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Abstract
Antibiotic resistance consists of a dynamic web. In this review, we describe the path by which different antibiotic residues and antibiotic
resistance genes disseminate among relevant reservoirs (human, animal, and environmental settings), evaluating how these events contribute to
the current scenario of antibiotic resistance. The relationship between the spread of resistance and the contribution of different genetic elements
and events is revisited, exploring examples of the processes by which successful mobile resistance genes spread across different niches. The
importance of classic and next generation molecular approaches, as well as action plans and policies which might aid in the fight against
antibiotic resistance, are also reviewed.
© 2015 Institut Pasteur. Published by Elsevier Masson SAS. All rights reserved.
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1. Introduction

Many classes of antibiotics are not only clinically valuable
in human medicine, but also in other fields such as veterinary
medicine and animal food production, including aquaculture
[1,2]. The agricultural setting also plays an important role in
the spread of antibiotic residues in the environment due to
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their use as additives and biocides in crops. Consequently, all
adjacent natural environments consisting of water, soil and
plants are environmental niches to be taken into consideration
in the dynamics of antimicrobial resistance [3,4].

The use of antibiotics may have dangerous long-term ef-
fects that extend beyond selection of specific resistance
mechanisms [5]. The selection pressure applied to bacterial
communities via widespread discharge of antibiotic residues in
the environment strongly contributes to the exposure of several
niches to antibiotic-resistant bacteria (commensal and/or
pathogenic) [6]. For example, use of animal manure may
enhance viable antibiotic-resistant coliform bacteria in soil,
increasing the frequency of detection of some antibiotic
resistance genes [3]. These bacteria may reach the food chain,
since vegetables are grown in soil [7]. Acquired antibiotic
resistance is also frequent among isolates from wild animals
reserved.
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which represents a niche of concern. Indeed, many reports
point to wild animals as reservoirs of resistant determinants
that commonly appear in other habitats, namely in human
settings [8].

It should also be noted that bacterial resistance to antibi-
otics is related to soil and aquatic native microorganisms
which may be producers of antimicrobial compounds [9,10].
Several other factors contribute to antibiotic resistance.
Indeed, the existence of major anthropogenic actions such as
international travel and global trade in foodstuffs strongly
contribute to its amplification [11e14] (Table 1). A classical
example of a vehicle for transmission of antibiotic-resistant
bacteria is the human hand, which can become easily
contaminated by environmental surfaces near patients in
hospitals or animals in husbandry settings [15,16]. Conse-
quently, the World Health Organization is strongly committed
to making people aware of the problem of antibiotic resis-
tance, and especially caretakers, namely through promoting
hand hygiene for fighting antibiotic resistance [16,17].
Table 1

Antibiotic resistance is generated by several factors (adapted from [11e13]).

Factors depending on biological and physical influences:

Human activities

Animals (namely insects, birds, wildlife)

Water

Environmental changes

Wind

Changes in geographic localization of bacteria

Factors dependent on humans and their management of antibiotics:

Preservation of ecosystems (eventually bioremediation)

Intensive farming

Sanitation and hygiene measures

Runoff and leak

Manure

Demographic changes (increasing number of elderly people)

Anthropogenic contacts

Socioeconomic factors

Bioterrorism (biological war)

Travel of people and foodstuffs

Patient movement within and between medical institutions

Infection control measures (prevention of infection)

Appropriateness of use

Factors related to the antibiotic itself

Antibiotic use

Novel antibiotics

Dose of treatment

Duration of treatment

Antibiotic residues

Food additives

Selection of antibiotic resistant bacteria

Factors related to microorganisms

Wide spread of commensal bacteria

Extensive spread of old or new pathogens

Higher number of infections (opportunistic)

Increased number of host-pathogen contacts

Modification of microbial diversity

Factors related to the genetic basis of resistance

Cross selection

Non-antibiotic selection

Gene transfer

Clonal spread
There exists an urgent need to elucidate possible connec-
tions between antibiotics, environmental organisms and asso-
ciated bacterial communities, as they may threaten diverse
ecosystems and consequently human health [18]. In this re-
view, we emphasize that these settings are linked and may
constitute reservoirs of antibiotic resistance determinants,
playing important roles in their dynamics.

2. Antibiotic residues versus resistomes in the
environment

Before the antibiotic era, environmental antibiotic-resistant
bacteria already existed, carrying genes that became critically
important in medicine [19]. Indeed, for many years the envi-
ronment consisted of an under-recognized reservoir of resis-
tance genes that have the potential to be transferred and
emerge in clinically important bacteria [20e22]. Groh et al.
(2006) showed that homologues of multidrug resistance genes
present in bacterial pathogens are essential for sediment fitness
in non-pathogenic bacteria, by conferring an ecological
advantage on these microorganisms [23].

Several reports have demonstrated the existence of anti-
bacterial activity in extracts from different microorganism
genera/species against distinct bacteria. A recent study showed
that some antibiotic-resistant Gram-negative strains recovered
from an industrial alpine location highly polluted with oil
hydrocarbons had the ability to produce antimicrobial com-
pounds active against Actinobacteria and Gammaproteobac-
teria. Thus, the selection pressure present in this environment
could lead not only to high antibiotic resistance, but also to the
capacity of this population to produce antimicrobial com-
pounds [24]. LeBel et al. (2013) also demonstrated that the
heat-stable bacteriocin nisin (naturally produced by Lacto-
coccus lactis) displayed antimicrobial activity against the
emerging zoonotic agent Streptococcus suis [25].

In fact, several studies have demonstrated that freshwater/
marine bacteria are also able to produce antibacterial com-
pounds that exhibit antimicrobial activity similar to standard
drugs, which is the case for cyanobacteria [26]. In addition, it
was demonstrated that extracts from Anabaena spp. were
effective against vancomycin-resistant Staphylococcus aureus
[27]. Some authors consider that cyanobacteria antibacterial
activity is more effective against Gram-positive bacteria
[28,29] than Gram-negative, attributed to the protection
conferred by the lipopolysaccharide barrier of the Gram-
negative cell wall [28]; however, some Gram-negative bacte-
ria, including pathogenic species, are also affected by cyano-
bacterial compounds. The potential application of bacterial
compounds to the development of new antimicrobials there-
fore appears to be a promising research area.

The relationship between bacteria and antibiotics may be
approached in a variety of ways. In the case of cyanobacteria,
considering their ubiquity and importance in the ecosystems
[30], increasing concern has been attributed to the effects of
environmental stressors in these bacteria. In fact, although
cyanobacteria can easily adapt to different environmental
conditions, they can also be severely affected by
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environmental changes and water contaminants [31,32]. On
the other hand, and given that cyanobacteria are exposed to
antibiotics and resistant bacteria in their natural habitats [18],
we hypothesize that they are able to develop antibiotic resis-
tance mechanisms. Their ability to produce a variety of
bioactive antibacterial compounds with potential pharmaceu-
tical interest [26] suggests that they may have developed de-
fense mechanisms against their own toxicity [33].

The role of antibacterial-compound-producing bacteria is a
challenge to the scientific community, since these new mole-
cules may constitute a promising future source of antimicro-
bials. Thus, further research will be needed to understand the
effect of such genera/species on the resistome.

3. The mobilome associated with antibiotic resistance
genes

Genomic events constitute a central process in the mobili-
zation of genetic elements and associated mobile antibiotic-
resistance-encoding genes in different settings [34]. The
movement of bacteria from the environment to animals and
humans (and vice-versa) contributes to an increase in the
mobilome (mobile gene pool) [35]. These genetic exchanges
have been significantly reported among human and animal
guts [36]. Indeed, lateral gene transfer and recombination of
genetic material within bacterial populations strongly con-
tributes to the diversity and adaptability of strains to different
environments (Fig. 1).

The wide divergence within specific functional genes, the
creation of mosaic-structured genomic regions, as well as the
high prevalence of mobile genetic elements contribute to the
success of different gene pools, producing new worldwide
dispersed hotspots [5,14,20,34]. For instance, the acquisition
of a single plasmidic but pleiotropic gene that encodes resis-
tance to two structurally and functionally different classes of
Fig. 1. Crosswalk between resistome and mobilome in different environments.
antibiotics also highlights the remarkable adaptive nature of
Gram-negative bacteria [37].

In general, mobile genetic elements such as plasmids,
insertion sequences (ISs), transposons, genomic islands and
phages, constitute the arsenal of bacterial genomes in terms of
genetic transfer, contributing to the emergence of novel geno-
typic and phenotypic variants [35,38,39]. Frequently, these
genetic structures may be organized in cascade-like arrange-
ments, contributing to the amplification of mobilization events.

Several reports revealed that mutations in the promoter
region and acquisition of functional promoters can turn on a
silent gene [40]. For example, IS may disrupt open reading
frames and activate gene expression through transposition. A
functional promoter may be created through the �35
promoter-like sequence existing in the terminal of some IS
elements [40].

The mobilome and the resistome usually follow parallel
paths. The environment is broadening the origin of antibiotic
resistance genes. This was the case for Kluyvera spp.,
commensal bacteria of both humans and animals, which went
ahead to the mobilization of their chromosomal CTX-M-type
b-lactamase-encoding genes into the plasmids of other bac-
teria. Thus, CTX-M extended-spectrum b-lactamase (ESBL)
has its origin in Kluyvera spp., which possibly shares other
genes with enteric bacteria [41]. The understanding that genes
from non-related species might be expressed in new hosts is
now evident [6,8,9]. Another example is OXA-type-b-lacta-
mases. Interestingly, the genes encoding these enzymes have
already been described in plasmids prior to the human use of
antibiotics, since they have moved through horizontal gene
transfer between bacterial phyla for millions of years [42].
Recently, an OXA carbapenemase (from Ambler class D) that
supposedly had its origin in Turkey (OXA-48) has been
described in Europe and in the USA among Klebsiella pneu-
moniae isolates, causing considerable morbidity and mortality
[43,44]. The first report of Shewanella xiamenensis carrying a
blaOXA-48-like gene suggested that the emergence of different
genes from this group had their origin in different S. xiame-
nensis strains [45]. The contribution of different mobile ge-
netic elements and mechanisms to the dissemination of these
carbapenemase-encoding genes (blaOXA-48-like), from Shewa-
nella spp. to Enterobacteriaceae and to other Gram-negative
bacteria, has been reported [46]. These antibiotic resistance
genes constitute one of the greatest threats in terms of public
health because of their ability to resist carbapenems [43,47].

The idea that some resistance mechanisms, such as carba-
penemase production, are only linked to infections and human
healthcare facilities is no longer valid [48]. The efficacy of
blaOXA-48-like gene transfer between bacterial species in human
cases [44] has also been reported in food-producing, com-
panion and wild animals, as well as in natural environments
[45,49,50], highlighting its importance in the dissemination of
antibiotic resistance among different reservoirs.

International travel and medical tourism have rapidly driven
the resistance mechanisms into an alarming public health
problem [51,52]. Apart from the enzymes belonging to Ambler
class D, this is also happening with other carbapenemases, such
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as KPC (b-lactamases from Ambler class A) and NDM (met-
alo-b-lactamase from Ambler class B) [51].

4. Investigating antibiotic resistance

Routine investigation of the most relevant antibiotic resis-
tance mechanisms (such as ESBLs, carbapenemases,
methicillin-resistant S. aureus/MRSA and vancomycin-
resistant enterococci/VRE) is becoming common in the
human sector; however, it is still scarce in the area of food,
animals and the environment. The specific detection of ESBL-
and carbapenemase-producing bacteria in the environment, on
farms, in food and companion animals urgently requires
means to contain these resistance mechanisms. This is a matter
of concern, as carbapenems are currently one of the last re-
sources for treat complicated human infections caused by
multidrug resistant Gram-negative bacteria [48].

The colonization of healthy animals may represent a silent
source of these resistance mechanisms and a possible trans-
mission pathway to humans via the food chain. On the other
hand, the carriage of such resistance mechanisms by healthy
humans may also cause their transmission to non-human
sources. Moreover, infection and colonization are higher
among animal owners, farmers and veterinarians. They can be
carriers and transmit bacterial antibiotic resistance genes to
animals, namely due to prior selection pressure caused by
hospitalization, antibiotic consumption, contact with health-
care settings and/or international voyages (Fig. 1) [49].

Data collection and analysis of antibiotic resistance will
improve detection of outbreaks (at a micro-level) and support
decision-making (at a macro-level), highlighting the impor-
tance of the One-Health approach to combat its global rise in
human infectious diseases [17,53].

Our capacity to contain the increase and dissemination of
resistance mechanisms such as carbapenemase-producing
bacteria will eventually indicate the efficiency of antibiotic
use and antibiotic resistance containment policies [17,49]. In
2006, the European Union prohibited antibiotics as growth
promoters in animal feed, which was an important step in the
use of antibiotics for non-medical purposes. However, the
antibiotic resistance of foodborne pathogens remains a matter
of concern. The notification rates of zoonoses in confirmed
human cases in the EU for the year of 2013 showed that
Campylobacter, Salmonella and Escherichia coli were the
most frequent bacteria causing human foodborne zoonoses.
Despite all efforts, these pathogens still present high levels of
resistance to antibiotics used in humans [54]. About 30% of
human Salmonella spp. isolates exhibited multidrug resis-
tance [54].

Emerging antibiotic-resistant foodborne pathogens of ani-
mal origin are forcing food and veterinary microbiology lab-
oratories to be increasingly alert due to the impact of these
bacteria can on public health. Next-generation sequencing
technologies have greatly accelerated the rate and reduced the
cost of genomic data acquisition. Whole-genome sequencing
(WGS) and molecular epidemiology studies constitute
important assets for exploring the bacterial genomes
[22,39,55]. The possibility of performing comparative
genomic analysis in short periods of time can enable rapid
detection of resistance genes that, in turn, may be helpful for
distinguishing different bacterial subpopulations [22,55,56].

These methodologies are very useful for monitoring the
mobilome, as mobile antibiotic resistance genes are frequently
clustered in complex genetic arrays. For instance, hitchhiking
genes, such as antibiotic resistance and heavy metal or disin-
fectant resistance genes, are commonly genetically associated.
Moreover, there exist genomic regions that enable the gath-
ering of antibiotic resistance genes, such as integrons and
those responsible for their transfer, like plasmids and con-
jugative transposons [40]. Plasmidome sequencing is also an
interesting approach for evaluating antibiotic resistance genes
that may spread among different settings [35]. Likewise, a
complete proteome might be obtained through matrix-assisted
laser desorption/ionization mass spectrometry (MALDI-TOF
MS). Correia et al. (2014) reported confirmation of several
proteins in S. Typhimurium phage type 104 clinical strain
through this method, emphasizing the presence of the Aac(60)-
Ib-cr enzyme responsible for both plasmid-mediated amino-
glycoside and quinolone resistance [37,57].

Likewise, high-throughput sequencing of nine genomes
was used for rapid identification of data in an outbreak caused
by enteroaggregative verocytotoxin-producing E. coli
O104:H4 (STEC) associated with consumption of raw vege-
tables [55,58]. This outbreak was responsible for a hemolytic
uremic syndrome in patients, due to TEM- and CTX-M-15-
producing STEC isolates. The exposure path involved in this
outbreak may have been more than one [55,58]: initially, a
primary human infection might have arisen from consumption
of contaminated food or direct contact with an animal carrying
STEC strains; next, subsequent infection might have occurred
by the fecal-oral pathway, through manipulation of contami-
nated vegetables [55,58].

Using the WGS approach, two independent human farm
cases of mecC-MRSA infection directly linked to a livestock
(cows and sheep) reservoir, were identified in Denmark, sup-
porting zoonotic spread. In these cases, it was demonstrated
that the CC130 MRSA lineage was transmitted between ani-
mals and humans and that livestock may be a reservoir for
MRSA [56].

Thus, new-generation approaches enable a better under-
standing of specific resistance mechanisms, permitting effec-
tive control of complex epidemiological situations. Overall,
the use of many types of “omic” approaches is already
providing more advanced hypotheses, mechanisms and models
of antibiotic resistance evolution [59].

5. Strengthening the combat against antibiotic resistance

Actions should be taken to diminish the selection pressure
imposed by antibiotics in human communities. Other priority
actions should include risk management to minimize antibi-
otics and antibiotic-resistant bacteria in animals (companion
and food-producing) and in the environment, namely in fresh
and wastewater.



598 M. Caniça et al. / Research in Microbiology 166 (2015) 594e600
Several measures are necessary to fight antibiotic-resistant
bacteria, but the main concern involves putting them into
practice in all countries, regions and settings [17,53,54,60,61].

Council Recommendation/2002/77/EC on the prudent use
of antimicrobial agents in human medicine highlights the
need for a “relationship between the occurrence of antimi-
crobial resistance in certain human pathogens and their
occurrence in animals and the environment” [60]. In addi-
tion, we must be aware of the fact that “coordination between
human, veterinary and environment sectors should be
ensured and the magnitude of the relationship between the
occurrence of antimicrobial resistant pathogens in humans,
animals and the environment should be further clarified and
therefore this recommendation does not preclude further
initiatives in other areas.” [60]. Recommendations from other
entities reinforce the need to fight against the rising threats of
antibiotic resistance, through publication of detailed action
plans and ideas underlining important pressure points
[17,62]. We also point out that the Transatlantic Task Force
on Antimicrobial Resistance of 2014 issued recommenda-
tions for future collaboration between the USA and the EU.
In this document, strategies for improving the pipeline of
new antibacterial drugs was emphasized [63]. The absence of
new antibiotics is the major drawback in the field of antibi-
otic resistance [64].

The implementation of DC 613/2013 by EU countries
concerning antimicrobial resistance monitoring in zoonotic
and commensal agents in 2014 in food-producing animals and
meat for a period of seven years (2014e2020), using stan-
dardized validated antimicrobial susceptibility testing methods
and harmonized interpretive criteria, will complement and
provide early warning of changes in resistance patterns in
animal populations, and will monitor future trends in the
occurrence of antimicrobial resistance [65].

Many European programs have also been developing pol-
icies for diminishing antibiotic use and antibiotic resistance
genes in different sources, namely water [66]. In water, res-
ervoirs are highlighted by the recent COST action that takes
into account the problem of antibiotics and their conse-
quences, the main objective of which is to make possible
wastewater reuse [http://www.nereus-cost.eu/].

Meanwhile, national strategies for combatting antibiotic-
resistant bacteria, identifying priorities and coordinating in-
vestments were recently reviewed in the USA [67]. The
evaluation of antibacterial products used as feed additives and
the impact of antimicrobial resistance on antibiotics of human
and veterinary importance have also been revised [68].

6. Conclusions

Antibiotic resistance constitutes a health crisis that has
consequences throughout the world, striking several settings
simultaneously: humans, animals and natural environments.
Until the decade of the 90's, the majority of drugs, including
antibiotics, were derived from natural products; since then, a
substantial increase in the use of synthetic and semi-synthetic
substances as therapeutic agents has occurred [69]. However,
the major approach of the pharmaceutical industry to over-
coming this problem was an improvement in pre-existing an-
tibiotics to the detriment of research on new molecules [69]. In
the future, special attention should be paid to the potential of
new natural antimicrobial products as effective and less toxic
alternatives [70].

Overall, actions must be taken to diminish selection pres-
sures imposed by antibiotics, in order to reduce exposure of
humans to high rates of antibiotic-resistant strains. Priority
actions include risk management to access the use of antibi-
otics and the presence of resistant bacteria in the different
environments. In the end, a higher economic and human in-
vestment in the field is necessary.
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