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Abstract

In the past few years, sustainability issues have acquired major importance, as
the environmental toxicity and the ozone layer destruction indicators reach worry-
ing levels. Worldwide e�ort have been made aiming to increase renewable energy
production and to diminish the usage of energy produced with fossil fuels.

One of the most relevant renewable energy is the wind power, which represents the
second greatest renewable energy source worldwide. Wind power is obtained through
wind turbines, converting the kinetic power of the wind to mechanical energy.

One of the most important components in a wind turbines is the gearbox, where
the rotational speed of the rotor is multiplied in order to match the working conditions
of the generator. Despite the wind energy industry development, wind turbine are
still experiencing several breakdowns in the gearboxes and in the roller bearings due
to the high loads and variable working conditions, requiring regular maintenance
interventions.

Optimizing the gearbox e�ciency represents not only an increase of the amount
energy produced per wind turbine, but also leads to lower operating temperatures
which bene�ts the working life of all components. Lower operating temperatures lead
to a lower failure probability, therefore lowering the maintenance costs.

The purpose of this work is to continue the studies already done by Gonçalves [1],
Marques [2] and Pereira [3], in an e�ort to clarify the in�uence of the oil formulation
on a gearbox e�ciency. Gonçalves and Marques [1, 2] carried out tests in parallel
shaft helical gears, although with di�erent working conditions. Pereira [3] has done
tests in planetary gears at low loads.

The work that is presented in this document consisted in tests with planetary
gears, with the care that the operating conditions matched the �rst stage of a wind
turbine gearbox in terms of tangential speed and Hertz pressure. Four lubricants were
tested: two of them being mineral based, and two of them being synthetic. Several
working parameters indicators of the oil performance were measured and analyzed.
Also, oil samples were collected and the wear indexes were calculated, and the wear
particles were analyzed, using Direct Reading Ferrography (DRIII) and Analytical
Ferrography (FRIII).

A power loss numerical model was implemented aiming to understand the in�u-
ence of each component in the power loss of the tested gearbox .
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Resumo

Nos últimos anos a questão da sustentabilidade tem ganho particular relevância, à
medida que os vários indicadores de toxicidade ambiental e de destruição da camada
de ozono atingem valores preocupantes. Um pouco por todo o mundo estão a ser
feitos esforços no sentido de se aumentar a produção de energia através de fontes
renováveis e no sentido de se diminuir a quantidade de energia produzida a partir da
queima de combustiveis fósseis.

Uma das energias renovaveis de maior importânica é a energia eólica, represent-
ando a segunda maior fonte de energia renovavel à escala mundial. A energia eólica
é obtida através de turbinas eólicas que convertem a energia cinética do vento em
energia mecânica.

Um dos componentes mais relevantes de uma turbina eólica é a caixa de en-
grenagens, onde a velocidade de rotação do rotor é multiplicada de forma a atingir
as condições de funcionamento do gerador. Apesar do desenvolvimento da indústria
de energia eólica, as turbinas eólicas continuam a apresentar inúmeras falhas ao nivel
das engrenagens e dos rolamentos, devido às elevadas cargas a que estão sujeitos e às
condições de funciomento variavel, obrigando a intervenções de manutenção regulares.

A optimização da e�ciência da caixa de engrenagens representa não só um aumento
na quantidade de energia gerada por cada turbina eólica, como conduz a temperaturas
de funcionamento mais baixas, o que bene�cia a vida geral de todos os componentes
em funcionamento. Temperaturas de funcionamento mais baixas conduzem a uma
menor probabilidade de avaria, reduzindo também os custos de manutenção.

O objectivo deste trabalho é dar continuação aos estudos realizados por Gonçalves
[1], Marques [2] e Pereira [3], no sentido de clari�car a in�uência da formulação de
lubri�cação na e�ciência de uma caixa de engrenagens. Gonçalves e Marques [1, 2]
levaram a cabo testes em caixas de engrenagens helicoidais, embora com condições
de funcionamento diferentes. Pereira [3] realizou testes em caixas planetárias com
um nivel de carga reduzido.

O trabalho levado a cabo consistiu na realização de testes em caixas planetárias,
com o cuidado de que as condições de funcionamento fossem equiparadas ao primeiro
andar da caixa de engrenagens de uma turbina eólica em termos de velocidade tan-
gencial e de pressão de Hertz. Foram testados quatro lubri�cantes diferentes: dois de
base mineral e dois sintéticos. Foram avaliados vários parâmetros de funcionamento
indicadores da performance de cada óleo. Foram também retiradas amostras de lub-
ri�cante de forma a determinar os indices de desgaste e a analisar as particulas de
desgaste, através de Ferrometria de Leitura Directa (DRIII) e Ferrometria Analítica
(FRIII).
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Foi implementado um modelo numérico de perda de potência com o objectivo de
analisar a perda de potência associada a cada componente da caixa de engrenagens.
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Nomenclature

Symbol Units Description

a m Centre distance
a0,1,2,3,4 − Coe�cients dependent on tip contact ratio

A m2 External area of the gearbox
b m Gear width
B mm Rolling bearing width

cA,B N/m Rolling bearing spring constant
CPUC − Index of wear particle concentration

Cw − Variable used for the calculation of the
frictional moment of drag losses

d mm Rolling bearing bore diameter
D mm Rolling bearing outside diameter
DL − Number of large particles
dm m Bearing mean diameter
DS − Number of small particles
dsh mm Shaft diameter
di m Gear reference diameter
E∗ Pa Equivalent Young modulus
F N Force

fA − Variable used for the calculation of the frictional
moment of drag losses

Fa N Axial Force
Fbt N Tooth normal force (transverse section)
Fr N Radial Force

ft − Variable used for the calculation of the frictional moment
of drag losses

Ft N Tangential force

f0 − Coe�cient dependent on bearing design and lubrication
method

F0 N Preload force

f1,2 − Coe�cient that takes into account the direction of
load application

Grr N·m Variable for the calculation of the rolling frictional
moment

Gsl N·m Variable for the calculation of the sliding frictional
moment

H mm Oil level
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h0 m Film thickness
h0T m Corrected �lm thickness
HV − Gear loss factor

ISUC − Index of wear severity
K W/m·m Thermal conductivity

Ka N
Axial load on the tapered roller bearings, necessary
for the preload calculation

Kball,roll − Rolling element related constant
Krs − Replenishment/starvation coe�cient
KZ − Bearing type related geometric constant
i − Gear ratio

irw − Number of rows of the bearing
l m Average sum of contacting lines length
L − Thermal parameter of the lubricant

lD − Variable used for the calculation of the frictional moment
of drag losses

lg − Parameter for the calculation of a0,1,2,3,4
m m Module
mg − Parameter for the calculation of a0,1,2,3,4
M N·m Total frictional moment of a bearing

MA,D,ext,mot N·m Moment or torque (index related to the application point)
Mdrag N·m Frictional moment of drag losses
Mrr N·m Rolling frictional moment
Mseal N·m Frictional moment of the bearing seal
Msl N·m Sliding frictional moment
n rpm Rotational speed
N − Number of planets
nsh Rad/s Shaft rotational speed
ng − Parameter for the calculation of a0,1,2,3,4
p Pa Pressure
Pa W Transmitted power
pH N/mm2 Contact pressure
pR N/mm2 Reference value for contact pressure
PV W Total power loss
PV D W Seals power loss
PV D0 W Rolling bearings no-load losses
PV DP W Rolling bearings load losses
PV Z0 W Gears no-load power losses
PV ZP W Gears load losses
Q̇cd W Heat �ow rate due to conductuion
Q̇cv W Heat �ow rate due to convection
Q̇rad W Heat �ow rate due to radiation
Q̇total W Total heat �ow rate
Ra m Arithmetic mean roughness
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rb m Base radius

RS − Variable used for the calculation of the frictional moment
of drag losses

RX m Equivalent radius
R1,2 − Geometric constants for rolling frictional moment

t − Variable used for the calculation of the frictional moment
of drag losses

T K or ◦C Temperature
TOil

◦C Oil temperature
TRoom

◦C Room temperature
TV L N·m Total frictional moment of a needle bearing
TV L0 N·m No-load component of frictional moment of a needle bearing
TV L1 N·m Load component of frictional moment of a needle bearing
U − Speed parameter

U1,2 m/s Velocity of each surface
v m/s Tangential speed
Ve − Sliding ratio

V.I. − Viscosity index
VM − Drag loss factor
W − Load parameter
Y − Axial load factor for single-row bearings
Z − Number of teeth
α Pa−1 Coe�cient of piezoviscosity
αt Rad Transverse pressure angle

αSKF
◦ Variable used to calculate Grr

αHeat W/m·K Heat transfer coe�cient
β K−1 Thermoviscous coe�cient
βb Rad Base helix angle

∆T ◦ Stabilized operating temperature
εα − Transverse contact ratio
ε1,2 − Tip contact ratio
η Pa·s Dynamic viscosity
η0 Pa·s Dynamic viscosity at the oil bath temperature
Λ − Speci�c �lm thickness
µbl − Coe�cient dependent on the lubricant additive package
µmz − Coe�cient of friction
µsl − Sliding friction coe�cient
ν cSt Kinematic viscosity
ξ − Portion of �uid �lm

φbl − Weighting factor for the sliding friction coe�cient
φish − Inlet shear heating reduction factor
φrs − Kinematic replenishment/starvation reduction factor
φT − Inlet heating in�uence factor
ω Rad/s Rotational speed
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1. Introduction

Modern energy enables quality of life. From lighting and heating to powering
cutting-edged technology, modern energy is one of the foundations of mankind as we
know it today. Yet, over one billion people lack access to modern energy and as world
population increases so increases world's energy demand [4].

Global warming and environmental issues are major concerns that push us toward
renewable energy and e�ciency improvements in energy generation and consumption.
E�ciency is expected to be the most important factor in the near term, whereas
renewables will become increasingly important over time [4].

By 2035, it is expected that renewables will be generating more than 25% of
world's electricity, with a quarter of this coming from wind. Over the last 18 years,
the global wind installed capacity has grown from 6GW in 1996 to nearly 320GW in
2013 [5], as shown in �gure 1.1.

Figure 1.1.: Global cumulative wind installed wind capacity 1996− 2013 [5].

Wind turbines are used to generate electricity from the kinetic power of the
wind. The blades are aerodynamically designed to spin as the air �ows through
them, converting the kinematic energy of the wind into mechanical energy - torque
- which is transmitted along the main shaft to the generator. The rotor rotational
speed and torque are transformed by the gearbox in order to match the necessary
operating conditions of the generator.

Global wind capacity owns its growth not only to the number of installed turbines
but also to the growing capacity of each unit. Figure 1.2 shows the average diameter
and capacity of wind turbines in 1985 and today, as well as the expectation for the
future.

As the rated power increases, the drive train concept evolves. Research on direct-
drive systems and torque splitting mechanism is being done in order to keep up the
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1. Introduction

Figure 1.2.: Size and capacity of wind turbines: evolution and prediction [6].

growing capacity of wind turbines, but the current drive train standard option for
the 1.5− 3MW wind turbines is the planetary gearbox [7].

The most common planetary gearbox o�set for wind turbines is one or two plan-
etary stages with a helical stage at the end of the drive train. Planetary gearing
systems exhibit higher power densities than parallel axis gears and o�er a multitude
of gearing options that allow signi�cant changes in rotational speed with a small
volume [8]. Di�erent operating and lubrication conditions are to be found between
the di�erent stages of the gearbox and their weight on the torque loss of a planetary
multiplier gearbox is not yet fully understood.

Mechanical energy is transmitted with high e�ciencies when compared with other
forms. In the overall power losses of a wind turbine the losses related to the gearbox
represent a minor role. As so, the war on gear e�ciency improvement is seen by
many as a war that is no longer worth �ghting for. Nevertheless, in a three stage
gearbox used in a 1MW wind turbine, an improvement of 0.33% per gear stage leads
to an overall e�ciency improvement of 1% which represents an energy gain of 10kW.
The average household energy consumption world wide for 2011 was 3338kWh, [9],
representing 0.93kW per household. This means that such a slight improvement as
0.33% would allow each wind turbine to supply ten extra households. As little as it
may seem, taking into account all the already existent wind farms with wind turbines
usually with a capacity ranging 1.5−3MW, the slight improvements on a the e�ciency
of a gearbox should not be neglected.

In a gearbox operating at or near nominal operating conditions the main energy
dissipation sources are the gears and the rolling bearings [10, 11].

In order to improve gearbox e�ciency one can then act to improve the gears
and rolling bearings e�ciency. This can be achieved by simply changing to a more
e�cient gear design [12] or changing the rolling bearings type [11].

Despite being an e�ective way to improve the e�ciency of a gearbox, changing
the components is usually only a viable option at the design stage. Nevertheless, for
gearbox units that are already installed there's still an option which is changing to a
lubricating �uid that promotes less friction between the contacting bodies.

Fernandes et al. [13, 14, 15, 16] and Marques et al. [17] have already shown
that is possible to obtain important e�ciency gains in gears and rolling bearings by
changing between di�erent formulations of wind turbine gear oils.

The work presented in this dissertation comes as a follow up of previous works
that aimed to study the in�uence of wind turbine gear oils in gearbox e�ciency.
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1.1. Thesis Outline

Gonçalves [1] and Marques [2] have done their studies in a parallel axis gearbox with
helical gears (3rd stage in a wind turbine gearbox) and more recently Pereira [3] has
done a similar work in a planetary gearbox with helical gears at low loads.

The aim of this work is then to study the in�uence of di�erent wind turbine gear
oil formulations in the e�ciency of a planetary gearbox with helical gears at high
loads and low speeds (1st and 2nd stages in a wind turbine gearbox).

1.1. Thesis Outline

This dissertation is divided in �ve parts.

The �rst part deals with the presentation and measurement of some of the prop-
erties of the wind turbine gear oils properties and techniques that were used. The
gearbox test rig and tested planetary gearbox are also presented as well as the planing
of the e�ciency tests and the experimental procedure. The ferrography techniques
that were used to verify the gear oils wear performance are also presented.

The second part is dedicated to describe and present the power loss model for
planetary gearboxes. The derivation of the static loads and kinematics is shown.
Some considerations regarding the power loss and dissipated heat at stabilized oper-
ating conditions are also done.

The third part introduces the experimental results that were obtained. These
results are analysed in detail and comparisons with the numerical predictions are
done. This part also introduces the results that were obtained after some additional
tests were done in order ascertain certain speci�cs of the experimental results.

The forth and last Part of the main text is dedicated to the �nal conclusions of
this work and future work suggestions.

The last section of this dissertation consist of a compilation of the test sheets
with the results of the e�ciency tests and some numerical and experimental results
that were not in the main text.
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Part I.

Materials and Methods

5





2. Selected Lubricants

Wind turbine lubricants need to last as long as possible, o�ering excellent ox-
idation and shear stability, whilst protecting key turbine components such as main
bearings from failure, and gears from micropitting [18].

Four fully formulated ISO VG 320 wind turbine gear oils were selected, two of
them being mineral based oils (MINR and MINE) and the other two being synthetic
based oils: a poly−α−ole�n (PAOR) and a polyalkylene glycol (PAGD).

The chemical composition and the physical properties of the selected oils were
listed in the manufacturer's data sheets. Nevertheless, a few measurements regarding
the physical properties were carried out in order to con�rm the data given by the
manufacturers and to have a higher accuracy in the lubricant properties and behavior.

2.1. Techniques and devices used

2.1.1. Engler viscometer

To measure the viscosity of the selected lubricants an Engler viscometer was used,
which consists of two containers, one inside another, supported by a three legged
adjustable support.[19]

The desired �uid is placed in the inner container which has a hole on the bottom.
A wood pointer is used to close or open the hole, in order to stop or allow the �uid
�ow. The space between the inner and outer container is �lled with thermal �uid.
The containers are heated by an electrical resistance and the temperature of each
�uid is controlled with a thermometer [20].

The measurement procedure followed the IP 212/92 standard [19]. Figure 2.1a
shows the Engler viscometer used to measure the viscosity of the tested oils.

2.1.2. Density meter

In order to measure the variation of density of the tested oils at atmospheric
temperature a density meter was used.

The density meter used, �gure 2.1b, collects a 2ml sample and measures the
density of a �uid in a range of temperatures between 0 and 40◦C. The density of each
oil sample was measured at three di�erent temperatures so that the thermal expansion
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2. Selected Lubricants

coe�cient was determined [21], allowing the calculation of each oil's density at a given
temperature.

(a) Engler viscometer. (b) Anton Paar DM A35N density meter.

Figure 2.1.: Devices used.

2.2. Lubricant properties

The kinematic viscosity variation with temperature calculation followed the stand-
ard ASTM D341 [20]. For the four tested gear oils, the viscosity variation with
temperature is shown in �gure 2.2.

It is possible to observe that at 40◦C the gear oils have similar viscosity except
for PAGD, which is lower. With temperature increase, the viscosity decreases, being
the MINR the oil with the highest variation and PAGD being the lowest. MINE and
PAOR show a very similar behavior for the considered range of temperatures. This
behaviors are easily related to the viscosity index. In table 2.1 is possible to observe
that MINR has the lowest viscosity index while PAGD has the highest. MINE and
PAOR have similar viscosity index and the same viscosity at 40◦C thus showing a
very similar behavior.

The density variation with temperature is shown in �gure 2.3.

All oils show a linear decrease of density with increasing temperature. It is to be
noticed that PAGD has a range of density considerably higher than all the other oils,
having a higher density than water for temperatures below 90◦C.

The selected oils were already used in previous works [1, 2, 3]. The chemical
composition and the physical properties are presented in table 2.1.
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2.2. Lubricant properties
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Figure 2.2.: Tested oils' viscosity variation with temperature (ASTM D341).
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Figure 2.3.: Tested oils' density variation with temperature.
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2. Selected Lubricants

Table 2.1.: Chemical composition and physical properties of the tested lubricants.

MINR PAOR MINE PAGD

Base oil: Mineral Poly−α−ole�n Mineral Polyalkalene
+40% PAMA Glycol

Chemical composition

Zinc (Zn) [ppm] 0.9 <1 3.5 1.0
Magnesium (Mg) [ppm] 0.9 <1 0.5 1.4
Phosphorus (P) [ppm] 354.3 460 415.9 1100
Calcium (Ca) [ppm] 2.5 2 0.5 0.8

Boron (B) [ppm] 22.3 36 38.4 1.0
Sulfur (S) [ppm] 11200 6750 5020 362

Physical properties

Density @ 15◦C [g/cm3] 0.902 0.859 0.893 1.059
Thermal expansion

-5.8 -5.6 -6.7 -7.1
coe�cient x 10−4 [K−1]
Viscosity @ 40◦C [cSt] 319.25 324.38 324.38 290.26
Viscosity @ 70◦C [cSt] 65.87 87.92 92.72 102.33
Viscosity @ 100◦C [cSt] 22.41 35.27 37.88 51.06

Viscosity Index 85 155 166 241

In terms of chemical composition, the biggest di�erences are in the phosphorous,
boron and sulfur values of PAGD when compared to the other oils. PAGD has more
than twice the amount of phosphorus, while having values dozen of times lower of
sulfur and boron. Phosphorus, boron and sulfur are known to be used in the chemical
composition of the gear oils as extreme pressure additives.
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3. Testing gearbox e�ciency

3.1. Test rig

The gearbox test rig works on a back-to-back con�guration with recirculating
power. Two sets of helical gears, represented by number 2 and 7 on �gure 3.1, are
used in order to recirculate the power. Both sets are lubricated by oil injection.

Figure 3.1.: Top view diagram of the gearbox test rig.

The test and slave gearbox, numbers 4 and 6, work on a back-to-back con�gura-
tions, matching the input speed of one gearbox with the output speed of the other.
Thus, only reversible gearboxes can be tested.

The test rig is able to test gearboxes with asymmetrical geometries, due to the
adjustable platforms (12 and 14). The torque transducer (5) placed between the test
and slave gearboxes can have its height and depth adjusted by the mobile platform
(13).

The test rig and the back to back con�guration of the gearboxes is presented in
�gure 3.2.

The torque loading mechanism consists of a hydraulic cylinder that introduces an
axial displacement on one of the helical gears of the gear set 2. The axial displacement
forces the wheel to slightly rotate, creating a torsional displacement in the test rig
components and so loading it with a static torque.

The rotational speed of the electric motor and the torque on the torque transducer
(5) are set on the central control, show in �gure 3.3.
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3. Testing gearbox e�ciency

(a) Test rig.

(b) Back-to-back con�guration.

Figure 3.2.: Photographs of the test rig.

Figure 3.3.: Central control.
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3.1. Test rig

On it's current con�guration, the test rig has the highest torque in between the
gearboxes, which allows smoother working conditions for all the test rig. The working
conditions of the test rig are the following:

• Rotational speed: 100− 1900rpm;

• Torque: 100− 1300Nm.

The torque control is done in the torque transducer (5) which is located between
both gearboxes. The gearboxes setup is so that the highest torque only happen in
between gearboxes, allowing to test higher loads without submitting the rest of the
test rig to those loads. Therefore, the rest of the test rig operates at lower loads, but
higher speeds, which is also bene�cial for the motor speed control.

In order to assess the working temperatures, the test rig is equipped with several
sensors, some of which were installed in the test gearbox. The sensors are measuring:

• The oil temperature in two di�erent zones (industrial grade PT100 RTD's);

• The wall temperature (industrial grade PT100 RTD's);

• The ambient temperature;

• The room temperature.

A photograph of the gearbox instrumented with the three temperature sensors is
shown in �gure 3.4

(a) Oil temperature sensors. (b) Wall temperature sensor.

Figure 3.4.: Temperature sensors' positioning in the tested gearbox.

The input and output torque as well as rotating speeds were also constantly
measured and recorded overtime.
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3. Testing gearbox e�ciency

3.2. Planetary gearbox

The selected gearbox is a planetary multiplier with a transmission ratio of 4 and
with a nominal input speed of 1000rpm and a nominal output torque of 2500Nm.

The tested planetary gearbox was partially disassembled (details shown in �gures
3.5a, 3.5b and 3.5c) and therefore some of the components of the gearbox could
be listed. The access to other components, such as the needle and the tapered
bearings, was not possible and so this components are estimated based on the size
and dimension of the gearbox, the shaft diameter and on the scheme presented in the
manufacturer's catalog, �gure 3.6.

(a) Sun gear. (b) Planet carrier assemble. (c) Detail of the planet.

Figure 3.5.: Photographs of the tested gearbox.

Figure 3.6.: Scheme of the planetary gearbox.
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3.2. Planetary gearbox

The geometrical characteristics of the gears are listed in table 3.1.

The gearbox rolling bearings are listed in table 3.2. While disassembled it was
possible to see that the deep grove ball bearing is shielded and contains it's own
lubricant. Although the tapered rolling bearings were not visible, it was assumed
that they are equally shielded and contain their own lubricant as well.

Table 3.1.: Geometrical characteristics of the planetary gearbox.

Sun Planet Ring

Number of teeth [/] 36 36 -108
Pro�le shit coe�cient [mm] -0.0189 -0.0189 0.0566
Reference diameter [mm] 73.1101 73.1101 -219.332

Base diameter [mm] 68.577 68.577 -205.731
Tip diameter [mm] 77.035 77.035 -215.106

Width [mm] 42
Pressure angle [◦] 20

Working transverse pressure angle [◦] 20.122
Helix angle [◦] 10

Normal module [mm] 2
Center distance [mm] 73.111

Working center distance [mm] 73.035

Table 3.2.: Rolling bearings and seals in the planetary gearbox.

Component Quantity Designation

Tapered roller bearings 2 32022 X/Q *
Deep groove ball bearing 1 6217-2Z

Input and output seal 2
BAUM6 SLX7 140-
170-13/12 CFW A1

Needle roller bearing 6 K 40x48x20*

∗ − Estimated
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3. Testing gearbox e�ciency

3.3. Tests planning

In order to fully understand the in�uence of the operating conditions on the torque
loss behavior of the gearbox, a 16 test grid was planned, comprising 4 di�erent loads
(1600/2000/2400/2800Nm) and 4 di�erent speeds (100/150/200/250rpm). The oper-
ating conditions of the 16 test grid were selected according to the working conditions
allowed by the test rig and according to the planetary gearbox speci�cations. From
that grid, 5 tests were selected trying to meet the working conditions of one the stages
of a gearbox used in wind turbines in terms of Hertz pressure and tangential speed.

The Hertz pressure is essentially function of the load while the tangential speed
is function of the rotational speed. The contact pressure and the tangential speed
resulting from the imposed working conditions on the test gearbox are represented in
table 3.3, and the contact pressure and the tangential speed of the gearboxes used in
wind turbine are represented in table 3.4. The full planning of tests is shown in table
3.5. The speed and torque mentioned are the ones measured in between gearboxes,
see �gure 3.1.

Table 3.3.: Tangential speed and Hertz Pressure in the test gearbox.

Imposed rotational Tangential speed Imposed torque Hertz pressure
speed [rpm] [m/s] [Nm] [N/mm2]

100 1.15 1600
955.0738 (SP)

646.1703 (PR)

150 1.72 2000
1063.6336 (SP)

719.9055 (PR)

200 2.30 2400
1165.3512 (SP)

785.9340 (PR)

250 2.87 2800
1249.1650 (SP)

846.1466 (PR)

SP − Sun-Planet contact

PR − Planet-Ring contact

Table 3.4.: Tangential speed and Hertz Pressure in gearboxes used in wind turbines.

Gear Stage Tangential Speed Hertz pressure
[m/s] [N/mm2]

1st Stage 1.63
1381.769 (SP)

987.743 (PR)

2nd Stage 5.49
2873.516 (SP)

2029.198 (PR)

SP − Sun-Planet contact

PR − Planet-Ring contact
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3.3. Tests planning

Table 3.5.: Experimental test plan.

Oil
Speed Torque Power Test time
[rpm] [Nm] [W] [min]

PAOR

100

1600 16755.2 240 + 90
2000 20944.0 240 + 90
2400 25132.7 240 + 90
2800 29321.5 240 + 90

150

1600 25132.7 240 + 90
2000 31415.9 240 + 90
2400 37699.1 240 + 90
2800 43982.3 240 + 90

200

1600 33510.3 240 + 90
2000 41887.9 240 + 90
2400 50265.5 240 + 90
2800 58643.1 240 + 90

250

1600 41887.9 240 + 90
2000 52359.9 240 + 90
2400 62831.9 240 + 90
2800 73303.8 240 + 90

PAOR/MINR/MINE/PAGD

100 2800 29321.5 240 + 90

150
2000 31415.9 240 + 90
2400 37699.1 240 + 90
2800 43982.3 240 + 90

200 2800 58643.1 240 + 90
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3. Testing gearbox e�ciency

3.4. Experimental procedure

The duration of each test was �ve hours and thirty minutes. During the �rst
four hours the test gearbox worked as a multiplier, and in the other one and a half
hour worked as a reducer. The duration of both parts of the test was set in order to
achieve stabilized operating conditions: load, speed and temperatures.

The ventilation of the room where the test rig works doesn't have enough power to
guarantee a stabilized room temperature. Nevertheless, the power losses are function
of a temperature di�erence, which achieved reasonably stable values.

The values read by the sensors were automatically recorded by the central control
with a frequency of 0.5Hz. The calibration of the torque transducers was checked
periodically in order to assure proper function.

The behavior of various metrics, such as torque, speed and temperature, were
displayed in the central control over time, to allow a fast detection and intervention
of any abnormal variation on the behavior of the test rig.

An oil sample was collected from the test gearbox when appropriate, being col-
lected a total of 8 samples. The samples are shown in �gure 3.7b and the working
conditions that preceded the sample collection are represented in table 3.6.

Table 3.6.: Oil samples collected.

Test Grid Oil Sample Tests performed

16 PAOR

PAOR_100 100rpm; 1600/2000/2400Nm;
PAOR_150 150rpm; 1600/2000/2400Nm;
PAOR_200 200rpm; 1600/2000/2400Nm;
PAOR_250 250rpm; 1600/2000/2400Nm;
PAOR_2800 100/150/200/250rpm; 2800Nm;

5 Test Grid

MINR_5 Full test grid
MINE_5 Full test grid
PAGD_5 Full test grid

Each oil sample was collected through the top gearbox plug's hole, using a vacuum
pump, �gure 3.7a. All oil samples were collected immediately at the end of a given
test, in the interest of avoiding particle deposition at the bottom of the gearbox and
to guarantee that the sample is representative of the oil's condition.

There was no fresh MINE oil available, so it was also taken an oil sample of MINE
oil before it was introduced in the gearbox, to serve as a point of comparison.

The last test in the 16 PAOR test grid (250rpm; 2800Nm) showed an abnormal
increase of the oil temperature and the test was aborted at 15min to it's end. There-
fore, the tested gearbox was open and it was found that one of the seals was no
longer sealing. The ball bearing of the tested gearbox was therefore being lubricated
with oil instead of grease. The test and slave gearbox changed places, and several
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(a) Vacuum pump. (b) Oil samples.

Figure 3.7.: Vacuum pump and oil samples.

tests were conducted. The repeatability of the test was assured, and the remaining
planned tests were performed.

The gearboxes' oil was always changed at the same time. The oil was drained
through a plug in the bottom and then the gearboxes were �lled with petroleum
ether, except for PAGD which was �rst �ushed with an ISO VG320 ester oil and
with a special solvent afterward. While the gearboxes were �lled with solvent, the
test rig was manually rotated for several minutes aiming to remove the maximum
amount of remaining oil and wear particles. The solvent was removed the same way
as the oil, and then the gearboxes were left to dry for 12h and then �lled with 1litre
of fresh lubricant.
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4. Analysis techniques

The oil samples were analyzed using a set of techniques called ferrography which
are normally used to monitor the wear evolution over time and diagnose the causes
of certain failures in mechanical components lubricated with oil or grease. Using
this technique the quantity and the morphology of the wear particles suspended in
the oil sample can be analyzed allowing an evaluation of the wear performance of a
lubricant. It can also be used to perform preventive maintenance and to predict the
failure of a component in a mechanism.

Two di�erent methods were used: direct reading ferrography (DRIII) and analytic
ferrography (FMIII).

4.1. Direct Reading Ferrography (DRIII)

A direct reading ferrograph (�gure 4.1) allows a rapid and objective quanti�cation
of large and small particles in an oil sample.

Figure 4.1.: Direct reading ferrograph by Predict Technologies.

One milliliter of oil circulates through a capillary tube which has a section sub-
mitted to a strong magnetic �eld and two beams of light. The solid particles lodge
along the tube due to the magnetic �eld or simply by sedimentation. The larger will
deposit �rst, as they are heavier and su�er greater in�uence of the magnetic �eld,
followed by those of smaller dimension.
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4. Analysis techniques

One of the beams of light is located at the beginning of the measuring section,
and the other at the end. The amount of light that crosses the tube is limited by the
amount and size of the particles that are deposited and so, the �rst beam of light will
be limited by the larger particles and the second by the smaller ones.

Two values are obtained by the direct reading ferrograph: DL and DS which
represent the relative quantity of the larger and smaller particles in the oil sample.
This values are then used to calculate the index of Wear Particles, CPUC (equation
4.1.1) and the index of Wear Severity, ISUC (equation 4.1.2).

CPUC =
DL +DS

d
(4.1.1)

ISUC =
D2
L −D2

S

d2
(4.1.2)

Where d is the dilution factor which is used in cases of excessive particles which
causes saturation of the sensors.

4.2. Analytic ferrography (FMIII)

Analytic ferrography is used to obtain detailed information about particles in the
oil sample. The oil is forced to �ow ate a very slow speed between the two edges of a
thin glass slide, which is called a ferrogram. A magnet located bellow the ferrogram
causes the ferrous particles to deposit. The particles will deposit accordingly to their
sizes due to the e�ect of the magnetic �eld, �gure 4.2.

Figure 4.2.: Sedimentation process of the particles in the ferrogram [22].

The ferromagnetic particles will deposit perpendicularly arranged relatively to
the oil �ow.

Although this method is particularly useful on detecting ferrous particles, other
particles such as aluminum and copper particles can also deposit in the ferrogram as
they can get trapped between ferrous particles or they may acquire magnetism from
the contact with ferrous particles. Other particles such as contaminants, �bers and
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4.2. Analytic ferrography (FMIII)

products resulting from oxidation will randomly deposit along the ferrogram due to
the force of gravity.

Ferrograms are made of heat resistant glass, which allows heat treatments that
can help to estimate the composition of the metallic particles, in particular the ferrous
ones.

To prepare the ferrograms was used an analytic ferrograph, model FM-III-Ferrograph
by Predict Technologies, �gure 4.3a. The ferrograms were observed using a Ferroscope
- IV, �gure 4.3b.

(a) Analytic ferrograph (FMIII). (b) Ferroscope - IV.

Figure 4.3.: Devices used in analytic ferrography, both by Predict Technologies.
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5. Planetary gearbox: Loads,
Kinematics and Power Loss

5.1. Load analysis

The load dependent power loss calculation requires the determination of the loads
acting in each contacting component. The static load analysis is presented in the
following paragraphs. A schematic representation of a planetary gear is shown in
�gure 5.1. The di�erent components were labeled with numbers and the main points
were labeled with letters, in order to keep simple the load and kinematic equations.
Forces of inertia, moments of inertia and gravity forces were neglected. The ring is
the �xed element.

Figure 5.1.: Schematic representation of the planetary gear (side view).

The free body diagram of the planet carrier is shown in �gure 5.2, considering
the torque input being through the planet carrier.

The load F24 is determined with equation (5.1.2).

∑
ME = 0 (5.1.1)

F24 =
Mmot

N

a
(5.1.2)
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5. Planetary gearbox: Loads, Kinematics and Power Loss

Figure 5.2.: Free body diagram of the planet carrier.

Figure 5.3.: Free body diagram of the planet.

Where N is the number of planets of the gearbox and a is the center distance,
which is the same for the sun/planet gears and the planet/ring gears. Since the
gearbox in study has 3 planets, N = 3 will be assumed.

The free body diagram of a planet is represented in �gure 5.3.

The force balance equation of the planet is written as following:

∑
#»

F =
#   »

F42 +
#   »

F32 +
#   »

F12 (5.1.3)

Where:

#   »

F12 =
#    »

Ft12 +
#     »

Fr12 (5.1.4)

#   »

F32 =
#    »

Ft32 +
#     »

Fr32 (5.1.5)
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5.1. Load analysis

Figure 5.4.: Free body diagram of the sun.

Considering the Cx axis it is possible to write that:

∑
Fx = 0⇔ (5.1.6)

⇔ F42 = Ft12 + Ft32 (5.1.7)

And on the Cy axis:

∑
Fy = 0⇔ (5.1.8)

⇔ Fr12 = Fr32 (5.1.9)

Therefore:

Ft12 = Ft32 =
−F42

2
(5.1.10)

|Fr12| = |Fr32| = |Ft12 · tan(αt)| (5.1.11)

The free body diagram of the sun gear is represented in �gure 5.4.

The moment balance regarding A is established according to equation (5.1.12).

∑
#    »

MA = AB1 ·
#    »

F 1
t21 + AB2 ·

#    »

F 2
t21 + AB3 ·

#    »

F 3
t21 +

#      »

Mext =
#»
0 (5.1.12)

Due to the symmetry of the sun/planet system, the equalities written in equations
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5. Planetary gearbox: Loads, Kinematics and Power Loss

(5.1.15) and (5.1.13) can be established:

AB1 = AB2 = AB3 (5.1.13)

|F 1
t21| = |F 2

t21| = |F 3
t21| (5.1.14)

|F 1
r21| = |F 2

r21| = |F 3
r21| (5.1.15)

The radial forces are equal, and due to their spatial position they cancel each
other out.

Since ABi = d1
2
,

#      »

Mext = 3 · #    »

Ft21 ·
d1
2

(5.1.16)

The reaction in A can be obtained through equation (5.1.17).

∑
#»

F =
#   »

F 1
21 +

#   »

F 2
21 +

#   »

F 3
21 +

#   »

F01 =
#»
0 (5.1.17)

On the Ax axis,

F x
01 − F 1

t21 + |
#    »

F 2
t21| · sin(30◦) + |

#    »

F 3
t21| · sin(30◦) = 0 (5.1.18)

F x
01 = 0 (5.1.19)

And on the Ay axis,

F y
01 − |

#    »

F 2
t21| · cos(30◦) + |

#    »

F 3
t21| · cos(30◦) = 0 (5.1.20)

F y
01 = 0 (5.1.21)

The axial forces can be obtained using equations (5.1.22) and (5.1.23).

| #     »

Fa12| = |
#    »

Ft12| · tan(β) (5.1.22)

| #     »

Fa32| = |
#    »

Ft32| · tan(β) (5.1.23)

The results for the forces at nominal working conditions (2500Nm and 250rpm)
is presented in table 5.1.

30



5.2. Kinematic analysis

Table 5.1.: Forces at nominal working conditions.

Variables Results

Tangential force [N] F 1
t21, F

2
t21, F

3
t21, Ft32 5699.1

Radial force [N] F 1
r21, F

2
r21, F

3
r21, Fr32 2106.3

Axial force [N] Fa12, Fa32 1004.9

5.2. Kinematic analysis

The power losses of all the components in the gearbox are dependent of the speed
at which they operate. Therefore, it is necessary a kinematic analysis in order to
determine the velocities involved. In the following paragraphs the calculation method
adopted is presented.

The numbers and letters used in the kinematic analysis follow the labeling presen-
ted in section 5.1. A di�erent schematic representation of the planetary gear is show
in �gure 5.5.

As the gearbox will be working as a multiplier, the power input will be in the
planet carrier (4). Point C belongs to the planet carrier as well as it is the geometric
center of the planets. Thus, the velocity of point C calculated from one object or
another must match, equation (5.2.1).

#     »vC40 = #     »vC20 (5.2.1)

In equations (5.2.2) and (5.2.3), Mozzi's equations are used to determine the
rotational speed of the planet:

#     »vA40 + #   »ω40 ×
#    »

AC = #     »vD20 + #   »ω20 ×
#    »

DC (5.2.2)

Let ri be the radius of body i. As the velocities of point A and D are null,


0
0
ω40

×


0
r1 + r2

0

 =


0
0
ω20

×


0
−r2

0

 (5.2.3)

The planet's rotational speed is given by equation (5.2.4)

ω20 = −ω40 ·
r1 + r2
r2

(5.2.4)

Point B is the contact point between the sun and the planet, and therefore can
be used to relate the sun velocity with the planet velocity considering that point B
velocity is the same for both the planet and the sun, equation (5.2.5).
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5. Planetary gearbox: Loads, Kinematics and Power Loss

Figure 5.5.: Schematic representation of the planetary gear (front view).

#     »vB10 = #     »vB20 (5.2.5)

In equations (5.2.6) and (5.2.7), Mozzi's equations are used to determine the
rotational speed of the sun:

#     »vA10 + #   »ω10 ×
#    »

AB = #     »vD20 + #   »ω20 ×
#    »

DB (5.2.6)


0
0
ω10

×


0
r1
0

 =


0
0
ω20

×


0
−2r2

0

 (5.2.7)

The sun rotational speed is given by equation (5.2.8),

ω10 = −ω20 ·
2r2
r1

(5.2.8)

Or, in terms of the carrier rotational speed:

ω10 = −ω40 ·
2(r1 + r2)

r1
(5.2.9)

Considering the de�nition of gear normal module, equation (5.2.10):

m =
d

z
(5.2.10)
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5.3. Introduction to the power loss in a gearbox

and the geometric relations in a planetary gear, equation (5.2.11)

r1 + 2r2 = r3 (5.2.11)

it is possible to write the sun and planet rotational speed as a function of the
number of teeth and the rotational speed of the carrier, equation (5.2.12) and (5.2.13):

ω10 = ω40 · 2 ·
(

1 +
z2
z1

)
= ω40 ·

(
1 +

z3
z1

)
(5.2.12)

ω20 = −ω40 ·
(

1 +
z1
z2

)
(5.2.13)

Therefore, the gear ration, i, can be written as in equation (5.2.14) or in equation
(5.2.15).

i = 1 +
z3
z1

(5.2.14)

i = 2 +
2 · z2
z1

(5.2.15)

Equation (5.2.11) does not take into account the shift pro�le coe�cents, and as
a consequence, equation (5.2.14) is not valid for all cases.

The gear ratio of the test gearbox is presented in table 5.2 as well as an example
of the rotational speed of the several components for the nominal working conditions
(2500Nm and 250rpm).

Table 5.2.: Gear ratio and rotational speed of the gearbox components.

Variables Results

Gear ratio [-] i 4
Carrier rotational speed [rpm] ω40 250
Planet rotational speed [rpm] ω20 -500

Sun rotational speed [rpm] ω10 1000

5.3. Introduction to the power loss in a gearbox

According to Höhn et al. [10], the total power loss in a gearbox is the sum of
gears, bearings, seals and auxiliary losses, �gure 5.6.

The gear and the roller bearing losses can be divided in load losses, associated
to the transmitted power, and the no-load losses which are independent of the trans-
mitted torque.
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5. Planetary gearbox: Loads, Kinematics and Power Loss

Figure 5.6.: Di�erent power loss components in a gearbox [10].

The load losses are function of the transmitted torque, the coe�cient of friction
and the sliding velocity in the contact areas.

No-load losses are dependent upon the operating speed, the internal housing
design, the lubricant viscosity and density, as well as the immersion depth of the
gearbox components in the oil sump.

Usually, for nominal operating conditions, the dominant power losses of a gearbox
are the load losses. When working at high speeds and with low or moderate loads,
no-load losses can overcome the load losses.

In behalf of improving a gearbox e�ciency, it is fundamental to understand how
each component contributes to the total power loss and how the operating conditions
and the lubricant formulation can in�uence each energy dissipation source.

5.4. Gears power loss

Gear losses are dependent on the transmitted power, the mean coe�cient of fric-
tion and a gear loss factor. The average gear power loss is given by equation (5.4.1).

PV ZP = Pa · µm ·HV (5.4.1)

Where:

• Pa is the transmitted power;

• µm is the mean coe�cient of friction (determined in section 5.4.1).

• HV is a gear loss factor.

The transmitted power can be calculated using equation (5.4.2).

Pa = Fbt · ω · rb (5.4.2)

The gear loss factor, HV is dependent of the gear geometry and it's an indic-
ator of the e�ciency associated to a certain gear, despite the working conditions,
the transmitted power and the lubricant used. Originally, HV was obtained on the
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5.4. Gears power loss

assumption that the coe�cient of friction is constant along the line of action, and
can be calculated according to equation (5.4.3).

HV =
π(i+ 1)

z1 · i · cos(βb)
(a0 + a1 · |ε1|+ a2 · |ε2|+ a3 · |ε1| · ε1 + a4 · |ε2| · ε2) (5.4.3)

Where:

• i is the gear ratio;

• z1 os the number of teeth of the pinion;

• βb is the helix angle at the base;

• εα is the pro�le contact ratio;

• ε1,2 are the tip contact ratios: pinion(1) and wheel(2);

• a0,1,2,3,4 are the coe�cient dependent on the tip contact ratios.

Based on ε1, ε2 and εα three parameters are de�ned:

• ε1 ∈ ]lg − 1 : lg[

• ε2 ∈ ]mg − 1 : mg[

• εα ∈ ]ng − 1 : ng[

And the a0,1,2,3,4 can be calculated according to table 5.3.

Table 5.3.: Formulation of the coe�cients ai, (i = 1 : 4).
εα < 1 εα > 1 εα > 1 εα > 1

ε1 < 0 ∨ ε2 < 0 ε1, ε2 > 0 ε1, ε2 > 0
l +m = n l +m = n+ 1

a0 0 0 2lm
n

2(lm−n)
n−1

a1 0 1 l(l−1)−m(m−1)−2lm
n(n−1)

l(l−1)+m(m−1)−2(m−1)n
n(n−1)

a2 0 1 −l(l−1)+m(m−1)−2lm
n(n−1)

l(l−1)+m(m−1)−2(m−1)n
n(n−1)

a3
1
εα

0 2m
n(n−1)

2(m−1)
n(n−1)

a4
1
εα

0 2l
n(n−1)

2(l−1)
n(n−1)

Equation (5.4.3) was derived for spur gears and for a single gear pair. Despite
considering the base helix angle, this equation is not suited to helical gears and
the elasticity of the meshing tooth is disregarded. KISSsoft [8] is a software that
allows the calculations of a multitude of gears (including planetary gears) considering
imposed operating conditions such as input torque, speed and coe�cient of friction.
The contact analysis module allows the study of the gear contacts considering elastic
e�ects. The average power loss in one of the metrics that can be calculated, therefore
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5. Planetary gearbox: Loads, Kinematics and Power Loss

once the friction coe�cient is imposed, equation (5.4.1) can be used to derive more
accurate gear loss factors.

Table 5.4 displays the HV values used.

Table 5.4.: HV values derived from KISSsoft.

Contact HV factor

Sun-Planet 0.167709
Planet-Ring 0.062473

5.4.1. Friction and �lm thickness between gear teeth

The average coe�cient of friction has a great in�uence in the gear mesh power
loss, as can be seen in equation (5.4.1), and therefore is a major factor in what
concerns to e�ciency. Besides, the coe�cient of friction has a direct in�uence on the
contact temperature and failure probability.

To assess the coe�cient of friction in a lubricated contact, it is necessary to begin
with the calculation of the speci�c �lm thickness, which has a strong correlation with
the coe�cient of friction, as shown by the Stribeck curve, �gure 5.7.

Figure 5.7.: Example of a Stribeck curve [23].

The gear teeth contact is considered to be an elastohydrodynamic (EHD) contact
which, according to Dowson and Higginson [24], can be represented as in �gure 5.8.
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5.4. Gears power loss

Figure 5.8.: Linear elastohydrodynamic contact [25].

The �lm thickness depends on:

• Viscosity of the lubricant (which depends on the temperature);

• Rolling speed;

• Piezoviscosity coe�cient;

• Equivalent radius;

• Normal load;

• Width of the gear.

Classic EHD theory was derived assuming that the lubricant �ow inside the con-
tact zone is isothermal and so, the viscosity of the lubricant depends only in the
contact pressure. However, this hypothesis is not valid for gears due to the high slid-
ing along the contact line. In the inlet zone, the lubricant su�ers a high shear rate
strain as a result of the pressure gradient as well as the rolling and sliding speed. The
shear strain causes inlet shear heating, and the lubricant �ow can't be assumed as
isothermal. The inlet shear heating causes an increase of the lubricant temperature,
followed by a decrease in the lubricant viscosity and �lm thickness.

To take into account the inlet shear heating, the �lm thickness is multiplied by
a heating correction factor, φT which depends on the lubricant thermoviscosity and
thermal conductivity as well as the surface's speed.

Even so, the EHD �lm thickness can't be used directly as it considers the surfaces
as perfectly smooth and doesn't account the surface's roughness. The ratio between

37



5. Planetary gearbox: Loads, Kinematics and Power Loss

the �lm thickness and the composite surface roughness de�nes the speci�c �lm thick-
ness, Λ, which is an indicator of the lubrication regime in the contact. Table 5.5
presents a brief description of the three typical lubrication regimes, according to the
speci�c �lm thickness value.

The calculation methods for the �lm thickness and the coe�cient of friction are
presented in the following paragraphs.

Film thickness

The �lm thickness calculation falls back on four main parameters: speed, material,
load and lubricant parameter.

Speed parameter

U =
η0 · (U1 + U2)

2 ·Rx · E∗ (5.4.4)

Where:

• η0 is the dynamic viscosity;

• U1,2 is the velocity of each surface;

• Rx is the equivalent radius;

• E∗ is the equivalent Young modulus.

Material parameter

G = 2 · α · E∗ (5.4.5)

Where α is the piezoviscosity coe�cient, calculated according to Gold et al. [27].

Load parameter

W =
Fn

Rx · l · E∗ (5.4.6)

Where Fn is the normal force and l is the average sum of contacting lines length
on a helical gear, calculated according to equation (5.4.7).

l =
b · εα
cos (βb)

(5.4.7)

Lubricant parameter

L =
β · η0 · (U1 + U2)

2

K
(5.4.8)
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5.4. Gears power loss

Table 5.5.: EHD lubrication regimes [26].

Speci�c �lm thickness Regime Description

Λ ≥ 2.0 Full �lm The surfaces are completely sep-
arated by the lubricant �lm.

0.7 < Λ < 2.0 Mixed �lm The surfaces are partially separ-
ated by the lubricant �lm, there
are some points where there is as-
perity contact.

Λ ≤ 0.7 Boundary �lm There is no lubricant �lm separat-
ing the surfaces, asperity contact
dominates.
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5. Planetary gearbox: Loads, Kinematics and Power Loss

Where β is the thermoviscosity coe�cient (ASTM D341) and K is the thermal
conductivity.

The inlet shear heating in�uence was calculated using equation (5.4.9).

φT =
(
1 + 0.1 ·

(
1 + 1.48 · V 0.83

e

)
· L0.64

)−1
(5.4.9)

The �lm thickness in the center of contact was calculated using equation (5.4.10).

h0 = 0.975 ·Rx · U0.727 ·G0.727 ·W−0.091 (5.4.10)

The corrected �lm thickness was given by equation (5.4.11).

h0T = h0 · φT (5.4.11)

Lastly, the speci�c �lm thickness was calculated using equation (5.4.12).

Λ =
h0T
σ

(5.4.12)

Where σ is the composite surface roughness.

Coe�cient of friction

Despite the relation between speci�c �lm thickness and friction, the coe�cient
of friction models for gears consider an average value which is usually derived from
experimental studies. One of the most well known average coe�cient of friction
models for gears was proposed by Schlenk et al. [28]. This model is simple and relies
on key parameters such as operating conditions, gear geometry, surface �nish and
lubricant characteristics.

One of the main advantages of this model is that given a proper lubricant factor
XL it can be used to predict the average coe�cient of friction between meshing tooth
pair for di�erent base oils and addictive packages. The lubricant factor for the gear
oils that were selected was determined by Fernandes et al. [16] in an experimental
work in a FZG test rig.

The Schlenk et al. [28] formulation for the average coe�cient of friction is presen-
ted in equation (5.4.13) and table 5.6 presents the XL factor used for the selected
wind turbine gear oils.

µmz = 0.048 ·
(

FN
l ·Rx · (U1 + U2)

)0.20

·
(

1

η0

)0.05

·R 0.25
a ·XL (5.4.13)

Where Ra is the arithmetic mean roughness and XL is the lubricant correction
factor (XL = 1 for non-additivated mineral oils in mixed �lm lubrication)
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5.4. Gears power loss

Table 5.6.: XL factor for the selected oils [16].

Oil XL

PAOR 0.666
MINR 0.858
MINE 0.746
PAGD 0.572

5.4.2. No-load power loss

The no-load power losses in gears have been object of study by several di�erent
authors and a considerable amount of experimental and analytical studies are avail-
able. Some of the most relevant are the ones presented by Höhn et al. [10] and
Changenet et al. [29, 30].

Höhn et al. [10] conducted an experimental study of no-load and load dependent
gear power losses in cylindrical and bevel gears, as function of lubricant type and
viscosity, as well as the operating load, speed and temperature, presenting a single
�ow regime model for the gear churning losses of a pinion/wheel.

Changenet et al. [29] deducted a set of equations to calculate dimensionless gear
drag torque. These equations are directly in�uenced by the di�erent �ow regimes
dependent upon a critical Reynolds number, which is related to the �ow nature and
to the centrifugal acceleration parameter, which in turns is related to �uid projection
caused by rotating gears. Changenet et al. [30] shown that the internal housing
geometry of a gearbox is a major in�uence on the churning power loss.

Other studies are available: Terekhov [31] studied the churning losses of gears
with modules ranging from 2 to 8mm lubricated by high viscosity lubricants (200-
2000cSt) at low speeds. Boness [32] studied churning losses of partially submerged
discs and gear, in di�erent �uids like water and oil. Seetharaman et al. [33] suggested
a physics-based �uid mechanics model to predict spin power losses of gears due to oil
churning and windage. Le Prince et al. [34] proposed a simpli�ed model based on
surface tension and lubricant aeration, establishing a relationship between lubricant
aeration and gear churning losses.

Despite the handful of studies regarding gear churning losses, none presents an
approach to the churning losses of a planetary gearbox. Planetary gearbox allow a
great amount of di�erent con�gurations in what concerns to the number of planets,
the size of the gears and the design of the planet carrier; the gearbox housing has
to keep up with the con�guration of the gears and therefore can vary greatly; the
�uid/geometry interactions are strongly dependent on the geometry and the multi-
tude of possible con�gurations can be the the reason why there are no reliable models
available for the churning losses in planetary gears.

One way of predicting the churning losses of the planetary gearbox in study
would be through a computational �uid dynamics (CFD) analysis. In recent years,
with the increase computational power of desktop computers, CFD is becoming a
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more and more attractive approach to solve the churning losses. Ideally, a simulation
should consider all the geometry details and the interaction between the �uid and
the geometry. The �uid/geometry interactions to include are the following:

• Interaction of the rotating sun and planet carrier with the oil sump (the inter-
action occurs at di�erent speeds);

• Interaction of the rotating planets with the oil sump, considering two relative
motions: the orbit of the planet towards the sun and its own rotation;

• Constant compression/expansion of volume due to the meshing gears (pocketing
e�ects).

These phenomena occur simultaneously and they might be a�ected by each other.
Consequently the sum of each contribution is likely to be di�erent from the power
loss of their joint e�ect.

Recently Concli et al. [35] proposed a solution for the problem of the churning
power loss in a planetary speed reducer which was based on a CFD approach, with
promising results.

Due to the lack of numerical models and to the complexity expected in the creation
of one, the no-load losses associated to the gears were not taken into account in the
presented model.

5.5. Rolling bearings power loss

To determine the power loss associated to the deep groove ball bearings and
tapered roller bearings, the model presented by SKF Rolling Bearings Catalogue
10000/1 EN [36] was used. The bearing power loss is directly related to the frictional
moment in a rolling bearing and the rotational speed of the shaft, as shown in equation
(5.5.1).

PV L = M · n · π
30
· 10−3 (5.5.1)

The friction in a rolling bearing is the result of the rolling and sliding friction,
which in turn are generated by the loads applied, the operating speed, as well as
bearing and lubricant factors. The total friction moment combined with the operating
speed determines the amount of heat generated by the bearing.

The total frictional moment was calculated using equation (5.5.2).

M = Mrr +Msl +Mseal +Mdrag (5.5.2)

Where:
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• M is the total frictional moment;

• Mrr is the rolling frictional moment;

• Msl is the sliding frictional moment;

• Mseal is the frictional moment of seals;

• Mdrag is the frictional moment of associated with the lubricant �ow (drag,
churning, splashing).

5.5.1. Rolling frictional moment

The rolling frictional moment was given by equation (5.5.3).

Mrr = φish · φrs ·Grr · (υ · n)0.6 (5.5.3)

Where:

• Mrr is the rolling frictional moment (N·mm);

• φish is the inlet shear heating reduction factor;

• φrs is the kinematic replenishment/starvation reduction factor;

• Grr is a variable that depends on the bearing type, mean diameter, radial and
axial load;

• n is the rotational speed (rpm);

• υ is the kinematic viscosity at operating temperature of the oil or the base oil
viscosity of the grease (cSt).

Grr is calculated di�erently for deep groove ball bearing and for tapered bearings,
equation (5.5.4) and (5.5.5).

Deep groove ball bearing

Grr =

{
R1 · d1.96m · F 0.54

r if Fa = 0

R1 · d1.96m ·
(
Fr + R2

sin(αSKF )

)0.54
if Fa > 0

(5.5.4)

Tapered roller bearing

Grr = R1 · d2.38m · (Fr +R2 · Y · Fa)0.31 (5.5.5)

Where:

• R1,2 are geometric constants that depend on bearing type and series;
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• Y is the axial load factor for single row bearings;

• dm is the mean diameter;

• Fr is the radial load;

• Fa is the axial load;

• αSKF =
(
Fa
C0

)0.24

5.5.2. Inlet shear heating factor

The amount of lubricant used to form a hydrodynamic �lm is very small. Thus,
part of the oil near the contact area is rejected and forms a reverse �ow, as show in
�gure 5.9.

Figure 5.9.: Reverse �ow in a ball bearing [36].

The reverse �ow shears the lubricant generating heat. Therefore, the viscosity
lowers, the �lm thickness is reduced and the the rolling friction decreases. The inlet
shear heating reduction factor was estimated using equation (5.5.6).

φish =
1

1 + 1.84 · 10−9 · (n · dm)1.28 · υ0.64
(5.5.6)

5.5.3. Kinematic replenishment/starvation reduction factor

When high speeds or high viscosity are involved, the lubricant may not have
enough time to replenish the raceways, causing a "kinematic starvation" e�ect, which
reduces the �lm thickness and rolling friction.

The kinematic replenishment/starvation factor was estimated using equation (5.5.7).

φrs =
1

e
Krs·υ·(d+D)·

√
Kz

2·(D−d)

(5.5.7)

44



5.5. Rolling bearings power loss

Where:

• φrs is the kinematic replenishment/starvation reduction factor;

• Krs is the kinematic replenishment/starvation constant: for low level oil bath
and oil jet lubrication Krs = 3 · 10−8 and for grease and oil-air lubrication
Krs = 6 · 10−8;

• Kz is a geometric constant related to bearing type;

• υ is the kinematic viscosity at operating temperature of the oil or the base oil
viscosity of the grease (cSt).

• n is the rotational speed (rpm);

• d is the bearing bore diameter;

• D is the bearing outside diameter.

According to the online SKF bearing calculator (REF1), for a tapered roller
bearing 32022X/Q, equation (5.5.7) is only valid for a oil level bellow 7.525mm. If
this does not verify, φrs = 1.

5.5.4. Sliding frictional moment

The sliding frictional moment was given by equation (5.5.8).

Msl = Gsl · µsl (5.5.8)

Where:

• Msl is the sliding frictional moment;

• Gsl is a variable dependent on the bearing type, mean diameter, radial and
axial load.

• µsl is the sliding friction coe�cient.

Gsl was calculated di�erently for deep groove ball bearing and for tapered bear-
ings, equation (5.5.9) and (5.5.10).

Deep groove ball bearing

Gsl =

 S1 · d−0.26
m · F

5
3
r if Fa = 0

S1 · d−0.145
m ·

(
F 5
r + S2·d1.5m

sin(αF )
· F 4

a

) 1
3

if Fa > 0
(5.5.9)

Tapered roller bearing

Gsl = S1 · d0.82m · (Fr + S2 · Y · Fa) (5.5.10)
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Where S1,2 are geometric constants for sliding frictional moments.

The sliding friction coe�cient for full-�lm and mixed lubrication conditions can
be estimated using equation (5.5.11).

µsl = φbl · µbl + (1− φbl) · µEHL (5.5.11)

Where:

• φbl is a weighting factor for the sliding friction coe�cient;

• µsl is the sliding friction coe�cient;

• µbl is a friction coe�cient dependent on the additive package of the lubricant,
generally µbl = 0.15.

• µEHL is the sliding frictional coe�cient in full-�lm conditions:

0.02 for cylindrical roller bearings;

0.002 for tapered roller bearings;

other bearings: 0.05 for mineral oils and 0.04 for synthetic oils.

The weighting factor, φbl, can be estimated using equation (5.5.12).

φbl =
1

e2.6·10−8·(υ·n)1.4·dm
(5.5.12)

5.5.5. Drag Losses

Drag losses occur when a bearing is rotating in an oil bath and, in most cases,
their contribution to the total power loss is representative enough to not be neglected.
Drag losses are dependent on several factors: bearing operating speed, oil viscosity,
oil level, size and geometry of the oil sump and external oil agitation caused by
surrounding mechanic elements.

The SKF model calculates the drag losses of rolling bearings following the equa-
tions (5.5.13) to (5.5.16).

Deep groove ball bearing

Mdrag = 0.4 ·VM ·Kball ·d5m ·n2 +1.093 ·10−7 ·n2 ·d3m ·
(
n · d2m · ft

υ

)−1.379

·Rs (5.5.13)

Kball =
irw ·Kz · (d+D)

D − d
· 10−12 (5.5.14)
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5.5. Rolling bearings power loss

Roller bearing

Mdrag = 4·VM ·Kroll·CW ·B·d4m·n2+1.093·10−7·n2·d3m·
(
n · d2m · ft

υ

)−1.379

·Rs (5.5.15)

Kroll =
KL ·Kz · (d+D)

D − d
· 10−12 (5.5.16)

The remaining variables, common for ball and roller bearings are stated in equa-
tion (5.5.17) to (5.5.22).

CW = 2.789 · 10−10 · l3D − 2.786 · 10−4 · l2D + 0.0195 · lD + 0.6439 (5.5.17)

lD = 5 · KL ·B
dm

(5.5.18)

ft =

{
sin (0.5 · t) when 0 ≤ t ≤ π
1 when π < t < 2π

(5.5.19)

RS = 0.36 · d2m · (t− sin (t)) · fA (5.5.20)

t = 2 · cos−1
(

0.6·dm−H
0.6·dm

)
, when H ≥ dm use H = dm (5.5.21)

fA = 0.05 · Kz · (D + d)

D − d
(5.5.22)

Where:

• Mdrag is the frictional moment of drag losses [N·mm];

• VM is the drag loss factor;

• B is the bearing width [mm];

• H is the oil level (�gure 5.10);

• irw is the number of ball rows;

• KL is a geometric constant related to the bearing type;

To determine the oil level, for tapered roller bearings the lowest point should be
considered the outside diameter (D), and for all the other bearings should be the
outer ring mean diameter (0.5 · (D +D1)).

The drag loss factor, VM can be determined using �gure 5.11.
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5. Planetary gearbox: Loads, Kinematics and Power Loss

Figure 5.10.: Oil level measurement [36].

Figure 5.11.: Drag loss factor graph [36].
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5.5. Rolling bearings power loss

5.5.6. Preload (tapered roller bearings)

The tapered roller bearings are assumed to be in a back-to-back con�guration
and when an axial force acts in one of the bearings, the second bearing has to be
subjected to a preload in order to diminish the axial displacement of the �rst bearing.

The preload force F0 that prevents the second bearing (bearing B) of becoming
unloaded in the presence of an axial force KA in the �rst bearing (bearing A) is given
by equation (5.5.23).

F0 = Ka ·
(

cB
cA + cB

)
(5.5.23)

Where cA and cB are the spring constants of the bearings. As in the studied
gearbox the bearings are equal, cA = cB and equation (5.5.23) can be rewritten as:

F0 =
1

2
·Ka (5.5.24)

The Ka value was determined based on the gearbox manufacturer's catalog for
the maximum axial force allowed on the output shaft of the planetary gearbox and
the axial force caused by the maximum input torque for each test.

An example of the power losses for the tapered roller bearing (TRB) and the deep
groove ball bearing (DGB) is given in table 5.7, considering the nominal operating
conditions of the tested gearbox, running with PAOR at 85◦C.
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5. Planetary gearbox: Loads, Kinematics and Power Loss

Table 5.7.: Example for the bearings losses for the nominal operating conditions.

Variables
Results

TRB DGB

Rolling frictional moment [N·mm] Mrr 2064.5 330.87
Variable of the rolling frictional moment Grr 14.756 1.0556

Inlet shear heating reduction factor φish 0.9932 0.9685
Kinematic replenishment/starvation

φrs 1 1
reduction factor

Sliding friction moment [N·mm] Msl 2995.1 85.988
Variable of the sliding frictional moment Gsl 43223 4299.4

Sliding frictional coe�cient µsl 0.1 0.1
Weighting factor for the

φbl 0.6867 0
sliding coe�cient

Frictional moment of drag losses [N·m] Mdrag 38.499 0∗

Preload F0 33000 −
Total frictional moment [N·m] M 5098.2 416.86

Total power loss [W] PV L 133.47 43.65

(∗) − For grease lubricated rolling bearings the SKF model considers
Mdrag = 0 which is the case in study.

5.6. Needle roller bearing losses

The rolling bearing power loss model that was previously presented lacks the
support for needle roller bearings. The frictional moment of a needle roller bearing,
equation (5.6.1), was calculated according to both Höhn et al. [10] and Eschmann et
al. [37] models.

TV L = TV L0 + TV L1 (5.6.1)

The no-load component is calculated according to equation (5.6.2).

TV L0 =

{
1.6 · 10−8 · f0 · d3m when υ · n < 2000

10−10 · f0 · (υ · n)
2
3 · d3m when υ · n ≥ 2000

(5.6.2)

Where:

• TV L0 is the no-load frictional moment [N·m];

• f0 is a coe�cient dependent on the bearing design and lubrication method
(f0 = 12);
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5.7. Seals power loss

The load component, TV LP1, can be calculated using equation (5.6.3).

TV LP1 = 10−3 · f1 · P1 · dm (5.6.3)

Where:

• P1 is the equivalent bearing load;

• f1 is a coe�cient which takes into account the direction of load application
(f1 = 0.002)

An example of the power losses for the needle roller bearing is given in table 5.8,
considering the nominal operating conditions of the tested gearbox, running with
PAOR at 85◦C.

Table 5.8.: Example for the needle roller bearing losses.

Variables Results

No-load component [N·m] TV L0 0.0303

Load component [N·m] TV L1 0.0588
Equivalent bearing load [N] P1 6687.3

Total frictional moment [N·m] TV L 0.0890
Total power loss [W] PV L 6.9937

5.7. Seals power loss

In most applications, seal power losses represent a minor fraction of the total
power loss of a gearbox, and are almost negligible when compared to the losses of
other components. Nevertheless, in order to obtain a model as realistic as possible,
the seals losses were also taken into account. An approximation is given in equation
(5.7.1) [10].

PV D = 7.69× 10−6 × d2sh × n (5.7.1)

Where:

• dsh is the shaft diameter [mm];

• n is the shaft rotational speed [rpm].

The seals power loss is independent of the transmitted torque, being the major
in�uences the operating speed and the shaft diameter. It is possible that equation
(5.7.1) needs small adjustments as di�erent seal materials may in�uence the seals
power loss [10].
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5. Planetary gearbox: Loads, Kinematics and Power Loss

Table 5.9.: Seals power losses for gearbox nominal working conditions.

Variables Results

Input Seal Power Loss [W] PV Din 37.681
Output Seal Power Loss [W] PV Dout 55.560

For the nominal operating conditions of the test gearbox, table 5.9 shows the seal
power losses in both input and output seals.

5.8. Heat balance

While a gearbox is operating heat is generated, which will be dissipated to the
surrounding environment. According to thermodynamics, the mechanical energy that
is dissipated by the gearbox must be equal to the thermal energy that the surrounding
environment receives, equation (5.8.1).

PV = Q̇total (5.8.1)

The main heat transfer mechanisms are conduction, convection and radiation,
equation (5.8.2).

Q̇total = Q̇cd + Q̇cv + Q̇rad (5.8.2)

Thermal conduction re�ect the small amount of heat that is transferred to the
shafts, couplings and foundations of the gearbox. Convection and radiation comprise
the heat transfer that occurs through the external surface of the gearbox.

Höhn et al. [10] suggested that the total heat �ow rate can be calculated according
to the equation (5.8.3).

Q̇total = αHeat · A · (TOil − TRoom) (5.8.3)

Where:

• αHeat is the heat transfer coe�cient (which takes into account the heat transfer
due to conduction, convection and radiation);

• A is the external area of the gearbox;

• TOil is the oil temperature;

• TRoom is the room temperature.

To be noticed, is the fact that equation (5.8.3) does not take into account other
relevant characteristics of the air in the room, such as relative humidity. Bearing in
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5.8. Heat balance

mind that the speci�c heat of dry air and water vapor are, at atmospheric pressure:

• cpdry air = 1.01kJ/kg◦C

• cpwater vapour = 1.84kJ/kg◦C

it is not di�cult to understand that the relative humidity might be a relevant
factor in the relation between the stabilization temperature (TOil − TRoom) and the
total heat �ow rate, therefore equation 5.8.3 can only be applied in very controlled
environments.
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Part III.

Experimental and Numerical
Results
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6. Sixteen Test Grid (PAOR)

6.1. Overall analysis

The sixteen test grid was planned with the aim of reaching a comprehensive
understanding of the in�uence of the operating conditions in terms of power loss,
e�ciency, operating and stabilized temperatures as well as speci�c �lm thickness. As
a secondary goal, the sixteen test grid was meant to evaluate the accuracy of the
numerical model and its variation according to the operating conditions. The sixteen
tests were performed with PAOR.

The power loss values of the sixteen test grid are shown in �gure 6.1.
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Figure 6.1.: PAOR: Power Loss.

It is visible a strong relation between operating speed and power loss. As speed
increases, the power loss for each set of tests increases, even if the nominal input power
is lower. An example is presented in table 6.1, considering the gearbox working as a
multiplier (S1).

In roughly half of the tests, it is also visible that the power loss was not equal
for both operating directions. This di�erences occur in three tests (out of four) at
100rpm, in two tests at 150 and 200rpm and at one test at 250rpm, meaning that
this di�erences might be related to the operating speed.
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6. Sixteen Test Grid (PAOR)

Table 6.1.: Example of input power vs. power loss.

Speed∗ Torque∗ Input power∗ Power Loss
[rpm] [Nm] [W] [W]

150 2800 43982.3 624.5
200 1600 33510.3 671.9

(∗) − Nominal Values

The numerical results are in reasonable agreement with the experiments at lower
speeds (100 and 150rpm), standing in the middle of the experimental values of both
directions. For higher speeds the numerical results stand bellow the experimental
values, essentially because the numerical model is not considering the churning losses,
which are highly dependent on the operating speed. The average deviation of the
numerical results at higher speeds is 57W for 200rpm and 130W for 250rpm.

Numerical predictions are equal for both directions. This is due to the fact that
the numerical model was not designed to consider the power �ow through the com-
ponents in the gearbox, assuming that the power arriving at each component is not
a�ected by the power loss.

As it can be seen in �gure 6.2, in terms of e�ciency, the di�erences between
both operating directions are even more notorious. Only four tests presented similar
e�ciency values for both directions. At 100rpm , the e�ciency of the gearbox working
as a multiplier was higher than when working as a reducer in three out of four tests.
For the remaining twelve tests, this happened only once (150rpm/1600Nm).
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Figure 6.2.: PAOR: E�ciency.

Plotting the e�ciency variation between both directions as a function of the
nominal input power, the plot of �gure 6.3 is obtained.
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6.1. Overall analysis
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Figure 6.3.: E�ciency di�erences between both operating directions.

For a nominal power bellow 27kW, the gearbox presented higher e�ciency working
as a multiplier, while above 27kW presented higher e�ciency as a reducer. Also, in
the range of 45 to 65 kW the e�ciencies of both directions presented variations bellow
0.1%.

It is important to notice that this di�erences found in the power loss and in the
e�ciency are not followed by signi�cant di�erences in the stabilization temperature,
�gure 6.4. The stabilization temperature is de�ned as the di�erence between the
oil and room temperatures (∆T = TOil − TRoom). Furthermore, the oil operating
temperature is always higher in the second operating direction. This might be due
to the fact that the test in direction S2 was always performed right after S1, with a
few minutes of interval.

The di�erences found in the measured values of power loss and e�ciency might be
somehow a�ected by the measurement uncertainty of the torque sensors, as there are
no unusual behaviors in the operating and stabilized temperatures that could justify
the di�erences found.

Having the knowledge of the power loss and the temperatures of stabilized oper-
ating conditions it is possible to de�ne a global heat transfer coe�cient according to
equation (5.8.3). The surface area of the gearbox couldn't be ascertain accurately, so
instead of determine a heat transfer coe�cient - α - , it was determined the product
of the heat transfer coe�cient by the gearbox surface area, αA. Since the numerical
results are in fair agreement with the experimentals, αA was calculated considering
both numerial and experimental power loss. These results are shown in �gure 6.5.

The experimental values presented a much higher dispersion (the norm of residuals
is nearly three times the value found for numerical values). This might indicate that
there is indeed a measurement uncertainty associated with the torque sensors or
that due to the di�erent weather conditions, the properties of the air of the room
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6.1. Overall analysis

di�ered considerably between tests and therefore the stabilized room temperature is
not enough to ascertain the heat dissipated by the gearbox. As referred in section
5.8, the relative humidity of the air in the room is a relevant factor in the estimation
of the dissipated heat.

The numerical values, although presenting a lower dispersion, follow a slightly
decreasing trend line, which is not consistent with previous works [3]. Nevertheless,
this can be explained by the fact that the model is not considering the churning
losses. The highest temperatures occur at higher speeds, where the churning losses
are more relevant. If the churning losses were considered, the amount of power loss
found with higher operating temperatures would have led to an increasing trend line
in the numerical values.

In order to understand in which range of lubrication regime the tests were per-
formed the speci�c �lm thickness was calculated. The results are presented in �gure
6.6.
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Figure 6.6.: PAOR: Speci�c Film Thickness.

The speci�c �lm thickness follows a decreasing trend with increasing torque
and/or speed. For lower speeds, the speci�c �lm thickness is very sensitive to an in-
crease of torque while at higher speeds the decrease of the speci�c �lm thickness with
increasing torque is not so marked. The �lm thickness depends on the oil operating
dynamic viscosity, which in turn depends on the operating temperature. Comparing
both temperature and �lm thickness results, it is clear that the �lm thickness lowers
with increasing oil temperature, as a consequence of lower dynamic viscosity.

The Planet-Ring contact has always higher speci�c �lm thickness than the Sun-
Planet contact, mainly due to the higher equivalent radius and its lower load line.
The Sun-Planet contact presented speci�c �lm values lower than 0.7, meaning it is
operating in a boundary �lm lubrication regime. As for the Planet-Ring contact, the
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6. Sixteen Test Grid (PAOR)

lubrication regime is also boundary �lm, except for the tests 100rpm/1600Nm and
100rpm/2000Nm.

It was also found that the speci�c �lm thickness of direction S1 was always higher
than the ones for direction S2. This occurs because the speci�c �lm thickness has
a direct correlation with the operating viscosity which in turn depend on the oil
temperatures which were always higher for direction S2, explaining the lower speci�c
�lm thickness values.

6.2. Numerical predictions:part by part

In �gure 6.7, the numerical power loss results were plotted discerning the contri-
bution of each component of the gearbox in the total power loss.
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Figure 6.7.: Power Loss: Part by Part.

The two main sources of power loss were the gears and the tapered rolling bear-
ings. The tapered rolling bearings losses only overcame the gear losses in the tests
with the lowest torque (1600Nm). For all the other torques, the gears were the main
source of power loss.

The gear losses seem to be equally dependent on the speed and torque. The
tapered rolling bearing losses were roughly constant with increasing torque, but
showed to be quite sensitive to the operating speed. The studied gearbox is a plan-
etary speed multiplier capable of supporting very high radial and axial loads in the
output shaft, meaning that the tapered roller bearings have a fairly high preload.
Since the helical angle of the planetary gear is quite low, the axial forces applied in
the tapered will be considerably low when compared to the preload, therefore the
power loss in the tapered roller bearings is almost independent of the input torque.
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6.2. Numerical predictions:part by part

The third source of power loss were the seals. According to equation (5.7.1), the
seals' losses are exclusively dependent on the operating speed.

The ball and the needle roller bearing losses had the least signi�cant contribution
to the total power loss. It is evident that both ball and needle roller bearings react
to an increase of speed. For the lowest speed (100rpm), the mentioned bearings react
poorly to the torque increases, but for the others speeds, it seems that the ball and
needle bearing losses gain sensitivity to the torque increases too.

Considering the two extreme values of speed and torque, the power loss of each
component was plotted as percentages relative to the input power, shown in �gure
6.8.

 1600 2800  1600 2800
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

Torque [Nm]

P
ow

er
 L

os
s 

C
on

tr
ib

ut
io

ns
 [%

]

Percentages of Power Loss Contributions

 

 
Gear
Ball Bearing
Tap Bearing
Needle Bearing
Seals

0.67
0.53 0.60

0.06

0.61

0.36
0.36

0.10

0.07

0.07

0.09

0.63

0.08

0.06

0.58

0.23

0.23

0.13

0.13

0.13

100rpm

250rpm

1.64

1.30

1.55

1.21

Figure 6.8.: Percentages of Power Loss Contributions.

The weight of each dissipation source in the total power loss does not vary much
with the speed, but it's highly sensitive to torque variations.

The gears are responsible for a power loss between 0.53% and 0.67% of the input
power. Their relevance increases with torque and decreases with speed.

The tapered roller bearings are responsible for a power loss of 0.61% and 0.63%
at the lowest torque, but decrease to 0.36% at the highest load. Their importance is
roughly constant with speed but greatly decreases as torque increases.

The importance of the seals is strictly dependent on the torque and decreases
when the torque increases. The seals are responsible for losses from 0.13% to 0.23%
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6. Sixteen Test Grid (PAOR)

of the input power.

Both ball and needle roller bearings are minor power loss sources. They both
decrease their relevance with increasing speed and/or increasing torque. The power
losses associated to the ball and needle rolling bearings vary form 0.06% to 0.13% of
the input power.
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7. Five Test Grid

7.1. PAOR

After the sixteen test grid the test and slave gearboxes changed places. To assess
the repeatability of the tests, the �ve grid test was repeated with fresh PAOR oil.
The power loss results are shown in �gure 7.1.
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Figure 7.1.: PAOR: Power Loss.

For the �ve tests carried out, the power loss was always higher when the gearbox
worked as reducer, except for the test at 100rpm and 2800Nm, which had very similar
values in both operating directions. The numerical results for the power loss values
stood in the middle of the experimental values, once again.

In terms of e�ciency, the results are presented in �gure 7.2.

Despite all the �ve tests being carried out above 27kW of nominal input power,
the e�ciency obtained for this tests does not match the results obtained for the
sixteen grid test, were above 27kW the e�ciency in S2 were always higher (see �gure
6.3).

The two tests carried at a nominal input power lower than 35kW (100rpm/2800Nm
and 150rpm/2000Nm) had a higher e�ciency with the gearbox working as a reducer.
For the rest of the tests, with a nominal input power above 35kW, the e�ciency as
multiplier overcame the e�ciency as reducer.
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Figure 7.2.: PAOR: E�ciency.

In both PAOR grids, there is a correlation between the nominal input power and
the direction with higher e�ciency. Nevertheless, this correlation is not clear: in the
�rst grid, the power level at which the higher e�ciency changed from one direction
to another was at 27kW, and in the second grid was at 35kW. Furthermore, in the
�rst grid the highest e�ciency evolves from S1 at lower input power to S2 at higher
power and in the second grid, it happens the other way around: the highest e�ciency
belongs to S2 at lower input power, and evolves to S1 at higher power levels.

It is worth noting that not all the tests carried for the second time presented the
same results. The results obtained for the 100rpm/2800Nm and 150rpm/2000Nm
tests were very similar in power loss, e�ciency and operating and stabilized temper-
atures. For the rest of the tests, the values presented relevant di�erences. A detailed
comparison between the sixteen and �ve grid tests can be consulted in appendix
(consult section B.3).

The operating and stabilized temperatures are presented in �gure 7.3.

In this grid, the operating and stabilized temperatures associated to S2 were
always higher. The higher stabilized temperature associated to S2 indicates higher
power loss when the gearbox works as a reducer, even that the measured power loss
values (see �gure 7.1) do not always follow the temperature readings.

Comparing with the sixteen test grid, the operating temperatures follow the same
trend (S2 higher than S1), although some values do not match. This happens because
the power loss is related to the stabilized temperature, which in turn depends of the
room temperature. Nevertheless, while the stabilized temperature of the sixteen tests
presented very similar values for both operating directions, in the �ve test grid these
di�erences can't be disregarded.
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Figure 7.3.: PAOR: Oil and Stabilization temperatures.

7.2. MINR

After the PAOR, the MINR was tested. The power loss values obtained are
presented in �gure 7.4.
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Figure 7.4.: MINR: Power Loss.

For the test at lowest nominal input power, the numerical predictions were lower
than the experimental values in both operating directions, and the power loss in S1
was higher than in S2. For all the other tests, S1 presented lower losses than S2 and
the numerical predictions stood between the experimental readings.

In what regards to the e�ciency, the results obtained are shown in �gure 7.5.
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Figure 7.5.: MINR: E�ciency.

The e�ciency was always higher when the gearbox worked as a multiplier, and
the numerical results stood between the experimental reading or slightly bellow. For
the 150rpm set of tests, the e�ciency of direction S1 showed a decreasing trend with
increasing torque, although this values are not supported by any abnormal behavior
in the operating or stabilized temperatures, see �gure 7.6.
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Figure 7.6.: MINR: Oil and Stabilization temperatures.

In similarity to what happened with the PAOR, the operating and stabilized tem-
peratures associated to S2 were always higher than S1. Therefore, the temperature
readings indicate di�erent e�ciencies for both directions, and independent of the
nominal input power.
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7.3. MINE

The third oil to be tested was the MINE. The power loss results are presented in
�gure 7.7.
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Figure 7.7.: MINE: Power Loss.

For the MINE power loss results, the direction S2 had always higher losses than S1
and the numerical results stood between the experimental values for both operating
directions.

Figure 7.8 presents the e�ciencies at stabilized operating conditions.
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Figure 7.8.: MINE: E�ciency.

As well as the power loss results, the e�ciency values were quite consistent. S1
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Figure 7.9.: MINE: Oil and Stabilization temperatures.

presents a higher e�ciency than S2, and the numerical values stood in between the
experimental ones.

As for the temperature readings, the values are presented in �gure 7.9. The results
obtained are consistent with both power loss and e�ciency results. Furthermore,
the temperature results of MINE follow the same trend as the previous oils: both
operating and stabilized temperatures are higher for S2.

7.4. PAGD

The experimental campaign �nished with the PAGD gear oil. The power loss
results are show in �gure 7.10.

For PAGD, the power losses associated to S2 were higher than for S1, except for
the test 100rpm/2800Nm where the power loss values were roughly equal. Contrary
to what was observed for the other oils, the numerical values stood bellow the ex-
perimental readings. This is due to the fact that the model is not considering the
churning losses, and for PAGD this fact has more importance, as for the same volume
of oil PAGD is heavier than all the others (see �gure 2.3). More energy is needed
to keep a heavier mass in acceleration, explaining the larger di�erences between the
numerical and experimental results when compared to the predictions for the other
oils. Also, PAGD has a higher dynamic viscosity when compared to the other oils
which also contributes to increase the churning losses.

The e�ciency results are presented in �gure 7.11

The e�ciency was always higher when the gearbox worked as a multiplier. The
di�erences found between the two operating conditions seem to be constant at con-
stant speed, while diverging at constant torque. The numerical values vary from
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Figure 7.10.: PAGD: Power Loss.
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Figure 7.11.: PAGD: E�ciency.
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standing between the e�ciency of both operating directions or being higher than
both, mainly because the predicted power loss was lower than the measurements.

A detail to notice is that the for the 100rpm/2800Nm test, the power loss and
e�ciency values were very close, and it is re�ected in the lowest di�erence of stabilized
temperatures for both operating directions.

Figure 7.12 presents the readings in what concerns to operating and stabilized
temperatures.
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Figure 7.12.: PAGD: Oil and Stabilization temperatures.

PAGD temperatures analysis showed to be consistent with the rest of the tested
oils, as the temperatures associated to S2 are higher than the ones associated to S1.
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7.5. Oil Comparison

7.5.1. Experimental Results

In the following paragraphs, some parameters such as stabilization temperature,
speci�c �lm thickness, kinematic and dynamic viscosity were analyzed simultaneously
for the four tested oils in order to compare their performance. Parameters such as
power loss and e�ciency were not plotted as they show irregular results, probably
associated to the measurement uncertainty of the torque sensors. All the plotted
parameters are related to the operating direction S1 (multiplier).

The stabilized operating temperature for the tested oils is show in �gure 7.13.
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Figure 7.13.: Oil comparison: Stabilization Temperature.

For all the operating conditions, PAOR showed the lowest stabilization temperat-
ures, which indicates that PAOR is the oil that promotes the most e�cient operation.

For the lowest nominal torque (2000Nm), PAGD showed the highest stabiliza-
tion temperature. For all the other tests, the highest stabilization temperature was
reached by MINR. To be noticed is the fact that for constant speed, the MINR showed
a signi�cant increase of the stabilization temperature with increasing torque, while
PAGD started with the highest value, but kept the stabilization temperature almost
constant. When the speci�c �lm thickness is analyzed (see �gure 7.17) it can be seen
that at constant speed and with increasing torque, PAGD does not su�er a decrease
as marked as the other oils, therefore leading to lower losses in the gears.

At constant torque, all the oils showed a signi�cant increase of the stabilization
temperature with increasing speed.

The oil operating temperature is represented in �gure 7.14.

Although PAOR showed the lowest stabilization temperature, the lowest operat-
ing temperature is shown by MINE in all working conditions, except for the test at
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Figure 7.14.: Oil comparison: Operating Temperature.

2000Nm, where the operating temperature of both oils was fairly equal. The operating
temperature di�erence between this two oils seems to increase with increasing power:
the di�erences became evident for the two tests with highest power: 150rpm/2800Nm
and 200rpm/2800Nm.

MINR showed the highest operating temperature for the tests carried at 2800Nm.
For the other two tests, the operating temperature of MINR and PAGD were similar.

High operating temperatures are to be avoided. Despite the being related to
higher power losses, high temperatures have several undesired side e�ects: they con-
tribute to an increase of the surface failure probability as they lead to thinner �lm
thickness and possible higher friction coe�cient [38].

The kinematic and dynamic viscosity are shown in �gures 7.15 and �gure 7.16,
respectively.

In what concerns to the kinematic viscosity the four oils can be ordered from the
highest value to the lowest: MINE showed the highest kinematic viscosity, followed
closely by PAOR. PAGD stands in the third place, but close to MINE and PAOR.
MINR presented the lowest value and signi�cantly far from the other three oils (lowest
viscosity index).

As for the dynamic viscosity, PAGD showed the highest values, mainly due to its
density which is considerably higher than all the other oils. The rest of the oils follows
the same order as for kinematic viscosity: MINE had higher values than PAOR and
MINR showed the lowest values of dynamic viscosity, and considerably away from
the other oils.

74



7.5. Oil Comparison

 2000  2400  2800  
0

20

40

60

80

100

120

140

160

180

200
Kinematic Viscosity at 150rpm

Torque [Nm]

ν 
[c

S
t]

 

 

PAOR
MINR
MINE
PAGD

 100  150  200  
0

20

40

60

80

100

120

140

160

180

200
Kinematic Viscosity at 2800Nm

ν 
[c

S
t]

Speed [rpm]

 

 

PAOR
MINR
MINE
PAGD

Figure 7.15.: Oil comparison: Kinematic Viscosity.
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Figure 7.16.: Oil comparison: Dynamic Viscosity.
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The speci�c �lm thickness depends on a multitude of factors. In what regards the
oil properties, the speci�c �lm thickness depends on the dynamic viscosity and both
thermoviscosity and piezoviscosity coe�cients. Therefore, the speci�c �lm thickness
depends of the operating temperature.

The speci�c �lm thickness for the Sun-Planet contact and for the Planet-Ring
contact is presented in �gure 7.17.
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(a) Sun-Planet Contact.
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(b) Planet-Ring Contact.

Figure 7.17.: Oil comparison: Speci�c Film Thickness.

Although with di�erent values, all the oils show the similar trends regarding
both contacts. The speci�c �lm thickness stood bellow 0.7 for all oils, indicating a
boundary �lm lubrication regime in both contacts. The only exception was the test
150rpm/2000Nm performed with MINE, were the Planet-Ring contact has a speci�c
�lm thickness higher than 0.7.
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7.5. Oil Comparison

MINE showed the highest speci�c �lm thickness for the ranged working condi-
tions, while MINR showed the lowest. According to the American Gear Manufactur-
ers Association [38] the speci�c �lm thickness has a direct relation to the gear failure
probability. Such low speci�c �lm thickness as the ones found in MINR lead to a
higher breakdown probability than the other oils for the performed tests.

PAGD overcame the speci�c �lm thickness of PAOR in the two tests with the
highest power level: 150rpm/2800Nm and 200rpm/2800Nm. PAOR showed a de-
creasing trend with increasing power or with increasing torque while PAGD at con-
stant speed showed a tendency to stabilize with increasing torque and at constant
torque showed its best results at 150rpm.

Ferrography results

The ferrography results for PAOR are present in �gure 7.18. The sample analyzed
was taken in the end of the sixteen test grid.

(a) Dilution: 0.1; Location: Core. (b) Dilution: 0.1; Location: Core.

(c) Dilution: 0.1; Location: Core. (d) Dilution: 0.1; Location: Core.

Figure 7.18.: Ferrography images: PAOR.

In photograph 7.18a is visible the presence of ferrous particles, some of big di-
mension.

Photographs 7.18b, 7.18c and 7.18d are magni�cations of photgraph 7.18a. Photo-
graph 7.18b and 7.18d show ferrous particles resultant of fatigue wear. In photograph
7.18c is visible a high density friction polymer.
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The ferrography results for the MINE oil showed a signi�cant presence of both
small and big ferrous particles, see photograph 7.19a. In photograph 7.19b and 7.19c
is visible ferrous particles of big dimensions, typical of severe fatigue wear.

(a) Dilution: 1; Location: Core. (b) Dilution: 1; Location: Core.

(c) Dilution: 1; Location: Core.

Figure 7.19.: Ferrography images: MINE.

The MINR results are presented in �gure 7.20. In photograph 7.20a is visible
some wear ferrous particles and thermal oxides.

Photographs 7.20b, 7.20d and 7.20c are magni�cations of the �rst photograph.
In 7.20b is visible a ferrous particle of big dimensions slightly oxidized; �gures 7.20c
and 7.20d show ferrous particles of both big and small dimensions as well as particles
from varnishes.

As for the PAGD, the ferrography results are shown in �gure 7.21. Photograph
7.21a shows several particles of big dimensions.

Figure 7.21b revels a ferrous particles of large dimensions, typical of adhesive
wear.

Figures 7.21c and 7.21d show ferrous particles of large and medium sizes typical
of fatigue wear and thermal oxides.

As for the direct reading ferrography results, the values are presented in table
7.1.

The CPUC and ISUC represent, respectively, the wear particles index and the
wear severity index.
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7.5. Oil Comparison

(a) Dilution: 0.1; Location: Core. (b) Dilution: 0.1; Location: Core.

(c) Dilution: 0.1; Location: Core. (d) Dilution: 0.1; Location: Middle.

Figure 7.20.: Ferrography images: MINR.

(a) Dilution: 1; Location: Core. (b) Dilution: 1; Location: Core.

(c) Dilution: 1; Location: Core. (d) Dilution: 1; Location: Core.

Figure 7.21.: Ferrography images: PAGD.
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Table 7.1.: Direct Reading Ferrography Results.

Oil Cycles d DS DL CPUC ISUC

PAOR 924000 0.1 3.4 25.9 293.0 6.6E+04
MINR 247500 0.1 13.4 45.8 592.0 1.9E+05
MINE 247500 1.0 27.0 88.9 115.9 7.2E+03
PAGD 247500 1.0 9.2 17.0 26.2 2.0E+02

For both wear indexes, PAGD showed to be the best oil, followed by MINE. The
PAOR sample analyzed was the one collected after the sixteen test grid and therefore
had more than three times the number of cycles and even so, it showed better wear
indexes than MINR.

In terms of gear wear and oil degradation, the PAGD showed the lowest wear
indexes, even though it showed some premature thermal oxide formation. MINE had
good results in the direct reading ferrography, but the analytical ferrography indicates
relevant fatigue wear particles. MINR had the worst values in the wear indexes and
the analytical ferrography showed a premature oil degradation. PAOR results are
not directly comparable to the rest of the oils, but considering the amount of cycles
and the working conditions it has supported, the results are satisfactory.
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7.5. Oil Comparison

7.5.2. Numerical Results

Using the numerical results, one operating condition was selected to plot the
power losses of each gearbox component, in order to evaluate each oil performance in
what regards gears, roller bearings and seals. The selected operating condition was
the 150rpm/2800Nm (S1), for being the key point of the 5 test grids and for being the
closest comparison in terms of tangential speed and Hertz pressure (see table 3.3).

The percentages of each component in terms of power loss are represented in
�gure 7.22. These percentages are towards the operating power input.
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Figure 7.22.: Percentages of Power Loss Contributions.

In terms of total power loss, the numeric results indicate that PAGD is the most
e�cient oil. Nevertheless, it was already concluded that the numerical values of
PAGD deviate more from the experimental then the other oils, as the model does
not consider the churning losses. For the rest of the oils, the total power loss follows
the stabilization temperature tendency: PAOR is better than MINE, which in turn
outperforms than MINR (see �gure 7.14).

In what concerns the power losses of each component, the comparison between
oils indicates that at the selected operating conditions, the e�ciency di�erences found
are almost exclusively related to the gear losses. PAGD showed the lowest values on
gear losses, followed by PAOR and MINE. MINR is the oil which leads to the highest
values of gear losses.

The roller bearing losses do not vary from one oil to another. Although there are
slight di�erences, they are always about 0.01%, and therefore the di�erences can be
neglected.

The seals show a perfectly constant value, which was expected since according
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to equation (5.7.1) the seals only depend on the shaft diameter and the rotational
speed.

It was also possible to compare the coe�cient of friction in the meshing line of
both Sun-Planet and Planet-Ring contacts, which are presented in �gure 7.23.
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(a) Sun-Planet Contact.
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(b) Planet-Ring Contact.

Figure 7.23.: Oil comparison: Coe�cient of friction.

The coe�cient of friction comparison between oils is very clear: PAGD leads to
the lowest coe�cient of friction, followed by PAOR and MINE, respectively, while
MINR lead to the highest value. This explains the di�erences found in the gears
losses represented in �gure 7.22. In the other hand, it is possible to conclude that
when using PAGD, the reduction in gear losses due to the lower friction coe�cient
is not enough to compensate the higher churning losses, as the PAGD stabilization
temperature is higher than PAOR and MINE.
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7.5. Oil Comparison

The coe�cient of friction has a inverted relation to the operating dynamic vis-
cosity (�gure 7.16). It is possible to verify that the oils with the highest dynamic
viscosity lead to the lowest coe�cient of friction.

The Sun-Planet contact and the Planet-Ring contact present the same tendencies
in what regards the coe�cient of friction: it increases with increasing torque, and
decreases with increasing speed. Although presenting the same tendencies, the coef-
�cient of friction in the Planet-Ring contact was always lower than in the Sun-Planet
contact, due to its higher equivalent radius and lower line load.

The numerical values of αA for the tested oils were plotted in �gure 7.24. The
values considered were for the operating direction S1.
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Figure 7.24.: Heat transfer coe�cient: numerical values.

The trendlines were considered to be linear (y = p1x + p2). The values of the
coe�cients p1 and p2 are represented in table 7.2, as well as the norm of residuals.

Table 7.2.: Trendline coe�cients and norm of residuals.

Oil p1 p2 Norm of Residuals

PAOR 0.1742 10.4038 1.1373
MINE 0.1531 10.6973 0.3881
MINR 0.3199 5.0972 2.0643
PAGD 0.1554 7.9502 1.5177

In what concerns the trends of each oil values, it is possible to observe that PAOR
and MINE have very close trends, which slightly diverge with increasing stabilization
temperature. PAGD showed a similar slope (p1), although the starting point (p2)
is nearly half when compared to PAOR and MINE. This is due to the fact that
the churning losses are not considered in the numerical results, and they are specially
relevant for PAGD. MINR showed a completely di�erent trend compared to the other
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7. Five Test Grid

three oils: it has a more accentuated slope, roughly twice, and a starting point that
stands in the middle of PAGD and MINE.

Regarding the scattering of each oil plot, it is visible that MINR had the worst
correlation, followed by PAGD, each one with a norm of residuals higher than 1.5.
PAOR had a good correlation, with a norm of residuals of 1.1, while MINE had the
best correlation with a norm of residual of 0.4.
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8. Additional tests

The power loss di�erences found between the directions S1 and S2, which were
followed by an increase of the operating temperature raised some doubts in the ana-
lysis of the results. At �rst, the increase of the operating temperature was assigned
to be a consequence of having another 90min of test after the 240min test was car-
ried out. After that, it was found that the stabilization temperature also su�ered an
increase. At this point, two hypothesis were available to explain the di�erences in
both power loss and stabilization temperature:

• The gearbox could have di�erent e�ciencies for each direction, implying di�er-
ent values of power loss and stabilization temperature;

• The increase of the stabilization temperature could be a consequence of a mal-
function in the data acquisition when the test rig was restarted.

In order to clarify these behaviors, PAOR was reintroduced in the gearbox and
two tests (100rpm/2800Nm and 150rpm/2800Nm) were carried out but with switched
operating directions: at �rst the gearbox worked as a reducer (S2) and after as
multiplier (S1). The new tests were compared with the tests performed for the sixteen
and �ve test grid. The evolution of the operating temperature and the di�erence
between oil and room temperature were plotted through all the 330min and are
represented in �gure 8.1 and 8.2.
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Figure 8.1.: Temperatures evolution at the 100rpm test.
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8. Additional tests

For the 100rpm test, see �gure 8.1, the operating temperatures of the sixteen and
the �ve test grid results did not match for the �rst part of the test. In the second
part of the test, the three operating temperatures were quite close. Nevertheless, the
operating temperature of the S2/S1 test was higher than the other two in the �rst
part, and lower in the second.

In what concerns to the stabilization temperature, the sixteen and �ve grid test
had the same stabilization temperature in the �rst part of the test. In the second,
the stabilization temperature starts at a di�erent value, as the time taken to restart
the test rig was probably di�erent, but merged into the same value of stabilization
temperature. As for the test with inverted directions, the stabilization temperature
was higher than the other two for the �rst part (S2), and lower for the second (S1).

Aiming to validate the hypothesis of di�erent e�ciencies for di�erent operating
directions, the 150rpm/2800Nm was carried out. The temperatures are represented
in �gure 8.2.
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Figure 8.2.: Temperatures evolution at the 150rpm test.

In this case, the results leave no doubt. The operating temperature of the sixteen
and �ve grid tests had very similar values in the �rst part of the test. In the second
part the operating temperature starts at a di�erent value, due to the di�erent stopping
time, but converge to the same values after a while. The test carried out with inverted
directions was clearly di�erent from the other two: higher operating temperature in
the �rst part (S2) and lower in the second (S1).

As for the stabilization temperature, the values for the sixteen and �ve grid test
are not a match in the �rst part of the test, but converge to the same value in the
second. The stabilization temperature of the inverted direction test was again higher
than the other two in the �rst part and lower in the second.

According to this results, the tested gearbox at this working conditions has dif-
ferent e�ciencies for both operating directions being more e�cient when working as
a multiplier.
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The di�erences in e�ciency can be explained by the power �ow through the
components and/or the churning losses.

The two main sources of power loss found where the gears and the tapered roller
bearings. When working as a multiplier, the power in the gearbox goes through the
gears �rst, and then through the tapered roller bearings; as a reducer, the power �ows
in the other way around. The di�erences of the power �ow in the gearbox can be one
of the causes for di�erent e�ciencies. One way to verify it would be to reprogram
the numerical model in order to take into account the successive power losses from
one component to another.

The churning losses can have di�erent values for di�erent operating directions, as
churning losses are related to the �uid motion, which can be di�erent in both direction
for a multitude of reasons: for instance, a non-symmetrical housing or display of
components inside the gearbox could be enough to lead to di�erent churning losses
values [30].

While analyzing the temperature evolution for the three tests considered in this
chapter, a curious fact stand out. While plotting the wall temperature along side
with the oil temperature, they seem to diverge or converge according to the operating
direction. The results are shown in �gure 8.3.
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Figure 8.3.: Wall and Oil temperature evolution.

The oil and wall temperatures seem to converge to the same value when the
gearbox works as a multiplier, and seem to diverge when it works as a reducer. The
wall temperature sensor is not placed in plane of symmetry of the gearbox (see �gure
3.4), and with di�erent working direction the �uid �ow inside the gearbox can be
considerably di�erent for each operating direction, meaning that in one direction the
amount of �uid near to the oil sensor is higher than in the other, therefore leading
the wall temperature to be close to the oil temperature in one direction, and to be
signi�cantly di�erent in the other.
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Part IV.

Conclusions and Future Work
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9. Conclusions

9.1. Conclusions based on experimental results

PAOR showed to lead to the lowest values of stabilization temperature. MINR
led to the highest stabilization temperatures, except for the test at 100rpm, where
the highest temperature was achieved with PAGD. The di�erences between oils never
exceeded 7◦C.

In terms of operating temperature, MINE showed the lowest values. PAOR
showed to be more sensitive to both speed and torque increase than PAGD, both
standing between the two mineral based oils, with MINR reaching the highest oper-
ating temperatures. The di�erences found were maximum at the most severe condi-
tions, and were about 10◦C.

As for the operating viscosity, MINR had the lowest values in both kinematic and
dynamic viscosity. The other three oils behave similarly, with MINE being the oil with
the highest kinematic viscosity and PAGD being the one with the highest dynamic
viscosity, due to its high density. In the other hand, viscosity has an important
in�uence in the speci�c �lm thickness.

In what regards to the speci�c �lm thickness, MINE had the highest values and
MINR had the lowest. PAOR and PAGD stood in between, with PAOR showing
better results at lower power levels, and PAGD achieving higher speci�c �lm thickness
at higher power levels.

PAGD achieved the lowest values for the coe�cient of friction while MINR had
the highest. PAOR and MINE stood in between, although PAOR had lower values
than MINE.

In what concerns the wear indexes, specially the severity wear index, PAGD
presented values signi�cantly better than the other oils. MINE showed a considerable
amount of particles typical of fatigue wear and MINR had particles indicating a
premature oil degradation.

The additional tests results allow one to conclude that the tested gearbox has
di�erent e�ciency for both operating directions in the ranged operating conditions.
Additional temperature readings reveal that the �uid �ow in the gearbox has great
in�uences in the temperature values.
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9. Conclusions

9.2. Conclusions based on numerical results

The numerical values for power loss and e�ciency stood between the two exper-
imental readings in most cases. The only signi�cant exception was PAGD and the
high speed tests (200 and 250rpm) for the sixteen test grid.

The di�erences found between the experimental readings and the numerical values
are explained by the churning losses, which the numerical model doesn't take into
account. The churning losses are particularly relevant for high operating speeds and
for PAGD, as it is denser than the other oils.

The numerical values showed that the power loss is more sensitive to speed than
to the torque, and the experimental results validate this prediction.

In terms of component losses, the numerical model showed that at the ranged
working conditions, the gears are the most signi�cant power loss source, except for
the lowest torque applied (1600Nm), where the tapered roller bearings are the main
power loss source.

For the same working conditions, the numerical results indicate that PAGD had
the lowest power loss. The lowest value of PAGD power loss is due to its lowest gear
losses which are justi�ed by the experimental results for the gear coe�cient of friction
of PAGD. The rest of the components have nearly the same losses for the tested oils.
The gears losses vary accordingly to the coe�cient of friction obtained for each oil.

The churning losses seem to be quite relevant, specially for PAGD which despite
showing the lowest coe�cient of friction in the gears (most important source of power
loss) it did not present the best power loss performance. The reduction of the friction
in the gears is not big enough to overcome the increase in the churning losses relatively
to the other lubricants.

For the sixteen test grid, the experimental values of the heat transfer coe�cient
showed a high dispersion of results, when compared to the numerical ones. The
scattering indicates a measurement uncertainty in the torque sensors or indicates
that the stabilization temperature, by it self, is not enough to ascertain the power
loss.
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10. Future Works

The repeatability of the tests could not be assured, specially in terms of torque
measurements. The torque sensors accuracy should be checked and the tests carried
out should be repeated with higher reliability in the results.

The scattering visible on the heat transfer coe�cients determined with the ex-
perimental power loss results is big enough to justify the introduction of a relative
humidity sensor in the test rig. The thermal conductibility of the air signi�cantly
changes with the water vapor presence and therefore, two temperature readings are
not enough to accurately ascertain the power loss of a gear box. Additional tests
should be carried out in order to obtain a more realistic equation regarding other air
properties, as relative humidity.

The power loss model should be re-built in order to consider successive power
losses as the power �ows through the gearbox. The e�ciency di�erences found ex-
perimentally should be compared to that new version of the model, attempting to
comprehend why the gearbox shows di�erent e�ciency for both operating directions.

The churning losses and the �uid �ow seem to be a relevant part of the gearbox
losses. A computational �uid dynamic (CFD) analysis should be carried out in order
to predict the �uid motion and the churning losses. The CFD results could be par-
tially validated by �lming several tests with a thermographic camera, assuming that
the �uid motion and temperature would be represented as a gradient temperature at
the surface of the gearbox.
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A. Ring surface temperature tests

The temperatures readings of the additional tests have proven that the �uid �ow
inside the gearbox has a relevant in�uence in the temperatures measured in the oil
sump and in the wall. Therefore, the gearbox was equipped with four thermocouples
placed on the area exterior to the ring (see �gure A.1) in an attempt to ascertain the
ring temperatures, considering that part of the ring is immersed in the oil sump, an
the other is not.

Figure A.1.: Thermocouples' positioning.

Three tests were performed at 150rpm/2800Nm. In two of them, the �rst working
direction was S2 (reducer), and in the last one, the �rst operating direction was
S1 (multiplier). The thermocouples' readings were recorded by two thermologgers;
in di�erent tests, the combination between thermocouples and thermologgers was
changed, in order to verify the results repeatability. The results are shown in �gure
A.2, A.3 and A.4.

The repeatability of the temperature's readings was not veri�ed: Between the �rst
and the second tests (�gures A.2 and A.3), the maximum and minimum temperature
points switched positions; in the third test (�gure A.4) is visible that in the second
part of the test point A and C have di�erent trends from point B and D. In this test,
the thermocouples measuring point A and C were recorded by one thermologger, while
thermocouples measuring point B and D were recorded by the other. The readings
might be a�ected by a "thermologger factor", as there is no plausible explanation for
the diagonal di�erences found.

Nevertheless, the temperature di�erence found between two points was higher
than 10◦C in two out of three cases, reinforcing the need to run additional tests
aiming to clarify the �uid �ow in�uence in the oil, wall and surface temperatures'
behavior.
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A. Ring surface temperature tests
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Figure A.2.: Surface temperatures in the area exterior to the ring (test: 1).
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Figure A.3.: Surface temperatures in the area exterior to the ring (test: 2).

100 150 200 250 300 350
50

55

60

65

70

75

Time [min]

T
em

pe
ra

tu
re

 [º
C

]

Surface temperatures evolution (S1&S2)

 

 

Point A
Point B
Point C
Point D

Figure A.4.: Surface temperatures in the area exterior to the ring (test: 3).
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B. Test Reports
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B.1. PAOR Oil: 16 Test Grid

B.1. PAOR Oil: 16 Test Grid
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B. Test Reports

Test Number:1 Date:05/03/2014 By: Raquel Camacho

Oil: PAOR

Imposed Working Conditions: Units
nin 100 rpm

TQin 1600 Nm
Test duration 240 + 90 min

S1: Multiplier Gearbox

Actual Working Conditions: Units
n1 102.6 rpm

TQ1 1549.5 Nm
TQ2 383.0 Nm

Temperature readings: Units
TOil M5 43.26 ◦C
TOil M12 44.80 ◦C
TWall 43.50 ◦C
TAmb 25.18 ◦C

Additional Information: Units
TOil M5 − TAmb 18.08 ◦C

Efficiency 98.88 %
TQLoss 17.4 Nm

S2: Reducer Gearbox

Actual Working Conditions: Units
n1 102.5 rpm

TQ1 1549.5 Nm
TQ2 395.9 Nm

Temperature readings: Units
TOil M5 45.12 ◦C
TOil M12 45.24 ◦C
TWall 44.04 ◦C
TAmb 26.96 ◦C

Additional Information: Units
TOil M5 − TAmb 18.16 ◦C

Efficiency 97.86 %
TQLoss 33.9 Nm
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B.1. PAOR Oil: 16 Test Grid

Test Number:2 Date:06/03/2014 By: Raquel Camacho

Oil: PAOR

Imposed Working Conditions: Units
nin 100 rpm

TQin 2000 Nm
Test duration 240 + 90 min

S1: Multiplier Gearbox

Actual Working Conditions: Units
n1 99.7 rpm

TQ1 1935.5 Nm
TQ2 479.0 Nm

Temperature readings: Units
TOil M5 46.07 ◦C
TOil M12 46.92 ◦C
TWall 45.81 ◦C
TAmb 27.12 ◦C

Additional Information: Units
TOil M5 − TAmb 18.96 ◦C

Efficiency 99.00 %
TQLoss 19.4 Nm

S2: Reducer Gearbox

Actual Working Conditions: Units
n1 99.7 rpm

TQ1 1935.2 Nm
TQ2 491.9 Nm

Temperature readings: Units
TOil M5 48.16 ◦C
TOil M12 47.69 ◦C
TWall 46.52 ◦C
TAmb 28.78 ◦C

Additional Information: Units
TOil M5 − TAmb 19.38 ◦C

Efficiency 98.34 %
TQLoss 32.6 Nm
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B. Test Reports

Test Number:3 Date:07/03/2014 By: Raquel Camacho

Oil: PAOR

Imposed Working Conditions: Units
nin 100 rpm

TQin 2400 Nm
Test duration 240 + 90 min

S1: Multiplier Gearbox

Actual Working Conditions: Units
n1 99.7 rpm

TQ1 2321.5 Nm
TQ2 573.6 Nm

Temperature readings: Units
TOil M5 47.58 ◦C
TOil M12 48.38 ◦C
TWall 47.02 ◦C
TAmb 26.96 ◦C

Additional Information: Units
TOil M5 − TAmb 20.62 ◦C

Efficiency 98.83 %
TQLoss 27.2 Nm

S2: Reducer Gearbox

Actual Working Conditions: Units
n1 99.7 rpm

TQ1 2320.6 Nm
TQ2 588.5 Nm

Temperature readings: Units
TOil M5 51.03 ◦C
TOil M12 50.11 ◦C
TWall 48.80 ◦C
TAmb 29.79 ◦C

Additional Information: Units
TOil M5 − TAmb 21.24 ◦C

Efficiency 98.58 %
TQLoss 33.4 Nm
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B.1. PAOR Oil: 16 Test Grid

Test Number:4 Date:10/03/2014 By: Raquel Camacho

Oil: PAOR

Imposed Working Conditions: Units
nin 150 rpm

TQin 1600 Nm
Test duration 240 + 90 min

S1: Multiplier Gearbox

Actual Working Conditions: Units
n1 149.9 rpm

TQ1 1549.8 Nm
TQ2 381.6 Nm

Temperature readings: Units
TOil M5 55.59 ◦C
TOil M12 57.79 ◦C
TWall 56.74 ◦C
TAmb 31.12 ◦C

Additional Information: Units
TOil M5 − TAmb 24.47 ◦C

Efficiency 98.48 %
TQLoss 23.5 Nm

S2: Reducer Gearbox

Actual Working Conditions: Units
n1 149.9 rpm

TQ1 1549.0 Nm
TQ2 393.5 Nm

Temperature readings: Units
TOil M5 58.59 ◦C
TOil M12 58.77 ◦C
TWall 57.73 ◦C
TAmb 33.73 ◦C

Additional Information: Units
TOil M5 − TAmb 24.85 ◦C

Efficiency 98.40 %
TQLoss 25.2 Nm
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B. Test Reports

Test Number:5 Date:11/03/2014 By: Raquel Camacho

Oil: PAOR

Imposed Working Conditions: Units
nin 150 rpm

TQin 2000 Nm
Test duration 240 + 90 min

S1: Multiplier Gearbox

Actual Working Conditions: Units
n1 149.9 rpm

TQ1 1936.4 Nm
TQ2 475.7 Nm

Temperature readings: Units
TOil M5 61.00 ◦C
TOil M12 62.31 ◦C
TWall 61.11 ◦C
TAmb 31.07 ◦C

Additional Information: Units
TOil M5 − TAmb 29.93 ◦C

Efficiency 98.26 %
TQLoss 33.6 Nm

S2: Reducer Gearbox

Actual Working Conditions: Units
n1 150.6 rpm

TQ1 1935.8 Nm
TQ2 490.7 Nm

Temperature readings: Units
TOil M5 64.04 ◦C
TOil M12 64.06 ◦C
TWall 62.75 ◦C
TAmb 34.49 ◦C

Additional Information: Units
TOil M5 − TAmb 29.55 ◦C

Efficiency 98.62 %
TQLoss 27.0 Nm
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B.1. PAOR Oil: 16 Test Grid

Test Number:6 Date:12/03/2014 By: Raquel Camacho

Oil: PAOR

Imposed Working Conditions: Units
nin 150 rpm

TQin 2400 Nm
Test duration 240 + 90 min

S1: Multiplier Gearbox

Actual Working Conditions: Units
n1 149.9 rpm

TQ1 2322.3 Nm
TQ2 571.7 Nm

Temperature readings: Units
TOil M5 63.29 ◦C
TOil M12 64.00 ◦C
TWall 62.89 ◦C
TAmb 32.13 ◦C

Additional Information: Units
TOil M5 − TAmb 31.16 ◦C

Efficiency 98.46 %
TQLoss 35.7 Nm

S2: Reducer Gearbox

Actual Working Conditions: Units
n1 149.8 rpm

TQ1 2321.7 Nm
TQ2 588.6 Nm

Temperature readings: Units
TOil M5 68.60 ◦C
TOil M12 68.57 ◦C
TWall 67.23 ◦C
TAmb 34.80 ◦C

Additional Information: Units
TOil M5 − TAmb 33.80 ◦C

Efficiency 98.61 %
TQLoss 32.7 Nm
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B. Test Reports

Test Number:7 Date:13/03/2014 By: Raquel Camacho

Oil: PAOR

Imposed Working Conditions: Units
nin 200 rpm

TQin 1600 Nm
Test duration 240 + 90 min

S1: Multiplier Gearbox

Actual Working Conditions: Units
n1 200.7 rpm

TQ1 1549.2 Nm
TQ2 379.3 Nm

Temperature readings: Units
TOil M5 68.44 ◦C
TOil M12 69.50 ◦C
TWall 68.97 ◦C
TAmb 31.27 ◦C

Additional Information: Units
TOil M5 − TAmb 37.17 ◦C

Efficiency 97.94 %
TQLoss 32.0 Nm

S2: Reducer Gearbox

Actual Working Conditions: Units
n1 200.0 rpm

TQ1 1547.2 Nm
TQ2 393.0 Nm

Temperature readings: Units
TOil M5 70.63 ◦C
TOil M12 73.72 ◦C
TWall 72.68 ◦C
TAmb 33.55 ◦C

Additional Information: Units
TOil M5 − TAmb 37.07 ◦C

Efficiency 98.41 %
TQLoss 25.0 Nm
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B.1. PAOR Oil: 16 Test Grid

Test Number:8 Date:14/03/2014 By: Raquel Camacho

Oil: PAOR

Imposed Working Conditions: Units
nin 200 rpm

TQin 2000 Nm
Test duration 240 + 90 min

S1: Multiplier Gearbox

Actual Working Conditions: Units
n1 201.8 rpm

TQ1 1935.8 Nm
TQ2 475.4 Nm

Temperature readings: Units
TOil M5 72.85 ◦C
TOil M12 73.06 ◦C
TWall 72.63 ◦C
TAmb 31.75 ◦C

Additional Information: Units
TOil M5 − TAmb 41.10 ◦C

Efficiency 98.24 %
TQLoss 34.1 Nm

S2: Reducer Gearbox

Actual Working Conditions: Units
n1 200.2 rpm

TQ1 1940.8 Nm
TQ2 492.8 Nm

Temperature readings: Units
TOil M5 74.48 ◦C
TOil M12 77.34 ◦C
TWall 76.32 ◦C
TAmb 34.04 ◦C

Additional Information: Units
TOil M5 − TAmb 40.44 ◦C

Efficiency 98.46 %
TQLoss 30.3 Nm
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B. Test Reports

Test Number:9 Date:17/03/2014 By: Raquel Camacho

Oil: PAOR

Imposed Working Conditions: Units
nin 200 rpm

TQin 2400 Nm
Test duration 240 + 90 min

S1: Multiplier Gearbox

Actual Working Conditions: Units
n1 201.8 rpm

TQ1 2322.3 Nm
TQ2 571.3 Nm

Temperature readings: Units
TOil M5 74.82 ◦C
TOil M12 74.63 ◦C
TWall 74.15 ◦C
TAmb 31.26 ◦C

Additional Information: Units
TOil M5 − TAmb 43.55 ◦C

Efficiency 98.40 %
TQLoss 37.2 Nm

S2: Reducer Gearbox

Actual Working Conditions: Units
n1 200.0 rpm

TQ1 2319.6 Nm
TQ2 589.2 Nm

Temperature readings: Units
TOil M5 78.11 ◦C
TOil M12 80.82 ◦C
TWall 79.77 ◦C
TAmb 33.27 ◦C

Additional Information: Units
TOil M5 − TAmb 44.84 ◦C

Efficiency 98.42 %
TQLoss 37.1 Nm
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B.1. PAOR Oil: 16 Test Grid

Test Number:10 Date:18/03/2014 By: Raquel Camacho

Oil: PAOR

Imposed Working Conditions: Units
nin 250 rpm

TQin 1600 Nm
Test duration 240 + 90 min

S1: Multiplier Gearbox

Actual Working Conditions: Units
n1 250.4 rpm

TQ1 1549.0 Nm
TQ2 377.5 Nm

Temperature readings: Units
TOil M5 82.08 ◦C
TOil M12 82.64 ◦C
TWall 82.38 ◦C
TAmb 32.82 ◦C

Additional Information: Units
TOil M5 − TAmb 49.26 ◦C

Efficiency 97.48 %
TQLoss 39.1 Nm

S2: Reducer Gearbox

Actual Working Conditions: Units
n1 250.5 rpm

TQ1 1550.1 Nm
TQ2 395.0 Nm

Temperature readings: Units
TOil M5 84.69 ◦C
TOil M12 87.40 ◦C
TWall 86.50 ◦C
TAmb 35.00 ◦C

Additional Information: Units
TOil M5 − TAmb 49.70 ◦C

Efficiency 98.10 %
TQLoss 30.0 Nm
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B. Test Reports

Test Number:11 Date:19/03/2014 By: Raquel Camacho

Oil: PAOR

Imposed Working Conditions: Units
nin 250 rpm

TQin 2000 Nm
Test duration 240 + 90 min

S1: Multiplier Gearbox

Actual Working Conditions: Units
n1 250.5 rpm

TQ1 1935.7 Nm
TQ2 475.5 Nm

Temperature readings: Units
TOil M5 85.78 ◦C
TOil M12 84.92 ◦C
TWall 84.62 ◦C
TAmb 34.07 ◦C

Additional Information: Units
TOil M5 − TAmb 51.71 ◦C

Efficiency 98.26 %
TQLoss 33.7 Nm

S2: Reducer Gearbox

Actual Working Conditions: Units
n1 250.5 rpm

TQ1 1935.9 Nm
TQ2 492.3 Nm

Temperature readings: Units
TOil M5 86.70 ◦C
TOil M12 88.37 ◦C
TWall 87.71 ◦C
TAmb 36.87 ◦C

Additional Information: Units
TOil M5 − TAmb 49.84 ◦C

Efficiency 98.32 %
TQLoss 33.1 Nm
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B.1. PAOR Oil: 16 Test Grid

Test Number:12 Date:20/03/2014 By: Raquel Camacho

Oil: PAOR

Imposed Working Conditions: Units
nin 250 rpm

TQin 2400 Nm
Test duration 240 + 90 min

S1: Multiplier Gearbox

Actual Working Conditions: Units
n1 250.5 rpm

TQ1 2321.6 Nm
TQ2 572.0 Nm

Temperature readings: Units
TOil M5 88.02 ◦C
TOil M12 86.55 ◦C
TWall 86.47 ◦C
TAmb 34.32 ◦C

Additional Information: Units
TOil M5 − TAmb 53.70 ◦C

Efficiency 98.55 %
TQLoss 33.6 Nm

S2: Reducer Gearbox

Actual Working Conditions: Units
n1 250.5 rpm

TQ1 2322.4 Nm
TQ2 589.1 Nm

Temperature readings: Units
TOil M5 89.71 ◦C
TOil M12 90.15 ◦C
TWall 90.14 ◦C
TAmb 36.86 ◦C

Additional Information: Units
TOil M5 − TAmb 52.85 ◦C

Efficiency 98.56 %
TQLoss 33.9 Nm
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B. Test Reports

Test Number:13 Date:21/03/2014 By: Raquel Camacho

Oil: PAOR

Imposed Working Conditions: Units
nin 100 rpm

TQin 2800 Nm
Test duration 240 + 90 min

S1: Multiplier Gearbox

Actual Working Conditions: Units
n1 99.7 rpm

TQ1 2708.6 Nm
TQ2 667.6 Nm

Temperature readings: Units
TOil M5 53.84 ◦C
TOil M12 53.86 ◦C
TWall 52.26 ◦C
TAmb 28.40 ◦C

Additional Information: Units
TOil M5 − TAmb 25.44 ◦C

Efficiency 98.59 %
TQLoss 38.2 Nm

S2: Reducer Gearbox

Actual Working Conditions: Units
n1 99.7 rpm

TQ1 2708.7 Nm
TQ2 685.6 Nm

Temperature readings: Units
TOil M5 56.24 ◦C
TOil M12 55.36 ◦C
TWall 53.50 ◦C
TAmb 29.92 ◦C

Additional Information: Units
TOil M5 − TAmb 26.32 ◦C

Efficiency 98.77 %
TQLoss 33.6 Nm
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B.1. PAOR Oil: 16 Test Grid

Test Number:14 Date:24/03/2014 By: Raquel Camacho

Oil: PAOR

Imposed Working Conditions: Units
nin 150 rpm

TQin 2800 Nm
Test duration 240 + 90 min

S1: Multiplier Gearbox

Actual Working Conditions: Units
n1 149.8 rpm

TQ1 2708.3 Nm
TQ2 667.1 Nm

Temperature readings: Units
TOil M5 62.78 ◦C
TOil M12 64.08 ◦C
TWall 62.64 ◦C
TAmb 28.32 ◦C

Additional Information: Units
TOil M5 − TAmb 34.47 ◦C

Efficiency 98.53 %
TQLoss 39.8 Nm

S2: Reducer Gearbox

Actual Working Conditions: Units
n1 149.8 rpm

TQ1 2708.4 Nm
TQ2 685.3 Nm

Temperature readings: Units
TOil M5 68.46 ◦C
TOil M12 67.92 ◦C
TWall 66.04 ◦C
TAmb 30.99 ◦C

Additional Information: Units
TOil M5 − TAmb 37.47 ◦C

Efficiency 98.81 %
TQLoss 32.7 Nm
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B. Test Reports

Test Number:15 Date:25/03/2014 By: Raquel Camacho

Oil: PAOR

Imposed Working Conditions: Units
nin 200 rpm

TQin 2800 Nm
Test duration 240 + 90 min

S1: Multiplier Gearbox

Actual Working Conditions: Units
n1 200.1 rpm

TQ1 2700.8 Nm
TQ2 666.2 Nm

Temperature readings: Units
TOil M5 76.79 ◦C
TOil M12 76.43 ◦C
TWall 75.74 ◦C
TAmb 31.20 ◦C

Additional Information: Units
TOil M5 − TAmb 45.59 ◦C

Efficiency 98.67 %
TQLoss 35.9 Nm

S2: Reducer Gearbox

Actual Working Conditions: Units
n1 200.0 rpm

TQ1 2708.4 Nm
TQ2 685.7 Nm

Temperature readings: Units
TOil M5 79.99 ◦C
TOil M12 81.19 ◦C
TWall 79.87 ◦C
TAmb 32.79 ◦C

Additional Information: Units
TOil M5 − TAmb 47.20 ◦C

Efficiency 98.74 %
TQLoss 34.5 Nm
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B.1. PAOR Oil: 16 Test Grid

Test Number:16 Date:26/03/2014 By: Raquel Camacho

Oil: PAOR

Imposed Working Conditions: Units
nin 250 rpm

TQin 2800 Nm
Test duration 240 + 90 min

S1: Multiplier Gearbox

Actual Working Conditions: Units
n1 250.4 rpm

TQ1 2709.3 Nm
TQ2 666.8 Nm

Temperature readings: Units
TOil M5 89.94 ◦C
TOil M12 87.81 ◦C
TWall 87.73 ◦C
TAmb 31.93 ◦C

Additional Information: Units
TOil M5 − TAmb 58.01 ◦C

Efficiency 98.45 %
TQLoss 42.0 Nm

S2: Reducer Gearbox

Actual Working Conditions: Units
n1 250.4 rpm

TQ1 2709.6 Nm
TQ2 686.1 Nm

Temperature readings: Units
TOil M5 90.93 ◦C
TOil M12 92.25 ◦C
TWall 91.46 ◦C
TAmb 34.02 ◦C

Additional Information: Units
TOil M5 − TAmb 56.92 ◦C

Efficiency 98.73 %
TQLoss 34.8 Nm
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B.2. PAOR Oil: 5 Test Grid

B.2. PAOR Oil: 5 Test Grid
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B. Test Reports

Test Number:17 Date:03/04/2014 By: Raquel Camacho

Oil: PAOR

Imposed Working Conditions: Units
nin 100 rpm

TQin 2800 Nm
Test duration 240 + 90 min

S1: Multiplier Gearbox

Actual Working Conditions: Units
n1 99.6 rpm

TQ1 2709.0 Nm
TQ2 668.1 Nm

Temperature readings: Units
TOil M5 51.48 ◦C
TOil M12 51.57 ◦C
TWall 50.07 ◦C
TAmb 26.31 ◦C

Additional Information: Units
TOil M5 − TAmb 25.17 ◦C

Efficiency 98.65 %
TQLoss 36.5 Nm

S2: Reducer Gearbox

Actual Working Conditions: Units
n1 99.6 rpm

TQ1 2709.0 Nm
TQ2 685.8 Nm

Temperature readings: Units
TOil M5 55.32 ◦C
TOil M12 54.27 ◦C
TWall 52.45 ◦C
TAmb 28.72 ◦C

Additional Information: Units
TOil M5 − TAmb 26.60 ◦C

Efficiency 98.75 %
TQLoss 34.4 Nm
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B.2. PAOR Oil: 5 Test Grid

Test Number:18 Date:04/04/2014 By: Raquel Camacho

Oil: PAOR

Imposed Working Conditions: Units
nin 150 rpm

TQin 2000 Nm
Test duration 240 + 90 min

S1: Multiplier Gearbox

Actual Working Conditions: Units
n1 149.8 rpm

TQ1 1935.0 Nm
TQ2 475.6 Nm

Temperature readings: Units
TOil M5 57.29 ◦C
TOil M12 59.35 ◦C
TWall 57.71 ◦C
TAmb 27.93 ◦C

Additional Information: Units
TOil M5 − TAmb 29.36 ◦C

Efficiency 98.32 %
TQLoss 32.6 Nm

S2: Reducer Gearbox

Actual Working Conditions: Units
n1 149.8 rpm

TQ1 1935.3 Nm
TQ2 491.3 Nm

Temperature readings: Units
TOil M5 62.86 ◦C
TOil M12 62.23 ◦C
TWall 60.58 ◦C
TAmb 30.72 ◦C

Additional Information: Units
TOil M5 − TAmb 32.14 ◦C

Efficiency 98.47 %
TQLoss 30.0 Nm
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B. Test Reports

Test Number:19 Date:07/04/2014 By: Raquel Camacho

Oil: PAOR

Imposed Working Conditions: Units
nin 150 rpm

TQin 2400 Nm
Test duration 240 + 90 min

S1: Multiplier Gearbox

Actual Working Conditions: Units
n1 149.8 rpm

TQ1 2321.7 Nm
TQ2 574.8 Nm

Temperature readings: Units
TOil M5 58.97 ◦C
TOil M12 60.47 ◦C
TWall 58.98 ◦C
TAmb 28.47 ◦C

Additional Information: Units
TOil M5 − TAmb 30.50 ◦C

Efficiency 99.03 %
TQLoss 22.6 Nm

S2: Reducer Gearbox

Actual Working Conditions: Units
n1 149.8 rpm

TQ1 2321.7 Nm
TQ2 590.6 Nm

Temperature readings: Units
TOil M5 65.08 ◦C
TOil M12 64.10 ◦C
TWall 62.41 ◦C
TAmb 29.50 ◦C

Additional Information: Units
TOil M5 − TAmb 35.59 ◦C

Efficiency 98.28 %
TQLoss 40.7 Nm
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B.2. PAOR Oil: 5 Test Grid

Test Number:20 Date:08/04/2014 By: Raquel Camacho

Oil: PAOR

Imposed Working Conditions: Units
nin 150 rpm

TQin 2800 Nm
Test duration 240 + 90 min

S1: Multiplier Gearbox

Actual Working Conditions: Units
n1 149.8 rpm

TQ1 2709.4 Nm
TQ2 671.2 Nm

Temperature readings: Units
TOil M5 62.43 ◦C
TOil M12 63.35 ◦C
TWall 61.85 ◦C
TAmb 30.17 ◦C

Additional Information: Units
TOil M5 − TAmb 32.26 ◦C

Efficiency 99.09 %
TQLoss 24.8 Nm

S2: Reducer Gearbox

Actual Working Conditions: Units
n1 149.8 rpm

TQ1 2709.1 Nm
TQ2 687.7 Nm

Temperature readings: Units
TOil M5 68.84 ◦C
TOil M12 67.44 ◦C
TWall 65.64 ◦C
TAmb 31.47 ◦C

Additional Information: Units
TOil M5 − TAmb 37.37 ◦C

Efficiency 98.48 %
TQLoss 41.9 Nm
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B. Test Reports

Test Number:21 Date:09/04/2014 By: Raquel Camacho

Oil: PAOR

Imposed Working Conditions: Units
nin 200 rpm

TQin 2800 Nm
Test duration 240 + 90 min

S1: Multiplier Gearbox

Actual Working Conditions: Units
n1 200.0 rpm

TQ1 2707.9 Nm
TQ2 671.0 Nm

Temperature readings: Units
TOil M5 74.06 ◦C
TOil M12 74.36 ◦C
TWall 72.52 ◦C
TAmb 33.28 ◦C

Additional Information: Units
TOil M5 − TAmb 40.78 ◦C

Efficiency 99.11 %
TQLoss 24.0 Nm

S2: Reducer Gearbox

Actual Working Conditions: Units
n1 200.0 rpm

TQ1 2709.7 Nm
TQ2 686.8 Nm

Temperature readings: Units
TOil M5 78.03 ◦C
TOil M12 76.87 ◦C
TWall 75.46 ◦C
TAmb 34.79 ◦C

Additional Information: Units
TOil M5 − TAmb 43.24 ◦C

Efficiency 98.64 %
TQLoss 37.3 Nm
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B.3. PAOR: comparison between test grids

B.3. PAOR: comparison between test grids

Test & Direction Grid n1 TQ1 TQ2 TOil M5 TAmb ∆T

100rpm/2800Nm (S1)
16 99.7 2708.6 667.6 53.84 28.40 25.44
5 99.6 2709.0 668.1 51.48 26.31 25.17

100rpm/2800Nm (S2)
16 99.7 2708.7 685.6 56.24 29.92 26.32
5 99.6 2709.0 685.8 55.32 28.72 26.60

150rpm/2000Nm (S1)
16 149.9 1936.4 475.7 61.00 31.07 29.93
5 149.8 1935.0 475.6 57.29 27.93 29.36

150rpm/2000Nm (S2)
16 150.6 1935.8 490.7 64.04 34.49 29.55
5 149.8 1935.3 491.3 62.86 30.72 32.14

150rpm/2400Nm (S1)
16 149.9 2322.3 571.7 63.29 31.13 35.7
5 149.8 2321.7 574.8 58.97 28.47 30.50

150rpm/2400Nm (S2)
16 149.8 2321.7 588.6 68.60 34.80 33.80
5 149.8 2321.7 590.6 65.08 29.50 35.59

150rpm/2800Nm (S1)
16 149.8 2708.3 667.1 62.78 28.32 34.47
5 149.8 2709.4 671.2 62.43 30.17 32.26

150rpm/2800Nm (S2)
16 149.8 2708.4 685.3 68.46 30.99 37.47
5 149.8 2709.1 687.7 68.84 31.47 41.9

200rpm/2800Nm (S1)
16 200.1 2700.8 666.2 76.79 31.20 45.59
5 200.0 2707.9 671.0 74.06 33.28 40.78

200rpm/2800Nm (S2)
16 200.0 2708.4 685.7 79.99 32.79 47.20
5 200.0 2709.7 686.8 78.03 34.79 43.24
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B.4. MINR Oil: 5 Test Grid

B.4. MINR Oil: 5 Test Grid
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B. Test Reports

Test Number:22 Date:10/04/2014 By: Raquel Camacho

Oil: MINR

Imposed Working Conditions: Units
nin 100 rpm

TQin 2800 Nm
Test duration 240 + 90 min

S1: Multiplier Gearbox

Actual Working Conditions: Units
n1 99.6 rpm

TQ1 2709.4 Nm
TQ2 668.2 Nm

Temperature readings: Units
TOil M5 57.64 ◦C
TOil M12 56.70 ◦C
TWall 54.83 ◦C
TAmb 25.80 ◦C

Additional Information: Units
TOil M5 − TAmb 31.83 ◦C

Efficiency 98.65 %
TQLoss 36.7 Nm

S2: Reducer Gearbox

Actual Working Conditions: Units
n1 99.6 rpm

TQ1 2708.9 Nm
TQ2 688.0 Nm

Temperature readings: Units
TOil M5 60.26 ◦C
TOil M12 58.11 ◦C
TWall 56.12 ◦C
TAmb 26.78 ◦C

Additional Information: Units
TOil M5 − TAmb 33.48 ◦C

Efficiency 98.43 %
TQLoss 43.3 Nm
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B.4. MINR Oil: 5 Test Grid

Test Number:23 Date:14/04/2014 By: Raquel Camacho

Oil: MINR

Imposed Working Conditions: Units
nin 150 rpm

TQin 2000 Nm
Test duration 240 + 90 min

S1: Multiplier Gearbox

Actual Working Conditions: Units
n1 150.0 rpm

TQ1 1933.0 Nm
TQ2 478.3 Nm

Temperature readings: Units
TOil M5 60.72 ◦C
TOil M12 62.25 ◦C
TWall 60.10 ◦C
TAmb 30.03 ◦C

Additional Information: Units
TOil M5 − TAmb 30.69 ◦C

Efficiency 98.98 %
TQLoss 19.8 Nm

S2: Reducer Gearbox

Actual Working Conditions: Units
n1 150.0 rpm

TQ1 1937.3 Nm
TQ2 494.1 Nm

Temperature readings: Units
TOil M5 68.50 ◦C
TOil M12 66.67 ◦C
TWall 64.85 ◦C
TAmb 32.24 ◦C

Additional Information: Units
TOil M5 − TAmb 36.26 ◦C

Efficiency 98.02 %
TQLoss 39.0 Nm
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B. Test Reports

Test Number:24 Date:15/04/2014 By: Raquel Camacho

Oil: MINR

Imposed Working Conditions: Units
nin 150 rpm

TQin 2400 Nm
Test duration 240 + 90 min

S1: Multiplier Gearbox

Actual Working Conditions: Units
n1 150.0 rpm

TQ1 2320.9 Nm
TQ2 574.1 Nm

Temperature readings: Units
TOil M5 63.67 ◦C
TOil M12 64.33 ◦C
TWall 62.32 ◦C
TAmb 29.60 ◦C

Additional Information: Units
TOil M5 − TAmb 34.07 ◦C

Efficiency 98.94 %
TQLoss 24.6 Nm

S2: Reducer Gearbox

Actual Working Conditions: Units
n1 149.9 rpm

TQ1 2321.5 Nm
TQ2 590.3 Nm

Temperature readings: Units
TOil M5 70.66 ◦C
TOil M12 68.18 ◦C
TWall 66.42 ◦C
TAmb 31.01 ◦C

Additional Information: Units
TOil M5 − TAmb 39.65 ◦C

Efficiency 98.31 %
TQLoss 39.8 Nm
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B.4. MINR Oil: 5 Test Grid

Test Number:25 Date:16/04/2014 By: Raquel Camacho

Oil: MINR

Imposed Working Conditions: Units
nin 150 rpm

TQin 2800 Nm
Test duration 240 + 90 min

S1: Multiplier Gearbox

Actual Working Conditions: Units
n1 150.0 rpm

TQ1 2705.5 Nm
TQ2 668.6 Nm

Temperature readings: Units
TOil M5 66.72 ◦C
TOil M12 66.86 ◦C
TWall 64.62 ◦C
TAmb 29.04 ◦C

Additional Information: Units
TOil M5 − TAmb 37.68 ◦C

Efficiency 98.85 %
TQLoss 31.1 Nm

S2: Reducer Gearbox

Actual Working Conditions: Units
n1 149.9 rpm

TQ1 2710.5 Nm
TQ2 687.6 Nm

Temperature readings: Units
TOil M5 73.36 ◦C
TOil M12 70.42 ◦C
TWall 68.51 ◦C
TAmb 30.64 ◦C

Additional Information: Units
TOil M5 − TAmb 42.73 ◦C

Efficiency 98.56 %
TQLoss 39.7 Nm
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B. Test Reports

Test Number:26 Date:17/04/2014 By: Raquel Camacho

Oil: MINR

Imposed Working Conditions: Units
nin 200 rpm

TQin 2800 Nm
Test duration 240 + 90 min

S1: Multiplier Gearbox

Actual Working Conditions: Units
n1 200.1 rpm

TQ1 2708.0 Nm
TQ2 670.9 Nm

Temperature readings: Units
TOil M5 80.30 ◦C
TOil M12 77.43 ◦C
TWall 76.16 ◦C
TAmb 33.77 ◦C

Additional Information: Units
TOil M5 − TAmb 46.53 ◦C

Efficiency 99.09 %
TQLoss 24.5 Nm

S2: Reducer Gearbox

Actual Working Conditions: Units
n1 200.0 rpm

TQ1 2703.8 Nm
TQ2 685.6 Nm

Temperature readings: Units
TOil M5 84.50 ◦C
TOil M12 80.49 ◦C
TWall 79.16 ◦C
TAmb 35.38 ◦C

Additional Information: Units
TOil M5 − TAmb 49.11 ◦C

Efficiency 98.59 %
TQLoss 38.8 Nm
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B.5. MINE Oil: 5 Test Grid

B.5. MINE Oil: 5 Test Grid
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B. Test Reports

Test Number:27 Date:21/04/2014 By: Raquel Camacho

Oil: MINE

Imposed Working Conditions: Units
nin 100 rpm

TQin 2800 Nm
Test duration 240 + 90 min

S1: Multiplier Gearbox

Actual Working Conditions: Units
n1 99.6 rpm

TQ1 2708.7 Nm
TQ2 669.3 Nm

Temperature readings: Units
TOil M5 51.49 ◦C
TOil M12 52.88 ◦C
TWall 50.76 ◦C
TAmb 24.79 ◦C

Additional Information: Units
TOil M5 − TAmb 26.70 ◦C

Efficiency 98.83 %
TQLoss 31.7 Nm

S2: Reducer Gearbox

Actual Working Conditions: Units
n1 99.7 rpm

TQ1 2708.3 Nm
TQ2 687.7 Nm

Temperature readings: Units
TOil M5 55.13 ◦C
TOil M12 54.65 ◦C
TWall 52.62 ◦C
TAmb 25.70 ◦C

Additional Information: Units
TOil M5 − TAmb 29.43 ◦C

Efficiency 98.46 %
TQLoss 42.4 Nm
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B.5. MINE Oil: 5 Test Grid

Test Number:28 Date:22/04/2014 By: Raquel Camacho

Oil: MINE

Imposed Working Conditions: Units
nin 150 rpm

TQin 2000 Nm
Test duration 240 + 90 min

S1: Multiplier Gearbox

Actual Working Conditions: Units
n1 149.9 rpm

TQ1 1935.3 Nm
TQ2 477.2 Nm

Temperature readings: Units
TOil M5 56.82 ◦C
TOil M12 60.01 ◦C
TWall 57.77 ◦C
TAmb 26.66 ◦C

Additional Information: Units
TOil M5 − TAmb 30.17 ◦C

Efficiency 98.64 %
TQLoss 26.3 Nm

S2: Reducer Gearbox

Actual Working Conditions: Units
n1 149.8 rpm

TQ1 1935.4 Nm
TQ2 493.0 Nm

Temperature readings: Units
TOil M5 62.85 ◦C
TOil M12 62.99 ◦C
TWall 61.21 ◦C
TAmb 27.99 ◦C

Additional Information: Units
TOil M5 − TAmb 34.87 ◦C

Efficiency 98.14 %
TQLoss 36.6 Nm
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B. Test Reports

Test Number:29 Date:23/04/2014 By: Raquel Camacho

Oil: MINE

Imposed Working Conditions: Units
nin 150 rpm

TQin 2400 Nm
Test duration 240 + 90 min

S1: Multiplier Gearbox

Actual Working Conditions: Units
n1 149.9 rpm

TQ1 2322.4 Nm
TQ2 573.1 Nm

Temperature readings: Units
TOil M5 58.48 ◦C
TOil M12 61.30 ◦C
TWall 59.06 ◦C
TAmb 25.98 ◦C

Additional Information: Units
TOil M5 − TAmb 32.50 ◦C

Efficiency 98.70 %
TQLoss 30.1 Nm

S2: Reducer Gearbox

Actual Working Conditions: Units
n1 149.8 rpm

TQ1 2321.7 Nm
TQ2 589.7 Nm

Temperature readings: Units
TOil M5 64.72 ◦C
TOil M12 64.57 ◦C
TWall 62.77 ◦C
TAmb 27.83 ◦C

Additional Information: Units
TOil M5 − TAmb 36.89 ◦C

Efficiency 98.43 %
TQLoss 37.1 Nm
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B.5. MINE Oil: 5 Test Grid

Test Number:30 Date:24/04/2014 By: Raquel Camacho

Oil: MINE

Imposed Working Conditions: Units
nin 150 rpm

TQin 2800 Nm
Test duration 240 + 90 min

S1: Multiplier Gearbox

Actual Working Conditions: Units
n1 149.8 rpm

TQ1 2709.1 Nm
TQ2 669.5 Nm

Temperature readings: Units
TOil M5 58.81 ◦C
TOil M12 61.16 ◦C
TWall 59.01 ◦C
TAmb 23.84 ◦C

Additional Information: Units
TOil M5 − TAmb 34.97 ◦C

Efficiency 98.85 %
TQLoss 31.2 Nm

S2: Reducer Gearbox

Actual Working Conditions: Units
n1 153.6 rpm

TQ1 2709.7 Nm
TQ2 686.7 Nm

Temperature readings: Units
TOil M5 66.34 ◦C
TOil M12 65.87 ◦C
TWall 64.05 ◦C
TAmb 26.15 ◦C

Additional Information: Units
TOil M5 − TAmb 40.19 ◦C

Efficiency 98.65 %
TQLoss 37.1 Nm
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B. Test Reports

Test Number:31 Date:28/04/2014 By: Raquel Camacho

Oil: MINE

Imposed Working Conditions: Units
nin 200 rpm

TQin 2800 Nm
Test duration 240 + 90 min

S1: Multiplier Gearbox

Actual Working Conditions: Units
n1 202.0 rpm

TQ1 2705.2 Nm
TQ2 668.9 Nm

Temperature readings: Units
TOil M5 69.84 ◦C
TOil M12 71.50 ◦C
TWall 69.33 ◦C
TAmb 26.31 ◦C

Additional Information: Units
TOil M5 − TAmb 43.52 ◦C

Efficiency 98.91 %
TQLoss 29.5 Nm

S2: Reducer Gearbox

Actual Working Conditions: Units
n1 199.9 rpm

TQ1 2713.2 Nm
TQ2 688.3 Nm

Temperature readings: Units
TOil M5 73.72 ◦C
TOil M12 74.65 ◦C
TWall 73.12 ◦C
TAmb 28.63 ◦C

Additional Information: Units
TOil M5 − TAmb 45.09 ◦C

Efficiency 98.55 %
TQLoss 40.0 Nm
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B.6. PAGD Oil: 5 Test Grid

B.6. PAGD Oil: 5 Test Grid
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B. Test Reports

Test Number:32 Date:29/04/2014 By: Raquel Camacho

Oil: MINE

Imposed Working Conditions: Units
nin 100 rpm

TQin 2800 Nm
Test duration 240 + 90 min

S1: Multiplier Gearbox

Actual Working Conditions: Units
n1 99.6 rpm

TQ1 2709.5 Nm
TQ2 668.3 Nm

Temperature readings: Units
TOil M5 54.22 ◦C
TOil M12 55.32 ◦C
TWall 53.21 ◦C
TAmb 26.11 ◦C

Additional Information: Units
TOil M5 − TAmb 28.11 ◦C

Efficiency 98.66 %
TQLoss 36.3 Nm

S2: Reducer Gearbox

Actual Working Conditions: Units
n1 99.6 rpm

TQ1 2709.1 Nm
TQ2 686.9 Nm

Temperature readings: Units
TOil M5 57.05 ◦C
TOil M12 56.67 ◦C
TWall 54.67 ◦C
TAmb 27.50 ◦C

Additional Information: Units
TOil M5 − TAmb 29.55 ◦C

Efficiency 98.60 %
TQLoss 38.5 Nm
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B.6. PAGD Oil: 5 Test Grid

Test Number:33 Date:30/04/2014 By: Raquel Camacho

Oil: MINE

Imposed Working Conditions: Units
nin 150 rpm

TQin 2000 Nm
Test duration 240 + 90 min

S1: Multiplier Gearbox

Actual Working Conditions: Units
n1 149.8 rpm

TQ1 1934.9 Nm
TQ2 476.4 Nm

Temperature readings: Units
TOil M5 60.62 ◦C
TOil M12 63.59 ◦C
TWall 61.39 ◦C
TAmb 27.23 ◦C

Additional Information: Units
TOil M5 − TAmb 33.39 ◦C

Efficiency 98.48 %
TQLoss 29.3 Nm

S2: Reducer Gearbox

Actual Working Conditions: Units
n1 149.8 rpm

TQ1 1935.6 Nm
TQ2 493.8 Nm

Temperature readings: Units
TOil M5 65.54 ◦C
TOil M12 65.67 ◦C
TWall 63.83 ◦C
TAmb 29.24 ◦C

Additional Information: Units
TOil M5 − TAmb 36.29 ◦C

Efficiency 98.01 %
TQLoss 39.4 Nm
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B. Test Reports

Test Number:34 Date:02/05/2014 By: Raquel Camacho

Oil: MINE

Imposed Working Conditions: Units
nin 150 rpm

TQin 2400 Nm
Test duration 240 + 90 min

S1: Multiplier Gearbox

Actual Working Conditions: Units
n1 149.9 rpm

TQ1 2322.2 Nm
TQ2 573.4 Nm

Temperature readings: Units
TOil M5 63.42 ◦C
TOil M12 66.14 ◦C
TWall 63.70 ◦C
TAmb 29.97 ◦C

Additional Information: Units
TOil M5 − TAmb 33.45 ◦C

Efficiency 98.77 %
TQLoss 28.6 Nm

S2: Reducer Gearbox

Actual Working Conditions: Units
n1 150.0 rpm

TQ1 2320.1 Nm
TQ2 589.7 Nm

Temperature readings: Units
TOil M5 68.19 ◦C
TOil M12 67.98 ◦C
TWall 66.05 ◦C
TAmb 31.77 ◦C

Additional Information: Units
TOil M5 − TAmb 36.41 ◦C

Efficiency 98.35 %
TQLoss 38.9 Nm
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B.6. PAGD Oil: 5 Test Grid

Test Number:35 Date:08/05/2014 By: Raquel Camacho

Oil: MINE

Imposed Working Conditions: Units
nin 150 rpm

TQin 2800 Nm
Test duration 240 + 90 min

S1: Multiplier Gearbox

Actual Working Conditions: Units
n1 152.8 rpm

TQ1 2709.2 Nm
TQ2 670.6 Nm

Temperature readings: Units
TOil M5 63.15 ◦C
TOil M12 65.92 ◦C
TWall 63.73 ◦C
TAmb 27.79 ◦C

Additional Information: Units
TOil M5 − TAmb 35.35 ◦C

Efficiency 99.02 %
TQLoss 26.6 Nm

S2: Reducer Gearbox

Actual Working Conditions: Units
n1 152.9 rpm

TQ1 2709.3 Nm
TQ2 687.6 Nm

Temperature readings: Units
TOil M5 70.01 ◦C
TOil M12 69.59 ◦C
TWall 67.31 ◦C
TAmb 29.65 ◦C

Additional Information: Units
TOil M5 − TAmb 40.36 ◦C

Efficiency 98.50 %
TQLoss 41.2 Nm
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B. Test Reports

Test Number:36 Date:12/05/2014 By: Raquel Camacho

Oil: MINE

Imposed Working Conditions: Units
nin 200 rpm

TQin 2800 Nm
Test duration 240 + 90 min

S1: Multiplier Gearbox

Actual Working Conditions: Units
n1 200.0 rpm

TQ1 2708.2 Nm
TQ2 671.1 Nm

Temperature readings: Units
TOil M5 74.78 ◦C
TOil M12 76.59 ◦C
TWall 74.16 ◦C
TAmb 30.30 ◦C

Additional Information: Units
TOil M5 − TAmb 44.48 ◦C

Efficiency 99.11 %
TQLoss 24.0 Nm

S2: Reducer Gearbox

Actual Working Conditions: Units
n1 200.0 rpm

TQ1 2710.2 Nm
TQ2 688.8 Nm

Temperature readings: Units
TOil M5 80.33 ◦C
TOil M12 79.21 ◦C
TWall 77.46 ◦C
TAmb 30.92 ◦C

Additional Information: Units
TOil M5 − TAmb 49.41 ◦C

Efficiency 98.37 %
TQLoss 44.9 Nm
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ANÁLISE DE LUBRIFICANTES 
ANÁLISE DE FERROGRAFIA  
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0 Controlo Documental 
 
0.1 Identificação do Documento 
 

Análise Nº 36 - 43 / 14 

Tipo de Análise Análise de Ferrografia  

Nome Ficheiro Documento Ensaios_Banco 

 
 
0.2 Identificação do Equipamento 
 

Equipamento Banco de Ensaios 

Componente Caixa de Engrenagens 

Lubrificante Óleos MinE; MinR; PAO; PAG 

 
 
0.3 Autor(es) 
 

Nome Iniciais 

Beatriz Graça BMG 

Ramiro Martins RCM 

 
 
0.4 Cliente 
 

Nome INEGI 

Morada Porto 

Telefone / Fax  

 
 
0.5 Lista de distribuição 
 

Nome Iniciais Entidade 

   

   

 
 
 
 
  

INEGI – Instituto de Engenharia Mecânica e Gestão Industrial 
 
Campus da FEUP | Rua Dr. Roberto Frias, 400 | 4200-465 Porto | PORTUGAL 
Tel: +351 22 957 87 10 | Fax: +351 22 953 73 52 | E-mail: inegi@inegi.up.pt | Site: www.inegi.up.pt 
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Análise de Desgaste II 

B. Graça e R. Martins 

 

OBJECTIVO 
 

 Análise de nove amostras de óleo lubrificante, resultantes de ensaios no Banco de 

Engrenagens, para avaliação do desgaste presente. 

 

 

 As amostras analisadas foram as seguintes: 

 

Amostra Análises efectuadas 

Nº Ferrometria Ferrografia Analítica 

MinE 00 

MinE 5 

MinR 5 

PAOR 100 

PAOR 150 

PAOR 200 

PAOR 250 

PAOR 2800 

PAG 

X 

X 

X 

X 

X 

X 

X 

X 

X 

- 

X 

X 

- 

- 

- 

- 

X 

X 
 

 

 

 

 

RESULTADOS DAS ANÁLISES 

 

 Nas páginas seguintes são apresentados os resultados referentes às análises de 

Ferrometria (DR III) e Ferrografia Analítica (FM III). 
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Análise de Ferrografia  

B. Graça e R. Martins 

 

 

 

 
 
 
 
 
 
 
 
 
 

CLIENTE: INEGI ENSAIO: Banco de Ensaios

MORADA:   Porto Ref. Óleos: MinE; MinR; PAOR; PAG

DATA:  09/06/14

IDENTIFICAÇÃO

Amostra nº: MinE 00 MinE 5 MinR 5 PAO R 100 PAO R 150 PAO R 200 PAO R 250 PAO R 2800 PAG

Data amostra: mai-14 mai-14 mai-14 mai-14 mai-14 mai-14 mai-14 mai-14 mai-14

Análise nº:  44/14  45/14  46/14  47/14  48/14  49/14  50/14  51/14  51/14

Ciclos/Máquina: - - - - - - - - -

Ciclos/Óleo:  -  -  -  -  -  -  -  -  -

FERROMETRIA

d: 1,0 1,0 0,1 0,1 0,1 0,1 0,1 0,1 1,0

DL: 5,3 88,9 45,8 29,3 27,8 26,4 22,8 25,9 17,0

DS: 2,2 27,0 13,4 2,8 3,8 3,3 3,2 3,4 9,2

CPUC: 7,5 115,9 592,0 321,0 316,0 297,0 260,0 293,0 26,2

ISUC: 2,3E+01 7,2E+03 1,9E+05 8,5E+04 7,6E+04 6,9E+04 5,1E+04 6,6E+04 2,0E+02

FERROGRAFIA:

Desgaste normal

Desgaste severo

Desgaste abrasão

Desgaste combinado

Desgaste fadiga

Esferas Metálicas

Ligas não ferrosas

Óxidos de ferro

Minerais/Orgânicos

OILVIEW:

Índice OilLife: 

Índice Oxidação:

Índice Contaminação:

Índice Ferromagnético:

Grandes Contaminantes:

Constante Dieléctrica:

FILTRAGEM

(Nº Partículas/10 ml)

5 - 15 mm

15 - 25 mm

25 - 50 mm

50 - 100 mm

> 100 mm

VISCOSIDADE 

(cSt a 40° C):

ACIDEZ (TAN)

 (mg KOH)

P. INFLAMAÇÃO

(° C)

DIAGNÓSTICO:

LEGENDA       DL - Índice de partículas grandes Não existe

     DS -  Índice de partículas pequenas f Fraco

CPUC - Concentração de partículas de desgasteM Médio

  ISUC - Índice de severidade de desgaste F Forte
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Análise de Desgaste II 

B. Graça e R. Martins 

 
 
 

 

CLIENTE: INEGI ENSAIO: Banco de Ensaios

MORADA:   Porto Ref. Óleos:  MinE 5 d = 1

DATA:  09/06/14

  

 

 

 

 

 

Ampliação:   x  1000              Diluíção:   1   

Localização: Núcleo    Luz:  Branca / Verde

Observações: Ampliação da Fotografia 1. 

Partículas ferrosa de grandes dimensões, típicas 

de desgaste  severo de fadiga.

Fotografia 1 Fotografia 2

Ampliação:    x  200             Diluíção:    1   

Localização: Núcleo    Luz: Branca / Verde

Observações: Presença significativa de partículas  

ferrosas de desgaste de grandes e pequenas 

dimensões . 

Ampliação:    x  1000          Diluíção:   1   

Localização:  Núcleo     Luz:   Branca / Verde

Observações:  Ampliação da Fotografia 1.  

Partículas ferrosas de grandes dimensões, típicas 

de desgaste de fadiga.

Fotografia 3
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Análise de Ferrografia  

B. Graça e R. Martins 

 

 
 
 

CLIENTE: INEGI ENSAIO: Banco de Ensaios

MORADA:   Porto Ref. Óleos:  MinR 5   d = 0.1

DATA:  09/06/14

  

 

 

 

 

 

Fotografia  4 Fotografia  5

Ampliação:   x  1000              Diluíção:  0,1   

Localização: Núcleo          Luz:  Branca / Verde

Observações: Ampliação da Fotografia 4. 

Partícula ferrosa de desgaste de grande 

dimensão e ligeiramente oxidada . 

Ampliação:    x  200             Diluíção: 0,1   

Localização: Nucleo       Luz: Branca / Verde

Observações:  Presença de algumas partículas  

ferrosas de desgaste e de oxidos térmicos. 

Fotografia  6 Fotografia  7

Ampliação:   x  1000              Diluíção:  0,1   

Localização: Meio          Luz:  Branca / Verde

Observações: Ampliação da Fotografia 4. 

Partículas ferrosas de desgaste de pequenas 

dimensões e partículas de "vernizes".

Ampliação:    x  1000             Diluíção:   0,1   

Localização: Nucleo       Luz: Branca / Verde

Observações: Ampliação da Fotografia 4. 

Partículas ferrosas de desgaste de grande 

dimensão e algumas partículas de "vernizes". 

Fotografia  15
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Análise de Desgaste II 

B. Graça e R. Martins 

 
 
 
 

CLIENTE: INEGI ENSAIO: Banco de Ensaios

MORADA:   Porto Ref. Óleos:  PAO 2800 d = 0,1

DATA:  09/06/14

  

 

 

 

 

 

Fotografia  8 Fotografia   9

Fotografia  10 Fotografia  11

Ampliação:    x  200           Diluíção:    0,1   

Localização: Núcleo    Luz: Branca / Verde

Observações:  Presença de partículas ferrosas , 

algumas de grandes dimensões.

Ampliação:   x  1000              Diluíção:   0,1   

Localização: Núcleo    Luz:  Branca / Verde

Observações: Ampliação da Fotografia 8. 

Partículas ferrosas de grandes dimensões, 

algumas resultantes de desgaste de fadiga.

Ampliação:   x  1000           Diluíção:   0,1   

Localização:   Núcleo    Luz:  Branca / Verde

Observações: Ampliação da Fotografia 8.  

Polimero de atrito de elevada densidade.

Ampliação:    x  1000          Diluíção:    0,1   

Localização:  Núcleo   Luz:   Branca / Verde

Observações:  Ampliação da Fotografia  8.  

Partículas ferrosas de grandes dimensões, 

algumas resultantes de desgaste de fadiga.
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Análise de Ferrografia  

B. Graça e R. Martins 

 

 
  

CLIENTE: INEGI ENSAIO: Banco de Ensaios

MORADA:   Porto Ref. Óleos:  PAG d = 1

DATA:  09/06/14

  

 

 

 

 

 

Fotografia 13 Fotografia 14

7 / 

Ampliação:   x  1000              Diluíção:   1   

Localização: Núcleo        Luz:  Branca / Verde

Observações: Ampliação da Fotografia 13. 

Partículaferrosa de grandes dimensões, típica  de 

desgaste de adesão.

Ampliação:    x  200             Diluíção:    1   

Localização: Núcleo     Luz: Branca / Verde

Observações: Presença de algumas partículas 

ferrosas de grandes dimensões.

Fotografia  15 Fotografia  16

Ampliação:   x  1000              Diluíção:  1   

Localização: Nucleo          Luz:  Branca / Verde

Observações: Ampliação da Fotografia 13. 

Partículas ferrosasde médias dimensões, típicas de 

desgaste de fadiga e óxidos termicos.

Ampliação:    x  1000             Diluíção:   1   

Localização: Nucleo       Luz: Branca / Verde

Observações: Ampliação da Fotografia 13. 

Partícula ferrosa de grandes dimensões, típicas 

de desgaste de fadiga e óxidos termicos.
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  KISSsoft Release   03/2013  
KISSsoft University license - Universidade do Porto

  File  
Name :         report_3006
Changed by:           em09047 am: 30.06.2014 um: 13:20:09

 

Important hint: At least one warning has occurred during the calculation:
1-> The calculation of micropitting specified in ISO15144 is not designed for use with internal toothing
because it has not yet been subject to sufficient investigation.
The results can only be used for information purposes.

CALCULATION OF A HELICAL PLANETARY GEAR

Drawing or article number:
Gear 1: 0.000.0
Gear 2: 0.000.0
Gear 3: 0.000.0

Calculation method ISO 6336:2006 Method B

 ------- Gear 1 --------- Gear 2 --------- Gear 3 ---
Number of planets [p] (1)    3 (1)

Power (kW) [P]      65.45
Speed (1/min) [n]     1000.0        0.0
Speed difference for planet bearing calculation (1/min) [n2]      750.0
Speed planet carrier (1/min) [nSteg]      250.0

Torque (Nm) [T]      625.0        0.0     1875.0
Torque Pl.-Carrier (Nm) [TSteg]   2500.000

Application factor [KA]       1.25
Power distribution factor [Kgam]       1.00
Required service life [H]   20000.00
Gear driving (+) / driven (-) + -/+ -

1. TOOTH GEOMETRY AND MATERIAL

 (geometry calculation according to
 DIN 3960:1987)
 ------- Gear 1 ------------ Gear 2 ------------ Gear 3 ---
Center distance (mm) [a]     73.035
Centre distance tolerance  ISO 286:2010 Measure js7

Normal module (mm) [mn]     2.0000
Pressure angle at normal section (°) [alfn]    20.0000
Helix angle at reference circle (°) [beta]    10.0000
Number of teeth [z]         36         36       -108
Facewidth (mm) [b]      42.00      42.00      42.00
Hand of gear                                                         left            right             right
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Planetary axles can be placed in regular pitch.: 120°

Accuracy grade [Q-ISO1328:1995]          6          6          6
Inner diameter (mm) [di]       0.00       0.00
External diameter (mm) [di]       0.00
Inner diameter of gear rim (mm) [dbi]       0.00       0.00
Outer diameter of gear rim (mm) [dbi]       0.00

Material
Gear 1: 18CrNiMo7-6, Case-carburized steel, case-hardened
 ISO 6336-5 Figure 9/10 (MQ), core strength >=25HRC Jominy J=12mm<HRC28
Gear 2: 18CrNiMo7-6, Case-carburized steel, case-hardened
 ISO 6336-5 Figure 9/10 (MQ), core strength >=25HRC Jominy J=12mm<HRC28
Gear 3: 18CrNiMo7-6, Case-carburized steel, case-hardened
 ISO 6336-5 Figure 9/10 (MQ), core strength >=25HRC Jominy J=12mm<HRC28
 ------- Gear 1 ------------ Gear 2 ------------ Gear 3 ---
Surface hardness               HRC 61               HRC 61               HRC 61
Material quality according to ISO 6336:2006 Normal (Life factors ZNT and YNT >=0.85)
Fatigue strength. tooth root stress (N/mm²) [sigFlim]     430.00     430.00     430.00
Fatigue strength for Hertzian pressure (N/mm²) [sigHlim]    1500.00    1500.00    1500.00
Tensile strength (N/mm²) [Rm]    1200.00    1200.00    1200.00
Yield point (N/mm²) [sigs]     850.00     850.00     850.00
Young's modulus (N/mm²) [E]     206000     206000     206000
Poisson's ratio [ny]      0.300      0.300      0.300
Mean roughness, Ra, tooth flank (µm) [RAH]       0.60       0.60       0.60
Mean roughness height, Rz, flank (µm) [RZH]       4.80       4.80       4.80
Mean roughness height, Rz, root (µm) [RZF]      20.00      20.00      20.00

Tool or reference profile of gear 1 :
Reference profile 1.25 / 0.25 / 1.0 ISO 53.2:1997 Profil C
Dedendum coefficient [hfP*]      1.250
Root radius factor [rhofP*]      0.250
Addendum coefficient [haP*]      1.000
Tip radius factor [rhoaP*]      0.000
Tip form height coefficient [hFaP*]      0.000
Protuberance height factor [hprP*]      0.000
Protuberance angle [alfprP]      0.000
Ramp angle [alfKP]      0.000
 not topping

Tool or reference profile of gear 2 :
Reference profile 1.25 / 0.25 / 1.0 ISO 53.2:1997 Profil C
Dedendum coefficient [hfP*]      1.250
Root radius factor [rhofP*]      0.250
Addendum coefficient [haP*]      1.000
Tip radius factor [rhoaP*]      0.000
Tip form height coefficient [hFaP*]      0.000
Protuberance height factor [hprP*]      0.000
Protuberance angle [alfprP]      0.000
Ramp angle [alfKP]      0.000
 not topping

Tool or reference profile of gear 3 :
Reference profile 1.25 / 0.25 / 1.0 ISO 53.2:1997 Profil C
Dedendum coefficient [hfP*]      1.250
Root radius factor [rhofP*]      0.250
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Addendum coefficient [haP*]      1.000
Tip radius factor [rhoaP*]      0.000
Tip form height coefficient [hFaP*]      0.000
Protuberance height factor [hprP*]      0.000
Protuberance angle [alfprP]      0.000
Ramp angle [alfKP]      0.000
 not topping

Summary of reference profile gears:
Dedendum reference profile (in module) [hfP*]      1.250      1.250      1.250
Root radius reference profile (in module) [rofP*]      0.250      0.250      0.250
Addendum reference profile (in module) [haP*]      1.000      1.000      1.000
Protuberance height coefficient (in module) [hprP*]      0.000      0.000      0.000
Protuberance angle (°) [alfprP]      0.000      0.000      0.000
Tip form height coefficient (in module) [hFaP*]      0.000      0.000      0.000
Ramp angle (°) [alfKP]      0.000      0.000      0.000

Type of profile modification:         none (only running-in)
Tip relief (µm) [Ca]       2.00       2.00       2.00

Lubrication type oil bath lubrication
Type of oil Oil: GEM 4-320 N Klübersynth
Lubricant base Synthetic oil based on Polyalphaolefin
Kinem. viscosity oil at 40 °C (mm²/s) [nu40]     320.00
Kinem. viscosity oil at 100 °C (mm²/s) [nu100]      36.00
FZG test A/8.3/90 ( ISO 14635-1:2006) [FZGtestA]         14
Specific density at 15 °C (kg/dm³) [roOil]      0.850
Oil temperature (°C) [TS]     85.000

 ------- Gear 1 ------------ Gear 2 ------------ Gear 3 ---
Overall transmission ratio [itot]      4.000
Gear ratio [u]      1.000     -3.000
Transverse module (mm) [mt]      2.031
Pressure angle at pitch circle (°) [alft]     20.284
Working transverse pressure angle (°) [alfwt]     20.122     20.122
 [alfwt.e/i]   20.154 /   20.090   20.090 /   20.154
Working pressure angle at normal section (°) [alfwn]     19.841     19.841
Helix angle at operating pitch circle (°) [betaw]      9.990      9.990
Base helix angle (°) [betab]      9.391
Reference centre distance (mm) [ad]     73.111    -73.111
Sum of profile shift coefficients [Summexi]    -0.0377     0.0377
Profile shift coefficient [x]    -0.0189    -0.0189     0.0566
Tooth thickness (Arc) (module) (module) [sn*]     1.5571     1.5571     1.6120

Tip alteration (mm) [k*mn]      0.000      0.000      0.000
Reference diameter (mm) [d]     73.111     73.111   -219.332
Base diameter (mm) [db]     68.577     68.577   -205.731
Tip diameter (mm) [da]     77.035     77.035   -215.106
 (mm) [da.e/i]   77.035 /   77.025   77.035 /   77.025 -215.106 / -215.116
Tip diameter allowances (mm) [Ada.e/i]    0.000 /   -0.010    0.000 /   -0.010    0.000 /   -0.010
Tip form diameter (mm) [dFa.e/i]   77.035 /   77.025   77.035 /   77.025 -215.106 / -215.116
Active tip diameter (mm) [dNa.e/i]   77.035 /   77.025   77.035 /   77.025 -215.106 / -215.116
Operating pitch diameter (mm) [dw]     73.035   73.035 /   73.035   -219.105
 (mm) [dw.e]     73.050   73.050 /   73.020   -219.060
 (mm) [dw.i]     73.020   73.020 /   73.050   -219.150
Root diameter (mm) [df]     68.035     68.035   -224.106
Generating Profile shift coefficient [xE.e/i]  -0.0669 /  -0.0944  -0.0669 /  -0.0944  -0.0087 /  -0.0430
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Manufactured root diameter with xE (mm) [df.e]  67.84  67.84 -224.37
 (mm) [df.i]  67.73  67.73 -224.50
Theoretical tip clearance (mm) [c]      0.500    0.500/ 0.500    0.500
Tip clearance upper allowance (mm) [c.e]      0.671    0.671/ 0.719    0.671
Tip clearance lower allowance (mm) [c.i]      0.581    0.581/ 0.616    0.581
Active root diameter (mm) [dNf]     70.232   70.232/ 69.718   -222.731
 (mm) [dNf.e]     70.256   70.256/ 69.740   -222.689
 (mm) [dNf.i]     70.213   70.213/ 69.702   -222.765
Root form diameter (mm) [dFf]     69.725     69.725   -223.079
 (mm) [dFf.e/i]   69.627 /   69.573   69.627 /   69.573 -223.374 / -223.527
Internal toothing: Calculation dFf with pinion type cutter (z0=
 35, x0= 0.000)
Reserve (dNf-dFf)/2 (mm) [cF.e/i]    0.341 /    0.293    0.083 /    0.037    0.419 /    0.305
Addendum (mm) [ha = mn * (haP*+x)]      1.962      1.962      2.113
 (mm) [ha.e/i]    1.962 /    1.957    1.962 /    1.957    2.113 /
   2.108
Dedendum (mm) [hf = mn * (hfP*-x)]      2.538      2.538      2.387
 (mm) [hf.e/i]    2.634 /    2.689    2.634 /    2.689    2.517 /
   2.586
Roll angle at dFa (°) [xsi_dFa.e/i]   29.321 /   29.303   29.321 /   29.303   17.493 /
  17.502
Roll angle to dNf (°) [xsi_dNf.e/i]   12.755 /   12.591   12.755 /   12.591
 [xsi_dNf.e/i]   10.595 /   10.421   23.738 /   23.793
Roll angle at dFf (°) [xsi_dFf.e/i]   10.066 /    9.801   10.066 /    9.801   24.232 /
  24.341
Tooth height (mm) [H]      4.500      4.500      4.500
Virtual gear no. of teeth [zn]     37.555     37.555   -112.666
Normal tooth thickness at tip cyl. (mm) [san]      1.520      1.520      1.769
 (mm) [san.e/i]    1.452 /    1.405    1.452 /    1.405    1.679 /    1.626
Normal spacewidth at root cylinder (mm) [efn]      0.000      0.000      1.218
 (mm) [efn.e/i]    0.000 /    0.000    0.000 /    0.000    1.205 /    1.198
Max. sliding velocity at tip (m/s) [vga]      0.783    0.783/ 0.261    0.329
Specific sliding at the tip [zetaa]      0.568    0.568/ 0.189    0.400
Specific sliding at the root [zetaf]     -1.315   -1.315/ -0.667   -0.234
Sliding factor on tip [Kga]      0.273    0.273/ 0.091    0.115
Sliding factor on root [Kgf]     -0.273   -0.273/ -0.115   -0.091
Pitch on reference circle (mm) [pt]      6.380
Base pitch (mm) [pbt]      5.984
Transverse pitch on contact-path (mm) [pet]      5.984
Lead height (mm) [pz]   1302.603   1302.603   3907.810
Axial pitch (mm) [px]     36.183     36.183     36.183
Length of path of contact (mm) [ga]      9.969     11.267
 (mm) [ga.e/i]   10.012 /    9.903   11.311 /   11.196
Length T1-A (mm) [T1A]      7.579   17.547/ 6.280  -31.406
Length T1-B (mm) [T1B]     11.563   13.563/ 11.563  -36.689
Length T1-C (mm) [T1C]     12.563   12.563/ 12.563  -37.689
Length T1-D (mm) [T1D]     13.563   11.563/ 12.264  -37.390
Length T1-E (mm) [T1E]     17.547    7.578/ 17.547  -42.673
Diameter of single contact point B (mm) [d-B]   72.371   73.747/   72.371 -218.425
(mm) [d-B.e]   72.371   73.715/   72.371 -218.454
(mm) [d-B.i]   72.364   73.787/   72.364 -218.388
Diameter of single contact point D (mm) [d-D]   73.747   72.371/   72.832 -218.900 
(mm) [d-D.e]   73.715   72.371/   72.802 -218.900
(mm) [d-D.i]   73.787   72.364/   72.873 -218.912

Transverse contact ratio [Eps.a]      1.666      1.883
Transverse contact ratio with allowances [Eps.aEffe/i] 1.673 / 1.655 1.890 / 1.871
Overlap ratio [Eps.b]      1.161      1.161
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Total contact ratio [Eps.G]      2.827      3.044
Total contact ratio with allowances [Eps.gEffe/i] 2.834 / 2.816 3.051 / 3.032

2. FACTORS OF GENERAL INFLUENCE

 ------- Gear 1 ------------ Gear 2 ------------ Gear 3 ---
Nominal circum. force at pitch circle (N) [Ft]   5699.119   5699.119
Axial force (N) [Fa]     1004.9     1004.9     1004.9
Axial force (total) (N) [Fatot=Fa* 3]     3014.7     3014.7
Radial force (N) [Fr]   2106.309   2106.309
Normal force (N) [Fnorm]     6158.4     6158.4     6158.4
Tangent.load at p.c.d.per mm (N/mm) (N/mm) [w]     135.69     135.69
Only as information: Forces at operating pitch circle:
Nominal circumferential force (N) [Ftw]   5705.027   5705.027
Axial force (N) [Fa]     1004.9  1004.9/  1004.9     1004.9
Axial force (total) (N) [Fatot=Fa* 3]     3014.7     3014.7
Radial force (N) [Fr]   2090.253   2090.253
Circumferential speed pitch d.. (m/sec) [v]       2.87

Running-in value (µm) [yp]      0.525      0.600
Running-in value (µm) [yf]      0.487      0.563
Gear body coefficient [CR]      1.000      1.000
Correction coefficient [CM]      0.800      0.800
Reference profile coefficient [CBS]      0.975      0.975
Material coefficient [E/Est]      1.000      1.000
Singular tooth stiffness (N/mm/µm) [c']     13.114     14.931
Meshing stiffness (N/mm/µm) [cgalf]     19.662     24.816
Meshing stiffness (N/mm/µm) [cgbet]     16.712     21.094
Reduced mass (kg/mm) [mRed]     0.0045     0.0181
Resonance speed (min-1) [nE1]      17485       9822
Nominal speed (-) [N]      0.043      0.076
 Subcritical range

Running-in value (µm) [ya]      0.525      0.600
Planets are supported by fixed restraint bolts
lpa (mm) =  54.60 b (mm) =  42.00 dsh (mm) =  36.56
Tooth trace deviation (active) (µm) [Fby]       4.25       5.87
from deformation of shaft (µm) [fsh*B1]       4.10       0.45
Tooth trace        0        0
(0:without, 1:crowned, 2:Tip relief, 3:full modification)
from production tolerances (µm) [fma*B2]      14.14      14.14
Running-in value y.b (µm) [yb]       0.75       1.04

Dynamic factor [KV=max(KV12,KV23)]       1.03
 [KV12,KV23]       1.01       1.03

Face load factor - flank [KHb]       1.20       1.35
 - Tooth root [KFb]       1.18       1.31
 - Scuffing [KBb]       1.20       1.35

Transverse load factor - flank [KHa]       1.18       1.26
 - Tooth root [KFa]       1.18       1.26
 - Scuffing [KBa]       1.18       1.26

Helical load factor scuffing [Kbg]       1.27       1.29
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Number of load cycles (in mio.) [NL]     2700.0      900.0      900.0

3. TOOTH ROOT STRENGTH

Calculation of Tooth form coefficients according method: B
Tooth form factors calculated with manufacturing profile shift xE.e
Internal toothing: Calculation of YF, YS with pinion type cutter (z0=
 35, x0= 0.000, rofP*= 0.250)
 ------- Gear 1 ------------ Gear 2 ------------ Gear 3 ---
Tooth form factor [YF]       1.46     1.46/ 1.16    0.95
Stress correction factor [YS]       2.04     2.04/ 2.22    2.73
Bending lever arm (mm) [hF]       2.11     2.11/ 1.67    2.28
Working angle (°) [alfFen]      18.88    18.88/ 16.74  20.15
Tooth thickness at root (mm) [sFn]       4.19     4.19/ 4.19    5.37
Tooth root radius (mm) [roF]       0.94     0.94/ 0.94    0.73
(sFn* = 2.094/ 2.094/ 2.094/ 2.684 roF* = 0.470/ 0.470/ 0.470/ 0.366 dsFn = 68.50/ 68.50/ 68.50/ -224.18 alfsFn = 30.0/ 30.0/
30.0/ 60.0)

Contact ratio factor [Yeps]       1.00       1.00
Helical load factor [Ybet]       0.92       0.92
Deep tooth factor [YDT]       1.00       1.00
Gear rim factor [YB]       1.00       1.00       1.00
Effective facewidth (mm) [beff]      42.00    42.00/ 42.00  42.00
Nominal stress at tooth root (N/mm²) [sigF0]     184.94   184.94/ 160.89 161.00
Tooth root stress (N/mm²) [sigF]     330.16   330.16/ 341.94 342.19
Permissible bending stress at root of Test-gear
Support factor [YdrelT]      0.997    0.997/ 0.997  1.010
Surface factor [YRrelT]      0.957      0.957      0.957
Size coefficient (Tooth root) [YX]      1.000      1.000      1.000
Finite life factor [YNT]      0.873      0.892      0.892
Alternating bending coefficient [YM]      1.000      0.700      1.000
Stress correction factor [Yst]       2.00
Yst*sigFlim (N/mm²) [sigFE]     860.00     860.00     860.00
Permissible tooth root stress (N/mm²) [sigFP=sigFG/SFmin]     511.48   366.00/ 366.00 529.55
Limit strength tooth root (N/mm²) [sigFG]     716.07   512.41/ 512.41 741.37
Required safety [SFmin]       1.40     1.40/ 1.40    1.40
Safety for Tooth root stress [SF=sigFG/sigF]       2.17     1.55/ 1.50    2.17
Transmittable power (kW) [kWRating]     101.40    72.56/ 70.06  101.29

4. SAFETY AGAINST PITTING (TOOTH FLANK)

 ------- Gear 1 ------------ Gear 2 ------------ Gear 3 ---
Zone factor [ZH]       2.47       2.47
Elasticity coefficient (N^.5/mm) [ZE]     189.81     189.81
Contact ratio factor [Zeps]       0.77       0.73
Helix angle factor [Zbet]       1.01       1.01
Effective facewidth (mm) [beff]      42.00      42.00
Nominal flank pressure (N/mm²) [sigH0]     706.41     383.63
Surface pressure at operating pitch circle (N/mm²)
 [sigHw]     953.41     568.66
Single tooth contact factor [ZB,ZD]       1.00     1.00/ 1.00    1.00
Flank pressure (N/mm²) [sigH]     953.41   953.41/ 568.66 568.66

Lubrication coefficient at NL [ZL]      1.047    1.047/ 1.047  1.047
Speed coefficient at NL [ZV]      0.971    0.971/ 0.971  0.971
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Roughness coefficient at NL [ZR]      0.951    0.951/ 0.980  0.980
Material pairing coefficient at NL [ZW]      1.000    1.000/ 1.000  1.000
Finite life factor [ZNT]      0.885      0.915      0.915
Small no. of pittings permissible: no
Size coefficient (flank) [ZX]      1.000      1.000      1.000
Permissible surface pressure (N/mm²) [sigHP=sigHG/SHmin]    1283.35  1327.33/ 1366.79 1366.79
Limit strength pitting (N/mm²) [sigHG]    1283.35  1327.33/ 1366.79 1366.79

Safety for surface pressure at operating pitch circle
 [SHw]       1.35     1.39/ 2.40    2.40
Required safety [SHmin]       1.00     1.00/ 1.00    1.00
Transmittable power (kW) [kWRating]     118.59   126.85/ 378.10  378.10
Safety for stress at single tooth contact [SHBD=sigHG/sigH]     1.35     1.39/ 2.40    2.40
(Safety regarding nominal torque) [(SHBD)^2]     1.81     1.94/ 5.78    5.78

4b. MICROPITTING ACCORDING TO ISO TR 15144-1:2010

Pairing Gear 1- 2:
Calculation of permissible specific film thickness
Lubricant load according to FVA Info sheet 54/7 10 (Oil: GEM 4-320 N Klübersynth)
Reference data FZG-C Test:
 (Nm) [T1] 265.1
 (N/mm) [Fbb] 236.3
 (°) [theOil]  90.0
 (°) [theM] 121.4
 (°) [theB] 217.9
 (µm) [h] 0.073
 [WW]  1.00
 [lamGFT] 0.146
Permissible specific film thickness (µm) [lamGFP]      0.204
Intermediate results according to ISO TR 15144:2010
 [mym] 0.070
 [XL] 0.800
 [XR] 1.219
 (°) [theM]  90.9
 [XCa] 1.000
 [HV] 0.128
 (N/mm²) [Er] 226374
 (m2/N) [alf38] 0.01378
 (Ns/m2) [etatM]  37.0
 (µm) [Ra]   0.6
Calculation of speeds, load distribution and flank curvature according to method B following ISO 15144-1:2010
With modifications following ISO TR CD 15144-2:2011
Ca taken as optimal in the calculation (0=no, 1=yes) 0 0
Minimal specific film thickness (µm) [lamGFY]      0.162 (hY= 0.097 µm)
Safety against micropitting [Slam]      0.793
(For intermediate results refer to file:
 Micropitting_12.tmp)

Pairing Gear 2- 3:
Calculation of permissible specific film thickness
Lubricant load according to FVA Info sheet 54/7 10 (Oil: GEM 4-320 N Klübersynth)
Reference data FZG-C Test:
 (Nm) [T1] 265.1
 (N/mm) [Fbb] 236.3
 (°) [theOil]  90.0
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 (°) [theM] 121.4
 (°) [theB] 217.9
 (µm) [h] 0.073
 [WW]  1.00
 [lamGFT] 0.146
Permissible specific film thickness (µm) [lamGFP]      0.204

Safety against micropitting:
Calculation was not carried out. (Contact analysis under load is required.)

5. STRENGTH AGAINST SCUFFING

Calculation method according to
 ISO TR 13989:2000

Lubrication coefficient (for lubrication type) [XS]      1.000
Multiple meshing factor [Xmp]        2.0        2.0
Relative structure coefficient (Scuffing) [XWrelT]      1.000      1.000
Thermal contact factor (N/mm/s^.5/K) [BM]     13.780     13.780     13.780
Relevant tip relief (µm) [Ca]       2.00       2.00       2.00
Optimal tip relief (µm) [Ceff]       8.63       6.83
Ca taken as optimal in the calculation (0=no, 1=yes) 0 0/ 0 0
Effective facewidth (mm) [beff]     42.000     42.000
Applicable circumferential force/facewidth (N/mm)
 [wBt]    247.172    298.154
((1)Kbg =   1.268, wBt*Kbg = 313.430)
((2)Kbg =   1.286, wBt*Kbg = 383.357)
Angle factor [Xalfbet]      0.976      0.976

Flash temperature-criteria
Lubricant factor [XL]      0.662      0.662
Tooth mass temperature (°C) [theMi]      95.66      87.46
theM = theoil + XS*0.47*Xmp*theflm [theflm]      11.34       2.61
Scuffing temperature (°C) [theS]     371.91     371.91
Coordinate gamma (point of highest temp.) [Gamma]     -0.397     -0.500
(1) [Gamma.A]= -0.397 [Gamma.E]= 0.397
(2) [Gamma.A]= -0.500 [Gamma.E]= 0.397
Highest contact temp. (°C) [theB]     123.17      95.51
Flash factor (°K*N^-.75*s^.5*m^-.5*mm) [XM]     50.058     50.058
Approach factor [XJ]      1.017      1.017
Load sharing factor [XGam]      0.780      0.690
Dynamic viscosity (mPa*s) [etaM]      44.21      44.21
Coefficient of friction [mym]      0.056      0.047
Required safety [SBmin]      2.000
Safety factor for scuffing (flash-temp) [SB]      7.516     27.311

Integral temperature-criteria
Lubricant factor [XL]      0.800
Tooth mass temperature (°C) [theM-C]      98.14      86.72
theM-C = theoil + XS*0.70*theflaint [theflaint]       9.39       1.23
Integral scuffing temperature (°C) [theSint]     378.88     378.88
Flash factor (°K*N^-.75*s^.5*m^-.5*mm) [XM]     50.058     50.058
Running-in factor (well run in) [XE]      1.000      1.000
Contact ratio factor [Xeps]      0.255      0.271
Dynamic viscosity (mPa*s) [etaOil]      44.21      44.21
Averaged coefficient of friction [mym]      0.069      0.044
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Geometry factor [XBE]      0.305      0.058
Meshing factor [XQ]      1.000      1.000
Tip relief factor [XCa]      1.210      1.363
Integral tooth flank temperature (°C) [theint]     112.22      88.57
Required safety [SSmin]      1.800
Safety factor for scuffing (intg.-temp.) [SSint]       3.38       4.28
Safety referring to transferred torque [SSL]      10.79      82.27

6. MEASUREMENTS FOR TOOTH THICKNESS

 ------- Gear 1 ------------ Gear 2 ------------ Gear 3 ---
Tooth thickness deviation      DIN 3967 cd25      DIN 3967 cd25      DIN 3967 cd25
Tooth thickness allowance (normal section) (mm) [As.e/i] -0.070/ -0.110 -0.070/ -0.110 -0.095/ -0.145

Number of teeth spanned [k]      5.000      5.000      0.000
(Internal toothing: k = (Measurement gap number)
Base tangent length (no backlash) (mm) [Wk]     27.597     27.597      0.000
Actual base tangent length ('span') (mm) [Wk.e/i] 27.531/ 27.493 27.531/ 27.493 0.000/ 0.000
Diameter of contact point (mm) [dMWk.m]     73.753     73.753      0.000

Theoretical diameter of ball/pin (mm) [DM]      3.389      3.389      3.320
Eff. Diameter of ball/pin (mm) [DMeff]      3.500      3.500      3.500
Theor. dim. centre to ball (mm) [MrK]     39.020     39.020   -106.971
Actual dimension centre to ball (mm) [MrK.e/i] 38.935/ 38.885 38.935/ 38.885 -107.110/ -107.183
Diameter of contact point (mm) [dMMr.m]     73.059     73.059   -218.951
Diametral measurement over two balls without clearance (mm)
 [MdK]     78.041     78.041   -213.943
Actual dimension over balls (mm) [MdK.e/i] 77.870/ 77.771 77.870/ 77.771 -214.221/ -214.366
Actual dimension over rolls (mm) [MdR.e/i] 77.870/ 77.771 77.870/ 77.771 0.000/ 0.000
Actual dimensions over 3 rolls (mm) [Md3R.e/i] 0.000/ 0.000 0.000/ 0.000 0.000/ 0.000
Note: Internal gears with helical teeth cannot be measured with rollers.

Tooth thickness (chordal) in pitch diameter (mm) ['sn]      3.113      3.113      3.224
 (mm) ['sn.e/i] 3.043/ 3.003 3.043/ 3.003 3.129/ 3.079
Reference chordal height from da.m (mm) [ha]      1.992      1.992      2.099
Tooth thickness (Arc) (mm) [sn]      3.114      3.114      3.224
 (mm) [sn.e/i] 3.044/ 3.004 3.044/ 3.004 3.129/ 3.079

Backlash free center distance (mm) [aControl.e/i] 72.839/ 72.726 -73.261/ -73.382
Backlash free center distance, allowances (mm) [jta] -0.196/ -0.309 -0.000/ -0.000
dNf.i with aControl (mm) [dNf0.i]     69.860     69.388   -223.499
Reserve (dNf0.i-dFf.e)/2 (mm) [cF0.i]      0.116     -0.120     -0.062
Centre distance allowances (mm) [Aa.e/i] 0.015/ -0.015 0.015/ -0.015

Circumferential backlash from Aa (mm) [jt_Aa.e/i] 0.011/ -0.011 0.011/ -0.011
Radial clearance (mm) [jr] 0.324/ 0.181 0.362/ 0.211
Circumferential backlash (transverse section) (mm)
 [jt] 0.234/ 0.131 0.270/ 0.156
Normal backlash (mm) [jn] 0.217/ 0.121 0.250/ 0.145

Entire torsional angle (°) [j.tSys] 0.1890/ 0.1214
(j.tSys: Torsional angle of planet carrier for blocked shaft)

7. GEAR ACCURACY
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 ------- Gear 1 ------------ Gear 2 ------------ Gear 3 ---
According to ISO 1328:1995:
Accuracy grade [Q-ISO1328]          6          6          6
Single pitch deviation (µm) [fpt]       7.50       7.50       8.50
Base circle pitch deviation (µm) [fpb]       7.00       7.00       8.00
Cumulative circular pitch deviation over k/8 pitches (µm)
 [Fpk/8]      12.00      12.00      16.00
Profile form deviation (µm) [ffa]       6.50       6.50       7.50
Profile slope deviation (µm) [fHa]       5.50       5.50       6.00
Total profile deviation (µm) [Fa]       8.50       8.50      10.00
Helix form deviation (µm) [ffb]      10.00      10.00      10.00
Helix slope deviation (µm) [fHb]      10.00      10.00      10.00
Total helix deviation (µm) [Fb]      14.00      14.00      15.00
Total cumulative pitch deviation (µm) [Fp]      26.00      26.00      35.00
Concentricity deviation (µm) [Fr]      21.00      21.00      28.00
Total radial composite deviation (µm) [Fi"]      31.00      31.00      37.00
Radial tooth-to-tooth composite deviation (µm) [fi"]       9.50       9.50       9.50
Total tangential composite deviation (µm) [Fi']      37.00      36.00      46.00
Tangential tooth-to-tooth composite deviation (µm)
 [fi']      11.00      10.00      12.00

Axis alignment tolerances (recommendation acc. ISO TR 10064:1992, Quality
 6)
Maximum value for deviation error of axis (µm) [fSigbet]       9.10       9.10
Maximum value for inclination error of axes (µm) [fSigdel]      18.20      18.20

8. ADDITIONAL DATA

Maximal possible centre distance (eps_a=1.0) [aMAX]     74.500    -71.390
Mean coeff. of friction (acc. Niemann) [mum]      0.058      0.047
Wear sliding coef. by Niemann [zetw]      0.946      0.578

Meshpower (kW)     49.087     49.087
Power loss from gear load (kW)      0.122      0.041
Total power loss (kW)      0.491
Total efficiency      0.993
Weight - calculated with da (kg) [Mass]      1.533      1.533      2.236
Total weight (kg) [Mass]      8.367  

Moment of inertia (System referenced to wheel 1):
 calculation without consideration of the exact tooth shape
single gears ((da+df)/2...di) (kg*m²) [TraeghMom]  0.0008875  0.0008875    0.02501
System ((da+df)/2...di) (kg*m²) [TraeghMom]   0.002385

Indications for the manufacturing by wire cutting:
Deviation from theoretical tooth trace (µm) [WireErr]   187.4      187.4       62.5
Permissible deviation (µm) [Fb/2]        7.0        7.0        7.5

9. DETERMINATION OF TOOTHFORM

Data for the tooth form calculation :
Data not available.

REMARKS:



11/11

- Specifications with [.e/i] imply: Maximum [e] and Minimal value [i] with
 consideration of all tolerances
 Specifications with [.m] imply: Mean value within tolerance
- For the backlash tolerance, the center distance tolerances and the tooth thickness
deviation are taken into account. Shown is the maximal and the minimal backlash corresponding
 the largest resp. the smallest allowances
 The calculation is done for the Operating pitch circle..
- Calculation of Zbet according Corrigendum 1 % ISO 6336-2:2008 with Zbet = 1/(COS(beta)^0.5)
- Details of calculation method:
 cg according to method B
 KV according to method B
 KHb, KFb according method C
 fma following equation (64), Fbx following (52/53/56)
 fsh calculated by exactly following the method in Appendix D,
 ISO 6336-1:2006
 Literature: Journal "Antriebstechnik", 6/2007, p.64.
 KHa, KFa according to method B
 
End of Report lines:            575
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Contact analysis
Determination of Κγ
Sun gear - Planets (Right Tooth Flank)
Planets - Internal gear (Left Tooth Flank)

Total power loss (kW) 0.566
Efficiency (%) 99.14

Planet 1 2 3
Center distance error (µm) 0.000 0.000 0.000
Pitch error (µm) 0.000 0.000 0.000

Single pitch deviation: Sun gear - Planets [fpt] 0.0000 µm
Single pitch deviation: Planets - Internal gear [fpt] 0.0000 µm
Coefficient of friction: Sun gear - Planets [µ] 0.0500
Coefficient of friction: Planets - Internal gear [µ] 0.0500

Accuracy of calculation   medium
Partial load for calculation 100.00 %
Center distance [a] 73.0350 mm
Sun gear - Planets: fma = 0.000 µm, fHβ = 0.000 µm
Planets - Internal gear: fma = 0.000 µm, fHβ = 0.000 µm

Torsion
Sun gear:  -
Planets:  -
Internal gear:  -
Planet carrier:  -

Angle to first planet: 0°
Axis alignment
Sun gear:  concerning gear axis, dx = 0.000 µm, dz = 0.000 µm
Planets:  concerning planet bolts, dr = 0.000 µm, dt = 0.000 µm
Internal gear:  concerning gear axis, dx = 0.000 µm, dz = 0.000 µm
Planet carrier:  concerning gear axis, dx = 0.000 µm, dz = 0.000 µm
Planet pin:  concerning planet carrier, dr = 0.000 µm, dt = 0.000 µm

 min max Δ µ σ
Transmission error of planet stage (µm) -8.0781 -7.7794 0.2986 -7.8775 0.0894
Total power loss (kW) 0.5293 0.5790 0.0497 0.5658 0.0125

Planet load distribution
Sun gear - Planets
Planet 1 (Nm) 208.2780 208.3737 0.0957 208.3302 0.0124
Planet 2 (Nm) 208.2950 208.3750 0.0799 208.3334 0.0100
Planet 3 (Nm) 208.2514 208.3892 0.1378 208.3338 0.0129

Planets - Internal gear
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Planet 1 (Nm) 206.4588 206.8319 0.3731 206.5981 0.0778
Planet 2 (Nm) 206.4668 206.8337 0.3668 206.5997 0.0767
Planet 3 (Nm) 206.4637 206.8006 0.3369 206.5995 0.0733

Kγ
Planet 1: ( 208.3302 / 208.3333) = 1.000
Planet 2: ( 208.3334 / 208.3333) = 1.000
Planet 3: ( 208.3338 / 208.3333) = 1.000

Angular shifting of planet meshing, relative to operating pitch points C
Planet 1, meshing with sun: 0°, meshing with rim: -5°
Planet 2, meshing with sun: 0°, meshing with rim: -5°
Planet 3, meshing with sun: 0°, meshing with rim: -5°

wt = 100 %, a = 0.000 mm,fpt = 0.000 µm,µ = 0Working flank: Right flank
Figure: Transmission error
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wt = 100 %, a = 73.035 mm,fpt1 = 0.000 µm,fpt2 = 0.000 µm,µ1 = 0.05,µ2 = 0.05
Figure: Planet load distribution

wt = 100 %, a = 73.035 mm,fpt1 = 0.000 µm,fpt2 = 0.000 µm,µ1 = 0.05,µ2 = 0.05
Figure: Planet transmission error

Sun gear - Planets - Planet 1
 min max Δ µ σ
Transmission error (µm) -4.7548 -4.3854 0.3694 -4.4831 0.1204
Stiffness curve (N/mm/µm) 19.2312 20.6977 1.4664 20.2519 0.3711
Line load (N/mm) 0.0000 166.4619 166.4619 86.1922 17.7536
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Torque Gear 1 (Nm) 208.2780 208.3737 0.0957 208.3302 0.0124
Torque Gear 2 (Nm) 232.9784 242.6930 9.7145 237.0141 2.1413
Power loss (W) 125.1118 141.0372 15.9253 137.3525 4.1842
Flash temperature (°) 90.8645 130.0546 39.1901 103.1199 8.0303
Lubricating film (µm) 0.0910 0.2963 0.2053 0.1267 0.0259
Hertzian stress (N/mm²) 1189.8185 805.2227
Safety against micropitting 0.7434

Transverse contact ratio under load [εa'] 1.811
Overlap ratio under load [εb'] 1.126
Total contact ratio under load [εg'] 2.937

KHβ = (wmax/wm) = 1, (wmax = 186.161 N/mm, wm = 186.161 N/mm)

Planets - Internal gear - Planet 1
 min max Δ µ σ
Transmission error (µm) 144.2013 144.6219 0.4206 144.4837 0.1259
Stiffness curve (N/mm/µm) 26.1468 27.6564 1.5096 26.6733 0.3864
Line load (N/mm) 0.0000 118.9736 118.9736 69.9131 16.5288
Torque Gear 2 (Nm) 206.4588 206.8319 0.3731 206.5981 0.0778
Torque Gear 3 (Nm) -639.7816 -636.9883 2.7933 -638.3792 0.6356
Power loss (W) 50.4873 52.1510 1.6637 51.2497 0.3973
Flash temperature (°) 87.2716 98.7243 11.4527 90.6776 2.2911
Lubricating film (µm) 0.0835 0.6183 0.5349 0.2225 0.0871
Hertzian stress (N/mm²) 959.1102 598.1836
Safety against micropitting 0.9102

Transverse contact ratio under load [εa'] 2.168
Overlap ratio under load [εb'] 1.120
Total contact ratio under load [εg'] 3.289

KHβ = (wmax/wm) = 1, (wmax = 186.161 N/mm, wm = 186.161 N/mm)

Sun gear - Planets - Planet 2
 min max Δ µ σ
Transmission error (µm) -4.7548 -4.3854 0.3693 -4.4830 0.1205
Stiffness curve (N/mm/µm) 19.2259 20.6931 1.4672 20.2488 0.3702
Line load (N/mm) 0.0000 166.4538 166.4538 86.1932 17.7408
Torque Gear 1 (Nm) 208.2950 208.3750 0.0799 208.3334 0.0100
Torque Gear 2 (Nm) 232.9798 242.6876 9.7078 237.0152 2.1378
Power loss (W) 125.1140 141.0387 15.9248 137.3550 4.1842
Flash temperature (°) 90.8645 130.0529 39.1884 103.1209 8.0295
Lubricating film (µm) 0.0910 0.3490 0.2580 0.1277 0.0323
Hertzian stress (N/mm²) 1189.7899 805.2964
Safety against micropitting 0.7434

Transverse contact ratio under load [εa'] 1.811
Overlap ratio under load [εb'] 1.126
Total contact ratio under load [εg'] 2.937

KHβ = (wmax/wm) = 1, (wmax = 186.161 N/mm, wm = 186.161 N/mm)

Planets - Internal gear - Planet 2
 min max Δ µ σ
Transmission error (µm) 144.2013 144.6219 0.4206 144.4837 0.1259
Stiffness curve (N/mm/µm) 26.1516 27.6564 1.5048 26.6745 0.3871
Line load (N/mm) 0.0000 118.9770 118.9770 69.9133 16.5280
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Torque Gear 2 (Nm) 206.4668 206.8337 0.3668 206.5997 0.0767
Torque Gear 3 (Nm) -639.8952 -636.9884 2.9068 -638.3821 0.6378
Power loss (W) 50.4873 52.1360 1.6488 51.2500 0.3974
Flash temperature (°) 87.2716 98.7244 11.4528 90.6778 2.2912
Lubricating film (µm) 0.0835 0.6224 0.5389 0.2226 0.0875
Hertzian stress (N/mm²) 959.2266 598.1545
Safety against micropitting 0.9102

Transverse contact ratio under load [εa'] 2.168
Overlap ratio under load [εb'] 1.120
Total contact ratio under load [εg'] 3.289

KHβ = (wmax/wm) = 1, (wmax = 186.161 N/mm, wm = 186.161 N/mm)

Sun gear - Planets - Planet 3
 min max Δ µ σ
Transmission error (µm) -4.7547 -4.3854 0.3693 -4.4830 0.1205
Stiffness curve (N/mm/µm) 19.2261 20.6934 1.4674 20.2451 0.3774
Line load (N/mm) 0.0000 166.4506 166.4506 86.2082 17.7104
Torque Gear 1 (Nm) 208.2514 208.3892 0.1378 208.3338 0.0129
Torque Gear 2 (Nm) 232.9833 242.6860 9.7028 237.0093 2.1462
Power loss (W) 125.1155 141.0457 15.9301 137.3517 4.1964
Flash temperature (°) 90.8645 130.0516 39.1871 103.1230 8.0301
Lubricating film (µm) 0.0910 0.3338 0.2428 0.1274 0.0304
Hertzian stress (N/mm²) 1189.7782 805.4364
Safety against micropitting 0.7434

Transverse contact ratio under load [εa'] 1.811
Overlap ratio under load [εb'] 1.116
Total contact ratio under load [εg'] 2.926

KHβ = (wmax/wm) = 1, (wmax = 186.161 N/mm, wm = 186.161 N/mm)

Planets - Internal gear - Planet 3
 min max Δ µ σ
Transmission error (µm) 144.2013 144.6219 0.4206 144.4837 0.1259
Stiffness curve (N/mm/µm) 26.1516 27.6564 1.5048 26.6751 0.3875
Line load (N/mm) 0.0000 118.9788 118.9788 69.9133 16.5280
Torque Gear 2 (Nm) 206.4637 206.8006 0.3369 206.5995 0.0733
Torque Gear 3 (Nm) -639.8942 -636.9858 2.9084 -638.3820 0.6291
Power loss (W) 50.4870 52.1362 1.6492 51.2500 0.3973
Flash temperature (°) 87.2716 98.7244 11.4528 90.6778 2.2912
Lubricating film (µm) 0.0835 0.6238 0.5404 0.2226 0.0876
Hertzian stress (N/mm²) 959.1013 598.1556
Safety against micropitting 0.9102

Transverse contact ratio under load [εa'] 2.168
Overlap ratio under load [εb'] 1.120
Total contact ratio under load [εg'] 3.289

KHβ = (wmax/wm) = 1, (wmax = 186.161 N/mm, wm = 186.161 N/mm)
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