechanical resistance, losing capacity and selectivity when 

exposed to atmospheric air or if mistreated. An extra care is, therefore, needed when 

using AgLiLSX adsorbent in a PSA or VPSA operation. 

  



Study and characterization of AgLiLSX zeolite 

 

78 Chapter III 

 

3.1 Introduction 

Oxygen generation from air by pressure swing adsorption (PSA) has noticeably 

increased in the past decade as evidenced by relevant patent activity [1]. These PSA 

units produce an enriched stream of oxygen limited to 95 %, mostly balanced with 

argon [2], since commercial adsorbents do not exhibit an Ar/O2 adsorption selectivity 

above 1 [3]. There is, however, a significant demand for high-purity oxygen, such as 

for medical surgeries, where the minimum concentration of oxygen required is 99.5 % 

in Europe, 99.0 % in USA and 99.6 % in Japan [1]; military and aerospace applications 

usually require a minimum concentration of 99.5 % as well as the filling of cylinders 

[4] and welding and cutting processes [5]. To produce purer oxygen streams, several 

adsorption processes combining two separation stages have been proposed [4-15]. 

Still, the production of an oxygen stream richer than 95 % using a single-stage PSA 

remained a goal.  

During the 1980s, a new generation of adsorbents was developed with very 

high capacity and selectivity towards the air separation [16-18]. These new 

adsorbents are Li-exchanged X-type (LiX) zeolites, low-silica X-type (LSX) zeolites, and 

Li- or Ca-exchanged LSX-zeolites [17, 19, 20]. However, none of these adsorbents are 

able to selectively remove argon from the product. In 1990, Wilkerson prepared a 

silver-mordenite adsorbent with two different silver-exchanged concentrations 

(reported as highly exchanged silver-mordenite and low percent exchange silver-

mordenite) and studied the adsorption equilibrium of argon and oxygen [21]. Only the 

more thoroughly exchanged silver-mordenite showed selectivity of argon towards 

oxygen. Following, in 1993, Knaebel and Kandybin disclosed an equilibrium-based 

PSA, packed with silver-mordenite adsorbent, which reached a product concentration 

of 99.6 % from a feed of 95 % of oxygen balanced with argon [11]. Silver-exchanged 

molecular sieves have since then been investigated to make the argon/oxygen 
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separation [1, 22-24]. In 2000, in two consecutive works [25, 26], Hutson et al. 

reported the addition of silver to LiX zeolites for improving their adsorption capacity 

towards air separation. Since these adsorbents exhibit argon/oxygen selectivity 

slightly smaller than 1, they still show no ability for selectively remove the argon from 

the product stream. In 2002, Air Products and Chemicals, Inc. patented an 

argon/oxygen selective zeolite, named AgLiLSX (lithium low silica-X silver based 

zeolite), with a silver-exchanged content of 20 – 70 mol.% [27]. This patent refers that 

the new adsorbent is useful for high-purity oxygen production in a single-stage 

vacuum and pressure swing adsorption (VPSA) or PSA. In 2003, the same company 

disclosed a VPSA process that, according to patent simulations, could produce a 

stream of 99 % of oxygen from air, using the newly developed AgLiLSX adsorbent [28]. 

Following, Sebastian and Jasra [22] prepared and characterized several 

silver-exchanged zeolites for assessing their argon/oxygen adsorption selectivity. AgA, 

AgX, AgY, AgMordenite among others were reported to show some degree of 

adsorption selectivity of argon over oxygen. Authors stated that the unusual 

adsorption properties, especially towards argon, could be related to the directional 

properties given by the d orbitals of silver ions [22, 23]. They stated that, in their case, 

the argon/oxygen equilibrium selectivity observed for silver-exchanged zeolites could 

be explained from the special interactions between bonding molecular orbitals. These 

authors concluded that AgA zeolite exhibited very high N2/O2 and Ar/O2 adsorption 

selectivities compatible with use in a single-stage PSA for producing oxygen enriched 

streams (> 95 %). In 2007, Santos et al. briefly characterized the adsorption 

equilibrium of oxygen, nitrogen and argon on AgLiLSX adsorbent provided by Air 

Products and Chemicals and simulated a PSA unit for producing 98.7 % of oxygen, 

operating between 1 and 3 bar, at 30 °C and, with a recovery of 5 %. These authors 

reported that the developed simulator is able to represent accurately a real unit using 

an air feed free of carbon dioxide and water vapor [1]. In 2008, Ansón et al. studied a 
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30 mol.% silver-exchanged zeolite ETS-10 and compared it with silver-exchanged 

mordenite [23]. The authors found Ag-ETS-10 to have an equilibrium argon/oxygen 

selectivity of 1.28 at 1 bar and 30 °C. However, the adsorbent showed limitations 

such as low N2/O2 selectivity and smaller adsorption capacity when compared with 

conventional LiLSX-type adsorbents. Later, Shi et al. made a composite adsorbent of 

Ag-ETS-10 crystals and Ludox HS-40 colloidal silica, weight ratio of 12:5, and obtained 

an adsorbent that has a high nitrogen/oxygen equilibrium selectivity (
2 2N O = 6.23 at 

1 bar and 25 ○C) and adsorption capacity (
2Nq = 0.622 mol∙kg-1 at 1 bar and 25 ○C), 

maintaining the high argon/oxygen equilibrium selectivity previously reported [24]. 

However, the nitrogen adsorption capacity was still smaller than reported by Santos 

et al. for AgLiLSX (
2Nq = 0.850 mol∙kg-1 at 1 bar and 25 ○C) [1]. 

In the present work, the authors studied and characterized the AgLiLSX 

adsorbent for high-purity oxygen production in a single-stage cyclic adsorption 

operation. Oxygen, nitrogen and argon adsorption isotherms were obtained up to 

7 bar and at 15 ○C, 25 ○C and 35 ○C, to assess the selectivity, working capacity and 

general performance of the adsorbent. Mono and multicomponent breakthrough 

experiments, at 25 ○C and 1.4 bar, were also carried out to characterize the 

adsorption kinetics and to assess the adsorbent performance in real operating 

conditions. The linear driving force model was fitted to the breakthrough 

experimental results, using an in-house developed simulator, and the corresponding 

mass transport coefficients were obtained. 

A deactivation study was also conducted on the AgLiLSX by measuring the 

adsorption capacity of nitrogen, oxygen and argon after contamination with 

atmospheric air containing 600 ppm of carbon dioxide and a dew point of 4 ○C at 

25 ○C; and after crushing a small sample down to ca. 0.15 mm of particle diameter. 
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3.2 Experimental 

3.2.1 Materials 

AgLiLSX adsorbent (the starting material is a beaded 93 % Li, 7 % Na+K LSX-type 

zeolite with 1.0 Si/Al ratio, afterward 40 mol.% silver exchanged  [27, 29]) was 

supplied by Air Products and Chemicals, Inc. Helium picnometry was used to 

determine the real density, while surface area, pore volume, and average pore 

diameter, excluding microporosity, and apparent density, were determined by 

mercury porosimetry. The physical properties of AgLiLSX adsorbent are listed in Table 

3.1. The “as received” sample was regenerated at 375 ○C (temperature ramp of 

1 ○C∙min-1) for 12 h under a synthetic air stream (79 % N2, 21 % O2) with a minimum 

flow rate of 2 LSTP∙min-1 for each kilogram of adsorbent. 

Table 3.1 – Physical properties of AgLiLSX adsorbent. 

property Value 

geometry Spherical 

average pellet radius, mm 0.51 

pellet crushing strength, N 0.9 

apparent density, g∙cm-3 1.218 

total surface area, m2∙g-1 21.6 

pore volume, cm3∙g-1 0.316 

structural density, g∙cm-3 3.080 

meso/macro porosity, % 60.45 

 

3.2.2 Methods 

The volumetric method was used to determine the adsorption equilibrium 

isotherms. This method is based on pressure variation of the relevant gas after an 

expansion. Knowing the pressure decrease and assuming ideal gas behavior, it is 
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possible to determine the concentration of the solute adsorbed [30]. The apparatus 

used is described in the previous section [29]. After introducing the adsorbent sample 

into the corresponding vessel of the volumetric method apparatus, it was filled with 

helium at 70 ○C followed by evacuation until < 0.01 mbar, and this procedure was 

repeated six times. 

The breakthrough curves were determined using an in-house built 

experimental setup, also described in the previous chapter [30]. Briefly, it consists of a 

packed bed column (34.0 cm of length and 3.2 cm of diameter) filled with the 

adsorbent and placed in a thermostatic chamber, where the feed flow rate was 

controlled using a mass flow controller (Bronkhorst El-flow, 0 – 2 LSTP∙min-1, ± 0.5 % Rd 

plus ± 0.1 % FS), the exiting stream was analysed using a mass spectrometer (Pfeiffer, 

Omnistar) and the exit pressure was controlled using a back pressure regulator 

(Equilibar, EB12F2). The temperature was monitored at the entrance and exit of the 

column using 1/16” thermocouples placed at the axial position of the column. The 

breakthrough curve represents the composition history of the stream exiting the 

packed adsorption column when, after saturation, the feed is changed to a different 

gas or mixture [3]. After loading the adsorption column with the adsorbent sample, 

this was heated up to 50 ○C and evacuated for 2 h at 0.01 mbar. All experiments were 

performed at 1.4 bar with a feed flow rate of 0.5 and 1 LSTP·min-1 at 25 ○C. The 

temperature of the thermostatic chamber during the experiments was 25 ○C. 

 

3.2.3 Mathematical model 

To better understand the dynamic behavior of the adsorbing bed, a 

mathematical model was developed based on the following main assumptions: 

1) ideal gas behavior 

2) negligible radial concentration and temperature gradients  
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3) axially dispersed plug flow 

4) thermal equilibrium between the adsorbent, bulk flow and column wall 

5) intraparticle mass transport according to linear driving force (LDF) model 

6) constant overall heat transfer coefficient of the column 

7) uniform cross-sectional void fraction 

8) uniform adsorption properties along the column 

9) negligible bed pressure drop 

According to these assumptions, the model equations can be written as it 

follows [31]: 

Partial and total mass balances to the column 
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and ic  is the partial molar concentration, axD  is the axial dispersion coefficient, totalc  

is the total molar concentration, u  is the interstitial molar average velocity, iN  is the 

partial molar flow rate, b  is the bed void fraction,  p  is the particle porosity, s  is 

the adsorbent apparent density, ic  is the partial average molar concentration in the 

fluid phase, iq  is the partial average molar concentration in the adsorbed phase, x  is 
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the spatial coordinate, t  is the time variable, and nc  is the number of mixture 

components.  

Energy balance to the column 
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and ,pg iC  is the heat capacity of component i, psC  is the adsorbent heat capacity, w  

is the ratio between the cross section wall area and column area, w  is the column 

wall density, pwC  is the wall heat capacity,   is the axial heat dispersion coefficient, 

 iH  is the heat of adsorption of component i, 
ml

wr  is the logarithmic mean radius of 

the column wall, 
e

wr  is the external column radius, 
i

wr  is the internal column radius, 

U  is the overall heat transfer coefficient, T  is the temperature, and T  is the 

external environmental temperature. 
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The adsorption equilibrium was predicted using the Ideal Adsorbed Solution 

Theory (IAST), proposed by Myers and Prausnitz [32],  

 
0 0 0

0

0

0

ip
i i

i

i

q p
dp

p
          (3.7) 

where   is the spreading pressure, 
0

ip  the hypothetical pressure of pure i-

component, 
0

iq  is the adsorbent concentration of pure i-component; the 

multicomponent equilibrium is obtained from the monocomponent isotherms.  

The intraparticle mass transport model is given by the Linear Driving Force 

model (LDF): 
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where iq  is the adsorbed concentration of component i in the particle inner surface, 

and ik  is the LDF coefficient, 
215i i pk D r , where 

2

i pD r  is the apparent diffusion 

time constant [33]. 

The previous equations can be written in dimensionless form as follows: 

Partial mass balance: 
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Total mass balance: 
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where 
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and 
*

ic  is the dimensionless partial molar concentration,   is the dimensionless time 

variable, *x  is the dimensionless axial coordinate, 
*

totalc  is the dimensionless total 

molar concentration, *u  is the dimensionless interstitial molar average velocity, 
*

iq  is 

the dimensionless partial adsorbed concentration, *

ic  is the dimensionless average 

partial molar concentration, and *

iq  is the dimensionless partial average molar 

concentration in the adsorbed phase. MPe
 
is the mass transfer Peclet number and is 

defined as MPe  B ref axL u D , where BL  is the bed length.  p  and  a  are, 

respectively, the capacity factors of fluid and adsorbed phases. 
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and 
*

,pg iC  is the dimensionless heat capacity of component i, *T  the dimensionless 

temperature, 
*

T  the dimensionless external environmental temperature. The HPe  is 

the thermal Peclet number, defined by H ,Pe  ref pg ref ref Bc C u L . The 
s

gR , 
w

gR  and 
h

gR  

are energy balance dimensionless parameters. 

Mass transport model: 
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where 
*

,i sq  is the dimensionless adsorbed concentration in the particle surface. The 
b
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is the ratio between bed time constant and particle diffusion time constant, given by
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The boundary and initial conditions of mass and energy balances are given 

below; the well-known Danckwerts boundary conditions were used. 

Initial conditions: 

* *

,0i ic c  , * *

,0i iq q , 
* *

inT T  
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Boundary conditions: 
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where 
*

inT  is the dimensionless initial temperature, given by 
* in in refT T T , and 

*

,i feedc  

the dimensionless partial molar concentration of feed stream, given by 

*

, ,i feed i feed refc c c .  

The space derivatives were solved numerically using the finite difference 

method with fixed grid implemented in a in-house numerical package DERVX [34]. The 

system of partial differential equations, coupled with the appropriate boundary and 

initial conditions for three air components (nitrogen, oxygen and argon), was 

integrated explicitly in order to obtain the grid point values at the next time step 

using the package LSODA [35]. This flexible subroutine solves initial boundary 

problems for stiff or non-stiff systems of first-order ordinary differential equations. 
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3.3 Results and discussion 

3.3.1 Adsorption equilibrium 

Characterization of adsorbent 

In the present work, monocomponent adsorption equilibrium isotherms of 

nitrogen, oxygen and argon on AgLiLSX were obtained at three different temperatures 

– 15 ○C, 25 ○C and 35 ○C – and up to 7 bar. The resulting isotherm plots are shown in 

Figures 3.1 – 3.3. 

 

Figure 3.1 – Nitrogen isotherms on AgLiLSX at: , 15 
○
C;  , 25 

○
C; and , 35 

○
C. The solid line 

represents the dual-site Langmuir isotherm fitting. 

 

Nitrogen exhibits the greatest adsorption capacity and the most favorable 

isotherms, while oxygen and argon have similar and considerably less adsorption 

capacity. As expected, argon has slightly more adsorption capacity than oxygen, 

exhibiting equilibrium Ar/O2 selectivity above 1 and, therefore, the ability to 
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selectively remove argon from the feed stream and to produce a product of 95+% of 

oxygen in a single-stage cyclic adsorption operation. 

 

Figure 3.2 – Oxygen isotherms on AgLiLSX at: , 15 
○
C;  , 25 

○
C; and , 35 

○
C. The dashed 

line represents the Langmuir isotherm fitting. 

 

 

Figure 3.3 – Argon isotherms on AgLiLSX at: , 15 
○
C;  , 25 

○
C; and , 35 

○
C. The dashed line 

represents the Langmuir isotherm fitting. 
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Figure 3.4 – Adsorption (hollow symbols) and desorption (bold symbols) isotherms for:  

, nitrogen; , oxygen; and , argon, on AgLiLSX at 25 °C. 

 

Figure 3.4 shows the adsorption and desorption isotherms of nitrogen, oxygen 

and argon on AgLiLSX at 25 ○C. The adsorption and desorption legs overlap – no 

hysteresis is observed. Also, it was experimentally observed the complete desorption 

of all gases when the adsorbent was evacuated (< 0.01 mbar for 3 h). 

The selectivity values for pairs Ar/O2 and N2/O2 are given in Table 3.2. The 

N2/O2 selectivity shows a hyperbolic behavior characteristic of LiLSX-type zeolites. The 

equilibrium selectivity Ar/O2 decreases with pressure and with temperature, from 

1.17 to 1.07. Since the adsorbent shows higher Ar/O2 and N2/O2 selectivity at lower 

pressure, it should be used in a pressure swing process focused around atmospheric 

pressure (VPSA operation). 

The working capacity is the equilibrium loading difference at high (adsorption) 

and low (regeneration) pressures of a PSA cycle [36]. Considering, for example, a 

VPSA cycle operating between 1.4 and 0.2 bar, the nitrogen working capacity is 
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0.45 mol∙kg-1 at 25 ○C, and the Ar/O2 equilibrium selectivity is 1.13 at 1.4 bar and 

25 ○C. For a similar adsorbent, Santos et al. [1] obtained a nitrogen working capacity 

of 0.48 mol∙kg-1 and Ar/O2 selectivity of 1.14. The difference between sample lots 

used may explain the slight difference of these values.  

Table 3.2 – Selectivity for pair Ar/O2 and N2/O2 on AgLiLSX at three temperatures. 

P (bar) 
Ar/O2 N2/O2 

15 ○C 25 ○C 35 ○C 15 ○C 25 ○C 35 ○C 

0.15 1.17 1.15 1.14 15.1 14.8 14.0 

0.30 1.16 1.15 1.13 10.1 10.5 10.6 

0.50 1.16 1.14 1.13 7.19 7.76 8.12 

1.00 1.15 1.14 1.13 4.53 4.98 5.37 

1.50 1.14 1.13 1.12 3.51 3.86 4.18 

2.00 1.13 1.12 1.12 2.97 3.24 3.52 

3.00 1.12 1.11 1.11 2.39 2.59 2.79 

4.00 1.10 1.10 1.10 2.08 2.23 2.40 

5.00 1.09 1.09 1.09 1.88 2.01 2.15 

6.00 1.08 1.08 1.08 1.74 1.86 1.97 

7.00 1.07 1.07 1.07 1.64 1.74 1.84 

 

In the present work, Langmuir equation was used to fit the oxygen and argon 

experimental adsorption equilibrium data. For fitting the nitrogen data, dual-site 

Langmuir equation was used instead. Both Langmuir and dual-site Langmuir 

equations have simple mathematical formulations and are thermodynamically 

consistent [37]. The dual-site Langmuir isotherm renders Langmuir, when ,2mq  equals 

to zero.  
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Langmuir isotherm: 

1
m
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Dual-site Langmuir model: 
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where q  is the adsorbed concentration, P  is the equilibrium pressure, 
mq  is the 

saturation adsorbed concentration and b  is the adsorption affinity constant. 

Both equations can be modified to incorporate temperature-dependence by 

introducing the Van’t-Hoff equation [37, 38] : 
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where 
b  is the adsorption affinity constant at infinite temperature, H  is the 

adsorption heat,   is the ideal gas constant, and T  is the absolute temperature. 

All fitting parameters were obtained by minimizing the relative deviations, q , 

between experimental and fitting values: 
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where jq  is the adsorbed concentration, and k  is the number of observations. 

Superscript “exp” and “cal” stands for experimentally obtained value and obtained by 

fitting, respectively.  
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The obtained parameters of Langmuir and dual-site Langmuir equations are 

given in Table 3.3. 

Table 3.3 – Parameters of isotherm fittings on AgLiLSX adsorbent. 

Parameters Nitrogen Oxygen Argon 

Equation type DSL
a
 Langmuir Langmuir 

,1mq  / mol·kg-1 0.729 3.79 3.29 

1b
  x 10-3 / bar-1 0.020 0.151 0.134 

1H  x 103 / J·mol-1 31.1 14.0 15.0 

,2mq  / mol·kg-1 2.66 ---- ---- 

2b
 x 10-3 / bar-1 0.051 ---- ---- 

2H x 103 / J·mol-1 17.6 ---- ---- 

q / % 0.6 0.6 0.9 

a Dual-site Langmuir. 

 

Deactivation study 

As mentioned in the previous section, AgLiLSX adsorbent is very sensitive to 

water vapor and carbon dioxide contamination, deactivating when exposed to 

atmospheric air [30]. Adsorption equilibrium isotherms of carbon dioxide and water 

vapor were obtained at 25 ○C, and are plotted in Figure 3.5 and Figure 3.6, 

respectively. The strongly favorable curvature for both isotherms indicates significant 

extent of irreversibility. The obtained parameters of dual-site Langmuir isotherm 

fitting for carbon dioxide and water vapor on AgLiLSX are given in Table 3.4. 
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Figure 3.5 – Carbon dioxide isotherm on AgLiLSX at 25 
○
C. The solid line represents the 

dual-site Langmuir isotherm fitting. 

 

 

Figure 3.6 – Water vapor isotherm on AgLiLSX at 25 
○
C. The solid line represents the 

dual-site Langmuir isotherm fitting. 
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Table 3.4 – Parameters of dual-site Langmuir isotherm fittings on AgLiLSX adsorbent. 

Parameters Carbon dioxide Water vapor 

,1mq  / mol·kg-1 1.671 12.621 

1b   x 10-3 / bar-1 89.87 2381 

,2mq  / mol·kg-1 3.611 6.005 

2b  x 10-3 / bar-1 3.29 13.66 

q / % 1.9 1.7 

 

A study was conducted to quantify the degree of contamination of the AgLiLSX 

adsorbent when contacted with atmospheric air. This study consisted in let a small 

sample contact with atmospheric air containing 600 ppm of carbon dioxide and a dew 

point of 4 ○C, at 1 bar and 25 ○C, overnight. After that, the sample was placed inside 

the corresponding vessel of the volumetric method apparatus and regenerated during 

12 h, using vacuum-only conditions (ca. 0.01 mbar). Then, the adsorption equilibrium 

isotherms of nitrogen, oxygen and argon were obtained at 25 ○C and compared with 

the isotherms obtained on the fresh sample. Table 3.5 summarized the remaining 

adsorption capacity of the contaminated sample for nitrogen, oxygen and argon, as 

well as the selectivity nitrogen/oxygen and argon/oxygen. 

 

Adsorbents used in PSA operation are often submitted to improper packaging, 

friction caused by excessive fluid velocities inside the bed, and external mechanical 

vibrations. The crushing strength of an adsorbent provides information of whether 

the material is susceptible to abrasion and dusting when submitted to an external 

force. The crushing strength of AgLiLSX pellets was measured and the results are 

plotted in Figure 3.7. The low crushing strength of AgLiLSX indicates that this 

adsorbent has low mechanical resistance and, therefore, if mistreated, can suffer 

abrasion, dusting and consequent deactivation by destruction of the adsorption sites.  
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Figure 3.7 – Histogram of crushing strength measured for AgLiLSX pellets. 

 

A study was conducted to measure the extent of deactivation of AgLiLSX when 

submitted to inappropriate conditions such as improper packaging or friction. A small 

sample was crushed and make into powder (particle diameter of ca. 0.15 mm). Then, 

the sample was placed in the corresponding vessel of the volumetric method 

apparatus and regenerated during 3 h using vacuum-only conditions (ca. 0.01 mbar). 

Then, the equilibrium isotherms of nitrogen, oxygen and argon were obtained at 25 ○C 

and compared with the isotherms obtained on the undamaged sample. Table 3.5 

summarized the remaining adsorption capacity of the crushed sample for nitrogen, 

oxygen and argon, as well as the selectivity nitrogen/oxygen and argon/oxygen. 
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Table 3.5 – Adsorption capacity and selectivity of the AgLiLSX at 1.4 bar and 25 
○
C after 

contamination with carbon dioxide and water vapor; and after crushing the pellets down to dust. 

 
After fresh 

sample contamination Dusting 

adsorption capacity (%)  

nitrogen 4.7 15.0 100 

oxygen 16.9 39.2 100 

argon 15.1 35.6 100 

adsorption selectivity  

N2/O2 1.12 1.54 4.16 

Ar/O2 1.01 1.03 1.13 

 
 

3.3.2 Adsorption kinetics 

A set of mono and multicomponent breakthrough curves was performed to 

assess the adsorption kinetics on AgLiLSX adsorbent [39]. The monocomponent 

breakthroughs of nitrogen, oxygen and argon are plotted in Figure 3.8; the adsorption 

column was initially filled with helium. The adsorption breakthrough curves for the 

three components exhibit a compressive shape characteristic of favorable isotherms 

[39]. Due to the fast adsorption kinetics of the three species on AgLiLSX, the 

concentration front shows an abrupt behavior. Indeed, in the studied cases, 

breakthrough time depends almost only on adsorption equilibrium 

(thermodynamics). Therefore, the less adsorbed gas, oxygen, leaves the column first, 

residence time of 155 s, followed by argon, 167 s, and the much slower nitrogen, 

468 s. Also, the simulation results accurately describe the experimental data. The LDF 

coefficients that best fitted the experimental curves were: kN2 = 0.13 s-1, kO2 = 0.25 s-1 

and kAr = 0.23 s-1. The temperature profiles at the entrance and exit of the 

breakthrough column were investigated, recorded and simulated. As expected, the 

nitrogen shows the higher temperature excursion when compared with oxygen and 

argon, which shows similar temperature profiles. In Figure 3.9 the temperature 
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profiles of effluent stream at the exit of the column for oxygen and nitrogen 

monocomponent breakthroughs are presented. 

 

Figure 3.8 – Breakthrough curves of: , nitrogen; , oxygen; and , argon, on AgLiLSX at 

1.4 bar (0.5 LSTP∙min
-1

 flow rate). Bed initially saturated with helium at 25 
○

C. 

 

 

Figure 3.9 – Temperature profiles of the effluent stream, measured at the exit of the column, 

for , nitrogen and , oxygen monocomponent breakthroughs on AgLiLSX at 1.4 bar 

(0.5 LSTP∙min
-1

 flow rate). Bed initially saturated with helium at 25 
○
C. 
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Figure 3.10 – Breakthrough curves of: , nitrogen; and , oxygen, obtained for synthetic air 

(N2/O2; 79:21 vol.%) on AgLiLSX at 1.4 bar (0.5 LSTP∙min
-1

 flow rate). Bed initially saturated with 

helium at 25 
○
C. 

 

 

Figure 3.11 – Temperature profile of the effluent stream, measured at the exit of the column, 

for bicomponent breakthrough (N2/O2; 79:21 vol.%) on AgLiLSX at 1.4 bar (0.5 LSTP∙min
-1

 flow 

rate). Bed initially saturated with helium at 25 
○
C. 
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Figure 3.10 shows the bicomponent breakthrough curves of nitrogen and 

oxygen – with an inlet concentration of synthetic air (N2/O2; 79:21 mol. %) – in the 

AgLiLSX bed initially filled with helium. The oxygen concentration breaks first at 

instant 325 s, originating a square wave at the nitrogen breakthrough instant, at 

518 s. The LDF coefficients used in simulations are kN2 = 0.13 s-1 and kO2 = 0.23 s-1 and, 

as one can see, the model describes accurately the experimental curves. Figure 3.11 

shows the temperature profile of the effluent stream, measured at the exit of the 

column. Two temperature peaks can be observed: the first one, smaller, when oxygen 

concentration front exits the column; and a second one, higher, at the nitrogen 

breakthrough instant. 

 
Figure 3.12 – Breakthrough curves of: , nitrogen; , oxygen; and , argon, obtained for 

synthetic air (N2/O2/Ar; 78:21:1 vol.%) on AgLiLSX at 1.4 bar (0.5 LSTP∙min
-1

 flow rate). Bed 

initially saturated with helium at 25 
○
C. 

 

Figure 3.12 shows the multicomponent breakthrough curves of nitrogen, 

oxygen and argon – inlet of synthetic air (N2/O2/Ar; 78:21:1 vol.%) – in the AgLiLSX 

bed filled initially with helium. The oxygen concentration front travels faster in the 

column, exiting at instant 315 s, followed by argon, at instant 323 s. These results 
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clearly indicate that the separation of oxygen from argon is possible despite the time 

range for the separation being small, which is related to the low Ar/O2 adsorption 

selectivity, ca. 1.13 at 1.4 bar and 25 °C. Also, regarding Figure 3.12, it can be seen 

that the top of the oxygen square wave concentration decreases as a function of the 

time while the corresponding argon concentration increases; this behavior is related 

to the breakthrough of argon. The breakthrough of nitrogen occurs at instant 510 s. 

Similarly, LDF coefficients used in this run are kN2 = 0.13 s-1, kO2 = 0.23 s-1 and kAr = 

0.23 s-1. 

 
Figure 3.13 – Breakthrough curves of: , nitrogen; and , oxygen, obtained for pure nitrogen 

on AgLiLSX at 1.4 bar (0.5 LSTP∙min
-1

 flow rate). Bed initially saturated with oxygen at 25 
○
C. 

 

Pure nitrogen and a ternary mixture (N2/O2/Ar; 78:21:1 vol.%) were used as 

feed gases in breakthroughs conducted in the AgLiLSX bed initially saturated with 

oxygen – see Figure 3.13 and Figure 3.14, respectively. Concerning the nitrogen 

breakthrough curve – Figure 3.13 – it can be seen that both curves are very steep and 

show little tailing. This behavior agrees with the higher adsorption of nitrogen that 

pushes oxygen out of the column originating a compressing wave. The LDF 

coefficients used in this simulation are kN2 = 0.15 s-1 and kO2 = 0.25 s-1. 



Study and characterization of AgLiLSX zeolite 

 

Chapter III 103 

 

 
Figure 3.14 – Breakthrough curves of: , nitrogen; , oxygen; and , argon, obtained for 

synthetic air (N2/O2/Ar; 78:21:1 vol.%) on AgLiLSX at 1.4 bar (0.5 LSTP∙min
-1

 flow rate). Bed 

initially saturated with oxygen at 25 
○
C. 

 

 
Figure 3.15 – Temperature profile of the effluent stream, measured at the exit of the column, 

for multicomponent breakthrough (N2/O2/Ar; 78:21:1 vol.%) on AgLiLSX at 1.4 bar 

(0.5 LSTP∙min
-1

 flow rate). Bed initially saturated with oxygen at 25 
○
C. 
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Figure 3.14 shows the multicomponent breakthrough curves of nitrogen, 

oxygen and argon – inlet of synthetic air (N2/O2/Ar; 78:21:1 vol.%) – in the AgLiLSX 

bed initially saturated with oxygen. These conditions are closer to the ones observed 

during the adsorption step of a PSA, when a feed stream of atmospheric air enters a 

column filled with an oxygen-enriched mixture. As it can be seen, argon travels faster, 

exiting the column at approximately 266 s, before nitrogen. The nitrogen adsorption 

front displaces argon from the adsorption sites, originating the concentration peak 

that can be seen between instants 266 s and 526 s. The LDF coefficients used in 

simulations are kN2 = 0.13 s-1, kO2 = 0.23 s-1 and kAr = 0.23 s-1. Figure 3.15 shows the 

temperature profile of the effluent stream, measured at the exit of the column. The 

single peak observed occurs when nitrogen leaves the column. The breakthrough of 

argon does not cause a visible temperature peak, due to the small concentration of 

argon and small adsorption heat on AgLiLSX, similar to that of the oxygen that is 

displaced from adsorption sites. 

The adsorption kinetics of nitrogen, oxygen and argon on AgLiLSX adsorbent 

were obtained using the chromatographic method [40], based on a simple mass and 

energy balance model of the breakthrough column and using the LDF model to 

describe the intraparticle mass transport. A good agreement between the model and 

the experimental data was obtained – LDF coefficients obtained by the 

chromatographic method are in the same order of experimental ones obtained by 

uptake measurements – indicating that the model describes accurately the 

phenomena involved. Also, in a similar fixed bed study, Jee et al. [41] obtained similar 

LDF coefficients for nitrogen and oxygen using different zeolite types. Table 3.6 

summarizes the LDF coefficients used in the simulations, and on the basis of average 

mass transport coefficients, the apparent time constant for each gas was also 

estimated. The proposed model was then used to simulate new mono and 

multicomponent breakthroughs at a higher feed flow rate, 1 LSTP∙min-1. LDF 
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coefficients obtained for previous simulations – Table 3.6 – were used. The simulation 

and experimental results are shown in Figure 3.16 and Figure 3.17, respectively 

monocomponent (inlet of pure nitrogen and pure oxygen) and bicomponent 

breakthrough curves (inlet of synthetic air, N2/O2; 79:21 mol. %) of nitrogen and 

oxygen in the AgLiLSX fixed bed initially saturated with helium. In both cases a good 

agreement between experimental and simulation curves was obtained. 

Table 3.6 – LDF coefficients for nitrogen, oxygen and argon, and corresponding apparent time 

constants, at 1 bar and 25 
○
C. 

i  ik  (s-1) 
2D r (s-1) D  (m2·s-1) 

N2 0.13 8.9 x 10-3 1.43 x 10-9 

O2 0.24 1.6 x 10-2 2.54 x 10-9 

Ar 0.23 1.5 x 10-2 2.45 x 10-9 

 

 

Figure 3.16 – Breakthrough curves of: , nitrogen and , oxygen; on AgLiLSX at 1.4 bar 

(1 LSTP∙min
-1

 flow rate). Bed initially saturated with helium at 25 
○

C. 
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Figure 3.17 – Breakthrough curves of: , nitrogen; and , oxygen, obtained for synthetic air 

(N2/O2; 79:21 vol.%) on AgLiLSX at 1.4 bar (1 LSTP∙min
-1

 flow rate). Bed initially saturated with 

helium at 25 
○
C. 

 

3.4 Conclusions 

Nitrogen, oxygen and argon adsorption equilibrium isotherms were obtained 

for zeolite AgLiLSX at 15 ○C, 25 ○C and 35 ○C and up to 7 bar, using the volumetric 

method. The Langmuir equation was used to fit oxygen and argon isotherm data, 

while the dual-site Langmuir equation was used for nitrogen. Nitrogen exhibited the 

strongest adsorption and the most favorable isotherms. However, unlike any 

commercial adsorbent, zeolite AgLiLSX exhibits equilibrium selectivity Ar/O2 above 

1.13. The high adsorption working capacity and N2/O2 equilibrium selectivity for lower 

pressures combined with the unique selectivity Ar/O2, indicate that zeolite AgLiLSX 

can be used for producing high-purity oxygen, 95+ %, in a single-stage PSA/VPSA unit. 

Breakthrough experiments were carried out at 1.4 bar (with bed initially 

saturated with helium or oxygen at 25 ○C), with a feed flow rate of 0.5 LSTP∙min-1 and 
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1 LSTP∙min-1, to characterize the adsorption kinetics. The results obtained are 

consistent with adsorption equilibrium data, and the proposed model was able to 

represent accurately the experimental curves. Nitrogen, oxygen and argon effective 

diffusivities on AgLiLSX were obtained from the breakthrough experiments based on a 

simple mass and energy balance model and using the LDF model to describe the 

intraparticle mass transport. The values of obtained for nitrogen, oxygen and argon 

are respectively 1.43 x 10-9, 2.54 x 10-9 and 2.45 x 10-9 m2·s-1.  
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4 Single-stage VPSA for producing high-purity 

oxygen from air 

 

Abstract 

The maximum oxygen concentration obtained using a conventional single-stage 

pressure swing adsorption unit is ca. 95 % balanced mostly with argon. However, 

there are several applications requiring simple and compact units for producing high-

purity oxygen (≥ 99 %), such as medical, military or aerospace. This article studies a 

single-stage vacuum pressure swing adsorption (VPSA) unit, loaded with silver-based 

zeolite AgLiLSX, for producing ca. 1 LSTP·min-1 of high-purity oxygen. The unit was 

designed based on the experimental and simulation results obtained with a lab-scale 

unit. For a product concentration of 99.0 %, the recovery obtained was ca. 8.0 % with 

a productivity of 9.0 m3·hr-1·ton-1. 
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4.1 Introduction 

Since its invention, vacuum pressure swing adsorption (VPSA) technology for 

oxygen production from air has significantly evolved towards more energy efficient 

and compact units, using improved adsorption cycles, better adsorbents and new 

valve technologies [1-3]. However, the oxygen product concentration is limited to ca. 

95 % [4, 5], since the equilibrium adsorbents used are not selective towards argon, 

which is present in the atmospheric air at ca. 0.93 % [6, 7]. To overcome this 

limitation, dual-stage PSA units were developed when a high-purity product (≥ 99.0 %) 

is required [8-10]. This process, initially disclosed by Armond et al. in 1980, consists of 

combining in series two PSA units: the first packed with a carbon molecular sieve for 

kinetically removing argon (kinetic-stage), and the other packed with zeolite to 

remove the nitrogen (equilibrium-stage) [11]. However, dual-stage processes are far 

more complex, energy consuming and often unattractive. In addition, there are 

several applications that require simple, low energy consuming and compact units, 

such as military aircrafts, submarines or field hospitals [8, 12]. Thus, the production of 

high-purity oxygen by single-stage PSA/VPSA remained a goal. 

More recently, a few new adsorbents, particularly silver-exchanged molecular 

sieves [13-16], were developed with the ability to selectively adsorb both argon and 

nitrogen from the air feed. The first silver-exchanged mordenite showing adsorption 

equilibrium selectivity to argon over oxygen was reported by Wilkerson [17] in 1990. 

A decade later, in 2002, Air Products and Chemicals, Inc. patented a AgLiLSX (silver 

lithium low silica-X-type) zeolite, showing argon/oxygen equilibrium selectivity and a 

high nitrogen adsorption capacity [18]. In 2005, Sebastian and Jasra prepared several 

silver-exchanged zeolites to assess their argon/oxygen adsorption capacity. These 

authors concluded that AgA zeolite exhibited very high N2/O2 and Ar/O2 adsorption 

selectivities compatible with the use in a single-stage PSA/VPSA for producing high-
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purity oxygen [19]. Later, Anson et al. [20] and Shi et al. [21] studied a composite 

adsorbent of Ag-ETS-10 crystals and Ludox HS-40 colloidal silica, weigh ratio of 12:5, 

and obtained an adsorbent that has high capacity and adsorption selectivity, including 

argon/oxygen selectivity of 1.28 at 1 bar and 30 ○C. 

Despite the developments in argon/oxygen selective adsorbents, very few 

studies were conducted using PSA or VPSA units with columns packed with them. In 

1993, Knaebel and Kandybin disclosed an equilibrium based single-column PSA, using 

a Ag-mordenite, and obtained a production stream with 99.5+% of oxygen, with a 

recovery of 6.6 %, from a feed of 95 % of oxygen balanced with argon [22]. In 2003, 

Air Products and Chemicals, Inc. disclosed a four-step VPSA unit that, according to 

simulations, could produce a stream of 99.0 % of oxygen from air, using their 

developed AgLiLSX zeolite adsorbent [23]. The unit operates between 1.4 bar and 

0.34 bar at 38 ○C and shows a recovery of 11 %. In 2007, Santos et al. [8] assembled a 

lab PSA unit with two columns packed with the AgLiLSX zeolite from Air Products. The 

unit, operating between 1 and 3 bar, produced a stream of 98.7 % of oxygen from air 

with a recovery of 5.6 %. No reports of single-stage PSA/VPSA units producing 99 % of 

oxygen from air were found; the very few existing patents and reports refer only to 

process simulations [8, 21, 23]. 

In a previous work, the authors conducted a study characterizing the AgLiLSX 

zeolite adsorbent by Air Products concerning its ability for high-purity oxygen 

production in a single-stage PSA/VPSA [13]. The study comprises the experimental 

determination of adsorption isotherms and breakthroughs; performance parameters 

obtained, such as nitrogen/oxygen selectivity, αN2/O2 = 4.98 at 1 bar and 25 ○C, 

nitrogen working capacity of 0.45 mol·kg-1 between 1.4 and 0.2 bar at 25 ○C, and 

argon/oxygen selectivity, αN2/O2 ≥ 1.14 at low pressure range (below 1.5 bar), show an 

adsorbent with great potential for producing a high concentration oxygen stream 
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from air when used in a VPSA unit [13]. The authors also referred the extreme 

importance of protecting the AgLiLSX zeolite from contaminants such as carbon 

dioxide or moisture during its use in pressure swing operation [24, 25]. 

This work studies a high-purity oxygen single-stage VPSA unit, with columns 

packed with AgLiLSX zeolite by Air Products, to produce 1 LSTP·min-1 of high-purity 

oxygen (≥ 99 %) from air. 

 

4.2 Experimental 

4.2.1 VPSA units 

The main goal of this work was the development of a stand-alone and compact 

single-stage VPSA unit for the production of 1 LSTP·min-1 of high-purity oxygen. Such 

unit should be able to produce ≥ 99 % of oxygen from atmospheric air within a limited 

volume (0.7 x 0.5 x 0.85 m3, ≤ 0.3 m3), be lightweight (≤ 120 kg) and have low energy 

consumption (≤ 1.1 kW). The AgLiLSX zeolite, used to selectively remove nitrogen and 

argon, is very sensitive to water vapor and carbon dioxide, deactivating quickly when 

exposed to atmospheric air. A stand-alone unit should then include a pre-treatment 

section for removing water vapor and carbon dioxide down to – 40 ○C of dew point 

and to 5 ppm (at 1.4 bar) respectively, thus protecting the AgLiLSX adsorbent [24]. 

Two VPSA units were assembled and studied. 

The design of the above-mentioned stand-alone unit was based on studies 

conducted in a lab unit fed with air (78 % N2, 21 % O2 and 1 % Ar) previously dried 

(down to – 60 ○C of dew point) and carbon dioxide removed (down to ca. 5 ppm). A 

schematic representation of the lab VPSA unit is presented in Figure 4.1. The 

adsorption columns were packed with the AgLiLSX zeolite from Air Products and 
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Chemicals, Inc.; the adsorbent was previously characterized concerning adsorption 

equilibrium and kinetics, see Figure 4.2 and Table 4.1 [13]. 

 

Figure 4.1 – Schematic representation of the lab VPSA unit: Col = column; S-Col = storage 

column; C1 to C5 = check valves; FM = flow meter; FC = flow controller; P = pressure 

transducer; S1 to S5 = sampling points; V = vacuum pump; V1 to V16 = electric valves. 
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Figure 4.2 – Adsorption isotherms for: , nitrogen; , oxygen; and , argon, on AgLiLSX at 25 ○C. 

Table 4.1 – Adsorption equilibrium parameters of nitrogen, oxygen and argon on AgLiLSX [13], 

NaX zeolite (ZEOX OII), silica (KC-Trockenperlen WS2050) and LiLSX zeolite (Z12-07). 

 AgLiLSX NaX zeolite silica LiLSX zeolite 
Nitrogen 

m,1q  / mol·kg-1 0.729 3.94 3.29 1.55 
3

1 10 b  / bar-1 0.020 0.042 0.069 0.022 
3

1 10 H  / J·mol-1 31.1 19.3 13.1 26.4 

m,2q  / mol·kg-1 2.66 ---- ---- 2.35 

2

b  / bar-1 0.051 ---- ---- 0.012 

2H  / kJ·mol-1 17.6 ---- ---- 21.5 

Oxygen 

mq  / mol·kg-1 3.79 9.10 7.94 4.80 
310 b  / bar-1 0.151 0.098 0.034 0.099 
310 H  / J·mol-1 14.0 12.1 12.4 14.2 

Argon 

mq  / mol·kg-1 3.29 9.56 3.78 6.54 
310 b  / bar-1 0.134 0.106 0.081 0.104 
310 H  / J·mol-1 15.0 11.7 12.2 12.7 
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Table 4.2 – Characteristics of adsorbents and adsorption beds of lab and stand-alone VPSA units. 

adsorption beds Lab VPSA stand-alone VPSA 

bed length, cm 40.4 35.0 

bed internal diameter, cm 4.2 12.5 

wall thickness, cm 0.2 0.3 

LB/DB 9.6 2.8 

pre-column length, cm n/a 18.5 

pre-column diameter, cm n/a 12.5 

pre-columns silica/NaX zeolite ratio n/a 1:4 

storage column length, cm 17.5 36.0 

storage column diameter, cm 8.5 12.5 
   

adsorbent AgLiLSX NaX zeolite Silica LiLSX zeolite 

geometry spherical spherical spherical spherical 

pellet diameter ( pd ), mm 1.02 0.80 3.70 1.00 

intraparticle voidage ( p ) 0.605 0.630 0.547 0.580 

interparticle voidage ( b ) 0.36 0.36 0.36 0.36 

bulk density ( b ), g·cm-3 0.780 0.705 0.636 0.888 

macropore radius ( porer ), m 3.6 x 10-9 1.7 x 10-7 3.0 x 10-9 4.9 x 10-7 

heat capacity ( psC ), J·kg-1·K-1 1172 1330 703 1172 

thermal conductivity ( sxk ),W·m-1·K-1 0.3 0.3 0.3 0.3 

 

The characteristics of the designed adsorption beds are listed in Table 4.2. 

Sampling points (S1 to S5) placed along the beds were used to obtain the 

concentration profile and history of the column; a mass spectrometer (Pfeiffer, 

Omnistar) analyzer was used for this purpose. The feed flow rate was measured by a 

mass flow meter (Bronkhorst High-tech, El Flow F-113C, 0 – 100 LSTP∙min-1). The purge 

flow rate was measured using a mass flow meter (Bronkhorst High-tech, El Flow 

F-111C, 0 – 2 LSTP∙min-1) and the product flow rate was controlled using a mass flow 

controller (Bronkhorst High-tech, El-Flow F-201C, 0 – 2 LSTP∙min-1). The feed, purge and 
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product flow rates were regulated using needle valves. Several pressure transducers 

(Druck, PMP 4010, 0 – 7 bar), located along the unit, were used to measure the 

pressure history inside adsorption beds and at product stream. A set of solenoid and 

check valves were used to direct the flow according to the adsorption cycle. A vacuum 

pump (Vacuubrand, model ME 8 NT, 70 mbar) was used during regeneration steps to 

accomplish required vacuum. The unit includes a storage column that allows to store 

part of the product and to use it in the backfill step. The product stream 

concentration was measured using an oxygen analyzer (Servomex, model 5200, from 

0 to 100 %, with an accuracy of 0.05 % FS) and a mass spectrometer. 

The schematic representation of developed stand-alone VPSA prototype is 

presented in Figure 4.3. This unit comprises two pre-columns, for pretreating the feed 

air, packed with a highly-moisture tolerant silica, KC-Trockenperlen WS 2050 from 

BASF, followed by a special NaX type zeolite, ZEOX OII from Zeochem, in a ratio of 1:4 

[24]. The main columns, used to selectively remove nitrogen and argon, were packed 

with AgLiLSX zeolite. The characteristics of adsorbents and adsorption beds are listed 

in Table 4.2; the adsorption isotherm parameters are presented in Table 4.1. Sampling 

points (S1 to S7) were used to obtain the concentration profile and history of the 

column; a mass spectrometer analyzer was used for this purpose. The prototype unit 

was fed with atmospheric air (composition of ca. 78 % N2, 21 % O2 and 1 % Ar). An air 

compressor (GAST, model 75R645-P101-H302CX, 7.2 m3·hr-1 at 1.4 bar, 0.25 kW) was 

used to feed the unit and the feed flow rate was measured using a volumetric flow 

meter (SMC, PF2A521-F03-1, 1.2 – 12 m3∙hr-1). The purge and product flow rates, both 

regulated using needle valves, were measured using also volumetric flow meters 

(SMC, PFM725-F01-E, 0.03 – 1.5 m3∙hr-1). Several pressure transducers (SMC, ISE10-

01-E, 0 – 11 bar) were used to measure the pressure history inside the system during 

operation. A set of co-axial valves and one check valve were used to direct the flow 

according to the adsorption cycle. A vacuum pump (Elmo Rietschle, model VTL-10, 
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11,7 m3·hr-1 at 150 mbar, 0.37 kW) was used during regeneration steps to attain the 

required vacuum pressures. The unit includes two pre-columns, two main columns 

and two storage columns. The first storage column, B-Col, was packed with a LiLSX-

type zeolite, Z12-07 from Zeochem, to increase the storage capacity of it. The product 

stream concentration was measured using an oxygen analyzer and a mass 

spectrometer. 

 

Figure 4.3 – Schematic representation of the stand-alone VPSA prototype: Col = main column; 

P-Col = pre-column; B-Col = backfill column; S-Col = storage column; C = air compressor, 

C1 = check valve; FM = flow meter; P = pressure transducer; S1 to S7 = sampling points; 

V = vacuum pump; V1 to V17 = co-axial and needle valves. 
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4.2.2 VPSA process description 

The VPSA runs a seven-step cycle as shown in Table 4.3. During pressurization 

(PR), the bed is pressurized cocurrently with feed up to the high operating pressure. 

Following, during adsorption (AD) high-pressure feed flows through the main bed and 

nitrogen and argon are selectively retained; an oxygen-enriched stream then leaves 

the columns as product. During this step, a fraction of the product is used to purge in 

counter-current the other main bed at the low operating pressure. After the 

adsorption step is completed the two main beds are connected to equalize the 

pressure (E). Following, during the evacuation step (VA), the top end of this column is 

kept closed while vacuum is applied to the feed end. After this step, vacuum is 

maintained for counter-current purge (VP) with a fraction of the product stream. An 

equalization step then takes place, and afterward is the backfill (B), in which part of 

the product stored in the backfill column is used to counter-currently pressurize the 

adsorption bed. The backfill step, although not new is an unusual step, and it was 

considered here as part of an innovative solution to increase the oxygen 

concentration in the product stream up to high-purity levels. 

Table 4.3 – Sequence of the seven-step VPSA cycle. 

 1 2 3 4 5 6 7 8 

P-Col 1¥ VA VP PR AD 

Col 1 E VA VP E B PR AD 

P-Col 2¥ PR AD VA VP 

Col 2 E B PR AD E VA VP 

¥
 integrated pre-treatment four-step cycle occurs in stand-alone VPSA only. 

The cycle described was applied for both lab and prototype units. As previously 

mentioned, the stand-alone unit also comprises a pre-treatment section for carbon 

dioxide and moisture removal. The pre-treatment cycle was designed to run 
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combined with the main cycle, running a four-step cycle: pressurization, adsorption, 

evacuation and purge under vacuum – Table 4.3. The pre-cycle continuously supplies 

treated feed air (≤ – 40 ○C dewpoint; ≤ 5 ppm CO2) to the AgLiLSX columns during 

pressurization and adsorption steps; the pre-beds are vacuum regenerated, with and 

without a purging stream using dried waste gas from the main columns. 

 

4.2.3 VPSA mathematical model 

The main assumptions of the mathematical model used for simulating both 

VPSA units are: 

1) ideal gas behavior 

2) negligible radial concentration and temperature gradients 

3) non-isothermal and non-adiabatic conditions with gas and solid heat 

conduction 

4) intraparticle mass transport according to linear driving force (LDF) model 

5) uniform cross-sectional void fraction 

6) adsorption equilibrium described by dual-site multicomponent Langmuir 

isotherm 

7) pressure drop described by Ergun’s equation 

According to these assumptions, the model can be written as it follows [26]: 

Mass balance 

 
 

2

2
1 0

ii i i
b ax t b s

ucc c q
D

x x t t
   
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     
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   (4.1) 

where ic  is the partial molar concentration, axD  is the axial dispersion coefficient, u  

is the interstitial molar average velocity, b  is the interparticle voidage,  t  is the total 
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bed voidage, s  is the adsorbent apparent density, iq  is the partial average molar 

concentration in the adsorbed phase, x  is the spatial coordinate, and t  is time. The 

dispersion coefficient, axD , varies along the length of the bed following the 

correlation [27]: 

 
0.73

1 9.49 2 


 
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p

ax m

b b m p

u r
D D

D u r
     (4.2) 

where pr  is the particle radius. The molecular diffusion coefficient, mD , is estimated 

from the Chapman-Enskog equation [28]. 

The momentum balance is given by the Ergun’s equation as follows [29]:  

Momentum balance 
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  (4.3) 

where P  is the total pressure, g  is the gas-phase molar density,   is the dynamic 

viscosity, and M  is the molecular weight. 

The intraparticle mass transfer model is expressed by the linear driving force 

model [26]: 

 i
i i i

q
k q q

t


 


       (4.4) 

where iq  is the adsorbed concentration of the component i  in the particle inner 

surface, and ik  is LDF coefficient, here given by the macropore diffusion term as 

follows [30, 31]:  
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where p  is the intraparticle voidage,  and the macropore diffusion coefficient, piD , 

obtained from the Bosanquet equation [6]: 

1 1 1


 
  

 
p

pi Ki miD D D
        (4.6) 

where p  is the tortuosity factor, and KiD  is the Knudsen diffusion coefficient given 

by  
0.5

97Ki pore iD r T M , where porer  is the mean macropore radius and T  is the 

absolute temperature. 

The adsorbed amount of each species in the solid-phase is given by the dual-

site Langmuir equation, which renders Langmuir when ,2mq  equals to zero, as follows 

[32]: 

Adsorption equilibrium model 
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where iq  is the adsorbed concentration of the component i , P  is the equilibrium 

pressure, mq  is the saturation adsorbed concentration and b  is the adsorption 

affinity constant, assumed to vary with temperature, according to the Van’t-Hoff 

equation [32]: 
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where b  is the adsorption affinity constant at infinite temperature, H  is the 

adsorption heat, and   is the ideal gas constant. 

 Gas-phase energy balance 
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where vgC  is the gas-phase heat capacity at constant volume,  3 1p b pa r   is 

the specific particle surface per unit volume of the bed, 
BD  is the internal bed 

diameter, and gT , sT , wT  are, respectively, the gas, solid and internal wall 

temperatures. The axial gas-phase thermal conductivity coefficient, gxk , is given by 

nc

gx g pg ax i

i

k C D y          (4.10) 

where pgC  is the gas-phase heat capacity at constant pressure, iy  is the mole 

fraction of component i  in the gas phase, and nc  is the number of components in 

the mixture. 

The gas-solid heat-transfer coefficient, ph , is estimated using the Colburn j  

factor for the heat transfer as follows:  

2 3  p g pgh j C u Pr         (4.11) 

where 
0.511.66 j Re  if Re < 190, otherwise 

0.410.983 j Re , and  pg gxPr C k M  is 

the Prandl number. Re  is the particle Reynolds number, 2 /  p gRe r M u . 
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The gas-wall heat-transfer coefficient, wh , is obtained from Nusselt number by 

the following correlation, 

wNu
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
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w
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k
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r
        (4.12a) 
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where HPe 2 / p g pg gxr M C u k  is the gas-wall heat-transfer Peclet number, and BL  is 

the bed length.  

Solid-phase energy balance 
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where sxk  is the axial solid-phase thermal conductivity coefficient, psC  is the 

adsorbent heat capacity, and b  is the adsorbent bulk density. 

Wall energy balance 

    0ml

w w g w w wh T T h T T            (4.14) 

where w  is the ratio of the internal surface area to the volume of the column wall, 

ml

w  is the ratio of the logarithmic mean surface area to the volume of the column 

wall, h  is the wall-ambient heat-transfer coefficient, and T  is the external 

environmental temperature. 
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The boundary conditions are formulated separately for each VPSA step and are 

given bellow [26]: 

Boundary conditions for pressurization (PR) step 
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Boundary conditions for adsorption (AD) step 
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 Boundary conditions for top-to-top equalization (E) step 
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Boundary conditions for backfill (B) step 
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Boundary conditions for evacuation (VA) step 
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Boundary conditions for purge under vacuum (VP) step 
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The molar velocities across the valve orifices, during equalization (E) and 

backfill (B) steps, are described by [8]: 

2 2
2

2

2.035 10 , 0.53

1
2.035 10 , 0.53

STP

v u d
d uSTP

b d

STP

v
u d uSTP

b d

C p p p
T p p

A T p M
u p

C p
p T p p

A T p M









  
 


  


  

 (4.15) 



Single-stage VPSA for producing high-purity oxygen from air 

 

132 Chapter IV 

 

where up  and dp  are the upstream and downstream pressures, respectively, vC  is 

the valve parameter, and A  is the area of the orifice.  The superscript “STP” stands 

for standard temperature and pressure conditions. 

The set of model equations here described was numerically solved using Aspen 

Adsorption 7.3. The Aspen Adsorption simulator uses the method of lines [33] to solve 

the time-dependent partial differential equations. The spatial derivatives were 

discretized over a uniform grid of 40 points using the quadratic upwind differencing 

scheme; the resulting equations were integrated as a function of the time using 

subroutine Gear. Physical properties of the components in the process are locally 

estimated through integration with the Aspen Properties database. The input 

parameters of the model are listed in Table 4.2. 

 

4.3 Results and discussion 

The performance – purity and recovery – of the VPSA units depends on several 

process variables such as high and low operating pressures ( HP , LP ), temperature of 

operation (T ), equalization ( Et ), backfill ( Bt ), pressurization ( PRt ) and adsorption      

( ADt ) times, pressurization/depressurization ( PRF ), equalization ( EF ), purge ( PGF ), 

backfill ( BF ) and product ( PRODF ) flow rates. Different equalization configurations 

(top-to-top, bottom-to-bottom, cross and total equalization) also have strong effects 

on process performance. Simultaneous optimization of all these operating variables is 

an unreasonable task. Prior to operating cycle optimization, several tests were 

conducted in a lab unit to select the best equalization configuration. All the above-

mentioned configurations were tested, and top-to-top equalization proved to be the 
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best one, resulting in better performance. Backfill flow rate ( BF ) was also evaluated 

and it was observed that it is not an operating variable with strong influence in the 

performance of the unit and, because of that, the backfill flow rate should be high 

enough to allow the equalization between the adsorption column and the backfill 

column to occur in the shortest time possible. Therefore no restrictions in the backfill 

flow rate were considered. As to pressurization/depressurization flow rate ( PRF ), it 

was not fixed, depending on the high pressure and flow rate delivered by the 

compressor and the vacuum pump. Product flow rate was set to 0.1 LSTP·min-1 for the 

lab unit and 1 LSTP·min-1 for the stand-alone prototype unit, according to the main goal 

of this work. The operating temperature was the lab room temperature, ca. 25 ○C for 

the lab unit and slighty higher for the stand-alone unit, between 25–28 ○C, due to 

higher ambient temperature in the prototype surroundings. 

 

4.3.1 Lab VPSA 

The lab VPSA unit was studied and optimized using response surface 

methodology (RSM), which is a combination of mathematical and statistic tools that 

are effective for studying and modeling processes in which responses are dependent 

on several operating variables [34]. RSM analysis was conducted using JMP7.0 

(Statistical Analysis Software). A central composite design (CCD), which is the most 

used method for fitting second order models, was selected [34]. The process 

responses are purity (Pur) and recovery (Rec) and the factors considered were 

pressurization ( PRt ), adsorption ( ADt ) and backfill ( Bt ) times, purge flow rate ( PGF ) 

and high pressure ( HP ). These are key operating variables controlling a VPSA unit. 

Some of these variables were preset, like equalization time ( Et ), set to 4 s, since it 

was found to be the minimum time necessary to allow beds to equalize completely; 
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the complete equalization was found to give the best purity and recovery results. The 

low pressure  ( LP ) although not fixed, depends on the high pressure, cycle duration 

and capacity of the vacuum pump, and varies between 0.2 and 0.3 bar. Table 4.4 

shows the design operating variables and their levels, and also the values of the 

preset operating variables. 

Table 4.4 – Operating conditions for lab VPSA runs. 

feed composition, % 78.0 N2: 21.0 O2: 1.0 Ar 

feed flow rate, LSTP∙min-1 5.0 – 8.6 

pressure low, bar ≤ 0.3 

temperature, ○C ca. 25 

equalization time, s 4 

product flow rate, LSTP∙min-1 0.10 
    

DoE factors Min  Max 

pressurization time, s  4 -  6 

adsorption time, s 6 - 12 

backfill time, s 0.5  1.5 

purge flow rate, LSTP∙min-1 0.1 - 0.4 

pressure high, bar 1.4 - 1.6 
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Table 4.5 – Design of experiments and experimental and simulation results of the lab VPSA. 

run PRt  

(s) 

ADt  

(s) 

Bt  

(s) 

PGF  

(L∙min
-1

) 

HP  

(bar) 

experimental (%) RSM predicted (%) simulation (%) 

Pur  Rec  Pur  Rec  Pur  Rec  

1 4 6 0.5 0.4 1.6 99.10 5.87 99.09 5.89 99.03 6.01 

2 7 9 1 0.1 1.5 99.01 7.72 99.02 7.75 99.01 7.67 

3 4 12 0.5 0.1 1.6 98.98 7.33 98.98 7.33 98.88 7.31 

4 10 12 0.5 0.4 1.6 98.88 8.58 98.89 8.61 98.90 8.59 

5 7 9 1 0.25 1.5 99.03 7.76 99.02 7.70 99.04 7.71 

6 10 12 1.5 0.4 1.4 98.90 9.49 98.90 9.52 98.92 9.69 

7 4 12 1.5 0.4 1.6 98.98 7.36 98.98 7.35 98.96 7.31 

8 10 12 1.5 0.1 1.6 98.90 9.06 98.90 9.05 98.89 9.15 

9 10 9 1 0.25 1.5 98.95 8.46 98.96 8.50 99.02 8.43 

10 10 6 0.5 0.1 1.6 99.02 7.42 99.02 7.42 99.04 7.32 

11 7 9 0.5 0.25 1.5 98.99 7.57 99.00 7.58 99.01 7.55 

12 7 9 1 0.25 1.4 99.00 8.04 99.01 8.07 99.05 8.00 

13 4 12 0.5 0.4 1.4 98.95 7.79 98.96 7.75 98.95 7.84 

14 10 6 1.5 0.4 1.6 99.02 7.63 99.02 7.60 99.05 7.66 

15 10 6 0.5 0.4 1.4 99.01 7.95 99.00 7.94 99.07 8.12 

16 7 9 1 0.25 1.5 99.03 7.68 99.02 7.70 99.04 7.71 

17 4 9 1 0.25 1.5 99.04 7.01 99.04 6.98 99.07 6.97 

18 7 9 1 0.25 1.5 99.02 7.70 99.02 7.70 99.04 7.71 

19 7 9 1.5 0.25 1.5 99.02 7.80 99.02 7.81 99.06 7.72 

20 7 9 1 0.4 1.5 99.02 7.59 99.03 7.57 99.03 7.62 

21 7 12 1 0.25 1.5 98.98 8.39 98.96 8.38 98.95 8.40 

22 4 12 1.5 0.1 1.4 98.98 8.26 98.98 8.29 99.00 8.20 

23 4 6 1.5 0.1 1.6 99.11 6.15 99.11 6.16 99.10 6.15 

24 7 9 1 0.25 1.5 99.03 7.69 99.02 7.70 99.04 7.71 

25 10 12 0.5 0.1 1.4 98.83 9.63 98.82 9.61 98.86 9.51 

26 7 9 1 0.25 1.6 99.03 7.44 99.03 7.42 99.03 7.37 

27 4 6 0.5 0.1 1.4 99.02 6.53 99.03 6.54 99.01 6.56 

28 7 6 1 0.25 1.5 99.07 6.98 99.08 7.01 99.07 6.95 

29 10 6 1.5 0.1 1.4 99.02 8.35 99.02 8.31 99.04 8.40 

30 4 6 1.5 0.4 1.4 99.10 6.61 99.10 6.62 99.14 6.64 
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Table 4.5 summarizes the CCD runs and the experimental results obtained for 

each run. Runs 5, 16, 18 and 24 are center point replicates for assessing the 

experimental reproducibility. Second order polynomial models were fitted for purity 

and recovery from the CCD results, which describe the effect of the selected factors 

on the process responses. Model parameters with p-values higher than 0.15 were 

eliminated [35].  

0 1 2 3 4 5 6

2 2
7 8 9 10 11

              

            
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B PG B H PG H PR B

Pur a a t a t a t a F a P a t t

a t F a t P a F P a t a t
 (4.16) 
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7 8 9 10 11

              

            

PR AD B PG H PR H

AD H AD PG PG H PR H

Rec a a t a t a t a F a P a t P

a t P a t F a F P a t a P
 (4.17) 

where 
0a  to 

11a  parameters of eq. (4.16) and eq. (4.17) are given in Table 4.6.  

Table 4.6 – Parameters of second order polynomial equations (4.16) and (4.17). 

 

Pur 
eq (16) 

Rec 
eq (17) 

0a     98.3261 14.8070 

1a  0.0284 0.2872 

2a      - 0.0144 0.3998 

3a  0.4454 0.2267 

4a  0.9917 - 2.3102 

5a  0.4625 -12.3768 

6a      - 8.33x10-4 - 0.0521 

7a      - 0.0833 - 0.0979 

8a      - 0.2000 - 0.0931 

9a      - 0.5833 1.7083 

10a      - 0.0025 0.0031 

11a      - 0.0484 3.3226 
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Table 4.7 – Optimum conditions and results predicted by RSM, simulation and experimentally tested on lab VPSA. 

run PRt

(s) 
ADt

(s) 

Et

(s) 

Bt

(s) 
PGF

(LSTP∙min
-1

) 

HP   

(bar) 

experimental (%) RSM predicted (%) simulation (%) 
Productivity 

(m
3
∙hr

-1
∙ton

-1
) 

Pur Rec Pur Rec Pur Rec 

31 5 6 4 1.2 0.1 1.6 99.12 6.35 99.11 6.33 99.07 6.25 7.31 

32 5.5 6 4 1.5 0.4 1.4 99.12 6.49 99.10 7.00 99.12 7.03 6.70 

33 9 8.5 4 1.5 0.4 1.4 99.00 8.34 99.01 8.47 99.05 8.57 7.03 

34 4 6 4 1.5 0.3 1.4 99.09 6.58 99.10 6.67 99.15 6.69 7.01 
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An analysis of variance of the model was performed and p-values lower than 

0.0001 were obtained indicating that the polynomial model has a very high 

significance. The fitting models were used to interpolate the response values for 

purity and recovery, and compared with the experimental ones – parity plots 

(Table 4.5). The determination coefficients, 2R , are very close to unity for both purity, 

2 0.992R , and recovery, 2 0.999R , indicating that the empiric models accurately 

describe the experimental results. 

Table 4.5 shows product oxygen concentrations of 99.1+% at reasonable 

recoveries for various operating conditions. Second order empirical models given by 

the JMP software were used to find the optimum conditions for purity and recovery 

(Table 4.7). The maximum purity obtained was 99.12 % with 6.4 % of recovery, when

5 sPRt  , 6 sADt  , 4 sEt  , 1.2 sBt  , 1.6 barHP  , 0.25 barLP   and 

PGF 1
STP0.1 L min  (run 31). For the conditions of run 33 ( 9 sPRt  , 8.5 sADt  , 

Et 4 s , 1.5 sBt  , 1.4 barHP  , 0.2 barLP   and 1
STP0.4 L min PGF ), high-

purity oxygen, 99.0 %, and higher recovery, 8.3 % are obtained. The productivity of 

the unit was computed from the ratio between the product flow rate and the amount 

of adsorbent used. Reasonable productivity of ca. 7.0 m3·hr-1·ton-1 was obtained. 

ASPEN was used to simulate the experimental results. The results obtained by 

ASPEN simulations are summarized in Table 4.5 and Table 4.7 and can be compared 

with RSM predicted ones and with experimental results. Figure 4.4 presents the 

simulated and experimental pressure history for run 31; vertical dashed lines mark 

the cycle steps. The simulated profile on this figure was obtained with ASPEN 

simulations. By analyzing Table 4.5, Table 4.7 and Figure 4.4 it can be concluded that 

the ASPEN phenomenological simulator is able to accurately represent the 

experimental results. 
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Figure 4.4 – Simulated (solid line) and experimental (dots) pressure history inside the columns 

for run 31. Red dots ( ) refer to Col1; blue dots ( ) refer to Col2; black dots ( ) refer to S-

Col. Vertical dashed lines mark the cycle steps; the upper legend refers to Col2 steps. 
 

Oxygen concentration history inside the adsorption bed was recorded using a 

mass spectrometer connected to the five sampling points placed along one of the 

main beds (S1 to S5, see Figure 4.3). Figure 4.5 plots the concentration profiles 

obtained during one cycle of run 31. The axial position goes from 0 (feed end) to 1 

(product end). The adsorption cycle steps are marked with different colors for 

readability. Figure 4.5 shows that the oxygen concentration inside adsorption beds 

increases along the bed, with the maximum obtained during the AD step at the 

column product end. This figure also shows the importance of VP, E, and B steps on 

removing the impurities and increasing oxygen concentration along the bed. The 

complete purge of the impurities adsorbed during PR and AD steps are essential to 

obtain a high-purity product. 

The ASPEN simulator was used to simulate the temperature profile inside the 

column during one cycle of run 31 – see Figure 4.6. Again, the axial position goes from 

0 (feed end) to 1 (product end). The temperature variation inside the column is ca. 

4.5 ○C so that the process could be assumed isothermal. 



Single-stage VPSA for producing high-purity oxygen from air 

 

140 Chapter IV 

 

 

Figure 4.5 – Experimental oxygen concentration 3D profile inside the column during one cycle 

of run 31. Axial position goes from 0 (feed end) to 1 (product end). Different steps are marked 

with different colors according to the figure label. 

 

 

Figure 4.6 – Simulated temperature 3D profile inside the column during one cycle of run 31. 

Axial position goes from 0 (feed end) to 1 (product end). 
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4.3.2 Stand-alone VPSA prototype 

As previously referred, the stand-alone VPSA prototype was designed and 

assembled based on the results obtained in the lab unit. This stand-alone unit was 

designed to produce a steam of 1 LSTP∙min-1 with 99+% oxygen from air. The scale-up 

was made to obtain equal or better productivity than the lab unit, for the same 

conditions of purity and recovery. Also, the stand-alone unit was designed to 

minimize overall size, weight and power consumption. The length to diameter ratio 

(LB/DB) of the lab size adsorbent beds is 9.6, unfeasible in a prototype scale, since the 

unit should be compact and obey tight dimensions. The main columns of the stand-

alone VPSA unit have length to diameter ratio of 2.8. The small LB/DB value is ideal for 

minimizing pressure drop especially during the evacuation steps – an aspect of critical 

relevance. The LB/DB ratio does not affect the separation if axial dispersion and 

temperature radial gradients can be neglected and for high bulk-particle mass 

transfer rates. Cruz et al. showed that isothermal operation is a reasonable 

assumption for oxygen separations from air [26], so this was considered here. This 

assumption is supported by the simulation results on the lab-scale unit (Figure 4.6). 

 

Figure 4.7 – Schematic representation of the column feed end, with the distributor indicated 

with blue color and the distributors tested showing: (a) central preferential air flowing; (b) 

peripheral preferential air flowing; and (c) even gas distribution. 

Since even gas distribution over the cross section of the adsorption column is 

critical for achieving the high separation, several distributors configurations were 
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tested for high and low flow rates in both ends of the adsorption columns. Figure 4.7 

illustrates the feed end of an adsorption bed; when feeding the column, air contacts 

first with the central part of the adsorbent cross section spreading afterward to cover 

the entire cross section, resulting in stagnant volumes. The same figure shows several 

distributors tested. From left to right in Figure 4.7: (a) the first configuration tested 

showed central preferential air flowing; (b) the second configuration tested showed 

central preferential air flowing only for high velocities; after several tests, (c) the 

optimum configuration resulted in an even gas distribution for both low and high 

velocities, provided that a space of 8 mm is given between the flange and the 

distributor. Figure 4.8 shows that the oxygen concentration profiles measured near to 

the feed end of the column, at the center and periphery of the cross section, overlap. 

The same was observed through the column. 

 

Figure 4.8 – Experimental oxygen concentration profiles measured, near the column feed end 

(sampling point S2): blue line, at the center of the column; and red line, at the periphery of the 

column. 
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The stand-alone VPSA performance – purity (Pur) and recovery (Rec) – was 

optimized using the phenomenological model. The critical operating variables 

controlling the process are pressurization ( PRt ) and adsorption ( ADt ) times and purge 

flow rate ( PGF ). Based on lab unit experiments some operating variables were preset, 

such as backfill time ( Bt ), since it was observed that the maximum product purity 

occurs at maximum backfill time (Table 4.7); thus, Bt  was set to 2 s since it is the time 

required to allow the adsorption bed and the backfill column to completely equalize 

the pressure. The high pressure ( HP ) was set to 1.4 bar based on lab unit 

experiments and because the low pressure ( LP ), set to 0.3 bar, is limited by the HP  

since the vacuum pump power was preset. Concerning the prototype unit, 

equalization flow rate was found to be an extremely import operating variable, since 

it significantly affects the performance of the unit. The equalization valve coefficient, 

CV, was found to be crucial and it was optimized. After several tests, the valve was 

modified to allow a complete equalization between adsorption beds in 2.5 s, and the 

equalization time ( Et ) was therefore fixed. The preset operating conditions for the 

stand-alone VPSA runs are summarized in Table 4.8. 

Table 4.8 – Preset operating conditions for stand-alone VPSA runs. 

feed composition, % 78.0 N2: 21.0 O2: 1.0 Ar 

feed flow rate, LSTP∙min-1 58 – 72 

pressure high, bar 1.4 

pressure low, bar ≤ 0.3 

Temperature, ºC 25 – 28 

Equalization step time, s 2.5 

Backfill step time, s 2.0 

Product flow rate, LSTP∙min-1 1.0 
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Table 4.9 presents the experimental and ASPEN simulation results for several 

runs. Purity oxygen concentrations of 99+% at reasonable recoveries can be observed 

for almost all operation conditions tested. Table 4.9 shows that the ASPEN simulator 

was able to represent accurately the experimental results (determination coefficients,

2R , of the parity plots are 0.898 and 0.963 for purity and recovery, respectively). 

Table 4.9 – Experimental and simulation results of the stand-alone VPSA unit. 

run PRt  

(s) 
ADt  

(s) 
PGF  

(LSTP∙min-1) 

experimental (%) simulation (%) 

Pur Rec Pur Rec 

1 4 10 0.8 99.07 6.01 99.07 6.03 

2 4 12 0.5 99.01 6.68 99.03 6.45 

3 4 12 1.1 99.05 6.37 99.02 6.38 

4 4 14 0.8 98.98 6.93 99.01 7.09 

5 5.5 8 0.5 99.12 5.81 99.12 5.49 

6 5.5 8 0.8 99.10 5.43 99.09 5.59 

7 5.5 10 0.5 99.13 6.19 99.12 6.22 

8 5.5 10 1.1 99.06 6.09 99.03 6.09 

9 5.5 12 0.8 99.08 7.46 99.09 7.04 

10 5.5 14 0.5 99.01 7.37 99.00 7.41 

11 5.5 14 1.1 99.01 7.24 99.04 7.43 

12 7 10 0.8 99.07 6.79 99.06 6.62 

13 7 12 0.5 99.06 7.18 99.04 7.17 

14 7 12 1.1 98.99 7.13 99.01 7.14 

15 7 14 0.8 98.99 7.97 99.02 7.98 

 

ASPEN simulations were conducted to study the effect of operating variables 

pressurization time ( PRt ), adsorption time ( ADt ) and purge flow rate ( PGF ), in the 

product purity (Pur) and recovery (Rec) (see Figure 4.9 – 4.14). The three variables 
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studied have strong influence on product purity. Figure 4.9 shows a pronounced 

parabolic curvature describing the combined influence of PRt  and ADt  in the purity. As 

it can be seen, purity slowly increases with ADt , reaching a maximum purity value 

when ADt  is equal to 10 s; and over that point, higher ADt  causes an abrupt decrease 

in the purity. An optimum ADt  value allows sufficient time for the oxygen 

concentration front to leave the column and it is short enough for preventing Ar front 

to breakthrough. Similar behavior is observed for PRt , with a (local) maximum purity, 

99.10 %, obtained for PRt = 5.5 s and ADt = 10 s (with PGF  = 0.8 LSTP·min-1). Similarly, 

Figure 4.13 shows that the optimum purity, ca. 99.12 %, can be obtained when PGF  is 

between 0.5 – 0.6 LSTP·min-1, and ADt  is 10 s (with PRt  = 5.5 s). This figure shows that, 

for higher ADt  values, PGF  has no significant influence on the purity; however, for 

smaller ADt  values, the purity depends considerably on PGF , increasing as it 

decreases. Thus, a small part of the product should be used to purge the beds; this is 

crucial to remove contaminants during evacuation steps allowing better performance. 

Small PGF  values are enough to guarantee high-purity product if vacuum conditions 

are sufficient to purge the beds, and the loss of PGF  during this step causes 

significant decrease in purity (Figure 4.13). Concerning recovery, Figure 4.12 and 

Figure 4.14 show that variations in the PGF , within the range studied, do not affect 

significantly the product recovery; product recovery increases with PRt  and mainly 

with ADt  (see Figure 4.10). This occurs because the increase of PRt  and ADt  allow a 

more thorough retention of oxygen, avoiding being vented. 
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Figure 4.9 – Purity as a function of pressurization and adsorption times, with purge flow rate 

kept constant at 0.8 LSTP∙min
-1

. 

 

 
Figure 4.10 – Recovery as a function of pressurization and adsorption times, with purge flow 

rate kept constant at 0.8 LSTP∙min
-1

. 
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Figure 4.11 – Purity as a function of pressurization time and purge flow rate; adsorption time 

was kept constant at 12 s. 

 

 
Figure 4.12 – Recovery as a function of pressurization time and purge flow rate; adsorption 

time was kept constant at 12 s. 
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Figure 4.13 – Purity as a function of adsorption time and purge flow rate; pressurization time 

was kept constant at 5.5 s. 

 

 
Figure 4.14 – Recovery as a function of adsorption time and purge flow rate; pressurization 

time was kept constant at 5.5 s. 
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According to ASPEN simulator, the maximum oxygen purity that can be 

expected is 99.12 % (with 6.2 % of recovery) when PRt is 5.5 s, ADt  is 10 s and PGF  is 

0.5 LSTP·min-1 (run 7). These conditions were experimentally tested (run 7) and a 

slightly better purity was obtained, 99.13 % (with 6.2 % of recovery). Also, run 15 

shows that high-purity oxygen, ≥ 99.0 %, can still be obtained with a higher recovery, 

8.0 %, when PRt  is 7 s, ADt  is 14 s and PGF  is 0.8 LSTP·min-1; experimental and 

simulated values are equal. The productivity of the unit was computed from the ratio 

between the product flow rate and the amount of AgLiLSX used and a productivity of 

ca. 8.97 m3·hr-1·ton-1 was obtained. This is similar to the productivity reported by 

Santos et al. [8] in a simulation study of a single-stage lab PSA unit using AgLiLSX for 

the production of 99 % of oxygen, which is 14 m3·hr-1·ton-1. When compared to the 

productivity of a two-stage VPSA for the production of 97 % of oxygen, 

0.21 m3·hr-1·ton-1, one can find the productivity here obtained considerably higher [3]. 

 

Figure 4.15 – Simulated (solid line) and experimental (dots) pressure history inside the main-

columns for run 7. Red dots ( ) refer to Col1; blue dots ( ) refer to Col2; black dots ( ) 

refer to B-Col. Vertical dashed lines mark the cycle steps; the upper legend refers to Col2 

steps. 
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Figure 4.16 – Simulated (solid line) and experimental (dots) pressure history inside the pre-

columns for run 7. Red dots ( ) refer to P-Col1; blue dots ( ) refer to P-Col2. Vertical dashed 

lines mark the pre-cycle steps; the upper legend refers to P-Col2 steps. 

 

 

 
Figure 4.17 – Simulated (solid line) and experimental (dots) feed flow rate measured for run 7. 
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Figure 4.15 and Figure 4.16 show experimental and ASPEN simulated pressure 

histories for run 7 in both main-columns and pre-columns, respectively; vertical 

dashed lines mark the cycle steps. The stand-alone VPSA prototype operates between 

1.4 and 0.25 bar. Figure 4.17 shows the experimental and simulated feed flow rate for 

the same run; an average feed flow rate of 76 LSTP·min-1 was computed. Oxygen 

concentration profile inside the adsorption bed for run 7 was simulated, using ASPEN, 

and it is plotted in Figure 4.18. Oxygen concentration increases through the column 

and the maximum oxygen concentration is observed near to the top of the column. 

Equalization step plays a key role on this cycle, increasing oxygen concentration, thus 

preparing the bed to produce high-purity product. The oxygen concentration of the 

feed stream during the pressurization step is slightly above 21 % because of the 

oxygen enrichment by pre-columns. Figure 4.19 plots the oxygen concentration 

profile inside the pre-column for run 7. This figure shows that the pre-cycle, besides 

removing both carbon dioxide and moisture from the feed stream, slightly enriches 

the feeding stream in oxygen. The experimental average oxygen concentration of the 

feed stream to the main columns (packed with AgLiLSX zeolite) is 24.7 % and the 

simulated one is 25.1 %.  

Figure 4.20 shows the temperature profile inside the adsorption bed for run 

7, according to ASPEN simulations. The operating temperature inside the bed varies 

between 24.2 ○C - 30.8 ○C, corresponding to an amplitude of ca. 6.6 ○C, slightly greater 

than the temperature amplitude observed in the lab VPSA, where the amplitude was 

ca. 4.5 ○C (Figure 4.6). This can be explained due to the large difference in the 

diameter of the adsorption columns of the two units, since smaller diameter columns 

dissipate heat more easily.  



Single-stage VPSA for producing high-purity oxygen from air 

 

152 Chapter IV 

 

 

Figure 4.18 – Simulated oxygen concentration 3D profile inside the main column during one 

cycle of run 7. Axial position goes from 0 (feed end) to 1 (product end). Different steps are 

marked with different colors according to the figure label. 

 

 
Figure 4.19 – Simulated oxygen concentration 3D profile inside the pre-column during one 

cycle of run 7. Axial position goes from 0 (feed end) to 1 (product end). Different steps are 

marked with different colors according to the figure label. 
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Figure 4.20 – Simulated temperature 3D profile inside the main column during one cycle of 

run 7. Axial position goes from 0 (feed end) to 1 (product end). 

 

The results obtained in the stand-alone unit (99.13 % oxygen, with 6.2 % of 

recovery and a productivity of 9.0 m3·hr-1·ton-1) are consistent with the ones obtained 

in the lab unit (99.12 % oxygen, with 6.4 % of recovery and a productivity of 

7.3 m3·hr-1·ton-1). The differences in the productivity of the two units are related to 

the oxygen enrichment by the pre-columns of the stand-alone unit. These pre-beds, 

crucial in a stand-alone unit to prevent the contamination of AgLiLSX with carbon 

dioxide and moisture, somewhat enrich the oxygen concentration in the feed stream, 

slightly improving the separation. 
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4.4 Conclusions 

A single-stage VPSA for the production of high-purity oxygen from air was 

designed, built and studied using AgLiLSX zeolite by Air Products. A lab VPSA unit was 

designed for producing 0.1 LSTP·min-1 of 99+% of oxygen stream from air (previously 

dried and carbon dioxide removed). The unit, comprises two adsorption beds packed 

with AgLiLSX zeolite, operating between 0.2 and 1.6 bar at room temperature running 

a seven-step cycle. The cycle comprises the following steps: pressurization, 

adsorption, top-to-top equalization, evacuation, purge under vacuum, and backfill. 

The unit was optimized using RSM methodology and an optimum purity of 99.12 % 

oxygen from air, with 6.4 % of recovery and productivity of 7.3 m3·hr-1·ton-1 was 

obtained when the following operation conditions were observed: 5 sPRt  , 

6 sADt  , 4 sEt  , Bt 1.2 s , 1.6 barHP  , 0.25 barLP   and 

1
STP0.1 L min PGF . The unit was also simulated using ASPEN simulator, which 

represented accurately the experimental results.  

Based on studies conducted in the lab unit, a compact (dimensions of 0.7 x 0.5 x 

0.85 m3, 0.3 m3 vol.), lightweight (120 kg) and low energy consuming (average power 

consumption of 1.0 kW) stand-alone VPSA was designed and assembled for the 

production of 1 LSTP·min-1 of 99+% oxygen stream from air. The unit, operating 

between 1.4 and 0.2 bar at 25 ○C, includes two pre-beds running an innovative pre-

treatment four-step cycle synchronized with the seven-step main cycle to 

continuously supply treated feed air (– 40 ○C dew point and 5 ppm of CO2) to the 

AgLiLSX beds. This pre-treatment section is crucial in such a stand-alone unit to 

protect and prevent AgLiLSX from deactivation. The developed ASPEN-based 

simulator was used to study the influence of several operating variables on the 

product purity and recovery and to optimize the performance of the unit. The 
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optimized stand-alone unit produced an experimental stream of 99.13 % oxygen from 

air, with a recovery of 6.2 % when 5.5 sPRt  , 10 sADt  , 2.5 sEt  , 2 sBt  , 

1.4 barHP  , LP 0.25 bar  and 1
STP1 L min PGF . The unit was also able to 

produce a 99 % oxygen stream with higher recovery, 8 %, when the following 

conditions are observed: 7 sPRt  , 14 sADt  , 2.5 sEt  , 2 sBt  , 1.4 barHP  , 

0.25 barLP   and PGF 1
STP0.8 L min . The productivity of the unit is 

9.0 m3·hr-1·ton-1. It was concluded that the stand-alone unit was able to produce high-

purity oxygen from air, with good recovery and productivity, using a single-stage VPSA 

packed with AgLiLSX. 
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5 Two-stage VPSA using AgLiLSX zeolite for 

producing 99.5+% oxygen from air 

 

Abstract 

Oxygen concentrations above 99.5 % are required for several applications, 

mainly in the medical and aerospace fields. Two-stage PSA processes, combining 

kinetic separation with equilibrium separation, have been developed for producing 

99+% oxygen from air. Argon and nitrogen are kinetically removed from the air feed 

using a carbon molecular sieve adsorbent and the remaining nitrogen is removed 

using a N2/O2 selective zeolite. Despite that, two-stage processes are often 

unattractive, complex and energy consuming, requiring two or more 

compressors/vacuum pumps. Moreover, most of the two-stage units described in 

literature are unable to reach the required oxygen purity of 99.5 %.  

 This work studies three energy-efficient two-stage VPSA processes, combining 

an equilibrium based PSA (EPSA) or a kinetic based PSA (KPSA) for the first stage, with 

a VPSA unit packed with the Ar/O2 selective zeolite AgLiLSX for the second stage, 

aiming at to produce 99.5+% of oxygen; the use of zeolite AgLiLSX allows removing 

argon besides nitrogen. The best two-stage VPSA configuration allowed obtaining a 

99.8 % of oxygen stream at 6 % of recovery and a 99.5+% of oxygen stream at 14+% of 

recovery.  
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5.1 Introduction 

The sales of pressure swing adsorption (PSA) units for producing 95 % of 

oxygen from air has increased noticeably in the past decades [1]. There is, however, a 

great demand for oxygen 99+% for various industrial applications, namely: a) medical 

applications, such as surgeries where the minimum oxygen concentration required is 

99 % in United States and 99.6 % in Japan [2]; b) military and aerospace applications 

where minimum concentration of 99.5 % is required; c) semiconductor industry 

where concentrations higher than 99.8 % is required [3]; and d) for metal welding and 

cutting processes [4]. Despite this increasing demand, only cryogenic separation has 

been recognized effective for producing high-purity oxygen (99+%) [5]. For small and 

medium scale production and for oxygen concentrations up to 95 %, PSA is the state-

of-the-art technology [6]. Additionally, the low installation costs, simplicity and easy 

start/stop operation of a PSA unit are major advantages that cannot be realized with 

the cryogenic processes [7]. 

 Since the 1980s several PSA designs have been proposed for producing high-

purity oxygen. The first process was disclosed by Armond et al. [6] in 1980 and 

consists of a PSA unit packed with a carbon molecular sieve (CMS) adsorbent followed 

by another PSA unit packed with a nitrogen selective zeolite. The CMS stage served to 

kinetically remove essentially argon from the air and the second stage for removing 

the remaining nitrogen. The process was complex and had low energy efficiency since 

it used three air compressors/vacuum pumps. Following, in 1989 Miller and Theis [8] 

proposed a similar two-stage PSA process, where the equilibrium stage (beds packed 

with zeolite) comes first, followed by the kinetic stage (beds packed with CMS). The 

process, operating between 3.1 bar and 1.0 bar, delivers a 99.1 % oxygen product 

stream at atmospheric pressure. Similar processes were disclosed in the following 

years with small improvements compared with the original two-stage PSA process [9, 

10], such as introducing a buffer tank for storing enriched oxygen from the desorption 
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step of the CMS-stage; this stored gas is then used to pressurize and feed the zeolite-

stage and to purge the CMS-stage, thus improving the process purity and productivity 

[9]. More recently, Lee et al. [11-13] reported a two-stage three-bed PSA unit for 

producing a stream of 99.2 % oxygen with a recovery of ca. 47 %. This unit comprised 

a PSA loaded with 10X-type zeolite followed by a CMS column, running a ten-step 

cycle with two consecutive blowdown/backfill steps. The high recovery results were 

possible because the use of a very high selective CMS adsorbent (
2

2 12.4 10  OD s ; 

5 14.7 10  ArD s  and 
2

5 19.0 10  ND s ). However, despite the higher recovery and 

purity, this was not enough to fulfill the demand of 99.5+% oxygen [11, 12]. 

 During the 1990s, new generations of highly selective adsorbents, such as 

LiX-, LSX-, LiLSX-type zeolites and, particularly, silver-exchanged zeolites, contributed 

to a significant increase in the productivity and economic efficiency of oxygen air 

separation by PSA-based processes [14-21]. In 1993, Knaebel and Kandybin disclosed 

a single-column PSA process using a silver-exchanged mordenite. This mordenite has 

selectivity to argon and the process is reported to produce a stream with 99.5 % of 

oxygen and 12 % of recovery from a feed containing 95 % of oxygen balanced with 

argon. In 2002, Air Products and Chemicals, Inc. also patented an argon/oxygen 

selective zeolite, named AgLiLSX (lithium low silica X-type silver-based zeolite), with a 

silver-exchanged content of 20–70 mol.% [22, 23]. The AgLiLSX zeolite is able to 

produce a stream of 99.1 % oxygen from air in a single-stage VPSA operation [2, 4, 

24], unlike present commercial zeolites that are limited to 95 % oxygen (balanced 

mostly with argon) since they do not exhibit argon/oxygen adsorption selectivity 

above 1 [25]. 

 This work studies three energy-efficient two-stage VPSA processes, combining 

an equilibrium based PSA (EPSA) or a kinetic based PSA (KPSA) for the first stage, with 

a VPSA packed with AgLiLSX zeolite for the second stage, aiming at to produce a 
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99.5+% oxygen stream from air. It covers the simulation and optimization of the three 

two-stage VPSA configurations and corresponding experimental validation. The 

proposed model was solved using ASPEN. 

 

5.2 Experimental 

5.2.1 Two-stage VPSA configurations 

Three configurations of a two-stage VPSA unit are proposed and studied for 

producing a stream of 99.5+% oxygen from air:  

a) conventional equilibrium based PSA unit for producing a gas stream of ca. 

95 % oxygen balanced with argon and nitrogen, followed by a VPSA unit 

packed with the new AgLiLSX adsorbent for removing the argon and 

nitrogen – named EPSA/VPSA; 

b) kinetic conventional PSA, packed with a CMS adsorbent, followed by a 

VPSA unit packed with the new AgLiLSX adsorbent; the VPSA unit receives 

the low pressure product stream from the kinetic PSA, depleted of 

nitrogen and argon – named KPSA/VPSA; 

c) kinetic conventional PSA, packed with a CMS adsorbent, followed by a 

VPSA unit packed with the new AgLiLSX adsorbent; an intermediate blower 

is introduced to repressurize the product stream from the kinetic PSA to 

feed the VPSA unit, allowing a higher product purity and recovery – named 

KPSA/RP/VPSA; 
 

EPSA/VPSA unit 

This configuration comprises a conventional equilibrium based PSA (EPSA) unit 

for producing 95 % oxygen stream from air, followed by a second equilibrium based 

VPSA unit loaded with zeolite AgLiLSX for argon removal and oxygen purification up to 

99.5+%. 
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The first stage, not reported, is an equilibrium based PSA loaded with a 

commercial zeolite such as NaX-, CaX-, LiX- or LiLSX-types, and producing a stream of 

ca. 95 % of oxygen balanced with argon and nitrogen [18, 26, 27]. The authors studied 

only the VPSA stage of this configuration (second stage), loaded with AgLiLSX. The 

first stage was assumed to provide a feed stream of 95 % oxygen (balanced with 

argon), at 1.4 bar, to the second stage. 

The VPSA stage run a seven-step cycle previously studied by the team and 

illustrated in Table 5.1 [24]. During pressurization step (PR), the bed is co-currently 

pressurized with feed up to high operating pressure. Following, during the adsorption 

step (AD), high-pressure feed flows through the bed while argon is selectively 

retained thus producing an oxygen-enriched stream. A fraction of the product is used 

to counter-currently purge the other bed at low operating pressure, during the purge 

under vacuum (VP) step. After the adsorption step, equalization (E) takes place where 

the two beds are top-to-top connected until pressure equalization. During the 

evacuation step (VA), vacuum is applied to the bed feed end while product end is kept 

closed. After the VA step, vacuum is maintained while bed is counter-currently purged 

with a fraction of the product stream. Following, the second equalization takes place 

and afterwards the backfill (B) step, where part of the product stored in the product 

storage tank is used to counter-currently re-pressurize the adsorption bed.  

Table 5.1 – Sequence of the seven-step VPSA cycle. 

 1 2 3 4 5 6 7 8 

Col 1 E VA VP E B PR AD 

Col 2 E B PR AD E VA VP 

 

KPSA/VPSA unit 

The KPSA/VPSA configuration comprises a conventional kinetic PSA unit (KPSA), 

loaded with a CMS adsorbent for argon and nitrogen kinetic removal, producing an 
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oxygen-enriched stream as blowdown product (extract stream). This extract stream is 

fed to the second stage, a VPSA unit loaded with AgLiLSX zeolite, which removes the 

remaining nitrogen and argon to produce a high-purity oxygen product. This 

configuration does not require a compressor/blower to repressurize the first stage 

blowdown stream and redirect gas flow to the second stage; first stage low pressure 

product (blowdown) provides feed and sets the high operating pressure of the second 

stage; this configuration just uses a feed compressor to the first stage and a vacuum 

pump for the evacuating steps in the second stage. 

The KPSA run a conventional Skarstrom cycle with equalization as illustrated in 

Table 5.2. The six-step Skarstrom cycle comprises a pressurization step (PR) where the 

bed is pressurized with feed air to the high operating pressure; an adsorption step 

(AD), where high-pressure feed flows through the bed; an equalization step (E) where 

the two adsorption beds are top-to-top connected for pressure equalization; a 

blowdown step (BD) where the feed entrance is opened and the oxygen adsorbed in 

the bed is counter-currently depressurized and fed to the second stage; a purge step 

(PG) where a fraction of the raffinate stream from the other bed is used to counter-

currently purge the bed at atmospheric pressure. Here, raffinate means the gas which 

is not adsorbed during the AD step, exiting the column through the top [25]. The 

species desorbed at low pressure (also known as “extracted” [25]) are called 

intermediate product or blowdown product. 

Table 5.2 – Sequence of the six-step KPSA cycle. 

 1 2 3 4 5 6 

Col 1 PR AD E BD PG E 

Col 2 BD PG E PR AD E 

 

The VPSA stage run the seven-step cycle described above (Table 5.1). Both 

cycles, KPSA and VPSA stage, run independently, using an intermediate buffer tank. 
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KPSA/RP/VPSA unit 

This configuration differs from the previous one only for the introduction of an 

intermediate blower between the first and second stages. The use of a blower allows 

KPSA blowdown at atmospheric pressure and repressurizes the first stage blowdown 

product stream up to the feed pressure of the second stage. The KPSA and VPSA 

cycles described above and are shown in Table 5.2 and Table 5.1, respectively. Both 

cycles run independently, using an intermediate buffer tank. 

 

5.2.2 Two-stage VPSA apparatus 

A general-purpose two-stage VPSA experimental set-up was used to run the 

three configurations aforementioned – Figure 5.1. The adsorption beds and storage 

columns are made of stainless steel; the characteristics of the beds are listed in 

Table 5.3. Sampling points (S1 to S10) placed along the beds were used to obtain the 

concentration history under operation; a mass spectrometer (Pfeiffer, Omnistar) was 

used to analyze the concentration of these sampling points. The feed and purge 

flowrates of the first PSA unit (first stage) were measured using mass flow meters 

(Bronkhorst High-tech, El Flow F-113C, 0 – 100 LSTP∙min-1 and Bronkhorst High-tech, El 

Flow F-111C, 0 – 2 LSTP∙min-1, respectively); the feed and purge flowrates of the second 

PSA unit (second stage) were measured using mass flow meters (Bronkhorst High-

tech, El Flow F-112C, 0 – 10 LSTP∙min-1 and Bronkhorst High-tech, El Flow F-201C, 0 – 

2 LSTP∙min-1, respectively); the raffinate and product flowrates of respectively the first 

and second PSA units were controlled using mass flow controllers (Bronkhorst High-

tech, El-Flow F-201C, 0 – 2 LSTP∙min-1 and Bronkhorst High-tech, El-Flow F-201C, 0 – 

2 LSTP∙min-1, respectively). The purge and raffinate flow rates of both PSA units were 

regulated using needle valves. Several pressure sensors (Druck, PMP 4010, 0 – 7 bar), 

located at the bottom and top of the adsorption columns and on the product exit, 
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were used to measure the pressure history inside adsorption beds and at the product 

streams. A set of solenoid and check valves are used to direct the flow according to 

the adsorption cycles. A vacuum pump (Vacuubrand, model ME 8 NT, 70 mbar) was 

used to evacuate the adsorption columns at the VPSA unit. Each PSA unit includes a 

storage column that allows to store part of the product and to use it in the backfill 

step if applicable. Between each stage a storage tank was placed to serve as buffer to 

the second stage feed. The product stream concentration was measured using an 

oxygen analyzer (Servomex, model 5200, from 0 to 100 %, with an accuracy of 0.05 % 

FS) and a mass spectrometer. 

 

Figure 5.1 – Schematic representation of the two-stage VPSA unit: Col = column; S-Col = 

storage column; C1 to C12 = check valves; FM = flow meter; FC = flow controller; P = pressure 

transducer; S1 to S10 = sampling points; V = vacuum pump; V1 to V33 = electric valves. 

 



Two-stage VPSA using AgLiLSX zeolite for producing 99.5+% oxygen from air 

 

Chapter V 169 

 

Table 5.3 – Characteristics of adsorbents and adsorption beds. 

adsorption beds 1st stage PSA unit 2nd stage PSA unit 

bed length, cm 40.4 26.2 

internal diameter, cm 4.2 2.6 

wall thickness, cm 0.2 0.2 

storage column volume, cm3 1017 109 

storage column (S-Col2) volume, cm3 1038 
   

Adsorbent AgLiLSX CMS 

geometry spherical pellet 

pellet diameter ( pd ), mm 1.02 2.10 

intraparticle voidage ( p ) 0.605 0.487 

interparticle voidage ( b ) 0.36 0.38 

bulk density ( b ), g·cm-3 0.780 0.609 

macropore radius ( porer ), m 3.6 x 10-9 3.5 x 10-7 

micropore radius ( microporer ), m --- 0.6 x 10-10 

heat capacity ( psC ), J·kg-1·K-1 1172 963 

thermal conductivity ( sxk ),W·m-1·K-1 0.3 0.3 

 
AgLiLSX adsorbent (Air Products and Chemicals, Inc.) and a CMS (Kuraray) were 

used as adsorbents. The physical properties of the adsorbents are listed in Table 5.3. 

AgLiLSX adsorbent was previously characterized by the team [2]; the adsorption 

parameters of O2, N2 and Ar are given in Table 5.4. The adsorption equilibrium 

isotherms and adsorption kinetics on CMS adsorbent of O2, N2 and Ar were obtained 

at three temperatures, 10 ○C, 25 ○C and 40 ○C using the volumetric method [28]. The 

isotherms obtained for O2, N2 and Ar at 25 ○C are shown in Figure 5.2 and the 

pressure-dependence of the apparent time constant, 2

 D D r (where D  is the 

diffusivity and r  is the crystals radius), of O2, N2 and Ar at 25 ○C are shown in Figure 

5.3.  
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Figure 5.2 – Adsorption isotherms for: , nitrogen, , oxygen; and , argon, on CMS at 25 ○C. 

 
 

 

Figure 5.3 – Pressure-dependence of the apparent time constant for: , nitrogen, , oxygen; 

and , argon, on CMS at 25 ○C. 
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Table 5.4 – Parameters of the adsorption isotherms on AgLiLSX and on CMS adsorbents and 

adsorption kinetic parameters on CMS adsorbent. 

 nitrogen oxygen argon 

AgLiLSX 

,1mq  / mol·kg-1 0.729 3.79 3.29 
3

1 10 b  / bar-1 0.020 0.151 0.134 
3

1 10 H  / J·mol-1 31.1 14.0 15.0 

,2mq  / mol·kg-1 2.66 --- --- 
3

2 10 b  / bar-1 0.051 --- --- 
3

2 10 H  / J·mol-1 17.6 --- --- 

CMS 

mq  / mol·kg-1 1.74 2.23 2.14 
310 b  / bar-1 0.118 0.092 0.120 
310 H  / J·mol-1 18.9 18.7 18.1 

0

D  / s-1 4.22 x 101 5.38 x 102 5.86 x 101 
310aE  / J·mol-1 30.3 27.8 31.9 

m  1 0.0222·T(K) - 4.2022 1 
 

Langmuir and dual-site Langmuir equations were used to fit the experimental 

adsorption equilibrium data. Both equations have simple mathematical formulations 

and are thermodynamically consistent. The dual-site Langmuir equation, which 

renders Langmuir equation when 
,2mq  equals to zero, is given by: 

1 2
,1 ,2

1 21 1
 

 
m m

b P b P
q q q

b P b P
      (5.1) 

where q  is the adsorbed concentration, P  is the equilibrium pressure, mq  is the 

saturation adsorbed concentration and b  is the adsorption affinity constant, 

assumed to vary with temperature according to the van’t-Hoff equation: 
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exp  
  

 

H
b b

T
        (5.2) 

where 
b  is the adsorption constant at infinite temperature, H  is the heat of 

adsorption,   is the ideal gas constant, and T  is the absolute temperature. 

The Darken and Bae-Lee models combined with Langmuir isotherm were used 

to fit the pressure dependence of apparent time constants on CMS. The model 

proposed by Bae and Lee, which renders Darken model when m  is equal to the unity, 

is given by: 

 0 exp 1   
m

D D bP        (5.3) 

where 0D  is the apparent time constant at zero pressure, P  is the equilibrium 

pressure, b  is the adsorption affinity constant, assumed to vary with temperature 

according to eq.(5.2), and m  is the Bae-Lee equation parameter. The diffusivity 

temperature dependence follows the Arrhenius relation: 

0 0 exp 

  
   

 

aE
D D

T
       (5.4) 

where 0

D  is the apparent time constant at zero pressure and infinite temperature 

and aE  is the activation energy. 

 

5.2.3 Mathematical model  

The main assumptions of the mathematical model used for simulating the two-

stages PSA units are: 

1) ideal gas behaviour 

2) negligible radial concentration and temperature gradients 

3) axially dispersed plug flow 

4) thermal equilibrium between adsorbent particles and bulk flow 
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5) uniform cross-sectional void fraction 

6) adsorption equilibrium described by dual-site multicomponent Langmuir 

isotherm 

7) pressure drop described by Ergun’s equation 

According to these assumptions, the model can be written as it follows [29]: 

Mass balance 

 
 

2

2
1 0   

  
     

   

ii i i
b ax t b s

ucc c q
D

x x t t
    (5.5) 

where ic  is the partial molar concentration, axD  is the axial dispersion coefficient, u  

is the interstitial molar average velocity, b  is the interparticle voidage, t  is the total 

bed voidage, s  is the adsorbent apparent density, iq  is the partial average molar 

concentration in the adsorbed phase, x  is the spatial coordinate, and t  is the time 

variable. The dispersion coefficient, axD , varies along the length of the bed following 

the correlation [30]: 

 
0.73

1 9.49 2 


 

 

p

ax m

b b m p

u r
D D

D u r
     (5.6) 

where pr  is the particle radius. The molecular diffusion coefficient, mD , is estimated 

from the Chapman-Enskog equation [31]. 

The momentum balance is given by the Ergun’s equation as follows [32]:  

Momentum balance 

 

 

 
23

5

2 33

1.5 10 1 1
1.75 10

22

b b

g

p bp b

P
u M u u

x rr

 
 






  

     


  (5.7) 
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where P  is the total pressure, g  is the gas-phase molar density,   is the dynamic 

viscosity, and M  is the molecular weight. 

The general linear driving force (LDF) model, assuming constant diffusivity, was 

applied for the sorption rate of AgLiLSX zeolite and the modified LDF model with Bae-

Lee or Darken pressure- and temperature-dependent diffusivity, eq.(5.3) and eq.(5.4) 

was applied for CMS [12]: 

 


 


i
i i i

q
k q q

t
        (5.8) 

where iq  is the adsorbed concentration of the component i  in the particle inner 

surface, and ik  is LDF coefficient, given by [33]: 

2
1

15

p

i p eff

r

k D
         (5.9) 

where p  is the intraparticle voidage, and effD  is the effective diffusivity, obtained 

from eq.(3) and eq.(4) in the case of CMS, and from the Bosanquet equation, as 

follows, in the case of AgLiLSX [25]. It was assumed that the binder network of 

macro/mesopores controls the mass transport inside the adsorbent [4]: 

1 1 1
p

pi Ki miD D D


 
  

 
        (5.10) 

where p  is the tortuosity factor, and KiD  is the Knudsen diffusion coefficient given 

by  
0.5

97Ki pore iD r T M , where 
porer  is the mean macropore radius and T  is the 

absolute temperature. 

The adsorbed amount of each species in the solid-phase is given by the dual-

site Langmuir equation above described, eq.(1) [34]. 
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Gas-phase energy balance 

 

 

2

2

4
0

   
   

       
   

  

g g g

gx b vg g b vg g p p g s

w
g w

B

T T T u
k C u C P h a T T

x x t x

h
T T

D

 (5.11) 

where vgC  is the gas-phase heat capacity at constant volume,  3 1  p b pa r  is the 

specific particle surface per unit volume of the bed, BD  is the internal bed diameter, 

and gT , sT , wT  are, respectively, the gas, solid and internal wall temperatures. The 

axial gas-phase thermal conductivity coefficient, gxk , is given by 

nc

gx g pg ax i

i

k C D y          (5.12) 

where pgC  is the gas-phase heat capacity at constant pressure, iy  is the mole 

fraction of component i  in the gas phase, and nc  is the number of mixture 

components. 

The gas-solid heat-transfer coefficient, ph , is estimated using the Colburn j  

factor for the heat transfer as follows [33]:  

2 3

p g pgh j C u Pr           (5.13) 

where 0.511.66j Re  if Re < 190, otherwise 0.410.983 j Re , and  pg gxPr C k M  

is the Prandl number. 

The gas-wall heat-transfer coefficient, wh , is obtained from Nusselt number by 

the following correlation, 

2


gx

w w

p

k
h Nu

r
        (5.14a) 
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6 22 10 0.0477 22.11

1 12

     


 

H H
w

B B H

Pe Pe
Nu

L D Pe
    (5.14b) 

where 2 /H p g pg gxPe r M C u k  is the gas-wall heat-transfer Peclet number, and 
BL  

is the bed length.  

Solid-phase energy balance 

 
2

2
1

0 


   
        

   

nc

s s i
sx b ps b i p p g s

i

T T q
k C H h a T T

x t t
  (5.15) 

where sxk  is the axial solid-phase thermal conductivity coefficient, psC  is the 

adsorbent heat capacity, and b  is the adsorbent bulk density. 

Wall energy balance 

    0      ml

w w g w w wh T T h T T      (5.16) 

where w  is the ratio of the internal surface area to the volume of the column wall, 

ml

w  is the ratio of the logarithmic mean surface area to the volume of the column 

wall, h  is the wall-ambient heat-transfer coefficient, and T  is the external 

environmental temperature. 

The two-stage VPSA unit combines in series two individual PSA units. The two 

sets of boundary conditions were applied to the CMS-bed and AgLiLSX-bed separately. 

The boundary conditions for the KPSA are as follows [11, 29]: 

Boundary conditions for pressurization (PR) step 

0x  :            ,


 


i
b ax i i in

c
D u c c

x
  inT T  

z L :       0





ic

x
 0u    0






T

x
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Boundary conditions for adsorption (AD) step 

0x  :      ,


 


i
b ax i i in

c
D u c c

x
 inT T  

x L :      0ic

x





 PRODu u  0

T

x





 

 Boundary conditions for top-to-top equalization (E) step 

  column providing equalization 

0x  :      0ic

x





 0u    0

T

x





 

x L :      0ic

x





 Eu u   0

T

x





 

  column receiving equalization 

0x  :      0ic

x





 0u    0

T

x





 

x L :          ,





 



i
b ax i i x L column providing E

c
D u c c

x
  Eu u  

Boundary conditions for blowdown (BD) step 

0x  :      0ic

x





 0

T

x





 

x L :      0ic

x





 0u    0

T

x





 

Boundary conditions for purge (PG) step 

0x  :      0ic

x





 0

T

x





 

x L :       ,





 



i
b ax i i x L column runing AD

c
D u c c

x
       PGu u           0






T

x
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The boundary conditions for the equilibrium-based VPSA (AgLiLSX beds) are as 

follows [29]: 

Boundary conditions for pressurization (PR) step 

0x  :        ,
i

b ax i i in

c
D u c c

x



 


 inT T  

z L :       0ic

x





    0u    0

T

x





 

Boundary conditions for adsorption (AD) step 

0x  :        ,
i

b ax i i in

c
D u c c

x



 


 inT T  

x L :       0ic

x





 PRODu u  0

T

x





 

 Boundary conditions for top-to-top equalization (E) step 

  column providing equalization 

0x  :       0ic

x





  0u    0

T

x





 

x L :       0ic

x





  Eu u  0

T

x





 

  column receiving equalization 

0x  :       0ic

x





 0u    0

T

x





 

x L :        ,

i
b ax i i x L column providing E

c
D u c c

x





 


 Eu u  

 Boundary conditions for backfill (B) step 

0x  :       0ic

x





 0u    0

T

x





 

x L :       ,





 



i
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c
D u c c

x
        Bu u  0






T

x
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Boundary conditions for vacuum (VA) step 

0x  :      0ic

x





   0

T

x





 VAu u  

x L :      0ic

x





   0u    0

T

x





 

Boundary conditions for vacuum with purge (VP) step 

0x  :       0ic

x





   0

T

x





 VPu u  

x L :        ,





 



i
b ax i i x L column runing AD

c
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        PGu u      0
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

T

x
 

The molar velocities across the valve orifices, during equalization (E) and 

backfill (B) steps, are described by [4]: 

2 2
2

2

2.035 10 , 0.53

1
2.035 10 , 0.53









  
 


  


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STP

v u d
d uSTP

b d

STP

v
u d uSTP

b d

C p p p
T p p

A T p M
u p

C p
p T p p

A T p M

  (5.17) 

where up  and dp  are the upstream and downstream pressures, respectively, vC  is 

the valve parameter, and A  is the area of the orifice. The superscript “STP” stands for 

standard temperature and pressure conditions. 

The set of model equations was solved numerically using Aspen Adsorption 7.3. 

The Aspen Adsorption simulator uses the method of lines [35] to solve the time-

dependent partial differential equations. The spatial derivatives were discretized over 

a uniform grid of 40 points using the quadratic upwind differencing scheme; the 

resulting equations were integrated as a function of the time using subroutine Gear. 

Physical gas properties were locally estimated based on the Aspen Properties 

database. The input parameters of the model are listed in Table 5.3 and Table 5.4. 
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5.3 Results and discussion 

Three configurations of the two-stage VPSA unit were studied for producing a 

stream of 99.5+% of oxygen from air at the highest recovery, as described before. The 

two-stage VPSA unit has several operating variables (see Table 5.5) that should be 

simultaneously optimised, originating an extremely complex to solve optimization 

problem. Moreover, when combining two PSA units, new boundary conditions arise, 

namely the product flow rate and pressure of the first PSA unit must match with the 

feed flow rate of the second PSA unit, which must be taken into account. Based on 

the preliminary experiments and on previous knowledge only high operating pressure 

( HP ) and raffinate flow rate ( RAFFF ) of first stage, adsorption time ( ADt ) of both 

stages and pressurization step ( PRt ) of second stage were studied and selected for 

optimization. Also, the role of these operating variables in the process performance 

was evaluated, where purity is the oxygen molar fraction of the product stream and 

recovery is the molar ratio between the amount of oxygen produced and fed to the 

PSA unit per adsorption cycle when the PSA unit is operating at cycle steady-state. 

The three simulators were checked for their ability to reproduce accurately the 

experimental results and the optimum operating conditions obtained. The discussion 

of the results is detailed for each configuration as follows. 

 

5.3.1 EPSA/VPSA unit 

The second stage, AgLiLSX loaded VPSA unit, was fed with a synthetic gas 

mixture of 95 % oxygen and 5 % argon and optimized to produce 99.5 % of oxygen. 

The feed composition was assumed constant and fully available throughout the entire 

VPSA cycle. From previous experience [24] several operating variables were set 

constant – Table 5.5. The role of pressurization ( PRt ) and adsorption ( ADt ) times on 
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Table 5.5 – Operating variables of configuration KPSA/VPSA. 

KPSA 

variable name comment 

HP  high operating pressure studied and optimized 

LP  low operating pressure set by boundary condition; depends on 
|H KPSAP  and also on 

|FEED VPSAF  and 
|H VPSAP  

PRt  pressurization time set to 4 s; minimum time necessary to allow beds to reach 
|H KPSAP  

ADt  adsorption time studied and optimized 

Et  equalization time set to 2 s; minimum time necessary to allow complete equalization 

P F  ratio purge to feed ratio set to 0.01; process does not require purge 

FEEDF  feed flow rate set by boundary condition; depends on 
|H KPSAP , cycle duration and flow rate delivered by the compressor 

PRF  pressurization flow rate set by boundary condition; depends on 
|H KPSAP  and flow rate delivered by the compressor 

RAFFF  raffinate flow rate studied and optimized 

bPRODF  blowdown product flow rate set by boundary condition; depends on 
|RAFF KPSAF  and 

|FEED KPSAF  

EF  equalization flow rate set by boundary condition; depends on 
|H KPSAP , 

|L KPSAP  and equalization valve coefficient 

T  temperature set to room temperature (ca. 25 ○C) 
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Table 5.5 (cont.) – Operating variables of configuration KPSA/VPSA. 

VPSA 

variable name comment 

HP  high operating pressure set (1.4 bar or 1.5 bar); based on previous knowledge and optimization 

LP  low operating pressure set by boundary condition (ca. 0.2 bar); depends on 
|H VPSAP , cycle duration and vacuum pump capacity 

PRt  pressurization time studied and optimized 

ADt  adsorption time studied and optimized 

Et  equalization time set to 4s; minimum time necessary to allow complete equalization 

Bt  backfill time set to 0.5 s; previously optimized, should be the shortest time possible 

P F  ratio purge to feed ratio set to 0.01 (< 0.05 for EPSA/VPSA configuration); previously optimized 

FEEDF  feed flow rate set by boundary condition; depends on product flow rate from the first stage 

PRF  pressurization flow rate set by boundary condition; depends on 
|H VPSAP  and product flow rate from the first stage 

PRODF  product flow rate set to 0.04 LSTP·min-1 or 0.1 LSTP·min-1 to match the required productivity 

EF  equalization flow rate set by boundary condition; depends on 
|H VPSAP , 

|L VPSAP  and equalization valve coefficient 

BF  backfill flow rate set by boundary condition; should be high enough for backfill to occur in the shortest time possible 

T  temperature set to room temperature (ca. 25 ○C) 
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product purity and recovery were experimentally investigated; the searching range of 

the selected optimization variables was based on previous studies. PRt  was varied 

between 4 s and 6 s; this is the step time range required for the bed to reach high 

operating pressure and small variations within this range has significant effect on 

purity and recovery. ADt  was varied between 4 s and 8 s; it was calculated that the 

oxygen concentration front exits the bed within this step time range. 

The details of operating conditions are shown in Table 5.6. The experimental 

and simulation results are plotted in Figure 5.4 and Figure 5.5. It is noticeable the 

good fitting of the simulation to the experimental results (average relative difference 

of 0.005 % for purity and 0.820 % for recovery).  

Table 5.6 – Operating conditions for VPSA unit loaded with AgLiLSX. 

Run 
Feed  
(%) 

HP   

(bar) 
LP   

(bar) 
P F  ratio  PRODF   

(LSTP·min-1) 

cycle steps (s) 
PR - AD - E - VA - VP - E - B 

1 

95:5  
(O2:Ar) 

1.40 0.17 

0.03 

0.10 

4 - 4 - 4 - 5.2 - 4 - 4 - 1.2 

2 5 - 4 - 4 - 6.2 - 4 - 4 - 1.2 

3 6 - 4 - 4 - 7.2 - 4 - 4 - 1.2 

4 

0.04 

4 - 6 - 4 - 5.2 - 6 - 4 - 1.2 

5 5 - 6 - 4 - 6.2 - 6 - 4 - 1.2 

6 6 - 6 - 4 - 7.2 - 6 - 4 - 1.2 

7 

0.05 

4 - 8 - 4 - 5.2 - 8 - 4 - 1.2 

8 5 - 8 - 4 - 6.2 - 8 - 4 - 1.2 

9 6 - 8 - 4 - 7.2 - 8 - 4 - 1.2 
 

The product purity decreases as ADt  increases and similar behavior is observed 

when PRt  increases, particularly for higher values of ADt  (Figure 5.4). The maximum 

product purity obtained, 99.28 %, was for 4PRt s  and 4ADt s  (run 1), recovery of 

8.6 %. Concerning recovery, it increases as PRt  and ADt  increase; the maximum 

oxygen recovery was ca. 12 % (run 9), purity of 99.15 %, when 6PRt s  and 8ADt s  

(Figure 5.5). Since operating variables, PRt and ADt , have opposite responses on purity 

and recovery, a compromise between purity and recovery should be considered. 
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Figure 5.4 – Effects of VSPA cycle pressurization and adsorption times on product purity; dots 

are experimental and lines are simulation results – configuration EPSA/VPSA. 

 

Figure 5.5 – Effects of VSPA cycle pressurization and adsorption times on oxygen recovery; 

dots are experimental and lines are simulation results – configuration EPSA/VPSA. 
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Oxygen concentration history inside an adsorption bed was recorded using a 

mass spectrometer connected to five sampling points (S1 to S5, see Figure 5.1) placed 

along the adsorption bed. Figure 5.6 plots the concentration profiles obtained during 

one cycle of run 3 ( 6PRt s  and 4ADt s ; oxygen purity of 99.26 % with 9.8 % 

recovery), after reaching the cyclic steady-state; the normalized axial position goes 

from 0 (feed end) to 1 (product end). The adsorption cycle steps are marked with 

different colors for readability. Oxygen concentration inside adsorption beds varies 

between ca. 90 % and 99.26 %; the minimum concentration occurs during VP step, 

near to the entrance of the column, where the gas phase is richer in desorbed argon; 

the oxygen concentration increases along the bed and it is always higher than 98.5 % 

near to the product end, with the maximum concentration (ca. 99.26 %) observed 

during the AD step. 

The EPSA/VPSA combined unit did not allow reaching the target oxygen 

concentration of 99.5+%. In fact, despite the high oxygen concentration (95 %) at the 

VPSA feed stream, the separation between oxygen and argon is hard to achieve. The 

VPSA unit using AgLiLSX was able to produce 0.1 LSTP·min-1 at ca. 99.3 % of oxygen, 

with a reasonable recovery of 9+%. The productivity of the VPSA stage, computed 

from the ratio between the product flow rate and the amount of adsorbent used, is 

7.3 m3·hr-1·ton-1. This result is considerably better than that reported by Dee et al. 

[23], who indicates a maximum product concentration of 99 %, with 4.3 % recovery, 

from a feed stream of 95 % oxygen balanced with argon, obtained from simulation. 

The reason for this difference seems to be related mostly to the use by Dee at al. of 

columns packed with a LiLSX zeolite with only a layer of AgLiLSX. 
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Figure 5.6 – Steady state experimental oxygen concentration profile inside the column during 

one cycle of run 3. Axial position goes from 0 (feed end) to 1 (product end). Different steps are 

marked with different colors according to figure label – configuration EPSA/VPSA. 

 

5.3.2 KPSA/VPSA unit 

The role of the following operating variables on the product purity and recovery 

were studied: KPSA high operation pressure (
H KPSA

P ), KPSA adsorption time (
AD KPSA

t ) 

and KPSA raffinate flow rate (
RAFF KPSA

F ), VPSA pressurization time (
PR VPSA

t ) and 

VPSA adsorption time (
AD VPSA

t ); the searching range of the selected optimization 

operating variables was based on preliminary studies. 
H KPSA

P  was varied between 

3.8 bar and 4.4 bar; this pressure range was selected based on CMS adsorption 

capacity and uptake rates and also because 
H VPSA

P  should not be higher than 1.5 bar 

[24]; since this configuration does not use a blower to pressurize the first stage 
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blowdown stream to the second stage, the first stage low-pressure product sets the 

high operating pressure for the second stage ( 
L KPSA H VPSA

P P ). 
AD KPSA

t  was varied 

between 20 and 26 s; this was found to be the time range that originates the highest 

product concentrations. 
RAFF KPSA

F  was varied from 1 LSTP·min-1 and 5 LSTP·min-1 to 

cover the entire recovery range. 
PR VPSA

t  was varied from 4 s and 6 s, and 
AD VPSA

t  was 

varied from 6 s and 8 s, as previously mentioned [24]. The complete list of pre-set 

variables and their values and the optimization variables and their searching ranges 

are shown in Table 5.7. 

Table 5.7 – Operating conditions of configuration KPSA/VPSA. 

k-PSA 

pressure low ( LP ), bar 1.60 

pressurization time ( PRt ), s 4.0 

equalization time ( Et ), s 2.0 

purge to feed ratio ( P F  ratio) 0.01 

temperature (T ), ○C 25 

pressure high ( HP ), bar 3.8 - 4.4 

raffinate flow rate ( RAFFF ), LSTP·min-1 1 - 5 

adsorption time ( ADt ), s 20 - 26 

E-VPSA 

pressure high ( HP ), bar 1.50 

pressure low ( LP ), bar 0.20 

equalization time ( Et ), s 4.0 

backfill time ( Bt ), s 0.5 

purge to feed ratio ( P F  ratio) 0.01 

temperature (T ), ○C 25 

pressurization time ( PRt ), s 4 - 6 

adsorption time ( ADt ), s 6 - 8 
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Table 5.8 – Experimental and simulation results of configuration KPSA/VPSA. 

Run 

KPSA VPSA Experimental Simulated 

HP  

(bar) 
RAFF topF  

(LSTP·min-1) 

ADt  

(s) 
PRt  

(s) 
ADt  

(s) 

Pur. 
(%) 

Rec. 
(%) 

Pur. 
(%) 

Rec. 
(%) 

1 4.40 1 20 4 8 99.43 5.59 99.42 5.60 

2 4.40 5 26 4 8 99.55 2.48 99.55 2.50 

3 4.10 3 26 5 7 99.57 3.54 99.56 3.57 

4 3.80 5 20 6 6 99.51 2.56 99.53 2.56 

5 4.10 3 23 4 7 99.55 3.51 99.54 3.47 

6 4.10 3 23 5 7 99.56 3.57 99.57 3.56 

7 4.40 1 26 4 6 99.46 5.42 99.46 5.43 

8 4.10 3 20 5 7 99.54 3.48 99.54 3.47 

9 3.80 1 20 6 8 99.45 6.24 99.43 6.22 

10 4.10 3 23 5 7 99.56 3.59 99.57 3.56 

11 4.40 1 26 6 8 99.44 6.13 99.44 6.12 

12 4.40 5 20 6 8 99.44 2.54 99.44 2.55 

13 3.80 1 26 4 8 99.41 6.14 99.41 6.10 

14 4.40 1 20 6 6 99.43 5.66 99.43 5.69 

15 4.10 3 23 5 7 99.56 3.56 99.57 3.56 

16 4.40 5 26 6 6 99.59 2.55 99.59 2.56 

17 4.10 5 23 5 7 99.58 2.54 99.58 2.49 

18 3.80 1 26 6 6 99.45 6.32 99.46 6.29 

19 4.40 3 23 5 7 99.56 3.58 99.57 3.50 

20 4.10 3 23 5 8 99.56 3.63 99.56 3.65 

21 3.80 1 20 4 6 99.45 5.75 99.42 5.78 

22 4.10 3 23 5 6 99.58 3.54 99.57 3.53 

23 4.40 5 20 4 6 99.57 2.46 99.57 2.49 

24 3.80 5 20 4 8 99.56 2.59 99.54 2.58 

25 4.10 1 23 5 7 99.49 5.77 99.48 5.83 

26 3.80 5 26 4 6 99.55 2.56 99.53 2.50 

27 3.80 3 23 5 7 99.58 3.64 99.57 3.73 

28 3.80 5 26 6 8 99.56 2.62 99.58 2.61 

29 4.10 3 23 6 7 99.53 3.62 99.54 3.67 
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Figure 5.7 – Oxygen concentration as a function of KPSA adsorption time ( |AD KPSAt ) and KPSA 

raffinate flow rate ( |RAFF KPSAF ) when: (a) | 4.4barH KPSAP , | 5sPR VPSAt  and 

| 6sAD VPSAt ; and (b) | 3.8barH KPSAP , | 5sPR VPSAt  and | 6sAD VPSAt  – configuration 

KPSA/VPSA. 
 

Table 5.8 summarizes the runs conducted and the experimental and simulated 

results obtained; again, the simulator fits quite well the experimental results (average 

relative difference of 0.009 % for purity and 0.769 % for recovery). The role of 

AD KPSA
t  on product purity is illustrated in Figure 5.7 and Figure 5.9. The product 

purity increases as 
AD KPSA

t  increases, particularly for higher values of 
RAFF KPSA

F . 

Concerning recovery, the influence of the 
AD KPSA

t  on recovery is negligible – see 

Figure 5.8 and Figure 5.10; therefore, variable AD KPSA
t  was set to 26 s. 
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Figure 5.7 and Figure 5.8 show, respectively, the effect of 
RAFF KPSA

F  on 

product purity and recovery. This operating variable has a strong influence on the 

process performance; as it can be seen oxygen product concentration increases with 

RAFF KPSA
F  from 99.48 % to ca. 99.63 %, and the opposite happens for recovery, 

decreasing from ca. 6 % to ca. 2.5 %. Increasing 
RAFF KPSA

F  allows slow nitrogen and 

argon molecules to purge more efficiently from the adsorption bed, preventing them 

from contaminating the extract (blowdown) stream obtained during BD and PG steps; 

however, higher 
RAFF KPSA

F  values originate a reduction in the intermediate product 

flowrate as well as the loss of non-adsorbed oxygen in the raffinate stream and then a 

reduction in the recovery.  

 

Figure 5.8 – Oxygen recovery as a function of KPSA adsorption time ( |AD KPSAt ) and KPSA 

raffinate flow rate ( |RAFF KPSAF ) when: (a) | 4.4barH KPSAP , | 5sPR VPSAt  and | 6sAD VPSAt ; 

and (b) | 3.8barH KPSAP , | 5sPR VPSAt  and | 6sAD VPSAt  – configuration KPSA/VPSA. 
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Figure 5.9 – Oxygen concentration as a function of KPSA high operating pressure ( |H KPSAP ) 

and KPSA adsorption time (
|AD KPSAt ) when: (a) 

-1

| STP5L min RAFF KPSAF , | 5sPR VPSAt  and 

| 6sAD VPSAt ; (b) 
-1

| STP3L min RAFF KPSAF , | 5sPR VPSAt  and | 6sAD VPSAt ; and  

(c) 
-1

| STP1L min RAFF KPSAF , | 5sPR VPSAt  and | 6sAD VPSAt  – configuration KPSA/VPSA. 

The influence of H KPSA
P  on product purity is illustrated in Figure 5.9. The 

effect of this operating variable in the product purity deeply depends on operating 

variables AD KPSA
t  and RAFF KPSA

F ; for instance, when AD KPSA
t  = 20 s, product purity 

hardly depends on H KPSA
P  and when AD KPSA

t  = 26 s, product purity increases with 

the increase of H KPSA
P  (particularly for higher RAFF KPSA

F ). The maximum product 

purity is obtained when AD KPSA
t  is 26 s and RAFF KPSA

F  is 5 LSTP·min-1. It is noteworthy 

that for these conditions the oxygen concentration only slightly increases when 
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H KPSA
P  moves from 3.8 bar to 4.4 bar (see Figure 5.9), while the recovery slightly 

decreases (see Figure 5.10). Taking into account the pressurization energy, working at 

the lowest pressure limit is advantageous. 

 

Figure 5.10 – Oxygen recovery as a function of KPSA high operating pressure ( |H KPSAP ) and 

KPSA adsorption time (
|AD KPSAt ) when: (a) 

-1

| STP5L min RAFF KPSAF , | 5sPR VPSAt  and 

| 6sAD VPSAt ; (b) 
-1

| STP3L min RAFF KPSAF , | 5sPR VPSAt  and | 6sAD VPSAt ; and  

(c) 
-1

| STP1L min RAFF KPSAF , | 5sPR VPSAt  and | 6sAD VPSAt  – configuration KPSA/VPSA. 

The effect of |PR VPSAt  and 
AD VPSA

t  of second PSA stage (AgLiLSX stage) on 

product purity is illustrated in Figure 5.11. As it can be seen, decreasing 
AD VPSA

t  leads 

to a significant increase of the product purity (particularly for higher 
H KPSA

P  values; 

when 
H KPSA

P  = 3.8 bar, product purity hardly depends on 
AD VPSA

t ). For higher 

AD VPSA
t  values argon starts breakthrough the column and contaminating the product 



Two-stage VPSA using AgLiLSX zeolite for producing 99.5+% oxygen from air 

 

Chapter V 193 

 

stream. However, 
AD VPSA

t  plays also an important role on the productivity since for 

AD VPSA
t  < 6 s the unit is no longer able to produce the required product flowrate of 

0.1 LSPT·min-1; this operating variable should then be set to balance the purity and 

recovery. Figure 5.11 shows the effect of 
PR VPSA

t  on the product purity; purity 

reaches a local maximum for 
PR VPSA

t  = 5 s. Figure 5.12 shows that recovery has a 

minimal dependence on 
AD VPSA

t  but depends significantly on 
PR VPSA

t ; recovery 

increases as 
PR VPSA

t  increases. Therefore, this operating variable should also be set to 

balance the purity and recovery. 

 

Figure 5.11 – Oxygen concentration as a function of VPSA pressurization ( |PR VPSAt ) and adsorption 

time ( |AD VPSAt ) when: (a) | 4.4barH KPSAP , | 26sAD KPSAt  and 
-1

| STP5L min RAFF KPSAF ; (b) 

| 4.1barH KPSAP , | 26sAD KPSAt  and 
-1

| STP5L min RAFF KPSAF ; and (c) | 3.8barH KPSAP , 

| 26sAD KPSAt  and 
-1

| STP5L min RAFF KPSAF  – configuration KPSA/VPSA. 
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Figure 5.12 – Oxygen recovery as a function of VPSA pressurization ( |PR VPSAt ) and adsorption 

time ( |AD VPSAt ) when: (a) | 4.4barH KPSAP , | 26sAD KPSAt  and 
-1

| STP5L min RAFF KPSAF ; 

(b) | 4.1barH KPSAP , | 26sAD KPSAt  and 
-1

| STP5L min RAFF KPSAF ; and  

(c) | 3.8barH KPSAP , | 26sAD KPSAt  and 
-1

| STP5L min RAFF KPSAF  – configuration KPSA/VPSA. 

Simulations were performed to find the optimum operating conditions for 

obtaining the maximum oxygen purity. The conditions obtained (run 30) were 

experimentally tested and results are presented in Table 5.9. It was experimentally 

observed a maximum purity of 99.6 % with an oxygen recovery of 2.8 % (oxygen 

recovery of KPSA is 44.5 % and of VPSA is 6.2 %). If the oxygen target concentration is 

set to 99.5 %, higher recoveries can be obtained; it was experimentally observed a 

purity of 99.52 % with a reasonable recovery, 5.9 % (oxygen recovery of KPSA is 

82.8 % and of VPSA is 7.1 %) - run 31.  
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Table 5.9 – Optimum conditions and experimental results for configuration KPSA/VPSA. 

Run 

KPSA VPSA 

Pur 
(%) 

Rec 
(%) 

HP  

(bar) 
LP  

(bar) 
P F  ratio RAFFF  

(LSTP·min-1) 

cycle steps (s) 
PR - AD - E - BD - PG - E 

HP  

(bar) 
LP  

(bar) 
P F  ratio PRODF  

(LSTP·min-1) 

cycle steps (s) 
PR - AD - E - VA - VP - E - B 

30 4.40 1.60 0.01 4.5 4 - 26 - 2 - 4 - 26 - 2 1.50 0.20 0.01 0.04 5 - 6 - 4 - 5.5 - 6 - 4 - 0.5 99.60 2.75 

31 3.80 1.60 0.01 1.2 4 - 23 - 2 - 4 - 23 - 2 1.50 0.20 0.01 0.04 5.5 - 8 - 4 - 6 - 8 - 4 - 0.5 99.52 5.92 

32 4.80 1.60 0.01 5.0 4 - 26 - 2 - 4 - 26 - 2 1.50 0.20 0.01 0.04 5 - 4 - 4 – 5.5 - 4 - 4 - 0.5 99.65 2.45 

33 3.50 1.60 0.01 1.2 4 - 22 - 2 - 4 - 22 - 2 1.50 0.20 0.01 0.04 5.5 - 8 - 4 – 6 - 8 - 4 - 0.5 99.51 6.25 

 

Table 5.10 – Optimum operating conditions and experimental results for configuration KPSA/RP/VPSA. 

Run 

k-PSA  

HP  

(bar) 
LP  

(bar) 
P F  ratio RAFFF  

(LSTP·min-1) 

cycle steps (s) 
PR - AD - E - BD - PG - E 

intermediate product composition 
– extract (%) 

Rec  
(%) 

34 6.00 1.00 0.01 3 4 – 30 – 2 – 4 – 30 – 2 59.24 % N2; 40.13 % O2; 0.63 % Ar 93.70 
 

Run 

VPSA Overall 
Rec  
(%) 

HP  

(bar) 
LP  

(bar) 
P F  ratio PRODF  

(LSTP·min-1) 

cycle steps (s) 
PR - AD - E - VA - VP - E - B 

Pur  
(%) 

Rec  
(%) 

Productivity 
(m3·hr-1·ton-1) 

34a 1.50 0.20 0.01 0.04 5.5 – 8 – 4 – 6 – 8 - 4 – 0.5 99.75 5.95 10.2 5.6 

34b 1.50 0.20 0.01 0.10 5.5 – 9 – 4 – 6 – 9 - 4 – 0.5 99.51 15.1 25.4 14.2 
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Since the ASPEN simulator was found to fit quite well the experimental results, 

several other runs were conducted to find other local optima, outside the initial 

searching domain, maximizing oxygen purity with the highest recovery possible. 

Maximum oxygen purity of 99.65 % with small recovery, 2.5 % (oxygen recovery of 

KPSA is 45.8 % and of VPSA is 5.3 %), were experimentally obtained (run 32) for 

H KPSA
P  = 4.8 bar and 

AD VPSA
t  = 4 s. Also, for an oxygen product concentration of 99.5 

%, the maximum experimental oxygen recovery obtained was 6.3 % (oxygen recovery 

of KPSA is 86.8 % and of VPSA is 7.2 %) – run 33, for 
H KPSA

P  = 3.5 bar. The 

productivity of the VPSA stage is 10.7 m3·hr-1·ton-1. 

 

5.3.3 KPSA/RP/VPSA unit 

KPSA oxygen-enriched (blowdown) stream is obtained at low pressure, during 

the blowdown step. The configuration previously reported, where the low pressure of 

the first stage is equal to the high operating pressure of the second stage                       

( 
L KPSA H VPSA

P P ), saves an intermediate blower and allows to produce a product 

stream of 99.5+% oxygen with reasonable oxygen recovery (6+%). However, higher 

recoveries can be obtained if this intermediate blower exists. Since the proposed 

model was found to fit quite well the experimental results, this two-stage 

configuration was simulated and optimized using ASPEN simulator and the accuracy 

of the results assessed experimentally for the optimized operating conditions. 

According to the simulator, the maximum oxygen purity of 99.73 % was 

obtained for run 34/34a (Table 5.10), with an oxygen recovery of 5.7 %. The operating 

conditions were experimentally tested and it was observed a product purity of 

99.75 % with a recovery of 5.6 % (run 34/34a). The productivity of the VPSA stage was 

10.7 m3·hr-1·ton-1. On the other hand, for an oxygen product concentration of 
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99.53 %, the highest recovery was 14.5 % – run 34/34b in Table 5.10. For this run, the 

experimental oxygen concentration was 99.51 % with a recovery of 14.2 %. The 

productivity of the VPSA stage was 25.4 m3·hr-1·ton-1. Again, it was observed a good fit 

with the experimental values. 

Figure 5.13 shows the simulated cyclic steady-state oxygen mole fraction 

profiles and axial temperature along the bed at initial and final instants of the 

adsorption (AD) step (run #34a). The oxygen mass-transfer zone travels the column 

during this step; the oxygen concentration reaches its maximum near to the product 

end of the column. The thermal wave follows the mass-transfer zone and shows small 

temperature excursion (ca. 2.5 ○C); the thermal excursion is related mostly to the 

nitrogen adsorption and it is observed only in the first half of the bed. 

 

Figure 5.13 – Oxygen mole fraction and axial temperature profiles inside the adsorption 

column at the initial and final instants of adsorption (AD) step of run 34a. 
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The cyclic steady-state oxygen mole fraction profiles and axial temperature 

along the bed at initial and final instants of the evacuation (VA) and evacuation with 

purge (VP) steps (run 34a) are plotted in Figure 5.14. Again, the oxygen mass-transfer 

zone is traveling through the bed, followed by the thermal wave. Figure 5.14 

illustrates the relevance of VA and VP steps to raise the oxygen concentration inside 

the bed. During these steps the adsorbed nitrogen and argon are displaced from the 

adsorption sites (causing the abrupt temperature decrease), slightly increasing the 

oxygen concentration in the bed. 

 

Figure 5.14 – Oxygen mole fraction and axial temperature profiles inside the adsorption column 

at the initial and final instants of evacuation (VA) and purge under vacuum (VP) step of run 34a. 

 

Figure 5.15 shows the cyclic steady-state oxygen mole fraction profiles and axial 

temperature in the bed at the initial and final instants of equalization (E) and backfill 

(B) steps (run 34a). After the evacuation steps (VA and VP), the complete equalization 

takes place allowing the pressurizing bed to reach the maximum oxygen gas-phase 

concentration. Both equalization and backfill steps play an important role for the 
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oxygen concentration increase, thus preparing the bed for the adsorption step that 

should deliver a high oxygen product concentration. 

 

Figure 5.15 – Oxygen mole fraction and axial temperature profiles inside the adsorption 

column at the initial and final instants of equalization (E) and backfill (B) step of run 34a. 

The two-stage VPSA configurations were compared with single-stage VPSA 

units for high-purity oxygen production using AgLiLSX, of this work and reported in 

the literature – see Figure 5.16. This figure clearly shows an almost linear dependy 

between purity and recovery. It also shows that the two-stage processes studied 

(KPSA/VPSA, EPSA/VPSA and KPSA/RP/VPSA) produce higher purities and recoveries 

than the reported single-stage processes. The single-stage units, although simpler and 

low energy consuming (theoretical work [29] of ca. 2.0 J·m3), cannot attain purities 

higher than 99.2 %. The two-stage KPSA/RP/VPSA unit though more complex and 

requiring more energy (theoretical work of ca. 5.3 J·m3) is the one that produces the 

highest purities and recoveries, well above the other technologies. Moreover, taking 
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into account the specific energy consumption, the KPSA/VPSA (theoretical work of ca. 

3.9 J·m3) could be a reasonable option for oxygen concentrations of 99.5 %. 

 

Figure 5.16 – Pareto plot of the purity as function of recovery for the two-stage VPSA 

configurations and single-stage VPSA units for high-purity oxygen production using AgLiLSX. 

 

5.4 Conclusions 

Three configurations of two-stage VPSA unit were studied, where the second 

stage uses the argon/oxygen selective zeolite AgLiLSX, for producing a stream of 

99.5+% oxygen from air. 

The EPSA/VPSA configuration comprises a conventional equilibrium based 

PSA stage producing a 95 % oxygen stream (balanced with argon), followed by a VPSA 

unit, packed with AgLiLSX for argon removal. The VPSA unit, operating between 

1.4 bar and 0.2 bar, run a seven-step cycle, comprising pressurization, adsorption, 
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equalization, evacuation, purge under vacuum and backfill. The unit was optimized 

using a model implemented in ASPEN simulator; the simulator proved to represent 

accurately the experimental data. An experimental oxygen maximum concentration 

of 99.28 %, with 8.6 % of recovery and productivity of 7.3 m3·hr-1·ton-1 were obtained. 

It was concluded that the EPSA/VPSA configuration did not allow reaching the target 

oxygen concentration of 99.5+%. 

Configuration KPSA/VPSA comprises a conventional kinetic based PSA, packed 

with CMS adsorbent, in series with a VPSA unit, packed with AgLiLSX. The KPSA, run a 

conventional Skarstrom cycle with equalization; the low operating pressure of the 

first KPSA stage was equal to the high operating pressure of the second VPSA stage – 

no intermediate blower was considered. The role of several operating variables – 

H KPSA
P , 

AD KPSA
t , 

RAFF KPSA
F , 

PR VPSA
t  and 

AD VPSA
t  – on product purity and recovery 

was assessed using the ASPEN simulator, and a maximum oxygen product 

concentration of 99.6 % and a recovery of 2.8 % were obtained. On the other hand, 

for a product oxygen concentration of 99.5 %, the maximum recovery obtained by 

simulation and experimentally was 6.3 %; the productivity was 10.7 m3·hr-1·ton-1.  

The KPSA/RP/VPSA configuration, differing from the previous configuration 

because it considers an intermediate blower (RP) between the first and second 

stages, was also studied. This configuration allowed obtaining higher product purities 

and recoveries. The maximum oxygen product concentration obtained using the 

simulation was 99.73 % with 5.7 % of recovery while the corresponding experimental 

values are an oxygen concentration of 99.75 % and a recovery of 5.6 %. On the other 

hand, for a product oxygen concentration of 99.5 %, the maximum recovery obtained 

by simulation and experimentally was 14.2 %; the productivity was 10.7 m3·hr-1·ton-1. 
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6 General conclusions and future work 

 

Several industrial applications require oxygen with concentrations above 99 % - 

99.5 %. The main objective of this work is the development of a single-stage pressure 

swing adsorption (PSA) process for the production of high-purity oxygen (≥ 99 %) from 

air. Also, two-stage PSA processes were studied to produce higher oxygen purities 

(≥ 99.5 %). Such processes should use argon/oxygen selective zeolite to obtain the 

desired separation. The newly-developed silver-exchange zeolite, AgLiLSX, was 

characterized in terms of nitrogen, oxygen and argon adsorption equilibrium. The 

adsorbent was found to have argon/oxygen selectivity above 1.13 in the low-pressure 

range (below 1.4 bar and at 25 ○C) and high working capacity for nitrogen, 

0.45 mol·kg-1, in the same pressure range. The unique selectivity argon/oxygen, 

particularly at the low-pressure range, indicates that AgLiLSX potentially allows the 

production of 95+% purity oxygen in a single-stage vacuum pressure swing adsorption 

(VPSA) operation. Mono and multi-component breakthrough experiments were 

obtained to assess the adsorption kinetics; AgLiLSX zeolite was found to have fast 

adsorption kinetics. A phenomenological model, considering mass and energy 

balances and employing the LDF model to describe the intraparticle mass transport, 

was developed to describe the intraparticle mass transport and to obtain nitrogen, 

oxygen and argon diffusitivites on AgLiLSX adsorbent; these diffusivities are 

respectively 1.43 x 10-9 m2·s-1, 2.54 x 10-9 m2·s-1 and 2.45 x 10-9 m2·s-1. 

AgLiLSX zeolite was found to be very sensitive to carbon dioxide and water 

vapor contamination, easily deactivating when exposed to atmospheric air. The 

designed PSA unit considers then a section to remove these contaminants below the 

required threshold before the depleted air stream reach the AgLiLSX adsorbent; the 
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threshold limits are – 40 ○C of dew point and 10 ppm of carbon dioxide. Four 

commercial adsorbents – two 13X-type zeolites (ZEOX OII and Z10-02ND), activated 

alumina (F200 7x14 Tyler mesh) and silica (KC-Trockenperlen WS 2050) – were 

characterized and their ability for carbon dioxide and water vapor removal assessed. 

Effective adsorption equilibrium isotherms were determined; zeolites, and 

particularly ZEOX OII, were found to have higher capacity for carbon dioxide removal 

and also exhibited better water vapor removal ability at low partial pressures. Also, 

silica KC-Trockenperlen WS 2050 was found to have a remarkable resistance to water 

(even liquid water) without losing capacity. Cyclic breakthrough experiments were 

conducted, which allowed assessing the performance of these adsorbents in near-real 

VPSA operating conditions. ZEOX OII was found to be the best adsorbent for removing 

water vapour and carbon dioxide, originating a stream with a dew point of ca. – 39 ○C 

and 5 ppm of carbon dioxide from an ambient air stream containing ca. 450 ppm of 

carbon dioxide and 40 % relative humidity at 25 ○C (dew point of 11 ○C). Thus, a 

layered-bed pre-treatment section was designed comprising an initial layer of silica to 

remove most of the water, including condensed water, and acting as a protecting 

layer of the following layer of ZEOX OII. This zeolite layer aims to reduce water and 

carbon dioxide concentrations to the required levels; the length ratio of these two 

layers is 1:4 of silica:zeolite. 

The layered pre-beds were designed to be included in a stand-alone single-

stage VPSA unit for producing 1 LSTP·min-1 of high-purity oxygen (≥ 99 %) from air. 

Based on lab VPSA preliminary experiments and ASPEN simulations, a compact 

(dimensions of 0.7 x 0.5 x 0.85 m3, 0.3 m3), lightweight (120 kg) and low energy 

consuming (average power consumption of 1.0 kW) stand-alone VPSA was designed, 

assembled and optimized. Such unit, operating between 1.4 and 0.2 bar at 25 ○C, 

comprises two beds packed with AgLiLSX (main beds) and two pre-columns packed 

with KC-Trockenperlen WS 2050 and ZEOX OII. The unit also includes a backfill column 
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to allow a backfill step, which highly improves the oxygen product concentration. An 

innovative and very efficient cycle was developed, synchronizing the pre-columns and 

four-step cycle (pressurization, adsorption, evacuation and purge under vacuum) with 

the main columns and seven-step cycle (pressurization, adsorption, top-to-top 

equalization, evacuation, purge under vacuum, backfill and again equalization). RSM 

methodology applied to the experimental set-up and ASPEN-based simulator were 

used to study the role of several operating variables on the product purity and 

recovery and to optimize the performance of the unit; the unit can produce a stream 

of 99.13 % oxygen from air, with a recovery of 6.2 % and a productivity of 

9.0 m3·hr-1·ton-1. 

Targeting higher oxygen purities (≥ 99.5 %) and better recoveries (≥ 10 %), 

two-stage VPSA processes were considered. Several configurations were tested: 

EPSA/VPSA (conventional equilibrium based PSA stage for producing a 95 % oxygen 

stream, balanced with argon, followed by a VPSA unit, packed with AgLiLSX for argon 

removal); KPSA/VPSA (comprising a conventional kinetic based PSA, packed with CMS 

adsorbent, in series with a VPSA unit, packed with AgLiLSX); and KPSA/RP/VPSA 

(differing from the previous for the introduction of an intermediate blower between 

the first and second stages).  

The EPSA/VPSA configuration was studied and optimized. However, it was 

concluded that it was not able to reach neither the target oxygen concentration of 

99.5 % nor the target recovery (≥ 10 %). The KPSA/VPSA configuration was optimized 

using ASPEN simulator and the role of several operating variables on product purity 

and recovery studied. The two-stage KPSA/VPSA unit where the KPSA stage runs a 

conventional Skarstrom cycle with equalization, between 1.6 bar (production 

pressure) and 3.5 bar (purging pressure), and the VPSA stage runs an seven-step cycle 

(pressurization, adsorption, top-to-top equalization, evacuation, purge under vacuum, 
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backfill and again equalization), between 1.5 bar (feed pressure) and 0.2 bar 

(evacuating pressure), was able to produce an product stream of 99.5+% purity 

oxygen with a recovery of 6.3 % and a VPSA stage productivity of 10.7 m3·hr-1·ton-1. 

Despite unable to match the required product recovery, this two-stage unit can be 

considered very attractive for several applications, mainly because of its low energy 

consumption (it does not use an intermediate compressor). 

The KPSA/RP/VPSA configuration, which is similar to the previous KPSA/VPSA 

configuration but including an intermediate compressor, was studied. Upon 

optimization, RP/VPSA configuration was able to delivery a product stream with 

99.5+% of oxygen with a recovery of 14+% and a VPSA stage productivity of 

25.4 m3·hr-1·ton-1. The unit was also optimized to produce a very high-purity product, 

99.75 % with a smaller recovery, 5.6 %, and VPSA stage productivity, 

10.2 m3·hr-1·ton-1. 

 

Future work 

This thesis focuses on the production of high-purity oxygen by VPSA, achieving 

very interesting and innovative results, such as 99+% oxygen production in a single-

stage, or 99.5+% oxygen production in a two-stage. In fact, VPSA technology for 

oxygen production from air has significantly evolved in the past decades towards 

more energy efficient, compact and low-cost units, now capable of higher purity 

products. Still, VPSA performance depends heavily on the adsorbent characteristics 

and namely in its ability to remove simultaneously nitrogen and argon from the air 

feed. The very few adsorbents available with argon/oxygen selectivity, such as 

AgLiLSX, AgMordenite or Ag-ETS-10, are still expensive, fragile and very low moisture 

and carbon dioxide resistant. Several companies are trying to develop new silver-free 
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adsorbents with high resistance to contaminants and easier to regenerate, high 

mechanical strength and well controlled microporosity. Present developments 

indicate that highly performing and low-cost materials (such as VA-class hydrophobic 

dipeptides) may soon be disclosed displaying argon/oxygen selectivity. Such 

materials, combined with ultimate valve technology and optimized PSA and VPSA 

cycles – such as the one developed – would soon allow the development and 

commercialization of high-performance, energy-efficient and low-cost PSA and VPSA 

units for the production of high-purity oxygen, replying to a great market demand. 
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Appendix A – Experimental Set-ups 

 

A.1 Crushing strength setup 

A setup for measuring crushing strength properties of adsorbent pellets was 

assembled by the author. This setup was used to measure pellet crushing strength of 

pre-adsorbents studied (Chapter II) and AgLiLSX zeolite (Chapter III). 

 

Figure A.1 – Picture of the crushing strength setup. 

 

A.2 Adsorption setup – volumetric method 

A setup for measuring adsorption isotherms and uptake curves of nitrogen, 

oxygen, argon and carbon monoxide was assembled by the author. This setup was 

used to determine carbon dioxide isotherms presented in Chapter II and to 

characterize AgLiLSX zeolite (Chapter III) and CMS adsorbent (Chapter V). 
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Figure A.2 – Picture of the volumetric method setup. 

 

A.3 Adsorption setup – gravimetric method 

The water vapor adsorption isotherms of pre-adsorbents (Chapter II) and 

AgLiLSX zeolite (Chapter III) were determined in a gravimetric method setup already 

assembled. 

 

Figure A.3 – Picture of the gravimetric method setup. 
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A.4 Breakthrough setup 

The breakthrough experiments, presented in Chapter II and Chapter III, were 

determined in an experimental setup assembled by the author. 

 

Figure A.4 – Picture of the breakthrough experimental setup. 
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A.5 lab VPSA 

A lab PSA unit already assembled was adapted and upgraded by the author to 

allow VPSA operation and new cycle steps. Also, the adsorption columns were 

modified and sampling points were introduced along the beds to obtain the 

concentration profile and history of the columns. This lab VPSA unit was used to run 

the seven-step cycle experiments for producing high-purity oxygen in a single stage 

VPSA operation (Chapter IV) and it was then modified to allow different two-stage 

VPSA configurations, as described in Chapter V. 

 

Figure A.5 – Picture of the VPSA lab unit. 
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A.6 Stand-alone VPSA prototype 

A stand-alone VPSA unit was designed, partially assembled and tested by the 

author for the production of 1 LSTP·min-1 of high-purity oxygen in a single-stage 

operation. The technical specifications of the VPSA prototype are 120 kg of weight, 70 

x 50 x 85 cm3 of volume and average power consumption of 1 kW. The unit, including 

two pre-beds to continuously supply treated feed air to the main beds loaded with 

AgLiLSX, is fully described in Chapter IV. As presented in the same chapter, the unit 

was optimized for the production of 1 LSTP·min-1 of 99.1+% oxygen from air. 

 

Figure A.6 – Picture of the VPSA prototype. 
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Figure A.7 – Picture of the VPSA prototype (top view).  

 

 

Figure A.8 – Picture of the VPSA prototype (front view). 
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Figure A.9 – Picture of the VPSA prototype (side view). 

 

 

 

 

 

 

 

 

 

 

 

 



 


