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Abstract

Contamination of drinking water distribution syse(®WDSSs) is a threat that can have major effects
in public health besides economic and social camseces. DWDSs are highly vulnerable to
deliberate attacks due to the difficulty inheremttte surveillance and protection of large and demp
networks. In case of a contamination event, Viels/ important to locate the contamination source a
fast as it is possible to assess the propagatidheotontamination for taking the necessary securit

measures.

The main objective of this thesis was to studystinaulation of the spread of contaminants in a DWDS
and to develop methods for the localization of aamhation sources after contamination events,
based on information provided by a surveillancetesys The work performed during this period
enabled the development of two approaches for sitimgl the transport mechanisms of contaminants
in DWDSs, the development of deterministic methfmisthe localization of contamination sources
and the application of artificial neural network&NNs) in the development of methods for the

localization of contamination sources.

A software tool was developed to implement an aitalapproach for the simulation of the advective
transport of contaminants, considering psudo-fiostler reaction terms, for steady hydraulic
conditions. In addition, another software tool wheveloped to simulate the contaminant reactive
transport along DWDSs considering sorption phen@n&his method demonstrated to be a relevant
contribution for the study of the effects of theptmn phenomena in the modelling of the transpbrt

contaminants in real DWDS.

The results achieved with the deterministic methps/ed that these methods are effective in the
search of the correct locations and times of thitagnination, despite being based only on the aisalys
of the residence time of water in pipes. One o§¢hmethods also enables the study of the effect of
false positives or false negatives at the senSinge only binary sensor status over time is reglir
these methods were considered suitable for apigicat real case scenarios. The methods based on
the application of artificial neural networks alaohieved very satisfactory results for real DWDSs.
The methods were generally able to determine cityréoe simulated source and to define a very
restricted set of possible contamination sourceenenvhen considering hydraulic scenarios with
demand uncertainties. The time of computation meguivas very low, which makes these methods

very suitable for application in real contaminatsmenarios.

Keywords: Drinking water distribution Systems, contaminatisource identification, water quality

modelling, artificial neural networks.
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Resumo

Contaminagdo de sistemas de distribuicdo de agtéavedo(SDAPsS) € uma ameaga que pode ter
grandes repercussfes na saude publica, além dego@meias econdémicas e sociais. SDAPs séo
altamente vulneraveis a ataques deliberados desidiificuldades inerentes a vigilancia e protegdo d

redes grandes e complexas. Na eventualidade deénciar de uma contaminacao, € muito importante
localizar a fonte de contaminagdo o mais rapidaenguaissivel, para que seja possivel avaliar a

propagacao da contaminagdo de modo a tomar asasetbdseguranca necessarias.

O objetivo principal deste trabalho foi estudarimutacdo da propagacdo de contaminantes num
SDAP e desenvolver métodos para a localizacdordedale contaminacdo com base em informacdes
fornecidas por um sistema de vigilancia. O trabalbalizado durante este periodo permitiu o

desenvolvimento de duas abordagens para simulaeoanismos de transporte de contaminantes em
SDAPs, o desenvolvimento de métodos determinisfiaos a localizacdo de fontes de contaminacéo,
a aplicacdo de redes neuronais artificiais parasemvolvimento de métodos para a localizacdo de
fontes de contaminacéo e o desenvolvimento de utbdméara a otimizacao da selecédo de pontos de

amostragem.

Foi desenvolvida uma aplicacdo informatica pardementar uma solucdo analitica para a simulacéo
do transporte advectivo de contaminantes, congideraeacdo de primeira ordem, para condicdes
hidraulicas constantes. Além disso, outra aplicagomatica foi também desenvolvida para simular

o transporte reativo de contaminantes ao longo SDAFdo em consideracdo fendmenos de sorgéao.
Este método demonstrou ser um contributo importpata o estudo dos efeitos dos fenomenos de

sorcdo na modelagéo do transporte de contaminam&DAPS reais.

Os resultados obtidos com os métodos determingspicmvaram que estes métodos séo eficazes para a
procura dos locais e instantes de contaminacdsapge apenas se basear na andlise do tempo de
residéncia da agua nos tubos. Um destes métoddsnarpermitiu o estudo do efeito de falsos
positivos ou falsos negativos nos sensores. Umaguezé apenas necessario o estado binario dos
sensores ao longo do tempo, estes métodos forasidecados adequados para a aplicacdo em
cenérios reais. Os métodos baseados na aplicacédds neurais artificiais também alcancaram
resultados muito satisfatérios para SDAPs. Os noétddram geralmente capazes de determinar
corretamente a(s) fonte(s) simulada(s) e de dafimirconjunto muito restrito de possiveis fontes de
contaminacdo, mesmo considerando cenarios hidoduiom incertezas nos consumos de agua. O
tempo de computacdo necessario foi muito baixou® faz com que estes métodos sejam muito

adequados para aplicacdo em situacoes reais.
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1 Framework

This thesis was carried out between 2008 and 20184 aboratory for Process, Environmental and
Energy Engineering (LEPAE) in the Chemical EnginagDepartment of the Faculty of Engineering,
University of Porto. This work was performed undbe European project “SecurEau”, entitled
“Security and decontamination of drinking water mligttion systems following a deliberate

contaminatioi (Project n®217976.

1.1 Motivation and Relevance

Water is a fundamental resource for human and esmnwelfare and modern society depends on
complex, interconnected water infrastructure tovjg® reliable safe water supplies and to remove and
treat wastewater (Gleik, 2006). Thus, contaminatibdrinking water distribution systems (DWDSSs)

is a threat that can have major effects in pulgiglth, besides economic and social consequences.

Water resources and systems are attractive talpgetuse there is no substitute for water. Thus, the
risk of a terrorist attack at water systems is,raalit has already happened in the past (GleilB6R0
The consequences of such an action can be grimthendsk of casualties, social disruptions and

disarray is high.

With emerging security issues, drinking water tiéi§ are facing new challenges. Within their missio
statement, not only should they seek to providéicseit quantities of high quality water, but they
should also be concerned with security issues. MWattwvorks should be operated in such a way to

protect against, detect and respond to man-madeatndal threats and disasters (Poulin, 2006).

DWDSs are highly vulnerable to deliberate attacks tb the difficulty inherent to the surveillance
and protection of large and complex networks. Sihéenot realistic to measure the water quality i
each node of a DWDS, one reasonable approach targea the safety of the water consumers is to
have a warning system constituted by a set of sensmsitioned throughout the network to detect

changes in water quality.

When a contaminant is introduced in a DWDS, it migiread very quickly through large areas of the
network. Thus, in case of a contamination events ivery important to locate the contamination
source as fast as it possible. Besides that, tbalization of the contamination source has great

significance to predict the distribution of the taminant and to take the necessary security measure

Chapter 1 3



Contamination in Drinking Water Distribution Systems: Some Approaches to Forward and Inverse Modelling

The detection of water quality deterioration in D®#®and the problem of the localization of the

contamination sources call for the developmentest,rsensitive and rapid methodologies.

Therefore, new simulation tools and procedures riedoe developed and made available to water

utilities, to help detect and manage contaminatigents in practical applications.

1.2 Obijectives

The main objective of this thesis was to studydbeurrence of contaminations in DWDSs.
This was accomplished by two main tasks:
a) Development of methods for the simulation @f spread of contaminants in a DWDS;

b) Development of methods for the localizationcohtamination sources after contamination

events were detected based on information provigeslsurveillance system.

1.3 Thesis Outline

The work presented in this thesis is divided inmain parts.

Part | is constituted by Chapters 1, 2, 3, 4 ancClhapter 1 presents the subject relevance, the
objectives of this work and the thesis structurbajer 2 presents an overview of the previous
research performed in the field of water qualitydeiing in DWDSs and some software tool

packages available for the simulation of DWDSs. ii#¥a3 presents a literature review on the subject
of localization of contamination sources in DWDS3hapter 4 presents an introduction to the
application of artificial neural networks to theoptems under study. Finally, in Chapter 5, several

examples of DWDSs, which are used as case studtasithesis, are presented.

Part 1l addresses the simulation of the water gudélehaviour in DWDSs. Chapter 6 presents an
analytical approach to the modelling of the adwectiransport of contaminant in DWDSs with

pseudo-first order reaction, considering steadyrdmlit conditions. Chapter 7 presents a numerical
solution for the simulation of the advective tramgpof contaminants in DWDSs considering the
occurrence of reaction and sorption phenomenaeatvgtier-pipe wall interface, for specified dynamic

hydraulic conditions.
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Part 11l proposes deterministic methods for thealization of contamination sources based on the
analysis of the residence time of water in pipdsafer 8 presents a method based on the analysis of
the residence time of water in pipes for fixed timeervals. Chapter 9 proposes a different method
based on the information given by successive pesiteadings of the sensors. This chapter also

addresses the occurrence of false positives @ fedgatives.

Part IV addresses the problem of the localizatibeamtamination sources in DWDSs through the
application of artificial neural networks. Chapt&® presents a method suitable for single
contamination events. Chapter 11 presents stratagieapply this method to large DWDSs and

Chapter 12 presents an extension of the methaadittiple contamination scenarios.

Part V goes over the main conclusions of this wamld identifies the research areas in which future

work can be performed to enhance the results piegémthis thesis.
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2 Drinking Water Distribution Systems

2.1 Modelling and Simulation of DWDS

DWDSs are typically buried infrastructures, in whicist a small fraction of its components can be
frequently examined. On the other hand, the aataphcity for monitoring these systems, through
measurements of pressure, flow rate or concentratfowater quality parameters, for example, is
greatly insufficient in time and space, becausthefcomplexity, the number of points of consumption

and to the variability of the consumption (Coellhale 2006).

Models are especially important for DWDSs due teirtttomplex topology, frequent growth and
change, and sheer size. DWDSs simulation, whiclicegps the dynamics of an existing or proposed
system, are commonly performed when it is not prakfor the real system to be directly subjected t
experimentation, or for evaluating a system befoiis actually built. In addition, for situations i
which water quality is an issue, directly testingystem may be costly and a potentially hazardous
risk to public health. Simulations can be usedriticapate problems in proposed or existing systems
without disrupting the actual system. Operatorgirteebe prepared to deal with a very wide range of
emergencies. Planning ahead for these emergenciesirig a model may prevent service from being
compromised, or may at least minimize the extenwliich customers are affected. Modelling is an

excellent tool for emergency response planningcamtingency (Strafaci, 2003).

The study of water quality aspects within drinkimgter distribution systems is of great significance
as it plays an important role for assuring the igpaif the water that is delivered to the consumers
Computer-based mathematical models are useful foolgvaluating the water quality changes in

drinking-water distribution systems.

In the last two decades, the investigation in #nea was centred mainly in the simulation of chieri

decay (Rossman et al., 1994; Clark et al., 199%le@ur and Ger, 1999; Al-Omari and Chaudhry,
2001; Ozdemir and Ucak, 2002) in drinking-watertribsition systems. Currently available chlorine
decay and propagations models treat the pipe segrasnf they were plug flow reactors. The radial

and axial dispersion are generally neglected intmegeloped models (Ozdemir and Ucak, 2002).

Several approaches have been taken to numericaltieinthe transport of contaminants in DWDSs,
either in steady or dynamic hydraulic conditiondeafly-state models use the law of mass
conservation to determine the ultimate concentmatistribution of contaminants assuming that the

distribution system reaches hydraulic equilibriuBoglos et al., 1995). These models can only
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provide intermittent assessment capabilities, whietike the simulation of the water quality behaviour
less accurate (Rossman and Boulos, 1996). Dynaméeis rely on a system simulation approach to
determine the movement and the fate of contaminanter time-varying demand, supply and
hydraulic conditions (Boulos et al., 1995). Thesedeis provide a more realistic approximation to the
actual operation of DWDSs since it considers tiragying conditions in the simulation of DWDSs

(Rossman and Boulos, 1996).

Boulos et al. (1992) proposed an explicit solutfon modelling water quality parameters, such as
chemical concentrations and water age, considetieady hydraulic behaviour. In 1993, Boulos and
Altman also proposed algorithms for directly deting a variety of blended water quality

parameters under steady-state. The developed thigsriare formulated analytically from mass
balance relationships as contingent linear boundalye problems in conjunction with a topological
sorting methodology and aimed to enhance the DWR&=®r quality management (Boulos and
Altman, 1993).

Rossman et al. (1993) developed an explicit watetity modelling algorithm for tracking dissolved
substances in water distributions networks, comsigelynamic systems. The algorithm was based on
a mass-balance relation within pipes that constlé&@h advective transport and reaction kinetics.
The proposed method allowed simulating spatial gamdporal distribution of substances in water
distribution networks. Later, Rossman et al. (1994¢sented a mass-transfer-based model for
predicting chlorine decay in drinking-water distrilon networks. These authors considered firsttorde
reactions of chlorine occurring in the bulk flowdaat the pipe wall. The model was able to explain
observed phenomena in previous chlorine decayestuduch as higher decay rates in smaller pipes or
in higher velocity flows. The chlorine decay mode&s incorporated into the EPANET, which is a
software tool able to perform dynamic water quaditypulations on complex pipe networks. Boulos et
al. (1994) also presented a method for simulatiegttansport of conservative substances in DWDSs
under dynamic hydraulic conditions. These authoop@sed an event-driven method that determines
the optimal segmentation scheme with the smallestber of segments necessary to perform the
simulation, achieving a water quality modellingdeensitive to the structure of the DWDS and to the
length of the simulation. Boulos et al. (1995) pr@ed an extension of the method of Boulos et al.
(1994) to enable the simulation of the transportattive species. However, they stated that therwa
quality models can only be effective for the sintiola of reactive species if the reaction mechanisms

are properly defined.

Mau et al. (1996) developed an analytical apprdactmodelling the water quality within storage

tanks or reservoirs based on material mass baltvateconsiders transport, mixing and kinetic
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reaction processes. The model-generated resuliseshgood agreements with the observed field

measurements.

Dynamic models can be classified spatially as eithderian or Lagrangian and temporally as time-

driven or event-driven. Eulerian models divide fliyge network in fixed control volumes and register

changes as water flows through them while Lagrangiadels track changes in a series of discrete
parcels of water as they travel through the netwdikne-driven models update the state of the

network at fixed time intervals while event —drivetodels update the state of the network only when
a change occurs, such as when a new parcel of wedehes the end of the pipe (Rossman and
Boulos, 1996).

Rossman and Boulos (1996) made a comparison betiseemumerical methods (two Eulerian and
two Lagrangian approaches, considering both timesdrand event-driven approaches) for modelling
the water quality behaviour in DWDS. Results showviedt the Lagrangian methods were more
efficient for simulating chemical transport and fawdelling the water age, while the Eulerian
methods were more memory-efficient. In 2004, Mali@dand Kumar made a comparison between
Lagrangian time-driven methods and event-drivenhodd for varying concentration tolerance and
water quality time step and proposed a new hybrethod for improving the accuracy of these
methods. They concluded that the time-driven methoere affected by both concentration tolerance
and water quality time step, while event-driven Imels depended on concentration tolerance. The
proposed hybrid method proved to be less senditivihese parameters and required a reasonable

computational effort.

The numerical discretization used to model the etilme in water networks provides a good solution
for Gaussian initial distribution but produces fastal diffusion when steep gradients are simulated
The finite-difference methods have become more jaogar one-dimensional problems due to their
simplicity and modest computational effort. Exglithite-difference techniques are generally simply
programmed, with the time step size usually resttliky the Courant stability condition. The majporit

of implicit finite-difference methods are unconditally stable; however they are significantly more

complex and require extra parameters (Islam andidtrg, 1997).

Islam and Chaudhry (1997) presented a study olpiplication of seven finite-difference methods and
one polynomial interpolation scheme to the solutdrthe transport equation for both Gaussian and
non-Gaussian initial distributions. The resultdadted with each method were compared with the
exact solution. Almost every method gave good tedok a Gaussian initial distribution. However,

for steep gradient concentrations some of the nasthmroduced high oscillations. The third and
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fourth-order methods produced the best resulttigr $cenario but required additional computation

time and programming became more complex.

The majority of the models presented so far usedettiended-period simulation technique to solve
the time-varying flow conditions in the networklal and Chaudhry (1998) presented a dynamic
model to compute the spatial and temporal distiooubf substances in a network under slowly
varying flow conditions. In this method, first tHéow conditions are computed and then the
substances concentration is simulated, with a atéparbetween advection and dispersion. However,

the results were not satisfactory when the flowabee more unsteady and reverse flows occurred.

Ozdemir and Ger (1999) evaluated the effects ofdifference between day time and night time
operations. They considered that dispersion may ks taken into account, so they developed an
unsteady 2-D convective dispersive model and coetpttre model output with experimental results.
However, this work demonstrated that this procedioges not lead to any enhancements in these
studies. In 2002, Ozdemir and Ucak developed a imfodesvaluating chlorine decay in drinking-
water distribution networks using a simplified twiimensional expression to model the chlorine
transport. The decay equation within a single jpgtided the bulk-flow reaction, radial diffusionda

pipe wall reaction of chlorine.

Zierolf et al. (1998) developed an input-output mlothat expresses the chlorine concentration at a
given pipe junction and time as a weighted averafeexponentially decayed values of the
concentrations at all adjacent upstream junctidie exponential decay models chlorine reactions
and the weighted average reflect the effect of mgxat the pipe junction. Measured data from real
systems are used to calibrate the model off-liee Model finds all paths from treatment stations to
each measured point, so the reaction rate asswordath chlorine decay at the pipe wall can be
adjusted to improve predicted chlorine concentrastiancreasing the model accuracy. Shang et al.
(2002) presented a particle backtracking algoritfi®BA), which is a simpler and more efficient
version from the input-output model developed bgrdif et al. in 1998. Besides that, this model is
extended to allow the analysis of storage tanksnamitiple quality inputs. The main advantage o$thi
algorithm is the capability of analysing specifiatips and its characteristics since they are made

explicit by this tool.

Alhumaizi et al. (2003) analysed the set of govagrequations that describes the reaction-diffusion-
convection system for a homogeneous tubular reactorsidering both steady-state and dynamic
systems, using different standard reduction tealssq such as finite-difference, orthogonal

collocation and finite-element methods. Results alestrated that, for cases dominated by convection

and reaction, high-resolution discretization metaglich as essentially non oscillatory (ENO) and
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total variation diminishing (TVD), eliminate oseitions and are efficient for tracking steep moving

fronts.

Different types and order of finite difference nmdk were identified to model the accumulation and
the convection derivatives. First-order finite-diftnce methods result in monotonic and stable
solutions but they are also strongly dissipativeing less accurate solutions for strongly conweti
systems. On the other hand, higher-order differemsthods are less dissipative but prone to
numerical instabilities. Significant improvementavl been made to the accuracy of these models.
One common approach to reduce non-physical ogoilatnear discontinuities is to add numerical
diffusion that should be tuned to be large enougdr miscontinuities but small enough elsewhere to
maintain high-order accuracy. TVD schemes and #od slope-limiters approaches, such as ENO,
weighted essentially non-oscillatory (WENO) scheraed Superbee flux corrector, are examples of
these methods (Alhumaizi, 2004). This author maa®raparison between several finite difference
schemes developed to solve the convection-reaptimimiem. The results demonstrated that first-order
schemes require large grid numbers to improve dhgisn accuracy, which might not be practical for
large DWDSs, while higher-order methods caused tgosaillations near discontinuities. High
resolution TVD, WENO schemes and the Superbeedbrkector methods were tested and proved to
be accurate for solving cases with steep conceémrairofiles. In 2007, Alhumaizi analysed the
strengths and limitations of five flux-limiters simulate numerically the behaviour of a homogenous
tubular reactor with steep moving fronts. All medbavere successful in solving the cases with steep
concentrations profiles without giving negative centrations. The Superbee limiter was found to be

the fastest scheme for simulating the sharp frotie@model for all cases.

Hallam et al. (2002) stated that the chlorine deedgs in DWDSs for bulk and wall demands should
be modelled separately because they depend ometlifféactors. They developed a methodology for
the laboratory determination of the wall decay .rdtee results indicated that wall decay rates were
limited by chlorine transport for pipe materialstlwihigh reactivity and by the pipe material
characteristics for pipe materials with low reaityivin general, water velocity increased wall deca
rates though the statistical confidence is lowldov reactivity pipes. A moderate biofilm coatingddi

not influence the wall decay rate for low reactiiipes.

Munavalli and Kumar (2003) presented an inverseehfm determining the water quality parameters
for both bulk and pipe wall reactions and the sewtrength of chlorine necessary to maintain the
specified chlorine residual at a target node. Thethod was applied to a DWDS operating with
steady-state hydraulic behaviour. In 2005, the saotbors extended this method for DWDSs with

dynamic hydraulic behaviour (Munavalli and Kuma®038). The application of the method to a real
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DWDS demonstrated that the quantity, quality andafion of measurements nodes played an

important role in the estimation of parameters.

Yang et al. (2008) tried to define contaminant-cinke reactions taking place during the transport of
water in pipes to characterize the hydraulic disiper of non-reactive chemicals, to improve the
detection of contaminants using water quality senaod to establish a model for predicting the fate
and transport of a “slug” of a reactive contaminditey performed a series of experiments in ailot
scale network and made a comparison with the mesfltsimulations. The results showed good
agreements and enabled to conclude that the résibiosine loss curve and its geometry are useful
tools to identify the presence of a contaminantigsland infer its reactive properties in adaptative

contamination detections.

In water systems, sensitivity analyses are usedtfatying the estimation of physical parameters by
empirical techniques. These analyses derive fratnaa@ highly dependent on the unsteady advection-
reaction equations for quality modelling (Gancehlet2006). Gancel et al. (2006) proposed a spitt
method for solving simultaneously the sensitivitesl the advection-reaction equation that describes
the quality modelling. The advection term is solweith an Eulerian scheme using a TVD criterion
and the ordinary differential equations with reatare solved with an implicit third-order Runge-
Kutta scheme. The method was validated for a teswvark and proved to be suitable to take into
account several types of concentration fronts éeifmooth or sharp). In 2010, Fabrie et al. idesatif
some weaknesses for improvement, mainly on threéegodes: the lack of measurements, the
difficulty to estimate accurately the velocitiedahe complexity of the reaction. The new soluii®n
more efficient in considering the unsteady behavioluthe system and takes into account inertial
terms. Furthermore, the derivatives for calibratése directly computed for the reaction term, in a
more accurate and efficient way. The model presemteables to perform the global sensitivity
analysis of the system. The importance of the #eitgi analysis is also shown as part of the

calibration process on a real network.

In the last 20 years, several authors studied ithielgm of simulation of the transport of contamitsan

in DWDSs. Several different numerical approachemsevested aiming to achieve accurate models for
the advection-reaction system that describes tmtagonant transport in DWDSs. Several works
studied the interactions between substances angithewvalls, usually as an additional reaction term
However, little work has been done regarding theoiporation of sorption phenomena in the

governing equations. This work tries to give a dbation on this specific field of research.

Chapter 2 12



Contamination in Drinking Water Distribution Systems: Some Approaches to Forward and Inverse Modelling

2.2 Simulation Tools Available

There are several open-source and commercial seftpackages able to simulate DWDSs. These
tools are mainly oriented for tasks of modellingl @mulation of the hydraulic behaviour in DWDSs.

Models for studying water quality behaviours, egggc for the commercial packages, are add-in
tools and closed boxes, which makes it difficultwaderstand their features but in general their

simulation capabilities are limited.

This section presents several software packagesiosmodelling and simulation of DWDS, giving
the available information for the characteristi€sh® software tools in what concerns to the qualit
aspects. A particular relevance was given to EPANEtIce this specific software tool was widely

used to provide the hydraulic data for the DWDSduse case studies in this thesis.

2.2.1 EPANET

This software performs extended period simulatiénhydraulic and water quality behaviour in
drinking-water distribution systems. These systanasbuilt by pipes, nodes, pumps, valves, resesvoir
and tanks (Rossman, 2000).

EPANET can model systems of any size, computesidnichead loss using different equations -

Hazen-Williams, Darcy-Weisbach or Chezy-Manninegsman, 2000), allows minor head losses for
bends or fittings and computes pumping energy astit EPANET models constant or variable speed
pumps, various types of valves including shutofi/ea, check valves, pressure regulating valves and
flow control valves, storage tanks of any shapealmivs multiple demand categories at nodes, each

with its own pattern of time variation.
The basic data to be introduced in EPANET softveaes

» For reservoirs: hydraulic head (equal to the wsiteface elevation if the reservoir is not under
pressure;

» For junctions: elevation above some reference (lysnzean sea level) and water demand
(rate of withdrawal from the network);

» For tanks: bottom elevation (where water levelegoy, diameter (or shape if non-cylindrical)
and initial, minimum and maximum levels;

» For pipes: start and end nodes, diameter, lengtlghness coefficient and status (open close,
or contains a check valve);
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» For pumps: start and end nodes, and pump curvedmbination of heads and flows that the
pump can produce).

In addition to hydraulic modelling, EPANET providegter quality modelling capabilities. The
quality models allow evaluating the movement ofoa meactive tracer material through the network
over time and the movement and the fate of a naactiaterial along the network. This software
models the reaction mechanisms, both in the bul fand in the pipe wall, using several order
kinetics to model reactions in the bulk flow andazer first order kinetics for reaction at the pipall.
The global reaction rate coefficients can be spedifr each pipe and the wall reaction rate
coefficients can be correlated with pipe roughndisés also possible to determine the effects of
concentration or mass input at any location inrteevork. The models available for storage tanks can

simulate different behaviours, such as, completengj plug flow and as two compartment reactors.

Todini’'s approach to a hydraulic node-loop systeisp known asGradient Method is used by
EPANET to solve the flow continuity and head logsi@&ions which characterize the hydraulic state
of the pipe network at a given point in time. Thataulic head lost by water flowing in a pipe dae t
friction with the pipe walls can be computed usorge of the following formulas: Hazen-Williams,

Darcy-Weisbach and Chezy-Manning (Rossman, 2000).

The governing equations for EPANET’'s water qualgglver are based on the principles of
conservation of mass conjugated with reaction kiseThe equations involve:

Advective transport in pipes;

Mixing in storage facilities;

Bulk flow reactions;

Pipe wall reactions;

System of equations;

vV Vv Vv VYV VY V

Lagrangian transport algorithm;

EPANET also provides an integrated set of conditidor editing network input data, running
hydraulic and water quality simulations, and viegvithe results in a variety of formats, such as
colour-coded network maps, data tables, time seagiephs and contour plots. This software is

available as freeware.
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2.2.2 EPANET MSX

There are several types of water quality probleinag tannot be accurately modelled by using the
single-species capabilities of current EPANET paogr EPANET-MSX is an extension to EPANET
that enables it to model complex reaction scheneesden multiple chemical and biological species

in both the bulk flow and at the pipe wall.

This extension, which is also available as freewaltews modelling chemical reactions such as auto-
decomposition of chloramines to ammonia, the foiomabf disinfection by-products, biological re-
growth, combined reaction rate constants in mualtirse systems and mass transfer limited oxidation-

pipe wall adsorption reactions (Shang et al, 2008).

The EPANET-MSX system is supplied as two differéorimats: a stand-alone console application
(epanetmsx.exe) that can run standard water quatilysis without any additional programming
effort and a function library (epanetmsx.ddl) tieaused with the original EPANET function library
(epanet2.ddl) to produce customised programmingicgions. In both formats, the user must prepare
two input files to run a multi-species analysis.eQni these files is a standard EPANET input filat th
describes the hydraulic characteristics of the ogtvweing analysed (EPANET-MSX will ignore any
water quality information that might be in thede)i The second file is a special EPANET-MSX file
that describes the species being simulated andhémical reaction/equilibrium model that govern

their dynamics (Shang et al, 2008).

In the EPANET-MSX Manual nothing is mentioned abthé introduction of a diffusion term into the
mass balance equations. The only possibility wisldhe introduction of an expression in the "terms"

section, which had to be an approximation to tfiieision term.

2.2.3 Porteau

PORTEAU is a tool used to model the behaviour opld main networks distributing or transporting
water under pressure. It provides a decision-matdog for designing and managing drinking water
supply networks. The general principle is simptecdnsists in creating a diagram of the network in
question composed of pipes and nodes. The data #iiudifferent components of the system is
entered to ensure that the complete network imfressire and conditions of use are represented in

order to stick as close to reality as possible.

For what concerns water quality, three types oliltesare supplied: the concentration of a product

(chlorine for example) the age of the water anddhgin of the water. The results can be displayed

Chapter 2 15



Contamination in Drinking Water Distribution Systems: Some Approaches to Forward and Inverse Modelling

either in the form of a table at each of the tirteps (5 min to 1 h) for the whole network, or ie th
form of a table over the whole day by pipe or bg&cor in the form of variation curves over the day

by pipe and by node on the network diagram (URtp:Hporteau.irstea.fy/

The algorithm in PORTEAU for solving the reactivartsport is a “Hybrid” method described in

Fabrie et al (2010).This software is availableraswWware.

2.2.4 Piccolo

Piccolo is a general software application that $ates flow problems in networks. PICCOLO works
out the velocity, pressure and flow rates accordmghe network data. Simulations can be run for
steady-state or dynamic conditions. A calibratedleh@an be used for master planning, case studies
and water quality studies, such as influenced adsrination, origin of water and blended sources
Advanced water quality studies may be carry out fiegk assessment of bacterial re-growth,
chloramines, nitrites and nitrification level asseent, settling / fouling rates assessment (URL:

http://www.safeqge.fr/fr/nos-metiers/logiciels/lomits/).

2.2.5 SynerGEE Water

SynerGEE Water is a simulation software packagel usemodel and analyze water distribution
systems. SynerGEE is highly flexible. It is possite choose the level of detail from simple hydaul
analysis of a single pressure zone to the twintanbe propagation of water quality in a multi-zoned

system.

Additionally, SynerGEE can model complex contrahagements for pumps, valves and regulators in
any operational scenario. Optional modules arelaai for more advanced modelling requirements

such as area isolation, reliability analysis, ssb&y management and calibration.

Compared to the Epanet algorithm for solving thdrhulics, the main difference is that when the
change in flow, from previous iteration to the nastless than one tenth of one percent of the tota
flow in the system, the network is considered stlW&hile SynerGEE solves and checks all variables
to a tolerance, the Epanet solution is simply agraye of flows to within 1/10th of one percent bf a
flows. There is no mass balance to double checksnitvere any “forcing” to bring the solution withi

compliance.
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For water quality, SynerGEE provides the uniqueabdjty to model two substances simultaneously
within a distribution system. Both non-reactiveg(enitrates) and reactive (e.g. chlorine or THMS)
substances can be simulated with a range of useredesettings such as: Separate bulk and wall

reactivities, limiting concentrations, source waterctivity blending, and temperature dependent

reactivities (URLttp://www.gl-group.com/en/water/SynerGEEWater php

2.2.6 WaterGEMS

WaterGEMS (Water Distribution Modeling and Managetheis a hydraulic and water quality
modelling solution for water distribution systemghvadvanced interoperability, geospatial model-

building, optimization, and asset management tools.

WaterGEMS is a comprehensive and easy to use wdiaibution modelling solution featuring
interoperability across stand-alone, ArcGIS, Autd@ZAand MicroStation environments. From
constituent concentration analyses, to energy copsan and capital cost management, WaterGEMS
provides an environment for engineers to analyesjgth, and optimize water distribution systems
(URL: http://www.bentley.com/en-US/Products/Wate NbE).

2.2.7 H20NET

Spanning all platforms, from AutoCAD to ArcGIS thet Web, H20ONet products are stand-alone
software for complete modelling, analysis, desighabilitation and optimisation of water distritmuti
and supply systems. H2ONET helps in identifyinghieet combination of network improvements that
meet target system 20 hydraulic design/performasriteria at minimum cost. It is possible to
conceive and evaluate effective and economicalgdesehabilitation, and enhancement alternatives
for upgrading and modifying existing water disttibn piping systems for improved performance.
The H2ONET Designer allows determining cost-effectichabilitation, replacement, strengthening,
and expansion options to reliably supply projedethands at adequate levels of service, considering
any modelling condition time frame (e.g. maximuny)danultiple design scenarios (e.g., find the
single optimum solution that provides the standsrdervice under peak day for normal operation +
average day under a failure scenario), multiple flow scenarios, and complete extended period
simulation (EPS) designs (e.0. 24-hour operational design). (URL:
http://www.mwhsoft.com/page/p_product/net/net_oiemhtm).
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3 Contamination Sources ldentification

The response to a contamination of DWDSs is a gtealtenge, in which protection and surveillance
represent only one of the aspects to take intotitte The detection of water quality deterioration

DWDSs callls for the development of new, sensitiveé @pid methods.

In case of deliberate or accidental contaminatioh®WNDSs, it is important to rapidly identify
probable localizations of point sources of contations and subsequently the contaminated areas,

allowing corrective actions to be performed, orfeedelimitation of affected areas is specified

The solution to this problem is obtained througkense modelling techniques, which allow estimating

the localization of point sources of contaminatiddsme of these techniques consider the analysis of
the concentration profiles in several check poaltsg the network and several works have been
published based on this strategy. In this chapltese techniques are divided in two main groups: a)

optimization based approaches; and b) other appesac

3.1 Optimization Based Approaches

Standard simulation problems assume known contarhingections and solve the propagation of the
contaminant throughout the network. Simulationhaf dbutput state of a model based on known inputs
is referred to as the forward problem. On the olfaard, optimization based approaches try to fied th
unknown inputs that generate a partially known ouggpate. The injection characteristics are unknown
and are determined based on concentration measuefnegm the network. This kind of problems is
inherently ill-conditioned and poses unique diffims that are not present in the forward problem
(Laird et al., 2005).

Van Bloemen Waanders et al. (2003) started to tigage the use of optimization techniques to locate
potential contamination sources given a concentnatd velocity profile. They considered the source
inversion problem as a nonlinear programming probldetermining the unknown sources at the
network nodes through the minimization of the d#feces between the calculated and target
concentrations, using EPANET to simulate the behaviof DWDSs. Furthermore, intrusive
optimization and sensitivity analysis techniquesendentified as suitable for evaluating the effefct
various parameters in the computational effort. Blesv, the performance of the method and the
quality of the solution was affected by the sodomation. Laird et al. (2004a) improved this apmioa
using a direct simultaneous approach that convitig@etwork model and the optimization problems

simultaneously. A similar work was also published 2005 (Laird et al., 2005). These authors
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presented a distinction between direct sequentidldarect simultaneous methods. Direct sequential
methods (van Bloemen Waanders et al., 2003) dizeréhie independent variables only evaluating
the model and the objective function for eachatien, while direct simultaneous methods fully
discretize all the unknown variables in the problend solve the resulting system as a large scale
optimization problem with algebraic constraints.eT¢olution to the forward problem is converged
only once, achieving significant computational gaiover the direct sequential approach. The
simultaneous approach required an explicit mathieadatepresentation of the discretized water
quality model. An algorithm similar to the partiddacktracking algorithm, presented by Zierolf et al
(1998) and extended by Shang et al. (2002), wesepted for reducing the water quality down to its
essential elements, calculating impact coefficiehéd describe the concentration of selected ositput
as functions of network sources and tank conceéom@t This algorithm reformulates the pipe
constraints of the water quality models reducing size of the discretized problem and provides a
straightforward mathematical representation ofgipe boundary concentrations. They also identified
some important areas of future work, such as theriaknation of optimal sensor location, the testing
of the reliability of the formulation against sensfailure or noise in flow rates or sensor
measurements and the correct description of thetiosarate in pipes. Some results were presented fo
a real municipal DWDS with almost 500 nodes to desti@ate the effectiveness of the proposed
simulation. However Laird et al. (2004b) verifiduht this approach did not scale up indefinitely to
very large DWDSs. Thus, they presented a dynamtienggation approach for solving the problem of
contamination sources identification for very larg8/DSs by performing the optimization on a
smaller subdomain of the DWDSs. The approach censithe hydraulic behaviour and the sensor
measurements of the entire DWDS but formulatesdyimamic optimization problem for a subset of
nodes. The results proved that this approach wastiee and is able to scale up for very large
DWDSs. Laird et al. (2006) presented a mixed-integeadratic program to refine the solution
developed by Laird et al. in 2005. Due to the sgraess of the sensor grid, the problem of
contamination source identification has no uniqgaitions. This method estimates the number of
likely injection locations and tries to extract thikely scenarios from the family of no unique
solutions. This two-phase approach was tested ogalistic municipal water network model and
achieved good agreements between the set of pesgjbktion scenarios calculated and the actual

simulated injections.

Mann et al. (2012) presented a mixed-integer lirgagramming formulation for the problem of
contamination source identification using discréyes/no) measurements available from sparse
manual grab samples at limited points in time gpoace. An origin-tracking approach was used to
develop the water quality model, which was effithgand exactly reduced prior to the formulation of

the contamination source identification probleme Tasults showed that this method solve efficiently
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a real-time setting on large networks with over A®Onodes, considering over 150 time

discretizations.

Preis and Ostfeld (2006) presented a coupled mao@es-linear programming algorithm for
contaminant source identification in water disttibo systems. Several contamination scenarios were
developed in EPANET (Rossman, 2000) to define aahtees linear rule classification structure.
Linear programming was then used to solve the se/eproblem of contamination source
identification. This method provided an estimatiointhe time, location, and concentration of the
contamination sources. Later, Preis and Ostfel@{R@ddressed the challenge of achieving unique
solutions for water distribution systems of larggescoupling genetic algorithms with EPANET. The
objective function considered was the minimizatanthe least-squares of the differences between
simulated and measured contaminant concentratisth, the intrusion location, starting time,
duration and mass rate as decision variables. d€keloped methodology was demonstrated through
base runs and sensitivity analyses using threerwdistribution systems examples of increasing
complexity. The main limitations were the highlytdansive computational effort required by this
method and the assumptions that the flows in tpespare known and the monitoring stations are
perfect. In 2010, they investigated the effect atartainties in the sensor measurements in the
problem of contamination sources characterizatmh@esented a modified genetic algorithm scheme
(Preis and Ostfeld, 2010). The developed model imgpdéemented using three sensor types: perfect
sensors, sensors transmitting fuzzy measured imfitomand sensors indicating only a contamination
presence. Two example applications of increasingptexity were presented to demonstrate the
performance of the proposed methodology, showiegtitade-offs between the sensor types and the

model abilities to receive a unique solution to sberce identification problem.

The effects of the uncertainties in the managenoéniater resources systems have been widely
studied (Chung et al, 2009; Li et al., 2008; Lakt 2010; Li et al., 2011; Qin et al., 2007) anahD et

al. (2012) have presented a review of the exigemttniques for the development of scenarios inwate
research management. Torres et al. (2009) havenstimt an understanding of hydraulic uniqueness
of water distribution systems is important for dinlg robust risk models and/or performing
vulnerability assessments and reasonable uncéewiit model inputs produce high degrees of
uncertainty in estimated exposure levels. Thusptrameter uncertainty is a source of error that ma
create large disparity in water distribution, pautarly in the water demand, which can fluctuate
widely and is unpredictable (Huang and McBean, 2008ese uncertainties may be derived from
random feature of resource conditions and natumlgsses, errors in estimated modelling parameters
or imprecision or fuzziness human-induced (Li et 2011). In fact, the modelling approaches are not

able to provide an exact representation of the aspimant spread in DWDSs. These approaches
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provide an approximation that is always affectedmmydelling uncertainty and, therefore, cannot be

handled by the available model calibration appreadiiuang and McBean, 2009).

Preis and Ostfeld (2011) considered that for rpplieations only a small portion of the hydraulatal

iIs known and the only information available miglet & binary sensor status. Thus, they presented a
methodology for the inclusion of hydraulics uncena in contamination source identification. The
proposed method is based on a previous contammaborce detection model developed by the
authors coupled with a statistical framework foantifying the uncertainty of a contamination source
detection outcome. The results showed that inasléscenarios that were evaluated the contamination

area and the approximated time of injection wasad.

Guan et al. (2006) presented a simulation-optiriiratmethod to solve a nonlinear contaminant
source and release history identification problenmef complex water distribution system. This method
used the EPANET software application to simulate ¢itccurrence of contaminations. Results for
arbitrarily selected monitoring locations were useda continuous optimal predictor-corrector
algorithm to identify the contamination sources dneir release histories. The optimization model
used as corrector was designed to identify the laiityi between the simulation response and
measured data at the monitored sites. Results shtvee the approach was effective, efficient and

robust in identifying contamination sources andrtfedease histories.

Hill et al. (2006) presented a least squares famtmart for the problem of localization of
contamination sources, considering only Booleare tgpnsors that were considered to be closer
approximation to real sensors. A comparison wasentatween the solutions achieved considering
continuous readings and Boolean measurements tordgrate de robustness of the method. The
results demonstrated that it was possible to aehg®od results for the localization of contaminatio
sources since there wasn't any relation betweeméteork time delays and the magnitude of the

concentrations.

Di Cristo and Leopardi (2008) formulated a methodgl for identifying the source location as an
optimization problem, linearized using the watexcfron matrix concept. The method starts from the
concentration data to select a group of candidatkes, from which the source location is identified
minimizing the differences between simulated andsnesd concentrations. An uncertainty analysis
was presented to demonstrate the methodology mdmstagainst uncertainties in concentration

measurements and water demands.

Vankayala et al. (2009) also studied the problermaritamination source identification, under water
demand uncertainty. A simulation-optimization agmio was presented that used EPANET as

simulator and a stochastic and a noisy geneticrittigo (GA) as optimizers, minimizing the
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difference between the simulated and observed otrat®ns at the sensor nodes. The noisy GA
proved to be more robust and required less compuotdt effort to achieve a solution for the

contamination source identification.

Mou et al. (2010) applied a simulation-optimizatimethod to backtrack contamination sources in a
laboratory water distribution system, using sodidmyppochlorite solution as a substitute for
contaminants. Results for different input parantseteere compared, such as water network topology
structure and simulation time horizon, and infliagdactors of this algorithms and their effectsave
discussed. Tryby et al. (2010) formulated the nwitiy design problem as a nonlinear combinatorial
optimization problem and solved using a genetiordtigm. The source inversion performance of an
optimized monitoring network relative to networkastyned using different methods was evaluated.
The results demonstrated that the number of semmsstaled in the network is more important than

the method used to locate them when the sourcdifidation problem is underdetermined.

Propato et al. (2010) presented another approacbotging this problem based on two main steps.
First, linear algebra was employed to select thterg@l contamination sources through contamination
source pruning. Second, the minimum relative egtropthod was used for evaluating the probability
of each potential contamination source. The saluti@as a space-time contaminant concentration
probability density function accounting for the ioars possible contamination sources that may be

responsible for the data registered at the sensors.

Liu et al. (2011) presented an adaptive dynamicinopation technique for identifying the
contamination source in real time following a conitzation event, through a multiple population-
based search that uses an evolutionary algorithra. résults showed that the algorithm adaptively

converges to the best solutions, given the obsetatal

Cugat (2012) considered a DWDS where the contarninamsion could occur at a limited number of
nodes. The method is based on the data collecteddsfined set of sensors. The corresponding
infinite-dimensional optimization problem was defihin a Hilbert space setting, with the addition of
a quadratic regularization term is added in theedbje function to guarantee the obtainment of a
unique solution. Under certain assumptions, thepedation of the solution on a discrete time grid is
performed by solving finite-dimensional linear leaguares problems This method was considered
useful to minimize potential impacts of contaminatemergencies on consumers by helping to select

locations to flush the contaminant out of the distiion network.
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3.2 Other Approaches

Davidson et al. (2005) proposed two methods that sugervisory control and data acquisition to
create connectivity matrixes that contain the woeste projection of the potential spread of
contamination obtained by combining the effectsatif possible scenarios. The first creates the
connectivity matrices based on operating modegfamdecond on fundamental paths. Results showed
that the methods had similar results, however te¢had of fundamental paths was more efficient

computationally.

Neupauer et al. (2005) presented a backward modeHipproach that uses probability density
functions to identify the source node and relea®se f a contamination. The probability density
functions are obtained from the data collectednatailed set of sensors. The backward model proved

to be effective for steady flow conditions and dosingle, instantaneous source of contamination.

Dawsey et al. (2006) proposed a methodology base@ayesian belief network (BBN) for the
characterization of contamination events, redudaige positive sensor detections in DWDSs. The
methodology uses distribution system simulationd eonservative transport to estimate conditional
prior probabilities for contaminant introductiondn addition, the simulations identify the upstrea
nodes that are more likely to result in positivéedgons. They presented a case study to show how
data from sensors and other sources can be intedpréth a BBN to distinguish between routine false

positive sensor detection and a true system congdion event.

Khanal et al. (2006) introduced a dimensionlesosupe index as a simple global measure of network
response. The fraction of the population at riskaritaminant exposure was estimated at the end of a
72 h simulation period for several contaminatioarsrios. Simulation results were used to categorize
network injection nodes on the basis of their ptiéito expose downstream consumers. Furthermore,
a generalized sensitivity analysis was performeddi@rmine the sensitivity of network response to

four dynamic network variables. The exposure lewsse more sensitive to variations in base demand
and injection mass. Tank storage capacity was itapbin certain cases, while injection duration

tended to be least important.

Quesson et al. (2009) investigated the applicatidnacoustic sensors for the detection of
contamination events, through the classificationabérrant sounds in the DWDSs. Models were
developed for the sound propagation in PVC pipes @mputer simulations were carried out to
specify detection ranges and field experiments wareed out to characterise background noise and
suspicious sounds. An acoustic monitoring demotwstraas developed and tested for the detection
and classification of aberrant sounds and it hasvehpromising system results for protection of

buildings.
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ANNSs have been also used in the identificationaftamination sources in water systems. Kim et al.
(2008) applied ANNs models to identify the contaation source in case of an accidental or
deliberated release of Escherichia coli 15597 iweder system. Results showed that dispersion
patterns of E. coli were positively correlated td, gurbidity and conductivity. The ANNs models
identified successfully the contamination sourcéhwi5% accuracy based on the pre-programmed
relationships between E. coli transport patternd @mntamination sources. However, as far as it is
known, this is the only published work that usesNSNin helping to predict contamination source
locations in DWDSs.

Huang and McBean (2009) presented a method toifigeiné location and time of an intrusion event,
based on limited sensor data through the applicaifca data mining approach in conjunction with a
maximum likelihood procedure. They also demonstrdteit uncertainties in water demand, sensor
measurement, and modelling, are highly relevantrestgtssary to be considered in the contamination
identification problem. The proposed method toaki8utes to identify multiple injections for a 285
node water distribution network with five sens@scording to these authors, this approach is slgitab
to identify the contamination source for a simpkteyv network; for a large and complex system, more

sophisticated algorithms may be required.

Yang et al. (2009) explored a real-time event adaptletection, identification and warning
methodology based on the information collected lopnventional water quality sensors. They
performed several pilot-scale pipe flow experimemtgh different chemical and biological
contaminants at different concentration levels. @@mmnant signals were enhanced and background
noise was reduced in time-series plots, througiptagatransformation of the sensor outputs, leading
to detection and identification of all simulatedntamination events. Then, the relative changes
calculated from adaptively transformed residuabohk measurements were quantitatively related to
contaminant-chlorine reactivity in drinking watdrhe results showed that the tested contaminants

were distinguishable based on kinetic and chendiiffdrences.

Zechman and Ranijithan (2009) described a spedffiieéimentation of a method using evolutionary
strategies, a population-based heuristic globaickealgorithm. The method was constructed using a
tree-based encoding design to enable the repréisentd decision vectors and a set of associated
genetic operators that enabled an efficient seaRgsults showed that the algorithm had good

performance and showed a robust behaviour for akegamples of water distribution systems.

De Sanctis et al. (2010) developed a method thgtrequired a binary sensor status over time. This
method consisted in a particle backtracking albarito identify the water flow paths and travel tame

leading to each sensor measurement. It was assinaietthe locations and times connected to positive
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sensor measurements and not connected to negatasunements were the possible sources,
assuming no false positive/negative readings andcanrate hydraulic model. The output for any
node and time interval is of three kinds: safe (@qtossible source); unsafe (possible source); or

unknown (insufficient data to determine, thus cdugdsafe or unsafe).

Koch and McKenna (2011) proposed an approach fmbaung data from multiple sensors to reduce
false background alarms. They used the Kulldog€an test to find statistically significant clusterf
detections, considering the location and time dfiviidual detections as points resulting from a
random space-time point process. The results shétwadhe scan test can detect significant clusters
of events, reducing the occurrence of false alarenssed by background noise by three orders of
magnitude using the scan test. The clusters carhalg to indicate the time and source locatiothef

contaminant.

Di Nardo et al. (2012) simulated a simple backflattack with cyanide being introduced into a real-
water system, defining the most dangerous intradicpoints for a contaminant incident. The
vulnerability of the DWDS was analysed by computihg lethal dose of cyanide ingested by users
and the total pipe length in the DWDS and the éffef network partitioning and district isolatiorasv
assessed. Results demonstrate the sectorizatiire @WDS can significantly decrease contaminant
spread and protect part of the users from the oonted water. However, some simulations also
showed that this procedure could have negativetsffa terms of the exposition to contaminantssthu
it was concluded that further investigation wasurezfl to design water districts for DWDS security

and safety.

Eliades and Polycarpou (2012) proposed a computdtiapproach based on decision trees for
selecting a sequence of nodes in the DWDS to pareapanded sampling, for evaluating the water
contamination impact and isolating the source-avitla as few quality samples taken as possible. A
simplified and a benchmark water distribution systgere used to demonstrate the functioning of the

proposed procedure.

Liu et al. (2012a) presented a method for a comtatiin characterization algorithm by coupling a
statistical model with a heuristic search methole Btatistical model is used to identify potential
locations for the contaminant intrusion and theristic search method aims at further refining
contaminant source characteristics. Two illusteataxamples of DWDSs demonstrated the ability of
the method in adaptively discovering contaminanire® characteristics as well as evaluating the

degree of non-uniqueness of solutions.

Liu et al. (2012b) introduced a hybrid method fbe treal-time characterisation of a contaminant

source, given sensor measurements in DWDSs. Thikoohentegrates a simulation-optimisation
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approach with a logistic regression and a localrowpment method to accelerate the convergence.
The results of numerical experiments demonstrateetficiency of the proposed hybrid method for

contaminant source characterisation.

Tao et al. (2012) proposes a rapid identificatioethmdology for determining the location, starting

time, and injection rates at different time intdsvim a DWDS. The proposed methodology identifies
the key characteristics of the contamination bycmmaty the dynamic patterns of the simulated and
measured concentrations. Results showed that ifldkee collected by the sensor is minimal, a greater
number of redundant contamination source nodes@ifpresent. More data is necessary to effectively

use this method for locating multiple sources aftamination in DWDSs.

Shen and McBean (2012) stated that the identifinadf contamination sources had two major issues:
the occurrence of false negatives, in which thehoekfails to identify the true contamination source
and false positives, when the method wrongly idiesstia location that was not the true contamination
source. These authors presented a data miningdanazéased on a database constituted by the first-
detection times at the sensors. Results showednitraasing the number of scenarios in the database
always reduces the false-negative rate of eachoseasd usually reduces the number of false

positives.

3.3 Chapter Conclusions

The works mentioned above applied a wide rangepfaaches to the problem of the localization of
contamination sources in DWDSs, which indicates s important research field is not yet
consolidated. A limitation associated to some a@fsth approaches is that the time of computation
might be very high, due to the complexity of thetmeanatical formulations. Although some of the
works mentioned require a reasonably low time ohgotation, they depend on the analysis of the
concentration profiles and make the initial assuompthat the sensors should be able to evaluate the

contaminant concentration, which might be diffidoliachieve in real scenarios.

Furthermore, the majority of the published workumses a well-calibrated hydraulic model with a
known water demand at each node at certain time.challenges concerning parameter uncertainty
are in general not addressed, although some oé tiwvesks have shown applications to deal with

measurement uncertainty.
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Additionally, the majority of the these works dot poesent detailed information concerning the level
of restriction achieved for the location of the gibe contamination sources and the deviation

between the estimates obtained by the methodsheneal times of contamination.

This thesis tries to make a contribution presentiifferent strategies to overcome some the

weaknesses here identified.
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4 Artificial Neural Networks

Artificial Neural Networks (ANNs) are mathematiaaodels which have a distributed and parallel
architecture, consisting of processing units, ay@ls to neurons, with multiple connections,
analogous to dendrites and axons. Figure 4.1 piedbha analogy between ANNs and biological
neural networks. ANNSs try to mimic the brain capasiin two aspects: acquiring the knowledge from
its environment by a learning process and stoitmegkinowledge acquired in the learning process by

the interneuron connection strength, also knowsyaaptic weights (Haykin, 1999).
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Figure 4.1 —ANNSs versus biological neural networks.
ANNSs are developed based on the assumption that:

Information processing occurs at the neurons;’
Signals are passed between neurons over connéoken

Each link as an associated weight;

YV V V V

Each neuron applies an activation function tonfaut to determine its output signal (Fausett,
1994).

An ANN is mainly characterized by its architectusgrning process and activation functions (Fausett
1994). These characteristics are present, with whetal, in Sections 4.1, 4.2 and 4.3.
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4.1 Architectures

Often, it is convenient to visualize neurons asrgged in layers, where neurons behave in the same
manner. Within each layer, neurons usually havestme activation function and the same pattern of

connection to other neurons (Fausett, 1994).

The arrangement of neurons into layers constitilitesietwork architecture. In general, it is possibl

to identify three main classes of architectures:

» Single-Layer Feedforward Networks;
» Multilayer Feedforward Networks;
» Recurrent Networks.

4.1.1 Single-Layer Feedforward Networks

A single-layer network has one layer of connectiegights. Thus, there is an input layer that is
connected to an output layer of neurons, but re® viersa. The network is strictly a feedforwardetyp

(Haykin, 1999). Figure 4.2 shows a schematic regragion of this type of architecture.

Input Output
Layer Layer

Figure 4.2 —Representation of a single-layer feedforward nétwo
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4.1.2 Multilayer Feedforward Networks

A multilayer feedforward network is constituted taye or more layers of nodes (usually denominated
as hidden layers) between the input and the ougyers. Multilayer networks can solve more
complicated problems than can single-layer netwdslas the training may be more difficult (Fausett,
1994). By adding one or more hidden layers, thevoit is enabled to extract higher-order statistics,
which can be a valuable ability when the size efitiput layer is large. These ANNs are commonly

referred to as multilayer perceptrons (MLPs); (Hayk999).

Typically the neurons in each layer of the netwhnake as their input the outputs of the previousiay
The set of outputs of the neurons in the outputda@pnstitutes the overall response of the netwmrk
the inputs provided to the input layer. Figure ghi®dws the schematic representation of a multilayer

feedforward network with one hidden layer.

Input Hidden Output

Figure 4.3 —Representation of a multilayer feedforward network

4.1.3 Recurrent Networks

The main difference between the recurrent netwarkssingle or multilayer feedforward networks is
the existence of at least one feedback loop, réeggdhe presence of hidden nodes. The presence of
feedback loops has great impacts on the performanddearning capability of the network (Haykin,
1999).

Figures 4.4 and 4.5 show examples of recurrentaor&samwith single and multiple layers, respectively.
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Figure 4.4 —Representation of a recurrent network with a siteyer

Hidden layer

Input layer

R

Figure 4.5 —Representation of a recurrent network with multipygers

4.2 Activation Functions

The basic operation of the ANNSs is based on thegqssing of information performed by neurc
presented in Figure @.. A neuron, receives a set of connection link$nagsociated synaptic weiglr
Then, the activation function is applied to the safrell input signals, weighted by each corresponc
weight. Some neurons, as it is also shown in Fi@.6, include a bias, which has the effect

increasing or decreasing the input to the activafiimction (Haykin, 1999
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‘ weights
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v - net input
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H threshold

Figure 4.6 —Schematic representation of a neu

There are several choices for the activation fomsti which can be divided in three main tyy

threshold functions, piecewidi@ear functions and sigmoid functions (Haykin, ®).

4.2.1 Threshold Functions

With this type of activation function, which is d&éd by Equatioi4.1 and is described in Figu4.7,

the output of a neuron is 1 for r-negative values and 0O, otherwise.

o ={} 130 (4.1)

<

Figure 4.7 —Threshold functiol
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4.2.2 Piecewise-linear Functions

An example of a piecewise-linear function is gilnEquation 4.2 and described in the Figure 4.8.
This type of activation function is a linear comdxinin the linear region but reduces to a threshold

function if the amplification factos is infinitely large.

(o v<—2
2

<p(v)={§+v, —2>v> 4 (4.2)
k 1, v2+%

Figure 4.8 —Piecewise-linear function.

4.2.3 Sigmoid Functions

Sigmoid functions are the most common form of adton function used in the development of
ANNSs. It is defined as a strictly increasing fupctithat presents a balance between linear and
nonlinear behaviour. Log-sigmoid is an examplehis type of function. The parametof Equation

4.3 is the slope parameter of the sigmoid functiprthe limit, the sigmoid function becomes simply

the threshold function.
o) = —— (4.3)

The examples of activation functions presentedaso/diry between 0 and 1. The hyperbolic tangent
function (also known as tan-sigmoid) has a diffedeshaviour, since it varies between -1 and +1,
which might be desirable for some applications.sThinction is given by equation 4.4 and is

described by Figure 4.10.
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¢(v) = tanh (v) (4.4)

Figure 4.9 —Log-sigmoid function.

wv)

Figure 4.10 —Tan-sigmoid function.

4.3 Learning Process

Another very important characteristic of the ANNghe training, which is the process of setting the
values of the synaptic weights. There are two nigies of training: supervised and unsupervised,

whose basic features are presented in the folloggéogions.
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4.3.1 Supervised Training

In the supervised training, training is accompléh®y providing a set of input vectors with its
associated targets for the output vector. The métweights are then adjusted according to a legrnin
algorithm (Fausett, 1994).

The most popular algorithm is known as the errakhaopagation algorithm, and it has been widely
applied to MLPs for solving some difficult and dige problems. The objective of this training
method, as it is the case with most ANNs, is toettgy an ANN able to respond correctly to the input
patterns used in the training (memorization) angeioeralise its knowledge for inputs that are simil
but not identical, to that used in the trainingngelization) (Fausett, 1994). Most training aloris
involve an iterative procedure for minimizationasf error function, adjusting the weights followiag
sequence of steps. These steps are constitutedobgistinct stages. In the first stage, the denest

of the error function with respect to the weights avaluated. The important contribution of thekbac
propagation technique is in providing a computatiyn efficient method for evaluating such
derivatives. In the second stage, the derivativedteen used to compute the adjustments to be made
to the weights. (Bishop, 1995).

The learning process is carried out by an optinomaprocess where, based on the training data or
examples, weights and biases are updated lookingninimizing the error between the predicted
variable and the real one. After the training phasealidation phase must be conducted to evaluate
the generalization capacity of the final networkfaguration. This evaluation is done through a sros
validation test (usually the data set is dividet ithree subsets, for training, validation and)tdsten
though, it is important to remark that the optintiza problem is not convex, and for this reason the
optimization process is not a simple task. On tierohand, the generalization or prediction povfer o

the network will be better when the training dadarespond to a wide range of problem situations.

After the training and validation phases, ANNs abée to classify input patterns to an acceptablelle

of accuracy even if they were never used duringrdiaing process (Ham and Kostanic, 2001).

4.3.2 Unsupervised Training

In unsupervised training, a set of inputs are m@edi but no target vectors are specified. The
adjustment of the synaptic weights is performedyoiieto a set of learning rules. From numerous
originally random local interactions within the ANM response to the input patterns, there emerges

global order (Ham and Kostanic, 2001).
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4.4 Development of ANNs

Several authors summarized the main steps thatdshewperformed in the application of ANNs, from
conceptualization to design and implementation Bas and Hajmeer, 2000; Maier et. al, 2000;
Maier et al., 2010).

In 2000, Basheer and Hajmeer outlined some isdqwsshould be addressed before beginning with

training of an ANN, with focus on ANNSs trained wighback-propagation algorithm:

Database size and partioning;

Data preprocessing, balancing and enrichment;
Data normalization;

Input/output representation;

Network weight initialization;
Back-propagation learning rate;
Back-propagation momentum coefficient;
Transfer function;

Convergence criteria;

Number of training cycles;

Training modes;

Hidden layer size;

YV V.V V V V V V VYV V VYV V V

Parameter optimization.

Maier and Dandy (2000) and Maier et al. (2010) ddtet the methods for developing ANN models
are not yet well established. These authors hatlmed some steps and guidelines for applying these
modelling techniques in an efficient and reliablaywintroducing taxonomies of approaches for each

one:

Input selection;

Data division;

Model architecture selection;
Model structure selection;
Model Calibration;

V V.V V VYV V

Model evaluation;

The development of ANNs performed for some of thethnds proposed in this thesis followed a
procedure similar to those presented by Maier azaldy (2000) and Maier et al. (2010).
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4.5 Main Advantages of ANNs

The greatest advantage of ANNs over traditional eflody techniques is their capability to model
complex, non-linear processes without having torese a relationship between input and output
variables (Chau, 2006). This reflects a differeppraach for computing when compared to other
methods, which involve the development of compuytesgrams. In a computer program, the
programmer has to specify every step executeddgdamputer and it is a process that takes time and
resources. On the other hand, ANNs are able tagedtie correct results based on training examples,
not being necessary to program every theoretigadlysible case that may occur in the problem
(Dayhoff, 1990).

Besides the qualities mentioned before (adaptalalid nonlinearity), ANN have another important
one, its robustness and resistance tending toutetéderant. This means, that even if a neurom or
connection is damaged, it will only decrease &elithe overall performance of the network, because
the information is distributed in total neural netk. These reasons have contributed to become ANN

as a powerful tool used in different interdiscipliy areas (Ham and Kostanic, 2001).

Computational structures based on biological systemy grant superior performances for certain
problems, which include labelling problems, schadulproblems, search problems and other
constraint satisfaction problems. These problerescharacterized by some or all of the following
properties: a high-dimensional problem space; cerypinknown or mathematically unmanageable
relationships between problem variables; and atisolispace that might be empty, contain a unique

solution or, most typically, contain more than soéution.

4.6 Main Applications of ANNs

During the last decades, there has been a suladtamtiease in the application of ANNs in the
solution of a wide range of problems. These mathiealanodels are very suitable for tasks involving
incomplete-data sets, fuzzy or incomplete inforomtiand for highly complex and ill-defined

problems, where humans usually decide on an iotati basis. The most important tasks in which
ANN can be applied may be divided in classificatiorecasting, control systems and optimisation

and decision making (Kalogirou, 2000).

Several works were found in very different fieldach as process control (Willis et al., 1992; Musti
and Coelho, 2000; Hussain and Ramachandran, 2@08) Bt al., 2007tawrynczuk, 2009 image
processing (Egmont-Petersen et al., 2002; Li e28D2), medicine (Khan et al., 2001; Lisboa, 2002;
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Ahmed, 2005; Di Luca et al., 2005; Lisboa and Tkk@006), speech production and recognition
(Tebelskis, 1995; Altun et al., 2003; Al-Alaoui at., 2008; Dede and Sazli, 2010; Abe and
Nakamatsu, 2012), engineering (Farkas and Géczy20ig3; Cerri et al., 2006; Singh et al., 2007;
Souliotis, 2009;), modelling and forecasting (Dibiknd Coulibaly, 2006; Gémez- Sanchis et al.,
2006; Sousa et al., 2006; Argiriou et al., 200sBoet al., 2007), and business applications @941
Poh et al., 1998; Quaddus and Ktinn ,1999; Kamnuzzrg 2004).

ANNs have been widely applied for the predictiord dorecasting of water resources and other
environmental processes, due to their great fliilnf implementation to accurately represent the
behaviour of relatively poorly understood processgsh as the complex and non-linear dynamics of
water quality within water distribution systems Bism et al., 2006; May et al., 2008a; May et al.,
2008b; Serddes, et al., 2001) and the problem ¢térvelemand forecasting for real-time operation of
water supply systems (Odan and Reis, 2012).

In 2000, Maier and Dandy presented a review of 8deps dealing with the use of neural network
models for the prediction and forecasting of wateources variables. They concluded that ANNs
have the potential to be a useful tool for the jmtézh and forecasting of water resources variables
However, they also identified a need to develoglglimes which identify the circumstances under
which particular approaches should be adopted andth optimise the parameters that control them.
In 2010, Maier et al. presented another review 1 papers, published between 1999 and 2007,
which focus on the prediction of water resourceialdes in river systems. They concluded that
methods used for determining model inputs, appatgrilata subsets and the best model structure are
generally obtained in an ad-hoc fashion and, despsignificant amount of research activity on the
use of ANNs, there is still a need for the develeptrof robust ANN model development approaches.
They also concluded that multilayer perceptrons thee most popular model architecture, while

gradient based methods are used almost exclusively.

ANNSs have been also used in the identificationarftamination sources in groundwater (Sahoo et al.,
2005; Sahoo et al., 2006; Singh and Datta, 2006)jyraDWDSs (Kim et al., 2008). However, as far as
it is known, the paper published by Kim et al.ealty mentioned in the previous chapter, is the only

published work that uses ANNSs in helping to predartamination source locations in water systems.
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5 DWDSs used as case studies

Several examples of DWDS, with different size agdel of complexity, were used as examples to
demonstrate the performance of the methods presémtéhis thesis. This chapter presents a brief

description of each DWDS used as case study.

5.1 Network A

Figure 5.1 presents a theoretical example of a DWiich was used in a preliminary phase of this
work The hydraulic characteristics of the networl ksted in Tables 5.1, 5.2 and 5.3. The demand of
each node is determined by multiplying its baseatedrby the respective demand pattern presented in
Table 5.3. The hydraulic behaviour of the NetwArwas analysed, for a period of 6 hours, using the
EPANET Programmer’s Toolkit in Visual Basic and tmgdraulic data was exported to MATLAB.
Table 5.4 presents the definition of the differemte periods performed by the hydraulic analysis of
the EPANET.

R1
2
_
M1 P2 M2 B N3 Pia M4 P20 ME
L L . 4 L L
3 F2 Fg P22 P24
MNE =¥ MNT BT NE P2 N3 B2 N1D
# 4 3 = T = ¢
Fa P13 P16 P28 F2E
NIT P14 NIZ pis N1 por N1t g MN1E
* + + - + - ¢
Pid Pi2 P17 P30 P3z
Mg p MNIT  pig N1E  pog N19. pq NZD
# * * = * ¢
P33

Figure 5.1 —Representation of Network A.
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Table 5.1-Network A nodes characteristics.

Node Elevation (m) Base demand (mYh) Pattern
R1 600 - -
N1 480 10 1
N2 380 10 1
N3 280 10 1
N4 180 10 1
N5 80 10 1
N6 460 15 2
N7 360 15 2
N8 260 15 2
N9 160 15 2

N10 60 15 2
N11 440 5 3
N12 340 5 3
N13 240 5 3
N14 140 5 3
N15 40 5 3
N16 420 10 4
N17 320 10 4
N18 220 10 4
N19 120 10 4
N20 20 10 4
T1* 0 - -

Note: Tank T1 has a diameter of 50 m, the initalel of water is 10 m and the minimum and

maximum levels are 10 m and 50 m, respectively.
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Table 5.2 -Network A pipes characteristics.

Link Length (m) Diameter (mm) | Link Length (m) Diameter (mm)
P1 100 400 P18 150 200
P2 200 300 P19 100 250
P3 200 300 P20 100 250
P4 200 300 P21 100 250
P5 200 12 P22 200 250
P6 150 300 P23 100 250
P7 150 300 P24 200 250
P8 200 300 P25 150 200
P9 150 250 P26 150 200
P10 100 200 P27 100 200
P11 200 200 P28 100 200
P12 100 200 P29 100 200
P13 150 250 P30 100 200
P14 200 250 P31 100 200
P15 150 200 P32 100 200
P16 150 12 P33 100 400
P17 100 200 - - -
Table 5.3 -Demand patterns (Network A).
Pattern\Time period [0,3]h [3,6]h [6,91h [9,12]h
Pattern 1 0.5 1 0.5 1
Pattern 2 0.4 0.8 1.2 0.6
Pattern 3 2.5 1.25 2 1
Pattern 4 0.5 15 2.5 1
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Table 5.4- Duration of time periods (Network A).

Time period 1 2 3 4 5 6 7

Starttime (s) O 3600 7200 10800 14400 14462 18000

End Time (s) 3600 7200 10800 14400 14462 18000 21600

5.2 Network B

Figure 5.2 presents a DWDS constituted by 1 reser0 junction nodes, 50 pipes and 4 valves. The
hydraulic behaviour of the DWDS was analysed usimgEPANET Programmer’s Toolkit in Visual
Basic and the hydraulic data was exported to MATLABvis hydraulic analysis revealed the
existence of 144 different hydraulic patterns pay.dn each pattern, there are variations in vgloci
and in direction of the water in several pipeshd hetwork. The analysis period considered was 1
day, i.e., 24 h.

Figure 5.2 -Representation of Network B.

Chapter 5 44



Contamination in Drinking Water Distribution Systems: Some Approaches to Forward and Inverse Modelling

5.3 Network C

Figure 5.3 presents the Network C, constituted B Bodes (including 1 reservoir and 3 tanks) and
927 links. The hydraulic behaviour of the DWDS veamlysed using the EPANET. This hydraulic
analysis revealed the existence of 25 differentrduylit patterns per day. In each pattern, there are

variations in velocity and in direction of the waie several pipes of the network.

Figure 5.3 -Representation of Network C.
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5.4 Network D

Figure 5.4 presents the Network D, a DWDS of aranrlrea constituted by 10 reservoirs, 8846
junction nodes, 1 tank, 9991 pipes, 7 pumps andaBZs that was used as an example to explain the
proposed method and to show its performance. Thigahlic behaviour of the DWDS was also
analysed using the EPANET. This hydraulic analysigaled the existence of 96 different hydraulic
patterns per day. In each pattern, there are i@r&in velocity and in direction of the water gveral

pipes of the network.

Figure 5.4 — Representation of Network D.
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6 Analytical approach for the advective transport pheénomenon

with reaction

6.1 Governing Equations

The model used in the evaluation of contaminantcentrations was based on the phenomena of
advective transport and reaction in the pipes. Timiglel considers that a dissolved substance will
travel down the length of a pipe with the same agervelocity as the carrier fluid at the same time
reacting at some given rate. So, the advectivesjran within a pipe is represented with the follogyi
equation:

aC, (xt) aC, (xt)

Pramll e +r (C (xt)) (6.1)

where C, (X,t) is the concentration (mass/volume) in pipas a function of distancg and timet,

u, is the flow velocity (length/time) in pipeand r is the rate of reaction (mass/volume/time) that is

function of concentration (Rossman et al., 1993).

An analytical solution was obtained for the partdferential equation given by Equation 6.1. It is

assumed that a pseudo-first order reaction rablésto simulate the decay of contaminant:
r (G (xt))=-kC, (xt) (6.2)
Equation 6.3 is obtained by the substitution ofEg@ation 6.2 in Equation 6.1:

aC (xt) _ _, 9C (x.t)

P T -k C, (xt) (6.3)

Applying the Laplace Transform to the varialbleEquation 6.3 is transformed in Equation 6.4:

dC (xs)_, &

sC, (x8)=C,(x0) = -y, ===~k C, (xs) (6.4)

The next step is to define the boundary conditidhsis assumed that the initial contaminant

concentration is O for all the length of the pipe.
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C (x0)=0 (6.5)
Substituting this initial condition in Equation 6 Bquation 6.6 is obtained:

dC (xs)_, =

sC, (xs)= —u ==-"=" -k C (xs) (6.6)

Equation 6.6 is a differential equation which camsblved by direct integration:

~ 1 s £ ()= (9Ci(x9)
uijd f (s) '[C_i(xs)(s+k) (6.7)

The integration is performed without integratiomitis. A function f (s) is added as a constant of

integration, not dependent of the variallebut as a function of the other independent végi&b

Integrating the Equation 6.7 and rewriting the samgeation, it is possible to obtain an explicitnfior

fora(x,s):

s+k |

S (xs)= L exp{(w)(—u—ﬁ : (s)ﬂ 69)

Consideringy (s) = exd(s+ k) f (s)] , the Equation 6.9 is obtained:

C (xs)=— exp{(s+ k)(—uiﬂ g(s) (6.9)

It is still impossible to invert Equation 6.9 fame domain becauscg(s) is an unknown function.
This function can be determined by applying a sddooundary condition. This boundary condition
must be the contaminant concentration at the ppirtO along the time. As example, Equation 6.10

describes a pulse with amplitud® that occurs between the timgsandt, .
C(0t)=AH{t-t)-H{-t,)] (6.10)

The transformation of this equation to Laplace dion&

C(09)= A[eXp(; ts)_expl-t, S)}

. (6.11)
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Applying this boundary condition to Equation 6.%als the evaluation og(s), le.

ex{(s+ k)(—ugﬂ a(s)= A{eXp(_ bs)_exp(t, S)} (6.12)

i S s

s+k

g(s)=A(s+k) [eXp(_ Ls)_expl-t, S)} (6.13)

S S

Substituting Equation 6.13 in Equation 6.9 andreeaging:

C (xs)= % exp(—ku—ixj {exp{— (ul + tlj s} - exp{— (ul +t2j Sﬂ (6.14)

It is possible to invert Equation 6.14 for time dom Equation 6.15 is the analytical solution foe t

concentration profile in a plug flow chemical reaatnodelled by Equations 6.1 and 6.2.

O et G G B

An equation for the description of concentrationfie in a plug flow chemical reactor, such as
Equation 6.15, can be obtained for any conditidriee point x=0. It is only necessary to redefine t

Equation 6.10, that describes the concentratiqromit x=0 and repeat the procedure to evaluate the

function g(s) and subsequently the functi@(x,s).

For instance, it is possible to define the conegian profile of another pipe, which is connected t
the end of the present pipe with contamination ifgofs described by the Equation 6.15.
Denominating the first pipe as pipe 1 and the se@mpipe 2, the initial concentration is set &sr0

all length of pipe 2, as it has been done for gipHaving the same boundary condition at t=0,

Equations 6.5 to 6.9 are also used for pipe 2.

It is assumed that the concentration at the staheopipe 2 is equal to the concentration at the &f

pipe 1 - x=1, - (I, is the length of pipe 1). To determine the secbodndary condition, it is

necessary to use the Equation 6.14, setting thablarX asl, .

C.(09=C.(,9=" exp(—ku—lllJ l:exp{—(llj—llHlJ s} -eXp{_(L_llHZ] sﬂ 6.16)
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Applying this boundary condition to Equation 6.%ew function g(s) is created:

g(s)=(s+ k)é exp(—ku—lllj {exp{— [L—ll +t1j s} - exp{—u—ll + tzj sﬂ (6.17)

Modifying the Equation 6.9 with the information giv by Equation 6.17 and rearranging:

C,(xs)= é exp{— (% + %ﬂ {exp{—u—l + ui +tlJ s} - exp{—u—l + ui +t2j sﬂ (6.18)

The inverse of the Equation 6.18 enables to evalin concentration profile for the pipe 2.

C,(x.t)= Aexp{—(ku—'lut_:‘ﬂ {H {t —(L_ll+i+tlﬂ— H {t —(L_ll+u_x2+t2m (6.19)

6.2 The Software Tool

A software tool was developed in MATLAB and VisuBasic for Applications, incorporating the
hydraulic analysis performed by EPANET software g&oan, 2000) with models for the evaluation
of contaminant concentrations solved using theyaical approach described previously, under steady

hydraulic conditions.
The application is divided in the following tasks:

1. Network design: The network is designed with theARET software, introducing the
characteristics and the information associateti¢cetjuipment. For example, it is necessary to

define pump curves in EPANET.
2. Setting the necessary data to characterize théoragithin the pipes.

3. Definition of the perturbations, providing the infieation needed to fully characterize the

perturbations.

4. Run hydraulics analysis using the EPANET Progransngoolkit, which is a dynamic link
library that allows the developers to incorporat®ARIET's functions in their own

applications.
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5. Perform the evaluation of contaminant concentratidmased on the equations described
before. The hydraulic data needed to run the etialuaof contaminant concentrations is

provided by EPANET results computed previously.

Figure 6.1 shows a diagram that explains the iotena between MATLAB, Visual Basic for

Applications (VBA) and EPANET software, during teeecution of steps listed above.

VBA:
Epanet: *Import  EPANET's dynamic
_ library. _ _ Matlab:
* Network design. «Open the input file supplied
* Introduction the by EPANET. «Load the input files

characteri_stics associate-@ «Perform hydraulic analysis|:> created in VBA
to the equipments. using EPANET’s dynamio «Perform the quality

«Export the network to 4 library. _ analysis.
file with format inp. * Export the hydraulic data to p

file with format dat.

Figure 6.1 -Interaction between MATLAB, Visual Basic for Apgtitions and EPANET.
The program starts introducing the following inf@tion:

Network scheme designed by EPANET software ineavith the formatnp;
Reaction rate coefficient and order of reaction;
Nodes where perturbations occur;

Start time and duration of each perturbation;

YV V V V V

Amount of contaminant introduced at network peretiomit.

As output, the software applications return an esgion for describing the concentration profile for

each physical component of the network, at the mate
The software tool is executed sequentially andripaxates the following steps:
Step 1.Import the EPANET Programmer’s Toolkit, EPANETsémic link library.

Step 2.0pen the input file that provides the descriptidrthe network in study and run a complete

extended period analysis.

Step 3.Get the information related with nodes (node typedraulic head and water demand) and

links (length, velocity, diameter, start and endexs).
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Step 4.Sort the links for decreasing order of hydraukad at the start node (if there were nodes with
the same hydraulic head at the start node, sosethodes for decreasing order of hydraulic head at
the end node), with exception of links, which haveeservoir as start node that have to be placgd fi

in the order of resolution, and pumps.

Step 5.Set the concentration at each node and in allthenfjeach pipe as 0, fdr=0, the first

boundary condition.

Step 6. Define the perturbations during the simulation etjmwhich simulates the deliberate

contaminations.

Step 7. Run the evaluation of contaminant concentratioms dach link following the order of

resolution defined in Step 5:

Firstly, it is necessary to perform the mass baancLaplace domain, at the start node for eapk pi

that enables the calculation 5(0 S), the second boundary condition.

>Q G (.9
C(0s)=C,(s)="= (6.21)

2.Q

iOpi

WhereC_p(S) denotes the contaminant concentration at junciimste p, pi is the set of incoming

links to nodep , Q is the volumetric flow rate in link andl; is the length.

Step 8. After the determination of contaminant concentratat the start node, it is necessary to
determine the expression that describes the camatiemt profile for all values ofX at the bulk,

following Equation 6.22.

u.

a(xs)=exp[—l(s+k)ja(o,s) 622
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6.3 Case Study

One case study is presented to demonstrate thermpearice of this software tool. Network C,
presented in Section 5.3, was analysed. It waslatedia contamination occurring at Node A, starting
at t=0 h with duration of 1 h (pulse of 50 g/s).eTbontaminant concentration at the water was
evaluated for the entire DWDS, considering no ligadransport or a pseudo-first order reaction with
k=1x10"%s"1,

Figure 6.3 presents the area of the DWDS where@eNA, which is flagged with a red diamond, is
located (see Figure 6.2). The Link I, which statsNode B and is presented in green, was used to
demonstrate the features of the proposed softwalteThere are 3 different paths, presented inteigu

6.3 in different colours, to travel from Node ANode B.

Figure 6.2 -Real DWDS.

Figure 6.3 -Vicinity of the Node A.
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Figure 6.4 shows the comparison between the contarhconcentration at the water in Node A and
Node B, for the example without reaction. Figurg presents the same comparison with a different

scale to enable the distinction of the second &d peaks observed at Node B.

==Node A
=—=Node B

0.8

C/CO

0.2)

0 1 2 3 4 5 6 7 8 9 10
Time (h)

Figure 6.4 -Contaminant concentration at the water in Node éIdade B, without reaction.
0.016

0.014r =—Node A| |
== Node B

0.012-

0.01F
o
Q 0.008F
(@]

0.006

0.004+

0.002- l_\

3 4 5 6 7 8 9 10
Time (h)

Figure 6.5 - Contaminant concentration at the water in Node A4 Bliode B, without reaction, in a

different scale.

There are three peaks, one for each flow path,rdoguat the corresponding travel times. The first
peak corresponds to the path presented in redguré-i6.4 and occurs at 01:24 h; the second peak,
which corresponds to the flow path presented ie,ibecurs around 2:50 h; the third peak corresponds
to the flow path presented in yellow and occur®&#8 h. The contaminant that reaches Node B
through the paths corresponding to the second larl peaks is much diluted, thus these peaks are
only perceptible in Figure 6.5. After the transpuagtof the contaminated fronts, it is observed that

contaminant concentration at the water is 0.
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Figure 6.6 shows the comparison between the reshbttined considering reactive and non-reactive
transport for the contaminant concentration at NBd€igure 6.6 also presents the same comparison

with a different scale to enable the distinctionthe second an third peaks observed at Node B.
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Figure 6.6 -Contaminant concentration at the water in Node édade B, with reaction.
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Figure 6.7 - Contaminant concentration at the water in Node A Blode B, with reaction, in a

different scale.

In these figures, it is possible to observe thatdbntaminated fronts arrive at Node B at the Same
considering reactive transport. The difference akated with the amplitude of peaks, which is

obviously lower considering the decay describethieypseudo-first order reaction term.
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6.4 Chapter conclusions

A software tool was developed to implement an aitalapproach for the simulation of the advective

transport of contaminants, considering pseudo-firder reaction terms.

The approach enabled the study of the effects wéaive transport and reaction in the behaviour of

contaminants in DWDSs.

The case study performed for a real DWDS demomstr#tat the proposed method is suitable for
providing the analytical solution for the modelliraf the transport of contaminants in DWDS,

considering steady hydraulic conditions.
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7 Numerical approach for the simulation of contaminart
reactive transport along drinking water distribution systems

considering sorption phenomena

7.1 Introduction

The model used in the evaluation of contaminantcentrations was based on the phenomena of
advective transport and reaction in the pipes (Rasset al., 1993), considering the occurrence of
sorption phenomena at the pipe walls. This modekiciers that a dissolved substance will travel
down the length of a pipe with the same averagecitgl as the carrier fluid, at the same time rewgti
with chemical and microbial components in the wat#r some given rate, while part of the
contaminant can be transferred to the pipe walts adsorb at either the surface material or at any
layer (deposit) attached to this surface. Oncehat liquid-solid interface, the contaminant will
penetrate, to a higher or lower degree, into theduknt, depending on the characteristics of the

sorbate and of the adsorbent.

So, the advective transport and reaction in theip given by Equations 7.1 and 7.2, consideheg t

occurrence of adsorption at the pipe walls:

0C, (x,t)__ 0C, (x,t) B Maep
o =y ZE L (C (0t) Qe 1)

where Q, 4 is the rate of the mass of contaminant adsorbedupi mass of deposit (mass of

contaminant/mass of deposit/timeJT.,, is the mass of solid phase (mass of sorbent)\ail the

water volume (volume).

The equation of the pseudo-first order adsorptiodehis expressed by:
QAds - (Cb - Ceq) (7-2)

where k, is the pseudo-first order adsorption rate const(aimhel),Ceq is the contaminant

concentration in the water when equilibrium saforats reached (mass of contaminant/volume) and
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C, is the contaminant concentration at the bulk.His pproach, it was assumed tigs is the

average betweef; (X,t) andC (X+ dxt), in which dxis integration interval foX.

Considering a generic equation for the decay reactte as given by Equation 7.3, whéis the rate

kinetic coefficient andl is the reaction order.
r(C (xt))=-kC"(xt) (7.3)

Equation 7.1 is transformed in Equation 7.4:

aC, (xt) _ - aC, (x.t) ke’ (X,t)— kl(ci (x,t)+C (x+dxt) _ Ceqj (7.4)

ot ' dx 2

Desorption can be modelled as a first order phenam@s regards the amount of contaminant

remaining in the deposit):

d
-5 =kela-a”) (7.5)
Where kd is the desorption rate coefficient of first ordgime™), 0.* is the final equilibrium

concentration of contaminant in the solid (massaitaminant/mass of deposit) for the desorption

process andjis the contaminant concentration in the depositsg@ra contaminant/mass of deposit),

at any timet .

The correspondent integrated equation is:
0=~ (0 ~a)[1-exgk, t) (7.6)
where (0, is the contaminant concentration in the deposhe@beginning of the desorption phase.

The equations presented to sorption phenomena akeghosits can be used similarly for modelling the

sorption phenomena at the biofilm.

The adsorption isotherms relate the amount of coimi@nt in the sorbent as a function of its
concentration in the water at constant temperafitrese isotherms are used to define the equilibrium

conditions throughout the sorption phenomenon.
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One of the most frequently used isotherms is theghauir isotherm, which can be expressed by

Equation 7.7:

Qg _ BCq

= (7.7)
Qo 1+B Ceq

where (., is the contaminant concentration at the deposittret equilibrium (mass of

contaminant/mass of deposifQ, is the maximum contaminant concentration at thgosi¢ andB is

the Langmuir constant related to adsorption capacit

7.2 Numerical Approach

The numerical solution is achieved applying thestfiorder upwind scheme method for solving
Equation 7.4. The first-order upwind method usesna-sided finite difference in the upstream

direction to approximate the convection term anloaexpressed as follows (Alhumaizi, 2004):
C, (x+dxt+dt) =G (x+dxt)-Cr(C (x+dxt)-C (xt)) (7.8)

The Courant number, defined by Equation 7.9, shbaltbwer than 1 to guarantee the convergence of
the method.

Cr= uE (7.9
AX

Replacing the convective term of Equation 7.4 bydfapn 7.8, Equation 7.10 is obtained:

C (x+ dx,t + dt)= C (x+ dx,t)—Cr (Ci (x+dx,t)—Ci (x,t))

kG (x1)- kl(c‘ (x,t)+c; (x +dx.t) —Cqu (7.10)

7.3 The Software Tool

A software tool was developed in MATLAB and Visugasic for Applications, incorporating the
hydraulic analysis performed by EPANET software g&toan, 2000) with models for the evaluation

of contaminant concentrations solved using the mwaeapproach described previously.
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The application is divided in tasks similar to thees already presented in Section 6.2. The only
difference is in Task 2: besides the characteoradf the reaction within pipes, it is also necegsa
characterize the sorption phenomena and set tbgration steps. The interaction between MATLAB,
Visual Basic for Applications and EPANET softwaraymlso be represented by the diagram shown

in Figure 6.1.
The program starts introducing the following inf@tnon:

Network scheme designed by EPANET software ineaviiith the formatnp;
Simulation time;

Integration steps for space and time variables;

Reaction rate coefficient and order of reaction;

Adsorption isotherms;

Sorption kinetic parameters;

Nodes where perturbations occur;

Start time and duration of each perturbation;

V V V V V V V V V

Amount of contaminant introduced at network petretiomit.

As output, the software applications return theceotration profiles for each physical component of

the network, at the water and at the deposits.
The software tool is executed sequentially andrimaxates the following steps:
Step 1.Import the EPANET Programmer’s Toolkit, EPANETsémic link library.

Step 2.0pen the input file that provides the descriptidrthe network in study and run a complete

extended period analysis.

Step 3.Get the information related with nodes (node typgdraulic head and water demand) and

links (length, velocity, diameter, start and endexs).

Step 4.Sort the links for decreasing order of hydraukad at the start node (if there were nodes with
the same hydraulic head at the start node, sostthodes for decreasing order of hydraulic head at
the end node), with exception links, which haveservoir as start node that have to be placeditirst

the order of resolution, and pumps.
Step 5.Set the concentration at each node and in althenfgeach pipe as 0, fdr=10.

Step 6. Define the perturbations during the simulation etjmwhich simulates the deliberate

contaminations.
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Step 7. Run the evaluation of contaminant concentratioms dach link following the order of

resolution defined in Step 4, for each time stefpnduthe simulation time:

Firstly, it is necessary to perform the mass badaat the start node for each pipe which allows

calculatingC, (Qt) through the Equation 7.10. This calculation idgrened once in each time step..

>QC ()
c (ot)=c,(t)="" (7.11)

2.Q

iOpi

where Cp (t) denotes the contaminant concentration at junciime p, pi is the set of incoming
links to nodep , Q is the volumetric flow rate in link andl; is the length.
Step 8. After the determination of contaminant concentratat the start node, it is necessary to

compute the concentration profile for all values Xfat the bulk and at the deposit, through the

following procedure:

Step 8.1.DetermineCeq using the adsorption isotherm.

Step 8.2.Evaluate C, (X+dXt + +dt) considering only advective transport with reaction

neglecting the sorption. Comparl, (X+ dxt +dt) with Ceq.

Step 8.2.1If it is higher, adsorption occurs ar@ (X+dX,t +dt) is evaluated using

the Equation 7.10. The contaminant concentratidhadepositc(X,t+dt) is updated, taking

into account the amount of contamination transtefrem the water to the deposit.
Step 8.2.2.If it is equal, the system is at equilibrium, thas no sorption and the
previous evaluation @l(x+d)§t+dt), performed at Step 8.2, is used. The contaminant

concentration at the depoﬁ(X,t + dt) remains constant.

Step 8.2.3.If it is lower, desorption occurs arﬁ(X,t +dt) is evaluated using the

Equation 7.6. The contaminant concentration atotiie C, (X+d)§t +dt) computed at the

Step 8.2 is updated, taking into account the amofirdontamination transferred from the

deposit to the water.
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Step 9.Calculate the contaminant concentration at tamksreodes that aren’t the start nodes for any

link. The mass balance for a tank is given by thadtion 7.12:

d (Vtank (t)cp (t)) - le C (|i ,t) - ZQ] C, (t)+ r (Cp (t))Vtank (t)—QAds My, (7.12)

dt ipi i

whereV,, (t) is the volume of water in the tankyj is the set of links that leave the tapk and Qj

is the volumetric flow rate in link

Equation 7.13 is a generic equation for the reactate, similar to Equation 7.3 but dependent of

concentration at the node.
r(c, ®)=-kc,"(t) (7.13)

With the substitution of Equation 7.13 in Equatitd0 and developing the derivative, Equation 7.14

is obtained.

Vtank (t) d CD (t) + Cp (t) thank (t) —

dt dt (7.14)
zQi Ci (II 't)_ ZQJ Cp (t)_ k Cpn (t)vtank (t)_QAds mdep
iOpi iOpj

It is possible to write an expression that relétesvolume in the tank with the time, using thelexp

form:

Ve (1) = V4 +(2Qi -9 Jt (7.15)

iOpi iOpj

where V, is the initial volume at the tank. Using the Eqgpmat7.15, the derivative of volume is

obtained by:

Vi (1) _ >Q->.Q (7.16)
dt i0pi i

The derivative of the concentration at the noplein order to time can be rewrite using the finite

difference method. Using this approximation, Equafi.17 is obtained:
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dc,(t) c,(t+at)-C, (t)

- At (7.17)
The substitution of the Equations 7.16 and 7.1Edoation 7.14 leads to:
C t+At)-C_(t
v S [ 2o - 3o |-
iOpi 10pi (7.18)
zQi Ci (ll ’t)_ sz Cp (t) - k Cpn (t)vtank (t)_QAds mdep
iOpi i0pj

It is also possible to obtain an equation in anliekgorm in relation ton (t +At), rearranging the

Equation 7.18:

cp(t+m)=cp(t)+ﬁ(t) 3°Q (G (1,)-C, ()~ Que My |- C," (1) (7.19)

iOpi

These 9 steps allow performing the evaluation eft@mminant concentrations, presenting results for

the contaminant concentration at each node orlpigh step in the network.

7.4 Case Studies

Two case studies are presented to demonstratetfigmance of this software tool. Both case studies
were evaluated considering a contamination by paiagt 20 °C. The reaction term was not
considered because the purpose of this case stadytavevaluate the effect of the sorption in the
behaviour of the systems. The information regardirey sorption kinetic parameters and adsorption
isotherms were taken from the sorption experiméotsparaquat in APP1 deposits presented in

Deliverable 4.2 of “SecurEau” project (confidentieport).

The Langmuir isotherm (as it was presented at Eou&t7) at 20 °C is given by Equation 7.20, where
Q.,and Q) are presented in mg of contaminant/g of depd&in litres of water/g of deposit anﬁeq

in mg of contaminant/ litres of water.

06C,,
Ueq = 57 (7.20)

" 1+06C,,
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7.4.1 Case Study 1

The first case study was performed for a pipe W0 m of length and 0.2 m of diameter. The
velocity was considered constant at 0.3 m/s. Onsepuith the contaminant concentration of 30 3/m

was simulated at the entrance of the pipe, staatiridy with duration of 5 h.

Two different sets of sorption kinetic parameteeravconsidered. In the first scenario, the sorption
kinetic parameters presented in Deliverable 4.2pfamaquat in APP1 deposits were used. As there
were not any available results for the desorptibrparaquat, the desorption rate coefficient was

estimated as 10 times lower than the adsorptiena@efficient and the final equilibrium concentoati

of contaminant in the solid for the desorption gsgwas estimated as 100 lower than the maximum
amount of contaminant that can be adsorbed, fon&ue 1. In the Scenario 2, the adsorption and
desorption rate coefficients were defined as 1@simgher than the parameters used in Scenario 1, t
enable a clearer demonstration of the effect of ddsorption in the contaminant concentration

profiles. Table 7.1 presents the sorption kinetimmeters used in both scenarios.

Table 7.1-Sorption kinetic parameters for Scenarios 1 and 2.

Scenario 1 Scenario 2
ky (min™) 7.5x10° ky (min™) 7.5x10°
Gads (MGont Qaep) 5 Gads (MGont Qaep) 5
kg (min™) 7.5x10° kg (min™) 7.5x10
Ges (MGondGaey) | 5X10° | Cues(MGondGuen | 5x10°

Figures 7.1 and 7.2 present the contaminant coratemt in the water and in the deposits,

respectively, at different positions of the pipdwasction of time, for Scenario 1.

Figures 7.3 and 7.4 present the contaminant coratemt in the water and in the deposits,

respectively, at different instants as functiorthaf position in the pipe, for Scenario 1.
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Figure 7.1 -Contaminant concentration in the water as funabiotime (Scenario 1)
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Figure 7.4 -Contaminant concentration in the deposits as fanaif position (Scenario 1)

In Figure 7.1, it is possible to observe that theximum contaminant concentration in the water is
decreasing along the pipe. This happens becaube asntaminated water travels along the pipe, the
contaminant is getting adsorbed to the depositstheocontaminant concentration in the water
becomes lower. The effect of desorption is negigilwhen the contaminated water leaves the pipe
the deposits release contaminant to the clean watierat a low rate that cannot be observed at the

scale of the figure.

In Figure 7.2, in the adsorption phase, the comtanti concentration in the deposits increases. As
soon as the introduction of contaminant is finisheldan water starts to circulate and desorption

occurs, with a consequent decrease of the contatmeacentration in the deposits.

Figure 7.3 presents the decay of the contaminantesdration in the water throughout the pipe,
because as the water travels throughout the piple wisaturated deposits, there is a continuous

adsorption of contaminant in the deposits.

Figure 7.4 shows that the contaminant concentratidhe deposits is higher in the beginning of the
pipe. This is explained by the fact that the digvforce of the adsorption is higher in the begigrif

the pipe, as the contaminant concentration in t#ems higher.

Figures 7.5 and 7.6 present the contaminant coratemt in the water and in the deposits,

respectively, at different positions of the pipdwasction of time, for Scenario 2.

Figures 7.7 and 7.8 present the contaminant coratemt in the water and in the deposits,

respectively, at different instants as functiorthaf position in the pipe, for Scenario 2.

Chapter 7 68



Contamination in Drinking Water Distribution Systems: Some Approaches to Forward and Inverse Modelling

T T
I I
o |
: — = Om
: — = 2500m
****** T T 7 7 e x=5000m
| T
| |
| |
,,,,,, |
o
o | |
o | |
| |
e -
| |
| |
| |
| |
,,,,, i
| |
L |
|
: i
15 20 25

Time (h)

Figure 7.5 -Contaminant concentration in the water as funabiotime (Scenario 2)
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Figure 7.8 -Contaminant concentration in the deposits as fanaif position (Scenario 2)

In Figure 7.5, it is possible to observe the effefcthe adsorption of contaminant to the deposits.
However, in contrast with what happens in Scenayithe deposits reach the saturation point. Thus,
after reaching the saturation point, as more coimated water is passing through the pipe ther@is n
adsorption, and the contaminant concentration fegrdint positions throughout the pipe reaches the
same maximum value as at the entrance of the pipeeffect of the desorption is observed, when the
contaminated water leaves the pipe the depos#aselcontaminant to the clean water at a higher rat
thus a significant contaminant concentration i etiserved after the passing of the contaminated

front.

The effect of the saturation of the deposits iartyedemonstrated in Figure 7.6. It is observed an
increase of the contaminant concentration in thgosiés until it reaches the saturation point, when
there is no adsorption anymore. Finally after thesing of the contaminated front, desorption occurs

and contaminant is released from the depositsetaldan water.

Figures 7.7 and 7.8 demonstrate the instants wheenlifferent parts of the pipe reach the saturation

point.

7.4.2 Case Study 2
The second case study considered the same contamisaenario defined in the Section 6.3.

Figure 7.9 shows the comparison between the contarhiconcentration in the water in Node A and
Node B, using the sorption kinetic parameters aefifor Scenario 2. Figure 7.10 presents the same

comparison with a different scale to enable théndison of the three peaks observed at Node B.
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Figures 7.11 and 7.12 present the comparison betiese results and the results obtained with the

analytical approach without reaction, to highligie effects of sorption phenomena.
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Figure 7.9 -Contaminant concentration in the water in Node 4 biode B
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Figure 7.10 -Contaminant concentration in the water in Node 4 Biode B, in a different scale.
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Figure 7.11 —Comparison between results obtained with the niwaespproach considering sorption

phenomena and results obtained with the analydjgatoach.
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Figure 7.12 —Comparison between results obtained with the nizalesipproach considering sorption

phenomena and results obtained with the analydigatoach, in a different scale.

There are 3 peaks, one for each flow path, ocayrinthe corresponding travel times, as it was
previously shown for the analytical approach. Téeosd and third peaks are only observed in Figures
7.10 and 7.12, due to the dilution that the contami suffers through the corresponding paths. After
the transporting of the contaminated fronts, ibliserved that the contaminant concentration in the

water is not 0, due to the occurrence of desorption

It is possible to observe the effect of the adsompin the shape of the peaks, as it was already
described for the Case Study 1.

Figure 7.13 presents the comparison between th&mamant concentration in the deposits in the
beginning of the links that start at Node A and Bl&d
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o 1 2 3 4 5 6 7 8 9 10
Time (h)
Figure 7.13 -Contaminant concentration in the deposits in thggriveng of the links that start at Node

A and Node B
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It is also possible to observe that the contaminantentration in the deposits in beginning oflihie
that starts at Node A increases during the tratisigoof the contaminated front until it reaches the
saturation point. When clean water resumes flownhgthe pipe, desorption may start occurring more

significantly and the contaminant concentratiothie deposits decreases.

Regarding the deposits in beginning of the link dtarts at Node B, it is verified an increasehsf t
contaminant concentration when the first contaneiddtont arrives. The deposits reach the saturation
point, so the contaminant concentration remainadstaintil clean water resumes flowing into the
pipe, when desorption occurs and the contaminantertration decreases. The second and third
contaminated fronts are much diluted, as it wa®aaly discussed. Thus, the arrival of this

contaminated front does not interrupt the desomptés the contaminant concentration in the water

was lower than th&€, .

7.5 Chapter Conclusions

A software tool was developed to simulate the aoimant reactive transport along DWDSs

considering sorption phenomena.

The approach followed enabled the study of thectsfef sorption phenomena in the behaviour of

contaminants in DWDSs.

For contaminants with low sorption rate coefficierthe effect of the sorption phenomena might be
negligible. However, for higher rate coefficientsrgion phenomena can change significantly the
transport of contaminants throughout the networkl #ime desorption can be responsible for a

longstanding release of contaminants.

The case study performed for a real DWDS demorstritat the proposed method is suitable for the
study of the effects of the sorption phenomen&émodelling of the transport of contaminants &l re
DWDS.
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8 A Method Based on the Residence Time of Water in pes for
the Localization of Contamination Sources in a Driking

Water Distribution System

8.1 Chapter Overview

The majority of the existent methods for the lazation of contamination sources require the
knowledge of the contaminants’ concentrations thhawt the network. This information is not easy
to obtain, because the contaminants may be unkremwdhthe sensors are usually not capable to

measure the concentration of the contaminantsitbeg deliberately or accidentally introduced.

The main aim of this chapter is to propose an radiiere solution scheme for the localization of
contamination sources, presenting a method basdteoanalysis of the residence time of water in
pipes. With this approach, it is not necessary #wehaccurate values for the contaminant
concentrations in sensors. The method is basedirarybsensor status over the time, a type of

information more reachable in real situations.

8.2 Methods Description

This section describes three algorithms, which esprond to the proposed approach to solve the
problem of the localization of possible contamioatisources in DWDS. The first algorithm
(Algorithm A allows the description of the different pathstthacontaminated water parcel can take
from a contamination source. The second algoritAlggrithm B allows the evaluation of all possible
contamination sources that could explain a positaging in each sensdgorithm Bruns in reverse
time. These algorithms are based on similar cosdepthe particle backtracking algorithm presented
by Zierolf et al. (1998) and Shang et al. (2002).

In both algorithms, it is assumed that the veloaityl flow direction are known for all pipes, in kac
hydraulic period contained in a defined time haniZzbhorizon correspondent to the interval analysed
after the contamination. The algorithms study tis¢ridution of contaminants in a DWDS between an
initial instant and &horizon assuming non reactive transport. These two dlgos are needed to run
the third proposed algorithmigorithm Q to perform the localization of contamination strs based

on the information gathered by sensors.
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8.2.1 Algorithm A

Given a possible contamination souS@ssociated to an instant of contaminafio(l belongs to

hydraulic period), initialize the matrixDistribution with SasNodeandT asTcont

Step 1- Verify the sizeN(i,Node) of the set of linkd.inksPostthat have each new value Wbdeas
upstream node, at hydraulic periodf N (i, Node) = Ofor eachNode finish the algorithm.

Step 2- For each path, verify if the water parcel whiehvesNodeat Tcontreaches the downstream

nodeD before the end of the hydraulic perigd

If Tcont+ Tip <t (7is the residence time in pigeat hydraulic period) addD and the associated

time Tcont+7,” to the matrixDistribution and actualize the values bdeandTcont

a) Otherwise:

Step 2.1- Calculate the distance travelled by the watetinguthe hydraulic period:

)gp = uip X (ti —Tconb; u’ is the velocity of water in pipgat hydraulic periodl

Step 2.2 Consider the next hydraulic periadX) and add the distance travelled during
the period until reach the periddin whichZ:Xjp <0 or ZX]” >|P (I° is the length

j=ii* j=iix

of the pipe).

Step 2.3 If > X[ <0 :Node=D; Tcont=t, +*5 —
j:iii* ui*

it 3} 217 : Node=D; Tcont=t, S
J:|:|* v

Step 2.4- Add the new values dfodeandTcontto the matrixDistribution.

Step 3- If Tcont<Thorizon return toStep 1 Otherwise, finish the algorithm.
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8.2.2 Algorithm B

Given a positive reading at sen3owith an associated instant of registratio(y belongs to hydraulic

periodi), initialize the matrixTrackwith X asSourceandY asTsource

Step 1- Verify the sizeN(i,Source)of the set of linkd.inksPrevthat have each value &burceas

downstream node, at hydraulic periodf N (i,Sourcé = Ofor eachSource finish the algorithm.

Step 2- For each path, verify if the water parcel whihives atSourceat Tsourcereaches the

upstream nod® before the beginning of the hydraulic period, i, .

a) If Tsource-7° 2t,_,, addU and the associated timksource-7,” to the matrixTrack

and actualize the values 8burceandTsource
b) Otherwise:

Step 2.1- Calculate the distance travelled by the watetinduthe hydraulic period:

xP =u® x(Tsource-t, , );

Step 2.2 Consider the previous hydraulic period and daddistance travelled during the

period until reach the periatl in WhiChZij <0 or ZXJ-" >,

j=ii* j=ici*

Py J
Step 2.3 If E X} <0 : Source= U. Tsource=t,, + —
j=ii* ui*

1P = > xP
]

It > x 21" : Source= U Tsource=t, ———=
1=11* u4
j=ii i

Step 2.4- Add the new values &ourceandTsourceto the matriXTrack

Step 3- If Tsource> 0, return toStep 1 Otherwise, finish the algorithm.
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8.2.3 Algorithm C

Step 1- Define the number and localization of sensoile &b cover the entire network. This step is

only necessary for simulated situations, when tiere installed any set of sensors in the DWDS.

Step 2 For each sensor, verify if the contaminant conediatn was modified and register the time for

the first modificationT.

Step 3- For each sensor that detected at least one corgtominbacktrack the contaminated water
parcel that arrived firstly at the sensor, usirgyAigorithm B determining every possible origintbis
water parcel, in short every possible contaminatlimeation Source with its respective time of

contaminationT source

Step 4- Search for possible contaminations that coulplanr all the information gathered by the

Sensors:

Step 4.1Create a vectoh constituted by the sensors that detected at tegstontamination.
Create a matriB composed by the entire set of sensors coupled tivttiimes of their first

detection or, in cases which there were no detestitve time horizon.

Step 4.2:Define C as the set of possible contaminations associaidd the first sensor
presented in vectok, and compare it with each set of possible contatoing associated to
the remaining sensors belonging to vectdorRemove the first sensor in A and, for each
remaining sensors, if there is any possible comtatiwn coincident with an element of C,
eliminate the others elements Gfwhich are not coincident and remove that sensam fr
vectorA. If, for a given sensor, there is no contamimatoincident, it is concluded that the
sensor registered another contamination. Thus, geasor is kept in vectok for further

evaluation andC is maintained unmodified.

Step 4.3:For each possible contamination represente@, itrack the water parcel that first
leaves the contamination location, using the Algoni A. If it is verified that the
contaminated water parcel would reach any senstoréddhe coupled time of detection

presented in matriB, eliminate this possible contamination.

Step 4.4 Verify the number of elements of the vectorlf it is empty, save the information
related to the contaminations storeddrand the algorithm is finished. Otherwise, save the
information related to the contaminations store@,iset Ncont= Ncont+1 and returrStep
4.2
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8.3 Results and Discussion

To demonstrate the performance of the proposed adettwo different networks are analysed.
Network A, presented in Section 5.1, was used tpla@x in detail the procedure. Network C,

presented in Section 5.3, was used to show thempeathce of the algorithms for real applications.

For both networks, the occurrence of contaminadibgiven contamination sources was simulated. A
set of sensors was defined for each network, amdehults from the simulation for sensor locations

were used to test the performance of the algorithms

8.3.1 Network A

This example considered the existence of 3 sengoated at nodes N8, N15 and N18, as it can be
seen in Figure 8.1. The algorithm was tested far $imultaneous contaminations at nodes R1 and
N14, occurring at t= 5 h (18000s). The transporthef contaminants throughout the network was
simulated, using Algorithm A, to determine the tiofehe first detection for each sensor. The sensor

registered the changes in contaminant concentrati@8850 s, 21513 s and 21000 s, respectively.
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Figure 8.1 —Location of sensors and contamination sourceseinvhrk A.
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Applying the Algorithm B it was possible to evaleadll possible contamination sources that could
explain a positive reading in each sensor. Fomimst, for the sensor located at NEurce= N18;

Tsource= 21000, Track =[N18 21000

Tsourcewas contained in time period {7, N18) = 2 ; LinksPrev= [P17 P18];

Tsource-7;*" =21000-970=20030t, =1800Q U = N13;

Tsource-7;"° = 21000~ 2836=18164t, =1800QU = N17;

{N18 N13 qu
Track'=

21000 20030 18164,

Repeating this procedure for the 2 new COL{[S&BJI’CG Tsourcd, the updated transposed matrix

N18 N13 N17 N12 N8 N14 N16 N12
Trackwas: Track' = .
21000 20030 18164 18654 16315 18000 14434 17535

Running the Algorithm B while Tsource> Oand N(i,Sourcé>O, the set of possible

contaminations that explain the sensor positiveineawas achieved. Tables 8.1, 8.2 and 8.3 present
the sets of possible contaminants which correspindgensors located at N8, N15 and N18,

respectively.

Table 8.1 Possible contaminations related to sensor locdtsid a

N8 N3 R1

18850 18209 18000

Table 8.2 -Possible contaminations related to sensor locattéi 5.

N15 N10 N9 N5 N8 N4 N4

21513 20743 19568 18881 18850 18200 18272

N3 N3 N3 R1 R1 R1

18209 17928 18000 18000 17719 17790
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Table 8.3 -Possible contaminations related to sensor locatbld &

N18 N13 N17 N12 N8 N14 N16 N12 N7 N11 N3

21000 20030 18164 18654 16315 18000 14434 17535 17796 14440 15674

N9 N14 N11 N7 N11 N6 N2 N8 N6 R1 N8

17275 14455 14407 16677 14428 14285 14377 16903 14412 15465 16556

N4 N9 N13 N6 N2 N8 N6 N1 N3 N3 N1

15907 14442 14439 14379 14336 15785 14400 14245 14347 16263 14371

N3 N3 N8 N4 N12 N8 N1 N3 N3 N1 N2

15915 15634 14427 14402 14423 14363 14338 14306 15144 14359 14204

R1 R1 N2 R1 R1 N3 N3 N7 N11 N3 N2

14338 16053 14331 15706 15425 14402 14392 14400 14356 14338 14298

R1 R1 N2 N3 N3 R1 R1 N6 N2 N8 N6

14297 14934 14319 14174 14301 14393 14383 14222 14192 14355 14328

R1 N3 N3 R1 R1 N1 N3 N3 N1 R1 R1

14329 14268 14289 14166 14292 14182 14162 14330 14287 14259 14280

N2 R1 R1 N2 N3 N3 R1

14141 14153 14321 14247 14111 14217 14102

To start the algorithm for the localization of cemination sources, vectérand the matriB were

definedand matrix C was initialized

A=[N8 Ni5 Nig|; B=

18850 18209 18000

N8 N15 N18 | _
18850 21513 21000|

0850 1520 1500

The comparison between the possible contaminatepresented in C with the set of possible
contaminations related to sensor located at Nlifiethat every element i@ coincided with the set

of possible contamination8.andC were updated:

A:[N18];C{ N8 N3 Rl}

18850 18209 18000|
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From the comparison of the possible contaminatimesented in C with the set of possible
contaminations related to sensor located at N18yai$ possible to conclude that there were no
coincident contaminations. This result determinfeat the sensor located at N18 registered another

contamination. Applying the Algorithm A to the firsontamination presented @

Node= N8; Tcont=18850, Distribution=[N8 1885(.

Tcontwas contained in time period M{7, N8) = 3; LinksPost= [P? P16 P21];
Tcont+7;7 =18850+892=19742t, =2160Q D = N7;

Tcont+75'° =18850+ 3715= 22565t, =2160QTcont+7.*° >t,, the contaminant did not

reach the downstream node during time horizon.

Tcont+75* =18850+ 718=19568t, =2160Q D = N9;

o N8 N7 N9
Distribution'=

18850 19742 19568

Repeating this procedure for the 2 new coug{ldsde Tcon], the actualized transposed matrix

Distribution was:

T N8 N7 N9 N12 N10 N14
Distribution'=

18850 19742 19568 20600 20743 20293

Running the Algorithm B whilel cont< Thorizon and N (i, Node) >0, it was possible to evaluate

the distribution of the contaminant from the giveaossible source throughout the entire DWDS.

Tables 8.4, 8.5 and 8.6 present the mdistribution for each possible contamination@f

Table 8.4- Distribution of contaminant from source [N8 58§.

N8 N7 N9 N12 N10 N14 N17 N15 N19

18850 19742 19568 20600 20743 20293 21230 21513 21129
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Table 8.5 —Distribution of contaminant from source [N3 18209]

N3 N2 N8 N4 N1 N7 N9 N5 N9 N6

18209 18824 18850 18481 19803 19742 19568 19091 19849 21014

N12 N10 Ni4 N10 N10 N14 N17 N15 N19 N19

20600 20743 20293 20953 21024 20574 21230 21513 21129 21410

Table 8.6 —Distribution of contaminant from source [R1 18000]

R1 N3 N2 N8 N4 N1 N7 N9 N5 N9 N6

18000 18209 18824 18850 18481 19803 19742 19568 19091 19849 21014

N12 N10 N14 N10 N10 N14 N17 N15 N19 N19

20600 20743 20293 20953 21024 20574 21230 2151329121410

By analysing each matriistribution, it was concluded that in case of the occurrencea of
contamination at any point & the contaminant would not reach any sensor bef@eoupled time
of detection presented in matiix So there were no possible contaminations to elisi inC. Then,

it was possible to conclude that there was oneatoiniation with 3 possible contamination sources

described by each couple of mat@x

[ N8 N3 R
18850 18209 18000|

Since vectoA was not yet empty, the occurrence of another coinigion was considered. Matrix

was initialized as the set of possible contamimegticelated to sensor located at N18 and this sensor
was eliminated from vectdk. There were no more sensors in vector A and theridhm skips Step
4.2. Running Algorithm B for each possible contamtion source presented i@ enables the
evaluation of the distribution of the contaminant the different scenarios. After analysing all
matrixes Distribution, it was concluded that thetemninant would reach at least one sensor befere th
coupled time of detection presented in maBixfor several possible contamination sources. & wa

necessary to updatby eliminating those elements:
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N14 N14 N16 Ni17 Ni8
14455 18000 14434 18164 21000|

Vector A was empty so the algorithm was stopped.

8.3.2 Network C

This example considered two different sets of senset 1 (50 sensors) and Set 2 (10 sensors?. Set
is a subset of Set 1. The localization of the senswms defined without obeying to any specific
criterion, having only the objective to cover thajarity of the DWDS. The results for each set were
analysed for different time horizons: 3 h, 6 hhland 24 h.

The method was tested for 5 simultaneous contamirgtat nodes A, B, C, D and E, occurring at t=0
h. The transport of the contaminants throughoutnisevork was simulated, using Algorithm A, for

determining the times of the first detection focleaensor.

Figure 8.2 presents the localization of the sinedatontamination sources, represented by coloured
diamonds, and the localization of the sensors.sBmsors belonging to Set 2 are represented by green

triangles, which also belong to Set 1 along with$knsors represented by green squares.

Figure 8.2 -Location of sensors and contamination sources tavdlk C.
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Figures 8.3-8.6 show the results obtained by tlupgsed method for the different time horizons,
using the information provided by Set 1. Figures-810 present the results using the information
provided by Set 2. In these two groups of figuthe,possible contamination sources are presented as
diamonds with the same colour associated to eaobagwnation in Figure 8.2. The sensors that
detected one contamination are represented a®<iwith the same colour correspondent to the
associated contamination. The sensors that didetgctl any contamination are presented as green
circles. In some cases, for instance in both coimations presented in Figure 8.3, the sensor which
detected the contamination was, at the same timppssible contamination source, and was
represented in diamond shape. In addition, theroegce of different contamination sources with the
same location but with a different instant of comitaation is also possible. In Figures 8.3-8.10s¢he
multiple possibilities of contamination sources ate single node are represented only by one
diamond. For instance, Figure 8.10 shows 78 pdsigbifor the location of the contamination E but,
in fact, there are 134 possible contamination ssufor that contamination. For a time horizon of
three hours, only three sensors belonging to Skdtdcted contaminations (Figure 8.3). Applying the
proposed method to the information gathered bys#msors, it was concluded that there were two
contaminations, each one with two possible contation sources. Extending the analysis for a time
horizon of six hours, there are three more sernbatsdetected contaminations (Figure 8.4). Witk thi
additional information, the occurrence of anothlven tontaminations was verified, one with two and
the other with 13 possible contamination sources.tkis time horizon, it was still not possible to
restrict the possibilities of contamination souréessthe contaminations detected previously. For a
time horizon of 12 hours, there are 13 sensors dbtgcted contaminations and it was possible to
identify the position of the five contaminationssilated (Figure 8.5). Besides that, the possiédidf
contamination sources for several contaminatiomesmore restrict. For instance, contamination E
(cyan) has 13 possible contamination sources ton@ horizon of six hours, and only one for a time
horizon of 12 hours. Finally, for a time horizon24 hours, 30 sensors detected contaminations. All
the simulated contaminations were successfully tifiedd and the number of possibilities of
contamination source was reduced to two for théazomation B, and to one for the remaining cases
(Figure 8.6).
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Set 1.

Figure 8.3 -Results for a time horizon of 3 hours —

b3

#

Set 1.

Figure 8.4 -Results for a time horizon of 6 hours
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Figure 8.5 -Results for a time horizon of 12 hours — Set 1.

Figure 8.6 -Results for a time horizon of 24 hours — Set 1.

Performing the same analysis of the results obdaimiéh Set 2, it is observed that, for time horigon
of three and six hours, only one sensor detectsmhtamination. The occurrence of a contamination
was verified, with the existence of two possibletemination sources (Figures 8.7-8.8). For a time
horizon of 12 hours another sensor detected a wamédion allowing the localization of another

contamination, with 12 possible contamination sesr(Figure 8.9). Finally, eight sensors registered
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contaminations for a time horizon of 24 hours. Afntaminations simulated previously were
detected. Contamination A (red) has two, contaronaB (yellow) has 11, contamination C
(magenta) has one, contamination D (blue) has tiantamination E (cyan) has 134 contamination

possible contamination sources.

Figure 8.7 -Results for a time horizon of 3 hours — Set 2.

Figure 8.8 -Results for a time horizon of 6 hours — Set 2.
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Figure 8.9 -Results for a time horizon of 12 hours — Set 2.

Figure 8.10 -Results for a time horizon of 24 hours — Set 2.

The results achieved by the proposed method, foh ¢éiane horizon, whatever the set of sensors

considered, contained the correct location anaimsif each contamination simulated previously.

Through the analysis of the Figures 8.3-8.10, ipdssible to observe that: a) for smaller time

horizons, there are several contaminations thae wet detected until the end of analysis interigal;
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for larger time horizons it was possible to degetarger number of contaminations and to narrow the

set of possible contamination sources.

This happens because, as time passes by, thereocagesensors detecting contaminations, and it is
possible to assume that the sensors that don’tidatey contamination have negative readings for

larger intervals. These two facts give more infdrorato restrict the search area.

Comparing the results obtained for the Set 1 Withresults obtained for Set 2, it is possible tofye
a) Set 2 needs larger time horizons to detectagitazninations; b) Set 1 is able to give more refstri

results for the localization of the contaminationises.

This was expected because, since Set 1 has masersehan Set 2, there is more information to

perform the localization of contamination sourcéthhe Set 1 than with Set 2.

8.4 Chapter Conclusions

A method based on the analysis of the residence ¢ifrthe water in pipes was proposed to perform

the localization of contamination sources in DWDi@raan accidental or deliberate contamination.

Several approaches that are described in the tiiteraneed to have accurate readings of the
contaminant concentration in sensors, which mag biéficult goal to achieve. This method tried to
overcome this limitation, being based on only oa thsidence time of water in pipes and requiring

only a binary sensor status over time.

Some tests were run to check the performance gbrthigosed method for a real DWDS. A scenario
with multiple contaminations was simulated to gabterthe information that would be registered by
the sensors throughout the DWDS. The results aelligfor each time horizon, whatever the set of
sensors considered, contained the correct locaiwh instant of each contamination previously

simulated.

It was possible to observe that: a) for smalleetimrizons, there are several contaminations thgt m
not be detected until the end of the analysis wialerb) for larger time horizons, generally, it is
possible to detect a larger number of contaminateomd to narrow the set of possible contamination
sources. Comparing the results obtained for thelSeith the results obtained for Set 2, it was
possible to verify: a) smaller sets of sensors gdlyeneed larger time horizons to detect all
contaminations; b) larger sets of sensors are ghyeable to give more restrict results for the

localization of the contamination sources.
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9 Localization of Contamination Sources in Drinking Water
Distribution Systems: A Method based on Successiositive

Readings of Sensors

9.1 Chapter Overview

Some of the previous works are dependent of therrimdtion available for a certain fixed time
interval, which may not be suitable for real sceowrwhere an answer as quick as possible is
required. From the spread of a contaminant in a BMDis possible to obtain different amounts of
information depending on the time interval analydadhis chapter, a different method is proposed t
perform the localization of contamination sourcesdd on the information given by successive
positive readings of the sensors. With this dynaapigroach, it is possible to perform the localorati

of the contamination sources based on only thé $egsor that detected a contamination, and then
update the information when more information isilade. The proposed method performs the
localization of the multiple contamination sourcesgardless the duration of the contaminant
injections, since it assumes the existence of &nenurveillance system with continuous informatio
about the contaminant concentration. It is alsosipbs to evaluate the time of contamination,
assuming that the hydraulic models is calibratedqadtely. These features allow the distinction

between any set of simultaneous multiple contananatdetected.

This chapter also addresses the problem of thermowme of false positives and false negatives at
sensors. It is considered as false negative a ismdfails to detect a contamination that ocaursa

DWDS and should be detected by that sensor. Oattier hand, a false positive is considered when a
sensor wrongly detects a contamination, withoutdbeurrence of any event that could explain that
detection. The sensors responses were assumedcdanbeuous. These situations can have a great
influence on the localization of contamination smg, resulting in erroneous outcomes for this
problem. The proposed method enables the verificatif the occurrence false negatives or false

positives and the identification of the sensors thay suffer these effects.

The proposed method is easily applied in real st@naince only a small amount of information is

needed, and its solution can be updated alongrttee t
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9.2 Methods Description

In this section, it is described an algorithm tofpen the localization of contamination sourcesdohs

on the information given by successive positivaliegs of the sensorggorithm D.

Algorithms A andB, presented in Chapter 8, are needed to run th@idim. Algorithm Ais used to
perform the description of the different paths thatontaminated water parcel can take from a
contamination sourcéilgorithm Bis used to evaluate all possible contaminatiorrcgsuthat could

explain a positive reading in each sensor.

This algorithm is able to perform the localizatiohthe contamination source based on only the first
sensor that detected a contamination. When adédltipnsitive readings are received from other
sensors, the information is updated and the p@ssibhtaminations locations are redefined. Even
without new positive readings, it is possible todate the results obtained for the possible

contamination sources associated to the contaransafireviously detected.

9.2.1 Algorithm D

Step 1- Define the number and localization of sensolle &b cover the entire network. This step is

only necessary for simulated situations, when mafsgensors is installed in the DWDS.

Step 2— For the set of sensors defined, verify which sengas the first detecting a change in the
contaminant concentration and register the instanwhich that change happendd Initialize the

number of contaminationg\cont=1.

Step 3— Define thesearch intervalthat will set the size of the initi@nalysis interval The initial
analysis intervals defined between an initial thresholdtgearch intervgland the instant of the first
detection T). The search interval has to be defined to enthaetheanalysis intervalincludes the

correct instants of the contaminations.

Step 4 Backtrack the contaminated water parcel that adrfirstly at the sensor, using tiddégorithm
B to determine every possible origin of this watargel, in short, every possible contamination

locationSource with its respective time of contaminati®source

Step 5- Create the matribB associated to the first contamination constitubgdthe entire set of

sensors coupled with the instant of the detection
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Step 6- For each possible contamination, constituted bypidie [Source Tsourcé, track the water
parcel that first leaves the contamination locatiasing theAlgorithm A If it is verified that the
contaminated water parcel would reach any sendorééhe coupled time of detection presented in

matrix B, eliminate this possible contamination.

Step 7- The remaining possible contaminations are the rdsulthe localization of contamination

sources for the first detectioBpntamination(1)

Step 8- Associate the sensor and the instant of the detetdithe contamination in study.

Step 9 For each new detection of a change in the contarho@ncentration, at an instant
Step 9.1 -Update thaanalysis intervalvith the new instant of detectidn

Step 9.2 Perform theStep 4 DefineC as the set of possible contaminations associaiiid w

the sensor that registered the last detection.

Step 9.3 —Compare the elements @ with the set of possible contamination sources
correspondent to eac@ontamination If there is a matrixContaminationwith possible
contamination sources coincident with elementsCofeliminate the others elements of
Contaminationand update the matri® with the instant of the last detection for the s@e
that had not registered this contamination (thes@enwhich had registered the contamination
in study keep the instant of their last detectiolf)there is any contamination source
coincident, it is concluded that the sensor reggsteanother contamination. Update the
number of contaminationsNcont= Ncont+1. Contamination(Ncont)=C Associate the

sensor and the instant of detection to the newacoin@tion.

Step 9.4 Create the matriB associated to the new contamination constitutethéyentire set

of sensors coupled with the new instant of thedeteT.
Step 9.5 Perform theStep 6for all elements of each matiGontamination

Step 9.6 -Output: Updated sets of possible contamination casufor each contamination

detected.

Step 10— It is also possible to update the results obtaifedthe localization of the possible

contamination sources of the contaminations dedestthout new detections:

Step 10.1 Update thaanalysis intervabind each matriB with the new limit of analysi$ for

the sensors that had not registered the respeaxiamination.
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Step 10.2 Perform theStep 6for all elements of each matrGontamination

Step 10.3 -Output: Updated sets of possible contaminationcgsufor each contamination

detected.

9.2.2 False Positives and False Negatives

If false negatives occur and the contaminationsstiledetected by other sensors, this method kas a
outcome a set of associated sensors with detedbiging/ithout any possible contamination sources.
After verifying the occurrence of the false negesivit is possible to determine the corresponding
sensors: these are the only sensors that can atenalone all the possible contamination sources

considered for the contamination that should haenhletected.

In the event of false positives at sensors, theamaé of this method would be the determination of
new contaminations, which could explain the falssifives and respect the negative results at the
other sensors. If the contaminations localized dfte false positives were supposed to be detdsted
other sensors, all the possible contamination ssurgould be eliminated in thBtep 6of the
Algorithm C and the outcome would be sensors with a detediignwithout any contamination
associated. If the contaminations localized afterfalse positives were not supposed to be detbgted
other sensors, the information available is nofi@aht to verify the occurrence of false positives

through this method.

The occurrence of false positives and false negatban have similar outcomes. However, if there is
more than one sensor with detections associatdtietcsame contamination but without possible
contamination sources, the occurrence of a falgative is verified. One sensor in that situation ca
be explained either by a false positive on thasseor by a false negative on a sensor that wosilich b

the flow path of the contamination identified.

9.3 Results and Discussion

Network C was analysed to show the performancenefpgroposed method. The different sets of
sensors defined in Chapter 8 were considebed:1(50 sensors) anflet 2(10 sensors). The method
was also tested for the same 5 simultaneous comsions, at nodes A, B, C, D and E, occurring at
t=0 h (see Figure 8.2).
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Table 9.1 and Figures 9.1-9.3 show the resultsrddeby the proposed method using the information
provided by theSet 2 The results are presented similarly to the resuiesented in Figure 8.3-8.10.

Table 9.1 -Results for the localization of contamination s@sre Set 2.

Detection | Sensor | Contamination | Time (s) | A B cC | D E
1 100 A 3303 70| 0]0]O
2 150 B 26630 | 7 |21 0O | O | O
5 100 C 40595 7 8 |10 O 0
8 400 D 49834 7 7 6 | 36| 0
11 200 E 56589 | 6 | 7 | 6 | 10 | 89
14 450 C 62541 | 6 | 7 | 2 | 10 | 69
16 350 C 63850 6 7 2 | 10 | 69

Analysing the data gathered by t8et 2 the first detection observed occurredTat 3303s. The

search intervalwas considered to be 6 hours, thus the indiahlysis intervalwas set between

t. o = 068103 from the previous day anti, ., =3303s. After first detection (Figure 9.1), the

final
localization of 1 contamination (A) was determingih the existence of 7 possible contamination

sources. The second detection occurred 26630 (Figure 9.2), then thanalysis intervalwas

updated with the new The analysis intervalwas updated each time a new sensor registered a

final *
contamination. With this additional informationwas not possible to restrict the results obtafioed

the localization of the contamination A, but thewtence of another contamination (B) was verified
with 21 possible contamination sources. The sequaicsensors that registered changes in the
contaminant concentration enabled the localizadforontaminations that were not detected before but
it was not sufficient to improve the results foe flocalization of the contaminations already detgct
The fifth detection enabled the detection of thentamination C, with 10 associated possible
contamination sources. Meanwhile, previous detestenable the decrease in the number of possible
contamination sources for contamination B to 8. t@mination D was located after the eighth
detection, with 36 possible contamination sourégghis point, this methodology enabled decreasing
the number of possible contamination sources fotasninations B and C to 7 and 6, respectively.
After 11 detections, it was already possible teedetll five simulated contaminations (Figure 9.3).

Contamination E has 89 possible contamination ssuand it was possible to restrict the results for
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the localization of the contaminations A and D toafd 10 possible contamination sources,

respectively.

& Sensorwith a detection

# Fossible comamination s ource

Sensorwithout detection

Figure 9.1.Results obtained after 1 detectioSet 2

)

& Zensorwith a detedion

# Fossible comamination s ource

" Sensorwithout detection

Figure 9.2.Results obtained after 2 detections — Set 2.
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& Sensorwith a detedtion

# Possible comamination s ource

" Sensorwithout detection

Figure 9.3.Results obtained after 11 detections — Set 2.

Table 9.2 show the results obtained by the propaseithodology using the information provided by

the Set 1 The first detection observed occurred Tat=3303s. The search intervalwas again

considered to be 6 hour and tiealysis intervalvas set betweet;;,.,, = 68103s from the previous

day andtg, =3303s. After the first detection, the localization of contamination (A) was

determined with the existence of 7 possible comation sources, as it has already happened with the
Set 2 Once again, theanalysis intervalwas updated each time a new sensor registered a
contamination. The second detection, occurring a 5150s, enabled the localization of a second
contamination (D) with 5 possible contaminationrses. The fifth and sixth detections enabled the
localization of the contaminations B and E withspectively, 7 and 16 possible contamination sources
associated. The number of possible contaminatiarces for the contamination B decreased to 4. The
last contamination (C) was detected by thé“2%etection, atT =39043, with 5 possible
contamination sources associated. At=5658%, the number of possible contaminations were

reduced to 3, 7, 2, 4 and 1 for contaminations ACBD and E, respectively.
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Table 9.2 -Results for the localization of contamination s@sr- Set 1.

Detection | Sensor | Contamination | Time(s) | A | B | C | D | E
1 100 A 3303 7/0]0]0] O
2 410 D 5150 7,005 0
5 500 B 17790 7|70/ 4 0
6 10 E 18327 7170 4] 16
22 470 C 39043 4 | 7|5 | 4 1
58 200 E 56589 | 3 | 7|2 |41

The results achieved by the proposed methodolagyedch situation analysed, whatever the set of
sensors considered, contained the correct locatiand the correspondent instants of the

contaminations simulated previously.

Through the analysis of Tables 9.1 and 9.2, ibssfble to observe that as new sensors detect ehang
in contaminant concentration, other contaminatiaires detected and the possibilities for the location
of contamination sources may be more restricteds T due to the increase of the amount of
information given by new positive readings in seasand to the extension of tlamalysis interval
Comparing the results obtained for the Set 2 withresults obtained for Set 1, it is possible tdfywe
that:

a) Set 1took less time to detect all simulated contamoraithanSet 2 This was expected because
since asSet 1had more sensors with positive readings, there mae available information to

perform a faster detection of the simulated contativns.

b) Set 1 enabled the achievement of more restricted redoltsthe localization of possible
contamination sources for all simulated contamamesi This happens because waht 1there are
more sensors detecting contaminations and moresetigt do not detect any contamination as well.

These two facts give more information to resttiet search area.

The effect of the occurrence of false negativethis methodology performance was also studied. As
case study, it was tested the occurrence of a fedgative at the sensor that should be resporisible
the 18" detection, considering the surveillance systerinddfby theSet 2 As it is presented in Table
9.1, this detection is associated to the contamoimaf. If the results were updated after this false

negative, either followingtep 9or Step 10from Algorithm G contaminations A, B, D and E would
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still be identified. This happens because thesdaceonations are not associated with the false
negative. However, analysing the previous possdaatamination sources for contamination C,
considering the newnalysis intervglthe proposed methodology would eliminate evergspulities,

by performing theStep 6from Algorithm C Thus, there would be several detections withoyt a
associated possible contamination source, whicktitates proof of the existence of a false negative
The only sensor that would be able to eliminateyepessible contamination sources associated to the

contamination C is the sensor #350.

The effect of the occurrence of false positiveghis methodology performance was tested by the
introduction of false positives occurring at sengd00 and sensor #300, &t=10000s, to the

previous simulations (Table 9.3).

Table 9.3 -Results for false positives at sensor #100 anslose#800.

Detection | Sensor | Contamination | Time(s) | A B CcC | D E F | G
1 100 A 3303 710, 0|0]O0]O0]O
FP1 100 - 0000 | 7 | Ol OO0 O] 7]|O
FP 2 300 - 10000 7 0 0 0 0 7 6
17 350 C 63996 6 7 2 110 69| 5 6

18 400 A 65129 | 6 | 7 | 2 |10 69| 0O | 6

Analysing the information given by the false pa&8, two different contaminations (F and G) were
localized with 7 and 6 possible contamination sesyaespectively. After 17 detections, both false
positives were still considered to be real contatioms and the proposed methodology tries to reduce
the number of possible contamination sources fthn lbases. However, after 18 detections, with the
associated extension in thaalysis intervalthe number of possible contamination sourcescéssal

to the contamination F was reduced to 0. This happecause a contamination that was detected at
sensor #100, af =10000s, should be detected at sensor #400 & 64656. This situation is an
anomaly that can either be explained by the oconoe®f a false positive at sensor #100 or a false

negative at sensor #400.

After 18 detections, it was still not possibledietect any anomaly associated with the contamimatio

G, detected after the false positive 2.
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An important final remark is related with the défon of the search interval For instance, if the
search intervalwas set as 0.5 h, the initiahalysis intervalwould be defined between 1503 s and
3303 s. The correct instants of contamination wdaddexcluded of thisnalysis interval thus the
proposed methodology would not be able to performoaect localization of the contamination

sources.

9.4 Chapter Conclusions

A methodology based on the analysis of the reseleéimee of the water in pipes was proposed to
perform the localization of contamination sourae®WDS through the analysis of the information

given by successive positive readings on the sensor

Several other approaches that are described ititénature need to have accurate readings of the
contaminant concentration in sensors, which maw hfficult goal to achieve. This methodology

tried to overcome this limitation. It is based omlg residence time of water in pipes and it only
requires a binary sensor status over time. Thdtsefau the localization of contamination sources a

given sequentially, being updated each time a news@ detects a change in contaminant
concentration. This is an important feature sim@nables the reduction of the computation time and
the amount of information needed to perform thaliaation of contamination sources. Furthermore,
in some situations, this methodology enables thiication of the occurrence of false negatives and

false positives.

Some tests were run to check the performance optbposed methodology for a real DWDS. A
scenario with multiple contaminations was simulatedgenerate the information that would be
registered by the sensors throughout the DWDS. rHselts achieved, for each set of sensors
considered, contained the correct locations and itlstants of the contaminations previously
simulated. It was possible to observe that as ms@'s detect changes in contaminant concentration,
other contaminations may be detected and the plisssbfor the location of contamination sources

may become focused on a more restricted area.

Comparing the results obtained f®et 1with the results obtained f&et 2 it was possible to verify,
as expected that: a) larger sets of sensors gbneetd smalleranalysis intervalsto detect all
contaminations; b) larger sets of sensors are giyable to provide results with more restricted

areas for the localization of the contaminationrees.

Chapter 9 102



Contamination in Drinking Water Distribution Systems: Some Approaches to Forward and Inverse Modelling

The case study with the occurrence of a false hagahowed that the proposed methodology enables
the confirmation of the existence of this anomélsnore than one sensor detected the contamination
that should have been detected by the sensor wWisisha false negative. It was observed that the
occurrence of false negatives did not affect trmilte related with the real detections and it was

possible to detect the sensor which suffered thosraly.

In the first case study with the occurrence oflsef@ositive, the existence of an anomaly thatctoel
explained either by a false positive or a falseatigg was verified. The information available was n
sufficient to distinguish between these optionsuigh the proposed methodology. In the second case
study, it was not possible to verify the occurrentea false positive, since there was not any other
detection associated to the possible contaminatoinces determined through the analysis of the fals
positive. It was observed that the occurrencelgéfpositives did not affect the results relatethhie

real detections.
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10 Localization of Contamination Sources in Drinking Water
Distribution Systems through the Application of Atrtificial

Neural Networks

10.1 Chapter Overview

This chapter describes the application of ANNSs Kinobfems of pattern recognition and non-linear
regression to the problem of localization of contation sources in DWDSs. ANNs are applied to
predict the possible localization points of contaation sources. The main advantages of using this
approach when compared with the applications ptedeare lower time of computation and the
ability to predict the contamination sources basely on the time of the first detection at a sensor
without the requirement of having an accurate eatgdn of the contaminant concentration at the

Sensors.

Thus, the work here presented aims to apply ANN$oradetermining the probability of a candidate
source of contamination being actually the reats®of contamination based on the detection pattern
b) for estimating the corresponding time of contaation for each possible contamination source

based on the times of detection of the sensors.

10.2 Methods Description

The procedure proposed in this work is dividedawo tain stages:

1. Determine the probability of each node being thet@mination source based on the detection
pattern;

2. Verify each possible contamination source deterthine stage 1 and estimate the
corresponding time based on the times of deteaifae sensors. Update, if necessary, the
probability of each node being the contaminatiomree. For this stage, two different
approaches are presented, being designated by @g@s A and B, respectively, which can

be implemented separately or used to validate etnzh.

Figure 10.1 presents a schematic diagram withrttegdctions between these two stages. Both stages
require the creation of databases with the infoionaassociated to a large number of contamination

scenarios. These scenarios shall include contaimnmsait each node in the network, for several
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instants of contaminationAlgorithm A described in Section 8.2.1, was used to simuitse

contamination scenarios.

Stage 1 Stage 2

—_— For each possible
contamination source

y

Verify if it is a possible
contamina_tion source

‘l’ If true

Input: Binary sensor status

ANN 1
Input: Time of detection
,l, of each sensc
Output: distribution l,
of probabilities

ANN 2

v

Output: Instant of
contamination

v

Update the distribution
of probabilities

Figure 10.1 - Diagram of the steps involved in solving the pewbl of the localization of the

contamination sources.

10.2.1 Stage 1

The aim of this stage is to have an initial prunafighe set of nodes that are possible contamimatio
sources. Thus, the selected output for the ANN weas probability of each node being the
contamination source, setting the number of nodethe DWDS as the number of outputs of the
ANN. For the selection of the input variables, tdifferent approaches were tested considering:ea) th
time of detection at each sensor (the time of dietecwas set as2xThorizon when the
contamination was not detected by a sensor); b)thary status for each sensor (1 if the sensor
detected the contamination, 0 otherwise). The tesabitained considering the time of detection at

each sensor were not satisfactory in contrast thighresults obtained considering the binary status
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the sensors, so the second alternative was selddtednformation provided as an input is a vector
with the size of the number of sensors, in whiatheglement presents the status of the corresponding
sensor. Meanwhile, the target is the identificat@inthe node where the contamination occurred,
defined as a vector with the number of elementsieguthe number of nodes of the DWDS. For each
contamination scenario, all elements of the tangsttor are equal to O excluding the element

corresponding to the node where the contaminatis performed.

Thus, for this stage, it is necessary to creatatabdse with the detection pattern (binary status f
each sensor) associated to each contaminationrgzairaulated. The data was attributed entirely to
training, since every possible combination of diébdes at the sensors is included in the data s&. |
relevant to note that this stage is a problem tteparecognition and thus the objective is to achi

ANN structures able to relate a detection pattera $et of potential possible contamination source.
addition and since the inputs are discrete valndstlaere are several cases when the same inputs are

associated with different target values, the ANNtres have no risk of becoming too specific.

The ANNs models were developed using MATLAB softevaFhe selected model architecture was the
multilayer perceptron (MLP), since this architeeturas previously been widely used for pattern
recognition applications (Daqi and Genxing, 2003)e ANNs were constituted by three layers: an
input layer, a hidden layer and an output layese irtput layer is constituted by a number of neurons
equal to the number of sensors and the output keyestituted by a number of neurons equal to the
number of nodes. The number of neurons in the hidger and the transfer functions for hidden and
output neurons were selected by trial and errothagetooking for the minimum of sum of squared

errors. A deterministic approach using a first-ordgradient back-propagation method was

implemented to calibrate each ANN, minimizing tlhensof squared errors.

Input Hidden Output

Figure 10.2 Typical topology of a feedforward artificial neurstwork.
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10.2.2 Stage 2

The aim of this stage is to estimate the time oft@mination associated to each location baseden th
times of detection of the sensors, so each ANN Idpee has time of contamination associated to a
node as output. For the selection of the inpuialdes, two different approaches were tested
considering: a) an ANN per sensor, for each nodth the time of detection at that sensor as the

input; b) an ANN for each node, with a vector canstd by the time of detection at each sensor as

the input (the time of detection was set2§ I NOIMZON when the contamination was not detected by
a sensor). The results obtained following both apgines were satisfactory, so both alternatives are
described in Sections 10.3.1 and 10.3.2. Meanwliie, target for each ANN is the time of

contamination associated to the corresponding node.

For this stage, the necessary databases are atettity the time of the first detection at the sess
associated to each contamination scenario simuldtesl data was divided in 60% for training, 20%
for testing and 20% for validation. The division sveade following a physics based approach,

ensuring that each set of data contained pointeseptative of every data subsets.

The ANNs models were developed using MATLAB softevaFhe selected model architecture was the
multilayer perceptron (MLP), since this architeeturas been the most used architecture in water
resources applications (Maier et al., 2010). TheN&Nvere also constituted by three layers: an input
layer, a hidden layer and an output layer, follayihe topology presented in Figure 10.2. The output

layer is constituted by 1 neuron, for both appreach

The number of neurons in the hidden layer and ridmesfer functions for hidden and output neurons
were selected by trial and error method looking ttee minimum of sum of squared errors. A
deterministic approach using a first-order gradibatk-propagation method was implemented to

calibrate each ANN, minimizing the sum of squaredrs.

Approach A

For each node of the DWDS, an ANN was trained parsar that shall detect contaminations
occurring at the node under study. The input oheabIN is the time of the first detection at the
corresponding sensor, so the input layer is canstt by 1 neuron. The output is the time of

contamination associated to the node under study.

Through this approach, it is possible to performesal estimates for the time of contamination

associated to a source candidate based on thetithe first detection of each sensor that detettied
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contamination. After estimating the different tinscontamination associated to the node considered
as a possible contamination source, it is posdibleerify if that node remains a candidate. If the
estimates obtained using the different ANNs areilaimthe node is confirmed as a possible
contamination source and the average between timagss obtained by each ANN is chosen as the
time of contamination associated to the node.dfehs a discrepancy between the estimates obtained
by the different ANNS, it is concluded that the aodnder study is not a possible contamination
source. This discrepancy is due to the fact thatgbt of values considered for the time of first

detection at the sensors does not corresponddataraination on the node in study.

After verifying which nodes remain as possible aominhation sources, the corresponding values of
probability calculated in Stage 1 are updated, imguhat the set of possible contamination sources

has a probability density function equal to 1.

Approach B

In this approach, an ANN was trained for each nofdhe DWDS. Each ANN has the time of first
detection at each sensor as input. When a contéioning not detected by a sensor, the time of
detection at this sensor is set 2 Thorizon As in the Approach A, the output is the time of

contamination associated to the node in study.

This approach also enables to verify if the noddeurstudy remains as a possible contamination
source. It is necessary to verify the positionha time of the first detection of one sensor witthia
training set used to train the ANN. Then, it is leated if the ratios between the times of the first
detection given by the sensors are close to thesraetween the times of the first detection in the
correspondent position in the training set. If tleendition is verified, the node is a possible
contamination source and the ANN associated tonbée is used to estimate the corresponding time
of contamination. Otherwise, the set of values mied for the time of first detection at the seaso
are not corresponding to a contamination on theengdler study, so it is no longer considered as a

possible contamination source.

After verifying which nodes remain as possible eomnation sources, the corresponding values of
probability calculated in Stage 1 are updated, mmguhat the set of possible contamination sources

has a probability density function equal to 1.
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10.2.3 Example of Application

The Network B, presented in the Section 5.2 wasl asecase study. A set of 3 sensors, presented in
Figure 10.3 as squares, were defined to test tiferpence of the proposed method. Several ANNs
were trained to perform the tasks defined in eaeges of the method, following the different

approaches. The databases used in the trainingest tANNs were constituted by contamination

o

scenarios occurring at each node at each 10 min.

Figure 10.3 -Representation of the DWDS in study

10.2.4 Creation of the Databases - Example of a Contamin&in Scenario

A contamination occurring at Node 1 (Figure 10.3diamond shape), at t = 8.33 h was simulated
through the application of the algorithm preseniedSection 8.2.1. Analysing the contamination
plume generated in this contamination scenarios@red in red), it is verified that the contaminant
would be detected by sensors S1 and S3 at t = 10a0@ t = 8.84 h, respectively. This contamination

would remain undetected by the sensor S2.

Figure 10.4 presents the creation process of thabdses and explains the contribution of each

contamination scenario to the inputs and targeesaoh ANN.
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In the Stage 1, all elements of the target veateregual to O excluding the element corresponding t

Node 1, which is set as 1.

Meanwhile, in the Stage 2 following the Approachtis contamination scenario contributed to the
training of 2 different ANNs having the time of tfiest detection of each corresponding sensor as
inputs and the time of contamination associateNdde 1 as target. Since sensor S2 does not detect
any contamination occurring at Node 1, any ANN Ib@®n trained for this sensor. Following
Approach B, an ANN was trained with the set oftihges of the first detection of each sensor astinpu
and the time of contamination as target. As thes@e82 does not detect the contamination, the time

of first detection associated to that sensor wasetas2 X Thorizon, 48 h.

Stage 1
: 1
H = annt =Y |[°
X
0

Stage 2 — Approach A:

[10.00] l::)I ANN 2_, l::)l [8.33]
[8.88] l:>| ANN 2_ l:>| 8:33]

Stage 2 — Approach B:

10.00
[48.00] :>| ANN 2 l:> [8.33]

8.88

Figure 10.4 -Example of the contribution of a contaminationreré to the inputs and targets of each
ANN.

10.3Results and Discussion

The ANNSs necessary to perform the proposed metherd weveloped for the DWDS presented in the

Section 10.2.3. The number of neurons in the hiddger and the transfer functions for hidden and
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output neurons were selected as it was describ&bdations 10.2.1 and 10.2.2. For the Stage 1, the
hidden layer was constituted by 20 neurons andyarithmic sigmoid and a linear transfer function
were selected for the hidden and output neuronspewctively. For both different approaches
developed for Stage 2, a logarithmic sigmoid atidear transfer function were also selected for the
hidden and output neurons, respectively. The hiddger is constituted by 3 and 6 neurons for

approaches A and B, respectively.

A contamination occurring at Node 1 (Figure 10a8)t = 3.47 h was simulated. This contamination
scenario had not been used in training the ANN#dJthe algorithm presented in Section 8.2.1, the
contamination plume was determined and it is \ifhat sensors S1 and S3 detect a contamination

att=7.67 handt=4.86 h, respectively. Segdoes not detect any contamination.

Beginning with the Stage 1, the input to the ANN1He vectof1 0 1]". The output of the ANN1 is a
vector with 41 elements. Among them, there ared®savith a probability of being the contamination
source equal to 0.11. The remaining nodes havelaapility of being the contamination source equal

to 0, so they are not possible contamination seurce

In the Stage 2, each possible contamination sodetermined in the Stage 1 has to be verified. In
Sections 10.3.1 and 10.3.2, Nodes 1 and 2 (botleshedkere indicated in Stage 1 as possible
contamination sources), will be presented as exesnpt possible contamination sources confirmed

and eliminated by Stage 2, following the differapproaches developed for this stage.

10.3.1 Case Study - Approach A

Following the Approach A, the time of contaminatiassociated to each possible contamination

sources is estimated using the ANN trained withilfiermation related with each single sensor.

Using the ANN 2, trained for the Node 1 with the inpu £ 7.67 h, the estimate for the time of
contamination associated to Node 1 is t = 3.41dmndJthe ANN Z;trained for Node 1 with the input
ts3= 4.86 h, the estimate obtained is t = 3.47 h. démaation of these two values in relation to the
average time of contamination is 0.02 h, so itagfied that Node 1 is still a possible contamioati
source. The average between the estimates obtdipedach ANN is chosen as the time of
contamination associated to Node 1. Applying tmaes procedure to the Node 2, the estimate for the
time of contamination associated to Node 2, udiiegANN Z,, is t = 5.29 h and the estimate obtained

with the ANN 2;is t = 3.29 h. The deviation of these two valuesdlation to the average time of
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contamination is 1.00, so it is verified that thedd 2 is not a possible contamination source. The

results obtained following this Approach for Nodeand 2 are presented in Table 10.1.

Table 10.1-Results achieved following Approach A for Nodesdl 2.

Node 1 Node 2

Estimate (h) | Average (h) | Deviation (h) | Estimate (h) | Average (h) | Deviation(h)

S1 3.51 0.02 5.29 1.00
3.49 4.29

S3 3.47 0.02 3.29 1.00

By analysing the 9 possible contamination soure¢srdhined in the step 1, it is possible to vertifgtt
only 6 of them are possible contamination souresthe probability of each possible contamination
source confirmed in the step 2 is updated to O.I6#& estimates of the time of contamination

associated to each possible contamination souecprasented in Table 10.2.

Table 10.2 -Estimates of time of contamination associatedatthgossible contamination source

obtained following both approaches

Node | Probability Estimate A (h) Estimate B (h) Expected result (h)
1 0.167 3.49 3.48 3.48
5 0.167 4.68 4.72 4.72
6 0.167 4.69 4.70 4.72
7 0.167 4.83 4.79 4.80
8 0.167 4.86 4.86 4.86
9 0.167 4.24 4.21 4.24

Chapter 10 115



Contamination in Drinking Water Distribution Systems: Some Approaches to Forward and Inverse Modelling

Figure 10.5 -Results obtained by the proposed method for tbalikation of contamination sources
in DWDS.

Figure 10.5 presents the possible contaminationceswerified at step 2 as squares and the possible

contamination sources eliminated as triangles.

10.3.2 Case Study - Approach B

Following the Approach B, the time of contaminatiassociated to each possible contamination
sources is estimated using a single ANN trainedh @lite information given by the entire set of

Sensors.

To verify if the Node 1 is a possible contaminatsmurce, sensor S1 is chosen as the referencer senso
to find the position of the time of the first ddiea of that sensor within the training set. Tab@®3
shows the interval of contamination scenarios aléNb in which the time of the first detection at th
sensor S1 is contained. This table presents thestohthe first detection at each sensor, as wdha
ratios between those times and the time of thé diesection at the sensor S1, which was defined as

reference sensor. It is observed that the ratidsvdmn the times of the first detection of the
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contamination scenario under study are similahéoratios of the training set, so it is concludeat t
the Node 1 is a possible contamination source.dJ$ia ANN trained for the Node 1 with the vector

[7.67 48 4.86]' as input, the estimate for the time of contamarabbtained is t = 3.48 h.

Table 10.3 -Training set position for Node 1 — Approach B

Time (h) | tsi(h) | tsa(h) | tsa(h) | tso/tsy | tsal/tsy
3.33 7.57 | 48.00 4.76 6.26 0.63
? 7.67 | 48.00 4.86 6.26 0.63
3.50 7.69 | 48.00 4.88 6.26 0.63

Still using the sensor S1 as reference sensorgTdh# shows the interval of contamination scesario
at Node 2 in which the time of the first detectiminthe sensor S1 is contained. The raidid ts;

associated to the contamination scenario in stadyuite different from the same ratio associated to
the same zone in the training set, so it is coreduithat the Node 2 is not a possible contamination

source.

Table 10.4- Training set position for Node 2 — Approach B

Time (h) | tsi(h) | ts2(h) | tsa(h) | tso/tsy | tsal/tsy
5.17 7.57 | 48.00 6.54 6.26 0.86
? 7.67 | 48.00 4.86 6.26 0.63
5.33 7.73 | 48.00 6.66 6.26 0.86

By analysing the 9 possible contamination souregsrthined in the step 1, it is possible to verifgtt
only 6 of them are possible contamination souragst already occurred when using the Approach A.
The probability of each possible contamination sewonfirmed in the step 2 is updated to 0.167 and
the estimates of the time of contamination assedidb each possible contamination source are
presented in Table 10.2 as well. By analysing dseilts presented in the Table 10.2, good agreements
are observed between the estimates determinedchyag@roach and the expected results for the time
of contamination associated to each source camdiddgure 10.5 presents the results obtained

following this approach.
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10.4 Chapter Conclusions

A method was developed to address the problemeldtalization of contamination sources after
deliberate contaminations in DWDSs through the iapppbn of ANNs. The work here presented
emphasizes the advantages of the application of #ANN the problem of the localization of

contamination sources.

Two different approaches were developed to detexrtiie probability of each node of the DWDS
being the contamination source and to estimatectiheesponding time of contamination for nodes
with probabilities different from zero. Good agremits were observed between the estimates
determined by each approach and the expectedsésuthe time of contamination associated to each
source candidate. The case study performed witmaliied DWDS shows that the proposed method
is able to identify the correct contamination seuand to predict the correct time of contamination

associated to each possible contamination source.

One important feature of this method is that e to find the contamination sources without hgvi
any information about the contaminant concentratimoughout the DWDS. This type of information
is really difficult to get, especially in a delils@ée contamination event, since the contaminant
introduced in the DWDS might be unknown, makindifficult to assess its concentration. Following
this method, the search for a contamination soaatebe triggered by any anomaly registered at a
sensor. On the other hand, in spite of the comiouiateffort necessary to create the databasesoand
train the ANNSs, this procedure only has to be edrout once. The time of computation required for
performing the proposed method following each dnh® different approaches is minimal (just a few
seconds), which is a great advantage in this pnoblet demands the computation of the results as
quick as possible. Thus, this method can be appliegal situations to predict the location of pbkes
contamination sources and its associated time pfaotination by following both approaches and

using the two set of results to validate each other
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11 Application of ANNs to the Problem of Localization of
Contamination Sources: Strategies to Address Chaliges

Created by Large Drinking Water Distribution Systems

11.1 Chapter Overview

Chapter 10 discussed a method that tried to add@se of the limitations identified in previous
works concerning the subject of the localizationcohtamination sources in DWDSs, presented in
Chapter 3. A limitation associated to some of thapproaches is concerned with the time of
computation, which might be very high, due to tlmnplexity of the mathematical formulations.
Another limitation is related with the initial asgption that the sensors should be able to evathate

contaminant concentration, which might be diffidoltachieve for real scenarios.

The method proposed by in Chapter 10 is able w tfie contamination sources without having any
information about the contaminant concentratiomughout the DWDS. Following this method, the
search for a contamination source can be triggeyeahy anomaly registered at a sensor. The time of
computation required for performing this methodnmnimal (just a few seconds), which was
presented as a great advantage in this problemegaires responses as quick as possible. Thegesul
obtained with this method were demonstrated witinglified DWDS with very satisfactory results,
without considering the existence of water demandettainties. However, the application of this
method to real DWDS brings different challengesinigaon two levels. One is concerned with the
size of some DWDSs because the ANNs for DWDSs witligh nhumber of junction nodes are too
complex. The other is concerned with the hydrabébaviour of the DWDS, which can take very
different shapes throughout the day. For instatieehydraulic conditions during the night period ar

significantly different from the hydraulic conditie during the day.

This chapter proposes strategies that address tiwesehallenges. To deal with the high number of
junction nodes that constitutes the real DWDS eiire set of junction nodes is divided in clusters
decrease the complexity of the ANNs applied in gtigge. Concerning the existence of very different
hydraulic behaviours of the DWDS, the differentreargos that are used for the training of the ANNs
are also divided in subsets, clustering scenaritis similar hydraulic behaviours for improving the
accuracy of the ANNs. Furthermore, the effect ofava@emand uncertainties in the performance of

the proposed method is also evaluated.
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11.2 Methods Description

The proposed method aims to predict the localinatib contaminations in DWDSs, based on the
information given by a surveillance system contituby a set of sensors, through the application of
ANNSs in the event of a single contamination scenarhe proposed method is a modified version of
the method presented in Chapter 10, to enablegpkcation of ANNs to large DWDS. Due to the
high number of junction nodes in a real DWDS itnist reasonable to have an output for the
probability that each one of them has of beingdbetamination source. As it was already referred
above, the proposed strategies are based on clusthysis (CA), which is a classification methodtth
organizes a set of objects in clusters, groupirjgat® which show a high degree of similarity at the
same cluster, while objects belonging to differelnsters are as dissimilar as possible (Kaufman and
Rousseeuw, 1990). The ideal number of clusters imaydetermined graphically through a

dendrogram, a tree diagram commonly used in CA (Md®94; McKenna, 2003).
The procedure proposed in this work is also divitteivo main stages:

1. Determine the probability that each cluster hamadiiding the contamination source based on
the detection pattern. Evaluate the probabilityoeiséed to each node considering the
probability of the respective cluster and the numdifejunction nodes which belong to that
cluster.

2. Verify each possible contamination source deterthine Stage 1 and estimate the
corresponding time based on the times of deteaifaime sensors. Update, if necessary, the
probability of each node being the contaminatiomirse. For this stage, two different
approaches are presented, being designated by &qme A and B, respectively. These

approaches can be used separately or togethalidate each other.

Both stages require the creation of databases thithinformation associated to a large number of
contamination scenarios. These scenarios shalldeatontaminations at each node in the network, for
several instants of contamination. The algorithrat ttvas used to simulate those contamination

scenarios is presented in Section 8.2.1.

11.2.1 Stage 1

The aim of this stage is to have an initial prunafighe set of nodes that are possible contamimatio
sources. The entire set of junction nodes is divideclusters. A matrix with the Euclidean distasmce

between each pair of EPANET coordinates of junctiodes has to be created. Then, a hierarchical
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clusters tree is created using the group averageitim. A maximum number of clusters has to be
defined and the clusters are constructed, basettieohierarchical clusters tree, using distance as a
criterion. Through this criterion, the method se#ks smallest height at which a "horizontal cut"

through the tree will leave the maximum numberlo$ters or fewer clusters.

The selected output for the ANN is the probabiiitsit each cluster has of including the contamimatio
source, setting the number of clusters of the DVS$he number of outputs of the ANN. The input
variable selected is the binary status for eaclsae(l if the sensor detected the contamination, O
otherwise). The information provided as an inpu igector with the size of the number of sensars, i
which each element presents the status of the spmneling sensor. Meanwhile, the target is the
identification of the cluster that include the nodiere the contamination occurred, defined as a
vector with the number of elements equal to the bemof clusters in which the DWDS was divided.
For each contamination scenario, all elementsetdiget vector are equal to 0 excluding the elémen

corresponding to the cluster that includes the nalgere the contamination was performed.

After evaluating the probability that each clustexrs of including the contamination source, the
probabilities are divided by the number of junctioodes that belongs to the respective cluster to

determine the probability that each node has afghe contamination source.

11.2.2 Stage 2

The objective of this stage is to estimate the toheontamination associated to each node belonging
to the clusters that were indicated in the Stage the ones which have higher probability of incigd
the simulated source, based on the times of detecfi the sensors. Thus, a minimum threshold for

this probability has to be set.

The development of the ANNSs in this stage follotws same procedure as it was described in Section
10.2.2. However, to improve the accuracy of thémegton of the time of contamination, the set of
contamination scenarios that constitutes the datalaeated to train the ANNs was divided in

clusters, following a two stages procedure desdriimdow, for the approaches A and B, respectively.

Figure 11.1 presents the schematic representatitive stages that constitute the procedure devdlope

for the clustering of the set of scenarios.
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Figure 11.1 -Schematic representation of the stages that cotestite procedure developed for the

clustering of the set of scenarios.
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Approach A

For each node of the DWDS, the set of contaminag@emarios was divided in a suitable number of
clusters and an ANN was trained per sensor thdt datect contaminations occurring at the node
under study, for each cluster of scenarios. Thatiop each ANN is the time of the first detectidn a

the corresponding sensor, so the input layer istdoted by 1 neuron. The output is the time of

contamination associated to the node under study.
The first stage of the proposed procedure is comstl by the following steps:

Step 1 +or each sensor that detects a contaminatiorotitatrred at a given node, initialize X
as the entire detection profile (the time of coritaation and its associated time of detection)idfite

a counter of the number of clusters as 0.

Step 2— Verify the number of elements that constitutes matrix X. If it has less than 20
elements, stop the algorithm and the elements pegrio X are set as cluster, which is added to W.

Otherwise, continue to Step3.

Step 3-Train an ANN using X as the training set. Theetiof detection at the sensor is the

input and the time of contamination at the sousdié output.

Step 4- Verify if the correlation coefficient is highé¢han a minimum threshold that it is
considered as sufficient for each ANN. If it isdrwpdate the counter of the number of clusters
(counter=counter+1) and associate the ANN to theesponding cluster. Otherwise update the

number of clustersy, to 2.

Step 5- Split X in N clusters: [X Xa,...,Xy]. A matrix with the Euclidean distances between
each pair of time of contamination/time of detectie created. Then, a hierarchical clusters tree is
created using the minimum variance algorithm. Tlasters are constructed, based on the hierarchical

clusters tree, using distance as a criterion, densig a maximum number of clusters N.

Step 6- For each cluster, train an ANN and verify if twrelation coefficient (B is higher
than the minimum threshold. If it is true, set)¥I. Otherwise, Y(i) =0.

Step 7- Set Z as the set of elements of Y different forif Z is empty, update the number of
clusters adN=N+1 and return to Step 5. Otherwise, for each clustésnging to Z:

Step 7.1- If size(X)>20, update the counter of the number of clusters
(counter=counter+1) and associate the ANN to theesponding cluster. Otherwise, the
cluster Z(i) is added to W.
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Step 7.2- Eliminate Xg.
Step 8- Verify if X is empty. It that is true, stop thigarithm. Otherwise, proceed to Step 9.

Step 9 Verify the size oiX. If it has less than 20 contamination scenaritag) the algorithm
and the elements belonging to X are set as clustach is added to W. Otherwise, $¢tas 2 and
return to Step 5.

The clusters that constitutes W, for each sensdrdétects the node in analysis, will be the sulgéc

the second stage of the procedure.
Step 1- Merge adjacent clusters.
For each cluster belonging to W:

Step 2- Simulate a larger number of contamination scesadonsidering scenarios with the
time of contamination belonging to the interval idefl for the cluster. Set the results of these
simulations as the database used for the trairfitigeoANN.

Step 3- Train an ANN using the new set of contaminaticengirios.

Step 4- Update the counter of the number of clustersr{tarecounter+1) and associate the

ANN to the corresponding cluster.

After applying this procedure to the entire sejusfction nodes, there is a developed ANN for each
cluster of contamination scenarios, for each setisatr detects a contamination that occurred at a
given junction node. With this set of ANNS, it isgsible to perform several estimates for the tifne o

contamination associated to a source candidatel mas¢he time of the first detection of each sensor

that detected the contamination.

For each detection, it is necessary to verify inchitluster of contamination scenarios the detadso
included. After these verifications, an estimatafrthe different times of contamination associatzd

the node considered as a possible contaminatiorcesas! performed, enabling to verify if that node
remains a candidate. If the estimates obtainedgusie different ANNs are similar, the node is
confirmed as a possible contamination source amévterage between the estimates obtained by each
ANN is chosen as the time of contamination assedi&b the node. If there is a discrepancy between
the estimates obtained by the different ANNSs, it@ncluded that the node under study is not a
possible contamination source. This discrepandyésto the fact that the set of values considesed f

the time of first detection at the sensors doesagtespond to a contamination on the node in study

Chapter 11 124



Contamination in Drinking Water Distribution Systems: Some Approaches to Forward and Inverse Modelling

After verifying which nodes remain as possible eomnation sources, the corresponding values of
probability calculated in Stage 1 are updated, emguhat the sum of the probability of the remagi
possible contamination sources associated to dastecremains equal to the value calculated at the

Stage 1.

Approach B

For each node of the DWDS, the set of contaminatz®enarios was divided in a suitable number of
clusters, as it happens in Approach A, and an ANIS wained for the junction node under study, for
each cluster of scenarios. The input of each ANtéstime of first detection at each sensor astinpu
When a contamination is not detected by a senkertiine of detection at this sensor is seRas
Thorizon (Thorizon is the analysis interval). As in the Approach Ag toutput is the time of

contamination associated to the node in study.

The procedure implemented for the division of thentamination scenarios in clusters is also
presented by the Figure 11.1. The procedure idagina the one that is presented for the Approach A
However, there are differences in the Steps 1 aofdthe First Stage. In the Stepl, X is initializesl
the detection profile of the entire set of sengtrs time of contamination and the associated tifne
detections at each sensor). In Step 5, the divisidhe contamination scenarios in clusters is ¢uled

by principal components analysis to create a nemabi@ able to explain the largest fraction of the
original data variability (Sousa et al., 2007; Biegt al., 2008). Then, a matrix with the Euclidean
distances between each pair of time of contamin&hew variable” is created, instead of considering

pairs of time of contamination/time of detection.

This approach also enables to verify if the noddeurstudy remains as a possible contamination
source. It is necessary to verify in which clustércontamination scenarios the detection pattern is
included and then the position of the time of tinst fdetection of one sensor within the training se
used to train the respective ANN. Then, it is eatdd if the ratios between the times of the first
detection given by the sensors are close to thesraetween the times of the first detection in the
correspondent position in the training set. If tloendition is verified, the node is a possible
contamination source and the ANN associated tonbék is used to estimate the corresponding time
of contamination. Otherwise, the set of values ictaned for the time of first detection at the sesso
are not corresponding to a contamination on thengdler study, so it is no longer considered as a

possible contamination source.
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After verifying which nodes remain as possible eomnation sources, the corresponding values of
probability calculated in Stage 1 are updated,ofwihg the same procedure described for the
Approach A.

11.3Example of application

The Network D, presented in Section 5.4, was usedage study. A set of 60 sensors, presented in
Figure 11.2 as black circles, were defined tottesiperformance of the proposed method.

Sensor IV
Cluster 3
Cluster 2
Node 2
Sensor Il

“* Cluster 1

Figure 11.2 —Division of the Network D in clusters.

The junction nodes, reservoirs and tanks that gatestthe DWDS were divided in clusters. A trial
and error procedure took place to verify which nemtf clusters would be reasonable to ensure that
the computational effort associated to the devetogrof the ANN required to perform the Stage 1 of
the procedure is manageable and, at the same thiaethe number of clusters is not so low as to
render Stage 1 worthless. It was verified thatvasiiin in 50 clusters would meet both criteriatise
entire set of junction nodes is divided in clustéoowing the procedure presented in Section 111.2

The clusters of nodes are presented in Figureithd#ferent colours.

Several ANNs were trained following the procedudescribed in Sections 11.2.1and 11.2.2 to
perform the tasks defined in each stage of the odetbonsidering the different approaches. The
databases used in the training of these ANNs wanmstituted by contamination scenarios occurring at

each node at each 5 min.
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A demonstration of the procedures developed for divésion of the contamination scenarios in
clusters and training of the respective ANNs ispreed in Sections 11.3.1 and 11.3.2, for appr@ache

A and B, respectively.

11.3.1 Demonstration — Approach A

The development of ANNSs for the detections at #rser | associated to contaminations occurring at
the Node 1, presented in the Figure 11.2 in stapehis considered for demonstrating the procedure
developed for the division of the contaminationnsg@®s in clusters, for the Approach A. The

threshold value for the correlation coefficient vga$ as 0.995.

Analysing the set of contamination scenarsit was observed that, during the analysis intete
sensor | detects several contaminations that aaiciine Node 1 between t=2:55 h and t=41:55 h, with
some discontinuities. The counter of the storedtehs was initialized as 0. It was verified tatvas

not empty, and its size was higher than 20.

An ANN was trained considering the entire detecpoafile, as it was described in the step 3 of the
first stage, reaching a’Rof 0.991. Figure 11.3 presents the comparison dmtwthe target data
(presented as circles) and the ANN results (preskead a solid line).
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Figure 11.3 -Results obtained for the ANN associated to thelgade 1/Sensor | — 1 cluster.

As the Rwas lower than the defined threshold, the numbetusiters was updated to 2 and ¥heas
divided in two clusters (Figure 11.4), as it wasdaied in the step 5. One ANN was trained for each
cluster and the comparison between the target dath the ANN results is presented with a

presentation similar to Figure 11.3. Th&éd®the ANN trained for the cluster A was higheartthe
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threshold while the Rof the ANN trained for the cluster B was lower. Ténevas one cluster with ¢
acceptable R so the algorithm proceeded to Step 7.1. It waiie® that the cluster 1 had more tt
20 cortlamination scenarios, so the counter of storedalsisvas set as 1, the ANN associated tc

cluster was stored and the contamination scendr&$elong to the cluster were eliminated fiX.
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Figure 11.4 -Results obtained for the ANN associated to thelgaide 1/Sensor— 2 clusters.

It was verified that X was still not empty and #hmore than 20 elements,N remained as 2 and tl
algorithm returned for the Step 5he elements oK were divided in 2 clusters (Figure 11.5). C
ANN was trained for each cluster and it was vedifieat the ¥ of the ANN trained for the cluster
was higher than the threshold and the cluster ha tthan 20 contamination scenarios. counter
of stored clusters was updated to 2, the ANN aasedti to the cluster was stored and

contamination scenarios that belong to the clugere eliminated frorX.
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Figure 11.5 -Results obtained for the ANN associated to the [dade 1/Sensor— 3 clusters.
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As X was still not empty and had more than 20 eleméht®mained again as 2 and the algorithm
returned for the Step 5. The elementsXolvere divided in 2 clusters (Figure 11.6). One AMNES
trained for each cluster and it was verified tthet B of the ANN trained for the cluster B was higher
than the threshold and the cluster had more thacoB@amination scenarios. The counter of stored
clusters was updated to 3, the ANN associated ¢octbster was stored and the contamination
scenarios that belong to the cluster were elimth&tam X.

Cluster A Cluster B

R?=0.998

Time of contamination (h)
Time of contamination(h)

ap R?=0.993

31 31‘.2 31‘4 31‘.6 31‘ 8 32 31 3‘2 3‘3 3‘4 3‘5 3‘5 3‘7 3‘8 39
Time of detection (h) Time of detection (h)

Figure 11.6 -Results obtained for the ANN associated to thelgade 1/Sensor | — 4 clusters.

X was still not empty, but as it had only 20 elersedividing it in two clusters would not create any

cluster that meet the criteria to be stored. Thhe, cluster was added M and the algorithm
proceeded to the second stage.

New contamination scenarios were created for tbstet that belongs t@/, with a time step of 30
seconds between t=20:30 h and t=22:20 h. An ANN traised with the new training set (Figure
11.7). The Rof the ANN was 0.995, the counter of stored chssteas updated to 4 and the ANN
associated to the cluster was stored. The procddutbe development of ANNs for the Node 1 was
considered as complete. Figure 11.8 presents siutsef the division of the contamination scergrio
associated to Node 1 in clusters, for Approach A.
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11.3.2 Demonstration — Approach B

The development of ANNs, associated to contaminatiaccurring at the Node 2, presented in the
Figure 11.2 in star shape, is considered for detratngg the procedure developed for the division of
the contamination scenarios in clusters, for theordpch B. Contaminations at this node might be

detected by sensors Il and Ill. The threshold vébu¢he correlation coefficient was set as 0.995.

The contamination scenarios simulated that werectied by the system of sensors, X, were set as the
training set. The counter of the stored clusters wdtialized as 0. It was verified that was not

empty, and its size was higher than 20.

An ANN was trained considering the entire detectnfile, reaching a Rof 0.993. Figure 11.9
presents the comparison between the target dadagped as circles) and the ANN results (presented
as plus marks). Principal components analysis vgad to create a hew variable able to explain over
80% of the original data variability.

The number of clusters was updated to 2 and theaX dwided in two clusters (Figure 11.10), as it
was described in the step 5, considering the Eemfiddistances between each pair of time of
contamination/’new variable”. One ANN was trained €ach cluster and it was verified that tHeoR
the ANN trained for the cluster A was higher thha threshold while the Rof the ANN trained for
the cluster B was lower. There was one cluster waitracceptable Rso the algorithm proceeded to
Step 7.1. It was verified that the cluster A hadentnan 20 contamination scenarios, so the cowhter
stored clusters was set as 1, the ANN associatébetaluster was stored and the contamination
scenarios that belong to the cluster were elimthatam X.
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Figure 11.9 -Results obtained for the ANN associated to theeNdbé 1 cluster.
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Figure 11.10 -Results obtained for the ANN associated to the Nbde? clusters.

It was verified that X was still not empty and #hmore than 20 elements,doemained as 2 and the
algorithm returned for the Step 5. The remainingmants ofX were divided in 2 clusters (Figure
11.11) and one ANN was trained for each clustee Rhof the ANN trained for the cluster B was
higher than the threshold and the cluster had ri@ne 20 contamination scenarios, so the counter of
stored clusters was updated to 2, the ANN assaltatéhe cluster was stored and the contamination
scenarios that belong to the cluster were elimthftam X.
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Figure 11.11— Results obtained for the ANN associated to thde\2 — 3 clusters.

As X was still not empty and had more than 20 eleméht®mained again as 2 and the algorithm
returned for the Step 5. The remaining elemend$weére divided in 2 clusters (Figure 11.12) and one
ANN was trained for each cluster. Thé & the ANN trained for the cluster B was highearitthe
threshold and the cluster had more than 20 con&tmimscenarios, so the counter of stored clusters

was updated to 3, the ANN associated to the clusdsr stored and the contamination scenarios that
belong to the cluster were eliminated fran
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Figure 11.12 -Results obtained for the ANN associated to the Nbdel clusters.

As X was still not empty and had more than 20 eleméht®mained again as 2 and the algorithm

returned for the Step 5. The elementXafere divided in 2 clusters (Figure 11.13) and ANN was
trained for each cluster. Both ANNs had @l&wer than the threshold, $dwas updated to 3 and the
algorithm returned for the Step 5. The elementX wlere divided in 3 clusters (Figure 11.14) and one
ANN was trained for each cluster. Clusters A and@l a R higher than the threshold, so the
algorithm proceeds to Step 7.1. Clusters A and @léss than 20 elements (19 each cluster), so these

clusters were added W. The contamination scenarios that belong to tlohssters were eliminated

from X.
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Figure 11.13 -Results obtained for the ANN associated to the Nbde clusters.
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Figure 11.14 —Results obtained for the ANN associated to thed\®é 6 clusters.

As X was still not empty and had more than 20 eleméwtgias set again as 2 and the algorithm
returned to the Step 5. The remaining elemendweére divided in 2 clusters (Figure 11.15) and one
ANN was trained for each cluster. Both ANNs haR?higher than the threshold, so the algorithm
proceeds to Step 7.1. The cluster B had less thaatenents (13), so this cluster was added/.td he
cluster A had more than 20 elements, so the cowfitsiored clusters was updated to 4 and the ANN
associated to the cluster was stored. The contdéiminacenarios that belong to these clusters were

eliminated fromX. As X became empty, the first stage was completed amaltorithm proceeds to
the second stage.
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Figure 11.15 -Results obtained for the ANN associated to the Nbder clusters.

New contamination scenarios were created for bloisters that belongs W for the node in analysis,

with a time step of 30 seconds between t=23:10dta6:40 h, t=26:45 h and t=28:15 h, and t=30:30
h and t=31:30 h. An ANN was trained for each clugigh the new training sets (Figure 11.16). The
R? of the ANNs were 0.999, 1.000 and 1.000 for chssi®, B and C, respectively. The counter of

Chapter 11 134



Contamination in Drinking Water Distribution Systems: Some Approaches to Forward and Inverse Modelling

stored clusters was updated for each new clustetl@n ANN associated to each cluster was stored.
The procedure for the development of ANNs for thed®& 2 was considered as complete. Figures

11.17 and 11.18 present the results of the divisfdhe contamination scenarios associated to Node
in clusters, for Approach B.
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Figure 11.16 -Results obtained after the application of the séatage to clusters 5, 6 and 7.
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11.4Results and Discussion

The ANNSs necessary to perform the proposed metlesd developed for the ideal hydraulic model of
the DWDS presented in the Section 5.4. For theeSfigghe hidden layer was constituted by 150
neurons and a logarithmic sigmoid and a linearstiemfunction were selected for the hidden and
output neurons, respectively. For both differenprapches developed for Stage 2, due to the high
amount of junction nodes, the trial and error mdthveas not applied to all junction nodes. A
logarithmic sigmoid and a linear transfer functisare selected as the transfer functions for hidden
and output neurons for every node, for both apgresc The hidden layer was constituted by 3
neurons for approach A. For approach B, the hiuestimate given by the Equation 3 in the work
presented by Gao et al. (2010), which relates timaber of neurons in the hidden layer with the

number of input and output neurons were appliecgret al., 1997).

A contamination occurring at Node 2 (Figure 11a2)t=15:00 h was simulated, considering the ideal
hydraulic scenario. Using the algorithm presentedSection 8.2.1, the contamination plume was
determined and it was verified that Sensor Il aeds8r 11l detect a contamination at t=22:03 h and

t=18:21 h, respectively. The remaining sensors'tiditect any contamination.
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Beginning with the Stage 1, the input to the ANMas a vector constituted by 60 elements, which
were all set as 0O except the elements corresportdiggnsor Il and Sensor Il, which were set as 1.
The output of the ANNis a vector with 50 elements, each one correspgnth one cluster. The
probability that each cluster has of including toatamination source was divided by the number of
junction nodes that belongs to the respective etusTable 11.1 presents the results for the dlsiste
which have a probability of including the contantioa source higher than 1%, which was the
minimum threshold that had to be defined. The raingiclusters have a probability very close to 0,
so were considered negligible. These 3 clusteigu(Ei 11.2) constitute 96.6% of the distribution of
probabilities performed by the ANN. The Stage 1 bdedh reducing the number of possible
contamination sources from 8857 (the entire DWD&Y¥47. It was observed that the simulated

contamination source (Node 2) does not belongdalinster with the higher probability.

Table 11.1 —Results after Stage 1

Probability (cluster) | Number of nodes | Probability (each node)

Cluster 1 72.6% 275 0.26%
Cluster 2 21.9% 156 0.14%
Cluster 3 2.4% 16 0.15%

In the Stage 2, each possible contamination soufeggmined in the Stage 1 has to be verified. In
Sections 11.4.1 and 11.4.2, Nodes 2 and 6 (botlesbelong to Cluster 2) will be presented as
examples of possible contamination sources conéirmed eliminated by Stage 2, following the

different approaches developed for this stage.

11.4.1 Approach A

Following the Approach A, the time of contaminatiassociated to each possible contamination
sources is estimated using the ANNs trained wighitifiormation related with each sensor that detects
contamination at that node. To evaluate if thenesttes obtained by the ANNs associated to different
sensors are similar it was defined that the maximatue of deviation between each estimate and the
average of all estimates was 1 hour. If any ofdbmates presented a higher value of deviation in
relation with the average, the corresponding ptssiiontamination source would be considered

eliminated. Table 11.2 presents the results obddimeNodes 2 and 6, following Approach A.
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Table 11.2 —Results achieved following Approach A for Nodesr2l 6.

Node 2 Node 6
Estimate | Average | Deviation Estimate | Average | Deviation
(h) (h) (h) (h) (h) (h)
Sensor Il 14:52 0:27 12:48 0:44
15:19 13:32
Sensor |l 15:46 0:27 14:16 0:44

Beginning with Node 2, it is verified that contamfions occurring at this node might be detected at
Sensor Il and Sensor lll. Analysing the detectibtha Sensor I, firstly it was necessary to veiify
which cluster the detection at the sensor was dedu The division of the set of contamination
scenarios was not performed in the developmertieoPINNSs, following Approach A, since the ANN
trained in the Step 3 of the procedure had &igher than 0.995, the minimum threshold defined f
this parameter. Thus, there was just one clustethis pair node/sensor. It was verified that the
detection at t=22:03 h was covered by the trairsiag so the time of contamination given by the
respective ANN was evaluated. The estimate obtaiveesit=14:52 h. Repeating the same procedure
for the analysis of the detection at the Sensoitlivas verified that there was just one clusterthis
pair node/sensor, by the same reasons as for theNpde 2/Sensor Il. It was verified that the
detection at t=18:21 h was covered by the trairseg and the estimate obtained for the time of
contamination was t=15:47 h. The average time oftaooination was t=15:19 h. The deviation
between the estimates and the average was 27 omwey lthan 1 hour, so Node 2 remained as a

possible contamination source.

Node 6 might be detected by Sensors IlI, 1l and $4, an evaluation of each sensor must be
performed. Analysing the detection at the Sensat Was verified that there was just one cluster f
the pair Node 6/Sensor Il. The detection at t=2210@as covered by the training set and the estimate
obtained for the time of contamination was t=12tM8There was also just one cluster for the pair
Node 6/Sensor Ill, and the corresponding trainigigcevers the detection occurring at t=18:21 h. The
estimate obtained for the time of contamination wa%4:16 h. Sensor IV did not detect any
contamination, so it was necessary to verify if tbatamination source responsible for the detestion
at Sensors Il and 1ll was supposed to be detedt&kmsor IV. T the training set of the pair Node
6/Sensor IV was analysed to verify if it contaireedontamination occurring in the vicinity of t=33:

h (the average between the estimates associagshtors Il and Ill). As it was confirmed, the Ndie
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was eliminated as a possible contamination sowsitee a contamination at this Node that was

responsible for the detections at Sensors Il gnaduld trigger a detection at Sensor IV as well.

By analysing the 447 possible contamination soude¢srmined in Stage 1, it is possible to verifgtth
only 45 of them are possible contamination sourddse final results for the localization of
contamination sources, following this approach presented in Figure 11.19. The set possible
contamination sources obtained following the ApplpA are presented by the groups of red and pink
dots, the sensors that detect the contaminatigrelémwy circles and the sensors that don’t detegt an

contamination as green circles.

The probability of each possible contamination sewas updated. For instance, after Stage 1, Node
2 had a probability of 0.14%; after the Stage B, ¥alue was updated to 1.46%.

The method, following this approach, required aetish computation of 5.0 s in a 3.10 GHz processor.

Figure 11.19 -Figures obtained for the case study following apphes A and B.

11.4.2 Approach B

Following the Approach B, the time of contaminatiassociated to each possible contamination
sources is estimated using a single ANN trainedh Mlite information given by the entire set of
sensors. To evaluate if the node was a possiblamamation source, the position of the time of the

first detection of one sensor within the trainireg gsed to train the ANN was verified and the stio
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between the times of the first detection given liy $ensors were compared with the ratios between
the times of the first detection in the correspangeosition in the training set. A maximum value of
deviation of 5% was defined to evaluate if the nmdanalysis was a possible contamination soufce. |
there was a higher deviation between the ratidmes,corresponding possible contamination source

would be considered eliminated.

To verify if the Node 2 is a possible contaminatgwurce, Sensor Il was defined as the reference
sensor to find the position of the time of thetfotetection of that sensor within the training Jetble
11.2 shows the interval of contamination scenaatdsode 2 in which the time of the first detectain
the Sensor Il was contained. This table presemtsittes of the first detection at each sensor, &b w
as the ratios between those times and the timeedfirst detection at Sensor 1l, which was defiasd
reference sensor. Firstly it was necessary towaerifvhich cluster the detection profile was inatdd
since the set of contamination scenarios was divideseven clusters as it was shown previously
(Figure 11.18). It was verified that the detectofile was contained in cluster 1 of the trainss,
thus the corresponding ANN was used to determidoide 2 remained as a possible contamination
source and to estimate the associated time of woméion. It was observed that the ratios between
the times of the first detection of the contamimatscenario under study did not show almost any
deviation in relation to the ratios of the trainisgt (Table 11.3), so it was concluded that thee\bd
remained as a possible contamination source. UsmdA\NN trained for the Node 2 with the vector

[22:03 18:21]" as input, the estimate for the time of contamorabbtained was t=15:04 h.

Table 11.3 -Training set position for Node 2 — Approach B.

Time (h) | ty(h) | ty (h) | tw/ty

15:00 22:02| 18:20 0.83

? 22:02 | 18:20 0.83

15:05 22:03 | 18:21 0.83

Still using Sensor Il as the reference sensor,elahl4 shows the interval of contamination scesario
at Node 6 in which the time of the first detectadrthe Sensor Il was contained. It was verified the
training set was divided in just one cluster forddd, thus the corresponding ANN was used. The
ratio t,y / t, associated to the contamination scenario in s&idyite different (deviation much larger
than 5%) from the same ratio associated to theesame in the training set, since Sensor IV did not
detect any contamination, so it was concluded thatNode 6 was not a possible contamination

source.
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Table 11.4 -Training set position for Node 6 — Approach B

Time(h) | ty(h) | tyw(h) | tw(h) | tw/ty | ty/ty
15:00 22:02 | 18:20 | 13:48 0.83 0.63
? 22:02 | 18:20 | 96:00 0.83 4.36
15:05 22:03 | 18:21 | 13:54 0.83 0.63

By analysing the 447 possible contamination soude¢srmined in Stage 1, it is possible to verifgtth
only 43 of them are possible contamination sourddse final results for the localization of
contamination sources, following this approachmesented as red dots in Figure 12. All the possibl
contamination sources obtained following the Appto&8 were contained in the set of possible

contaminations sources obtained following the ApploA.

The probability of each possible contamination sewvas updated. After Stage 1, Node 2 had a
probability of 0.14% and, after the Stage 2, tlikig was updated to 1.46%.

The method, following this approach, required eaetimh computation of 1.7 s in a 3.10 GHz processor.

Comparing the results obtained by the differentreaghes, it is verified that both have defined very
similar sets of possible contamination sourcesrdlage only 2 possibilities that are included ia th

results obtained by Approach A that are not inalidethe results obtained by the Approach B. In
fact, those 2 nodes should not be considered asibf@scontamination sources but obeyed to the
criterion defined for the Approach A. The criteridafined for the Approach B was able to eliminate

those possibilities.

The deviation between the simulated time of contpartaand the estimated results was 19 minutes for

the Approach A and 4 minutes for the Approach Bprdach B required a lower time of computation.

11.4.3 Case Study — Effects of Water Demand Uncertainty

The robustness of both approaches against waterardenuncertainty was evaluated. Single
contamination scenarios were tested with contaminsitoccurring at Nodes 1, 2, 3, 4 and 5, at 6 h.
These contamination scenarios were evaluated amsjdtwo different types of hydraulic behaviour:
a) an ideal situation, with no model error and acameter error; b) 100 different hydraulic scergrio

with no model error but with water demand uncetiailfhe ANNs necessary to apply the proposed
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approaches were developed using the ideal hydrgaieameters. The hydraulic behaviours with
demand uncertainty were generated at the Bordeank€of Irstea (Institut national de recherche en
sciences et technologies pour I'environment etricadture), through the Monte Carlo method that

was used to generate several plausible demandatterns considering a level of uncertainty of 10%.
The tests were performed in a 3.10 GHz processor.
The performance of the method was evaluated, censgi4 indicators:

1. Target the simulated source;
2. Number of possible contamination sources obtained;
3. Difference between the obtained estimates anditindated time of contamination;

4. Time of computation required.

Tables 11.5 and 11.6 present the results obtawlemiving the Approach A, considering a maximum

value of deviation between each estimate and theage of all estimates of 3 hours, and Tables 11.7
and 11.8 present the results obtained following&pproach B, considering a maximum deviation of

50% in the ratios between the times of the firgedtion given by the sensors in the correspondent
position in the training set. These maximum valweEfined for each approach, are higher than the
values used in Sections 11.4.1 and 11.4.2 to erthblevaluation of contamination scenarios under
demand uncertainty. Tables 11.5 and 11.7 presentetbults obtained for the tests considering the
ideal hydraulic scenario. Tables 11.6 and 11.8gmtethe average results obtained considering 100
hydraulic scenarios under demand uncertainty. Eamtbmn of the tables evaluates the respective

approach in terms of each one of the parameterioned above.

Table 11.5 —Results obtained following the Approach A consitgthe ideal hydraulic scenario.

Parameter 1 (%) | Parameter 2 | Parameter 3 (h:min) | Parameter 4 (s)
Node 1 100 89 00:10 4.4
Node 2 100 97 00:45 7.1
Node 3 100 155 00:01 3.1
Node 4 100 27 00:04 18.7
Node 5 100 15 00:02 2.4
Average 100 77 00:12 7.1
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Table 11.6 —-Average results obtained following the Approachohsidering 100 hydraulic scenarios

under demand uncertainties.

Parameter 1 (%)

Parameter 2

Parameter 3 (h:min)

Parameter 4 (s)

Node 1
Node 2
Node 3
Node 4
Node 5

Average

100

100

86

100

100

97.2

96

97

152

27

15

75

00:29

02:23

00:07

00:04

00:02

00:38

3.9

3.3

2.7

18.6

2.2

6.2

Table 11.7 —Results obtained following the Approach B congiutgthe ideal hydraulic scenario.

Parameter 1 (%)

Parameter 2

Parameter 3 (h:min)

Parameter 4 (s)

Node 1
Node 2
Node 3
Node 4
Node 5

Average

100

100

100

100

100

100

58

a7

105

44

0:06

0:04

0:02

0:07

0:01

00:04

1.6

0.9

2.0

0.9

0.7

1.2

Comparing the results obtained by both approadhés,verified that even though both approaches

were able to solve the problem of the localizatmincontamination sources very quickly, the

Approach B always required a lower time of compatat

For ideal hydraulic scenarios, both approachesctiteall the tested contamination scenarios. The
approach B achieved generally better results imgeof the restriction of the set of possible
contamination sources and the accuracy of the asghtime of contamination. The Approach A only

achieved a better estimate for the time of contation for the contamination scenario occurring at

Node 3.
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Table 11.8 —Average results obtained following the Approacbddsidering 100 hydraulic scenarios

under demand uncertainties.

Parameter 1 (%) | Parameter 2 | Parameter 3 (h:min) | Parameter 4 (s)
Node 1 100 58 00:03 1.3
Node 2 100 47 03:16 1.2
Node 3 86 105 00:08 19
Node 4 100 4 00:03 0.8
Node 5 100 7 00:01 0.5
Average 97.2 42 00:42 1.1

For hydraulic scenarios with water demand unceasgtaidpproaches A and B were able to find the

correct contamination source in 97.2% of the comtation scenarios. Both approaches always found
the correct location of the contamination souraettie@ scenarios occurring at Nodes 1, 2, 4 andd5 an
found the correct location of the contaminationrseun 86% of the scenarios occurring at Node 3.
However, it was verified that in the remaining 14&enarios occurring at Node 3 the contaminations

were not detected by any sensor.

Results obtained following the Approach B constitla more restricted set of possible contamination
sources. It is not possible to observe a generatitconcerning the accuracy of the estimated tiime o
contamination, although the average deviation efdstimates obtained following the Approach A is
lower. Both approaches achieved less accurate astinof the time of contamination for some of the
case scenarios occurring at Node 2, consideringaljid scenarios with water demand uncertainty. In
these situations, some of the detections were icmataonly in the vicinity of the corresponding

clusters, thus an extrapolation had to be performed

11.5Chapter Conclusions

Strategies were developed for addressing the clugke created by large DWDSs. The main
challenges were concerned with the existence ofgh humber of junctions and with the highly
irregular behaviour of the DWDSs. The strategiesewdeveloped to enable the application of both

approaches presented in Chapter 10. To deal withhiph number of junctions, a cluster analysis
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based on Euclidean distances was applied. As futark, this strategy may be improved by ensuring

that the entire set of nodes that belongs to elastet is hydraulically interconnected.

In Sections 11.4.1 and 11.4.2 a case study is mie$@nd good agreements are observed between the
estimates determined by each approach and the atgdutime of contamination. This case study
shows that the proposed method is able to idetit#ycorrect contamination source and to predict the
correct time of contamination associated to eadsipte contamination source, even in the case of a

large and highly complex DWDS.

The method was able to find the contamination sssuvgthout having any information concerning the
absolute values of the contaminant concentratiooughout the DWDS. Thus, the effect of
measurements uncertainty is mitigated. As in théhotk presented in Chapter 10, the search for a

contamination source can be triggered by any anomajistered at a sensor.

The case studies presented demonstrated that fyarthazhes required a very low time of computation
to obtain the results for real DWDS, generally fggmn 5 seconds in a 3.10 GHz processor, which is a
great improvement to the solution of this probléat tdemands the computation of the results as quick

as possible.

The tests performed with contamination scenariosidering water demand uncertainty demonstrated
that the method has shown good performance evsitugtions that are not described by the hydraulic
model used in the development of the ANNs. Thoststshowed different advantages of each
approach but were not conclusive regarding the topresof which was the most suitable for

application in real situations.

Nevertheless, it is concluded that this methoduitable for application in real case scenariosc&in

both approaches require a very low time of compartaand demonstrated good performance in the
tests performed under water demand uncertainty,sbotetimes presented different results, it was
concluded that it would be wise to follow both apgrhes and use the two set of results to validate

each other.
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12 Application of Artificial Neural Networks to the Problem of
Localization of Contamination Sources: Extension tamultiple

source scenarios

12.1 Chapter Overview

Chapters 10 and 11 present methods, constitutedidoglifferent approaches that are able to find the
contamination sources without having any informatiabout the contaminant concentration
throughout the DWDS, through the application of AN

However, the methods presented in these two clsapter only suitable for single contamination
scenarios. In the event of a multiple contaminatgwent, it would not be possible to have prior
knowledge about the contamination that is assatiieeach detection. In fact, when the search for
the localization of the contamination sources aststl the number of contaminations will probably be
unknown. Thus, the initial pruning performed at tinst stage and the application of the Approach B
in the second stage are not suitable for applying multiple contamination scenario, since there is

not enough information regarding the detectionifgaif each contamination.

Thus, in this chapter, a new algorithm, based emghproach A of the second stage form the previous
chapters, is proposed to extend the applicatioANINs for solving the problem of localization of

contamination sources in multiple contaminatiorenscios.

The effect of water demand uncertainties in thégperance of the proposed method is also evaluated

in this chapter.

12.2 Methods Description

The proposed method aims to predict the localimatib contaminations in DWDSs, based on the
information given by a surveillance system congtiuby a set of sensors, through the application of
ANNSs in the event of a single or multiple contantioa scenarios. The method is based on the

Approach A of the second stage from the alreadytioeed method presented in Chapter 10.

This procedure requires the creation of databa#bstie information associated to a large number of

contamination scenarios. These scenarios shalldeatontaminations at each node in the network, for
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several instants of contamination, constitutingataldase that is used to develop the necessary ANNs

as it was described in Chapter 11.

Section 12.2.1 describes the steps that constiatproposed method.

12.2.1 Algorithm for the Localization of Contamination Sources for a Single/Multiple

Contamination Event
Step 1- After the first detection, initialize the numharcontaminations, N=1.

Step 2 —A new contamination was detected, so for each himdevhich a contamination can be
detected by the surveillance system, verify if #@nsor in analysis is supposed to detect a
contamination occurring at that node. If it is niftg node is not a possible contamination source.

Otherwise, proceed to Step 3.

Step 3 Verify at each cluster of the training set usedhi@ development of the ANNs for the pair
node/sensor in analysis the detection is contaifi#ds not contained in any cluster, the nodeds a

possible contamination source. Otherwise, proce&itap 4.

Step 4 —Calculate the estimate of the time of contamimatising the ANN developed for the pair
node/sensor in study with the time of the detecbemg evaluated. Associate the detection and the

estimates related to each remaining possible congédion source to the contamination N.

Step 5 —For each possible contamination source, verifyhéttcontamination was supposed to be
detected by other sensors that have not deteciedcsmiamination. If this is true, that contaminatio

source is not considered possible anymore.
Step 6 +or each new sensor registering a contamination:

Step 6.1 -Determine the most suitable detection to be astwuti the previously detected
contamination in analysis. For that detectiaralculate the estimates of the time of
contamination using the ANN developed for each paile/sensor, following the procedure

described in Steps 3 and 4.

Step 6.2 —Calculate the average between each estimate andintee of contamination
associated to the respective contamination solfrtiee difference between the estimate and
the average is higher than a maximum value (thedii¢o be defined), the node associated to

the estimate is not a possible contamination souiae the contamination that is being
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evaluated. Otherwise, the node remains as a pessintamination source and the associated

time of contamination is updated to the averagaevahlculated in this step.

Step 6.3 f there isn’t any remaining possible contaminatswurce after the comparison
performed at Step 6.2, the detection in analysrotsassociated to the contamination used in
the comparison. Otherwise, the set of possiblearnimation sources associated is updated

considering the results of the comparison perforatestep 6.2.

Step 6.4 For each remaining possible contamination souregfwif that contamination was
supposed to be detected by other sensors thatrfvdaetected any contamination. If this is

true, that contamination source is not considesiple anymore.

Step 6.5 -After finishing the evaluation of every previouslgtected contaminations, through

the procedure describe from Step 6.1 to Step theie isn't any contamination associated to
the detection in analysis, it is considered thatexice of a new contamination, so the number
of contaminations is updated, N=N+1, and the albprireturns to the Step 2. Otherwise, the

sensor in analysis is associated to the respemivEmination and the analysis is finished.

Step 7 -f the first detection was not selected at Step &.Is considered the existence of a new
contamination, so the number of contaminationspated, N=N+1, and the algorithm returns to the

Step 2 for analysing that detection.

Step 8- If there is any new sensor registering a contananatfor each remaining possible
contamination source from the different contamovai previously detected, verify if that
contamination was supposed to be detected by edmsmors that have not detected any contamination
until the final time of the analysis. If this isu&, that contamination source is not considerediples

anymore. Stop the algorithm.

12.3Results and Discussion

The Network D, presented in Section 5.4, was usathae study. Figure 12.1 presents the locations of
Nodes 1 (red), 2 (blue), 3 (yellow) 4 (pink) and(lght blue), in which contaminations were
simulated, occurring at 06:00 with a duration oh.110 different combinations of these 5 single
contamination scenarios, described in the Tabld,®ere also simulated. The robustness of the
proposed method against water demand uncertairgyewauated. The contamination scenarios were
also evaluated considering two different types ydrhulic behaviour: a) an ideal situation, with no

model error and no parameter error; b) 100 diffehgdraulic scenarios, with no model error but with
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water demand uncertainty. The hydraulic behaviautis demand uncertainty were the same files that

were used in Chapter 11.

The same ANNSs that were trained to perform the stassies following the Approach A in Chapter 11
were used to estimate the time of contaminatioredbas the times of detection of each sensor that

detects contaminations at a given junction node.

Table 12.1 —Description of scenarios.

Scenario Nodes
1 1
2 2
3 3
4 4
5 5
6 1+2
7 2+3
8 3+4
9 4+5
10 1+2+3
11 2+3+4
12 3+4+5
13 1+2+3+4
14 2+3+4+5
15 1+2+3+4+5
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Sensor ITT Bnhd,

Sensor I

Sensor II

o/

Figure 12.1 -Real DWDS used as case study.

Section 12.3.1 presents a detailed descriptiomapplication of the proposed method to a multiple
contamination scenario. Section 12.3.2 presentsabats achieved for the contamination scenarios

presented in Table 12.1. The tests were performed3.10 GHz processor.

12.3.1 Algorithm demonstration

The evaluation of Scenario 6, with simultaneoustammations occurring at Nodes 1 and 2,
considering ideal hydraulic behaviour, is presemtedemonstrate the running of the algorithm. Table

12.2 shows the detections associated to this camédion scenario.

Table 12.2 —Detections of Scenario 6, considering ideal hylitauonditions.

Sensor | Time of detection (h:min)
I 07:15
Il 07:42
Il 07:50
\% 09:42
v 09:47
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The first detection occurs at Sensor |, at 07:1%e Mumber of contaminations was initialized, N=1.
Each node that can be detected by Sensor | wasaggdlto determine which time of contamination
was associated to the detection in analysis, fatigva procedure similar to the one presented fer th
Approach A of the Second Stage in Chapter 11.Ifinstwas necessary to verify in which cluster the
detection at the sensor was included for each nafler that, the ANN developed for the chosen

cluster was used to determine the time of contatmimassociated to node in analysis.

After applying this procedure, a set of 218 possdwntamination sources, presented in Figure 12.2 a
red dots, was defined. It was necessary to detertfireach possible contamination source was
supposed to be detected by other sensors that badlatected any contamination. After this
verification, it was possible to restrict the sepossible contamination sources to 71 nodes, ptede

in Figure 12.3 as red dots. The analysis of trst flietection was finished with the identificatiditioe

Contamination 1 with 71 possible sources.

Figure 12.2 -Results achieved from the analysis of the firsecinn after Step 4.
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Figure 12.3 -Results achieved from the complete analysis ofithiedetection.

The second detection occurs at Sensor Il, at 0Ed2h possible contamination source associated to
the Contamination 1 was evaluated using the ANN&Ildped for each pair node/Sensor Il. 7 nodes
that didn’'t have any ANN developed for detectionsSansor Il (because Sensor Il never detects
contaminations occurring at these nodes) were mditad from this evaluation. The average between
the estimates obtained from the evaluation of teeeations at both sensors was calculated and the
deviation between each estimate and the average ewakiated. All 64 remaining possible
contamination sources evaluated had a deviatiorelation to the average lower than the defined
threshold (3 hours). Thus, the times of contamimasissociated to each possible contamination source
of the Contamination 1 was updated to the averagievden the estimates obtained from both
detections. After verifying if each possible conaation source was supposed to be detected by other
sensors that had not detected any contaminatiomag possible to restrict the set of possible
contamination sources to 63 nodes, presented uré-it)2.4 as red dots. The analysis of the second
detection was finished with another detection & @ontamination 1 and the restriction of the set of

possible sources to 63 nodes.
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S

Figure 12.4 -Results achieved from the complete analysis ofé&oend detection.

The third detection occurs at Sensor lll, at 07:BQ@aluating each possible contamination source
associated to the Contamination 1, it was possibonclude that any possibility would be detected
by Sensor lll. Thus, the detection in analysis @ associated to the Contamination 1 and the
procedures contained in the different sub stepshefStep 6 might be skipped. The number of

contaminations was updated, N=2, and the algornttorned to the Step 2.

Each node that can be detected by Sensor |1l wals@&ed to determine which time of contamination

was associated to the detection in analysis, zeditoeen already done for the detection at Sensor |

After applying this procedure, a set of 109 possdantamination sources, presented in Figure 2.5 a
blue dots, was defined. It was also necessary termdae if each possible contamination source was
supposed to be detected by other sensors that bbdlatected any contamination. After this
verification, it was possible to restrict the sepossible contamination sources to 91 nodes, ptede

in Figure 12.6 also as blue dots. The analysib@third detection was finished with the identifioa

of the Contamination 2 with 91 possible sources.
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S

Figure 12.5 -Results achieved from the analysis of the thir@ctan after Step 4.

-/

Figure 12.6 -Results achieved from the complete analysis oftiind detection.

Sensor IV registered detections at 09:42 and 09%halysing the possible contamination sources
associated to the Contamination 1, it was conclutiat any possibility would be detected by that
sensor. Thus, there was no point in determininglvidetection would be more suitable to explain the
Contamination 1 since that sensor clearly was ssb@ated to the Contamination 1. Analysing the
databases used in the training of the ANNs as®mtiadb the Sensor IV for each possible
contamination source associated to ContaminatigiwZs concluded that the detection that occurred

at 09:42 was more suitable to explain the majaritthe possible contamination sources.
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Each possible contamination source associatecet@timtamination 2 was evaluated using the ANNs
developed for each pair node/Sensor IV. 5 noddgiitia’t have any ANN developed for detections at
Sensor IV (because Sensor IV never detects congimms occurring at these nodes) and were
eliminated from this evaluation. The average betwine estimates obtained from the evaluation of
the detections at both sensors was calculatedrendaviation between each estimate and the average
was evaluated. All 86 remaining possible contanmmasources evaluated also had a deviation in
relation to the average lower than 3 hours andithes of contamination associated to each possible
contamination source were updated to the averagweba the estimates obtained from both
detections. After verifying if each possible conaation source was supposed to be detected by other
sensors that had not detected any contaminatiomjag possible to restrict the set of possible
contamination sources to 43 nodes, presented uré-ig2.7 as blue dots. The analysis of the second
detection was finished with another detection & @ontamination 2 and with the restriction of the

associated set of possible sources to 43 nodes.

S

Figure 12.7-Results achieved from the complete analysis ofdheh detection.

Since there weren’'t any new detection, the setpassible contamination sources were updated
considering a final time of analysis of 48:00 toigh the algorithm. The method was able to restrict
the set of possible contamination sources of Comi@inns 1 to 56 nodes, presented in Figure 12.8 as
red dots. This step did not enable any furtherict®in of the set of possible contamination soarce

associated to Contamination 2, presented in Fij2r@ as blue dots, which remained with 43 nodes.
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Figure 12.8 -Results achieved at the end of the algorithm.

12.3.2 Case studies
The performance of the method was evaluated, @napter 11, considering 4 indicators:

Target the real source;
Number of possible contamination sources obtained,;

Difference between the obtained estimates andetlledime of contamination;

A\

Time of computation required.

Tables 12.3 and 12.4 present the results obtaimefddarameters 1, 2 and 3, considering a maximum
value of deviation between each estimate and tleeage of all estimates of 3 hours. Table 12.3
presents the results obtained for the tests comsgléhe ideal hydraulic scenario and Table 12.4
presents the average results obtained conside@i@didraulic scenarios under demand uncertainty.
Table 12.5 presents the time of computation andatrerage time of computation required by the
method to analyse each scenario (parameter 4déa ihydraulic conditions and for the hydraulic

scenarios under demand uncertainty, respectively.
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Table 12.3 -Results obtained considering the ideal hydraaénario.

Parameter 1 (%) | Parameter 2 | Parameter 3 (h:min)
Node 1 100 57 00:10
Node 2 100 44 00:45
Node 3 100 116 00:01
Node 4 100 4 00:04
Node 5 100 11 00:02
Average 100 50 00:13

Table 12.4 -Average results obtained considering 100 hydreadenarios under demand

uncertainties.
Parameter 1 (%) | Parameter 2 | Parameter 3 (h:min)
Node 1 100 56 00:28
Node 2 100 42 01:42
Node 3 89 115 00:09
Node 4 98 4 00:04
Node 5 99 10 00:02
Average 96 48 00:32

The proposed method achieved the correct solutiohOD% of the case scenarios simulated under
ideal hydraulic conditions, with an average of S¥gble contamination sources and 13 minutes of

deviation between the estimates and the simulatexldf computation.

For case scenarios simulated considering hydrael@aviour with water demand uncertainty, 96% of

the simulated contaminations. The success ratevemsclose to 100% except for contaminations

occurring at Node 3, in which the method still &teyl the correct source in 89% of the case scenario

In this case scenario, the intersection betwederdiit contamination events, caused by the higher
level of uncertainty, does not enable the correcalization of all real contamination sources. §he

of possible contamination sources was very simdathe set defined for ideal hydraulic conditions,
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with an average of 50 possible contamination sauréae deviation between the estimates and the
simulated times of contamination was higher (averdgviation of 32 minutes) than the deviation

registered with ideal hydraulic scenarios, esplciat contaminations occurring at Nodes 1 and 2.

Table 12.5 —Time of computation required by the method.

Scenario | Ideal (s) | Uncertainty (S)
1 22 19
2 13 13
3 6 6
4 18 24
5 16 14
6 37 34
7 24 22
8 21 35
9 48 47

10 50 45
11 39 55
12 58 56
13 79 79
14 74 74
15 141 132

Analysing the Table 12.5, it is possible to obsehat there was no significant difference betwden t
times of computation required for evaluating coriteation scenarios with ideal hydraulic conditions
and contamination scenarios with water demand teioty. The time of contamination seems to be
lower for single contamination scenarios (Scenalid$ and registers its highest value for ScenHsio

(contaminations at 5 nodes).

Comparing the results presented in Tables 12.61&n4 it is possible to observe that, for scenarios

simulated considering ideal hydraulic conditiots proposed method has a very similar performance
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for single and multiple contamination scenariose Simulated contamination source belonged always
to the set of possible contamination sources aadiéviation between the estimates and the simulated
times of contamination is very similar. The onlysebved difference is in the number of possible
contamination sources. For some nodes, the resdlieved for the set of possible contamination
sources were less restrict for multiple contamoraifaverage of 52 possible contamination sources

against 44 for single contamination scenarios).

Table 12.6 -Results obtained for single contamination scesagdonsidering the ideal hydraulic

scenario.
Parameter 1 (%) | Parameter 2 | Parameter 3 (h:min)
Node 1 100 56 00:10
Node 2 100 44 00:45
Node 3 100 105 00:01
Node 4 100 4 00:04
Node 5 100 9 00:02
Average 100 44 00:12

Table 12.7 -Average results obtained for multiple contaminascenarios, considering the ideal

hydraulic scenario.

Parameter 1 (%) | Parameter 2 | Parameter 3 (h:min)
Node 1 100 58 00:10
Node 2 100 44 00:45
Node 3 100 117 00:01
Node 4 100 4 00:04
Node 5 100 11 00:02
Average 100 52 00:12

Tables 12.8 and 12.9 show the results obtainedidenisg 100 hydraulic scenarios under demand

uncertainties for single and multiple contaminatsmenarios, respectively. The method was able to
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detect 99% of the single contamination scenaridfy an average of 43 possible contamination

sources and an average deviation of 29 minuteseleeivthe estimates and the simulated times of
contamination. For multiple contamination scenartbe method was able to successfully locate 96%
of the contaminations. The success rate is alm®dtigh as for single contamination scenarios for
every contamination scenario, except for the oreuroing at Node 3, which still were correctly

located in 88% of the respective scenarios. Noifstgmt differences were observed in the number of
possible contamination sources and in the devidi@ween the estimates and the simulated times of

contamination.

Table 12.8 -Results obtained for single contamination scenadossidering 100 hydraulic scenarios

under demand uncertainties.

Parameter 1 (%) | Parameter 2 | Parameter 3 (h:min)
Node 1 100 55 00:29
Node 2 100 42 01:42
Node 3 100 105 00:10
Node 4 98 4 00:04
Node 5 99 9 00:02
Average 99 43 00:29

Table 12.9 -Average results obtained for multiple contaminascenarios, considering 100

hydraulic scenarios under demand uncertainties.

Parameter 1 (%) | Parameter 2 | Parameter 3 (h:min)
Node 1 100 56 00:29
Node 2 100 42 01:42
Node 3 88 116 00:09
Node 4 98 4 00:04
Node 5 98 11 00:02
Average 96 49 00:32
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A comparison was made between the results achfevesingle contamination scenarios (Tables 12.6
and 12.8) and the results presented for the santaromation scenarios in Tables 11.5 and 11.6ef th
Chapter 11.

For scenarios considering ideal hydraulic behayithe proposed method achieved the same success
rate (100%) and the same deviation between thenasts and the simulated times of contamination.
Regarding the parameter 2, the proposed methodeshabhigher restriction of the set of possible
contamination sources in all scenarios (averagétgiossible contamination sources against 77 from
the previous work). The time of computation reqdifeom the proposed method was higher in the

majority of the scenarios, but still remained lowsan 30 s.

For scenarios considering water demand uncertaayieved a higher average success rate (99%
against 97%), especially for contaminations ocograt Node 3. The success rate was slightly lower
for Nodes 4 and 5. As it already occurred for gragntamination scenarios, the proposed method was
able to get a more restrict set of possible comatitn sources in all scenarios (average of 43ilpless
contamination sources against 75 from the prewonrk). Regarding the parameter 3, the proposed
method achieved a lower average deviation betwéenestimates and the simulated times of
contamination, however it is not possible to obsexvconsistent trend in this parameter. The time of
computation required from the proposed method vigiseh in all scenarios, but still remained lower
than 30 s.

Some of the differences presented by some of thdtseobtained by the different methods are related
with a difference in the definition of the contamiion scenarios. In Chapter 11, the contaminations
were considered as instantaneous injections, wthise method was applied to scenarios that

considered injections with 1 h of duration. Thussome scenarios there are more sensor deteabions t
evaluate. For instance, for Node 3, 14% of the @wes considering water demand uncertainty are not

detected for instantaneous injections, but arectedavhen the injection is simulated during 1 h.

12.4 Chapter conclusions

A new algorithm, based on the Approach A of theosdcstage form the methods presented in
Chapters 10 and 11, was proposed to extend thécafph of ANNs for solving the problem of

localization of contamination sources in multipentaminations scenarios.

In Section 12.3.2, case studies are presented,tietisimulation of single or multiple contamination

scenarios, considering either ideal hydraulic behawor water demand uncertainty.
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The method localized successfully the simulatedcgsuof contamination for all single or multiple

contamination scenarios in which ideal hydraulibdgour was considered. For single and multiple
contamination scenarios considering water demawcdrtainty, the method successfully localized the
great majority of the contamination sources. Tharidion of the sets of possible contamination

sources was very similar for all types of hydradanditions. The method achieved more accurate
estimates of the times of contamination for sc@sathat considered an ideal hydraulic condition;

however, it still achieved fairly approximate esdtes for scenarios considering water demand
uncertainty. The effect of water demand uncertaifityes not have any observable effect on the
required time of computation. It is observed theg €valuation of single contamination scenarios is
quicker than the evaluation of multiple contamioatscenarios. This was expected since the time of
computation depends on the number of detectiof® tevaluated. It is possible to conclude that the
method achieved better results for scenarios wi¢iali hydraulic conditions, as it was expected, but

still registered a very good performance for scesaronsidering water demand uncertainty.

The method registers very similar performancesifogle and multiple contamination scenarios, when
ideal hydraulic conditions are considered. The atdgerved difference is in the level of restrictain
the set of possible contaminations sources, in lwhesults might be better for single contamination

scenarios, since more detections associated toceathmination might be analysed.

For scenarios considering water demand uncertaihty,method registered better performance for
single contamination scenarios. However, the sgcoede is almost as high as for single
contamination scenarios for every contaminatiomaie, except for the ones occurring at Node 3. In
several hydraulic scenarios with water demand taicgy, the method was able to localize correctly
the contamination occurring at Node 3 when thistammation was simulated alone but failed to
achieve the same performance when other contammsatvere simulated simultaneously. This is due
to the effect of the water demand uncertainty, Whiometimes leads to greater changes in the
hydraulic behaviour of the DWDS, leading to timdésdetections at the sensors quite different from

the ones used in the training of the ANNSs.

The method achieved also some improvements in ¢lalts obtained for single contamination

scenarios. Comparing the results from this methat e results presented in Chapter 11 for the
same scenarios, it is concluded that the propossitiod enabled a higher restriction of the set of
possible contamination sources for scenarios wlighli hydraulic behaviour. For scenarios considering
water demand uncertainty, it achieved a higheramgsuccess rate and a more restrict set of pessibl
contamination sources in all scenarios. The timeoofiputation required by the proposed method was

higher in the majority of the scenarios, but stinained lower than 30 s.
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Part of the differences presented by some of thgltseobtained by the various methods are related t
a difference in the definition of the contaminat®eenarios. In Chapter 11, the contaminations were
considered as instantaneous injections, while ieshod was applied to scenarios that considered

injections with 1 h of duration. Thus, in some s@vs there are more sensor detections to evaluate.

The proposed method is able to extend the applitaif ANN to the localization of contamination
sources in multiple contamination scenarios, ewsrrdal and highly complex DWDS. The method
was also able to find the contamination sourcedawit having any information concerning the
absolute values of the contaminant concentratioautthout the DWDS, mitigating the effect of

measurements uncertainties.

The proposed method generally identifies the coroentamination source in the majority of the
evaluated scenarios and good agreements are otbsketereen the estimates determined by the
method and the simulated times of contaminatiothauit significant decrease of performance in the

application to multiple contamination scenarios.

The time of computation is slightly higher than thmee required by the method presented in Chapter
11, but it still remained in a very reasonable lefan average, less than 1 minute). Thus, it is

concluded that this method is a very suitable gmiuor application in real case scenarios.

12.5 Acknowledgements

The author is thankful to Dr. Olivier Piller frorhd Bordeaux Centre of Irstea for the generaticth®f

hydraulic scenarios under water demand uncertainty.

Chapter 12 164



Part V: Conclusions and Future Work







Contamination in Drinking Water Distribution Systems: Some Approaches to Forward and Inverse Modelling

13 Main Conclusions and Suggested Future Work

13.1 Main Conclusions

This thesis was aimed to study the occurrence ofatoinations in DWDSs. The work performed

during this period had the following major outcomes

1- The development of two approaches for simulatirgtthnsport mechanisms of contaminants
in DWDSSs;

2- The development of deterministic methods for tlealiaation of contamination sources;

3- The application of ANNSs in the development of mekhidor the localization of contamination

sources;

Regarding the simulation of the transport mechasishtontaminants in DWDSs, a software tool was
developed to implement an analytical approach Fer simulation of the advective transport of
contaminants, considering pseudo-first order readerms. This approach proved to be suitable for
providing the analytical solution for the modelliraf the transport of contaminants in DWDS,
considering steady hydraulic conditions. In additia software tool was developed to simulate the
contaminant reactive transport along DWDSs considesorption phenomena. This method also
demonstrated to be a relevant contribution forstinely of the effects of the sorption phenomen#én t

modelling of the transport of contaminants in IPWDS.

The challenge of the localization of contaminatsmurces in DWDSs was addressed following two

types of approach: one deterministic and the dihsed on the application of ANNSs.

Two deterministic methods based on the analysishef residence time of water in pipes were
developed, considering fixed time intervals or ldasg successive detections at sensors. One of the
limitations identified in several works presentadhie review of the works performed in the past on
this subject was the dependency on the existenaecnfrate concentration profiles at the sensoris. Th
type of information is really difficult to get, espally in a deliberate contamination event, sitiee
contaminant introduced in the DWDS might be unknomaking it difficult to evaluate its
concentration. The deterministic methods developedhis work were able to achieve reliable
solutions for the characterization of the contaramasources requiring only a binary sensor status
over time, avoiding the need of having accurateliregs of the contaminant concentrations at the
sensors. Furthermore, it was possible to confisrit awas expected, that the constitution of theoet

sensors available in the surveillance system haatgnfluence in the performance of this kind of
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methods. The method based on successive deteeticensors is not affected by the occurrence of

false or positive readings at sensors and endtdegetrification of the occurrence these abnornesliti

A method was developed to address the problemenidtalization of contamination sources after
deliberate single contamination event in DWDSs ubfo the application of ANNs. Additionally,
strategies were developed for addressing the clusgecreated by large DWDSs. The main challenges
were concerned with the existence of a high nunmddejunctions and with the highly irregular
behaviour of the DWDSs.

Two different approaches were developed to deteritiie probability of each node of the DWDS
being the contamination source and to estimatectieesponding time of contamination for nodes
with probabilities different from zero. One impartdeature of this method is that it is also alde t
find the contamination sources without having amfprimation about the contaminant concentration
throughout the DWDS. Following this method, tharsh for a contamination source can be triggered
by any anomaly registered at a sensor. The caskestperformed showed that both approaches
required a very low time of computation to obtaie tresults for real DWDS, generally less than 5
seconds in a 3.10 GHz processor, which is a greptavement to the solution of this problem that
demands the computation of the results as quigloasible. The tests performed with contamination
scenarios considering water demand uncertainty dstraied that the method has shown good
performance even in situations that are not desdrily the hydraulic model used in the development
of the ANNSs.

The method that extended the application of ANNsmltiple contamination scenarios achieved
very satisfactory results for real DWDSs. The mdtl@as generally able to determine correctly the
simulated source and to define a very restrictedos@ossible contamination sources, even when
considering hydraulic scenarios with demand unoerés. However, the estimations of the time of
contamination for scenarios under demand unceigaishowed larger deviation in relation with the
simulated contamination sources. The time of coatpr required was generally very low, which

makes this method very suitable for applicatiorea contamination scenarios.

13.2 Suggested Future work

Concerning the development of methods for the @tian of the spread of contaminants in DWDSs,
the application of other numerical schemes, desdrib previous works mentioned in Chapter 2 as
more suitable for modelling steep concentratiorfile® considering advective transport phenomenon,

could improve the accuracy and the reliabilitylo# tesults obtained
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The field of localization of contamination soureesDWDS is not yet consolidated and there is still

plenty of room for improvement.

The performance of the deterministic methods deeloin this thesis still need to be evaluated
against the existence of water demand uncertairiesides that, future work can be performed to

reduce the computational effort required by thesthods.

All the methods developed in this thesis for thealzation of contamination sources provide
estimations for the location and instant of contation. Further work could be performed to enhance
their outcomes, with the introduction of an estimmatof the duration and amplitude of the
contamination. Furthermore, a differentiation of tiisk levels associated to each node of the DWDS
could be included to prioritize the verification ofitical nodes. Moreover, proposed methods were
developed base on the assumption that the serseoesio detection limit. Future improvements could

avoid the need for this assumption.

The installation of a pilot scale network, witheasonable level of complexity, could be very useful
for testing the performance of methods developedtlie simulation of the water quality and

localization of contamination sources in DWDSs

Finally, the majority of the methods developed thoe localization of contamination sources rely on
the information collected by a surveillance systmnstituted by water quality sensors. However the
implementation of a comprehensive surveillanceesgstonstituted by water quality sensor is still
conditioned by the high installation costs assedatThus, the number of sensors available for
installation tends to be kept as low as possiblactieve reasonable installation and operationscost
As consequence, even for successfully detectecucomation events, the information provided by the
sensors may not be sufficient to achieve a satmfific restricted set of possible contamination
sources. Future research could be performed taeesha further restriction of the set of possible
contamination sources by extending the evaluatiothe contamination events to the analysis of
water/deposits samples gathered at some selectéds pamong the initial set of possible

contamination sources.
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