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Abstract 

 

 Spinal cord injury is a serious clinical problem, since it does not spontaneously heal and 

frequently leads to paralysis, leading to severe health, economic and social consequences to both 

patients and their families. Neurons have low potential for regeneration and the lesion site 

environment severely hinders the formation of neurite extensions, essential for the reestablishment 

of neuronal connections. Among the reported events, a pathway featuring several myelin inhibitors 

as well as a common downstream regulator was identified as having a major role limiting neurite 

formation. A gene therapy approach is likely able to target the inhibitory genes, at lower dosage 

and dose frequency than conventional pharmacotherapy, and with fewer side effects. However, low 

stability on bodily fluids and low cellular internalization of nucleic acids raise the need for a vector. 

 

 Antisense oligonucleotides (AON) were used to induce RNase H-mediated degradation of 

target mRNA sequences. These codify for myelin inhibitors-activated proteins, namely RhoA from 

the Rho family of small GTPases and Glycogen Synthase Kinase 3β (GSK3β). AON sequences 

were defined based on target sequence availability, binding affinity and specificity, then tested in 

vitro in cell cultures. A commercial transfection reagent was used to ensure transfection efficiency 

during activity studies, although safety and specificity issues discourage its use for in vivo 

applications. Gene downregulation was determined by reverse transcription-polymerase chain 

reaction. 

 

 Aiming for in vivo delivery of AONs, a chitosan-derived biomaterial was developed in order 

to bind AON and deliver them to target cells. Trimethylchitosan is not dependent on pH for solubility 

and binding stability since the trimethyl substituent ensures permanent positive charge at most pH 

values. Theoretically, electrostatic interactions are sustained at physiological conditions. 

Additionally, hydrophobic moieties, which were expected to improve AON binding properties, cell 

membrane interaction and lysosomal escape, were also tested. Particle size, chitosan-AON 

binding properties, cellular binding and uptake were analyzed. 

 

 The tested AON sequences were successful in downregulating the target mRNA, at 

optimum transfection conditions with the commercial reagent. Unmodified TMC was not able to 

mediate efficient transfection and required high N/P ratios to produce stable TMC-AON interaction; 

Stearic acid-modified TMC, on the other hand, showed improved AON binding properties and was 

able to transfect cells at high N/P ratios. 

 

 The work was developed in the context of a larger project, and included the cooperation of 

teammates, e.g. in the biomaterial synthesis, target protein characterization. This study was 

conducted in the context of the project “Characterization of Cell-intrinsic axonal regeneration 

determinants and their use to promote repair after CNS injury”, funded by grant HMSP-

ICT/0020/2010 from FCT (Fundação para a Ciência e Tecnologia).  
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Introduction 

 

Spinal Cord Injury 

 

Acute traumatic spinal cord injury (SCI) occurs worldwide with an estimated annual incidence 

of 130’000 and is associated with severe physical, psychological, social and economic burdens on 

patients and their families1, 2. As the central nervous system (CNS) does not spontaneously 

regenerate, paralysis is a common occurrence after SCI. Regeneration may be achieved by re-

establishing the neuronal connections via neurite outgrowth; however, it is conditioned by several 

factors, such as remaining regeneration substrate, length of the lesion site, glial scar formation, 

inflammatory response, lack of neurotrophic support, and most importantly, an abundance of glial 

(ephrins, semaphorins3), myelin (MAG, OMgp, Nogo4) and extracellular matrix inhibitors 

(chondroitin sulfate proteoglycans5). The abundance of inhibitory molecules that limits neuronal 

plasticity is related to circuit maturation during development of higher vertebrates, evidenced by 

lower vertebrates like the gecko or the newt that are able of some spontaneous neuronal 

regeneration6, 7. 

 

Nogo, oligodendrocyte-myelin glycoprotein (OMgp) and myelin-associated glycoprotein 

(MAG) are myelin-associated inhibitors (MAI) present in myelin sheaths and have major 

importance in the inhibition of neuronal regeneration. Mechanical injury to myelinated fibers leads 

to the release of these molecules. Nogo66, a Nogo domain, as well as OMgp and MAG, have been 

shown to bind to Nogo receptor (NgR)8. NgR is a glycosylphosphatidylinositol (GPI)-anchored 

protein present on the outer leaflet of the plasma membrane. Cleavage of that anchor by 

phospholipase C, NgR antibody targeting9 or NgR antisense downregulation10 have been shown to 

lead to the abolition of growth cone collapse induced by myelin inhibitors. The same effect may be 

achieved by a small fragment of the Nogo66 domain, a highly efficient peptide antagonist named 

NEP1-4011. The receptor complex formed after ligand binding also includes p75NTR and Lingo -1. 

The former was identified as responsible for signal transduction, but Lingo-1 was only recently 

discovered and is still yet to be characterized. p75NTR acts as a transducer for NgR signaling by 

releasing RhoA from its interaction with RhoA-GDI (Rho guanine dissociation inhibitor) and 

enabling its activation by GDP to GTP substitution8. Similarly, chondroitin sulfate proteoglycans 

and chemorepulsive guidance molecules also activate RhoA, thus inhibiting neurite outgrowth12. 

 

RhoA 

 

RhoA belongs to the Rho family of small GTPases, and has a major role on regulating actin 
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cytoskeleton dynamics. Rho kinases alternate between an active GTP-bound state and an inactive 

GDP-bound state. GDP to GTP substitution is catalyzed by guanine exchange factors (GEF), 

whereas GTP degradation to GDP is facilitated by GTPase activating proteins (GAP)3. Association 

with GDP dissociation inhibitor (GDI) maintains Rho in its inactive GDP-bound form. While the two 

other major Rho kinases, Rac and Cdc42, respond to attractive guidance cues and promote actin 

polymerization, RhoA activation by negative cues leads to actin depolymerization 13. 

 

RhoA is involved in MAI-induced inhibition of axon regeneration14. Higher GTP-RhoA levels, 

associated with activated RhoA, have been reported in the presence of inhibitory molecules and 

siRNA-mediated silencing of RhoA was shown to promote neurite outgrowth10, 15. RhoA is 

inactivated when cAMP levels are raised, e.g. in the presence of growth factors; inactivation is 

suggested to occur by dissociation of the NgR signaling complex, mediated by cAMP-activated 

Protein Kinase A8. 

 

Rho-associated coiled-coil-containing protein kinase (ROCK) is a well characterized Rho 

downstream effector. It is activated when Rho binds to the Rho binding domain (RBD), interfering 

with the interaction between the catalytic domain and autoinhibitory region. Inhibiting ROCK leads 

to enhanced branching and axon elongation16, and also inhibits its activator17. 

 

Glycogen Synthase Kinase 3β 

 

Previous studies in the project “Characterization of Cell-intrinsic axonal regeneration 

determinants and their use to promote repair after CNS injury”, in which the work developed in this 

master thesis was integrated, have identified another key component of inhibitory signaling 

pathways that limit neuronal regeneration after SCI, Glycogen Synthase Kinase 3 β (GSK3β). 

 

Glycogen Synthase Kinase 3 (GSK3) was first discovered to regulate glycogen metabolism 

regulation, and many other roles have been identified since. There are more than 60 reported 

substrates18, i.e. this kinase is involved in several cellular processes, like cell cycle, apoptosis and 

cytoskeleton dynamics. It is usually active under normal resting conditions and is subject to many 

regulation pathways in order to selectively target its substrates. One of the best characterized 

mechanisms is phosphorylation at Ser9 by the phosphatidylinositol 3-kinase (PI3K)/Protein kinase 

B signaling pathway: PI3K activates PKB in response to insulin, which phosphorylates and inhibits  

GSK3 at Ser9 19, 20. Conversely, Tyr216 phosphorylation results in activation. 

 

There are two mammalian isoforms of Glycogen Synthase Kinase 3, of which β (57 kDa) is 

more abundant in the CNS and relevant for this work than α (52 kDa). Among GSK3β functions, 
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stabilizing microtubules (MT) by phosphorylating MT-associated proteins21 is especially pertinent, 

they are necessary for neurite outgrowth. Cytoplasmic linker associated protein 2 (CLASP2), one 

of GSK3β substrates, binds to the plus end of MT or to MT lattices, and regulates MT stabilization 

22. At low activity levels, CLASP2 is incapable of stabilizing MT polymerization, and both binding 

modes are compromised. At intermediate activity levels, CLASP2 selectively binds to the MT plus 

ends and promotes their extension. At high activity levels, CLASP2 binds to both the plus ends and 

MT lattices, enabling polymerization but also looping (fig. 1). 

 

 

Figure 1 – GSK3 activity influence on CLASP-MT association
22

. Moderate GSK3 activity promotes axon growth, since 

it secures CLASP2 MT stabilizing effects and does not trigger CLASP2-induced MT looping. 

 

The induction of GSK3β activity after SCI is linked to lower MT stability. As explored below, 

several drugs have been used to downregulate GSK3β and have been successful in 

remyelinization and neurite extension 23, 24, although there are contradictory perspectives that 

propose that MAI inhibits GSK3β 25. Nonetheless, low inhibition seems the best approach towards 

neuronal regeneration. 

 

Therapeutic Strategies 

 

Currently used therapeutic approaches to SCI have limited success 1 2, but intensive 

research on the matter has begun to show practical results. New approaches, under development 

or on clinical trials, are identified bellow. The following summary focuses on inhibiting negative 

regulators of neuronal regeneration. 
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With the identification of Nogo as an important component of MAI-dependent inhibitory 

pathways of neuronal regeneration, targeting Nogo neutralization became clinically relevant. IN-1, 

an anti-Nogo antibody, has been shown to promote axon regeneration in many regions of the CNS. 

Nonetheless, Nogo is just one of the NgR ligands, and compensatory upregulation of the remaining 

may hinder therapeutic application of Nogo inhibition. On the other hand, NgR may be targeted by 

NEP1-40, and promising results on regeneration after spinal cord injury and functional recovery 

have been reported26, 27. p75NTR, although it is also part of the receptor complex, is not a valid 

target, since it participates in a vast range of transmembrane signaling pathways, including those 

of neurotrophins such as nerve growth factor (NGF) and brain-derived neurotrophic factor (BDNF). 

 

Rho and Rho-associated kinase (ROCK) are popular targets in neuronal regeneration 

therapies, as this pathway is crucial to NgR downstream signaling. Y27632 is a specific inhibitor of 

ROCK, abolishing its negative effects on growth cones, and has been shown to sustain nerve 

regeneration. However, it is dependent on cAMP levels, related to the intrinsic neuronal growth 

ability and/or the presence of growth factors 14. The C3 transferase exoenzyme from Clostridium 

botulinum is another Rho inhibitor, and also has neuronal regenerative effects 8. The major 

obstacle to the use of C3 in a clinical context is lack of membrane permeability13, which has been 

tentatively addressed by conjugation with cell-penetrating peptides (explored below)28. However, 

discrepancies between in vitro and in vivo results are significant, probably due to technical issues, 

e.g. improper doses, pharmacokinetics and insufficient drug uptake by relevant cells29. Fasudil is 

one of the few clinically available Rho inhibitors to date3, 30, and has shown much better results 

than Y27632 and C3; it may have a mechanism other than targeting RhoA 31, 32.Conjugation 

approaches , e.g. drugs  and growth factor-producing bone marrow stromal cells (BMSC), have 

shown synergistic effects33. Nonetheless, cell therapy is technically demanding, and may pose 

obstacles to clinical application. 

 

GSK3β participates in the pathophysiology of many disorders, such as Alzheimer’s Disease, 

schizophrenia and mood disorders34, besides mediating MAI-induced growth cone collapse24, 35. 

Several inhibitors have been developed, but the available options are far from optimal. Despite a 

low selectivity, low clearance and high IC50, lithium is frequently used as a mood regulator, 

targeting GSK3 among other proteins34, 36. The low selectivity and high IC50 are associated to its 

binding mechanism of competition for the Mg2+ binding site19. SB216763 and SB415286, which are 

also among the most used drugs against GSK3 and are more potent and specific than lithium, 

have off-target effects due to an ATP-binding site-competing binding mechanism. Additionally, they 

may cause ablation of the anti-tumorigenic role of GSK3, by inhibiting GSK3-mediated degradation 

of proto-oncogenes, e.g adenomatous polyposis coli (APC), β-catenin, cyclin D1, c-Myc, snail, Bcl-

3. The discovery of new pharmacologic drugs is hindered by structural homology to other signaling 

Field Code Changed

Field Code Changed
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proteins, and a new drug platform with increased target specificity would be most advantageous. 

 

As stated above, RhoA inhibition has a positive effect on the blockade of MAI-inhibitory 

pathways, and GSK3β inhibition provides a solution for improving MT dynamics and growth cone 

stabilization. Thus, a combinatorial approach inhibiting both RhoA and GSK3β is apt to provide a 

satisfactory synergistic effect. This study will focus on targeting both proteins, as a new therapeutic 

approach after SCI. 

 

The Genetic Approach 

 

Gene therapy has been subject of great interest since it was introduced in the scientific 

community, since the concept of correcting genetic pathologies by introducing therapeutic genes or 

replacing/deleting aberrant ones is a very promising idea. Meanwhile, the definition of gene 

therapy has expanded and it now broadly includes the use of gene-encoding DNA plasmids, RNA 

molecules or oligonucleotides to correct genetic information or regulate gene expression (fig. 2). 

Specifically, regulation of gene expression through oligonucleotide gene therapy is believed to 

have several potential advantages over conventional pharmacotherapy, such as fewer side effects 

(derived from higher specificity), a broader set of available targets and easier design. In the context 

of antisense oligonucleotide therapies, explored below, an analogy to traditional pharmacology can 

be made: target mRNA may be considered as the receptor, and the antisense sequence as the 

drug. The specific approach of antisense therapy yields another advantage, since recycling of the 

degradation complex sustains activity for a much longer period than traditional drugs, and may be 

further extended by structural modifications that minimize degradation. 

 

RNA interference37 is an endogenous regulatory system of gene expression inhibition, and 

may be divided in micro RNA (miRNA) and short interfering RNA (siRNA) mechanisms. In RNAi 

mechanisms, a double stranded RNA molecule is cleaved by Dicer, a class III RNAse. The 

resulting fragments, about 20 nucleotides long, are inserted in the RISC-loading complex, forming 

the pre-RISC38. Upon degradation of the sense strand by Argonaute-2 (Ago2), the catalytic 

component of the complex, the RNA-induced silencing complex (RISC) is complete. RISC 

degrades target mRNA complementary to the antisense strand, and as the structure remains 

theoretically intact at the end of the reaction, multiple catalytic cycles are possible. siRNA and 

miRNA differ in the complementary sequence specificity required for target RNA degradation – 

while siRNA is highly specific, and only regulates transcripts levels that undergo Watson-Crick 

base pairing on all of the sequence length, miRNA is more promiscuous, as it targets sequences 

that pair with a short “seed” sequence. So, the latter is involved in the regulation of a much broader 

set of transcripts and its manipulation for therapeutic purposes is more complex. siRNA has drawn 
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attention to the potential of antisense degradation of target transcripts, which has high specificity 

and low toxicity from off-target effects. Nonetheless, off-target effects may arise from RISC 

incorporation of the antisense strand, and intrinsic regulatory mechanisms may be affected by 

excessive recruitment of RISC. 

 

 

Figure 2 – Most frequently used gene therapy approaches. 

 

In a similar mechanism, single stranded antisense oligonucleotides (AON) 

associate with RNAse H to promote degradation of target mRNA, with the possibility of a 

recycling mechanism and long-lasting effects. Oligonucleotides are designed to have 

complementary sequences to the target mRNA, which supports high specificity. That may 

be done with the aid of in silico techniques, which take into consideration secondary 

structures from mRNA folding and protein occupancy that often reduce the available 

binding regions39, nevertheless experimental validation is still. Compared to siRNA, AON 

are not as effective, but as they are easier to manipulate (as seen further below), they 

have been subject to intensive study for either research or clinical applications. Also, the 

difference in activity has been tackled by AON structural modifications (explored below). In 

contrast to siRNA, AON can also work through a number of other mechanisms, namely 

splicing modulation, RNA processing inhibition, translational arrest, miRNA antagonism 

and telomerase inhibition. 

 

RNAse H shares with Ago2 a common catalytic mechanism, i.e. cleavage of the sense 

strand from a DNA-RNA heteroduplexes complex, formed between target mRNA and 

oligonucleotide, and a homolog domain, the catalytic P-element wimpy testis (PIWI) domain40, 41. 

RNAse H is a highly conserved endonuclease, being RNAse H1 is the major isoform in humans, 

while RNAse H2 is less abundant and requires binding of two proteins (RNAse H2B and RNAse 

H2C) for activation. The latter is believed to have a role different from RNA degradation, due to its 

capacity of recognizing and cleaving a single ribonucleotide in a deoxyrribonucleotide strand, e.g. a 
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result of a faulty incorporation during DNA synthesis. RNAse H1, usually referred simply as RNAse 

H (since RNAse H2 has little importance in the context of AON), was discovered to be influenced 

by the GC content of the nucleic acid drug. AON with 11 or more guanine or cytosine residues 

have high efficiency, whereas those with 9 or fewer displayed poor inhibition42. Recognition is done 

by the RNA binding domain (RBD), while cleavage is attributed to the catalytic domain, separated 

from the former by a spacer sequence. This leads to a shift between the sites where the duplex is 

recognized and where it is cleaved, of about 7 nucleotide residues (fig. 3)43. As cleavage may be 

hampered by nucleotide structural modifications, gapmer strategies are often employed, as 

explored later on. 

 

 

Figure 3 – RNase H cleavage mechanism. RNase H cleaves the target strand of a RNA/DNA heteroduplex 7 nucleotide 
residues away from the recognized sequence

43
. 

 

RNAse H is a well characterized and ubiquitous enzyme in mammalian cells, and has been 

extensively used in antisense therapy, to the point of the number of clinical trials using this 

mechanism having exceeded the combined number of the antisense oligonucleotides trials that 

use other mechanisms43. This approach benefits from the AON ability to activate RNAse H at low 

concentrations and rapidly deplete theoretically any target mRNA39, 43, 44. Also, it is present in the 

nucleus, cytoplasm and mitochondria, virtually sustaining AON activity in any intracellular site. 

However, RNAse H mediated antisense therapies have not yet been used for nerve regeneration38. 

 

Among other antisense oligonucleotide mechanisms of activity (fig. 4), there is splicing 

modulation, which involves masking splice sequences by AON binding, thus redirecting the pre-

mRNA splicing reaction with the production of an altered protein phenotypic profile. Such 

alterations may have relevant effects, e.g. the expression regulation of transcript variants Bcl-XL 

and Bcl-XS regulates apoptosis45, 46. Exon skipping, a variant of the splicing modulation approach, 
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has shown to be a valuable tool for correcting specific pathologies such as Duchenne Muscular 

Dystrophy, which result from different mutations with the ability to disrupt the reading frame47-51. 

AON inhibition of 3’-polyadenylation or 5’-capping may also be used to target mRNA, as it 

leads to immature molecules, which are subsequently degraded, since this is a crucial step for 

functional and stability purposes52. 

 

 

Figure 4 – Antisense mechanisms
42

. Not only are antisense oligonucleotides able to activate RNase H, they may also 
interfere with RNA processing and translation mechanisms, lowering protein expression levels all the same. Antisense 

oligonucleotides may be referred as AON, but also as ASO. 

 

Besides targeting mRNA levels, AON may also be used to inhibit protein synthesis, by a 

mechanism known as translational arrest. It is achieved by AON binding to translational initiation 

or adjacent regions, thus blocking scanning of the transcript by the 40S ribosome subunit, 

assembly of the 40S and 60S subunits, or movement of the ribosome down the transcript after 

assembly. It has been shown to lead to protein downregulation in vitro, but confirmation of in vivo 

effects is supported by limited evidence38. Since there is no shift in mRNA levels, quantification 

faces technical issues. miRNA may also be targeted by miRNA antagonists that bind and prevent 

miRNA of participating in RNAi regulation pathways. Although both in vitro and in vivo experiments 
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showed promising results, the mechanism is not clearly characterized yet. miRNA degradation is 

hypothesized, but on the other hand, hybridization with ASO hinders its detection and quantification. 

Telomerase is a ribonucleoprotein that ensures sufficient telomere length in dividing, e.g. cancer, 

cells. The RNA segment used for binding to telomeres is apt to be targeted by ASO and thus 

preventing elongation. Telomerase targeting has shown promising results for cancer therapy in 

several studies53-55. 

 

Although AON are not as efficient as siRNA, structural modifications have been developed to 

minimize and possibly invert that difference (fig. 5). Pharmacokinetic properties have also been 

greatly improved due to AON resisting nuclease degradation and evading unspecific interactions 

that enhance clearance and toxic side effects from off-target delivery56. AON modifications are 

arranged into generations, a classification that relates to their efficiency, extension of modification 

and relative appearance date. The first includes phosphorotioate (PS), a single atom (oxygen to 

sulfur) substitution on one of the non-bridging atoms of the phosphate group57. It improves 

resistance to nucleases 100-300 fold by a chirality-dependent mechanism (Sp phosphorotioate is 

nuclease resistant, but Rp is as sensitive as phosphodiester bonds58) and increases binding to 

plasma proteins, which reduces clearance. Thus, circulation time is prolonged and target cells are 

more easily reached. Neither RNA binding nor RNAse H-activating properties are compromised by 

this modification59.  

 

 

Figure 5 – AON structural modifications
47

. Newer and more extensive structural modifications (e.g. Locked Nucleic 
Acids) are more effective in downregulating mRNA levels and resisting degradation, but also involve more complex 

synthesis. 

 

Second generation AON have substituents at the 2’ position of the ribose sugar, usually 2’-

O-methoxyethyl or 2’-O-methyl60. Potency (i.e. binding affinity, assessed by the melting 

temperature, Tm) and stability are higher, but unfortunately RNAse H activation properties are lost. 

That, however, may be recovered using a gapmer strategy (fig. 6), i.e. a center region of the 
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sequence that allows RNAse H binding, flanked by 2’-modified bases. These modifications lead to 

longer-lasting effects which in an in vivo systemic administration setting of c-raf-1 downregulation 

in humans61, support a relatively infrequent dosing, e.g. weekly or biweekly dosing38.  

 

The third generation is characterized by extensive alterations to the ribose ring, e.g. 

substitution by a furanose (morpholino) or by a peptidic backbone (peptide nucleic acid), or 

conformation constriction (locked nucleic acid). Peptide nucleic acids (PNA) are an example of 

AON with successful nuclease (and peptidase) evasion, and great biostability. PNA not only 

selectively bind to target mRNA, but also have anti-gene effects by hybridizing with double 

stranded DNA in four possible configurations  - triplex, triplex invasion, duplex invasion and double 

duplex invasion42. Locked nucleic acids (LNA) have a conformation restriction derived from the 2’-

O, 4’-C methylene bridge in the ribose ring, and a greatly increased hybridization affinity. 

Morpholino nucleotides have a substituted sugar ring, and a high resistance to degradation. 

Although third generation AON have high Tm and biostability, RNAse H recruitment characteristics 

are lost. As with second generation AON, gapmer design may solve that problem. 

 

 

Figure 6 – Sequence structure of a gapmer. Modified nucleotides with improved stability and binding properties are 
included in the flanks. In the center there are nucleotides that enable RNase H activity. 

 

Fomivirsen, an oligonucleotide drug against cytomegalovirus (CMV) retinitis, is the first and, 

so far, only clinically approved therapeutic oligonucleotide by FDA, in 199842, 47. However, it was 

discontinued due to low market demand. Fomivirsen is a 21 nucleotide long phosphoriotioate (first 

generation) oligodeoxynucleotide, and has excellent pharmacokinetic properties. Despite a rapid 

diffusion to the retinal epithelium after intraocular injection, systemic distribution is remarkably low60. 

The low necessary dose (330 µg per 50 µL ), conjugated with the limited systemic distribution, 

avoided any potential side effects47. Other examples of topical or local application yielded good 

results regarding tissue distribution, but CNS targeting still requires injection to the cerebrospinal 

fluid, since oligonucleotide do not cross the blood-brain barrier (BBB). 

 

This successful case of PS modifications encouraged its use on most of the drugs currently 

on clinical trials. Although it has been reported an increase of non-specific interactions with cell 

surface and intracellular proteins38, 42, PS remains one of the most successful AON structural 

modification62. A reduction of production costs has been observed, which promises a commercially 

competitive alternative in the future to currently used drugs43. 
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Vector-aided Delivery 

 

Antisense oligonucleotide-based therapies are often required to target a limited cell 

population, e.g. injured neurons. Furthermore, AON are not easily internalized by most cell types. 

Hence, systemic administration of naked oligonucleotides is not a valid approach. Conjugation with 

vectors (fig. 7) enables specific, localized delivery and may further improve resistance to 

degradation, surpass anatomical obstacles and enhance cell uptake. Due to their incomparable 

ability to deliver nucleic acids into the cytoplasm, modified viruses were among the first vectors to 

be experimented with. However, issues concerning toxicity, immune response and safety diverted 

attention to alternatives63, 64. Non-viral vector development has presented some valid options so far, 

but a better understanding of cell entry mechanisms and tissue distribution would greatly benefit 

the presentation of new, more efficient and safer vectors. 

 

 

Figure 7 – Commonly used nucleic acid vectors. 

 

Non-viral vectors are easier to manipulate and are generally supported by an electrostatic 

interaction for the formation of complexes with nucleic acids. Liposome-derived vectors were 

among the first vectors studied as an alternative to viral vectors. The cationic lipids in their 

composition allow the encapsulation of bound DNA in an aqueous inner chamber. A tightly packed 

structure is formed due to the abundance of electrostatic interactions between the negatively 

charged phosphate groups of the DNA and the positively vector charged groups. A controlled zeta 

potential (surface charge) supports interaction with negatively charged membranes and facilitates 

internalization. As with other vectors, cationic liposomes may be incremented with targeting 

moieties for a more selective delivery43. However, DNA-liposome complexes are associated with 

several technical obstacles, e.g. reducing particle size for a more efficient internalization, toxicity 

from the cationic lipids, activity decrease in the presence of serum or antibiotics, low encapsulation 

efficiency, poor storage stability and rapid clearance from the blood, which impair their potential for 

the delivery of therapeutic nucleic acids in a clinical context63, 65. 
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Antennapedia homeodomain and HIV protein Tat were the first described cell-penetrating 

peptides (CPP), resulting from the observation of translocation through biological membranes66. 

The 82 amino acid-long Tat peptide has neurotoxic properties, associated to amino acid residues 

31-61, but membrane translocation ability is associated with residues 48-8567. Other CPP have 

been described, usually less than 30 amino acids long, polybasic or amphipatic, and able to carry 

molecules as they translocate across cell membranes68. Cargo molecules are varied, including 

oligonucleotides that may be covalently or non-covalently bound. The internalization mechanism is 

not yet characterized, but hypotheses focus on either the endocytic pathway or direct translocation 

through the plasma membrane, and it may be influenced by cargo size67, type of CPP69 and CPP 

concentration68. Endosomal escape mechanisms are not elucidated as well, although suspicions 

lie on membrane disruption70. 

 

Although cytotoxicity was not observed in short exposures, long exposures caused extensive 

cell necrosis67. Nonetheless, CPP toxicity is lower than other nucleic acid vectors, since its 

internalization is fast enough to support short exposures. Transfection efficiency is higher than PEI, 

the standard vector for nucleic acid delivery. A potential drawback arises from the induction of a 

humoral immune response against the peptide cargo67, which may be useful in DNA vaccination 

approaches71. In order to use CPP in a clinical context, several issues should be addressed, 

namely characterizing mechanisms of internalization, endosomal escape, cargo size influence, as 

well as affinity and specificity. There is also the matter of production costs, which may be reduced 

once CPP enter larger-scale applications. Additionally, CPP, as other peptides, have not been used 

in oral administration so far68. 

 

Polyethylenimine (PEI) is one of the most studied and promising polymeric vectors. After 

cellular internalization, its high buffering capacity leads to a rapid endosomal escape by a process 

referred as proton-sponge effect. As with lipoplexes, PEI polyplexes are victim to extensive 

aggregation from non-specific interactions with plasma proteins. Blood circulation may be 

prolonged by polyethylene glycol (PEG) coating, i.e. PEGylation, a commonly used protective 

technique66, 72. Cytotoxicity rises with the augment of the proportion between PEI and the nucleic 

acid drug. Complex size, surface charge and transfection efficiency are also influenced, i.e. the 

charge ratio between the polymer amino groups and the phosphate groups of the nucleic acids 

(N/P ratio) has a profound influence as a formulation determinant. Efficiency is described as 

optimal at N/P 8 for plasmid transfection, but it is associated to significant toxicity73. 

 

Chitosan is a deacetylated derivative from chitin, a β1→4 N-acetylglucosamine anionic 

polyssacharide and the major component of crustaceans and insects exoskeleton and fungi cell 



INEB Master thesis  2013 

 

Artur Costa  Page 13 of 44 

wall. It is a biocompatible and biodegradable material with low toxicity, high cationic potential and 

has functional groups that allow simple coupling of extracellular and intracellular targeting ligands63. 

It has been extensively used in gene therapy studies74-77. However, before regarding the possibility 

for its use as a gene carrier in clinical trials, low specificity and low transfection issues must be 

solved. The latter is highly dependent on formulation, especially on molecular weight (MW), degree 

of deacetylation (DD), pH (solubility), and charge ratio of chitosan to DNA. High DD ensures vector 

positive charge by exposing amino groups with a pKa around 6.564, 78. The electrostatic binding 

between the positively charged chitosan amines (N) and the negatively charged DNA phosphates 

(P) is also dependent on the charge ratio, i.e. N/P ratio. An adequate ratio must provide complex 

stability in a physiological milieu, but also enable disassembly after entering the target cell. High 

ratios grant complex integrity, but may limit drug release and lead to some cytotoxicity. MW 

influences DNA entrapment, a decisive factor in nuclease evasion, and delivery upon cell entry. 

These major formulation factors affect each other, .e.g. increasing N:P ratio for better stability may 

be compensated by lowering MW in order to maintain release capacity and high transfection 

efficiency79. 

 

pH affects solubility and electrostatic interaction since it may determine whether the amino 

groups are protonated or not, i.e. positive charge is ensured only at acidic pH, but not at 

physiological conditions80. That issue has been addressed with the use of chitosan salts, e.g. with 

chitosan hydrochloride (CHy), chitosan lactate (CLa), chitosan acetate (CAc), chitosan aspartate 

(CAs), chitosan glutamate (CGl), that increase transfection efficiency, but also raise optimum N:P 

ratios65. The use of trimethylated chitosan (TMC) is another solution, since it sustains a constant 

positive protonated state on the amino groups by covalently binding three methyl substituents. 

TMC supports higher solubility and DNA binding, and also increases the complex zeta potential, 

which enhances interactions with the negatively charged cell membranes. An increase in 

membrane permeability for small hydrophilic compounds has also been observed, nonetheless 

maintaining a level of cytotoxicity lower than PEI81. 

 

Additional structural modifications may also be used. Examples include the introduction of 

the non-toxic fragment of the tetanus toxin for targeting nanoparticles to neuronal cell populations82, 

or hydrophobic moieties that increase hydrophobic interactions with single stranded AON, cell 

membranes, and endosomal membranes, which enhance complex formation, internalization and 

endosomal escape, respectively83. There are other strategies, like the use of fibrin scaffolds that 

enable controled complex release84, or of double stranded oligonucleotides that are more stable 

and bind more easily to polycations85 (due to increased charged density and lack of exposure of 

hydrophobic bases to the solvent) than single stranded oligonucleotides. Furthermore, endosomal 

escape may be addressed by chemical modification with lysine-hystidine dendrons that improve 
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buffering properties and stimulate the proton sponge effect83, 86. All in all, there are several 

approaches for increasing the efficiency of polycation-mediated nucleic acid delivery. 

 

This project was part of a study aimed to develop an approach for the induction of nerve 

regeneration after SCI by downregulating RhoA and GSK3β.  A battery of antisense 

oligonucleotide sequences were designed and tested for their capacity to down-regulate the target 

molecules. Based on the results they are expected to be later further developed into more efficient 

oligos by introduction of 3rd generation nucleotide modifications. A newly developed nucleic-acid 

delivery platform consisting of trimethylated chitosan conjugated with a hydrophobic group was 

assessed for the capacity to deliver antisense oligonucleotides in vitro. If successful, this would 

warrant further development of the platform for future in vivo delivery targeting neuronal cells in the 

context of SCI nerve regeneration. 
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Methods 

AON design 

 

AON sequences (table 1 and 2) were previously determined based on binding properties 

(optimized Tm) to available sections of the target mRNA taking into consideration RNA secondary 

structure (using the web-based software “oligo analyzer” from IDT and “SFold”87). Other putative 

targets were not found using a BLASTN screening for unspecific binding. 22 nucleotides-long 

gapmers were produced and purified by GE Health Care Uppsala, Sweden, in which the 10 central 

nucleotides were phosphorothioate-modified and the six nucleotides in each end were 

phosphorothioate- and 2’-O-methyl-modified, as seen on tables 1 and 2. This gapmer structure is 

believed to sustain RNase H activity. The 7th sequence of both the RhoA and the GSK3β AON sets 

differs in structure by having no phosphoriothioate bonds between the 2-O-methyl substituted 

nucleotides; that change was done in order to assess the potential redundancy of having both 

structural modifications in the same segment. These sequences were designed for rat gene 

targeting, since testing has been planned to proceed in murine animal models; they may be 

substituted by other sequences if another species is to be targeted. 

 

Table 1 – RhoA AON sequences. “*” refers to a phosphorothioate bond, that substitutes the typical phosphodiester one, 

and nucleotides preceded by “m” have 2-O’-methyl modifications. RhoA AON 6b has a similar nucleotide sequence to 

RhoA AON 6 but differs from all other AON by not having phosphorothioate bonds between the 2-O-methyl-substituted 

nucleotides. 

RhoA AON 1 mU*mA*mC*mC*mU*mG*C*T*T*C*C*C*G*T*C*C*mA*mC*mU*mU*mC*mA 

RhoA AON 2 mA*mU*mC*mU*mU*mC*C*T*G*T*C*C*A*G*C*T*mG*mU*mG*mU*mC*mC 

RhoA AON 3 mC*mU*mC*mC*mC*mG*C*C*T*T*G*T*G*T*G*C*mU*mC*mA*mU*mC*mA 

RhoA AON 4 mA*mC*mC*mU*mC*mU*C*T*C*A*C*T*C*C*G*T*mC*mU*mU*mU*mG*mG 

RhoA AON 5 mC*mC*mG*mA*mC*mU*T*T*T*T*C*T*T*C*C*C*mG*mC*mG*mU*mC*mU 

RhoA AON 6 mA*mU*mC*mU*mC*mU*G*C*C*T*T*C*T*T*C*A*mG*mG*mU*mU*mU*mU 

RhoA AON 6b mAmUmCmUmCmUG*C*C*T*T*C*T*T*C*A*mGmGmUmUmUmU 

 

Table 2 – GSK3β AON sequences. “*” refers to a phosphorothioate bond, that substitutes the typical phosphodiester 

one, and nucleotides preceded by “m” have 2-O’-methyl modifications. GSK3β AON 6b has a similar nucleotide 

sequence to GSK3β AON 6 but differs from all other AON by not having phosphorothioate bonds between the 2-O-

methyl-substituted nucleotides. 

GSK3b AON 1 mA*mA*mA*mG*mG*mA*G*G*T*G*G*T*T*C*T*C*mG*mG*mU*mC*mG*mC 

GSK3b AON 2 mC*mC*mU*mC*mA*mU*C*T*T*T*C*T*T*C*T*C*mG*mC*mC*mA*mC*mU 

GSK3b AON 3 mG*mG*mU*mU*mC*mU*G*T*G*G*T*T*T*A*A*T*mG*mU*mC*mU*mC*mG 

GSK3b AON 4 mC*mA*mG*mU*mU*mC*T*T*G*A*G*T*G*G*T*A*mA*mA*mG*mU*mU*mG 

GSK3b AON 5 mG*mA*mG*mG*mA*mG*G*G*A*T*A*A*G*G*A*T*mG*mG*mU*mG*mG*mC 

GSK3b AON 6 mU*mU*mC*mU*mC*mA*T*G*A*T*C*T*G*G*A*G*mC*mU*mC*mU*mC*mG 

GSK3b AON 6b mUmUmCmUmCmAT*G*A*T*C*T*G*G*A*G*mCmUmCmUmCmG 
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Cell Culture 

 

The adherent RN22 (Rat schwanomma), and HeLa/Luc705 (Human cervical 

adenocarcinoma) cell lines were used. The latter expressed non-functional Luciferase due to a 

mutated intron; this cell line is used as reporter system for efficient transfection of a specific, splice-

correction AON, since it can trigger RNA expression of functional Luciferase, quantifiable by a 

functional assay88. The cells were cultured at 37ºC, 5% CO2, in T75 culture flasks (Thermo 

Scientific) in approximately 10 mL of Dulbecco’s Modified Eagle Medium (DMEM) supplemented 

with 10% fetal bovine serum (FBS) and 50 µg/mL gentamicin, henceforth referred as “complete 

medium”. Subcultures were done routinely to prevent overconfluency, by washing the cells with 5 

mL of phosphate buffer saline (PBS) and addition of 1 mL 0.25% (w/v) trypsin. Cells were then 

suspended in an appropriate volume of complete medium, thus inactivating trypsin, and re-seeded 

at the desired cellular density. 

 

Cellular transfection 

 

500 µL of cell suspension was used for seeding 24-well plates (BD Falcon) at adequate 

density so that 50-60% confluency was reached after 24h, i.e. at the moment of transfection, and 

overconfluency was not reached before the experiment ended. GSK3β and RhoA AON were 

transfected with TransIT-Oligo (Mirus). Although AON and transfection reagent concentrations 

varied, the transfections were done by adding 50 µL of the transfection mix, containing Opti-MEM I 

Reduced Serum Medium (Invitrogen), Transit, and the AON, to 250 uL medium. TMC transfections 

were done by adding 50 µL of the prepared complex solution to 450 µL medium. In both cases, the 

medium was substituted immediately before the transfection for antibiotic-free medium, and was 

only re-added 4h after. Chloroquine at 100 µM (final concentration) was added to selected samples 

at 24h after transfection; medium was replaced by complete medium 4h later. 

 

RhoA- and GSK3β-AON sequence screening 

 

Total RNA of RN22 was harvested at 24h after transfection with TransIT-Oligo, with the 

Direct-zol RNA MiniPrep kit (Zymo Research). NanoDrop 1000 (Thermo Scientific) 

spectrophotometric analysis was used for determining RNA concentration of the extracts and 

accessing purity levels by the 260/280 ratio (should be equal or higher than 2). Equal amounts of 

total RNA were amplified by OneStep RT-PCR kit (Qiagen), or by SuperScript II reverse 

transcriptase (Invitrogen) followed by HotStar Taq DNA polymerase (Qiagen). A minimum of 3 
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independent replicates were done for each condition. 

 

Every sample was submitted to amplification of both the target (GSK3β or RhoA) and a 

reference (rRNA) gene. 15 µL PCR products with 3 µL loading buffer were submitted to 1.2% 

agarose gel electrophoresis at 100V for 70 minutes and semi-quantitative analyzes performed 

using the Volume tool of the Image Lab (Bio Rad) software for band intensity. Relative transcript 

levels are defined by dividing the ratio of target to reference gene of each sample by the equivalent 

ratio of the untreated, negative control sample.  

 

Complex formation 

 

The biomaterials under study were previously prepared and characterized in the lab. The 

unmodified TMC had 43.3 kDa, 11% acetylated monomers and 30% quaternized monomers. The 

modified materials had similar characteristics with an additional degree of stearic acid substitution 

which is indicated below. All TMC solutions were done in 10 mM HEPES and 5% (w/v) glucose, in 

the pH range of 7.2-7.4, as determined by an 827 pH Lab Meter (Metrohm). 

 

TMC-AON or SA TMC-AON complexes were prepared immediately before any experiment, 

following a common protocol with a usually fixed oligonucleotide concentration at 1 µM and a 

variable concentration of TMC. The AON used in the TMC analyses was 20 nucleotides long with 

phosphoriothioate modifications (C*C*U*C*U*U*A*C*C*U*C*A*G*U*U*A*C*A), in other words, 

similar to the AON under screening for downregulation activity. 

 

The complexes were prepared by separately heating the AON and TMC solutions at 60ºC for 

5 minutes, then adding the AON solution to the TMC solution, and heating the mixture at the same 

temperature (60ºC) for 15 minutes under agitation, followed by a cooling down period at room 

temperature (approximately 25ºC) for 30 minutes. Some samples, i.e. those submitted to gel 

retention, DLS, TEM and nucleic acid binding dye accessibility analyzes, were also further 

incubated in PBS for 30 minutes at room temperature (approximately 25ºC), which aimed to 

simulate physiologic salt and pH conditions. 

 

Complex characterization 

 

Gel retention electrophoresis assay 

 

The prepared complexes were analyzed for the TMC binding properties, by gel retention 
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electrophoresis assay. For agarose gels, 2% agarose (w/v) was dissolved in TAE buffer (Tris base, 

acetic acid and EDTA), added SybrGold for antisense oligonucleotide staining using the 

recommendations of the manufacturer, and run under 120V for 30 minutes. Samples contained 25 

µL complexes, 2 µL MilliQ water, 3µL 10x PBS and 6 µL loading buffer. Gradient polyacrylamide 

gels (4-20%) were also used and ran at 80V for 45 minutes. PAGE gels were stained after the run 

by incubation in 1x SybrGold in TBE solution for 15 minutes. Gel imaging was done using a 

ChemiDoc (Bio Rad) camera equipment. 

 

Nucleic acid binding dye accessibility assay 

 

The samples, previously incubated in PBS, were further incubated with 1x SybrGold for 10 

minutes at room temperature (approximately 25ºC). Fluorescence emission was determined by 

exciting the samples at 495 nm and detecting at 540 nm. Blank solutions were prepared with the 

same TMC concentrations as the samples, but with no AON, and a free oligonucleotide sample 

was also prepared, with no TMC. Three independent replicates were prepared for each condition, 

each analyzed in duplicate. 

 

Dynamic Light Scattering analysis 

 

Dynamic Light Scattering (DLS) analysis was done using a Zetasizer Nano (Malvern), with 

three independent replicates observed three times each. Between each separate analysis, the 

cuvette was washed with MilliQ water. 

 

Transmission Electron Microscopy 

 

Transmission Electron Microscopy (TEM) analysis was prepared by placing the samples over 

a formvar-coated carbon grid, dehydrating them and performing negative staining with 1% uranyl 

acetate.  

 

Transfection studies 

 

Luciferase assay 

 

An additional method was used for assessing the transfection efficiency, a reporter system in 

which the used HeLa cell line expresses a non-functional Luciferase gene. Upon efficient 

transfection of a specific AON, the induction of a splice-correction mechanism leads to the 
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expression of functional Luciferase. In order to evaluate relative Luciferase expression levels, cells 

were washed with 500 µL PBS, lysed with 300 µL HEPES-Krebs-Ringer solution (containing 10mM 

glucose, 1.2 mM CaCl2, 5 mM KCl, 1.2 mM MgSO4, 1.2 NaHPO4, 130 mM NaCl and 0.15% Tryton 

X100), stored at -80 ºC for 10 minutes, and then left to thaw at room temperature (approximately 

25 ºC) for about 30 minutes. Then, the cell lysates were analyzed with both the Luciferase Assay 

System Kit (Promega) and the Micro BCA Protein Assay Kit (Thermo Scientific). The former 

determines luciferase levels through emitted luminescence and the latter determines total protein 

levels through absorvance at 562 nm. Relative luciferase levels were calculated by establishing the 

ratio of luciferase to total protein levels, and then the fold increase between the samples and the 

non treated control. 

 

Flow cytometry 

 

Transfected cells were analyzed in a FACS Calibur (BD), 24h after transfection. The used 

AON were labeled with Cy5. Cells were suspended by trypsin treatment, washed with 500 µL cold 

PBS, and filtered through a 100 µm pore filter before the analysis. 

 

Fluorescence microscopy 

 

Samples were visualized at 24h after transfection with an AxioVert Inverted Fluorescence 

Microscope (Carl Zeiss). 
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Results 

PART I – Nucleic acid drug 

 

Selection of transfection conditions  

 

During optimization of the transfection conditions, an approach with fluorescence 

chromophore (Cy5)-labeled antisense oligonucleotides was used. The optimum conditions were 

selected for antisense activity screening of oligonucleotide sequences with a commercial reagent 

specific for in vitro transfection of these nucleic acids, TransIT-Oligo (Mirus). Gentamycin was 

removed from the cell culture medium during the initial 4h of transfection, since it is reported that 

the presence of antibiotics during transfection may lead to substantial cytotoxicity59. Flow cytometry 

was used as an initial approach to assess AON association/internalization to cells. This technique 

does not entirely differentiate between membrane-bound or internalized AON; furthermore, those 

that enter the cell may be either contained in endocytic vesicles or free in the cytoplasm and 

nucleus, where they are able to exert their function. In other words, conclusions on transfection 

efficiency may not be gathered solely from flow cytometry analysis, however a higher degree of 

relative fluorescence normally relates to increased possibilities of achieving higher transfection 

efficiency. It is thus useful for a simple and quick screening, which is complemented later by 

functionality studies. 

 

 

Figure 8 – Mean fluorescence of flow cytometry studies at 0.1µM AON. Several concentrations of TransIT-Oligo 
(Mirus), a commercial transfection reagent were tested, alongside a free oligo control. 
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From the analysis of the mean fluorescence of each sample, 1.3% TransIT-Oligo (v/v) can be 

expected to support efficient AON transfection in the selected cell line (RN22) since it supported 

the highest fluorescence levels (fig. 8). Some cytotoxicity (verified by observation of cell 

morphology under the optical microscope) was seen for the sample with the highest transfection 

reagent concentration, which may explain the difference of fluorescence to the previous sample. At 

0.1 µM, fluorescence level is increased more than 3 times by the presence of 1.3% transit; 

however, as stated before, no straight-lined conclusions may be gathered from flow cytometry 

analysis alone. 

 

 

 

 

Figure 9 – Fluoresnce microscopy analysis of different transfection reagent concentrations. Free oligo at 0.1 µM 
(top), 1.3% (v/v) TransIT-Oligo and 0.1 µM AON (middle) and 1.3% (v/v) TransIT-Oligo and 0.3 µM AON (bottom). The 

pictures were taken at 40x zoom, and at identical exposures times.  
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Following the flow cytometry studies, fluorescence microscopy was used to confirm whether 

the previously selected conditions were efficient in transfecting the selected cell line. In addition to 

free oligo and 1.3% (v/v) TransIT-Oligo at 0.1 uM AON, 1.3% (v/v) TransIT-Oligo at 0.3 µM AON 

was also tested, having had their microscopy pictures taken at identical exposure times. The latter 

provided substantially higher transfection efficiency with no significant signs of cytotoxicity (fig. 9). 

Efficient transfection was determined by diffuse nuclear staining, referred in previous studies as a 

characteristic of phosphorothioate-modified AON89, 90. In opposition, cytoplasmatic abundance of 

small granules is signal of extensive retention of AON at vesicles, most probably endosomes, i.e. 

there is low endosomal escape. 

 

A manual counting of nuclear- or cytoplasmic/vesicular-stained cells was done from 

fluorescence microscopy images, and used in a contingency table (table 3). For analysis purposes, 

cells binned into the first class were excluded of the second, although in reality they are stained in 

the cytoplasm as well. The chi-square test returned p < 0.001 that the data is statistically significant, 

i.e. the statistical analysis supports that the tested conditions have different transfection properties. 

 

Table 3 – Contingency table used in the analysis of the fluorescence images. Cell count was determined 

manually. P<0.001 statistical significance analysed by chi-square test of the 2x3 contingency table. 

 
Nuclear localization Cytoplasmatic/vesicular localization/Unstained 

Free ON 0,1 uM 10 88 

TransIT 1,3% 0,1 
uM 22 56 

TransIT 1,3% 0,3 
uM 19 81 

 

 

Since these results from the optimization studies support 1.3% (v/v) TransIT-Oligo and 0.3 

µM AON as efficient transfection conditions with about 80% transfected cells, these were selected 

for further testing of AON downregulation activity. 

 

Analysis of antisense oligonucleotide activity 

 

Rn22 a rat schwannoma cell line expressing RhoA and GSK3beta was then used as a model 

for testing the downregulation efficiency of a series of antisense oligonucleotides. These were 

selected previously based on thermodynamic analysis of binding affinities of the oligos to the target 

mRNAs (having in consideration melting temperatures and RNA secondary structure). After 

transfection with conditions determined from the results presented above, reverse transcription 

PCR with semi-quantitative analysis was selected as an initial method to screen for the different 

oligonucleotide efficiencies. 
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Figure 10 – Antisense activity analysis of GSK3 AON-treated, PCR-amplified samples. There is a clear 
downregulation of the target gene (**p < 0.01, samples vs non-treated), although high variability hinders an effective 

comparison between the different sequences (not statistically significant). 

 

 

Figure 11 - Antisense activity analysis of RhoA-AON treated, PCR-amplified samples. There is a clear 
downregulation of the target gene (**p < 0.01; samples vs non-treated), although high variability hinders an effective 

comparison between the different sequences (not statistically significant). 
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This semi-quantitative means of analysis yielded a very high standard deviation, which did 

not enable sequence discrimination (fig. 10 and 11). Nonetheless, all of them were effective in 

downregulating the target gene. The variability observed in the antisense studies could reflect 

some toxicity issues observed during the transfection procedure with some of the AONs (as seen 

by cell morphology changes visualized under the light microscope – data not shown). Despite the 

variability and the absence of statistical significance between every pair of treated samples, all 

AON sequences tested yielded gene downregulation with p < 0.01. Based on these results 

quantitative, real-time RT-PCR will be used in future to confirm and better discriminate between 

some of the AON sequences.  
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PART II – Polymer vector 

 

In order for antisense oligonucleotides to have effects in a therapeutic context, they need to 

be delivered to target cells in an efficient way. Due to their chemical nature (negatively charged 

hydrophilic molecule), these are not taken up efficiently by cells; furthermore, pharmacokinetics 

and bioavailability are an issue in in vivo conditions. Thus, safe and non-toxic delivery vectors are 

needed for therapeutic applications of antisense oligonucleotides. In that context, chitosan, a 

natural polymer with inherent biodegradability properties, is a promising vector. 

 

A new chitosan derivative was tested for efficient complexation (formation of nanoparticles) 

and for transfection efficiency of AONs. Trimethyl modification of the deacetylated amines of 

chitosan produced a biomaterial with improved electrostatic interaction and solubility properties, 

trimethylchitosan (TMC). An additional modification with stearic acid was tested for AON binding 

properties, nanoparticle diameter, cellular binding and transfection efficiency properties, which 

were expected to improve over the unmodified TMC. 

 

Physical and chemical properties of TMC 

 

Unmodified TMC and stearic acid conjugated TMC (TMC-SA) were tested for the ability to 

bind to AONs. Initially, a TMC-SA with 5% SA (TMC-SA 5%) modification was tested. Later in the 

project a TMC-SA with 2.5% SA (TMC-SA 2.5%) modification became available, which was 

included in some of the analyses. An initial approach to study the AON binding properties of both 

the unmodified and TMC-SA 5% was done by using agarose gel electrophoresis and SybrGold 

staining. Since the nucleic acid dye should only bind free oligonucleotides, this was perceived as a 

simple and effective analysis. Using a free oligo control as a reference for migration length, several 

TMC N/P ratios could be tested for their ability to strongly interact and bind AON thereby 

preventing its migration in the gel. AON weakly interacting or not interacting at all with the TMCs 

after complexation will migrate. The fraction of migrating AON thus directly reflects the extension of 

interaction between AON and TMCs.  

 

The smearing pattern observed is indication that the oligonucleotide is also being released 

from the interaction with the TMC over time (during the agarose run). This could indicate a 

destabilizing effect of the nucleic acid binding dye (SybrGOLD which was present in the gel during 

the electrophoresis) and/or the electrophoresis voltage conditions. Presence of a smear but 

absence of free oligo band suggests complete AON binding at the beginning of the run, with 

posterior release during the run. 
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Figure 12 – Agarose gel retention assay of unmodified TMC (top) and 5% stearic acid-substituted TMC (bottom). 
N/P ratios are indicated above each column, 0 indicates free oligo (no TMC present). The unmodified TMC has much 

weaker AON binding properties than the stearic acid-modified TMC. The former has partial retention at N/P 30 and 
complete retention at N/P 100, while the latter has partial retention at N/P 1 and complete retention at N/P 2. 

 

As expected, the hydrophobic substitution was effective in improving the AON binding 

properties of TMC, since at N/P 2 no free oligo was present at the beginning of the run (fig. 12); 

however, the intense smear indicates potential low interaction stability. Higher N/P ratios have 

reduced smear, and at N/P 10 and 30, there is none at all. Although it lacks confirmation in vitro, 

excessive N/P ratios may pose an obstacle to oligonucleotide release after entering the cell, in the 

case of the interaction being too stable and the complex failing to dissociate. Cytotoxicity could be 

another valid reason to avoid those N/P ratios. Although the hydrophobically modified TMC (with 5% 

SA modification) showed complete retention of the oligo at low N/P ratios, the unmodified 

trymethylchitosan was only effective in slowing the AON migration at N/P 100 (although some 

degree of destabilization is still observed – presence of smear). 

 

A different approach was used at a later stage – considering that the presence of nucleic acid 

binding dyes during the electrophoresis could interfere with AON migration, posterior staining was 

suggested. Polyacrylamide gels were selected because they are more efficient in post staining 

than agarose gels. For this analysis, unmodified TMC, TMC-SA 5% and TMC-SA 2.5% were 

available to use. 
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Figure 13 – Polyacrylamide gel retention assay of unmodified (top), 2.5% stearic acid-modified (mid) and 5% 
stearic acid modified (bottom) TMC. Polyacrylamide gels enable nucleic acid staining after having been run, contrary 

to agarose ones. The difference in the results supports that SybrGold has a destabilizing effect on TMC-AON interaction, 
especially on unmodified TMC samples. In other words, stearic acid-modified TMC produces more robust interactions 

with AON. 

 

The difference between both sets of results indicates that there was an influence of the 

nucleic acid dye presence during the electrophoresis on the interaction stability and oligonucleotide 

migration. SybrGold appears to have a destabilizing effect during the run, possibly by competing 

with TMC for AON binding. The smear is not present in the polyacrylamide gels, probably because 

the complexes were not destabilized in the absence of SybrGold during the electrophoresis 

analysis, thus not releasing oligonucleotide. 

 

This destabilizing/competing effect of a nucleic acid binding dye has not been reported 

previously in the literature and was initially unexpected. However, these two behaviors made 

possible to draw extra conclusions. As a competing effect is seen between the cationic polymer 

and SybrGold for binding to the oligonucleotide, this in principle allow us to directly observe 

another level of binding strength for the unmodified and SA-modified TMCs. Hence, whereas the 

destabilizing effect of SybrGold is only seen with TMC-SA 5% up to N/P ratio 5-6, for the 

unmodified TMC this destabilization is seen up to N/P 100 (notice the smear band). This provides 

another level of confirmation for the stronger interactions between the TMC-SA and oligonucleotide, 

especially when in presence of a destabilizing condition. 
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In polyacrylamide gels, the difference in band intensity between the TMC-containing samples 

and the free oligo control is much more obvious (fig. 13) than in agarose gels. The TMC-SA 5%, as 

well as the TMC-SA 2.5%, shows almost complete retention at N/P 3, a value approximate to the 

one previously obtained – the increase in that result may be related to the higher sensitivity of 

polyacrylamide over agarose gels. The biggest change is observed in the unmodified TMC, which 

in the agarose gel retention analysis showed retention only at N/P 100, a very high amount of 

polymer, whereas in the polyacrylamide gels, retention is almost complete from N/P 5 onwards. 

The destabilizing effect is clearer in the unmodified TMC samples than in the stearic acid-modified 

TMC samples, i.e. the latter produces a more robust interaction with AON. 

 

Despite the reviewed difference between both methods of analysis, it is clear that the stearic 

acid hydrophobic moiety introduced in our biomaterial of study, trymethylchitosan, was successful 

in improving AON binding properties. No major variance was recorded between the materials with 

different degrees of stearic acid modification. 

 

The same nucleic acid dye used in the gel retention studies was used in a parallel 

experiment, with a simpler concept. In the SybrGOLD accessibility assay, fluorescence intensity 

levels of SybrGOLD are dependent on its binding to AON, which in turn is dependent on AON 

binding properties and nanoparticle structure of TMC. Accessibility to nucleic acid binding dye was 

considered complete (100%) for the free oligo control sample. PBS incubation was expected to 

efficiently mimic physiologic pH and salt conditions. The increase in ionic strength may shield 

charged moieties and interfere with electrostatic interactions, which are crucial for maintaining the 

complex integrity. This method of analysis determines whether upon complexation with the polymer 

vectors, AON is accessible to the nucleic acid dye binding. This might be dependent not only on 

whether the oligonucleotide is TMC-bound but also on structural properties/arrangement of the 

complexes. 

 

Most of the unmodified TMC N/P ratios yielded fluorescence levels around 50% of those from 

the free oligo control (fig. 14), which was unexpected, considering that the results from retention 

studies determined a much lower fraction of unbound AON, especially for the higher N/P ratios. 

Also, previous studies with similar analyses 65, 91 showed a curve that has residual levels of 

fluorescence after a N/P ratio associated with complete AON binding. That did not happen here, 

since there is a marked rise in fluorescence after N/P 2.  

 

Both N/P 1 and 2 have much lower fluorescence levels than the remaining samples. Seeing 

that the stoichiometry of opposite charged moieties is close to 1:1, it was proposed that mutual 
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charge neutralization was responsible for the absence of electrostatic repulsion between 

nanoparticles and consequential aggregation. This is supported by the intrinsic aggregation 

properties of chitosan and chitosan derivatives92. Aggregation is expected to entrap 

oligonucleotides and prevent their accessibility to nucleic acid dye binding. Validation of this 

hypothesis requires further analyses. 

 

 

Figure 14 – Relative fluorescence levels, in comparison to the free oligonucleotide control, of the SybrGold 
analysis of unmodified TMC and TMC-SA 5%. N/P 100 of TMC-SA 5% was not tested. Most values are higher than 

expected, given the results from retention studies. A loose, disorganized structure is a viable hypothesis for the reduction 
of SybrGold exclusion from nucleic acid dye binding. The low fluorescence values at TMC N/P 1 and 2 and TMC-SA 5% 
N/P 1 may be due to extensive aggregation, from mutual neutralization of opposite charges. The hydrophobic properties 
of the stearic acid substituents support the formation of an uncompacted micelle-like particle structure of TMC-SA 5%-

AON complexes that allows accessibility of TMC-bound AON to SybrGold binding. TMC N/P 10 is statistically significant 
from TMC-SA 5%, *p<0.05. 

 

Similar to the unmodified TMC, the stearic acid-modified fluorescence levels were higher 

than expected, especially for higher N/P ratios. At N/P 1, the event of nanoparticle (NP) 

aggregation proposed for N/P 1 and 2 of unmodified TMC is likely to have been repeated. N/P 0.5 

has a high standard deviation, as some instability is associated to this condition. Both TMCs show 

a tendency for increased association of SybrGOLD to nucleic acid with increasing N/P ratios 

although TMC-SA5% seems to reach a plateau at N/P10 while unmodified TMC, shows a tendency 

for lower fluorescence levels (P<0.05 for N/P10). 

 

This effect could be possibly explained due to formation of a loose, disorganized particle 

structure that enables access of a nucleic acid binding dye to TMC-bound AON. The slight intrinsic 

hydrophobicity of TMC81 supports that hypothesis. Thus, this analysis was called accessibility 
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assay instead of the common designation of nucleic acid binding dye exclusion assay. The emitted 

fluorescence is specific for SybrGold-AON binding since solutions with only TMC, and no AON 

were prepared alongside the samples under test to correct for background levels of fluorescence 

due to the presence of the polymer (thus eliminating unspecific fluorescence). 

 

The higher fluorescence levels (high binding of SybrGOLD to nucleic acids) of TMC-SA5% 

could be attributed to the introduction of hydrophobic moieties with increasing N/P ratios apparently 

stimulating this phenomenon. This could possibly be related to the formation of a micelle-like 

structure, in which the acyl chains are preferably located at the NP core, and the TMC backbone is 

found at the NP surface93. The latter supports the high AON accessibility to nucleic acid dye 

binding since the former have a higher tendency to bind to the quaternary amines of the TMC 

backbone, and these could be preferentially located at the surface, i.e. they are highly exposed to 

the polar solvent. 

 

Average particle diameter were determined by Dynamic Light Scattering analysis, both for 

N/P 5, where interaction of AON with TMC and SA-modified TMC was almost complete or 

complete, respectively, and N/P 80 which was the highest ratio reached with each biomaterial 

under study (unmodified, 2.5% SA and 5% SA TMC), after incubation in PBS. PBS incubation of 

the complexes was chosen In order to access the effects of physiological concentrations of salt in 

particle stability, thus giving us a more approximated information on the size of particles when in an 

extracellular environment. DLS analysis returns results in intensity, which unfortunately has no 

clear conversion to nanoparticle (NP) population numbers. A single larger particle may yield higher 

intensity than several smaller ones, so the analysis curve gives much more weight to aggregates 

than individual NP. Not only must this be taken into account during the interpretation of the results, 

but also that single particles are closer to the detection level, so they may fail to be reported. 

 

Small and well-distributed nanoparticles would be ideal for the intended purpose, i.e. cellular 

transfection, since internalization is dependent on low particle size94, 95 and broad diameter 

distribution could lead to unexpected and/or unstable results. However, since this study focuses on 

chitosan derivatives, which are likely to aggregate92, some variability was expected. The chosen 

N/P ratios were selected in order to assess whether great shifts in TMC concentration would have 

a significant impact on nanoparticle size. Also N/P 5 was selected taking into consideration that in 

the gel retention assay (PAGE), for both unmodified and modified TMCs, it is the lowest ratio with 

considerable interactions between the polymer and the AONs. As for N/P 80 it corresponds to the 

highest ratio used later for the in vitro cell transfection assays, since even higher ratios were 

already observed before to give high cell toxicity, especially for hydrophobically modified TMCs 

(previous work from the lab). 
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Unmodified TMC produces larger particles, especially at N/P 80, probably due to extensive 

aggregation (fig. 15). Hydrophobically-modified TMC, on the other hand, make smaller particles, in 

the range of 100-200 nm even at higher N/P ratios, which has been referred in the literature as an 

optimal diameter for cellular internalization94, 96. There is an overall high polydispersity index (PdI), 

which usually relates to a broad distribution of nanoparticle size. 

 

 

Figure 15 – Dynamic Light Scattering analysis of unmodified, 2.5% and 5% stearic acid-modified TMC. The high 
polydispersity index refers to a broad particle diameter distribution. The tendency for aggregation is lower in 

hydrophically modified-TMC than in the original biomaterial. 

 

 

Figure 16 – Typycal Dynamic Light Scattering analysis profile for TMC-SA 5% at N/P 80. Although the example of 5% 
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SA-TMC at N/P80 was used, similar profiles were observed for other N/P ratios. Not all of the high PdI reported values 
are associated to broad nanoparticle size curves; in some cases, a bimodal distribution is responsible for it. 

 

In some of the analyzed samples, however, the high PdI is representative of a bimodal 

distribution, as exemplified in fig. 16 with TMC-SA 5% at N/P 80. The left peak is associated with 

individual nanoparticles, whereas the right peak relates to aggregates. As referred before, DLS 

analysis yields results in intensity, which is associated to the mode of data acquisition; larger 

particles produce higher intensity than a similar number of smaller ones. So, despite not being 

possible to determine an objective translation from intensity into nanoparticle numbers, the 

percentage of aggregated particles is expected to be much lower than the percentage of particles 

in suspension. In other cases, there is a significant peak at around 1nm, which although does not 

offer any relevant information, influences the PdI determination (data not shown). It is expected to 

be an artifact, possibly derived from the high glucose concentration in the buffer solution. 

 

After dehydration and negative staining with uranyl acetate, several samples were submitted 

to Transmission Electron Microscopy (TEM) analysis. Dehydration was expected to have an impact 

on nanoparticle shape, diameter and stability, as it may lead to NP collapse, aggregation or 

disruption of the original shape. The high PdI reported in the DLS analyses was an indicative of 

putative nanoparticle instability, which was expected as well in the TEM pictures. Indeed, most of 

the tested samples yielded pictures with no nanoparticles, probably due to their complete 

disruption. 

 

 

Figure 17 – Transmission electron microscopy images of 5%-SA TMC at N/P 2 (left) and N/P 10 (right). The regular 
spherical shape of the nanoparticles and the slight variance in diameter are according to expected. 
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Figure 18 – Histograms of particle size distribution of 5%-SA TMC at N/P 2 (left) and N/P 10 (right) produced from 
manual annotations made with the Fiji software

97
. Nanoparticle diameter was manually annotated from TEM pictures 

in order to assess its distribution. The X axis represents particle diameter in nm. Each column has a width of 3.774 nm or 
2.664 nm respectively for N/P 2 and N/P 10. 

 

TMC-SA 5% was successfully analyzed by TEM at N/P 2 and 10 (fig. 17). As expected, the 

nanoparticles had a regular spherical shape, with some variance in diameter, concordant with the 

PdI from the previous DLS analyses. No aggregates were observed, and the diameter was, as 

expected, much lower than observed by DLS method. 

 

Manual annotations of nanoparticle diameter (fig. 18) were made using the Fiji software97, in 

order to assess its distribution and compare it to DLS analyses. With quantified results, the broad 

size distribution is more obvious. Particle count was high (494 and 853 for N/P 2 and 10, 

respectively), in an attempt to produce a more robust analysis. However, it must be taken into 

account that most of the analyzed samples reported an unstable behavior and that dried samples 

are expected to have much lower diameter than hydrated, suspended particles. DLS analyses are 

much more reliable in diameter determination and TEM should be preferably used for shape 

analysis, although it also reflects the broad size distribution of the formed particles. 

 

In vitro transfection properties of TMC 

 

Using a reporter system that determines transfection efficiency of a specific splice-correction 

AON, a Luciferase assay was designed. Functional luciferase protein levels, which are exclusively 

dependent on efficient AON transfection, were determined by analyzing the emitted luminescence 

that follows substrate addition. Untreated cells were used as a negative control and reference for 

fold increase calculations. A free oligonucleotide sample was also included in the analysis, which 

produced no changes in Luciferase expression levels. The samples were analyzed at 48h since 

the previous analyses determined that at 24h there was very high endosomal retention; 

furthermore, while the previous analysis assessed internalization, functional studies require 

additional time for AON to have its activity. 
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Lipofectamine 2000, a commercial transfection reagent, was used as a positive control, 

since it efficiently transfects AON into HeLa cells. Two lipofectamine samples were tested, one at 

the same AON concentration as the remaining samples (0.3 µM), and another at a lower AON 

concentration (0.1 µM). These conditions yielded high Luciferase expression levels, 50 and 10 

times the Relative Luminiscence Units (RLU) of the negative control, respectively, although cell 

viability was severely affected as seen by Optical Light Microscopy. 

 

The three biomaterials under study were tested at several N/P ratios. Up until N/P 40, no 

efficient AON transfection is reported (fig. 19), since functional luciferase levels are similar to the 

negative (Untreated) control. Furthermore, neither unmodified TMC nor 5% SA TMC were able to 

transfect HeLa cells at N/P 80. 2.5% SA TMC yielded an increase of Luciferase expression of 

approximately 5 times the untreated control at those N/P ratios, but with a high standard deviation. 

This may be representative of high endosomal retention at 48h incubation. 

 

 

Figure 19 – -Luminiscence levels, relative to the untreated control, of the Luciferase transfection assay. 
Lipofectamine 2000, a commercial transfection reagent, was used as a control both with the same AON concentration as 
the remaining samples and with 1/3 of that concentration (0.3 and 0.1 µM, respectively). The difference between TMC-

SA 2.5% at N/P 40 treated with CQ and TMC-SA 2.5% at N/P 40 is statistically significant (***p<0.001), although the 
equivalent comparisons for the untreated TMC and the TMC-SA 5% are not statistically significant. 

 

In order to confirm that hypothesis, addition of chloroquine (CQ) was tested at N/P 40. CQ 

is an endosomal escape-inducing drug, with great buffering properties63, 98. When present in 
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endosomes, e.g. co-internalized with AON, it slows down the acidification while increasing the 

osmotic pressure, eventually leading to its rupture. Seeing that the levels of Luciferase from CQ-

treated samples were approximately 10x higher than N/P 40 (with statistical difference of p<0.001 

according with Tukey’s test of one way analysis of variance), we can conclude that transfection 

with hydrophobically-modified TMC is hindered by high endosomal retention. Unmodified TMC 

samples, on the other hand, were unaffected by CQ addition, i.e. there was no endosomal 

retention; the low transfection levels are more likely due to nanoparticle instability and aggregation 

that limits cellular interaction. CQ treatments resulted in some cytotoxicity, observed by Optical 

Light Microscopy, although still significantly lower than lipofectamine. 

 

TMC-SA 2.5% samples yielded higher luciferase levels than TMC-SA 5%, although the 

previous analyses suggest that internalization is similar for both biomaterials. The lower 

transfection properties of TMC-SA 5% are probably due to lower AON release from TMC-AON 

interaction. While AON binding properties were similar for both hydrophobically modified 

biomaterials in terms of association, that is not necessarily the case for complex dissociation. The 

latter is crucial for attaining efficient transfection, since AON are dependent on being released for 

exerting their function. Thus, TMC-SA 5% at N/P 40 possibly produces such strong interaction with 

AON that it prevents their release after entering the cell, yielding lower transfection efficiency than 

TMC-SA 2.5%. 

 

For better understanding the results of transfection efficiency we decided to study the 

cellular binding properties of TMC-AON complexes using fluorescently labeled AON (Cy5-AON). 

Flow cytometry was thus used. The washing step of the flow cytometry protocol does not ensure 

complete removal of membrane-bound AON, but most of the remaining oligos are expected to be 

internalized. Even though free oligonucleotides have some binding properties themselves, 

complexation with TMC was expected to have a great impact. FACS based methods are not a 

reliable way to determine cellular localization of internalized, labeled AON, since the latter may be 

retained in endosomes or free in the cytosol or nucleus. 
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Figure 20 – Geometric mean of the fluorescence levels of TMC-treated samples, determined by flow cytometry 
analysis. HeLa cells were treated with Cy5-labeled AON and TMC in different concentrations, in triplicate. The low 

fluorescence levels in the unmodified TMC-treated samples are likely to derive from the aggregation properties of the 
biomaterial. The higher levels associated to the hydrophobically-modified TMC are indicative that the stearic acid 

modification is effective in stimulating cellular binding. The differences in fluorescence from 2.5% SA TMC at N/P 80 to 
both the free oligo control and 5% SA-TMC at N/P 80 are statistically significant (**p<0.01), as well as the difference 

between 5% SA TMC at N/P 80 and the free oligo control (***p<0.001). 

 

Free ON samples have close to 35x the fluorescence levels of the non treated control, yet 

unmodified TMC samples have approximately half of those levels (fig. 20). Aggregation properties 

as seen in the DLS analyses are potentially responsible for lower cell membrane binding and 

internalization, since large particles are internalized with more difficulty than smaller ones. 

Changes in N/P ratios seem to have no impact on cellular binding of unmodified TMC 

nanoparticles. 2.5% and 5%-SA TMC samples, on the other hand, show higher fluorescence levels 

that escalate with the rise of the N/P ratio. These results are concordant to what was expected, i.e. 

stearic acid modification is successful in improving not only AON binding properties, but also 

cellular binding properties as well. 
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Figure 21 – Fluorescence microscopy image of HeLa cells treated with TMC at N/P 80, TMC-SA 2.5% at N/P 40 
and TMC-SA 5% at N/P 40(from top to bottom). Fluorescence image (left); fluorescence and brightfield merge image 

(right). With TMC, the Cy5-labeled is mainly localized in vesicle-like structures (possibly  endosomes/lysosomes), 
pictured by an abundance of granules close to the nucleus. A similar effect is observed in TMC-SA samples, although at 

higher fluorescence intensity. 

 

Fluorescence microscopy complemented the data from the flow cytometry studies. While the 

latter yielded no information regarding the cellular localization of the fluorescent AON, the former 

allows identification of the oligo localization, although it does not enable a quantitative analysis. A 
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combinatorial approach of flow cytometry and fluorescence microscopy provides a better view of 

the cell delivery process. 

 

This technique is capable of determining the cellular localization of fluorochrome-labeled 

AON. Important information may be gathered by analyzing fluorescence images, e.g. whether the 

oligonucleotides were not internalized or rather were stopped at endosomes. According to Lorenz89, 

90 et al, efficient transfection of phosphorothioate-modified AON is confirmed by a diffuse 

intranuclear staining due to a tendency for migration and accumulation of oligonucleotides in the 

nucleus. The microscopy pictures were taken at identical exposure times. 

 

Unmodified TMC is unsuccessful at transfecting HeLa cells, even at N/P 80 (fig. 21). Some 

cells are brightly stained, but they are likely senescent and thus much more permeable. The 

remaining cells are faintly stained, with AON limited to vesicle like structures, possibly 

endosomes/lysosomes. Transfection with TMC-SA 2.5% at N/P 40 seems to result mainly in 

endosomal staining, although to a much larger extent. No nuclear staining was reported, but it 

must be kept in mind that the fluorescence microscopy analysis was done at 24h incubation, i.e. 

longer incubation could enable efficient transfection and nuclear staining. TMC-SA 5% at N/P 40 

yielded similar results, i.e. abundance of epinuclear, granular staining and no diffuse intranuclear 

staining. The extensive endosomal retention may be addressed by specific approaches, e.g. 

buffering moieties, resulting in the sponge effect, or endosomal escape-inducing drugs. 

Nonetheless, these are results from short incubation, and longer intervals may support better 

transfection. 

 

The hydrophobic modification of TMC is effective in stimulating the uptake of TMC-AON 

complexes. Flow cytometry results are thus confirmed, since internalization is quite higher in the 

modified TMC samples.  

 

Neither Lipofectamine nor CQ are suitable for in vivo applications due to their cytotoxic 

profiles. They are useful for in vitro, theoretical studies, but other alternatives should be sought to 

increase the transfection efficiency of the complexes under test. The positive effects of the 

introduction of hydrophobic moieties were again confirmed, although transfection efficiency is still 

quite modest compared to the commercial reagent control. 
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Discussion and Future Directions 

 

The antisense oligonucleotides sequences under test were successful in downregulating 

transcript levels, although there was high variability in the results that hindered comparative 

analysis. Target RNA downregulation seemed to be affected by transfection-associated toxicity or 

due to AON toxicity itself, thus new transfection methods should be evaluated or sequences 

redesigned. Any of the tested sequences is expected to efficiently deplete target RNA levels, 

provided that transfection is successful. Additional RT-PCR analyses are planned to confirm these 

results. AON chemistry was not optimized and more detailed analysis with LNA is under 

consideration. 

 

Vector development was also successful regarding the polymer modification under test. Not 

only hydrophobically-modified TMC was more stable at physiological salt and pH conditions than 

the unmodified TMC, which was victim to a much more extended aggregation, but was also able to 

bind AON almost completely at N/P 3 and yield nanoparticles of about 150 nm, which is an 

adequate size for efficient uptake. Moreover, AON binding properties were enhanced beyond the 

requirement of lower N/P for efficient retention, since the interaction was more resistant to 

electrostatic shielding from high ionic strength and to nucleic acid binding dye destabilization by 

AON binding competition. The biomaterials form a loose particle structure that is induced by an 

increase on the N/P ratio or adding a hydrophobic substituent, possibly leading to a micelle-like 

structure that exposes most TMC-bound AON to the solvent and nucleic acid binding dyes. Buffer 

conditions are supposed to efficiently mimic physiological conditions, especially regarding pH and 

osmolarity, since complex properties were unchanged during in vitro analyses. 

 

TMC transfection properties were compared with a commercial reagent, having had a lower 

yield. However, none of the N/P ratios tested presented obvious signs of cytotoxicity under Optical 

Light Microscopy, while Lipofectamine led to great cytotoxic effects. TMC, contrary to commercial 

reagents, is expected to be suitable for in vivo experiments. The issue of low transfection may be 

addressed by increasing nanoparticle concentration, reducing size distribution (e.g. by filtering or 

PEGylation) or by further chemical modifications. Chloroquine modification, for example, could 

increase the polymer buffering properties and trigger higher endosomal release, thus overcoming 

one of the greatest obstacles we found while attempting to transfect cells with TMC and TMC-SA. 
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