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Abstract

Computational Framework for Multi-Scale Analysis of Heterogeneous Materials us-

ing Digital Image Recognition

With the advent of increasingly more complex heterogeneous materials, new methodologies are

being developed to accurately predict their mechanical behaviour. At the microscale, a material

is usually composed of multiple heterogeneities that, by interacting with the surroundings, may

in�uence the macroscopic performance of the component.

During this thesis, a Digital Image Based (DIB) microstructure recognition technique was

employed to model the microstructure of heterogeneous materials. This method enables the use

of any given real 2D or 3D micrograph to identify di�erent constituents, create a Representative

Volume Element (RVE) and generate a �nite element mesh that correctly �ts these singularities.

Following this, Multi-Scale models take advantage of RVEs generated with this approach to

study the homogenized elastic properties of heterogeneous materials, such as the acquisition of

the full sti�ness tensor for orthotropic cases.

In addition, a study on the RVE and mesh size is performed for two- and three-phase

materials. The in�uence of di�erent sti�ness ratios between �ber and matrix materials on the

RVE size and on the homogenized properties is analysed and compared with analytical models,

such as the Hashin-Hill bounds and the Mori-Tanaka method. Moreover, the insertion of an

interface material in-between, changes the overall behaviour of a composite material, hence, a

study of this factor is presented. Analytical expressions with extremely high accuracy against

the numerical results were deduced to estimate the homogenized plane Young's modulus under

these circumstances.

Finally, this method does not consider simpli�cations at the microscale, being able to model

any constituent with arbitrary shapes or constitutive behaviours. Therefore the micrograph

recognition technique is an inspiring and breakthrough method that aims to develop and char-

acterize new and more elaborated heterogeneous materials.

Keywords: Micromechanics; Multi-Scale models; Homogenization; E�ective properties; Het-

erogeneous materials; OOFEM; DIB.
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Resumo

Modelo Computacional para Análise Multi-Escala de Materiais Heterogéneos com

base em Reconhecimento Digital de Imagem

Devido ao aparecimento de materiais cada vez mais complexos, novas metodologias estão

a ser desenvolvidas de forma a prever o comportamento mecânico destes. À microescala, as

múltiplas heterogeneidades presentes num material interagem entre si e tendem a in�uenciar o

seu comportamento macroscópico.

Ao longo desta tese foi utilizada uma técnica de reconhecimento de imagem (�Digital Image

Based (DIB) microstructure recognition�) para modelar a microestrutura do material. Esta

permite identi�car os seus constituintes, criar um Elemento Representativo de Volume (RVE)

e gerar uma malha de elementos �nitos, recorrendo a microgra�as reais, com duas ou três

dimensões. De seguida, e utilizando os RVEs gerados por este método, são utilizados modelos

Multi-Escala para estudar as propriedades elásticas homogeneizadas de materiais heterogéneos,

através do cálculo do tensor de rigidez para casos ortotrópicos.

Além disso, é estudado o tamanho do RVE e da malha de elementos �nitos em materiais

com duas e três fases. A in�uência do rácio entre a rigidez da �bra e da matriz no tamanho

do RVE e nas propriedades elásticas homogeneizadas também é analisada e comparada com os

métodos analíticos, como é o caso dos limites de Hashin-Hill e do modelo de Mori-Tanaka. A

introdução de um novo material na interface entre a �bra e a matriz altera o comportamento

do compósito e, como tal, este parâmetro é igualmente investigado. No caso apresentado, são

também deduzidas expressões analíticas para estimar o módulo de Young homogeneizado no

plano que estão em concordância com os resultados obtidos numericamente.

Por último, o método aqui referido não considera simpli�cações à escala microscópica e

permite modelar qualquer constituinte, independentemente da sua forma e do tipo de compor-

tamento constitutivo que possui. Assim sendo, pode-se concluir que a modelação de microestru-

turas através do reconhecimento de microgra�as perfaz um método inspirador e revolucionário

no desenvolvimento e caracterização de novos materiais heterogéneos.

Palavras-chave: Micro-mecânica; Modelos Multi-Escala, Homogeneização, Propriedades efe-

tivas; Materiais heterogéneos; OOFEM; DIB.
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Chapter 1

Introduction

For many years, the so called homogeneous materials have been used in a wide range of appli-

cations. Since the mid-19th century, new processes have been developed and steel started to

be mass-produced, being, since then, one of the most popular structural materials that exists,

even nowadays. Other alloys, like aluminium, copper, nickel, titanium, are also widely used

on everyday engineering components due to their good mechanical properties. From the point

of view of a mechanical engineer, these materials are well studied and documented in terms

of their properties (elastic, thermal, electrical, and so on). For example, steel, as an isotropic

material, exhibits the same properties regardless the direction it has been loaded. However,

when considering heterogeneous materials, these assumptions are not valid and a deeper anal-

ysis is needed to fully understand their properties and to be able to correctly choose a material

regarding the �nal application.

Over the last years, a signi�cant focus is being placed on the development of new hetero-

geneous materials. The high speci�c sti�ness (sti�ness to weight ratio) is one of their major

attributes, making high-end �elds like aeronautics and naval industries interested in such mate-

rials. Ceramic-metal composites also have great potential in various technological �elds, due to

their increased thermal, mechanical and electrical properties. In the framework of this thesis,

the elastic properties of heterogeneous materials are analysed, taking into account that their

behaviour is highly dependent on the material microstructure.

Several experimental procedures can be performed to �nd the elastic properties of a given

material, but these analyses are very expensive and time-consuming. Since the late 19-century

with Woldemar Voigt, analytical methods are being developed to estimate the overall elastic

properties of composite materials, taking into account the elastic properties of the constituents.

The Voigt model (Voigt, 1889), also known as the rule of mixtures is a simple linear method

but, more recently, other authors have been creating more complex and meaningful models,

as the Mori-Tanaka method (Mori and Tanaka, 1973) that also aims to predict the e�ective

properties of heterogeneous materials.

1
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Following the high evolution of computational power, numerical methods, like the Finite

Element Method, are being widely used to solve the mathematical equations that govern the

behaviour of the materials when a load or deformation is applied. However, conventional macro-

scopic constitutive models do not take into consideration complex phenomena that occur at the

microstructure level and may in�uence the global behaviour. A new approach that considers

both macro and microscales is being developed: Multi-Scale models. Instead of using constitu-

tive models to characterize the behaviour of a solid, this method is based on the analysis of a

Representative Volume Element (RVE), which is a model of the microstruscture of the material.

The RVE contains information about the constituents properties and geometry. Homogenization

techniques are employed to obtain macroscopic properties from microscopic scales.

More recently, Digital Image Based (DIB) microstructure recognition is under development,

aiming to generate a model of the microstructure according to a real micrograph of the consid-

ered material. With this technique, it is possible to create a �nite element mesh for the RVE

based on an micrograph of the material at the microscale. After the solution of the micro-

equilibrium equations of the RVE, the homogenized stress and strain are computed and an

estimation of the e�ective elastic properties of the material can be obtained. This estimation

is more accurate than those made by the analytical methods, since it takes into account the

geometry of the microstructure and not only the properties of the phases.

1.1 Goals

The main goal of this thesis is to investigate and explore recent developments in image ac-

quisition and non linear �nite element models to estimate the e�ective elastic properties of

heterogeneous materials based on a DIB microstructure recognition technique.

In order to accomplish this, a basic knowledge of Continuum Mechanics, Micromechanics

and Multi-Scale models is required to better understand the concepts behind the program used

to solve the equilibrium equations, Micro-Scale Problem (MSP).

The DIB microstructure recognition is developed with the Linux® open-source program

OOF2 ("Object Oriented Finite-Elements", version 2), hence, understanding this program is

essential and is deemed as the �rst step to accomplish the goal of this thesis. A Matlab®

script has to be made to convert the output information of OOF2 to the required information

of MSP, and later, another Matlab® script needs to be created to compute the e�ective elastic

properties from the output information of the MSP. The program OOF3D ("Object Oriented

Finite-Elements", 3D version), that creates �nite element meshes from 3D RVEs like CT scans,

is also going to be explored.

To correctly estimate these properties, several studies have to be made a-priori. A study

about the RVE size needs to be done to �nd the smallest size that still correctly represents the

microstructure. The in�uence of di�erent parameters in the RVE size is going to be analysed

(e.g. the ratio between the �ber and matrix sti�ness). The dependency of the overall elastic
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properties with a change in the sti�ness ratio and the in�uence of an interface material in these

properties are also set as a goals.

1.2 Main Procedure

To achieve the �nal result that estimates the overall elastic properties of a heterogeneous ma-

terial based on its micrograph, a general procedure must be followed (Figure 1.1). The main

structure of this procedure is explained in the next chapters.

Figure 1.1: Scheme that represents the process to estimate the e�ective elastic properties of a
heterogeneous material.
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In Figure 1.1, the variable k represents an iteration. For the case of a two dimensional plane

strain problem, pure normal strains in the x− and y−direction and pure shear strain in the

x − y plane must be applied to the RVE to calculate all the components of the constitutive

tensor, hence, k = 3. In the case of a three dimensional problem, the number of unknown

coe�cients is higher, thus, x−, y− and z−direction pure normal strains and x − y, x − z and

y − z plane pure shear strains must be applied to the RVE and, therefore, k = 6.

1.3 Structure of the Document

In this section, the overall structure of the document is going to be addressed. This thesis is

divided into several chapters and, in the end of the document, a set of annexes and the references

are compiled. Furthermore, a brief introduction to the chapters is, hereinafter, made.

Chapter 2

In this chapter, the concepts regarding Continuum Mechanics and Finite Element Method are

presented. In the beginning, the theories that lead to the equations that govern the behaviour of

a material under deformation are denoted. The whole formulation is made under the assumption

of large deformation theory. Later, the numerical implementation of such equations is explained.

Chapter 3

In this chapter, basic concepts about Micromechanics and Multi-Scale models are presented.

The notion of Representative Volume Element (RVE) is introduced, along with the admissible

kinematical boundary conditions that can be applied to it. The numerical implementation of

this procedure is also brie�y described.

Chapter 4

In order to generate RVEs that can correctly characterize the microstructure, the Digital Image

Based (DIB) microstructure recognition is introduced in this chapter. It uses real micrographs

of materials to extract the constituents' information and to generate a �nite element mesh that

can model its behaviour. The detailed procedure is followed by an example to facilitate the

understanding of this technique.

Chapter 5

Here, the Hooke's Law is presented, along with several analytical methods that aim to esti-

mate the homogenized elastic properties of heterogeneous materials. Furthermore, a numerical

approach based on the DIB microstructure recognition technique is introduced, followed by an

example that validates the code used to compute these homogenized properties.
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Chapter 6

In this chapter, the size of the RVE is studied, considering the e�ect of the sti�ness ratio

between the �ber and matrix materials, along with the mesh size that correctly models the

microstructure. A comparison between the numerical and analytical models is performed and

the in�uence of the sti�ness ratio on the homogenized elastic properties is presented.

Chapter 7

Following the study done for two-phase materials, in this chapter, the insertion of an interface

material in-between is analysed. The in�uence of this new material on the RVE size and on

the mesh re�nement is presented to validate the numerical results. Moreover, mathematical

equations that express the homogenized plane Young's modulus for an unidirectional �ber

composite are deduced, achieving good approximations with the numerical results.

Chapter 8

Finally, in this chapter, a conclusion note about the work performed in this thesis is presented,

along with suggestions to keep developing this technique in future works.
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Chapter 2

Continuum Mechanics and Finite Element

Method

In order to be able to discuss Multi-Scale Models, there are some concepts that should be

introduced �rst. Continuum Mechanics establishes the theory, the entities and the physical

relations that are required to create a model capable of describing the behaviour of a solid. This

was �rst formulated by the French mathematician Augustin-Louis Cauchy and it is a branch

of mechanics that deals with the kinematics and the mechanical behaviour of the materials

while assuming that they are modelled as a continuum medium instead of discrete particles. In

reality, matter does not completely �ll the space it occupies, it is formed by molecules which are

composed by atoms and subatomic particles, and consequentially it is not continuous. However,

on length scales much greater than that of the inter-atomic distance, such assumptions can be

made. Within this theory, the term "particles", refer to an in�nitesimal volume of material

which the totality forms a body.

Due to the complexity of problems within the �eld of solid mechanics, various numerical

techniques were developed. One of the most popular techniques is the Finite Element Method. In

a simple way, this method is able to approximate solutions for boundary value problems governed

by a set of di�erential equations through the discretization of the domain of the problem in

sub-domains called �nite elements where variable �elds are interpolated. The simple equations

that are used in each �nite element are then assembled into a larger system of equations that

model the entire problem. It is regarded as one of the most powerful numerical tools, given its

high �exibility and the ability to be easily implemented on a computational level.

In this chapter, some fundamental topics about this matter are explained in order to simplify

the concepts further presented. These are based on the textbooks of Neto et al. (2008) and Lai

et al. (2010) and for a more detailed study, one should read the aforementioned references.

7
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2.1 Kinematics of Deformation

In continuum mechanics two approaches of the theory can be found: the in�nitesimal strain

theory and �nite strain theory (or large strain/deformation theory). The latest, deals with

large deformations of the material, which makes it important to clearly distinguish between the

undeformed and deformed con�gurations of the solid, invalidating the assumptions made in the

in�nitesimal strain theory.

Let B be a body which, in its reference con�guration, occupies a region Ω of the three-

dimensional Euclidean space E with a regular boundary ∂Ω .

The displacement of this body can be separated in two components:

� Rigid-body displacement, that consists of a translation and/or rotation of the body

without changing its shape. The relative displacement between particles is null.

� Deformation, that implies the change of shape and/or size of the body from the initial

or undeformed con�guration to the current or deformed one.

The deformation of B is deemed as a smooth one-to-one function that exists inside the

three-dimensional Euclidean space

ϕ : Ω→ E ,

which describes the position x of each material particle X of B into a point of the deformed

con�guration ϕ(B),

x = ϕ(X). (2.1)

A body motion can be de�ned as a time-dependent deformation, so for each time t the

position of the particle is given by:

x = ϕ(X, t), (2.2)

which throughout the document will also be denoted as ϕt.

Figure 2.1: Deformation of a body.
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In Figure 2.1, it is possible to see that the displacement vector �eld is de�ned by the

di�erence between the position of the particle at time t and its initial con�guration,

u{X, t} = ϕ(X, t)−X, (2.3)

enabling the position of the particle X in the deformed con�guration of the solid ϕ(B) to be

expressed as:

x = X + u{X, t}. (2.4)

The velocity of a material particle X is de�ned as the derivative of the motion ϕ with

respect to time,

ẋ{X, t} =
∂ϕ(X, t)

∂t
. (2.5)

With the assumption that ϕ(X, t) is invertible (at each time t, the map function is an one-

to-one function) one can express the material points, X, in terms of the place they occupy in

the deformed con�guration,

X = ϕ−1(x , t) = x − u{ϕ−1(x , t), t}, (2.6)

where ϕ−1(x , t) is the map function for the initial con�guration or the reference map. Based

on this function it is possible to de�ne:

v{x , t} ≡ ẋ{ϕ−1(x , t), t}, (2.7)

as the spatial velocity that gives the velocity of the material particle positioned at x at time t.

2.1.1 Material and Spatial Fields

Both �elds ẋ and v represent the velocity of the material particles during the deformation but

are related to di�erent arguments and consequentially to di�erent references. Both of them have

time as an argument but while ẋ has the material particle X as the other argument, v is a

function of the spatial position x . Based on this two di�erent types of analyses, two descriptions

of the body motion can be made: the material description and the spatial description.

The �rst one, also known as Lagrangian formulation, consists on the evolution of the vari-

ables in a �xed material point X of the body B as it deforms.

The spatial description, or Eulerian formulation, is based on the analysis of the variables in

a �xed point of space x .

2.1.2 Deformation Gradient

It is possible to de�ne the deformation gradient, F , as the second-order tensor of the motion ϕ

(based on material description),

F{X, t} = ∇X ϕ(X, t) =
∂x t
∂X

, (2.8)



10 Faculty of Engineering of the University of Porto

and taking into account the relation in (2.4), the last expression can be de�ned as:

F{X, t} ≡ I +∇X u , (2.9)

where I is the second-order identity tensor.

Taking the spatial description, the deformation gradient is written as:

F{x , t} ≡ [∇x ϕ(x , t)]−1 ≡ [I −∇x u ]−1. (2.10)

In the previous equations, the operators ∇X and ∇x de�ne, respectively, the gradient op-

erator in material and spatial description. In order to understand the concept of deformation

gradient, one material �ber should be considered. This in�nitesimal �ber, dX, connects two

neighbouring material particles: X and X+dX (Figure 2.2). After the deformation ϕt, this

particles are moved to their new and deformed positions, x and x+dx . The deformation gra-

dient is the linear operator that relates the in�nitesimal material �bers dX with the deformed

ones dx ,

dx = FdX. (2.11)

Figure 2.2: Deformation Gradient.

If the deformation gradient applied to B is uniform, the deformation is called homogeneous

deformation. This happens if and only if it admits the representation,

ϕ(p) = ϕ(q) + F (p − q), (2.12)

for all points p, q ∈ B, with F being a positive de�nite tensor.

Isochoric and Volumetric Decomposition of the Deformation Gradient

In order to introduce the concept of isochoric and volumetric deformation, it is important to

de�ne the determinant of the deformation gradient,

J = detF , (2.13)
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as the change of volume after deformation per unit of the initial volume (reference con�guration),

J =
dv
dv0

. (2.14)

Basically, it represents the volume change ratio of the body B. The determinant of the gradient

must always satisfy J > 0 because the in�nitesimal volume cannot collapse into a single material

particle.

Now that the determinant of the deformation gradient is explained, one can de�ne the

following types of deformations:

Isochoric deformation - In an isochoric deformation, the change of volume is null (iso-

choric means conservation of volume) and so, taking into account Expression (2.14), it can be

denoted by the following mathematical equation:

J = 1. (2.15)

Volumetric deformation - A volumetric deformation consists of a purely uniform con-

traction/dilation of the body B in all directions and, consequently, the deformation gradient

of any volumetric deformation can be expressed by the following tensor:

F = αI , (2.16)

where the scalar α is the deformation ratio. This deformation ratio can be obtained by dividing

l with l0, which are the deformed and undeformed lengths of a material �ber.

To take into account this two types of deformations, it is important to note that any defor-

mation that is imposed to the body B can be decomposed as a purely isochoric deformation

followed by a volumetric deformation or, conversely, as a volumetric deformation followed by

an isochoric one,

F = F isoF v = F vF iso, (2.17)

where F iso and F v are, respectively, the isochoric and the volumetric components of the defor-

mation gradient. This two types of deformations can be expressed as a function of F ,

F iso ≡ J−
1
3F , (2.18a)

F v ≡ J
1
3 I . (2.18b)

It is important to note that, as expressed by the following expression:

detF v = [J
1
3 ]3detI = J, (2.19)

the volumetric component F v, produces the same volume change as F .
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Figure 2.3: Representation of left and right polar decomposition of F .

Polar Decomposition of the Deformation Gradient

The deformation gradient can also be decomposed by a set of pure rotations or elongations. By

applying the polar decomposition to this tensor, one obtains:

F = RU = VR, (2.20)

where the orthogonal tensor R denotes the local rotation tensor and the symmetric positive

de�nite tensors U and V are, respectively, the right and left stretch tensors, which are related

by the rotation tensor,

V = RURT . (2.21)

As shown in Figure 2.3, in the right polar decomposition F = RU , �rst the stretches are

mapped by U and then the rotation is applied, contrariwise, if one considers the left polar

decomposition F = VR, the rotation is mapped before the stretches. Considering the spectral

decomposition of the stretch tensors, these can be denoted as:

U =
3∑
i=1

λil i ⊗ l i, (2.22a)

V =

3∑
i=1

λie i ⊗ e i, (2.22b)

in which the eigenvalues, λi, shared by both tensors, are the principal stretches and the eigen-

vectors de�ne the Lagrangian (l i) and Eulerian (e i) principal directions, which are related

through:

l i = Re i. (2.23)
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The right and left stretch tensors can be expressed by:

U =
√
C , (2.24a)

V =
√
B , (2.24b)

where the tensors C and B , named, respectively, right and left Cauchy-Green strain tensors,

are a function of the deformation gradient:

C = FTF , (2.25a)

B = FFT . (2.25b)

2.2 Strain Measures

Aiming to describe the deformation of a body B, several tensors have been proposed. Fur-

thermore, all of them derive from the deformation gradient and characterize the same physical

phenomenon. The selection process is related with the commitment between the phenomenon

and the mathematical framework.

The two main families to quantify the strain of a solid are the Lagrange and the Euler strain

tensors. The Lagrange strain tensor is a function of the right stretch tensor and it is de�ned

by:

E (m) =

 1
m(Um − I ) , if m 6= 0,

ln[U ] , if m = 0,
(2.26)

and the Euler strain tensor is a function of the left stretch tensor,

ε(m) =

 1
m(Vm − I ) , if m 6= 0,

ln[V ] , if m = 0.
(2.27)

In this expressions, m is a real value and ln[·] denotes the tensor logarithm of [·]. The value of
this tensors is null if the motion of the body B is a rigid-body displacement. The Lagrangian

and Eulerian strain tensors only di�er by the local rotation R and are related by the next

expression:

ε(m) = RE (m)RT . (2.28)

The program used during the project takes into account large deformations and has the

logarithmic Lagrange strain tensor (m = 0) implemented. This tensor is also called Hencky

tensor and is de�ned as:

E = ln[U ] ≡ ln
[√

FTF
]
. (2.29)

In the case of in�nitesimal deformations, the reference and the deformed con�gurations

coincide, and the tensors of both families can be approximated by the in�nitesimal strain
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tensor:

ε = ∇su =
1

2

[
∇u + (∇u)T

]
. (2.30)

2.3 Stress Measures

The deformation of a solid is directly related with the applied forces. These forces can be

divided into two categories: boundary forces and body forces. Body or volume forces exist

on the interior of the body and are measured in force per unit volume (e.g. magnetic and

gravitational forces). The boundary or surface forces are measured in force per unit area and,

as the name implies, are applied on the boundary of the body and are transmitted across

its interior. Internal interaction forces arise from the action of one part of the body upon an

adjacent part and are transmitted across the surface that separates them. The concept of stress,

whose units are force per unit area, exists to quantify these surface forces mathematically and,

as the strain measures, there are several stress tensors to de�ne it in di�erent ways. In this

section the Cauchy and the �rst Piola-Kirchho� stress tensors are presented.

2.3.1 Cauchy Stress Tensor

The Cauchy stress tensor, σ, is a spatial description of the stresses since it refers to the deformed

con�guration. In the literature it is often referred as the true stress tensor or, simply, stress

tensor and it is de�ned by:

t{x ,n} = σ{x}n . (2.31)

In this Expression, t is the resulting surface traction and n is the unit outward vector normal

to the considered surface of the deformed con�guration of the solid ϕ(B). As a result of the

balance of angular momentum, the Cauchy tensor is symmetric,

σ = σT . (2.32)

This symmetric stress tensor can also be split into a spherical and traceless component:

σ = s + pI , (2.33)

where the invariant,

p ≡ 1

3
trσ (2.34)

is the hydrostatic pressure and s denotes the deviatoric stress tensor.

2.3.2 First Piola-Kirchho� Stress Tensor

The �rst Piola-Kirchho� stress tensor, P , is a material description of the stresses, therefore it

is related with the undeformed (reference) con�guration of the body B. It can be related with
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the Cauchy tensor by:

P = JσF−T . (2.35)

Unlike the Cauchy tensor, the �rst Piola-Kirchho� tensor is not necessarily symmetric.

2.4 Governing Equations and Balance Laws

Until this section, some of the variables that characterize the motion and deformation of a

solid were introduced, along with the relevant strain and stress measures. However, continuum

mechanics deals with the behaviour of materials that can be approximated to a continuum

media for certain lengths and time scales, and, in order for this model to be accurate, several

fundamental laws must be complied. Besides the thermodynamic principles, like the Second Law

of Thermodynamics, that are not stated here, the Conservation of Mass and the Momentum

Balance Principle govern the deformation of a solid and are further discussed.

2.4.1 Conservation of Mass

The postulate of conservation of mass requires that,

ρ̇+ ρ divxu̇ = 0, (2.36)

where ρ is the density of the solid and divx(·) denotes the spatial divergence operator.

2.4.2 Momentum Balance

The Cauchy's theorem denotes that the balance of momentum for B in terms of the Cauchy

stress tensor (Section 2.3.1) can be expressed by the following partial equations with boundary

conditions: divx σ + b = ρü , in ϕ(Ω),

t = σn , on ϕ(∂Ω),
(2.37)

where b represents the volume (or body) forces in the deformed con�guration, t is the applied

boundary traction vector �eld and n is the outward unit vector normal to the deformed bound-

ary, both of them on ∂Ω. Equation (2.37) is known as Cauchy's equation of motion and it is

formulated in the spatial description.

This principle may also be expressed in the material description (reference con�guration of

B) in terms of the �rst Piola-Kirchho� stress tensor,divX P + b̄ = ρ̄ü , in Ω,

t̄ = Pn̄ , on ∂Ω,
(2.38)
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where b̄ is the volume force in the reference con�guration,

b̄ = Jb, (2.39)

ρ̄ is the reference density (mass per unit of volume in the undeformed con�guration),

ρ̄ = Jρ, (2.40)

and t̄ represents the traction �eld on the undeformed boundary with normal outward unit

vector n̄ .

In both cases, these equations de�ne the Strong Equilibrium Equations.

2.5 Weak Equilibrium Equations

Implementing the solution of the strong equilibrium equations in a numerical framework is

di�cult and not desirable, hence, the Integral or Weak Equilibrium Equations are formulated.

They are the basis of the �nite element methods and are obtained from the application of

a variational principle to the equilibrium equations. In this section the weak formulation is

obtained after the implementation of the Virtual Work Principle (subjugated to the Principle

of Least Action).

Considering a quasi-static deformation, in which the inertia e�ects of the solid are neglected

(e.g. application of a force in a slow and incremental way), the weak formulation can be

expressed in both the spatial and material descriptions.

2.5.1 Spatial Description

In the Eulerian description, the equilibrium is related to the deformed con�guration and it is

stated in terms of the Cauchy stress tensor:∫
ϕ(Ω)

[σ : ∇xη − b · η] dV −
∫
ϕ(∂Ω)

t · η dA = 0, ∀η ∈ V, (2.41)

where η denotes the virtual displacements that belong to the space of admissible virtual dis-

placements V.

2.5.2 Material Description

The quasi-static Lagrangian description is associated with the �rst Piola-Kirchho� stress tensor

and with the reference con�guration. It is expressed as:∫
Ω

[
P : ∇Xη − b̄ · η

]
dV −

∫
∂Ω
t̄ · η dA = 0, ∀η ∈ V. (2.42)
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2.6 Finite Element Method

The weak equilibrium equations shown in Section 2.5 present a high degree of complexity,

making it impossible to obtain solutions in an analytic way for solids with complex geometries

or constitutive models. In order to solve this problem, one resorts to the numerical methods,

being the Finite Element Method the most widespread numerical tool to predict the mechanical

behaviour of a solid, in both scienti�c and industrial environments. Although the solution is

not exact, provided that the error associated with the approximated solution is negligible, the

result can be taken into consideration.

In this section, it is presented a summary of the application of the �nite element method to

quasi-static non linear solid mechanics.

To use the �nite element method some steps must be ful�lled a priori:

1. Integral formulation of the problem;

2. Spatial domain discretization;

3. Time domain discretization;

4. Resolution of the system of equations that arises from the previously mentioned steps.

All of this stages are addressed hereafter.

2.6.1 Integral Formulation of the Problem

The integral formulation (weak formulation) of the problem was already presented in Sec-

tion 2.5.1 and 2.5.2 for the spatial and material description, respectively. This was established

using the Virtual Work Principle but it can also be reached through di�erent methods, like the

Hamilton's Principle and the Method of Mean Weighted Residuals.

2.6.2 Spatial Discretization

The spatial domain refers to the solid under analysis and its discretization is the basis of the

�nite element method. The spatial domain is divided into a �nite number of subdomains, ne,

called �nite elements (being the spatial domain of each element represented by Ωe). The set of

all �nite element domains de�nes the discretized solid domain, Ωd:

Ω ≈ Ωd =

ne⋃
e=1

Ωe (2.43)

where
⋃

refers to the union operation.

Interpolation of Variables

Each element is de�ned by a number of nodes, nn, and the variables of interest are evaluated

in these nodes. All relevant �elds are then obtained through interpolation inside each element.
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Figure 2.4: Finite element interpolation. The element and global shape function.

Considering a generic vectorial �eld a{x}, this interpolation process can be represented by:

a{x} =

nn∑
i=1

N e
i (x) a{xi}, x ∈ Ωe, (2.44)

in which a{xi} denotes the nodal value of the vectorial �eld and N e
i (x) the interpolation

function, also named as shape function, evaluated at a point x inside the element.

The shape functions depend on the type of element and have, among others, the Kronecker

delta characteristic (Figure 2.4),

N e
i (xj) = δij , (2.45)

where δij is the Kronecker delta function,δij = 1 , if i = j,

δij = 0 , if i 6= j.
(2.46)

Taking into consideration the whole discretized domain Ωd, the global interpolation is de-

�ned in the same way. This approximation is given by:

a{x} =

np∑
i=1

Ni(x) a{xi}, x ∈ Ωd, (2.47)

where np is the number of nodes of the whole domain (since adjacent elements share nodes, np
is smaller than nn × ne) and Ni(x) is the global shape function, represented in Figure 2.4 and

zero-valued outside the adjacent elements.

In order to �nd the vector �eld in a generic point x of the discretized domain Ωd, it is

convenient to introduce the following standard matrix notation. Let ndof be the number of

degrees of freedom for each node np, such that the global shape function matrix can be de�ned

as:

N(x) =
[
diag [N1(x)] diag[N2(x)] . . . diag[Nnp(x)]

]
, (2.48)
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where diag [Ni(x)] denotes the ndof × ndof diagonal matrix,

diag [Ni(x)] =


Ni(x) 0 . . . 0

0 Ni(x) . . . 0
...

...
. . .

...

0 0 . . . Ni(x)

 , (2.49)

and, if all the nodal values are rearranged in a global vector ug,

ug = {u1
1 , . . . , u1

ndof
, . . . , . . . , u

np
1 , . . . , u

np
ndof}T , (2.50)

where the generic element uji is the i-component of the displacement vector of the global node

j, then the vectorial �eld in a point x can be expressed as:

a{x} = N(x) ug. (2.51)

In order to complete the spatial discretization, two operators must be introduced: the

discrete gradient operator, Gg, and the discrete symmetric gradient operator, Bg. Both must

be de�ned taking into account the type of problem that is going to be solved (i.e. 2 - dimensional

or 3 - dimensional �elds). For the 2 - dimensional problem, these operators, also named as

deformation matrices, are denoted as:

Bg =


∂N1
∂x 0 ∂N2

∂x 0 . . .
∂Nnp
∂x 0

0 ∂N1
∂y 0 ∂N2

∂y . . . 0
∂Nnp
∂y

∂N1
∂y

∂N1
∂x

∂N2
∂y

∂N2
∂x · · · ∂Nnp

∂y

∂Nnp
∂x

 , (2.52a)

Gg =


∂N1
∂x 0 ∂N2

∂x 0 . . .
∂Nnp
∂x 0

0 ∂N1
∂x 0 ∂N2

∂x . . . 0
∂Nnp
∂x

∂N1
∂y 0 ∂N2

∂y 0 . . .
∂Nnp
∂y 0

0 ∂N1
∂y 0 ∂N2

∂y . . . 0
∂Nnp
∂y

 . (2.52b)

Spatial Discretization of the Equilibrium Equations

Regarding the deformation matrices that were presented in the last section, the weak equilibrium

equations, concerning a �nite strain framework, can be discretized and, assuming the spatial

formulation, Equation (2.41) is given by:{∫
ϕ(Ωd)

[
(Bg)T σ−NT b

]
dV −

∫
ϕ(∂Ωd)

NT t dA

}T
· η = 0, ∀η ∈ Vd, (2.53)

where Vd represents the discretized virtual displacement space and σ is the vector representation

of the Cauchy stress tensor σ.
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Taking into account the material formulation, the discretized version of Equation (2.42) is:{∫
Ωd

[
(Gg)T P−NT b̄

]
dV −

∫
∂Ωd

NT t̄ dA

}T
· η = 0, ∀η ∈ Vd, (2.54)

in which P is the vector con�guration of the �rst Piola-Kirchho� stress tensor P .

According to the virtual work principle, the equations above have to be satis�ed for all

virtual displacements η. Therefore, the terms inside the brackets must be null. Thus, it is

possible to rewrite them as:

f int − f ext = 0, (2.55)

where f int and f ext are, respectively, the global internal and external force vectors, and in the

spatial form are denoted by:

f int =

∫
ϕ(Ωd)

(Bg)T σ dV, (2.56a)

f ext =

∫
ϕ(Ωd)

NT b dA+

∫
ϕ(∂Ωd)

NT t dA. (2.56b)

In the computational framework of the �nite element method, these force vectors are anal-

ysed element by element, and are obtained by integration over its domain,

f inte =

∫
ϕ(Ωe)

(Be)T σ dV, (2.57a)

f exte =

∫
ϕ(Ωe)

(Ne)T b dA+

∫
ϕ(∂Ωe)

(Ne)T t dA, (2.57b)

in the deformed con�guration. In the material formulation the force vectors are given by:

f inte =

∫
Ωe

(Ge)T P dV, (2.58a)

f exte =

∫
Ωe

(Ne)T b dA+

∫
∂Ωe

(Ne)T t dA, (2.58b)

The element force vectors are assembled to the global force vectors,

f int =

ne

A
e=1

f inte , (2.59a)

f ext =

ne

A
e=1

f exte . (2.59b)

Gaussian Quadrature

In order to obtain the solution of an integral in a numerical way, the Gaussian Quadrature is

the most commonly used method. To facilitate the use of this method, the coordinates of the

�nite elements are, usually, converted to parametric coordinates ζ (mapping from physical to

natural space). This conversion allows to solve complex structures in a more easy and expedite
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way. The transformation between coordinates is given by the Jacobian matrix:

J =
∂x

∂ζ
. (2.60)

The Gaussian quadrature method states that, by employing the following equality:

∫
Ω
a{x} dV =

∫ 1

−1
a{ζ} det(J) dζ ≡

nGP∑
i=1

a{ζi} Wi det(Ji), (2.61)

it is possible to reach the solution of an integration of a non-linearity �eld a of degree n over

the domain V , by replacing it with the weighted sum of the corresponding values, a{ζi}, in the

Gauss points (nGP), where Wi is the weight of each point. The number of Gauss points has to

be chosen accordingly with the degree n and the expression that connect both is:

n = 2× nGP− 1. (2.62)

2.6.3 Time Discretization

Usually, materials exhibit a behaviour that is dependent on the deformation history (i.e. defor-

mation rate or/and the loading path they were submitted to). In the �nite element method this

problem is solved through an incremental strategy, in which the time domain is discretized: the

time interval, [t0, t], is divided in n + 1 sub-intervals where the equilibrium equations must be

satis�ed. In order to make this possible, there must be an internal variable, θ, in the constitutive

relations of the material to store the information due to the previous increment.

Taking this into consideration, the constitutive stress response at increment n + 1 is ob-

tained considering the new current deformation state and the internal variables of the previous

increment,

σn+1 = σ̂{Fn+1,θn}, (2.63a)

Pn+1 = P̂{Fn+1,θn}, (2.63b)

for the spatial and material formulation, respectively, in which σ̂{Fn+1,θn} and P̂{Fn+1,θn}
are the incremental constitutive functional for each con�guration.

In the case of in�nitesimal deformations, the current deformation is de�ned by the in�nites-

imal strain tensor described in Equation (2.30), thus:

σn+1 = σ̂{εn+1,θn}. (2.64)

Therefore, considering Equation (2.41), the quasi-static incremental boundary value problem

(spatial con�guration) is de�ned as follows:

Given the set of internal variables, θn, and the displacement �eld obtained in the previous

increment, knowing the current applied forces bn+1 and tn+1, �nd the displacement �eld, un+1,
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that satis�es,∫
ϕ(Ω)

[σ̂{Fn+1,θn} : ∇xη − b · η] dV −
∫
ϕ(∂Ω)

t · η dA = 0, ∀η ∈ V. (2.65)

2.6.4 Incremental Finite Element Solution

If the �nite element discretization is applied to the problem stated before, Equation (2.65), can

be expressed as:

r{un+1} = f int{un+1} − f extn+1 (2.66)

where the unknown variable is the nodal vector displacement un+1 such that the residual r

is null (or extremely small). The force vectors are rewritten to take into consideration the

incremental constitutive functional and are assembled from their elemental counterparts,

f inten+1
=

∫
ϕ(Ωe)

(Be)T σ̂{Fn+1,θn} dV, (2.67a)

f exten+1
=

∫
ϕ(Ωe)

(Ne)T bn+1 dA+

∫
ϕ(∂Ωe)

(Ne)T tn+1 dA. (2.67b)

Due to the possible non-linear material behaviour or to geometrical non-linearities, Equation

(2.66) is non-linear and so, in order to solve it in a computational way, a sturdy and e�cient

method must be utilized. The iterative Newton-Raphson method (Figure 2.5) is one of the most

popular numerical tools for this matter, as it has a quadratic rate of asymptotic convergence

that allows to obtain the solution in a faster and easier way.

Figure 2.5: The Newton-Raphson algorithm for the incremental �nite element solution.
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For the increment n + 1, the initial guess for the displacement �elds is assumed to be the

last converged value, u(0)
n+1 = un, and within iteration (j) it is updated as:

u
(j)
n+1 = u

(j−1)
n+1 + ∆u(j), (2.68)

where ∆u(j) is obtained in each iteration (j) of the Newton-Raphson method through the

resolution of the linearised version of the equilibrium equation:

K
(j−1)
T ∆u(j) = r{u(j−1)

n+1 }. (2.69)

The global tangent sti�ness matrix KT is obtained as:

K
(j−1)
T =

∂r

∂un+1

∣∣∣∣
u

(j−1)
n+1

=

ne

A
e=1

∫
ϕ(Ωe)

(Be)TDBe dV, (2.70)

where D is the matrix representation of the spatial tangent modulus,

D =
∂σ

∂F
. (2.71)

This iterative process occurs until a convergence criterion, imposed a priori, has been achieved,

i.e.
‖ r ‖
‖ f ext ‖

< tol.
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Chapter 3

Micromechanics and Multi-Scale Models

As previously explained, in continuum mechanics one considers that in an in�nitesimal point

the material can be classi�ed as homogeneous. This leads to the assumption that the stresses

and strains observed within the in�nitesimal material neighbourhood that surrounds that in-

�nitesimal point can be regarded as essentially uniform. Thus, the majority of the constitutive

models (laws that de�ne the relation between stress and strain) are based on these assumptions,

considering the material as an homogeneous entity.

Although a large number of materials can be analysed in this manner, if one thinks of a more

complex range of materials (e.g. composite materials) these assumptions are not valid because,

at the microscale, this in�nitesimal neighbourhood may be composed by di�erent constituents

and even cracks and voids. If a body with such complex microstructure is submitted to high

levels of deformation, these microstructure constituents start to develop several mechanisms

(e.g. plastic localization, void coalescence and micro-cracking) that will play a major role on

the macroscopic behaviour of the material and, despite the fact that the traditional constitutive

models are able to achieve accurate and reliable results, the need for models that can take into

account these microstructural interactions is high, as it provides a good foundation for the

analysis of multi-phase materials and for the design of new ones.

Therefore, a Multi-Scale approach is introduced in which two scales are considered: the

macroscale, where macroscopic information such as the geometry of the body and the applied

load are de�ned, and the microscale, where microscopic phenomena occurs with a great impor-

tance for the macroscopic behaviour.

A Representative Volume Element (RVE) is used to de�ne the microscale of the problem as it

should contain enough information about the microstructure of the material. The macroscopic

deformation gradient, consequence of the macroscale properties, is applied to the RVE and a

RVE equilibrium problem is solved, resulting in a microscopic stress �eld that is homogenized

to obtain the macroscopic stress tensor. Furthermore, it is possible to assign a RVE to each

integration point of the macroscopic �nite element mesh in order to solve the microscale problem

in all of them, giving rise to the Coupled Multi-Scale Analysis. This numerical tool is generic

25
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and universal, as it is possible to properly analyse all kinds of microstructures presented in a

material.

In this chapter, Multi-Scale models are described, the concept of Representative Volume

Element is introduced and the theory for scale transition, homogenization and the classical

boundary conditions are presented. The numerical approximation of these principles through

the Finite Element Method is also brie�y explained. For a more detailed study on these topics,

the following references are suggested: Nemat-Nasser et al. (1993); Neto et al. (2008); Reis

(2014).

3.1 Representative Volume Element

Despite the fact that a material can be considered homogeneous at the macroscale, when the

microscale is taken into consideration, the microstrutcture is usually composed of multiple het-

erogeneities and singularities that in�uence the whole behaviour of the material. With that in

mind, Hill (1963) suggested that it should exist a sub-region that would be statistically repre-

sentative of the microstructure of the material and named it Representative Volume Element

(RVE). In this geometrical microscale model, each phase, constituent or singularity is explicitly

represented as it is demonstrated in Figure 3.1.

Figure 3.1: Macro and microscales and respective sizes.

Several authors have been proposing their de�nition of RVE (Hashin, 1983; Nemat-Nasser

et al., 1993; Gitman et al., 2007) but the main idea is that the RVE should be large compared

to the microstructural singularities, being statistically representative of them, but it must be
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small enough so that it can be considered an in�nitesimal point at the macroscale, allowing

the application of the homogenization procedure. This concept leads to the so-called scales

separation principle (Hashin, 1983) and is better understood through the following equation:

Lhet � LRVE � Lmacro, (3.1)

where Lmacro is the macroscopic size of the structure, LRVE is the size of the RVE and Lhet is

the typical size of the microstructural heterogeneities, as illustrated in Figure 3.1.

The de�nition of RVE size is the main scope of this work, as it is one of the most important

features to take into account. It depends on the complexity of the microstructure and on the

behaviour of its constituents, and it should be as small as possible while containing all of the

information needed to be statistically representative of the microstructure. A large RVE requires

a lot of computational power to be analysed, even more if it is included in a global macroscopic

analysis, since in this type of simulation several RVEs' analyses are performed. Thus, it is

important to �nd the right balance between a RVE that is statistically representative of the

microscale singularities but is still a�ordable on a computational level. Several studies about

this matter are presented on this thesis.

Nonetheless, there are some cases where the existence of a RVE is questionable. For instance,

as shown in Gitman et al. (2007), when there is a material that shows strain localization with

global softening behaviour, the possibility to �nd a RVE that is still statistically homogeneous

vanishes.

It is important to note that, even if the traditional constitutive laws are not su�ciently

accurate to predict the macroscopic behaviour of a material with complex microstructure, these

models are used to successfully characterize the behaviour of each microstructural constituent,

due to the fact that they are considered as continuum matter at the microscale.

3.2 Scale Transition Theory

For a better understanding of the subjects presented in the forthcoming sections, the notation

used throughout the present document is introduced. As denoted in the previous chapter, x and

X are the characters used to describe an in�nitesimal point in the deformed and undeformed

con�gurations at the macroscale, respectively. On the other hand, if one is referring to the

microscale, y denotes the coordinates of the in�nitesimal point in the deformed con�guration

and Y on the undeformed state.

The scales separation principle, that has already been introduced, states that the size of the

RVE should be several times bigger than those of the micro heterogeneities but much smaller

that the macro structure size. This principle must be satis�ed to allow the homogenization of

the stress and strain �elds.
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3.2.1 Numerical Homogenization

Primarily, it is important to introduce the numerical homogenization procedure since it is one

of the core concepts of the multi-scale models. It enables the computation of macroscopic �elds

through a volumetric average of their microscopic counterparts over the RVE, in a material

description.

To illustrate, let A{y} be a generic tensorial �eld de�ned at the microscale, then its corre-

sponding homogenized tensor, A{x}, is denoted by:

A{x} =
1

Vµ

∫
Ωµ

A{y} dV, (3.2)

where Ωµ is the undeformed domain of the RVE and Vµ is the volume on the reference con�g-

uration.

3.3 Microscale Equilibrium Problem

In this section, the procedure to �nd the microscopic stress �eld is introduced, being this the

basis to the homogenized stress tensor. Furthermore, as the problem is formulated under the

large strain theory, the deformation gradient, F , is utilized to de�ne the prescribed strains and,

since the homogenization procedure is applied to the initial con�guration, the homogenized �rst

Piola-Kirchho� stress tensor is obtained. This procedure is demonstrated in Figure 3.2.

Finally, this problem is going to be divided into the following steps:

1. Determination of the microscopic deformation gradient;

2. De�nition of the admissible microscopic displacement �eld;

3. Description of the RVE equilibrium;

4. Presentation of the Hill-Mandel principle;

5. Homogenization of the �rst Piola-Kirchho� stress tensor.

3.3.1 Microscopic Deformation Gradient

Considering a large deformation theory, the deformation applied to the RVE is characterized

through a deformation gradient. As aforementioned, the homogenization procedure allows the

determination of the macroscopic �elds through their microscopic correspondence. Hence, for

a generic macroscopic point x in an instant t, the macroscopic deformation gradient F {x, t} is
given by:

F {x, t} =
1

Vµ

∫
Ωµ

F {y, t} dV, (3.3)

where the microscopic deformation gradient, F {y, t}, can be expressed as,

F {y, t} = I +∇X u{y, t}, (3.4)
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Figure 3.2: Representation of the procedure to solve a multi-scale problem.

where ∇X is the gradient operator in material description. As a result, Expression (3.3) is

rewritten as,

F {x, t} = I +
1

Vµ

∫
Ωµ

∇X u{y, t} dV. (3.5)

Applying the macroscopic deformation gradient to the RVE generates a microscopic dis-

placement �eld, u{y, t}, and, without losing generality, this �eld can be decomposed as the

sum of its linear part and the displacement �uctuation �eld,

u{y, t} = (F {x, t} − I)Y + ũ{y, t}, (3.6)

where the linear part depends on the prescribed deformation gradient and the displacement

�uctuation �eld, ũ{y, t}, is the unknown variable of the microscopic equilibrium problem.

As a consequence, the microscopic deformation gradient can be de�ned in terms of its

macroscopic counterpart and the displacement �uctuation �eld,

F {y, t} = I +∇X u{y, t}

= I +∇X [(F {x, t} − I)Y + ũ{y, t}]

= F {x, t}+∇X ũ{y, t}.

(3.7)
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3.3.2 Admissible Microscopic Displacement Field

Having established the macroscopic deformation gradient (Equation (3.5)) and the microscopic

displacement �led (Equation (3.6)), it is possible to obtain the following equation:

F {x, t} = F {x, t}+
1

Vµ

∫
Ωµ

∇X ũ{y, t} dV, (3.8)

and, applying the Gauss theorem,∫
Ωµ

∇X ũ{y, t} dV =

∫
∂Ωµ

ũ{y, t} ⊗N{Y } dA = 0, (3.9)

that de�nes the minimal kinematical admissible constraint, which de�nes the space of admissible

displacement �uctuation,

K̃ ≡

{
ũ, su�ciently regular |

∫
∂Ωµ

ũ{y, t} ⊗N{Y } dA = 0

}
, (3.10)

where N{Y } is the outward unit vector normal to the boundary of the undeformed con�gura-

tion of the RVE, ∂Ωµ.

3.3.3 RVE Equilibrium

As pointed in Section 3.1, the RVE constituents are considered a continuum media, therefore

the theory of Continuum Mechanics, presented in Chapter 2, is applied to model the microscale

equilibrium problem.

The homogenization procedure is formulated under material description, nonetheless the

microscopic equilibrium problem is solved considering a spatial description, thus the strong

form of the equilibrium equations for the RVE is given by:divx σ{y, t}+ bµ{y, t} = 0 , in ϕ(Ωµ),

tµ{y, t} = σ{y, t} n{y} , on ϕ(∂Ωµ),
(3.11)

where bµ{y, t} represents the volume forces in the deformed con�guration of the RVE, tµ{y, t}
the applied boundary traction vector �eld and n{y} is the outward unit vector normal to the

deformed boundary of the RVE, ϕ(∂Ωµ).

The microscopic equilibrium problem is solved with the Finite Element Method. Accordingly,

the Virtual Work Principle is employed to determine the Weak Equilibrium Equations, �rst in

spatial description:∫
ϕ(Ωµ)

[σ{y, t} : ∇xη̃ − bµ{y, t} · η̃] dV −
∫
ϕ(∂Ωµ)

tµ{y, t} · η̃ dA = 0, ∀η̃ ∈ V, (3.12)
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and secondly, in material description:∫
Ωµ

[
P {y, t} : ∇X η̃ − b̄µ{y, t} · η̃

]
dV −

∫
∂Ωµ

t̄µ{y, t} · η̃ dA = 0, ∀η̃ ∈ V, (3.13)

with b̄µ{y, t} and t̄µ{y, t} representing the same as in Equation (3.11) but in the undeformed

con�guration of the RVE. In these expressions, η̃ is the virtual displacement �eld and V is the

space of virtual displacements that coincides with the space of admissible displacement �uctu-

ation
(
V ≡ K̃

)
, since the virtual displacements are also admissible displacement variations.

3.3.4 Hill-Mandel Principle

This is one the major concepts in multi-scale models constitutive theories. The Hill-Mandel

principle of Macro-Homogeneity uses an energetic balance to establish the connection between

scales. It requires the macroscopic stress power to equal the average of its microscopic counter-

part over the volume of the RVE. Considering a material formulation, the principle is expressed

by:

P {x, t} : Ḟ {x, t} =
1

Vµ

∫
Ωµ

P {y, t} : Ḟ {y, t} dV. (3.14)

where Ḟ {·} is the time derivative of the deformation gradient.

With Equation (3.7) in mind, it is possible to express that,

Ḟ {y, t} = Ḟ {x, t}+∇X ˙̃u{y, t}, (3.15)

thus, combining Equation (3.14) with Equation (3.15), it is possible to rewrite the Hill-Mandel

principle as: ∫
Ωµ

P {y, t} : ∇X ˙̃u{y, t} dV = 0. (3.16)

If one considers the hypothesis that ˙̃u ∈ V, Expression (3.13) results in the following condi-

tions: ∫
Ωµ

b̄µ{y, t} · η̃ dV = 0, ∀η̃ ∈ V, (3.17)∫
∂Ωµ

t̄µ{y, t} · η̃ dA = 0, ∀η̃ ∈ V. (3.18)

Analysing these expressions, the main conclusion that can be drawn from the Hill-Mandel

principle is that the body and traction forces are reactive forces related to the kinematical con-

straints applied to the displacement �uctuation �eld on the RVE. This enables the simpli�cation

of the equilibrium equation, being stated as:∫
Ωµ

P {y, t} : ∇X η̃ dV = 0, ∀η̃ ∈ V, (3.19)
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or, in spatial form, ∫
ϕ(Ωµ)

σ{y, t} : ∇xη̃ dV = 0, ∀η̃ ∈ V. (3.20)

3.3.5 Homogenized Stress Tensor

The homogenized �rst Piola-Kirchho� stress tensor, P {x, t}, is given by:

P {x, t} =
1

Vµ

∫
Ωµ

P {y, t} dV

=
1

Vµ

∫
∂Ωµ

t̄µ{y, t} ⊗ Y dA− 1

Vµ

∫
Ωµ

b̄µ{y, t} ⊗ Y dV
(3.21)

3.4 Admissible Kinematical Boundary Conditions

As mentioned in Section 3.3.1, the unknown variable in a microscopic equilibrium problem is

the displacement �uctuation �eld ũ{y, t}.
In order to simulate the behaviour of a RVE, it is necessary to impose a speci�c boundary

condition and di�erent choices may lead to di�erent results. The type of material and the

characteristics behind the heterogeneities distribution in the RVE are some of the key points

that should be considered while choosing a boundary condition to the micromechanical problem.

The simplest boundary condition, named Taylor hypothesis (represented in Figure 3.3),

assumes that the microscopic displacement �eld is a linear function of Y ,

u{y, t} = (F {x, t} − I)Y , (3.22)

implying that the displacement �uctuation �eld is null,

ũ{y, t} = 0, (3.23)

and, as a consequence, the microscopic deformation gradient is equivalent to the macroscopic

counterpart,

F {y, t} ≡ F {x, t}. (3.24)

Figure 3.3: Scheme to represent the Taylor hypothesis.
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It is a simple boundary condition and the most restrictive one. As a result, the sti�ness of

heterogeneous materials is overestimated - resembling the rule of mistures1 (or Voigt model),

an analytical method used to obtain the e�ective sti�ness tensor of a composite material.

The three classical boundary conditions are presented next, along with a short review on an

alternative version of the Periodic boundary condition, theMortar Periodic boundary condition.

3.4.1 Linear Boundary Condition

This condition dictates that the displacement �eld on the RVE boundaries is equal to the

prescribed one, leading to a null displacement �uctuation �eld on this boundary,

ũ{y, t} = 0, ∀y ∈ ∂Ωµ. (3.25)

This satis�es expressions (3.9) and (3.18). However, expression (3.17) is only veri�ed in the

absence of body forces and accelerations.

3.4.2 Periodic Boundary Condition

Figure 3.4: Boundaries of the RVE in the Periodic boundary condition.

The Periodic boundary condition is the most used kinematical constraint in micromechanics.

With this boundary, the microstructure is seen as a periodic repeated pattern of the RVE,

hence, displacements on opposite boundary sides must be compatible.

To implement this condition it is necessary to divide the boundaries of the RVE into a

positive, ∂Ω+
µ , and a negative, ∂Ω−µ , part (Figure 3.4), such that:

∂Ωµ = ∂Ω+
µ ∪ ∂Ω−µ . (3.26)

1Further addressed in Section 5.2.1
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Furthermore, one must also consider the outward unit vectors n+, normal to ∂Ω+
µ , and n

−,

normal to ∂Ω−µ , and that both have the following relation:

n− = −n+. (3.27)

This boundary condition is expressed by a periodic displacement �uctuation �eld and an

anti-periodic traction �eld and may be stated as:

ũ{y+, t} = ũ{y−, t}, (3.28)

t̄µ{y+, t} = −t̄µ{y−, t}, (3.29)

where y+ ∈ ∂Ω+
µ and y− ∈ ∂Ω−µ , correspond to similar points in opposite sides of the RVE.

Similarly to the Linear boundary condition, this condition satis�es expressions (3.9) and

(3.18), but expression (3.17) is only veri�ed in the absence of body forces and accelerations.

3.4.3 Uniform Traction Boundary Condition

The enforcement of the minimal kinematical admissible constraint, presented in Section 3.3.2,

and denoted by: ∫
∂Ωµ

ũ{y, t} ⊗N{Y } dA = 0, (3.30)

leads to an uniform traction �eld (hence the name of this condition) on the RVE boundaries.

Considering the Hill-Mandel principle, it is possible to conclude that this uniform traction

�eld is driven by the macroscopic stress and equal to:

P {y, t}N{y, t} = P {x, t}N{x, t}. (3.31)

3.4.4 Mortar Periodic Boundary Condition

The standard implementation of the Periodic boundary condition requires the RVE to be mod-

elled by a conforming �nite element mesh. The nodes on opposite boundary sides must be

coincident, i.e. on the top and bottom boundaries the x−coordinate of the nodes must be the
same and the same principle applies for the left and right boundaries but for the y−coordinate.

The main idea of this alternative version is that it enables the use of the Periodic boundary

condition, while the �nite element mesh in non-conform. Brie�y, it uses mortar methods to

discretize the boundary domain and combines the Lagrange multiplier method to enforce the

accuracy of the solution. More information can be found in Reis and Andrade Pires (2014).

3.4.5 Remarks on the Di�erent Boundary Conditions

After explaining the di�erent boundary conditions that can be applied to the micro-scale prob-

lem, it is noteworthy to discuss these di�erent approaches and withdraw some conclusions.
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While the Taylor hypothesis is the most restrictive, the other conditions can be sorted

according to the level of constraint that they enforce to the system. The Uniform Traction

boundary condition is the less restrictive of them all, followed by the Periodic constraint (or

Mortar Periodic) and, lastly, the Linear boundary condition is the most restrictive constraint

(excluding the Taylor hypothesis). In Figure 3.5, a scheme that illustrates the di�erences

between these three boundaries is presented.

During the work of this thesis, the RVEs were submitted to the Linear, Uniform Traction

and Mortar Periodic boundary conditions. The Mortar Periodic boundary condition was used

in place of the Periodic one, because the �nite element mesh created with the OOF2 open-source

program2 creates a non-periodic mesh.

Furthermore, as it is demonstrated in Chapter 6, there are several authors that suggest

that the Periodic constraint converges faster to the theoretical solution (Terada et al., 2000;

Kanit et al., 2003). The Uniform Traction and the Linear boundary conditions are seen as the

lower and upper bounds, respectively, for the e�ective elastic properties of the heterogeneous

material. If the size of the RVE is large enough, all of the boundary conditions should converge

for the same result. It is important to note that the Linear constraint is the one that requires

less computational power.

Lastly, regarding the Uniform Traction boundary condition, there is a relevant aspect that

must be mentioned: since this condition is based on the minimal kinematical admissible con-

straint, when large deformations are imposed on the RVE, spurious e�ects may appear (Coenen

et al., 2012), which lead to unrealistic and meaningless results.

3.5 Numerical Implementation of the Microscale Problem

Having explained all the theoretical concepts that are necessary to solve the RVE equilibrium

problem, the computational implementation is brie�y introduced. The numerical tool used

in this work is based on the Finite Element Method and the constraints that are associated

with the microscopic problem are implemented using the Condensation method that eliminates

the rows and columns related with the prescribed degrees of freedom, in the global system of

equations. In the framework of this thesis, it is not important to fully detail the procedure to

implement this on a computational level, and more information regarding this can be found on

Reis (2014); Rodrigues Lopes (2016).

3.5.1 Micro-Scale Problem (MSP)

The computational program used during this thesis is named Micro-Scale Problem (MSP). It has

been initially developed by Reis (2014) and, is currently being further developed by Rodrigues

Lopes (2016). As the name implies, it solves the micro-scale problem under the hypothesis of

large stains theory, within a generic non-linear �nite element framework.

2OOF2 is the program utilized to create the �nite element mesh based on a microstructure's image.
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Figure 3.5: Scheme of the di�erent boundary conditions.

Figure 3.6: Main input and output of the MSP program.

The source code of this program is written in Fortran® and it is necessary to provide a data

�le with the RVE model information and the macroscopic load. As shown in Figure 3.6, the

main input is the macroscopic deformation gradient (and the chosen boundary condition) and,

regarding the output, besides the deformed con�guration of the RVE and some discrete values

of the problem's variables, the homogenized �rst Piola-Kirchho� stress tensor is returned.

In Chapter 4, the procedure to create a �nite element mesh to be analysed with MSP is

presented and, in Chapter 5, the numerical method utilized to compute the e�ective elastic

properties of a composite material is detailed.



Chapter 4

Digital Image Based Microstructure

Recognition

The main objective of this work is to estimate the e�ective elastic properties of any material

from its the microscopic structure. Regarding only the phases' volume fractions and elas-

tic properties, analytical methods, such as mean-�eld approaches and other spatial averaging

techniques, can be used to determine these overall properties (further reviewed in Chapter 5).

However, these methods usually do not take into account the geometry of the microstructure

and so, in applications where its in�uence becomes critical, methods based on RVE analysis,

where microscopic heterogeneities can be modelled, are better suited for a proper de�nition of

the micro-macro relation.

There are several numerical procedures to generate RVEs based on microstructure infor-

mations (e.g. for a unidirectional �ber composite, a Monte Carlo randomness approach can be

used to create a large number of RVEs, if the size of the RVE and �ber volume fraction are

provided) but, if the material presents a microstructure that has heterogeneities with random

and complex shapes, these methods are not su�ciently accurate.

Therefore, in order to overcome these di�culties, Digital Image Based (DIB) microstructure

recognition techniques are used, enabling the construction of a �nite element model based on a

micrograph from a representative slice of the material. Therefore, the data obtained from this

type of analysis can be related with the material that is going to be used in a project. Using this

method, any type of complex shape can be modelled (even voids), but it is important to note

that this method involves approximations from the beginning, since the �nite element mesh is

an approximation of an image that in turn is also a pixel discretization of the real structure.

In this chapter, the detailed procedure to obtain the 2D �nite element mesh from an image

using the Linux® open-source software package OOF21 (named for "Object Oriented Finite-

Elements", version 2) (Technology, 2016) is explained.

1The version of the program used is OOF2 2.1.12.

37
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In Waters et al. (2015), OOF is used to model porous copper and, studies of Ni-Al2O3

composites based on DIB microstructure recognition can be found in Sharma et al. (2012) and

Sharma et al. (2014).

Finally, the DIB microstructure recognition is applied to 3D RVEs using the open-source

software package OOF3D2 (named for "Object Oriented Finite-Elements", version 3D).

4.1 Acquisition of a Micrograph

First of all, before having the image of the microstructure, one has to capture it. In spite of

being beyond the scope of this work, a brief introduction on how to obtain a micrograph is

given in this section.

Besides the usual optical devices such as light microscopes, one of the most used methods to

obtain a micrograph is the scanning electron microscopy (SEM). It uses a beam of electrons to

scan over a surface, enabling the user to get information about the sample's surface topography

and composition. Depending on the instrument, the resolution range is from about 1 nm, up

to 20 nm. During the process, the only variable that can change is the amount of electrons

received by the detector in a x, y position, and so, only a single value can be attributed to each

pixel of the captured image. This leads to a single gradient from black to white, and a gray scale

image is created. Nonetheless, there are several ways to produce a color in a SEM image, such

as replacing the gray level of each pixel with an arbitrary color, or by photo-editing the image

with a speci�c software. Transmission electron microscopy (TEM) can also be used to generate

images with resolution of the nanometre order. The main idea is that the beam of electrons is

transmitted through an ultra-thin specimen of the material under analysis. An image is then

formed from the interaction of this electrons with the specimen as they pass thorough it.

There are also methods that can be used to create a 3D model of the interior of a material

without destroying the actual object. X-ray microtomography, uses X-rays to generate several

images of the cross-section of the material and can perform with resolutions at the micrometre

order (µm). Micro-CT (micro-computed tomography) scanners (Figure 4.1a) are used to capture

these cross-section images.

4.2 Image-Based Finite Element Mesh

At this moment, with the micrograph of the material at hand, a �nite element mesh that

models its microstructure can be created, but several actions have to be completed before the

�nal output is achieved. In this section, the overall procedure is described in detail and, at the

end, an example is presented to ensure a better comprehension of the reader. This section was

based on A.Langer et al. (2001) and Reid et al. (2008).

It is important to note that OOF2 permits the use of di�erent images to represent a single

microstructure - the main structure of the program. For instance, there may be cases where

2The version of the program used is OOF3D 3.0.1.
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(a) Micro-CT scanner (Bergen, 2016). (b) SEM scanner (Hitachi, 2016).

Figure 4.1: Examples of SEM and a micro-CT scanners.

one image can represent well enough the majority of a microstructure but some singularities

are represented with higher de�nition in another image and, in this case, the user just has to

be sure that both images have the same pixel size (width and height) to be able to use them

simultaneously. While creating the microstructure, OOF2 automatically interprets the size of

the image as pixel dimensions, however, the user is advised to de�ne the microstructure's size

with physical dimensions3, to facilitate the process of creating the �nite element mesh.

To brie�y introduce the whole process, in the �rst place a microstructure is created from an

image �le to further identify the di�erent pixel groups that belong to speci�c materials, based

on its di�erent color values. Secondly, the material properties of interest to the de�nition of

the problem (elastic, thermal, electric and so on) are attributed to these pixel groups. In the

third place, a skeleton that contains the geometry of the �nite element mesh is created and

improved in order to minimize two elemental functionals, named shape energy and homogeneity

energy, that quantify the skeleton quality, and as a result, the mesh quality. Finally, with

the last version of the skeleton (that only contains the mesh geometry), the �nite element

mesh is created while attributing, respectively, triangular and quadrilateral elements (linear or

quadratic order) to the triangles and quadrilaterals of the skeleton.

Summarizing, the user has to follow the steps presented below:

1. Create a microstructure based on an image (or several);

2. Segment the microstructure into di�erent pixel groups;

3. Assign materials to these groups that represent the microstructure's constituents;

4. Generate a skeleton that correctly represents this microstructure;

5. Create the �nite element mesh based on the �nal version of the skeleton;
3OOF2 has no built in system of units. The output data will be in the units that are given by the user. The

International System of Units (SI) is recommended.
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4.2.1 Image Treatment

Before the segmentation process of the micrograph can begin, there are cases where the bound-

aries of di�erent materials are not well de�ned due to low image quality, and so, some image

processing may be needed to better distinguish these singularities. Nonetheless, it is relevant

to �rst de�ne two concepts that are frequently used when addressing images in 2D and 3D:

Pixel - It stands for "picture element" and it is the smallest physical and controllable

element of a picture that can be represented on a screen device.

An important note is made on the concept of image resolution as it stands for the capacity to

observe or measure the smallest object clearly and with distinct boundaries, and it is basically

the pixel count in a digital image. There are several ways to quantify the resolution of an

image, being the number of pixels columns (width) and rows (height) one of the most common

methods. One can simply multiply the number o pixel columns by pixel rows to obtain the

amount of pixels contained in an image, usually given in megapixel [MP]. Finally, the concept

of PPI (Pixel Per Inch) is also usually used as a quanti�er of the image resolution.

Voxel - This word is based on the words "volume" and "element" and, similarly to the

pixel, it represents a value on a regular grid that exists in the three dimensional space. With it,

it is possible to represent an object in 3D and some volumetric displays describe their resolution

in voxel dimensions (e.g. 1024× 1024× 1024 voxels). The segmentation of a 3D RVE and the

generation of a �nite element mesh is, in all, similar to the procedure here explained for the 2D

case, however, one must substitute the concept of pixel with voxel.

With this in mind, OOF2 contains almost 20 image modi�cation algorithms that enable the

user to improve the quality of the material boundaries and solve other problems that may exist.

Along the usual ones, such as negating, fading, dimming, enhancing the contrast or con-

verting the image to gray scale, OOF2 can also utilize functions of higher complexity. Some

utilize a Gaussian function4, like Blur and Sharpen. Despeckle and ReduceNoise aim to reduce

the noise of the image while preserving the material edges and MedianFilter reduces the noise

by replacing each pixel color with the median over a local region with a user-de�ned pixel ra-

dius. The Normalize routine, normalizes the gray scale image to cover the full range of values,

meaning that the color of lightest pixel is converted into white (i.e 0 in the gray scale range),

the color of the darkest one is converted into black (i.e 255 in the gray scale range) and the rest

of the pixels su�er the same scale transition.

An example is demonstrated in Figure 4.2. It can be noticed that the initial micrograph does

not correctly represent the materials' boundaries. Firstly, the image is Normalized (Figure 4.2b).

In the second place, the Contrast tool is applied 5 times (Figure 4.2c). Then, to reduce the

noise, MedianFilter is used with a radius of 5 pixels for 10 consecutively iterations (Figure 4.2d).

4Function utilized in statistics to describe the normal distributions.
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In Section 4.2.2, a comparison between a segmentation of the initial and �nal image is made in

order to illustrate the importance of processing the original image (Figure 4.4).

(a) Initial micrograph. (b) Applying the Normalize tool.

(c) Applying the Contrast tool �ve times. (d) Applying the MedianFilter tool ten times.

Figure 4.2: Demonstration of an image treatment of a micrograph of a lamellar directionally
solidi�ed eutectic of NiO (lighter phase) and yttria-stabilized ZrO2 (darker phase) (A.Langer
et al., 2001).

4.2.2 Image Segmentation

After the image treatment process, the boundaries between the di�erent materials are expected

to be more distinct and, therefore, the segmentation process can start. The main objective of

this process is to select all the pixels that belong to a microstructure's feature and group them

together so that the material properties can be attributed to these pixels simultaneously. These

groups can be named and stored for later retrieval.

In addition to the usual selection methods, like user-manual selection tools (e.g. selecting

individual pixels or pixels that are inside a rectangle or a circle), automatic tools are also

available. There are two major tools to select pixels based on their colors:
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Color/Demography Tool - With this tool, it is possible to select all the pixels that are

within a color range of a previously targeted one, since it ignores this pixel's location. The

color range value can be de�ned by a gray, RGB (Red, Blue and Green) or HSV code (Hue,

Saturation and Value). All range values are de�ned by a decimal number between 0 and 1,

except Hue that can be de�ned by any value between 0 and 360.

Burn Tool - Similar to the Color/Demography method, the Burn tool enables the selec-

tion of multiple pixels that are within a color range of the targeted one. However, the main

di�erence is that it only selects contiguous pixels to the targeted one and not all of them. The

selection spreads from the selected pixel and a local and global �ammability value must be

de�ned to determine if the selection continues from one pixel to another.

The local �ammability is the maximum di�erence between two neighbouring pixel values,

while the global �ammability is the di�erence between the initial pixel value beyond which the

selection will not occur. The di�erence can be computed either through the sum of the absolute

values of the RGB di�erences (L1 ) or through the square root of the sum of the squares of the

RGB di�erences (L2 ).

In Figure 4.3 the di�erence between the Color and Burn methods is presented. Taking into

consideration the Color tool, the range di�erence is computed in gray scale values, with delta

gray5 = 0.3, while the target is any purely white pixel. Regarding the Burn tool, the local and

global �ammability are set to 0.15 and a light pixel from the middle grain is selected.

(a) Color tool. (b) Burn tool.

Figure 4.3: Comparission between the Color and Burn methods using the image in Figure 4.2d.

It is also noteworthy to demonstrate the di�erence between a segmentation on a low quality

image (Figure 4.2a) and on an image that has already been treated (Figure 4.2d). The method

chosen to select the pixels is the Color one and the parameters are equal to the ones used on

the example of Figure 4.3a. The amount of pixels of this image is 695300 and the amount

selected by the Color method on the �rst case is 523688, while on the second case is 301073.

5Delta gray is the parameter that de�nes the gray color range value in OOF2.
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The di�erence in the volume fraction of the light material from one case to another is around

30%, which is high. The selection results are demonstrated in Figure 4.4.

(a) Selection without any image treatment
(Figure 4.2a).

(b) Selection after the image treatment (Fig-
ure 4.2d).

Figure 4.4: Comparison between the Color method on low and high qualty images.

Note: In cases where the selection of a speci�c feature is di�cult, it is easier to select the

opposite of it and then invert the selection.

Attribution of Material Properties

Regarding the attribution of a material to the di�erent pixel groups, OOF2 has a large list of op-

tions. It is possible to assign elastic, thermal and electrical properties, and, within the elasticity

options, there is the possibility to assign any 3D crystal symmetry and any 3D crystallographic

orientation to a material (e.g. isotropic, orthotropic and anisotropic materials), since one can

insert the full 3D sti�ness tensor, but, in the framework of this project, only isotropic elasticity

is relevant. Furthermore, since an isotropic material can be characterized by two elastic con-

stants6, the Young's modulus and the Poisson's ratio, or the Lamé parameters7 are enough to

correctly de�ne it. At this moment, the values of these properties are not relevant, since they

can be changed later on, during the migration of the �nal mesh output �le to the MSP program.

Note: In OOF2, the material information can be saved on a data �le with the extension ".ma-

terial" for later retrieval.

Active Areas

It is also important to notice that there are cases where parts of the geometry are not supposed

to be meshed, like in the study of microstructures with voids. Before the creation of the skeleton

begins, the user can select these areas and inactivate them - these areas do not have any material

attributed and can be selected via the same pixel selection methods.

6Later addressed in Chapter 5.
7Appendix A presents the relations between the most common elastic constants.
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4.2.3 Skeleton and Mesh Quality

Before explaining the automated procedure to create a �nite element mesh based on the already

segmented image, it is important to have a quantitative measure of the quality of the mesh (or

skeleton). This value a�ects the convergence behaviour of the results in the �nite element

solver (in this case, in the Newton-Raphson method) and also dictates if the �nite element

mesh correctly represents the microstructure or not. In OOF2, this quality is measured by an

elemental potential energy, E, and most of the skeleton modi�cation routines are designed to

lower it.

The elemental potential energy is a weighted average of two elemental functionals (Reid

et al., 2008):

Shape Energy - This energy function quanti�es the shape of the �nite element taking into

account its aspect-ratio. Since high aspect-ratio elements are responsible for a slow convergence

of the �nite element solver, in this type of elements the shape energy, Eshape, has a high value.

The minimization scheme of the potential energy promotes low aspect-ratio elements and so,

squares and equilateral triangles have a null shape energy (Figure 4.5a, 4.5c).

For triangular elements it is denoted by:

Eshape = 1− 4
√

3A

L2
0 + L2

1 + L2
2

, (4.1)

where A is the area of the element and Li are the length of the element sides. In the case of

quadrilateral (quad) elements, this energy is measured in each corner by the following equation:

q =
2A‖

L2
0 + L2

1

, (4.2)

where Li are the length of the adjacent edges to the respective corner and A‖ is the area of

the parallelogram formed by these edges. So that this elemental functional is dependent on the

position of all nodes, the shape energy of a quad is de�ned as a weighted average of the corner

with the minimum energy, qmin, and the opposite corner, qop, and it is given by:

Eshape = 1− ((1− wop) qmin + wopqop) , (4.3)

in which wop is a parameter8 assuming the value of 10−5.

Homogeneity Energy - On the other hand, this function is responsible to measure

the degree of similarity between the skeleton (and later, the �nite element mesh) and the

microstructure's image. It is de�ned by a simple equation:

H =
max{ai}

A
, (4.4)

8The value of wop needs to be small enough so that Eshape is dominated by qmin but not too small to keep
the importance of qop in the equation.
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(a) Quadrilateral element with Eshape = 0. (b) Quadrilateral element with Eshape > 0.

(c) Triangular element with Eshape = 0. (d) Triangular element with Eshape > 0.

Figure 4.5: Perfect and badly shaped quadrilateral and triangular elements.

where ai is the area of each material within the element (this expression takes into consideration

the fractional area of the pixels that intersect the boundaries of the element, thus making this

functional a continuous function) and A is the area of the element.

If an element is �lled with only one material, its homogeneity is 1.0 (Figure 4.6a), but,

due to the fact that the homogeneity energy, Ehom, should be de�ned as null for the perfect

homogeneous element, this functional is expressed by:

Ehom = 1−H. (4.5)

As addressed earlier, the e�ective elemental energy, E, is a combination of both elemental

functionals weighted by a tunable parameter, α, that de�nes if the priority is to lower the shape

energy or the homogeneity energy,

E = αEhom + (1− α)Eshape. (4.6)

This parameter has to be set for all the skeleton adaptive routines but, it is also possible to de�ne

other restrictions while using these methods. The priority is de�ned by choosing the parameter

α, but additional restrictions may be set to the shape and homogeneity energy values, which is

an important feature in several adaptive steps.
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(a) Quadrilateral element with H = 1.0. (b) Quadrilateral element with H = 0.5.

(c) Quadrilateral element with H = 0.5. (d) Quadrilateral element with H = 0.25.

Figure 4.6: Scheme to represent the homogeneity on di�erent cases.

4.2.4 Adaptive Methods to Generate and Re�ne a Mesh

Finally, considering the mesh quality parameters, the whole procedure to generate, re�ne and

improve the �nite element mesh build on a micrograph is described in this section.

Before reviewing the di�erent mesh adaptive routines that are available in OOF2, it should

be noted that this program enables the user to select the elements and nodes that are important

to analyse, allowing for a shorter computational time.

Selection of Relevant Elements and Nodes

One can select elements either based on their type (triangular or quad), on their material, on

their homogeneity and shape energy or on other characteristics. In addition, it is even possible

to expand the element selection to better address a speci�c area. As far as the node selection is

concerned, there are a couple of similar functions and one can also select the ones that belong

to the already selected elements.

Furthermore, the user is also able to pin the internal boundary nodes that de�ne the material

boundaries to better adapt the mesh around a boundary without having these nodes moved

from their coordinates.
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Generation of the Finite Element Mesh Geometry

Regarding the microstructure's geometry, most of the usual mesh generator programs use math-

ematical functions to de�ne the material boundaries and then create a mesh that �ts to these

boundaries. However, it is important to notice that during the image recognition of a micro-

graph, the problem's geometry is not so well de�ned and the boundaries can be somehow jagged

due to the image pixelation.

There are three main approaches to create a �nite element mesh based on an image, the

simplest being the allocation of a quadrilateral or two triangular elements to each pixel (by

clicking on the "Simple..." button in the Skeleton window of OOF2). This process raises two

problems: �rst of all, it generates a number of elements far higher than the amount needed

(large homogeneous regions can be discretized with a coarser mesh without loss of accuracy in

the results), and secondly, it places the material boundaries of the mesh on the jagged pixelized

representation of the boundaries presented in the image, leading to high stress concentration

factors and to poor �nite element convergence properties.

One can also simply create a grid of triangular or quadrilateral elements by de�ning the

amount of elements in each dimension of the RVE, and later re�ne and improve it using the

adaptive functions of OOF2 that take into account the mesh quality parameters addressed in

Section 4.2.3.

Finally, after segmenting the image, OOF2 has an automated script (by selecting the

"Auto..." button in the Skeleton window) to generate a �rst stage skeleton that attempts to

model the micrograph. It incorporates a sequence of routines that re�ne and shape the skeleton

to the material boundaries, requiring the user to de�ne three parameters:

� Maxscale - an estimated size for the biggest elements in the initial skeleton;

� Minscale - an estimated size for the smallest elements in the �nal skeleton;

� Homogeneity threshold - this dictates which elements will be re�ned and which not.

During the process, all elements with homogeneity below the speci�ed threshold are subdivided

until their homogeneity is above the threshold or their size becomes smaller than the minscale

parameter.

Before explaining this automated procedure, the skeleton adaptive routines must be eluci-

dated and, to do so, it is important to �rst classify and divide them into two major aspects:

� Topology preserving routines - these methods move nodes while preserving the connec-

tivity of the starting skeleton, improving it without increasing the number of elements;

� Topology non-preserving routines - these methods use algorithms that improve the skele-

ton by adding, removing or reconnecting nodes and elements.

All routines are presented and classi�ed based on other characteristics in Table 4.1 and the

most important ones are further discussed in this section.
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Table 4.1: Classi�cation of the OOF2 skeleton adaptive routines (Reid et al., 2008).

Routine Preserving Homogeneity Shape MC Snap Fix

Anneal X X X POT

Fix Illegal Elements X X O X

Merge Triangles X O

Rationalize X X O X

Re�ne X X

Relax X X X

Smooth X X OT

Snap Anneal X X OT X

Snap Nodes X X O X

Snap Re�ne X X X

Split Quads X O

Swap Edges X X O

Manual Node Motion X X X X X

In this table header, Preserving indicates if the algorithm falls into a topology preserving routine, Homogenity

and Shape specify if the primarily concern of the routine is to lower the homogeneity or shape energy, respec-
tively. Snap shows that the new node position must lie on top of a material boundary and Fix means that the
algorithm �xes badly shaped or illegal elements. MC stands for Monte Carlo methods and the letter P means
that the new node positions are chosen randomly, O implies that the routine addresses nodes in a random or-
der and T indicates that it accepts/rejects moves randomly based on a probability p given by a Boltzmanm

distribution in which p = exp
(−∆E

T

)
, where ∆E is the change in energy.

Anneal - During the Anneal algorithm, the targeted nodes are moved to random positions

within a speci�ed radius, δ, and these new positions9 are accepted or rejected according to a

user-de�ned criterion: either accepting all moves or only the ones that decrease the e�ective

energy of the system or only those that decrease this energy and simultaneously satisfy a

homogeneity and shape condition.

This process usually requires several iterations to be successful since for each iteration, one

node only attempts one move. The user can de�ne a �xed number of iterations or set the

process to stop after a certain condition is guaranteed (e.g the success rate of the process being

lower than speci�ed value). As mentioned in Table 4.1, the order in which the nodes are moved

is random and changes in each iteration.

Before moving one node to a new position, OOF2 computes the total e�ective energy of the

elements where it belongs and, afterwards, the chosen criterion de�nes if the move is either ac-

cepted or rejected (the moves that create illegal elements are automatically rejected). Table 4.1

also states that it is possible to accept a movement which initially was rejected, according to a

probability given by a Boltzmanm distribution.

9Computed from a Gaussian distribution of width δ and mean 0.0
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When the elements size is already good enough to resolve all the singularities of the micro-

graph, the Anneal routine is useful and can usually take into account both homogeneity and

shape energy, depending on the parameter α.

Smooth - This algorithm is similar to the Anneal method but instead of moving a target

node in a random way, it attempts to move it to the average position of the adjacent nodes (i.e

nodes that share a common segment), without ever creating illegal elements.

The name is self-explanatory since this method aims to improve the elements shape by

smoothing the node density gradients. It is usually employed on the last steps to create the

�nal skeleton and, combined with the aforementioned Pin Nodes function, increases the quality

of the elements around material boundaries without changing their homogeneity, improving the

convergence behaviour of the �nite element solver.

Snap Nodes - This routine main objective is to improve the homogeneity energy of an

element by snapping its nodes to the material boundaries.

It scans the current skeleton selection to check if there are elements below a speci�ed ho-

mogeneity and identi�es the transition point for each segment of these elements. Afterwards,

based on the arrangement of its transition points, assigns a priority to each situation (Reid

et al., 2008) and, starting from the highest priority, attempts to move the nodes to these points.

It can move one or two nodes from the same element simultaneously and, when the move is

accepted according to a given criterion, OOF2 tries to snap the nodes from the surrounding

elements to better adjust to a boundary.

Due to the nature of this process, Snap Nodes contributes to the creation of badly shaped

elements when α is large, however, it is more e�cient if this parameter favours homogeneity.

Later, the user can use the Rationalize routine to eliminate these elements.

Re�ne - This is usually the �rst step to create a skeleton. The element's size needs to

be small enough to correctly resolve the singularities of the microstructure and, on top of that

and as explained in Chapter 2, the accuracy of the results given by the �nite element method

is related with the mesh re�nement. However, Re�ne is usually not su�cient to generate an

acceptable skeleton, and needs to be combined with other methods.

The user must de�ne the elements that should be considered, namely, elements with an area

smaller than a given value can be excluded from further re�nement. It is also needed to specify

the edges of the elements that should be re�ned and how these edges are re�ned (bisected or

trisected). During the Re�ne method, OOF2 enables the possibility to keep the elements shape,

i.e quadrilaterals can be re�ned into smaller quadrilaterals, and triangular elements likewise.

Snap Re�ne - Similar to Re�ne and Snap Nodes, this algorithm attempts to subdivide

heterogeneous elements by spawning new nodes in the transition points that are located in the

material boundaries, instead of just bisecting or trisecting the edges on a equal manner.
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Snap Re�ne usually improves the homogeneity energy of the skeleton without creating as

many nodes as Re�ne does, because it directly splits elements in the relevant points. However,

it is important not to overuse this routine, since it tends to create badly shaped elements after a

few iterations. The user is able to de�ne a speci�c distance from an existing node, below which

Snap Re�ne does not create a new one, preventing the aforementioned problem, although this

solution is not always applicable.

The user should use Re�ne �rst and then, when the element's size is good enough, use Snap

Re�ne to better resolve the singularities of the microstructure. Rationalize and Smooth after

this routine has been proven to be a good methodology to prevent thin elements generated by

Snap Re�ne.

Rationalize - As mentioned while explaining the other routines, Rationalize is the most

powerful method to clean up badly shaped elements. It either removes them or simply modi�es

them and their surroundings to decrease the shape energy. When a previous routine generates

elements with sharp angles or with high aspect-ratios, using Rationalize improves the skeleton

quality.

This algorithm has three sub-algorithms:

1. Remove short sides - This sub-routine eliminates the shortest edge of a quad element

by replacing it with a triangular one. The user de�nes a ratio and, if the fraction

between the size of the shortest side and the second shortest side of the quadrilateral

element is greater than this value, the nodes that belong to this edge are merged. If

the element that shares these nodes is a quadrilateral, Rationalize transforms it into

a triangle but it can also be eliminated if it was already a triangle;

2. Split wide quads - If a quadrilateral element has large interior angles (value speci�ed

by the user), this sub-routine divides it into two triangles and, consequently, improves

the shape energy of the system;

3. Remove bad triangles - This sub-routine is probably the most important and relevant

one. Thin elements are responsible for a bad convergence behaviour during the �nite

element analysis and, along the deformation process, they can degenerate into illegal

elements and interrupt the analysis or produce incorrect information. The user can

de�ne an angular range, and all triangles with interior angles outside that range are

either eliminated or have their surroundings replaced by a set of new ones.

It is important to note that this algorithm is applied with the order presented above and it

is possible to select the target elements in order to get a lower computational time. The tunable

parameter α also plays a major role on the results given by this routine, since it de�nes if the

priority is the shape or homogeneity energy.
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Merge Triangles - Linear triangular elements are known for presenting a constant strain

inside its domain, which is a simpli�cation of the real behaviour of a material. If it is possible,

a quadrilateral element should be used instead of a triangular one.

As the name implies,Merge Triangles merges two triangular elements to form a quadrilateral

one. It improves the shape energy of the system and reduces the total number of elements,

decreasing the duration of the �nite element analysis.

Split Quads and Swap Edges - These two routines are used when a skeleton is near

its �nal version but there are some elements along the material boundaries that need to be

improved to better represent the microstructure.

In the case of Split Quads, when a quadrilateral element has two of its opposite corners on

top of a material boundary, this means that the material boundary passes thorough one of the

diagonals of this element and so, by dividing the element into two triangles, the homogeneity

energy is decreased.

Swap Edges takes into consideration both types of elements (triangular and quads) and, if

a shared edge of a pair of elements crosses a material boundary, this routine tries to improve

their homogeneity by merging two triangles into one quadrilateral and dividing it along its other

diagonal. It can also improve the shape energy of two adjacent quadrilaterals by swapping its

internal common edge.

Fix Illegal Elements - A skeleton cannot be converted into a �nite element mesh if it

contains illegal elements. Firstly, it is important to de�ne an illegal element as an element that

has corners with an angle greater than 180° or less than 0°. Non-convex shapes are also part of

it.

Fix Illegal Elements routine does not take into account the homogeneity and shape energy.

Similarly to Smooth, it attempts to move the node of the illegal corner to the average position

of its surroundings and if it fails, it attempts to move the other nodes of the element to see if

the illegal element is removed. To either accept or reject the attempted movement, this routine

only veri�es if the illegal elements in the vicinity of the node are removed or not.

It is advised to check if the skeleton continues to be a good representation of the microstruc-

ture after resorting to this routine.

As previously introduced, OOF2 has an automated procedure to generate a �rst version

of a skeleton. It is possible to de�ne the output skeleton as periodic, but, since the Mortar

Periodic boundary condition (Section 3.4.4) is going to be used instead of the Periodic con-

straint, this condition is set to false. After having de�ned the parameters maxscale, minscale

and homogeneity threshold, this automated script follows a speci�c sequence of routines.

Firstly, it creates a skeleton grid with quadrilaterals of size equal to maxscale. The Re�ne

routine is then used to iteratively re�ne the initial grid, by bissecting the edges with α = 0.8. As

addressed earlier, all re�nement operations are only applied to the elements with size greater

than minscale or with homogeneity lower than the speci�ed homogeneity threshold, and the
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iterations are repeated until there is an element with linear dimensions smaller than theminscale

parameter. Once the Re�ne routine is �nished, the Snap Re�ne routine is applied once to place

the nodes and edges on the boundaries of the materials. Since these routines usually generate

badly shaped elements, the Rationalize routine is used twice to remove these elements. Lastly,

using the Pin Nodes function, the internal boundary nodes are locked and a Smooth routine is

applied for 5 iterations with α = 0.3.

This procedure is able to create a su�ciently good �rst stage skeleton. Nevertheless, there

are cases where several routines must be used to further improve the shape and homogeneity

energy after this step.

4.2.5 Output Files of OOF2

As the name of the program suggests ("Object Oriented Finite Elements"), OOF2 is an objected

oriented program since it works with classes and sub-classes. The main objects are Microstruc-

tures, Images, Skeletons, Meshes and SubProblems. OOF2 also runs �nite element analysis,

subdividing Meshes into SubProblems but this is not related with the scope of this thesis, since

this analysis is going to be done in a di�erent program - MSP.

While the user is generating the DIB �nite element mesh, the user can can save di�erent

parts of the work for later retrieval. The main idea is that the �le extension has to be the same

as the object (or class) name that is going to be saved (e.g. ".skeleton" saves the Skeleton infor-

mation, ".microstructure" saves the Microstructure information, ".material" saves the Material

information, and so on).

If the ".microstructure" �le is created, only the Images, the pixel groups and the Material

Map (that contains the information of the material assigned to each pixel) are saved. The

".skeleton" �le, besides the information contained in the Microstructure class, also contains the

skeleton information. Lastly, the ".mesh" �le contains the Skeleton class, but also the �nite

element mesh information. More information regarding OOF2 structure can be found on OOF2

Manual (Technology, 2016).

In the last sections, the procedure to obtain the �nal version of the skeleton that �ts into

the microstructure's geometry is explained. After that, the �nite element mesh is created and

built upon the skeleton's geometry.

Along the creation of the �nite element mesh, OOF2 asks the order of the mapping and

interpolating functions10. The mapping functions are responsible for mapping the coordinates

of the �nite elements from the physical to the natural space (parametric coordinates ζ) and vice

versa and can either be linear or quadratic. The interpolation functions are used to interpolate

the displacement �eld within elements and can also be linear or quadratic. The combination of

di�erent orders in these functions generate di�erent possibilities and, in Table 4.2, the di�erent

options provided by OOF2 to create the �nite element mesh are presented. Their de�nition is

directly obtained from the OOF2 program:

10See Section 2.6.2 for more information.
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� T3_3 - Isoparametric 3 noded triangle with linear interpolation for both �elds and posi-

tions;

� Q4_4 - Isoparametric 4 noded quadrilateral with bilinear interpolation for both positions

and �elds;

� T3_6 - Subparametric 6 noded triangle with linear interpolation for positions and quadratic

interpolation for �elds;

� Q4_8 - Subparametric 8 noded quadrilateral with bilinear interpolation for positions and

quadratic interpolation for �elds;

� T6_6 - Isoparametric 6 noded triangle with quadratic interpolation for both positions

and �elds;

� Q8_8 - Isoparametric 8 noded quadrilateral with quadratic interpolation for both posi-

tions and �elds;

� Q9_9 - Isoparametric 9 noded quadrilateral with quadratic interpolation for both posi-

tions and �elds.

Table 4.2: Options provided by OOF2 to generate the �nite element mesh based on the skeleton
geometry.

Mapping Interpolating Order

Order 1 2

1
T3_3 T3_6
Q4_4 Q4_8

2 -
T6_6
Q8_8
Q9_9

In the MSP program, only the isoparametric elements are admissible, thus, the mapping

order must be equal to the interpolating order.

Furthermore, it is possible to keep saving the progress on a couple of di�erent formats:

� Script - This format saves a �le that contains the OOF2 commands as a Python® script.

This type of �le can be edited to modify or insert new commands. It is important to note

that, since this �le is interpreted by a Python® interpreter, the security is low because

any malicious Python® program can be disguised as an OOF2 script;

� Ascii - Similar to the script type �le, the ascii �le format contains the commands in

Python® code but it is not processed by the Python® interpreter, and so, it does not

present any security risk. The routines that read this type of �le only understand OOF2

commands.



54 Faculty of Engineering of the University of Porto

� Binary - The binary �le format is faster to read and write and don't have any security

problems. Since the whole data is saved in binary code, this type of �les are more

accurate. However, they cannot be edited in a text editor.

� Abaqus - Only skeletons and meshes can be stored in this type of format. As the name

implies, this �le allows the user to insert the data in the Abaqus® �nite element program.

The information regarding nodes and elements is stored in a tabular environment.

During the work of this thesis, the �nite element mesh is saved in the Abaqus format �le.

Then, a MATLAB® script (described in Appendix B) is developed to read the information

contained in this �le and, write an output �le to be read by the MSP program.

Note: It is advised to save the progress whenever is possible, since OOF2 tends to crash some

times. If the user does not want to change anything on the save �le, the Binary format is

advised.

4.3 Example of a DIB Microstructure Recognition using OOF2

In this section, the whole procedure to create a �nite element mesh with DIB microstructure

recognition is reviewed with the help of a simple example. The micrograph that serves as base

to this example is presented in Figure 4.7.

Figure 4.7: Image sample from a microstructure: A micrometer scale SEM image of plasma-
etched Si3Na4 (Reid et al., 2008).

As demonstrated in Figure 4.8, by selecting the button "New from Image File", OOF2

enables the creation of a microstructure based on a rasterized image �le11. By selecting this

button, the menu displayed in Figure 4.9 appears and the selection of the image �le occurs.

In this step, a name and physical height and width dimensions can also be assigned to the

11An image that its represented by a grid of pixels, each of which has a number of bits to designate its color.
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microstructure. It is noteworthy to mention that, if these characteristics are not user-de�ned,

OOF2 will automatically create a name and assign pixel dimensions to the microstructure.

Figure 4.8: Creating a microstructure from an image �le.

Figure 4.9: Selecting the image �le and de�ning the physical dimensions of the RVE.

Finally, the microstructure is created and its information can be seen in the OOF2 Mi-

crostructure window (Figure 4.10). In this �gure, it is also demonstrated that the pixel groups

are not yet de�ned.

Therefore, as explained in Section 4.2.2, this image has to be segmented in two di�erent

materials: the Black and the White material. However, the material boundaries are blurry

and the material parts are not well de�ned, and so, an image treatment is needed before the

segmentation can begin.

The image treatment procedure hereafter explained is based on a tutorial provided by OOF2.

4.3.1 Image Treatment

By applying Normalize, the initial image is normalized, meaning that the gray code values �ll

the full range from black to white (0 to 255) and, the result is presented in Figure 4.11a. After
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Figure 4.10: Information about the microstructure and pixel groups.

that, the Contrast function is used three times to improve the de�nition of both materials, as

the darker and brighter regions get darker and brighter, respectively (Figure 4.11b).

(a) Applying the Normalize tool. (b) Applying the Contrast tool three times.

Figure 4.11: Image treatment of Figure 4.7 to better de�ne both materials.

In Figure 4.11b, both materials are well de�ned. However, there is a part of the microstruc-

ture where exists White material but, due to the Contrast tool, this part became darker. This

minor problem will be solved during the pixel's selection step.

4.3.2 Image Segmentation

Since Figure 4.7 is a gray-scale image, the Color method is going to be used to segment it into

two di�erent pixel groups: Black and White. The color range value is given by a gray code

parameter, delta gray, and it is set to 0.5 while the target pixel is any black pixel. Figure 4.12

shows the resulting selection in red.

In Figure 4.12 it can be noticed that there is a "path" connecting two black grains that is

also selected. This "path" should belong to the White group and not to the Black one and,
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Figure 4.12: Selection of the black pixels using the Color method.

to solve this problem, the selection is inverted (Figure 4.13a) and the pixels in the "path" are

selected using the Brush tool with a circle of radius12 = 0.25 (Figure 4.13b).

(a) The selection displayed in Figure 4.12 is
inverted.

(b) Using the Brush tool, the "path" between
the two black grains is selected.

Figure 4.13: Correction of the selection shown in Figure 4.12.

Now that the whole White material is selected, the user needs to create the White pixel

group by clicking "New..." in the Microstructure window of OOF2 and then, add the selected

pixels to the new pixel group by clicking "Add". After this, the selection is inverted again

and the Black group is created in the same way. The pixel groups information can be seen in

Figure 4.14.

12De�ned in physical dimensions.



58 Faculty of Engineering of the University of Porto

Figure 4.14: Information about the microstructure and pixel groups.

Attribution of the Material Properties

Once the pixel groups containing the Black and White materials are created, the user can

attribute the material properties to them on the Materials window of OOF2.

Firstly, the materials have to be created by selecting the "New..." button. The materials

are named Black_mat and White_mat for easier comprehension and, both of them are of bulk

type. In this case, both materials are considered isotropic and their properties13 are presented in

Table 4.3. A color property is also added to better distinguish both materials and the skeleton

lines.

Table 4.3: Material properties assigned in OOF2.

Young's Modulus Poisson's Ratio Color

Black_mat 100 GPa 0.3 0.8

White_mat 10 GPa 0.3 0.4

Secondly, these properties are added on the same Materials window (Figure 4.15). To

create them, one has to click in "Copy..." with "Isotropic" (inside the folder "Mechanical"

and sub-folder "Elasticity") or "Color" selected. Following the same principle that was used

to name both materials, the elastic properties are named Black_elast and White_elast and

the color properties are named Black_color and White_color. The "Parametrize..." button

sets the parameters for the selected property. Using the button "Add Property to Material",

Black_elast and Black_color are added to Black_mat and White_elast and White_color are

added to White_mat.

Finally, the materials have to be assigned to the pixel groups. By clicking on the button

"Assign Material to Pixels..." the Black_mat and White_mat are attached to the Black and

White groups, respectively.

13The assigned properties are not representative of the plasma-etched Si3Na4.
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Figure 4.15: Material properties assigned in OOF2.

Figure 4.16: Material image of the already segmented microstructure.

The new segmented image can be seen on a new layer created in the Graphics window. This

is known as a material image and its representation is displayed in Figure 4.16.

4.3.3 Generation of the Skeleton Geometry

After having completed the image segmentation process, the user can create the skeleton that

will later be converted into the �nite element mesh. As addressed in Section 4.2.4, OOF2 has an

automated script that is available by clicking on the "Auto..." button of the Skeleton window.

For this case, the parameters14 are set as maxscale = 0.4, minscale = 0.3 and homogeneity

threshold = 0.9 and the result in presented in Figure 4.17.

As it can be seen from Figure 4.17, the automated script of OOF2 generates a fairly good

skeleton but several elements need to be treated to better represent both materials.

14Maxscale and minscale are de�ned in physical dimensions. If, while creating the microstructure, the physical
dimensions are not de�ned, these parameters have to be de�ned in pixel dimensions.
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(a) Representation of the materials' color. (b) Representation of the elements' color.

Figure 4.17: Initial skeleton created by the automated script of OOF2.

Figure 4.18: Final skeleton with the elements' color represented.

After running a couple of routines, like Merge Triangles, Split Quads, Swap Edges, Ratio-

nalize and Smooth (with the internal boundary nodes locked in their position), it is possible

to achieve the �nal version of the skeleton, presented in Figure 4.18. The sub-algorithms of

the Rationalize routine are applied with tighter constraints than those used in the automated

script of OOF2. Therefore, triangular and quadrilateral elements that were tolerated during the

initial procedure are replaced by elements with lower shape energy. Moreover, in Figure 4.17b,

there are some defected elements presented in the boundaries of the interior clusters that are

corrected in the �nal version of the skeleton.

4.3.4 Generation of the Finite Element Mesh

As addressed on Section 4.2.5, OOF2 enables the creation of isoparametric and subparametric

elements of linear or quadratic order for both mapping and interpolation functions. In this
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example, the elements chosen are of linear order for both functions (T3_3 and Q4_4) (Fig-

ure 4.19). The "2-cornered" elements are not addressed because, when saving the �le in the

Abaqus format, their information is not contained, only the quadrilateral and triangular ele-

ments matter in this case. The �nal numbers of elements and nodes are displayed in Table 4.4.

Figure 4.19: Selecting the order for both mapping and interpolation functions and creating the
�nite element mesh.

Table 4.4: Information about the �nal version of the �nite element mesh.

Type Number

Elements 2303

Quadrilateral 935

Triangular 1368

Nodes 1687

Homogeneity 0.9815

4.4 Example of a DIB Microstructure Recognition using OOF3D

As mentioned, the same developers of OOF2, have created a program that generates �nite

element meshes based on 3D RVEs - OOF3D. The procedure is in all similar as the one described

for OOF2 with the replacement of the pixel concept for voxel.

Regarding 3D images, one has to think of them as a group of 2D images that may be

interpreted as di�erent layers. Therefore, if the 2D images that characterize the 3D RVE are

equal, it is the same as considering that the RVE is an extruded version of the 2D RVE, as

illustrated in Figure 4.20.

In this section, a brief example of the procedure followed to generate the �nite element

mesh of a 3D RVE is presented. The RVE chosen is given by OOF3D as an example �le. It

characterizes a bone structure and it is not an extruded image, meaning that each 2D layer

is represented by a di�erent image. Since it is only composed by voxels of two colors (black

and white), the image segmentation is simple: it can be performed by the voxel selection Color
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(a) 3D micrograph. (b) Material image.

Figure 4.20: Image segmentation of an extruded 3D RVE of the microstrucutre displayed in
Figure 4.7.

method or through the "Group"15 button in the Image window. The initial RVE and the

material image are displayed in Figure 4.21.

(a) 3D micrograph. (b) Material image.

Figure 4.21: Image segmentation of a 3D RVE that represents a bone structure. The lighter
and the darker material represent the bone and porosity, respectively.

OOF3D does not have an automated script to create a �rst skeleton version like OOF2 does,

thus, the initial skeleton is created as a grid of 10×10×10 tetrahedral elements. After that, the

Re�ne routine is applied (α = 0.8) on the elements with homogeneity lower than 0.95 and the

Snap Nodes tool is used to move the nodes to the material boundaries (homogeneity threshold

= 0.9 and α = 0.9). A higher re�nement is performed on the darker part and the Rationalize

15This function groups pixels/voxels of di�erent colors into di�erent groups. It usually does not lead to a good
result due to the pixels/voxels of di�erent gray shades that may exist.
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routine is used to lower the shape energy and to eliminate unneeded elements. To �nalise, the

Smooth routine is applied for 10 iterations with α = 0.15 and with the internal boundary nodes

locked on their positions. The �nal mesh version is presented in Figure 4.22.

Figure 4.22: Finite element mesh that models the RVE displayed in Figure 4.21.

Finally, some problems occurred while exploring the functionalities of OOF3D. The program

is an extended version of OOF2 for three dimensional problems but it is not as developed and

tested as the 2D version. For instance, the number of adaptive methods to generate and re�ne

the mesh is low and the type of elements that can be used is limited to tetrahedrons (the

developers aim to introduce hexahedral elements in the future).

Furthermore, while saving the �le that contains the �nite element mesh data in Abaqus

format to be later converted with MATLAB® and used in MSP, the program crashes, or does

not save any �le. Due to this problem, it was not possible to use OOF3D to perform a 3D

�nite element analysis. Even so, this section demonstrated the use of this program to generate

a �nite element mesh based on a 3D micrograph to reinforce that, in the future, this type of

methodology may be available to use.

4.5 Special Notes

There is always a learning process that needs to be respected while getting in contact with

a new program. In the �rst DIB microstructure recognitions with OOF2, there were several

problems that, with the experience gained throughout the thesis, have been solved. In this

section, special notes and tips are presented to avoid some errors, and to, overall be more

e�cient while working with OOF2 (and OOF3D).
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� The adaptive methods used to generate and re�ne the �nite element mesh should be used

with the graphics window closed. This will decrease the time taken to complete the rou-

tines, since OOF2 prints the skeleton information (nodes, elements) in the graphics win-

dow every time a change is made. This greatly increases the time consumed per routine

(probably doubling or more), and is even more severe as the amount of nodes/elements

becomes bigger;

� When trying to zoom in/out or pan over the image in the graphics window, it is advised

to uncheck the layers that contain the skeleton or mesh information, to again lower the

time consumed by the operation;

� OOF2 tends to sometimes crash without warning, showing a "Segmentation Fault (Core

Dumped)" error in the terminal window. This usually occurs when OOF2 tries to access

data that is not allocated in memory. To prevent this error, the user must reselect the

relevant nodes and elements targeted by a routine after a non-topology preserving routine

is applied. For instance, in the case that the user selects the elements with shape energy

higher than 0.8 to apply the Rationalize routine and, after that, it wants to apply, for

example, the Smooth routine to the same type of elements, the selection must occur again

because in the Rationalize routine several elements may have been eliminated and the

Smooth function will try to access elements or nodes that don't exist. However, OOF2

saves a log �le in the temp folder of the computer that can be loaded as a script �le to

recover the work lost;

� The user should save the skeleton in binary format after major operations. If possible,

keeping two di�erent versions and always saving the last step on a di�erent one is a

good practice to prevent losing all the information when OOF2 crashes while saving and

overwriting the info, leading to a corrupt �le;

� As mentioned in Section 4.2.5, OOF2 enables the user to load a Python® script (".py"

�le extension) that includes the command lines for the program to follow. With this, it

is possible and advised to write the desired routines in advance and load the script to

turn the procedure more automatic.

4.6 Conclusions

Despite the fact that the open-source programs used to generate the �nite element mesh based

on real micrographs are still under development regarding memory e�ciency and debugging,

the DIB microstructure recognition technique presents an innovation on how materials with

complex microstructures are analysed. The possibility of creating a model that analyses and

captures each given real microstructure and not only simpli�ed representations of it, is inspiring

and may be considered as a promising feature in the development of new materials.



Chapter 5

Methods for the Determination of

Homogenized Elastic Properties

It is well known, the majority of materials tend to deform in the elastic domain before reaching

plasticity. This means that a body that has only been strained in the elastic domain, returns

to its initial con�guration after being unloaded. If, on the other hand, during deformation

plasticity has been reached, the material will stay with permanent deformation, which can be

relieved by some heat treatments (e.g. annealing and tempering).

The set of equations that relates stress with strain (and possibly strain history, strain rate

and other �elds quantities) are called constitutive equations but, unlike the governing equations

presented in Chapter 2, these cannot be usually calculated using fundamental physical relations.

Instead, constitutive equations are related with experimental measurements. In this way, it is

helpful to review the basic assumptions taken to develop the stress-strain laws:

� A small sample extracted from the solid has uniform properties;

� When the solid is deformed, lines that are initially straight in the solid are deformed into

smooth curves (with continuous slope);

� Short segments of these lines (much shorter than the radius of curvature of the curves) are

just stretched and rotated by deformation, implying that the deformation of a su�ciently

small volume element can be characterized by a deformation gradient;

� The stress that occurs at point in the solid depends only in the change of shape of an

extremely small volume element that surrounds it. Therefore, it must be a function of

the deformation gradient or a strain measure that derives from it.

These assumptions are approximations because materials are not uniform at small scales,

whether it is at the inter atomic or microstructural level. Therefore, the elastic range, well

de�ned for the vast majority of homogeneous materials, is a�ected by materials with complex

65
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microstructures. Thus, there is an high dependency between the elastic properties of porous

and composite materials and their microstructures. Experimental procedures can be used to

�nd out these properties but the monetary costs inherent to them are high, and so, in this

chapter, several analytical methods that aim to solve this problem are introduced. Moreover,

a numerical procedure that consists on applying di�erent loads (pure strain and pure shear

deformations) to an RVE that correctly represents a microstructure (created by the DIB mi-

crostructure recognition technique presented in Chapter 4) is described. This method improves

the accuracy of the results since it takes into account the real microstructure's geometry.

In order to better understand the elasticity concept, the generalized Hooke's Law must be

introduced, along with the elastic constants that are generally utilized. Greater attention will

be given to orthotropic, transversely isotropic and isotropic materials. All of this information

can be found on Lai et al. (2010), Bower (2010) and Hwu (2010).

5.1 Hooke's Law

To formulate the elastic behaviour of a material under small deformations, the 4th-order com-

pliance tensor, S, and the 4th-order sti�ness tensor, C, also named as elasticity tensor, must be

introduced as the linear map between the 2nd-order strain and stress tensors. This is mathe-

matically expressed by the generalized Hooke's Law,

ε = S : σ, (5.1a)

σ = C : ε, (5.1b)

being C the inverse tensor of S,

C = S
−1. (5.2)

A 4th-order tensor has 81 components but, in a linearly elastic body, due to symmetry

relations that exist in the strain and stress tensors, σ = σT and ε = εT , both constitutive

tensors, S and C, have minor symmetry,

(·)ijkl = (·)jikl = (·)ijlk (5.3)

hence, the number of independent components is reduced to 36.

Furthermore, it is assumed that the concept of elasticity is related with the capacity of the

materials to store energy which is denoted as strain energy function,

U =
1

2
C : ε : ε, (5.4)

which is a positive de�nite function of the strain components such that,

σ =
∂U

∂ε
. (5.5)
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With this assumption, it is possible to prove that the constitutive tensors also have major

symmetry,

(·)ijkl = (·)klij , (5.6)

and, consequently, the number of independent elastic constants decreases to 21, characteristic

of a material with generalized anisotropic behaviour.

Considering these properties, it is possible to de�ne the Hooke's Law in a matrix basis

following the Voigt notation:

σ11

σ22

σ33

σ23

σ13

σ12


=



C1111 C1122 C1133 C1123 C1113 C1112

C2222 C2233 C2223 C2213 C2212

C3333 C3323 C3313 C3312

C2323 C2313 C2312

C1313 C1312

sym. C1212





ε11

ε22

ε33

γ23

γ13

γ12


, (5.7)

where,

γ23 = 2ε23 γ13 = 2ε13 γ12 = 2ε12 (5.8)

are the engineering shear strains. In Expression (5.7), the indices are not very practical but

demonstrate the tensorial character of the tensors σ, ε and C. Due to this complexity, one can

also write it in the simpli�ed or "contracted form",

σ1

σ2

σ3

σ4

σ5

σ6


=



C11 C12 C13 C14 C15 C16

C22 C23 C24 C25 C26

C33 C34 C35 C36

C44 C45 C46

C55 C56

sym. C66





ε1

ε2

ε3

ε4

ε5

ε6


. (5.9)

However, one must know that Cij 's are not components of a 2nd-order tensor and σi and εj
are not those of a vector.

It is usual for linear elastic solids to have at least one plane of symmetry, that can be

described by the plane S1 with unit normal vector e1. This phenomenon is known as elastic

symmetry, and a material that has one plane of symmetry is called a monoclinic material. For

such material, the number of independent elastic constants is reduced to 13,

σ1

σ2

σ3

σ4

σ5

σ6


=



C11 C12 C13 C14 0 0

C22 C23 C24 0 0

C33 C34 0 0

C44 0 0

C55 C56

sym. C66





ε1

ε2

ε3

ε4

ε5

ε6


. (5.10)
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5.1.1 Orthotropic Material

In the case that a linearly elastic material has two perpendicular planes of material symmetry,

S1 plane with unit normal vector e1 and S2 plane with unit normal vector e2, then automatically

the plane S3, mutually perpendicular to both, with the unit normal vector e3 is also a plane of

material symmetry. This type of material is named orthotropic elastic material and has three

di�erent Young's modulus, E1, E2 and E3 that are associated with the directions e1, e2 and e3.

For this solid, the number of independent coe�cients decreases to 9 and the constitutive

equations become: 

σ1

σ2

σ3

σ4

σ5

σ6


=



C11 C12 C13 0 0 0

C22 C23 0 0 0

C33 0 0 0

C44 0 0

C55 0

sym. C66





ε1

ε2

ε3

ε4

ε5

ε6


. (5.11)

It is important to note that all the components of the sti�ness matrix, Cij , are related with

the following elastic constants:

� Young's Modulus, Ei, describes the material's strain response to an uniaxial stress in

the direction i of the load. It is the ratio of the stress (force per unit area) along an axis

to the strain along the same axis in the range of stresses in which Hooke's law holds;

� Poisson's Ratio, νij , also known as the coe�cient of expansion on the transverse axis,

describes the response of the material in the directions orthogonal to this uniaxial stress.

It is set as the ratio that corresponds to a contraction in the direction j when an extension

is applied in the direction i. It is dimensionless and typically ranges from 0.20 to 0.49,

and is around 0.3 for most metals. If ν = 0.5 , the solid is incompressible - its volume

remains constant, no matter how it is deformed;

� Shear Modulus, Gij , expresses the material's response to shear stress and it is de�ned

as the ratio of the shear stress σij to the shear strain γij ;

� Bulk Modulus, K, represents the resistance of the material to an uniform compression.

It is de�ned by the ratio between an in�nitesimal increase in the pressure that is submitted

to the material and the relative decrease of its volume.
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Therefore, the elasticity matrix can be rewritten as:

Cij =



1− ν23ν32

E2E3∆

ν21 + ν23ν31

E2E3∆

ν31 + ν21ν32

E2E3∆
0 0 0

1− ν13ν31

E1E3∆

ν32 + ν12ν31

E1E3∆
0 0 0

1− ν12ν21

E1E2∆
0 0 0

G23 0 0

G13 0

sym. G12



, (5.12)

where ∆ denotes the determinant of the sti�ness matrix, given by:

∆ =
1− ν23ν32 − ν13ν31 − ν12ν21 − 2 ν32ν13ν21

E1E2E3
. (5.13)

In order to derive a method to extract the elastic constants, it is necessary to express them

as a function of the matrix components, Cij ,

E1 =
Θ

C22C33 − C2
23

, E2 =
Θ

C11C33 − C2
13

, E3 =
Θ

C11C22 − C2
12

,

ν12 =
C12C33 − C13C23

C22C33 − (C23)2
, ν13 =

C13C22 − C12C23

C22C33 − (C23)2
, ν23 =

C23C11 − C12C13

C11C33 − (C13)2
,

G23 = C44, G13 = C55, G12 = C66.

(5.14)

where Θ is given by:

Θ = C11C22C33 + 2 C23C13C12 − C11(C23)2 − C22(C13)2 − C33(C12)2. (5.15)

Based on the symmetry of the compliance matrix, it is also possible to �nd the following

relation between the Poisson's ratio and the Young's modulus:

νij
Ei

=
νji
Ej
, for i, j = 1, 2, 3, i 6= j. (5.16)

2D Plane Strain

In engineering components, stress (and strain) are tensor �elds de�ned in three dimensions

(Figure 5.1) but under some circumstances it is possible to simplify the problem into two

dimensional studies. These are divided into two distinct physical types: plane deformation

(or plane strain) and plane stress. The �rst one arises from the study of prismatic structures'

deformations that have the axis length several times bigger than the cross section dimensions
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Figure 5.1: Components of stress in three dimensions.

(e.g. long metal billet, large cylindrical bodies). The external forces are distributed in a way,

such that the deformation in the axis direction vanishes and the remaining components do not

vary along the length of the prismatic structure. As an example, consider the cross section of a

cylinder that is parallel to the x1x2-plane, the state of plane strain may be characterized by:

ui = ui(x1, x2), i = 1, 2, u3 = 0, (5.17)

where u1, u2 and u3 are the displacements in the x1, x2 and x3 directions. Furthermore, as

the relation between displacement and strain is:

ε11 =
∂u1

∂x1
, ε22 =

∂u2

∂x2
, ε33 =

∂u3

∂x3
,

γ23 =
∂u2

∂x3
+
∂u3

∂x2
, γ13 =

∂u1

∂x3
+
∂u3

∂x1
, γ12 =

∂u1

∂x2
+
∂u2

∂x1
,

(5.18)

Equation (5.17) leads to:

ε33 = γ13 = γ23 = 0. (5.19)

and to the following Cauchy stress tensor:

σ =

 σ11 σ12 0

σ12 σ22 0

0 0 σ33

 , (5.20)

in which the non-zero σ33 is needed to maintain the constraint ε33.

Finally, the constitutive law (Haboussa, 2012, p. 12) is expressed by:
σ11

σ22

σ33

σ12

 =


C11 C12 C13 0

C22 C23 0

C33 0

sym. C44



ε11

ε22

0

γ12

 . (5.21)
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where the components, Cij (i, j = 1, 2, 3), are de�ned in Equation (5.12) and C44 = C66 = G12.

The elastic constants are given by Expressions (5.14).

5.1.2 Transversely Isotropic Materials

A special case of an orthotropic material is one that contains a plane S3 (plane of isotropy) with

and unit normal vector e3 (axis of transverse isotropy), such that every perpendicular plane to

it is a plane of symmetry. In this plane of symmetry, the elastic constants are independent of

the direction, meaning that there is no distinction between the vectors e1 and e2. In this case

the material is called a Tranversely Isotropic Material and the constitutive tensor is composed

by 5 di�erent independent components,

Cij =



C11 C12 C13 0 0 0

C11 C13 0 0 0

C33 0 0 0

C44 0 0

C44 0

sym.
(C11 − C12)

2


. (5.22)

The engineering constants must satisfy:

E1 = E2 = Ep, E3 = Et,

ν13 = ν23 = νpt, ν31 = ν32 = νtp, ν12 = νp,

G13 = G23 = Gpt, G12 = Gp,

(5.23)

and the sti�ness matrix is denoted by:

Cij =



1− νptνtp
EpEt∆

νp + νptνtp
EpEt∆

νtp + νpνtp
EpEt∆

0 0 0

1− νptνtp
EpEt∆

νtp + νpνtp
EpEt∆

0 0 0

1− ν2
p

E2
p∆

0 0 0

Gpt 0 0

Gpt 0

sym. Gp



. (5.24)

Similar to the process done to obtain Equations (5.14), these elastic constants can be written
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Figure 5.2: Atoms in a hexagonal close-packed solid.

as a function of tensor components,

Ep =
Θ

C11C33 − C2
13

, Et =
Θ

(C11)2 − C2
12

,

νp =
C12C33 − (C13)2

C11C33 − (C13)2
, νpt =

C11C13 − C12C13

C11C33 − (C13)2
, νtp =

C11C13 − C12C13

(C11)2 − (C12)2
,

Gp =
1

2
(C11 − C12), Gpt = C44,

(5.25)

where Θ is:

Θ = C33(C11)2 + 2 C12(C13)2 − 2 C11(C13)2 − C33(C12)2. (5.26)

Examples of transverse isotropic materials are the ones that have hexagonal close-packed

(hcp) crystals at the microstructure. The e3 axis must be perpendicular to the basal plane

of the crystal (Figure 5.2) because the planes perpendicular to e3 are isotropic planes. The

orientation of e1 and e2 is arbitrary.

5.1.3 Isotropic Materials

In the case of isotropic materials, the constitutive law can be parametrized by only 2 independent

constants. Examples are materials with cubic symmetry (e.g. face-centered cubic (fcc) and

body-centered cubic (bcc) metals are shown in Figure 5.3) and for those, in addition to the axis

of transverse isotropy e3, e1 is also an axis of transverse isotropy. Therefore,

C11 = C22 = C33, C12 = C13, C44 =
(C11 − C12)

2
. (5.27)
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Figure 5.3: Atoms in face- and body-centered cubic materials.

The constitutive law can be written as:

Cij =



C11 C12 C12 0 0 0

C11 C12 0 0 0

C11 0 0 0
(C11 − C12)

2
0 0

(C11 − C12)

2
0

sym.
(C11 − C12)

2


. (5.28)

The engineering constants always satisfy,

E = E1 = E2 = E3,

ν = ν12 = ν13 = ν23,

G = G12 = G13 = G23,

(5.29)

and the shear modulus is dependent of the Young's modulus and Poisson's ratio through the

following equation,

G =
E

2(1 + ν)
. (5.30)

The two independent elastic constants are then de�ned as a function of tensor components,

Cij ,

E =
(C11)2 + C12C11 − 2 (C12)2

C11 + C12
,

ν =
C12

C11 + C12
,

(5.31)
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and the sti�ness tensor, de�ned as a function of the elastic constants, is denoted by:

Cij =
E

(1 + ν)(1− 2ν)



1− ν ν ν 0 0 0

1− ν ν 0 0 0

1− ν 0 0 0
1− 2ν

2
0 0

1− 2ν

2
0

sym.
1− 2ν

2


. (5.32)

5.2 Analytical Methods

In the previous section, basic concepts of elasticity were introduced based on the assumption

that the material was homogeneous. However, in the case of a heterogeneous material, the

overall e�ective elastic properties are related with the elastic properties of the phases that

form the composite and so, in order to obtain them, several analytical methods were developed

throughout the years.

These methods are build upon mean �eld approaches, that aim to replace the complex elastic

�elds disturbed by a large number of inclusions by the average �elds of a virtually homogenized

composite, only considering the material properties of the phases which compose the material,

and partly their geometry and localization.

In this section, some of the most common analytical methods to obtain the average properties

of heterogeneous materials are presented.

5.2.1 Hill Bounds

Based on the uniform stress and strain trial function, the classical expressions for the minimum

potential energy and the minimum complementary energy lead to the simplest and most extreme

variational bounding expressions: the upper bound of Voigt (proposed in 1889) and the lower

bound of Reuss (proposed in 1929).

These bounds are only related with the phase volume fractions and do not contain any

information about the geometry of the inclusions in the inhomogeneous material. The simplicity

of these equations implies that the results obtained with them are not of much practical use

but, in contrast with higher-order bounds (e.g. Hashin-Shtrikman Bounds), they also hold for

volume elements that are to small to be regarded RVEs. Nevertheless, neither of these models

are correct, because the Voigt model violates equilibrium due to the implied traction across the

phase boundaries and the Reuss model generates strains that would force the debounding of

the phases. In tensorial form, Hill Bounds (Hill, 1952) can be expressed as:

C
∗
R =

∑
(i)

φiSi

−1

≤ C
∗ ≤

∑
(i)

φiCi = C
∗
V (5.33)
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where C∗ is the homogenized (or e�ective) sti�ness tensor, C∗R and C∗V are the estimated e�ective

tensors given by the Reuss and Voigt models and φi is the volume fraction of phase i. More

information about these models can be found on Berryman (2004) and Böhm (2016).

Voigt Model

The Voigt model, (also known as the rule of mixtures) is the upper boundary and takes into

account that the applied load causes equal strains in both phases of the composite and so, the

overall composite stress is the sum of the stresses carried out by each phase.

Thus, the composite e�ective sti�ness tensor can be calculated by:

C∗ijkl = φfC
f
ijkl + φmC

m
ijkl, (5.34)

where φf and φm represent the �ber and matrix volume fraction, respectively.

Considering an isotropic composite material, an isotropic matrix with Em and an isotropic

�ber with Ef as Young's modulus, the overall Young's modulus, E∗, given by the Voigt model

is the average of the constituents' moduli weighted by the volume fraction of each phase,

E∗ = φfEf + φmEm, (5.35)

where, usually, φf + φm = 1. Expression (5.35) assumes that the constituents have Poisson's

ratios that lead to equal Poisson contractions.

Reuss Model

The Reuss model corresponds to the lower boundary and is known as the inverse rule of mixtures

or the rule of mixtures for the compliance components. It formulates the case when each phase

of the composite carries an equal stress. In this way, the compliance e�ective tensor for the

composite is given by:

S∗ijkl = φfS
f
ijkl + φmS

m
ijkl, (5.36)

Consequently, in a isotropic material, the overall strain in the composite is the sum of the

net strain carried out by each phase and the e�ective Young's modulus, E∗, given by the Reuss

model is denoted as:

E∗ =

(
φf
Ef

+
φm
Em

)−1

. (5.37)

Expression (5.37) assumes that the constituents have Poisson's ratios that lead to equal Poisson

contractions.

5.2.2 Modi�ed Rule of Mixtures

The Modi�ed Rule of Mixtures (Nakamura et al., 2000) is an alternative method to the Voigt

and Reuss boundaries. If the composite is treated as isotropic, its uniaxial stress and strain
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can be decomposed into:

σ = φfσf + (1− φf )σm, (5.38a)

ε = φfεf + (1− φf )εm, (5.38b)

where σf , σm and εf , εm are the stresses and strains of the �bers and matrix under uniaxial

stress and strain conditions.

If one takes into consideration the dimensionless parameter q, that characterizes the nor-

malized ratio of the stress to strain transfer, de�ned by:

q =
1

Ef

σf − σm
εf − εm

, q ∈ [0,∞] , (5.39)

and combines Equation (5.38) with (5.39), while considering E =
σ

ε
, it is possible to obtain the

following expression for the overall Young's modulus, E∗:

E∗ =
φfEf + (1− φf )EmR

φf + (1− φf )R
, (5.40)

where R is given by:

R =
q + 1

q +
Em
Ef

. (5.41)

In Figure 5.4, the evolution of Equations (5.40) and (5.41) is presented and, it is possible

to note that choosing a null value for the stress-strain transfer parameter, q = 0, the equation

is equal to the Reuss Model and if q →∞, the equation refers to the Voigt Model.

The parameter q is empirical and depends on many factors, including composition, mi-

crostructure arrangement, internal constraints, and others.

The modi�ed rule of mixtures can also be extended to elastic-plastic composites (Nakamura

et al., 2000), but it is not included since it is out of the scope of this work.

5.2.3 Hashin and Shtrikman Bounds

Through a variational approach, Hashin and Shtrickman developed a set of tighter and more

meaningful boundaries than those of Hill Bounds (Voigt and Reuss) for isotropic materials with

arbitrary internal geometry (Hashin and Shtrikman, 1963). For two-phase materials the upper

and lower bounds for the e�ective bulk modulus are de�ned by the following expressions:

K∗L = K1 +
φ2

1

K2 −K1
+

3φ1

3K1 + 4G1

, (5.42a)

K∗H = K2 +
φ1

1

K1 −K2
+

3φ2

3K2 + 4G2

, (5.42b)
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Figure 5.4: Comparison between the Voigt, Reuss and the Modi�ed Rule of Mixtures models.
In this example, Ef = 100 GPa and Em = 10 GPa.

where K∗L and K∗H denotes the lower and upper bounds, respectively, for the e�ective bulk

modulus of the composite, K1, K2 and φ1, φ2 are the bulk moduli and the volume fraction for

phase 1 and 2, respectively. Here K2 ≥ K1 and G2 ≥ G1. In these expressions, it is assumed

that both phases are made of an isotropic material. It has been shown in Hashin (1962) that

Equation (5.42a) is the exact result for the bulk modulus of a certain composite material that

has a matrix of phase 'one' material and spherical inclusions of phase 'two' material distributed

in a particular way. Analogously, Expression (5.42b) gives the exact value for the bulk modulus

if the matrix is of phase 'two' material and the spherical inclusions are of phase 'one' material.

These are the most restrictive bounds that can be given in terms of phase volume fraction and

phase moduli. It is also possible to note that if G1 = G2, both expressions are equal and predict

an exact result for this particular case.

The expressions for the shear moduli are:

G∗L = G1 +
φ2

1

G2 −G1
+

6(K1 + 2G1)φ1

5G1(3K1 + 4G1)

, (5.43a)

G∗H = G2 +
φ1

1

G1 −G2
+

6(K2 + 2G2)φ2

5G2(3K2 + 4G2)

, (5.43b)

where G∗L and G∗H are the lower and upper bounds, respectively, for the e�ective shear modulus

of the composite.

The bounds for the Young's modulus can also be obtained if one uses the following relation:
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E∗n =
9K∗nG

∗
n

3K∗n +G∗n
, n = L,H. (5.44)

The dependency of the e�ective Young's modulus with the change of the volume fraction of

phase 2, φ2, (e.g. �ber material) is shown in Figure 5.5. This graphic also demonstrates that the

distance between the boundaries increases while increasing the relative sti�ness of one phase to

others. To better demonstrated this, the e�ective Young's modulus has been normalized taking

into account the respective phase properties. The scalar Ē∗ is the normalized e�ective Young's

modulus and is given by:

Ē∗ =
E∗ − E1

E2 − E1
. (5.45)

Figure 5.5: Representation of the Hashin and Shtrikman bounds for the e�ective Young's
modulus and comparison between di�erent relative sti�ness values. Both cases have Em = 10
GPa and νm = νf = 0.3.

Hill-Hashin Bounds

In references (Hill (1964); Hashin (1965)), the bounds for transversely isotropic composites

with isotropic constituents were formulated. These bounds were deduced for the e�ective axial

Young's modulus (E∗t ), e�ective axial (G∗pt) and transverse shear moduli (G∗p), e�ective axial

Poisson's ratio (ν∗pt) and e�ective plane strain bulk modulus (K∗p) and are denoted as it follows:

φmφf
φf
Km

+
φm
Kf

+
1

Gm

≤
E∗t − φfEf − φmEm

4(νf − νm)2
≤

φfφm
φf
Km

+
φm
Kf

+
1

Gf

, (5.46a)
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Gm +
φf

1

Gf −Gm
+

φm
2Gm

≤ G∗pt ≤ Gf +
φm

1

Gm −Gf
+

φf
2Gf

, (5.46b)

Gm +
φf

1

Gf −Gm
+
φm(Km + 2Gm)

2Gm(Km +Gm)

≤ G∗p ≤ Gf +
φm

1

Gm −Gf
+
φf (Kf + 2Gf )

2Gf (Kf +Gf )

, (5.46c)

Km +
φf

1

Kf −Km
+

φm
Km +Gm

≤ K∗p ≤ Kf +
φm

1

Km −Kf
+

φf
Kf +Gf

, (5.46d)

φmφf
φf
Km

+
φm
Kf

+
1

Gm

≤
ν∗pt − φfνf − φmνm

(νf − νm)

(
1

Km
− 1

Kf

) ≤ φfφm
φf
Km

+
φm
Kf

+
1

Gf

, (5.46e)

and taking into account the following equation:

K∗p =
E∗pG

∗
p

3(3G∗p − E∗p)
, (5.47)

it is possible to de�ne the bounds for the e�ective plane strain Young's modulus, E∗p ,

Km +
φf

1

Kf −Km
+

φm
Km +Gm

≤
E∗pG

∗
p

3(3G∗p − E∗p)
≤ Kf +

φm
1

Km −Kf
+

φf
Kf +Gf

. (5.48)

By modifying Inequation (5.48) and rewriting it in order to E∗p , the following upper and

lower boundaries are de�ned:

E∗pL = 9


Km +

φf
1

Kf −Km
+

φm
Km +Gm


−1

+
3

G∗pL


−1

, (5.49a)

E∗pH = 9


Kf +

φm
1

Km −Kf
+

φf
Kf +Gf


−1

+
3

G∗pH


−1

, (5.49b)

where G∗pH and G∗pL are, respectively, the right and left terms of Inequation (5.46c). Figure 5.6

demonstrates the dependency of E∗pH and E∗pL with the �ber volume fraction and compares it

with the Hashin and Shtrikman boundaries.

5.2.4 Self-Consistent Method

Hill (1965) proposed a self consistent scheme and, as all models herein referred, have limitations

when it comes to predict the overall properties of the composites. In reference Li and Wang
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Figure 5.6: Representation of the Hill-Hashin bounds and comparison with the Hashin and
Shtrikman bounds. Both cases have Ef = 100 GPa, Em = 10 GPa and νm = νf = 0.3.

(2005) it is said that this scheme might fail to accurately predict the e�ective elastic properties,

because it does not require any of the phases to be treated as a matrix, even though it includes

the interaction between them.

The Self-Consistent method is based on the solution of an auxiliary problem where a single

ellipsoidal inclusion is embedded in an in�nite equivalent medium of the heterogeneous com-

posite. The bounding between inclusion and the in�nite medium is perfect, and so, there is

displacement and traction continuity in the interface of the two phases. It has been shown in

Eshelby (1957) that, in these type of problems, if one applies uniform stresses or strains to the

system at in�nity, the stress and strain �elds in the inclusion are uniform, respectively, and

so, the elastic properties can be determined by relating the far-�eld stresses and strains in the

homogeneous medium with those found on the inclusion.

In order to �nd the e�ective properties of such system, Hill (1965) and Budiansky (1965)

assume an initially homogeneous matrix into which inclusions of a di�erent material have been

placed, i.e. the inclusions can be considered embedded in the matrix, creating a �ctitious ma-

trix, and so the in�nite medium is taken to be homogeneous with the same properties of the

composite. For an elastic matrix, the Hill's Self-Consistent scheme is denoted by:

σc − σ0 = −L∗ : (εc − ε0), (5.50)

where σ0 and ε0 de�ne the far-�eld stress and strain that are applied in the �ctitious matrix, σc

and εc are the stress and strain tensors in the inclusion, respectively and L∗ is the "constraint"
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tensor de�ned by:

L
∗ = L : (S− I), (5.51)

in which S is the Eshelby tensor, I is the fourth-rank identity tensor,

Iijkl =
δikδlj + δilδkj

2
, (5.52)

where δ is the Kronecker delta function and L is the elastic tensor that relates σ0 with ε0,

σ0 = L : ε0, (5.53a)

L = φcLc : Ac + (1− φc)Lm : Am (5.53b)

and,

Ac = [L∗ + Lc]
−1 :

[
L
∗ + L

]
, (5.54a)

Am = [L∗ + Lm]−1 :
[
L
∗ + L

]
. (5.54b)

In Hill (1965) and Peng et al. (2009), the formulation for a case where it is assumed to have

isotropic spherical inclusions and isotropic elastic composite is presented, and the following

expressions are de�ned:

1

K∗
=

1

Km
+

φc

(
1− Kc

Km

)
K∗ +

1 + ν∗

3(1− ν∗)
(Kc −K∗)

, (5.55a)

1

G∗
=

1

Gm
+

φc

(
1− Gc

Gm

)
G∗ +

2(4− 5ν∗)

15(1− ν∗)
(Gc −G∗)

, (5.55b)

where Km, Kc, K∗ and Gm, Gc, G∗ are the bulk moduli and the shear moduli for the original

matrix, the particle inclusion and the composite, respectively, φc is the volume fraction of the

particle inclusions and ν∗ is the Poisson's ratio of the composite which is given by:

ν∗ =
3K∗ − 2G∗

6K∗ + 2G∗
. (5.56)

The expression for the e�ective Young's modulus is obtained by the following relation:

E∗ =
9K∗G∗

3K∗ +G∗
. (5.57)
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In Equations (5.55), K∗ and G∗ are dependent of their own values,

1

K∗
= f(K∗, G∗, . . . ), (5.58a)

1

G∗
= g(K∗, G∗, . . . ), (5.58b)

moreover, when computing them with MATLAB®, four di�erent pairs of results were obtained

for each volume fraction value. In the case of G∗, three out of four results were, consistently,

negative, and so, there was only one pair that had both K∗ and G∗ positive, being this the

only one that was physically admissible. The results demonstrated a good correlation with the

bibliographic reference (Peng et al., 2009, Fig.2(b), Fig.4).

The representation of Equation (5.57) is displayed in Figure 5.7, as well as the Hashin and

Shtrikman and the Hill-Hashin boundaries. The values obtained are within the Hashin and

Shtrikman boundaries but, it can be noticed that this model is not within the Hill-Hashin

bounds. This can be explained by the fact that Equations (5.55) are obtained under the

assumption of an overall isotropic composite material and in the case of the Hill-Hashin bounds,

the assumption is made for a transversely isotropic composite material. Therefore, both models

can not be directly compared.

Figure 5.7: Representation of the Self-Consistent model and comparison with the Hill-Hashin
and the Hashin and Shtrikman bounds. Both cases have Ef = 100 GPa, Em = 10 GPa and
νm = νf = 0.3.
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5.2.5 Mori-Tanaka Methods

It is one of the most extensively used models to predict the e�ective elasticity tensor of hetero-

geneous materials and was originally proposed in Mori and Tanaka (1973). It was formulated

under both traction and displacement - prescribed boundary conditions, and in Benveniste

(1987) it was proved that the e�ective moduli under both conditions is the same, i.e. there is

no duality gap, common to these types of boundaries.

The key di�erence in this method is the assumption that the average strain in an inclusion,

εc, (e.g. �ber) embedded in an all matrix material is related with the average strain in the

matrix, εm, by a fourth order tensor, Ãc,

εc = Ãc : εm, (5.59)

where Ãc is the strain concentration factor tensor given by:

Ãc =
[
L̃
∗

+ Lc

]−1
:
[
L̃
∗

+ Lm

]
, (5.60)

and Lm, Lc are the elasticity tensors for both matrix and inclusion, respectively and L̃
∗
is

denoted by:

L̃
∗

= Lm :
(
S−1 − I

)
, (5.61)

hence, the constitutive relations for both phases can be de�ned as,

σm = Lm : εm (5.62a)

σc = Lc : εc = Lc : Ãc : (Lm)−1 : σm. (5.62b)

It is shown in Weng (1984) that if one assumes an isotropic and elastic matrix and isotropic

and elastic spherical inclusions, the e�ective properties of the composite material can be de�ned

as:

K∗ = Km

1 +

φc

(
Kc

Km
− 1

)
1 + α(1− φc)

(
Kc

Km
− 1

)
 , (5.63a)

G∗ = Gm

1 +

φc

(
Gc
Gm
− 1

)
1 + β(1− φc)

(
Gc
Gm
− 1

)
 , (5.63b)

where,

β =
2(4− 5νm)

15(1− νm)
, (5.64a)
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α =
1 + νm

3(1− νm)
, (5.64b)

νm =
3Km − 2Gm
6Km + 2Gm

. (5.64c)

and νm is the Poisson's ratio of the matrix phase.

Expressions (5.63) in combination with Equation (5.57) were used to compute the e�ective

Young's modulus given by the Mori-Tanaka model. Its representation and comparison with the

Hashin and Shtrikman and the Hill-Hashin bounds is presented in Figure 5.8. It is noteworthy

to mention that the Mori-Tanaka model is enclosed by the Hill-Hashin bounds, meaning that

the e�ective plane strain Young's modulus, E∗p , can be estimated by this model. Regarding

the Hashin and Shtrikman boundaries, the Mori-Tanaka model is coincident with its lower

boundary. In Section 5.2.3, it is mentioned that Expression (5.42a) is the exact result for the

bulk modulus of a certain composite material that has a matrix of phase 'one' material and

spherical inclusions of phase 'two' material distributed in a particular way. This expression of

the Mori-Tanaka model was obtained under the assumption of spherical inclusions, and so, it

is normal that both of them coincide, as it is mentioned in Hashin (1962) and Weng (1984). In

Appendix C, after some algebraic modi�cations, it has been proved that Equations (5.63) are

equal to Equation (5.42a) and (5.43a).

Figure 5.8: Representation of the Mori-Tanaka model and comparison with the Hill-Hashin
and the Hashin and Shtrikman bounds. Both cases have Ef = 100 GPa, Em = 10 GPa and
νm = νf = 0.3.
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5.2.6 Combined Self-Consistent and Mori-Tanaka Approach

Both methods relate to two schemes that may be considered as two limits of the e�ective

properties, since they are based on di�erent concepts. The Mori-Tanaka method, though it

considers the disturbance in the matrix due to the inclusions, uses the properties of the matrix

before any inclusion is added to calculate the e�ective properties of the composite and, in the

conventional Self-Consistent method, one considers the matrix properties after the inclusions

are added, as a �ctitious homogeneous matrix. Therefore, in Peng et al. (2009) a new method

that combines both was formulated to better evaluate the e�ective properties of a composite

material.

Consider an RVE with a matrix material and particle inclusions with volume fraction φc,

where the inclusions are considered as spheres with the same size and are randomly distributed.

In the next step, these inclusions are separated into two groups:

� Group I - Contains particle inclusions with a volume fraction of

(
1− 1

n

)
φc over the

RVE;

� Group II - Contains particle inclusions with a volume fraction of
c

n
over the RVE,

where n ≥ 1. The combined approach states that the particle inclusions in Group I have already

been embedded in the original matrix to form a �ctitious matrix and that the elastic properties

of this one are obtained with the Self-Consistent scheme. Later, the particles of the Group II are

further distributed in this �ctitious matrix to create the composite material, and the e�ective

elastic properties of this later one are obtained with the Mori-Tanaka scheme. The number of

inclusions in Group II should be large enough to meet the requirements of the Mori-Tanaka

method. As it was demonstrated in Peng et al. (2009), Figure 5.9 illustrates the whole process

in a visual way.

It can be noticed that if n = 1 this combined method is equal to the Mori-Tanaka estimate

and that if n→∞ the combined method refers to the Self-Consistent scheme (Figure 5.10b).

Brie�y, assuming that the volume of the RVE is VRV E , the volume of the original matrix is

given by:

Vm = (1− φc)VRV E , (5.65)

and the volume of particle inclusions in Group I is,

VcI =

[(
1− 1

n

)
φc

]
VRV E , (5.66)

thus, the volume of �ctitious matrix, V̂m, and the equivalent volume fraction of the particle
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(a) Particles in the original RVE are distributed into Group I and II.

(b) Fictitious matrix formed by the original matrix and the particles of Group I.

(c) Composite material formed by the �ctitious matrix and the particles of Group II.

Figure 5.9: Schematic view of the combined self-consistent and Mori-Tanaka approach.

inclusions in the �ctitious matrix, φ̂c, are denoted as:

V̂m = Vm +

[(
1− 1

n

)
φc

]
VRV E , (5.67a)

φ̂c =
n− 1

n− φc
φc. (5.67b)

The elasticity tensor of the �ctitious matrix, L̂m, is then determined with the Expression

(5.53b) if φc is replaced by φ̂c, and this matrix is the one that it is used in the Mori-Tanaka

model.

Assuming, again, isotropic spherical particle inclusions and isotropic elastic �ctitious matrix,
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one can write explicit expressions for the bulk and shear moduli,

K∗ = K̂m

1 +

φc
n

(
Kc

K̂m

− 1

)
1 + α

(
1− φc

n

)(
Kc

K̂m

− 1

)
 , (5.68a)

G∗ = Ĝm

1 +

φc
n

(
Gc

Ĝm
− 1

)
1 + β

(
1− φc

n

)(
Gc

Ĝm
− 1

)
 , (5.68b)

where the e�ective elastic properties of the �ctitious matrix are de�ned by the Self-Consistent

method,

1

K̂m

=
1

Km
+

φ̂c

(
1− Kc

Km

)
K̂m +

1 + ν̂m
3(1− ν̂m)

(Kc − K̂m)

, (5.69a)

1

Ĝm
=

1

Gm
+

φ̂c

(
1− Gc

Gm

)
Ĝm +

2(4− 5ν̂m)

15(1− ν̂m)
(Gc − Ĝm)

, (5.69b)

and,

β =
2(4− 5ν̂m)

15(1− ν̂m)
, (5.70a)

α =
1 + ν̂m

3(1− ν̂m)
, (5.70b)

ν̂m =
3K̂m − 2Ĝm

6K̂m + 2Ĝm
. (5.70c)

where ν̂m is the Poisson's ratio of the �ctitious matrix.

In Figure 5.10a the representation of the combined method is displayed and it can be noticed

that the parameter n has a major role in the results (Figure 5.10b). The Mori-Tanaka and the

Self-Consistent method serve as the lower and upper boundaries, respectively.

5.3 Numerical Methods

The aforementioned methods only take into consideration the properties of the phases that con-

stitute the composite material and the phase volume fractions but the e�ective elastic properties

also depend on the geometrical morphology of the microstructure. As it was demonstrated in
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(a) Comparison with the Self-Consistent and Mori-

Tanaka models.
(b) Dependency of E∗ regarding the pa-
rameter n. In this case, φc = 0.3.

Figure 5.10: Representation of the combined Self-Consistent and Mori-Tanaka approach. In
this example, Ef = 100 GPa, Em = 10 GPa and νm = νf = 0.3.

Chapter 4, using an image of the RVE, which models the microstructure of the material, it is

possible to create a �nite element mesh that adjusts to the geometry of the singularities. With

this, one can perform a Finite Element Analysis to obtain the e�ective elastic properties of the

material. Imposing the deformation gradient and the boundary conditions, the program used

(MSP) solves the micro-scale problem under the hypothesis of large deformations. As a result,

the incremental deformation gradient and the homogenized �rst Piola-Kirchho� are obtained

for each increment.

As mentioned in Section 2.6.3, the time domain of the problem is discretized to be able to

solve problems that are dependent of the deformation history. The main objective of this work

is to �nd the e�ective elastic properties of the composite material that are representative of the

elastic domain and, as shown in the Figure 5.11. Usually in this domain, the stress is a linear

function of the strain. Therefore, theoretically, any force increment that stresses the material

inside this domain should give the same e�ective elastic properties (shown in Section 5.4), and

so, in order to get the results in a faster way, the values obtained in the �rst increment are the

ones that will be used.

5.3.1 Phase Material Properties

The materials contained in the RVE are considered to be are isotropic and de�ned through

the Young's modulus and the Poisson's ratio. During the digital image analysis, a material is

attributed to each pixel. Then, the skeleton of the �nite element mesh is created and, in order
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Figure 5.11: Stress - strain curve - Representation of the elastic domain.

to increase the homogeneity of each element, several algorithms are applied to it1. When the

�nal result is obtained, the skeleton gives rise to the �nite element mesh where each element

has a material and a type of element assigned to it.

For each combination of element type and material, a new group is created. Therefore, an

element is characterized by three things: its identi�cation number, the group number (that

has the information about the material and element type) and the identi�cation number of the

nodes that de�ne it. Each identi�cation node is related with its Cartesian coordinates. This

data is required by MSP to run the analysis.

5.3.2 Determination of the Homogenized Elastic Properties

To determine the elastic properties of the composite material, the homogenized stress tensor

and strain tensor are used. These are obtained through the MSP program that solves the

microscale problem, but since the stress tensor obtained is the �rst Piola-Kirchho�, this must

be converted to the Cauchy stress tensor through the following equation:

σ =
1

J
PF T . (5.71)

where J = detF .

In the case of a RVE in 3 dimensions, and for the case of an overall orthotropic composite

material, as mentioned in the Section 5.1.1, the constitutive relation is given by the following

1Mentioned in Chapter 4.
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expression, 

σ11

σ22

σ33

σ23

σ13

σ12


=



C11 C12 C13 0 0 0

C12 C22 C23 0 0 0

C13 C23 C33 0 0 0

0 0 0 C44 0 0

0 0 0 0 C55 0

0 0 0 0 0 C66





ε11

ε22

ε33

γ23

γ13

γ12


, (5.72)

where γ23 = 2ε23, γ13 = 2ε13, γ12 = 2ε12.

As it can be seen, there are 9 coe�cients to determine. To solve this, one should apply a

deformation gradient that strains the RVE in particular ways. If only one component of the

strain tensor, ε, is non-zero, the correspondent column of the sti�ness matrix is obtained. As

an example, if ε11 6= 0 and all the other components are null, the following is true:

σii = C1i ε11, i = 1, 2, 3. (5.73)

Once all the elastic coe�cients are acquired, the elastic properties can be calculated through

Expressions (5.14) and (5.16).

The overall composite material can be isotropic or transversely isotropic but, before the

analysis is done, the material is considered as orthotropic to be able to consider the most

general case and, if the elastic constants are equal, the particular cases of symmetry can be

identi�ed.

This methodology can be used, not only to determine the elastic constants of a material

with all kind of inclusions, but also for materials that can contain voids in the microstructure.

2D Plane Strain

Rewriting Expression (5.21), for the case of a two dimensional plane strain problem, the con-

stitutive relation is given by:
σ11

σ22

σ33

σ12

 =


C11 C12 C13 0

C12 C22 C23 0

C13 C23 C33 0

0 0 0 C44



ε11

ε22

0

γ12

 , (5.74)

and the same methodology used in the 3D case is applied. It is important to note that it is

not possible to obtain the third column of the sti�ness matrix and so the coe�cient C33 is

not achievable. The coe�cients C13 and C23 are obtained through the �rst and second column

steps.

The elastic constants are given by Expressions (5.14) and (5.16) but, without the value of

C33, Θ cannot be calculated and, consequently, the elastic constants cannot be obtained. In

order to solve this problem, the homogenized axial Young's modulus is calculated by the Voigt
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model,

E∗3 = φfEf + (1− φf )Em, (5.75)

where φf is the �ber volume fraction and Em and Ef are the matrix and �ber Young's modulus,

respectively. After this, Θ and, consequently, C33 can be determined.

Deformation Gradient

To be able to determine each column of the sti�ness matrix at a certain time, di�erent types

of strains must be enforced to the RVE, ensuring that only one component of the strain tensor,

ε, is di�erent from zero. Although the MSP program has for input the deformation gradient,

F , it is possible to connect both tensors. The procedure hereafter presented is based on the

procedure used in Carvalho et al. (2015)

In order to relate both concepts, one must �nd the deformation gradient that applies a

single direction longitudinal or a shear stretch on the RVE. To ensure an easy convergence of

the Newton-Raphson method, the number of increments chosen will be around 10000, and, since

the increment of interest is the �rst, one can consider the strain of the RVE as a in�nitesimal

strain, thus it is possible to assume that the Hencky tensor, E, can be approximated by the

in�nitesimal strain tensor ε,

E = ε ≡ 1

2

[
∇Xu+ (∇Xu)T

]
. (5.76)

and, on the other hand,

E = ln[U ] ≡ ln
[√

FTF
]

=
1

2
lnF TF . (5.77)

where ln[·] denotes the tensor logarithm of [·]. With this expression, it is possible to relate both

the strain tensor and the deformation tensor. Due to the characteristics of this relation, the

spectral decomposition of the Hencky tensor 2 has to be taken into consideration,

E =

3∑
i=1

λEi l
E
i ⊗ lEi , (5.78)

in which λEi are the eigenvalues and lEi are the eigenvectors of E. The eigenvalues, in the case

of three dimensions and for a generic matrix A with real components, can be calculated through

the following equation:

λ3
i − I1λ

2
i + I2λi − I3 = det (A− λiI) = 0, (5.79)

2E is a symmetric tensor, thus admits the spectral decomposition.
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where Ii are the invariants and are de�ned by:

I1 = trA, (5.80a)

I2 =
1

2

[
(trA)2 − trA2

]
, (5.80b)

I3 = detA. (5.80c)

Furthermore, the eigenvectors of this matrix A are calculated by:

(A− λiI) li = 0. (5.81)

From the de�nition of the Hencky tensor, it is possible to �nd the following expression:

λUi = exp(λEi ), (5.82)

where λUi are the eigenvalues of the right stretch tensorU . Furthermore and taking into account,

U = F TF (5.83)

it is possible to �nd the eigenvalues of F , λFi , relating them with the previous ones,

λFi ≡
√
λUi . (5.84)

At the end, the main objective can be accomplished and the deformation gradient, F , is

de�ned by its own eigenvalues, λFi , and by the eigenvectors of the imposed Hencky tensor, lEi ,

F = [Ψ]

 λF1 0 0

0 λF2 0

0 0 λF3

 [Ψ]T , (5.85)

where [Ψ] is a matrix in where each column i is the normalized vector of the eigenvector lEi .

In Table 5.1 one can �nd the deformation gradients that enable this methodology for a three

dimensional problem. For a two dimensional plane strain problem, the deformation gradients

are presented in Table 5.2.

5.4 Estimate the Homogenized Elastic Properties Based on a

Micrograph Information

Since in Chapter 4, the procedure to create a �nite element mesh that correctly models the

microstructure of a material has been explained and, in Section 5.3, the method to determine

the homogenized elastic properties of a material, based on a �nite element multi-scale model is

also described, the overall strategy is further detailed with an example.
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Table 5.1: Deformation gradients imposed to stretch the RVE in particular directions for a
three dimensional problem.

ε F 1 0 0
0 0 0
0 0 0

  2.718 0 0
0 1 0
0 0 1


 0 0 0

0 1 0
0 0 0

  1 0 0
0 2.718 0
0 0 1


 0 0 0

0 0 0
0 0 1

  1 0 0
0 1 0
0 0 2.718


 0 0 0

0 0 1
0 1 0

  1 0 0
0 1.543 1.175
0 1.175 1.543


 0 0 1

0 0 0
1 0 0

  1.543 0 1.175
0 1 0

1.175 0 1.543


 0 1 0

1 0 0
0 0 0

  1.543 1.175 0
1.175 1.543 0
0 0 1



Table 5.2: Deformation gradients imposed to stretch the RVE in particular directions for a two
dimensional problem.

ε F[
1 0
0 0

] [
2.718 0
0 1

]
[

0 0
0 1

] [
1 0
0 2.718

]
[

0 1
1 0

] [
1.543 1.175
1.175 1.543

]

In Figure 4.7, an initial microstructure is presented and the �nite element mesh created from

it is illustrated in Figure 4.18. For an easier perception of these �gures, the initial micrograph

and the �nal result are displayed in Figure 5.12.

As addressed in Section 4.2.5, the mesh information is saved in OOF2 using the format

Abaqus. A MATLAB® script was developed to extract the mesh data from this �le and to

rewrite that information with the data needed to run MSP (e.g. deformation gradient, prescribed

boundary condition, number of increments). During this process the area of the each element
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(a) Initial micrograph (Figure 4.7). (b) Finite element mesh based on Figure 5.12a.

Figure 5.12: DIB microstructure recognition demonstrated in Section 4.3.

is computed to determine the volume fraction of each constituent.

In this case, the e�ective elastic properties are determined with the Mortar Periodic bound-

ary condition. In order to accomplish it, the deformation gradients presented in Table 5.2 are

applied to the RVE (Figure 5.12b). After completing the �nite element analysis, the MSP

returns the corresponding homogenized �rst Piola-Kirchho� stress tensor and the incremental

deformation gradient for each case.

Using the following equation, the Cauchy stress tensor is computed:

σi =
1

detFi
PiF

T
i , (5.86)

where i denotes the load increment that is applied to the RVE. The in�nitesimal strain tensor

is calculated with the next expression:

εi ≈ Ei =
1

2
lnF T

i Fi. (5.87)

Again, another MATLAB® script (described in Appendix D) was created to determine these

tensors and the coe�cients of the e�ective constitutive tensor, C∗, presented in Equation (5.74).

Finally, using the equations described in (5.14), (5.16) and (5.75), the e�ective elastic properties

are obtained for a two dimensional plane strain problem.

Code Validation

In order to validate this MATLAB® script, the same elastic properties (E = 100 GPa and

ν = 0.3) are assigned to both phases, generating a RVE that resembles a homogeneous material.

As expected and presented in Table 5.3, the overall elastic properties obtained by this procedure

are equal to those assigned to each constituent, where, in this case, G12 corresponds to the

theoretical G = 38.4615 GPa given by Equation (5.30).
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Table 5.3: Homogenized elastic properties of the material represented in Figure 5.12 when both
constituents have the same elastic properties.

E∗1 E∗2 E∗3 G∗12 Unit

99.991 99.991 100.000 38.462 GPa

ν∗12 ν∗21 ν∗13 ν∗31 ν∗23 ν∗32 Unit

0.3000 0.3000 0.3000 0.3000 0.3000 0.3000 -

Increment Load Validation

To prove that the information obtained from the �rst load increment is enough to determine

with accuracy the e�ective elastic properties of an heterogeneous material3, these properties are

computed for di�erent load increments (only for the Mortar Periodic boundary condition) and

the results are presented in Table 5.4. The volume fraction of the Black material is 69.89%.

Table 5.4: Homogenized elastic properties of the material represented in Figure 5.12 for di�erent
load increments. The elastic properties of each constituent are presented in Table 4.3.

Increment E∗1 E∗2 E∗3 G∗12 2-norm of C∗ Unit

1 42.637 36.537 72.905 15.188 106.264 GPa

5
42.601 36.506 72.905 15.188 106.203 GPa

0.084 0.086 0.000 0.001 0.057 %

10
42.556 36.466 72.905 15.188 106.127 GPa

0.189 0.194 0.000 0.002 0.129 %

Increment ν∗12 ν∗21 ν∗13 ν∗31 ν∗23 ν∗32 Unit

1 0.3401 0.2914 0.1754 0.3000 0.1503 0.3000 -

5
0.3401 0.2914 0.1753 0.3000 0.1502 0.3000 -

0.000 0.000 0.057 0.000 0.067 0.000 %

10
0.3400 0.2914 0.1751 0.3000 0.1501 0.3000 -

0.029 0.000 0.171 0.000 0.133 0.000 %

The scalars E∗1 and E∗2 represent the e�ective in-plane Young's moduli and E∗3 the e�ective

out-of-plane Young's modulus. The second norm of the constitutive tensor, C∗, is a scalar value

that aims to characterize the whole tensor. The numbers in the second row of increment 5 and

10 represent the relative error between the respective and the �rst increment. It can be noticed

that the error is much smaller than 1%, thus, the �rst increment is the one used to estimate

the e�ective elastic properties.

However, currently there is no way to know if these results are correct. As mentioned in

Section 3.1, the size of the RVE is an important factor to take into account. It needs to be large

3As mentioned in the introduction of Section 5.3.
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enough to be statistically representative of the material's microstructure and small enough to

be easily analysed on a computational level. Figure 5.12 is clearly not big enough to correctly

represent the microstruscture of the plasma-etched Si3Na4, since it only contains a low number

of its singularities. To solve this problem, in Chapter 6, the study of the RVE size is presented.

5.5 Conclusions

The majority of the engineering structures are designed to withstand loads that do not stress the

material outside the elastic domain and, due to the signi�cant demand that composite materials

have nowadays, it is important to be able to estimate the macroscopic elastic properties of

materials, even when their microstructure is too complex.

Despite the existence of analytical methods that, resorting to the Eshelby tensor (S), take

into consideration the microstructure geometry, their limitations are exposed when the inclu-

sions diverge from simple spherical or ellipsoidal shapes. For those cases, the Digital Image

Based microstructure recognition technique presents a new method that, for any given mi-

crostructure, is able to correctly model the behaviour of a material at the microscopic level,

hence, producing more accurate results than those obtained by the mathematical expressions

given by analytical methods.

The procedure to estimate the elastic properties has been presented in this chapter and a

simple validation of the code is performed. The use of the �rst load increment to obtain the

e�ective elastic constants is also justi�ed. It is then important to perform some parametric

studies to improve each step of the process and to be certain that the obtained results are

correct.

In the next chapter, these parametric studies are presented, such as the optimal RVE size

and the �nite element size that correctly model its behaviour.



Chapter 6

Parametric Studies on the Homogenized

Elastic Properties

Due to high costs associated with the experimental procedures and given the fact that analytical

methods are not su�ciently accurate to predict the homogenized elastic properties in complex

conditions, the method presented in Chapters 4 and 5 o�ers a new and more accurate solution

to obtain the homogenized properties, enabling the problem to be solved on a computational

level while taking into account complex microstructure geometries.

In the case of a 3D RVE, the full sti�ness tensor may be obtained through this procedure

while, in the case of a 2D RVE, the out-of-plane Young's modulus must set a priori, due to

the lower number of equations compared with the amount of unknown elasticity constants.

However, in order to validate the results achieved by this method, the whole process used to

generate the �nite element mesh has to be analysed step by step.

First of all, parametric studies are made to de�ne whether the obtained results are valid or

not. This include a study on the RVE size to �nd the optimized value that correctly represents

the microstructure and a study on the mesh size also needs to be performed, due to the use of

the Finite Element Method. During this process, it is noteworthy to mention the in�uence of

the image quality of the representative micrograph on the estimated e�ective elastic properties.

Later, a comparison note between the results obtained and the analytical methods described in

Section 5.2 is presented, more precisely with theMori-Tanaka method and with the Hashin-Hill

boundaries. The in�uence of the sti�ness ratio between the �ber and matrix materials on the

RVE size, is also analysed.

With these studies completed, the optimal RVE and correspondent mesh size are de�ned

and the in�uence of the sti�ness ratio on the homogenized elastic properties is determined in

the case of a unidirectional �ber composite.

97
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6.1 Studies to Determine the RVE Size

As mentioned in Chapter 3 and in Section 5.4, the size of the RVE that aims to model the

microstructure of a material is an important factor when estimating its homogenized elastic

properties.

In this section, the main objective is to �nd the minimum RVE size that is statistically

representative of the microstructure. To study the in�uence of this parameter, a micrograph

(Figure 6.1) of a metal matrix composite, whose matrix and �bers are respectively NiAl2 and

Cr, is analysed for di�erent sizes of the RVE.

Figure 6.1: Micrograph of a composite material (NiAl2-Cr) with di�erent sizes of RVEs displayed
(Terada et al., 2000): (a) 1024× 1024 px; (b) 896× 896 px; (c) 768× 768 px; (d) 640× 640 px;
(e) 512 × 512 px; (f) 384 × 384 px; (g) 256 × 256 px; (h) 128 × 128 px. The smallest RVE in
the middle with only one �ber has 32× 32 px.

6.1.1 Image Treatment

Figure 6.1 does not contain enough quality or resolution, therefore, �rstly an image treatment

is necessary to improve the quality of the micrograph to later permit faster and better results

with the image segmentation step.

Using Adobe Photoshop®, the white square lines that subdivide the whole micrograph in

di�erent RVEs are removed, the matrix part (lighter color) is coloured with white and the �bers

are painted with black. After this color manipulation, it is easier to select the di�erent pixel

groups that belong to the matrix and �ber parts.
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Figure 6.2: Image manipulation of Figure 6.1 to better de�ne the material boundaries.

Considering the sub-divisions displayed in Figure 6.1, this newly treated micrograph illus-

trated in Figure 6.2 is divided into 8 RVEs of di�erent sizes, presented in Figure 6.3. These

RVEs are characterized by their pixel dimensions but, attributing a physical dimension to them,

facilitates the process of automatically creating the �rst version of the skeleton using the auto-

mated script1 of OOF2. In a �rst order Multi-Scale model, the precise size of the RVE is not

important, only the relative size between the constituents and the RVE matter. Therefore, the

conversion from pixel to physical dimensions is presented in Table 6.1. The value of 10× 10 is

random, but not too small to keep the x− and y−coordinates admissible, avoiding the numerical

errors which arises from extremely small numbers. The other dimensions correctly characterize

the scale between RVEs.

Table 6.1: Conversion from pixel to physical dimensions.

Pixel 128× 128 256× 256 384× 384 512× 512

Physical 10× 10 20× 20 30× 30 40× 40

Pixel 640× 640 768× 768 896× 896 1024× 1024

Physical 50× 50 60× 60 70× 70 80× 80

Considering the smallest RVE (Figure 6.3a), the procedure to create the �nite element mesh

is further described. The same steps are followed to generate the meshes for the other RVEs.

1Mentioned in Section 4.2.4.
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(a) 128× 128. (b) 256× 256. (c) 384× 384. (d) 512× 512.

(e) 640× 640. (f) 768× 768. (g) 896× 896. (h) 1024× 1024.

Figure 6.3: Subdivision of the whole micrograph and representation of the di�erent RVEs
oriented per pixel dimensions.

6.1.2 Image Segmentation

To better understand the concept of image segmentation, the full detailed process is explained

in Section 4.2.2 and an example is given in Section 4.3.2.

The pixel selection is done with the Color tool of OOF2. The range di�erence is computed

in gray scale values and delta gray = 0.5. The result is displayed in Figure 6.4 with the material

image presented too.

(a) Pixel selection. (b) Material image.

Figure 6.4: Image segmentation of the smallest RVE.

The elastic properties of each constituent are equal to the ones from Terada et al. (2000)

and are presented in Table 6.2, where Fiber and Matrix correspond, respectively, to the darker

and lighter constituent.
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Table 6.2: Elastic properties assigned to each constituent of the RVE.

Young's Modulus Poisson's Ratio Color

Fiber 100 GPa 0.3 0.8

Matrix 10 GPa 0.3 0.4

6.1.3 Studies to Determine the Mesh Size

As it is well known, while utilizing the Finite Element Method, the accuracy of the results is

highly dependent on the mesh re�nement. Hence, before presenting the results about the RVE

size, a study to de�ne the correct mesh size must be performed. During this analysis, only the

Mortar Periodic boundary condition is utilized.

In the �rst place, the initial versions of the skeletons are created by the automated script of

OOF2, therefore the following parameters2 must be de�ned for each case: maxscale, minscale

and homogeneity threshold. Later, each skeleton is improved utilizing the Rationalize, Swap

Edges, Split Quads, Merge Triangles, Smooth and/or Anneal routines. There is not a correct

way to create the perfect skeleton, meaning that these functions should be chosen according

with the user's criteria of a well designed skeleton (�nite element mesh) that correctly resembles

the microstructure's geometry.

Table 6.3 presents the di�erent parameters chosen to create the four di�erent mesh versions,

along with the �nal informations. The �nal versions are displayed in Figure 6.5.

Table 6.3: Parameters chosen to automatically create the initial skeleton version for each mesh
of the 10 × 10 RVE and respective information. The homogeneity threshold is equal to 0.9 in
all versions.

Mesh 1 2 3 4

Maxscale 0.5 0.3 0.2 0.1

Minscale 0.5 0.3 0.2 0.1

Elements 534 1610 2909 10766

Quadrilateral 341 863 2322 9812

Triangular 193 747 587 954

Nodes 483 1310 2720 10491

Homogeneity 0.967 0.973 0.991 0.996

Finally, the e�ective elastic properties obtained by each mesh are presented in Table 6.4.

The smaller numbers with (%) unit are the relative di�erence between mesh versions. As it

is noticed, from version 1 to 3, this di�erence is higher than 1% in the majority of the elastic

properties but, the di�erence between version 3 and 4 is lower than 1% and, therefore, version

3 is considered to be re�ned enough to accurately estimate the e�ective elastic properties of the

composite material.

2Addressed in Section 4.2.4
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(a) Mesh 1. (b) Mesh 2.

(c) Mesh 3. (d) Mesh 4.

Figure 6.5: Representation of the di�erent meshes of the 10× 10 RVE.

To be certain that this mesh size is still valid for larger RVEs, the same study is repeated for

the 20× 20 and 30× 30 dimensions. The parameters used to automatically create the skeleton

and the respective informations are presented in Table 6.5. Excluding the Poisson's ratio, the

results are given in Table 6.6. It can be noticed that, regarding the 20 × 20 and the 30 × 30

RVEs, the di�erence from version 1 and 2 (more re�ned) is lower than 0.5%, thus, version 1

is the selected one for these cases. As the size of the RVE increases, the relative importance

of each �ber decreases, hence, a more coarse mesh may be used to estimate the homogenized

elastic properties. Summarizing,

maxscale = minscale = 0.2, for the 10× 10 RVE,

maxscale = minscale = 0.3, for RVEs equal and larger than 20× 20.

where the homogeneity threshold is equal to 0.9 in every case.

Before presenting the results about the RVE size, an analysis on the image quality of the

RVE taken from Terada et al. (2000) is performed.
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Table 6.4: Homogenized elastic properties for each mesh version of the 10× 10 RVE.

Mesh E∗1 E∗2 E∗3 G∗12 2-norm of C∗ Unit

1 17.741 17.802 39.320 6.838 52.949 GPa

2.330 1.900 0.050 2.365 0.392 %

2 17.327 17.463 39.340 6.676 52.741 GPa

2.085 2.268 1.941 2.754 1.919 %

3 16.966 17.068 38.576 6.492 51.729 GPa

0.740 0.729 0.354 0.509 0.490 %

4 17.092 17.192 38.713 6.525 51.983 GPa

Mesh ν∗12 ν∗21 ν∗13 ν∗31 ν∗23 ν∗32 Unit

1 0.3477 0.3489 0.1354 0.3000 0.1358 0.3000 -

2.243 2.694 2.437 0.000 1.915 0.000 %

2 0.3555 0.3583 0.1321 0.3000 0.1332 0.3000 -

0.619 0.419 0.151 0.000 0.375 0.000 %

3 0.3577 0.3598 0.1319 0.3000 0.1327 0.3000 -

0.196 0.195 0.379 0.000 0.377 0.000 %

4 0.3570 0.3591 0.1324 0.3000 0.1332 0.3000 -

Table 6.5: Parameters chosen to automatically create the initial skeleton version for each mesh
of the 20× 20 and 30× 30 RVEs and respective information. The homogeneity threshold is 0.9
in every case.

RVE Mesh Maxscale Minscale Elements Nodes Homogeneity

20× 20
1 0.3 0.3 5750 5046 0.987

2 0.2 0.2 11865 10729 0.989

30× 30
1 0.3 0.3 11867 10595 0.986

2 0.2 0.2 26610 23998 0.989

Table 6.6: Homogenized elastic properties for each mesh version of the 20 × 20 and 30 × 30
RVEs.

RVE Mesh E∗1 E∗2 E∗3 G∗12 2-norm of C∗ Unit

20× 20

1 17.976 18.022 41.117 6.694 54.461 GPa

0.217 0.150 0.285 0.344 0.170 %

2 17.937 17.995 41.234 6.671 54.554 GPa

30× 30

1 17.918 18.091 41.068 6.646 54.365 GPa

0.146 0.226 0.327 0.245 0.215 %

2 17.892 18.050 41.202 6.629 54.482 GPa
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Remarks on the Image Quality

Since the DIB microstructure recognition technique relies on a micrograph of the material to

generate the �nite element mesh that model its behaviour, the quality of the micrograph is an

important factor to take into account.

Figure 6.6 illustrates a zoom of the mesh obtained for the 80×80 RVE. As it can be seen, the

jagged boundaries of the materials do not correctly represent the real microstructure. Therefore,

the skeleton, while trying to reduce the shape and homogeneity energy3, attempts to mold to

the low quality boundaries illustrated in this image and the �nal results may be inaccurate.

Figure 6.6: Zoom of the 80× 80 RVE to illustrate the quality of the mesh.

To solve this problem, the image displayed in Figure 6.2 is vectorized using Adobe Illustrator®,

i.e. using the function Image Trace, the bitmap image undergoes a raster-to-vector conversion

(or vectorization). In a vector image, the edges are represented as a mathematical lines or curves

and, unlike the raster image, it can be magni�ed, theoretically, thousands of times without los-

ing de�nition. After the image tracing procedure, same parts are not correctly represented

and manual corrections are needed, specially when two �bers are connected as illustrated in

Figure 6.7.

Nevertheless, after the image tracing procedure has been completed, the image has to be

exported from Adobe Illustrator® as a bitmap �le again (e.g. .png �le extension). The image

is exported with a high resolution of 300 PPI (pixels per inch). In Figure 6.8, the di�erence

between the initial and the �nal 80 × 80 RVE is presented. As it can be seen in Figure 6.8d,

the jagged boundaries of Figure 6.8c have nearly vanished. The initial image had a dimension

of 1024 × 1024 pixels and the new one has 4267 × 4267 pixels, which means around 17 times

more resolution.

3Addressed in Section 4.2.3.
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(a) Before the image tracing. (b) After the image tracing. (c) After the manual correction.

Figure 6.7: Example of the two steps needed to complete the image tracing procedure.

(a) Initial RVE (Figure 6.2). (b) New RVE.

(c) Zoom of Figure 6.8a. (d) Zoom of Figure 6.8b.

Figure 6.8: Di�erence between the initial image (lower quality) and the new one (higher quality)
for the 80× 80 RVE.

Repetition of the Mesh Size Study

With the change in the image quality, the study about the mesh size has to be remade. Following

the same procedure that was used to generate the �nite element meshes presented in Figure 6.5,

the new meshes have been created and Table 6.7 presents the parameters chosen to run the

automated script of OOF2 for each mesh version and the respective �nal informations.

Unlike the other versions, comparing version 3 with 4, the maxscale is the same but the

minscale changes to half and it can be noticed that the number of elements doubled but the
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Table 6.7: Parameters chosen to automatically create the initial skeleton version to each mesh
of the new 10× 10 RVE. The homogeneity threshold is equal to 0.9 in all versions.

Mesh 1 2 3 4 5

Maxscale 0.5 0.3 0.2 0.2 0.1

Minscale 0.5 0.3 0.2 0.1 0.1

Elements 667 1193 3009 6478 10734

Quadrilateral 399 1015 2352 3200 9715

Triangular 268 178 657 3278 1019

Nodes 581 1173 2786 4962 10431

Homogeneity 0.993 0.993 0.996 0.997 0.997

(a) Zoom of the initial material image Figure 6.4b. (b) Zoom of the new material image.

Figure 6.9: Di�erence between the image segmentation of the initial and new 10× 10 RVE.

majority of elements created are triangular (as it can be seen later in Figure 6.10), since it is the

type of elements that better �ts circular boundaries. Furthermore, it is noteworthy to mention

that the homogeneity is higher in these meshes than it was in the meshes generated trough the

initial image (Table 6.4). This can be explained by the higher resolution image that enables

better results in the segmentation process, as illustrated in Figure 6.9.

The homogenized elastic properties for these �ve versions are presented in Table 6.8. Based

on the same criterion as before, the selected version is the number 3 because the relative

di�erences from this version to the next one (version 4) are lower than 0.5%.

The same study is repeated for larger RVEs (20× 20, 30× 30 and 60× 60). The parameters

used to automatically create the skeleton and the respective mesh informations are given in

Table 6.9. Excluding the Poisson's Ratio, the results are presented in Table 6.10.

Analysing these results, one can notice that for the 20× 20 and 30× 30 RVE, the selected

version is the number 2 because, comparing both versions, there is around 1% of relative

error in the G∗12 value. However, regarding the 60 × 60 RVE and comparing the results, the

selected version is the number 1, thus, RVEs larger than this should be modelled with the same
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Table 6.8: Homogenized elastic properties for each mesh version of the new 10× 10 RVE.

Mesh E∗1 E∗2 E∗3 G∗12 2-norm of C∗ Unit

1 18.674 18.765 42.443 7.128 56.353 GPa

1.187 1.128 0.208 1.756 0.221 %

2 18.452 18.554 42.531 7.003 56.229 GPa

0.957 1.170 0.135 1.314 0.291 %

3 18.276 18.337 42.473 6.911 56.065 GPa

0.246 0.293 0.008 0.313 0.044 %

4 18.231 18.283 42.476 6.889 56.041 GPa

0.200 0.211 0.033 0.274 0.072 %

5 18.194 18.244 42.462 6.870 56.000 GPa

Mesh ν∗12 ν∗21 ν∗13 ν∗31 ν∗23 ν∗32 Unit

1 0.3454 0.3471 0.1320 0.3000 0.1326 0.3000 -

0.898 0.980 1.364 0.000 1.282 0.000 %

2 0.3485 0.3505 0.1302 0.3000 0.1309 0.3000 -

1.263 1.027 0.845 0.000 1.070 0.000 %

3 0.3529 0.3541 0.1291 0.3000 0.1295 0.3000 -

0.340 0.282 0.232 0.000 0.309 0.000 %

4 0.3541 0.3551 0.1288 0.3000 0.1291 0.3000 -

0.169 0.169 0.233 0.000 0.155 0.000 %

5 0.3547 0.3557 0.1285 0.3000 0.1289 0.3000 -

Table 6.9: Parameters chosen to create the skeleton and information relative to each mesh of
the new 20× 20, 30× 30 and 60× 60 RVEs. The homogeneity threshold is 0.9 in every case.

RVE Mesh Maxscale Minscale Elements Nodes Homogeneity

20× 20
1 0.3 0.3 6108 5347 0.995

2 0.2 0.2 11604 10760 0.996

30× 30
1 0.3 0.3 13676 11680 0.995

2 0.2 0.2 27193 24245 0.995

60× 60
1 0.3 0.3 51633 44707 0.992

2 0.2 0.2 106640 96668 0.995

parameters of this mesh version. Therefore, the chosen parameters are the following ones:

maxscale = minscale = 0.2, for the 10× 10, 20× 20, . . . , 50× 50 RVEs,

maxscale = minscale = 0.3, for RVEs equal and larger than 60× 60.
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Table 6.10: Homogenized elastic properties for each mesh version of the new 20 × 20, 30 × 30
and 60× 60 RVE.

RVE Mesh E∗1 E∗2 E∗3 G∗12 2-norm of C∗ Unit

20× 20

1 17.715 17.980 40.737 6.603 53.994 GPa

0.472 0.571 0.042 0.835 0.097 %

2 17.631 17.878 40.754 6.548 53.941 GPa

30× 30

1 18.261 18.333 42.078 6.744 55.495 GPa

0.747 0.793 0.179 0.994 0.294 %

2 18.125 18.186 42.003 6.677 55.332 GPa

60× 60

1 18.022 18.022 41.395 6.636 54.647 GPa

0.269 0.307 0.678 0.374 0.436 %

2 17.974 17.967 41.676 6.612 54.885 GPa

with the homogeneity threshold equal to 0.9 in all cases.

As it can be seen from Table 6.9, the number of elements in the 60× 60 RVE changes from

106640 to 51633, re�ecting a decrease of 52% and, regarding the number of nodes, the reduction

is around 54%, meaning that the computational power needed to generate the �nite element

meshes and to run the analyses is lower. Considering that the values hereafter mentioned

depend on the speci�cations of the computer used, the time taken to complete the analysis of

one load increment with a Mortar Periodic boundary condition in the case of mesh 1 is around

19 seconds and, in the case of mesh 2, is 73 seconds, meaning that, on a computational level,

mesh 2 is almost four times heavier than mesh 1.

Figure 6.10 presents the �nite element mesh of version 3 and 4 of the new 10 × 10 RVE

along with version 3 of the initial 10 × 10 RVE. Comparing Figure 6.10a with Figure 6.10b,

one can notice that the improved results obtained during the image segmentation process (Fig-

ure 6.9) re�ect on a skeleton that better characterizes the microstructure of the material, hence,

producing more accurate results.

(a) Zoom of the initial mesh 3. (b) Zoom the new mesh 3. (c) Zoom of the new mesh 4.

Figure 6.10: Comparison between the initial and new �nite element meshes of the 10×10 RVE.

Furthermore, taking into account the results presented in this section, and considering a

RVE of a unidirectional �ber composite, it is possible to de�ne that a value within one third



Chapter 6. Parametric Studies on the Homogenized Elastic Properties 109

and one fourth of the �ber radius is a good element's size and so:

1

4
radius�ber ≤ minscale ≤ 1

3
radius�ber, (6.1)

while the maxscale parameter should have an approximate value in order to favor the formation

of quadrilateral elements.

6.1.4 Results

With the mesh size de�ned for all RVEs, the steps needed to estimate the e�ective elastic prop-

erties are performed. In this section, the results are presented for the initial RVE (Figure 6.2)

and for the new RVE (Figure 6.8b), obtained after the image tracing process. Later, a note on

both results is made, along with a comparison with the estimated properties obtained with the

Mori-Tanaka method and with the Hashin-Hill bounds.

Finally, a study on the in�uence of di�erent sti�ness ratios (sti�ness of the �ber material

over the sti�ness of the matrix material) is made to analyse if the RVE size is dependent on

this factor.

To enable an easier interpretation of the results, the RVE size is described by a characteristic

length, which is the RVE dimensions normalized by the smallest RVE that only contains one

�ber (presented in Figure 6.1). In Terada et al. (2000), this model has 32× 32 pixels, thus, the

characteristic lengths are de�ned in Table 6.11.

Table 6.11: Conversion from pixel dimensions to characteristic length.

Pixel Dimensions 128× 128 256× 256 384× 384 512× 512

Physical Dimensions 10× 10 20× 20 30× 30 40× 40

Characteristic Length 4 8 12 16

Pixel Dimensions 640× 640 768× 768 896× 896 1024× 1024

Physical Dimensions 50× 50 60× 60 70× 70 80× 80

Characteristic Length 20 24 28 32

Initial RVE

In order to achieve these results, the procedure described in Figure 1.1 was followed, excluding

the �rst block "Acquisition of a Micrograph", which was obtained from Terada et al. (2000), as

described earlier in this section.

Furthermore, the �nite element analyses are computed taking into consideration the three

main constraints addressed in Section 3.4 (Linear, Mortar Periodic and Uniform Traction

boundary conditions).
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With the material properties de�ned in Table 6.2, the homogenized sti�ness tensor is com-

puted for each RVE and the 2-norm of these tensors are presented in Figure 6.11.

Figure 6.11: Representation of the 2-norm of the homogenized sti�ness tensor, C∗, of the initial
RVEs.

Looking at these results, it can be seen that the Linear and Uniform Traction boundary

conditions set the upper and lower boundaries for the homogenized elastic properties, as men-

tioned in Section 3.4.5. Moreover and as it is expected, the di�erent boundary conditions are

converging for the same value and the Mortar Periodic boundary condition seems to converge

faster for the optimal result.

In Figure 6.12, the homogenized in-plane Young's moduli, E∗1 and E∗2 , are illustrated for

the three boundary conditions aforementioned. The same conclusions taken for Figure 6.11 can

be applied and one can notice that both moduli tend to converge for the same value, meaning

that the composite material may be characterized as transversely isotropic4. This is explained

by the randomness distribution of the �bers that tend to in�uence both plane directions on the

same way, as the RVE increases in size.

Table 6.12: Mesh information of the initial 10× 10, 40× 40 and 80× 80 RVEs.

RVE Elements Nodes

10× 10 2909 2720

40× 40 22001 19311

80× 80 91846 77913

4Addressed in Section 5.1.2.
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Figure 6.12: Representation of the homogenized in-plane Young's moduli, E∗1 and E∗2 , of the
initial RVEs.

In both Figure 6.11 and 6.12, it can be seen that the values of theMortar Periodic boundary

condition start to converge for a characteristic length of 16, meaning that the middle RVE

(512 × 512 px or 40 × 40 in physical dimensions) may be considered large enough to correctly

represent the microstructure of this material.

The mesh information relative to this RVE is presented in Table 6.12, along with the infor-

mation regarding the 10×10 and 80×80 RVEs. The number of elements and nodes necessary to

model this microstructure is nearly 25% than those needed to model the largest RVE, meaning

that the computational power needed to run the analyses is much lower. For instance, con-

sidering the computer used to run the majority of the simulations, in the case of the 40 × 40

RVE, it takes around 5 seconds to complete the analysis of one load increment for a single

deformation gradient and boundary condition (Mortar Periodic) and, for the 80 × 80 RVE, it

takes ten times more to complete the same process (≈ 50 seconds). The generation of the �nite

element mesh is also quicker in the 40 × 40 RVE, since it not only depends on the amount of

nodes and elements that are processed during the OOF2 routines but also on the amount of

pixels of the micrograph.

New RVE

Taking into consideration the new RVE generated after the image tracing process (Figure 6.8b),

the procedure to obtain the homogenized properties is equal to the one followed in the initial

RVE. Therefore, Figure 6.13 illustrates the variation of the 2-norm of the homogenized sti�ness

tensor.



112 Faculty of Engineering of the University of Porto

Figure 6.13: Representation of the 2-norm of the homogenized sti�ness tensor, C∗, of the new
RVEs.

Analysing the results, the same conclusions regarding the upper and lower boundaries can

be made, i.e. the Linear and Uniform Traction boundary conditions represent the upper and

lower boundaries of the homogenized elastic properties. One can also conclude that the Mortar

Periodic boundary condition converges faster to the theoretical value, thus, being the favoured

boundary condition when estimating the homogenized elastic properties of a composite material.

It is known that the phases' volume fraction is one of the most important factors concerning

composite materials, and, while running the analyses for this studies, it has been noticed that

the �ber volume fraction drives the results regarding the other e�ective properties. Moreover, to

be able to compute the di�erent sti�ness tensor coe�cients, the e�ective axial Young's modulus,

E∗3 , is previous settled by the Voigt model5 (rule of mixtures), thus, E∗3 depends linearly on the

�ber volume fraction, φf , as demonstrated in Figure 6.14.

In Figure 6.15, the variations of the e�ective in-plane Young's moduli are presented and

again, E∗1 and E∗2 , converge to the same value (transversely isotropic material). Moreover, the

homogenized plane shear modulus, G∗12, presents the same type of dependence on the RVE size,

and the upper and lower boundaries remain the same (Figure 6.16).

Furthermore, it is noteworthy to mention that the upper and lower boundaries invert when

analysing the homogenized plane Poisson's ratio, ν∗12. This is illustrated in Figure 6.17, and to

explain this phenomenon, it is important to remember that the Poisson's ratio re�ects the capac-

ity of the material to expand/contract in a speci�c orientation when loaded on a perpendicular

direction. Therefore, the Uniform Traction boundary condition, being the less restrictive of

the microscopic constraints here applied, tends to give more �exibility to the material during

5As expressed in Equation (5.75).
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Figure 6.14: Representation of the homogenized axial Young's modulus, E∗3 , and �ber volume
fraction, φf , of the new RVEs.

Figure 6.15: Representation of the homogenized in-plane Young's moduli, E∗1 and E∗2 , of the
new RVEs.

the deformation process, resulting on a higher Poisson's ratio. Contrariwise, the Linear bound-

ary condition, as the most restrictive one, partly prevents the deformation, producing a lower

Poisson's ratio.

Finally, with all these results, the 40× 40 RVE may be considered as the optimal RVE size

to estimate the overall properties, as mentioned during the analyses of the initial RVEs.
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Figure 6.16: Representation of the homogenized plane shear modulus, G∗12, of the new RVEs.

Figure 6.17: Representation of the homogenized Poisson's ratio, ν∗12, of the new RVEs.

Comparison between RVEs

With these di�erent studies completed, the in�uence of the image processing that converted

the initial RVEs into the new ones can be analysed.

As mentioned before and represented in Figure 6.15, 6.16 and 6.17, the homogenized elas-

tic properties are highly dependent on the �ber volume fraction (Figure 6.14). This value is

obtained using the MATLAB® script that reads the output �le of OOF2 and writes the input
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�le for MSP. It computes the volume fraction for each constituent from the sum of the �nite

elements' area assigned to them. Therefore, the �ber volume fractions of the initial and new

RVEs are presented in Figure 6.18, and a stabilized di�erence of 1% for RVEs larger than 30×30

(characteristic length = 12) is noticed. This change in volume fraction is explained by the fact

that, after the image tracing process the �bers are better de�ned (Figure 6.8) and during the

segmentation process more pixels are selected generating a smoother shape (Figure 6.9).

In Table 6.13, the results for E∗1 are presented along with the respective relative di�erences,

∆, obtained by the following expression:

∆ =
| E∗1new − E

∗
1initial

|
E∗1new

× 100 [%]. (6.2)

The change of 1% in the �ber volume fraction results on ∆ values between 1% and 2% on

the homogenized elastic properties. Neither one of the results can be considered correct since

the initial RVEs lack image de�nition because they are taken directly from an article (Terada

et al., 2000), and the new RVEs are generated through an image modi�cation process that

may introduce changes in the microstructure. Nonetheless, these analyses aim to show the

importance of the image quality on the �nal results and, since the new RVEs present a better

correlation with the microstructure geometry, those are the ones that will be used on the studies

presented hereafter.

Figure 6.18: Representation of the �ber volume fraction, φf , of the initial and new RVEs.

Comparison with the Analytical Methods

As mentioned in the beginning of this chapter, the analytical methods presented in Section 5.2,

have limitations when estimating the homogenized elastic properties of composite materials. In
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Table 6.13: Comparison between the homogenized Young's modulus, E∗1 , of the initial and new
RVEs.

RVE 10× 10 20× 20 30× 30 40× 40 Unit

Initial 16.966 17.976 17.918 17.795 GPa

New 18.276 17.631 18.125 17.991 GPa

Relative Error 7.165 1.957 1.139 1.090 %

RVE 50× 50 60× 60 70× 70 80× 80 Unit

Initial 17.783 17.704 17.651 17.676 GPa

New 17.930 18.022 17.994 17.944 GPa

Relative Error 0.820 1.768 1.905 1.491 %

this section, the results obtained by the DIB microstructure recognition method are compared

with one of the most popular analytical models, the Mori-Tanaka method (Section 5.2.5).

Since the material may be considered as transversely isotropic, the e�ective plane Young's

modulus, E∗p , is calculated by the average of both in-plane Young's moduli, E∗1 and E∗2 . In Fig-

ure 6.19 the representation of this elasticity constant computed with the three main microscopic

constraints is presented along with the e�ective Young's modulus obtained by the Mori-Tanaka

model.

Figure 6.19: Representation of the homogenized plane Young's modulus, E∗p , obtained by the
numerical and the Mori-Tanaka models.

Despite the fact that the equation of the Mori-Tanaka model presented in Figure 6.19 was

obtained assuming an isotropic and elastic matrix and isotropic and elastic spherical inclusions,
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the similarities with the numerical DIB microstructure recognition technique are high. More-

over, the results given by the Mori-Tanaka method are within the boundaries settled by the

Linear and Uniform Traction boundary conditions. The results and the volume fraction used

to compute the analytical values are presented in Table 6.14, along with the relative di�erences,

∆, calculated by:

∆ =
| E∗pMori

− E∗pDIB |
E∗pMori

× 100 [%]. (6.3)

Table 6.14: Comparison between the homogenized plane Young's modulus, E∗p , obtained by the
numerical and Mori-Tanaka models.

RVE 10× 10 20× 20 30× 30 40× 40 Unit

Volume Fraction 36.081 34.172 35.559 35.070 %

Numerical∗ 18.306 17.754 18.156 18.024 GPa

Analytical∗∗ 18.459 17.839 18.287 18.128 GPa

∆ 0.829 0.475 0.715 0.574 %

RVE 50× 50 60× 60 70× 70 80× 80 Unit

Volume Fraction 35.069 34.884 35.026 34.958 %

Numerical∗ 17.962 18.022 17.995 17.948 GPa

Analytical∗∗ 18.127 18.067 18.113 18.091 GPa

∆ 0.911 0.249 0.655 0.790 %

∗Mortar Periodic boundary condition.
∗∗Mori-Tanaka model.

The ∆ values are below 1%, and this di�erence may be partly justi�ed by the fact that

the numerical analyses are made with the assumption of a 2D plane strain problem, meaning

that it is the same as considering that the microstructure modelled by the RVE (Figure 6.2) is

a cross section of a material of length several times bigger than the cross section dimensions.

Therefore, the inclusions can be considered as �bers and not spherical particles, contrariwise to

the assumptions made during the deduction of the �nal expressions of the Mori-Tanaka model.

Furthermore, since the Mori-Tanaka method is within the Hashin-Hill boundaries (Figure 5.8),

that limits the homogenized properties of transversely isotropic composite materials composed

by isotropic constituents, the numerical results are also between those limits. However, the

Hashin-Hill boundaries are not represented in Figure 6.19 because the values do not match the

appropriate range for the accurate plotting of the results.

Results Discussion

In summary, the variance in the image quality usually tends to produce slightly di�erent seg-

mentation outcomes, which culminates in di�erent phases' volume fractions. Being the volume
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fraction one of the most important factors and the variable that drives the homogenized proper-

ties, it is important to take this into consideration when trying to improve the image resolution

of a micrograph. Even so, in this case, the image after the vectorization process better charac-

terized the materials microstructure.

In addition, the homogenized elastic properties started to converge for dimensions greater

than the 40×40 RVE. Thus, this can be de�ned as the optimal RVE size to predict the e�ective

elastic properties of a microstructure of this type. The 40×40 RVE is de�ned by a characteristic

length of 16, hence, one can conclude that, for a unidirectional �ber composite material, its

microstructure can be modelled by a RVE 15-20 times larger than a single �ber (inclusion).

This leads to a shorter use of computational power than the necessary to analyse the 80 × 80

RVE.

Furthermore, the numerical model with the Mortar Periodic boundary constraint and the

analyticalMori-Tanaka model seem to produce similar results regarding the homogenized plane

Young's modulus, E∗p , with a relative di�erence below 1%, validating the results obtained with

the numerical method. However, the numerical method is not limited to simple shapes, like

spherical or ellipsoidal inclusions, and can model any given microstructure. In addition, the

values obtained with both methods are within the theoretical upper and lower boundaries of

Hashin -Hill and the numerical upper and lower limits produced by the Linear and Uniform

Traction boundary conditions (Figure 6.19). Also, it is important to mention that the numerical

boundary conditions invert when referring to the e�ective plane Poisson's ratio, ν∗12, due to the

nature of this elastic constant (Figure 6.17).

6.1.5 In�uence of the Sti�ness Ratio on the RVE Size

With the RVE size study completed for a sti�ness ratio of 10, other sti�ness ratios may be

attributed to the constituents properties to test the impact of this parameter on the minimal

size of the RVE that statistically represents the microstructure.

To do so, the Young's modulus of the �ber material is changed while keeping the Young's

modulus of the matrix material constant and equal to 10 GPa. In Figure 6.20, the normalized

e�ective plane Young's modulus, Ē∗p , given by:

Ē∗p =
E∗p
Em

, (6.4)

is presented for di�erent sti�ness ratios. Focusing on the values of the middle RVEs, the relative

di�erences are presented in Table 6.15 for comparison and a small in�uence can be noticed since

this value increases. However, as shown in Figure 6.20, the 40× 40 RVE (characteristic length

= 16) still correctly represents the microstructure since it is near the average value obtained

with larger RVEs.

In Figure 6.21, the estimated properties for the case where the sti�ness ratio is 100 are

presented, and it is noticed that the Linear boundary condition tends to depart from the values

given by the Mortar Periodic and the Uniform Traction boundary conditions, meaning that
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Figure 6.20: Representation of the normalized e�ective plane Young's modulus, Ē∗p , for di�erent
sti�ness ratios.

this constraint loses accuracy as the sti�ness ratio increases. Either so, the Mortar Periodic

constraint continues to lie within the other two boundaries.

Furthermore, even with the increasing di�erence in the �ber/matrix properties, the analyt-

ical Mori-Tanaka model remains a good approximation to the numerical values achieved with

the Mortar Periodic boundary condition, as illustrated in Figure 6.22. However, as seen in Fig-

ure 6.19, the Mori-Tanaka model gave results higher than those obtained with the numerical

method and, in this case, the estimated values are lower. This means that with an increase in

the sti�ness ratio, the Mori-Tanaka model tends to underestimate the e�ective Young's mod-

ulus (as shown in Figure 6.20). Moreover, for the 60× 60 RVE, the analytical values are even

below the lower boundary settled by the Uniform Traction constraint.

Table 6.15: Comparison between the homogenized plane Young's modulus, E∗p , for di�erent
sti�ness ratios.

Sti�ness Ratio 10 25 50 100 Unit

30× 30 18.156 19.970 20.746 21.192 GPa

0.730 0.903 0.994 1.042 %

40× 40 18.024 19.790 20.540 20.971 GPa

0.343 0.534 0.655 0.762 %

50× 50 17.962 19.684 20.405 20.811 GPa
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Figure 6.21: Representation of the homogenized Young's modulus, E∗1 , for a sti�ness ratio of
100.

Figure 6.22: Representation of the homogenized plane Young's modulus, E∗p , obtained by the
numerical and the Mori-Tanaka models.

Note: In the MSP program, the standard criterion set to �nish the Newton-Raphson iterative

process6 is that the relative residual norm,
‖ r ‖
‖ f ext ‖

, has to be lower than 10−6. Due to the high

sti�ness ratio, the interfacial �ber/matrix zone presents high stress concentration factors and

the convergence to this tolerance value has revealed extremely di�cult, thus, for sti�ness ratios

6Addressed in Section 2.6.4.
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higher than 50, the tolerance was set to 10−5 and, for sti�ness ratios higher than 70, this value

decreased to 10−4. However, the results obtained with both tolerances are not distinguishable.

6.2 In�uence of the Sti�ness Ratio on the Homogenized Elastic

Properties

Analysing Figure 6.20 and comparing the increase in the e�ective plane Young's modulus with

a sti�ness ratio of 10 to 25, and with a sti�ness ratio of 50 to 100, it can be noticed that, as the

sti�ness ratio between �ber and matrix materials increases, the in�uence of the �ber material

diminish.

With the results obtained in the previous studies, it is possible to conclude that the new

40 × 40 RVE modelled with elements of size near 0.3, is capable of correctly characterizing

the microstructure of this unidirectional �ber composite. Therefore, the following studies are

performed using only this RVE.

Di�erent sti�ness ratios were analysed, from 5 to 100 with a step of 5 and the results for

the homogenized plane Young's modulus, E∗p (average of the E
∗
1 and E∗2 moduli), are presented

in Figure 6.20.

Figure 6.23: In�uence of the sti�ness ratio on the normalized e�ective plane Young's modulus,
Ē∗p , obtained by the numerical and the Mori-Tanaka models.

As mentioned in Section 6.1.5 and illustrated in Figure 6.20, the impact of the �ber material

tends to decrease as the sti�ness ratio increases. For lower ratios the in�uence of the �ber elastic

properties is accentuated but it starts to stabilize as the Young's modulus of the �ber material
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becomes higher. For instance, for a ratio of 5, the e�ective plane Young's modulus is 1.6 times

higher than that of the matrix but, for a ratio of 100, it only is 2.1 times higher.

Also noteworthy to mention is the fact that the Linear boundary condition completely

diverges from the other results as the sti�ness ratio increases, showing a linear relation for

ratios higher than 30.

In the case of the e�ective axial Young's modulus, E∗3 , with the assumption of the rule of

mixtures, its value increases linearly with the sti�ness ratio, being this the main function of the

�ber material in unidirectional �ber composites, designed to withstand high traction loads in

the axial direction.

Note: All of these studies have been performed for νm = νf = 0.3, while changing one parameter

at a time. In Table 6.16, the in�uence of the Poisson's ratio is demonstrated to indicate that

a change on its value may lead to di�erent results than those here obtained. Material 1 has

νm = νf = 0.3 while material 2 has νm = 0.4 and νf = 0.3. Both have a sti�ness ratio of 10

and Em = 10 GPa.

Table 6.16: Comparison between the homogenized elastic properties of two materials, while
changing the Poisson's ratio of the matrix.

Material E∗1 E∗2 E∗3 G∗12 2-norm of C∗ Unit

1 17.991 18.056 41.563 6.589 54.792 GPa

4.020 3.959 0.000 4.648 13.051 %

2 17.268 17.341 41.563 6.896 47.641 GPa

Material ν∗12 ν∗21 ν∗13 ν∗31 ν∗23 ν∗32 Unit

1 0.3471 0.3484 0.1299 0.3000 0.1303 0.3000 -

30.913 30.855 21.247 17.900 21.028 17.800 %

2 0.2398 0.2409 0.1023 0.2463 0.1029 0.2466 -

The relative di�erences of the Young's and shear moduli are around 5% but, when consid-

ering the Poisson's ratio, these values increase as expected. Nonetheless, the overall qualitative

conclusions attained when considering νm = νf are still valid.

6.3 Homogenized Elastic Properties obtained with 3D RVEs

Since all the analyses here presented are performed with the assumption of a two dimensional

plane strain problem, which considers the 2D RVE as cross section of an equally extruded

microstructure, it is important to �nd for which axial (out-of-plane) length this assumption

starts to produce accurate results.

Therefore, using the open-source program OOF3D, several �nite element meshes were cre-

ated in order to estimate the overall elastic properties, while increasing the axial dimension of
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the RVE. The main goal was to �nd a relation between the length of the RVE and the respec-

tive cross section dimensions and to conclude that for higher values it was valid to replace the

three dimensional problem by a two dimensional plane strain analysis, aiming to reduce the

complexity of the whole procedure.

However, as mentioned in Section 4.4, the open-source program OOF3D revealed some

errors while creating the output �le that contained the �nite element mesh data. Therefore,

this program could not be used to generate meshes for 3D RVEs and a di�erent approach was

carried out.

Using the image of the 40 × 40 RVE obtained after the image tracing process, and using

the Autodesk AutoCAD® program, a ".dwg" �le was created with the information of the

microstructure. Two ".dxf" �les were exported from AutoCAD®, representing the matrix and

�ber material, illustrated in Figure 6.24a and 6.24b, respectively.

(a) 2D �bers representation. (b) 2D matrix representation.

(c) 3D �bers part. (d) 3D matrix part.

Figure 6.24: Representation of the 2D �les exported by Autocad® and the respective 3D parts
generated by Abaqus®

These two ".dxf" �les were loaded on Abaqus® to create the parts that modelled both

constituents: the matrix and the �bers that are displayed in Figure 6.24c and 6.24d, respectively.

Those parts were assembled into a unique 3D RVE and a �nite element mesh was generated

using this program7 and the �nal result is presented in Figure 6.25.

7The GiD® mesh generator was also tested but Abaqus® produced meshes with higher quality.
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Figure 6.25: Representation of the 3D RVE and the �nite element mesh generated by Abaqus®.

With the �nite element mesh generated, a Job was created in Abaqus® and a ".inp" �le, that

contained the mesh data, was exported. Again, a MATLAB® script (described in Appendix E)

was created to convert the mesh data into a readable �le for MSP.

While creating the �nite element meshes with Abaqus®, the type of elements chosen were

tetrahedrons and a large amount of nodes and elements were generated to model the behaviour

of a cubic 3D RVE, which lead to a high demand of computational power to perform the �nite

element analysis.

The input data �les were generated but the MSP program could not �nish the analysis due

to lack of memory. Therefore, in order to overcome this obstacle, a computer cluster was used

to run the MSP algorithm. However, the system of equations that results from the large number

of nodes/elements was too big for the solver included in the program (PARDISO 5.00 (Kuzmin

et al., 2013; Schenk et al., 2008, 2007)) to compute, and the analysis failed once again. Even

with a more coarse mesh, the problem continued to occur.

To summarize, di�erent approaches were tested to estimate the e�ective elastic properties

of 3D RVEs but, due to computational limitations, the procedures were not successful. One

way to solve the problem given by the current solver (categorized as a direct solver), is to use

iterative solvers that may need fewer memory to complete the analysis.

6.4 Conclusions

Several numerical studies have been performed to determine, for the material under study, the

statistically representative RVE size. These studies included the in�uence of the image quality

that represents the microstructure of the material together with the appropriate treatment for
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generating a �nite element mesh and the impact of mesh parameters such as type of element

employed and mesh density on the solution.

The numerical results obtained with the strategy proposed in this work were systematically

compared and validated against analytical solutions available in the literature.

More over, the in�uence of the constituents' properties on the homogenized response was

analysed in detail for several cases by comparing analytical and numerical solutions.
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Chapter 7

In�uence of the Interface Material on the

E�ective Elastic Properties

Until this section, the homogenized properties were obtained considering composite materials

with only two phases. Because the properties of both constituents can be too di�erent, micro-

damaging nucleation mechanisms (cracking of particles, debonding or even fracture of the matrix

due to strong inclusions) may be observed during the deformation process (Chen et al., 2003),

weakening the overall behaviour of the material.

However, several studies have been made to understand the in�uence of a third interface

material between the inclusions and matrix. If the interface material is not strong enough, the

debonding may occur and, on the opposite, if the strength of the interface material is high, the

probability of debonding decreases and the microcracks start to happen in the matrix material

(Zhang and Chen, 2012).

Now that the in�uence of the sti�ness ratio on the homogenized properties of a second-phase

composite material has been studied, it is important to understand the e�ect of the interface

material on the homogenized elastic properties of the composite.

Therefore, some parametric studies are made while changing the sti�ness of not only the

�ber material, but also of the interface. At the end, a mathematical function with good approx-

imation with the results is found, allowing the use of this analytical function to extrapolate the

homogenized elastic properties without the need for numerical simulation. This study has been

made for speci�c �ber volume fraction and two interfacial widths. Hence, any change on these

values would result on the need of di�erent parameters to attain the same good agreement with

the results.

7.1 Image Processing

First of all, and since the easiest way to recognize di�erent materials in OOF2 is through

di�erent color values, the image that represents the 40× 40 RVE has to be modi�ed to include

127
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the interface material. In the previous chapter, the higher resolution of the RVE created after

the image tracing process proved to be an asset, since it improves the material boundaries

enabling better results in the segmentation process, as such this will be the RVE used.

Since the image modi�cation presented in Section 6.1.3 was done with Adobe Illustrator®,

the same program is used to create the interface material. After the image tracing process, the

�bers are represented by vector graphics and it is possible to modify them individually or as

a group. Therefore, all �bers are selected (Figure 7.1) and a border is created with a speci�c

width. This border must be aligned to the outside of the selected �bers to keep the same �ber

volume fraction from the initial RVE.

Figure 7.1: Zoom on selected �bers represented as vector graphics in the 40× 40 RVE.

Using the Measure Tool, the average diameter of a �ber is gauged as 24 pixels. The repre-

sentation of the initial RVE with a interface material of width equal to 10% of the �ber radius

(weight stroke = 1.2 points)1 is presented in Figure 7.2. The rasterized image, exported with

high quality (300 PPI) has a width and height of 2133× 2133 pixels.

In a black and white image, the presence of a material represented by a red color makes

it di�cult to identify the di�erent materials using the Color method2 set to a range of gray

values. Thus, the red color (that illustrates the interface material in Figure 7.2) is replaced by a

gray color, characterized by the 0.4 value in the gray scale (Figure 7.3a). To better understand,

Figure 7.3b illustrates a single �ber surrounded by the interface material.

While selecting the �ber material (black color), it is important that a similar �ber volume

fraction is obtained when comparing it with the initial 40×40 RVE. For that reason, after some

experiments, the value of 0.4 in the gray scale is chosen to represent the interface material.

1Dimension used in Adobe Illustrator®.
2Described in Section 4.2.2.
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Figure 7.2: Representation of the 40× 40 RVE with an interface material (red color) of width
equal to 10% of the �ber radius.

(a) Gray scale. (b) Single �ber with interface material.

Figure 7.3: New color values of the 40× 40 RVE.

7.2 Image Segmentation

The pixel selection process is done with the Color tool of OOF2. Considering the color of the

�bers and matrix as 1.0 and 0.0, respectively, the selection of the pixels assigned to the �ber

material is made with any black pixel targeted while the delta gray parameter is set to 0.55.

Moreover, to select the matrix material, delta gray = 0.1 and a white pixel is targeted. Finally,

both �ber and matrix materials are elected simultaneously and, by inverting it, the interface

material is highlighted (Figure 7.4a).
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To study the in�uence of the interface material on the homogenized elastic properties of the

unidirectional �ber composite material, di�erent Young's modulus are assigned to this material.

Two di�erent cases are identi�ed: the interface is tougher than the matrix but softer than the

�ber or the interface is the toughest material.

To take this into account, the sti�ness ratio between the �ber and matrix material is set to 10

and the Young's modulus of the interface material ranges from the matrix Young's modulus to

values higher than those of the �ber properties. For that purpose, a parameter q is created and

denotes the interface Young's modulus, Einter, normalized between the other two constituents'

properties:

q =
Einter − Em
Ef − Em

, (7.1)

where Ef and Em is the �ber and matrix Young's moduli, respectively. By changing the value

of q, the Young's modulus of the interface varies and if q = 0, the interface is equal to the

matrix material and, on the contrary, if q = 1, the interface and the �ber materials share the

same properties. The elastic properties of these constituents are presented in Table 7.1.

Table 7.1: Elastic properties assigned to each constituent of the RVE.

Young's Modulus Poisson's Ratio Gray Color

Fiber 100 GPa 0.3 0.6

Matrix 10 GPa 0.3 0.2

Interface - 0.3 RGB∗

∗Red = 0.85, Green = 0.00, Blue = 0.00

7.3 Finite Element Mesh Generation

With the image segmentation completed, the �nite element mesh has to be generated. Similar

to the process followed in Section 6.1.3, the initial skeleton is generated through the automated

script of OOF2, and further improved to lower the two elemental functionals: homogeneity and

shape energy, while correctly characterizing the microstructure's geometry.

7.3.1 Mesh Size

With the insertion of a new material, the ideal element size must be de�ned again, and studies

similar to the ones carried in Section 6.1.3 are performed. The width of the interface equals

10% of the radius of the �bers and, due to this extremely small dimension, the mesh has

to be more re�ned in those parts. Therefore, the parameters used to generate the skeleton

(maxscale, minscale and homogeneity threshold) have to change to correctly �t and model the

microstructure.

The maxscale value is the same and equal to 0.2, since this is the biggest element size that

can be used to model the matrix and �ber materials for the 40 × 40 RVE as mentioned in
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Section 6.1.3. Moreover, the homogeneity threshold is equal to 0.9 to avoid the re�nement of

elements that already have low homogeneity energy, preventing the generation of a large number

of unneeded nodes and elements, making the �nite element analysis heavier. Finally, the only

speci�cation that has to be changed is the minscale parameter, being the one that sets the

smallest element dimension.

Due to the di�erence in material properties and to the small width of the interface, high

stress distributions develop in the interfacial part. Hence, a �ner mesh should be made to

correctly characterize this phenomenon. The minscale parameter is then de�ned as 0.1 to

enable the formation of smaller elements in this part. In Table 7.2, the information of two

di�erent mesh versions for the 40 × 40 RVE are presented. The �rst one is simply created

through the automated script of OOF2 and then improved to lower the shape energy. The

second version is created through the same procedure (with the same parameters), however, it

is further re�ned in the parts of interest. Using the Re�ne routine (with α = 0.9) targeted in an

expanded selection of the interface elements and with the condition that it only re�nes elements

that have area bigger than 0.01, the number of nodes and elements that de�ne the interfacial

part of the microstructure increases. After the Re�ne tool has been applied, the Split Quads

and the Swap Edges routines are used in the elements with homogeneity lower than 0.9 and the

Merge Triangles and Rationalize routines are applied to lower the shape energy, that was high

because of the application of the Re�ne tool with α = 0.9. To �nalize, the Smooth method is

applied (α = 0.15) for 10 iterations with the internal boundary nodes pinned.

In Table 7.3, values for an interface material softer than the �ber (q = 0.5) and tougher

than the �ber (q = 1.2) are analysed and only the Young's moduli, shear modulus and 2-norm

of C∗ are presented, along with the respective relative di�erences between both versions.

Table 7.2: Final information of both mesh versions of the 40× 40 RVE.

Mesh Nodes Elements Homogeneity

1 93081 138377 0.992

2 107259 159781 0.993

Table 7.3: Comparison between both mesh versions for the 40× 40 RVE.

q Mesh E∗1 E∗2 E∗3 G∗12 2-norm of C∗ Unit

0.5

1 20.388 20.480 45.051 7.486 60.411 GPa

0.011 0.011 0.007 0.030 0.010 %

2 20.386 20.477 45.054 7.483 60.417 GPa

1.2

1 20.941 21.039 49.877 7.671 64.594 GPa

0.020 0.014 0.053 0.048 0.037 %

2 20.937 21.036 49.904 7.667 64.618 GPa

With these results it can be noticed that a more re�ned mesh in the interface part is not
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needed and the version 1 is good enough to correctly characterize the microstructure behaviour,

when estimating the homogenized elastic properties of the composite material. Figure 7.4

presents the procedure from the image segmentation step until the generation of the �nite

element mesh.

(a) Pixel selection of the interface material. (b) Material map.

(c) Skeleton geometry. (d) Finite element mesh.

Figure 7.4: Image segmentation and �nite element mesh generation for the RVE with the
interface material of width equal to 10% of the �ber radius.

7.4 RVE Size

Due to the insertion of a di�erent material in the microstructure, the RVE size that correctly

represents it may change and, to validate the 40 × 40 RVE, deemed as the optimal RVE size

in the previous chapter, the estimated elastic properties obtained with this RVE are compared

with those obtained with the 50× 50 RVE.

The sti�ness ratio is 10, Em = 10 GPa and q = 0.5, meaning that Einter = 55 GPa. The

numerical results obtained for each RVE and the relative di�erence between these are given in

Table 7.4.



Chapter 7. In�uence of the Interface Material on the E�ective Elastic Properties 133

Table 7.4: Homogenized elastic properties for the 40× 40 and 50× 50 RVEs.

RVE E∗1 E∗2 E∗3 G∗12 2-norm of C∗ Unit

40× 40 20.388 20.479 45.051 7.486 60.411 GPa

0.108 0.085 0.142 0.315 0.100 %

50× 50 20.366 20.462 45.115 7.509 60.471 GPa

RVE ν∗12 ν∗21 ν∗13 ν∗31 ν∗23 ν∗32 Unit

40× 40 0.3399 0.3414 0.1358 0.3000 0.1364 0.3000 -

0.294 0.322 0.295 0.000 0.220 0.000 %

50× 50 0.3409 0.3425 0.1354 0.3000 0.1361 0.3000 -

The values obtained are extremely similar, with relative di�erences around 0.2%. Thus, the

40 × 40 RVE is still capable of characterizing the microstructure behaviour of this particular

material.

7.5 Results

In this section the in�uence of the interface material is analysed for a width of 5%, 10% and

15% of the �ber radius (hereafter denominated only by 5%, 10% and 15%). However, to make

sure that the values obtained are correct, it is important to validate the results �rst.

Validation

As mentioned in Section 7.1 and 7.2, during the image manipulation and segmentation, it was

important to secure a similar �ber volume fraction in both RVEs to have consistency in the

results. The gray color attributed to the interface material and the delta gray parameters were

de�ned with this purpose and the results are presented in Table 7.5. As it can be seen, the �ber

volume fraction is practically the same.

Table 7.5: Volume fraction of each constituent of the 40× 40 RVEs without and with interface
material of various widths.

RVE Fiber Matrix Interface Unit

No Interface 35.07 64.93 - %

Interface - 5% 34.98 61.07 3.95 %

Interface - 10% 35.12 57.22 7.66 %

Interface - 15% 34.92 53.31 11.77 %

With this information, if one considers that the interface material is equal to the matrix

material (q = 0), these new RVEs may be considered the same as the one used in the last

chapter. Therefore, a comparison can be made between the results already obtained (from the
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RVE without interface and analysed in Chapter 6) and the values attained from these RVEs,

with q = 0, and computed with the Mortar Periodic boundary condition. The results are

obtained for a sti�ness ratio of 10 and presented in Table 7.6, where the values located in the

second rows of the 5%, 10% and 15% RVEs are the relative di�erences between the respective

and the RVE with no interface.

Table 7.6: Comparison between the results obtained from the 40× 40 RVEs without and with
interface material of various widths. In the RVEs with interface, the parameter q = 0.

RVE E∗1 E∗2 E∗3 G∗12 2-norm of C∗ Unit

No interface 17.991 18.056 41.563 6.589 54.792 GPa

Interface - 5%
17.919 17.982 41.484 6.559 54.683 GPa

0.401 0.413 0.190 0.466 0.200 %

Interface - 10%
17.948 18.015 41.604 6.572 54.816 GPa

0.238 0.277 0.097 0.264 0.042 %

Interface - 15%
17.883 17.947 41.431 6.548 54.608 GPa

0.597 0.604 0.318 0.627 0.335 %

RVE ν∗12 ν∗21 ν∗13 ν∗31 ν∗23 ν∗32 Unit

No interface 0.3471 0.3484 0.1299 0.3000 0.1303 0.3000 -

Interface - 5%
0.3484 0.3497 0.1296 0.3000 0.1300 0.3000 -

0.375 0.373 0.231 0.000 0.230 0.000 %

Interface - 10%
0.3485 0.3498 0.1294 0.3000 0.1299 0.3000 -

0.403 0.402 0.385 0.000 0.307 0.000 %

Interface - 15%
0.3487 0.3500 0.1295 0.3000 0.1300 0.3000 -

0.479 0.460 0.313 0.000 0.266 0.000 %

The majority of the relative di�erences are all smaller than 0.5%. Therefore, the RVEs may

be compared with each other when q = 0.

7.5.1 Sti�ness Ratio = 10

Now that the validation of the results has been performed, the values obtained with an interface

material of width equal to 5%, 10% and 15% of the �ber radius, while the parameter q increases,

are analysed. The sti�ness ratio between �ber and matrix is set to 10 and the values of the

homogenized plane Young's modulus, E∗p , are illustrated in Figure 7.5 for both interfacial widths.

There is a higher discretization of the parameter q between the 0.0 and 0.2 to better de�ne that

range.

The dependency is similar to the one found in Figure 6.23, that relates the homogenized

plane Young's modulus with the sti�ness ratio of the �ber and matrix materials, i.e. the sti�ness

of the interface material becomes less important as it increases. Furthermore, and as expected,
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Figure 7.5: In�uence of the interface material with di�erent widths on the homogenized plane
Young's modulus, E∗p .

the width of this material is a major factor regarding the overall properties of the composite

material. The slope in the stabilized part (q > 0.6) is higher for higher widths.

In Figure 7.6, the results for the shear modulus are presented and one can notice that, both

e�ective plane Young's and shear moduli have the same trend.

Figure 7.6: In�uence of the interface material with di�erent widths on the homogenized plane
shear modulus, G∗12.
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7.5.2 Di�erent Sti�ness Ratios

The results obtained in the last section were computed for a sti�ness ratio of 10. In this section,

di�erent sti�ness ratios are tested to analyse if this parameter has any in�uence on the way the

homogenized properties depend on the interface material.

Figure 7.7 illustrates the same as Figure 7.5 but for a sti�ness ratio of 10, 35 an 70. The

di�erent interfacial widths are also presented in this �gure and the homogenized plane Young's

modulus is normalized dividing the result by the Young's modulus of the matrix material.

Figure 7.7: In�uence of the interface material with di�erent widths on the normalized e�ective
plane Young's modulus, Ē∗p , for di�erent sti�ness ratios of the �ber/matrix materials.

Analysing these results, it is possible to verify that the conclusion withdrawn in Section 6.2

is admissible, i.e. increasing the sti�ness ratio between the �ber/matrix materials does not have

a big impact for values higher than 20/30. For instance, the di�erence in the homogenized

properties while increasing the sti�ness ratio from 10 to 35 is large, but from 35 to 70 this

di�erence sharply decreases. Having a unidirectional �ber composite material characterized by

a sti�ness ratio of 35 and with a width of 10% of the �ber radius produces, for a q > 0.04,

better results than a composite with a sti�ness ratio of 70 and with a width of 5%. Even more,

if one considers interfaces tougher than the �ber material, a composite with sti�ness ratio of

10 and width of 15% has the same plane Young's modulus than one with sti�ness ratio of 70

and width of 5%.

The same type of dependency is found in the three di�erent sti�ness ratios tested. Moreover,

the slope at the beginning increases with the sti�ness ratio.
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7.5.3 Analytical Expressions

Since, for di�erent sti�ness ratios, the homogenized plane Young's modulus seems to be ap-

proximated by the same type of mathematical expression, a curve �tting is performed. The

MATLAB® Curve Fitting Tool is used for this purpose.

Interfacial Width = 10%

All the results presented in this section are obtained considering that the width of the interface

material is 10% of the �ber radius. Therefore, using the curve �tting tool, it is possible to �t

the values obtained for a sti�ness ratio of 10 to a sum of two exponential functions, denoted

by:

Ē∗p = a exp(b · q) + c exp(d · q), (7.2)

where a, b, c and d are constants that characterize the mathematical expression. In the case of

a sti�ness ratio of 10, these parameters are:

a = 2.0146, (7.3a)

b = 0.0355, (7.3b)

c = −0.2035, (7.3c)

d = −6.8207, (7.3d)

and the curve �tting is demonstrated in Figure 7.8. In this �gure, along with the values obtained

for the sti�ness ratio of 10, two other di�erent sti�ness ratios are presented with the respective

exponential curve �ttings. The approximations are made with an expression equal to Equation

(7.2), but with di�erent parameters. Thus, increasing the discretization of the sti�ness ratio,

Table 7.7 presents the respective a, b, c and d parameters for all cases, along with the respective

coe�cient of determination, R2, of the curve �ttings to the numerical results.

The values shown in Table 7.7, demonstrate that, despite the fact that the coe�cient of

determination (characterized by R2) worsens as the sti�ness ratio increases, the curve �ttings

are excellent approximations to the results obtained by the numerical method. The exponential

curve �ttings were made with the �t option robust "Bisquare" selected. It enabled a better

approximation for all points except for q = 0 that, as the sti�ness ratio increases, is not correctly

expressed by Equation (7.2). Furthermore, the parameters seem to have a correspondence with

the sti�ness ratio.

Therefore, a curve �tting is made to relate the constants presented in Table 7.7. The

following equations are the ones that better express the dependency of these parameters:

a = m1 · r n1 + p1, (7.4a)

b =
m2 · r + n2

r + p2
, (7.4b)
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Figure 7.8: Exponential curve �tting of the normalized e�ective plane Young's modulus, Ē∗p ,
for di�erent sti�ness ratios of the �ber/matrix materials. The interfacial width is equal to 10%
of the �ber radius.

Table 7.7: Parameters that characterize the curve �tting for di�erent sti�ness ratios and re-
spective coe�cient of determination, R2.

Sti�ness Ratio a b c d R2

5 1.7212 0.0378 -0.1248 -4.4461 0.9998

10 2.0146 0.0355 -0.2035 -6.8207 0.9992

15 2.1565 0.0323 -0.2434 -8.7108 0.9984

20 2.2423 0.0296 -0.2657 -10.2605 0.9977

25 2.3005 0.0274 -0.2786 -11.5768 0.9970

30 2.3428 0.0256 -0.2858 -12.7146 0.9964

35 2.3752 0.0241 -0.2894 -13.7065 0.9958

40 2.4009 0.0228 -0.2907 -14.5803 0.9954

45 2.4219 0.0216 -0.2903 -15.3567 0.9950

50 2.4390 0.0209 -0.2887 -16.0920 0.9948

55 2.4539 0.0201 -0.2856 -16.6607 0.9945

60 2.4673 0.0191 -0.2835 -17.2161 0.9942

65 2.4786 0.0183 -0.2803 -17.6976 0.9940

70 2.4884 0.0177 -0.2767 -18.1471 0.9939

c =
m3 · r + n3

r2 + p3 · r + k3
, (7.4c)
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d =
m4 · r + n4

r + p4
, (7.4d)

where r denotes the sti�ness ratio between �ber and matrix and the parameter a is expressed

by a power function of two terms, the parameters b and d are approximated by a rational

function of degree 1 in both the numerator and denominator and the parameter c is given by a

rational function of degree 1 in the numerator and 2 in the denominator. For a width of 10%,

the constants that de�ned these functions are expressed in Table 7.8 and the respective curve

�ttings are presented in Figure 7.9.

Table 7.8: Constants that de�ne the expressions for the parameters a, b, c and d (Equations
(7.4)) for an interfacial width of 10%.

1 2 3 4

mi -2.3299 0.0048 -72.32 -27.6514

ni -0.4772 1.5139 80.66 -63.7359

pi 2.7989 34.5089 167.3 40.1317

ki - - 1389 -

Now that the 5 expressions that characterize the normalized e�ective plane Young's modulus,

Ē∗p , are presented, these equations are programmed in Microsoft Excel® to analyse the error

induced by them. Since the values are normalized by the Young's modulus of the matrix

material (Em = 10 GPa during the simulations that produced these results), the homogenized

properties can be determined for di�erent Young's modulus of the matrix material.

In Table 7.9, several tests are presented along with the relative error between the results

given by MSP, E∗pMSP
(average of E∗1 and E∗2), and the analytical expressions, E∗p determined

in this section.

Table 7.9: Relative errors between numerical results and analytical results obtained by Expres-
sion (7.2) for a width of 10%.

Em [GPa] Sti�ness Ratio q E∗p [GPa] E∗pMSP
[GPa] Relative Error [%]

10 17.85 0.83 22.666 22.698 0.141

15 14.6 0.64 32.918 32.925 0.021

15 14.6 1.5 33.860 33.605 0.757

20 47 0.05 45.961 46.143 0.394

20 47 0.15 48.159 48.020 0.290

20 47 0.3 48.816 48.784 0.065

20 47 1.5 50.137 49.845 0.586
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Di�erent Interfacial Widths

The same procedure is followed for the RVEs that model di�erent interface material widths and

the constants m, n, p and k that characterize Equations (7.4) are determined and presented in

Table 7.10. It is possible to note a relation between these constants as the width of the interface

increases.

Table 7.10: Constants that de�ne the expressions for the parameters a, b, c and d (Equations
(7.4)) for di�erent interfacial widths.

Width Parameter 1 2 3 4

5%

mi -1.9424 0.0004 -27.11 -29.0250

ni -0.5550 0.8221 30.79 -61.2528

pi 2.4466 35.6782 134 38.3728

ki - - 1037 -

10%

mi -2.3299 0.0048 -72.32 -27.6514

ni -0.4772 1.5139 80.66 -63.7359

pi 2.7989 34.5089 167.3 40.1317

ki - - 1389 -

15%

mi -2.8851 0.0277 -163.2 -26.5907

ni -0.3943 2.2693 184.8 -93.1313

pi 3.3180 33.1444 224 46.8829

ki - - 1971.4 -

7.6 Conclusions

In this chapter, the impact of di�erent interface properties between the �ber and matrix material

was analysed. Using Adobe Illustrator®, the micrograph was modi�ed and a new color was

inserted around the �ber inclusions, to be later interpreted as a new material by OOF2.

To extract valid results, in the �rst place it was veri�ed that the RVE size is not in�uenced

by the insertion of this new material, thus, the 40× 40 RVE continues to correctly characterize

the microstructure behaviour.

The study was carried for the overall in-plane properties of the composite material, more

speci�cally the e�ective plane Young's modulus, E∗p . Analysing the results, it can be concluded

that the in�uence of the elastic properties of the interface material on this homogenized proper-

ties are high. Not only the elastic properties but also the width of the interface material plays

a major role on the overall properties of the composite material. There are cases where having

a larger width is better than increasing the sti�ness ratio between �ber/matrix materials.

Furthermore, since the dependency of the homogenized plane Young's modulus over the

Young's modulus of the interface material (represented by the parameter q) seemed to be
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similar for di�erent sti�ness ratios, a curve �tting was made using the Curve Fitting Tool of

MATLAB®. It was revealed that the results can be expressed by a sum of two exponential

functions characterized by four parameters (a, b, c and d) and that these parameters depend on

the sti�ness ratio of the �ber/matrix materials. Thus, the homogenized plane Young's modulus

is approximated (with a high coe�cient of determination - R2) by a mathematical expression

that is de�ned by more four mathematical functions. Moreover, for a speci�c volume fraction, it

only depends on the sti�ness ratio, on the parameter q and on the interfacial width. The errors

presented in Table 7.9 are small, meaning that the mathematical approximation is successful.

To summarize, by using a program to manipulate the micrograph of the material, a new

RVE was created and new conclusions were withdrawn by analysing it. The DIB microstructure

recognition technique is extremely �exible, enabling a minimal change on a RVE to be translated

into new outcomes and conclusions.



Chapter 8

Conclusions and Future Works

A methodology based on image acquisition and recognition has been proposed to model the

behaviour of heterogeneous materials at the microscale. It is not based on assumptions or

simpli�cations, as it considers the microstructure geometry given by real micrographs. At the

beginning of the document the goals are settled, being analysed hereafter.

As mentioned in the introductory chapter, two initial chapters of bibliographic references

are presented, were concepts such as Continuum Mechanics, Micromechanics and Multi-Scale

models are introduced as the foundations that support the next chapters. With Continuum

Mechanics, the assumption that solids may be modelled as a continuum medium, facilitates the

understanding of their overall behaviour while loaded or deformed. Micromechanics enables the

study of heterogeneous materials by analysing them at the microscale level, thus, considering

the in�uence of each constituent (considered as continuum) to model the overall behaviour of

the material. Finally, Multi-Scale models create the bridge between both macro and microscale

and introduce a new and reliable method to simulate the behaviour of multi-phase materials.

Furthermore, to characterize the microstructure of the material, the concept of Representative

Volume Element (RVE) is introduced in Section 3.1.

The main aspect of this thesis is the use of real micrographs to create RVEs that model

the concerned material. Hence, the Digital Image Based (DIB) microstructure recognition

technique is introduced and described in Chapter 4, with the support of two Linux® open-

source programs: OOF2 and OOF3D. Usually, Multi-Scale models use simpli�ed RVEs to

predict the impact of singularities with di�erent characteristics in the microstructure of the

material. In this case, with the use of real micrographs, the method becomes more general,

modelling heterogeneous materials of any complexity, being it metallic, ceramic, polymeric or

composites.

The programs used to perform the image recognition and generate the �nite element mesh

have yet several limitations. In OOF2, minor bugs add a degree of di�culty when analysing

images of high quality that need to be modelled by a large amount of nodes and elements.

Moreover, OOF3D presents errors that prevent its usage during this thesis, since the output

143
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�le cannot be saved in the format needed. Nonetheless, other methods were tested such as,

using the GiD® and the Abaqus® programs to generate the �nite element meshes for 3D

RVEs that had 2D micrographs as cross section. However, these attempts created a number

of nodes/elements that could not be analysed by the Micro-Scale Problem (MSP), due to a

limitation on the amount of memory that the direct solver (PARDISO 5.0.0) can allocate.

The main goal of this thesis was to use the aforementioned DIB microstructure recognition

and Multi-Scale models to estimate the homogenized elastic properties of heterogeneous mate-

rials. In Chapter 5, other than introducing the numerical methodology used to obtain these

properties from �nite element analyses, also presented several analytical expressions that aim

to estimate these values through mean �eld approaches.

The ideal size of RVE that should be used was the �rst parametric study performed in

this thesis, as it is one the most important factors to take into account when using Multi-Scale

models. It was proved that RVEs smaller than this optimal size are likely to give wrong results

and that, for a unidirectional �ber composite, the smallest RVE size that still is statistically

representative of the microstructure should be around 15/20 times larger than the size of a

single �ber (inclusion). Moreover, the re�nement of the �nite element mesh was also studied

a priori, since the results obtained with the Finite Element Method are highly dependent on

this aspect. For the analysed case, an element size of approximately one fourth of the �ber

radius enabled accurate results. In addition, the image quality of the micrograph plays a major

role on the results, since higher quality enables a better characterization of the microstructure.

However, due to the fact that the phases' volume fraction may change, one should be careful

when manipulating a micrograph. After all, this parameter drives the whole homogenized elastic

properties.

Furthermore, all results obtained in Chapter 6 were consistent with the literature. The

Mortar Periodic boundary condition converged faster to the theoretical value and was always

enclosed by the Linear and Uniform Traction boundary conditions, that de�ne the upper and

lower bounds, respectively. Also, the results achieved with the numerical method were similar

to the ones predicted by the Mori-Tanaka analytical model. This is, the numerical method,

based on the combination ofMulti-Scale models and DIB microstructure recognition techniques,

produced results with extremely small relative di�erences, for cases that could be compared with

known results. Therefore, these results indicate that this numerical model is accurate enough

to predict the mechanical behaviour of heterogeneous materials of higher complexity, for which

the analytical methods, mentioned in the literature, are not able to provide results.

In Chapter 7, the in�uence of an interface material on the homogenized properties was

analysed. The RVE size remained the same and a study on the mesh size was also carried out,

leading to the conclusion that for the purpose of this thesis, a mesh of similar size continued

to be re�ned enough. The impact of the interface on the homogenized properties is high and

seems to increase linearly with larger widths. Furthermore, mathematical expressions were de-

duced to obtain the homogenized plane Young's modulus, while taking into consideration the

sti�ness ratio between �ber/matrix materials, the Young's modulus of the interface material
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and its width. The average coe�cient of determination (R2) of these equations with the nu-

merical results is above 0.995, which means that the homogenized plane Young's modulus can

be accurately estimated by them.

Despite the fact that throughout this work, only heterogeneous materials up to three di�er-

ent constituents have been analysed, the proposed methodology does not have any limitation

regarding this aspect.

To summarize, di�erent MATLAB® scripts were created to connect the di�erent programs

used throughout the thesis and the �nal results are extremely satisfactory. Apart from the

use of OOF3D to estimate the homogenized properties from 3D RVEs due to computational

limitations, all goals were completed. The results presented in this thesis are considered as

a good starting point in the use of this methodology to model the microscopic behaviour of

materials that are becoming progressively more complex.

8.1 Future Works

Relying on the work earlier presented, further developments and validations could be done

with a combined e�ort of experimental and numerical procedures. For instance, comparing

the elastic properties of a heterogeneous material obtained through experimental methods with

those obtained by the DIB microstructure recognition technique (using a real micrograph of the

concerned material).

Since there are no analytical methods to estimate the elastic properties of highly complex

materials (e.g. materials with a large number of constituents or with singularities with unusual

shapes), this type of approach could add more credibility to the presented methodology. In

addition, it could support the study of 3D RVEs (with an upgraded version of OOF3D or with

a di�erent open-source or commercial program).

Furthermore, since in this thesis only the elastic domain was addressed, new studies about

non-elasticity or fracture damage could be developed. The current knowledge in this areas is

limited, and through this procedure, the impact of singularites of higher complexity could be

studied.

Interface Materials

In Chapter 7, analytical equations were proposed to obtain the homogenized plane Young's

modulus of unidirectional �ber composites. This study can be extended to other elasticity

constants (e.g. plane shear modulus or Poisson's ratio).

Moreover, only three di�erent widths were analysed and a relation could be identi�ed be-

tween this parameter and the homogenized property. Therefore, by increasing the discretization

of the interfacial width, a new mathematical equation that would depend on two arguments

(parameter q and interfacial width) may be identi�ed, as illustrated in Figure 8.1 (this represen-

tation is purely �gurative, since it was created solely based on three di�erent widths). This 3D
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Figure 8.1: 3D representation of and extended version of Equation (7.2).

surface would depend on the sti�ness ratio between �ber/matrix and on the width and Young's

modulus of the interface material.

In addition, and with the purpose of creating a more general empiric expression, the �ber

volume fraction can also be changed, making Equations (7.4) dependent of not only the sti�ness

ratio but also on the �ber volume fraction. This would make the whole assembly of equations

((7.2); (7.4)) as 3D surface mathematical expressions, leading to a model that would be able to

characterize the plane Young's modulus of any unidirectional �ber composite (with νm = νf =

0.3).



Appendix A

Relations between Elastic Constants

The sti�ness and compliance tensors, C and S, respectively, are characterized by elasticity

constants. In Table A.1, the relations between the most common constants are presented,

where E, G and ν represent the Young's modulus, the Shear modulus and the Poisson's ratio

and K and λ denote the Bulk modulus and the Lamé's �rst parameter, respectively.

Table A.1: Relations between elastic constants.

λ G E ν K

λ , G λ G G(3λ+2G)
λ+G

λ
2(λ+G) λ+ 2

3G

λ , E λ E−3λ+r
4 E 2λ

E+λ+r
E+3λ+r

6

λ , ν λ λ(1−2ν
2ν

λ(1+ν)(1−2ν)
ν ν λ(1+ν)

3ν

λ , K λ 3
2(K − λ) 9K(K−λ

3K−λ
λ

3K−λ K

G , E G(E−2G)
3G−E G E E−2G

2G
GE

3(3G−E)

G , ν 2νG
1−2ν G 2G(1 + ν) ν 2G(1+ν)

3(1−2ν)

G , K K − 2
3G G 9KG

3K+G
3K−2G
6K+2G K

E , ν Eν
(1+ν)(1−2ν)

E
2(1+v) E ν E

3(1−2ν)

E , K 3K(3K−E)
9K−E

3KE
9K−E E 3K−E

6K K

ν , K 3Kν
1+ν

3K(1−2ν)
2(1+ν) 3K(1− 2ν) ν K

r =
√
E2 + 9λ2 + 2Eλ
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Appendix B

MATLAB® Script for the Interface of

OOF2-MSP

Appendix B contains the code developed to connect OOF2 with MSP. The scripts were all

developed in MATLAB® and can be found on the attached CD.

The purpose of these scripts is to read the ".mesh" �le given by OOF2 (saved in Abaqus

format), interpret the data contained on it and write an output ".dat" �le with the whole

problem information described. This �le is later loaded on MSP to perform the �nite element

analysis.

The program contains a data �le where the information needed (e.g. type of problem, pre-

scribed deformation gradient, boundary condition, material properties, number of increments)

is introduced. It can work with any number of materials and it is fully automatic, once the data

�le is correctly de�ned and, if the parameters do not present the correct format, the program

issues warning messages.

While transcribing the nodes and elements data, a script computes the area of each element

to determine the volume fraction of each material. This is important, since E∗3 , in the case of

2D plane strain problems, is calculated by the Voigt model.

In addition, the data �le contains a couple of options, enabling the writing of multiple �les

at once (e.g. di�erent boundary conditions with a set of prescribed deformation gradients for

each).
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Appendix C

Demonstration of the Equality between the

Mori-Tanaka model and the Lower Bound of

Hashin-Shtrikman for a Particular Case

The following appendix contains the mathematical derivation that leads to the conclusion that

Equations (5.63) are equal to Equations (5.42a) and (5.43a). Let us consider that the constituent

1 is the matrix material and that 2 is the inclusion. Therefore, the expressions of the bulk

modulus for the Mori-Tanaka method and for the lower bound of Hashin and Shtrikman are

presented below, respectively:

K∗ = Km

1 +

φc

(
Kc

Km
− 1

)
1 + α (1− φc)

(
Kc

Km
− 1

)
 (C.1a)

K∗L = Km +
φc

1

Kc −Km
+

3 (1− φc)
3Km + 4Gm

(C.1b)

where,

α =
1 + νm

3 (1− νm)
, (C.2a)

νm =
3Km − 2Gm
6Km + 2Gm

, (C.2b)

and νm is the Poisson's ratio of the matrix phase. The �rst step was to simplify Equation

(C.1a):
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K∗ = Km

1 +

φc

(
Kc

Km
− 1

)
1 + α (1− φc)

(
Kc

Km
− 1

)


= Km +
φc (Kc −Km)

1 + α (1− φc)
(
Kc

Km
− 1

)

= Km +
φc

1

Kc −Km
+

α (1− φc)
(
Kc

Km
− 1

)
Kc −Km

(C.3)

Comparing Equation (C.1b) and (C.3), we can conclude that they are very similar and, as

such, only the part of the denominator where they are distinct is addressed. The premise is

then:

α (1− φc)
(
Kc

Km
− 1

)
Kc −Km

=
3 (1− φc)

3Km + 4Gm
(C.4)

By replacing Equation (C.2a) in the �rst term of Equation (C.4) the following is obtained:

α (1− φc)
(
Kc

Km
− 1

)
Kc −Km

=

1 + νm
3 (1− νm)

(1− φc)
(
Kc

Km
− 1

)
Kc −Km

(C.5)

In addition, Equation (C.2b) is substituted on
1 + νm

3 (1− νm)
and simple algebra is used to

simplify this expression.

1 + νm
3 (1− νm)

=
1 + νm + νm − νm

3 (1− νm)

=
1

3
+

2νm
3 (1− νm)

=
1

3
+

2
3Km − 2Gm
6Km + 2Gm

3

(
1− 3Km − 2Gm

6Km + 2Gm

)

=
1

3
+

2
3Km − 2Gm
6Km + 2Gm

3
3Km + 4Gm
6Km + 2Gm
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=
1

3
+

2 (3Km − 2Gm)

3 (3Km + 4Gm)

=
3Km + 4Gm + 6Gm − 4Gm

9Km + 12Gm

=
9Km

9Km + 12Gm

=
3Km

3Km + 4Gm
(C.6)

Plugging Equation (C.6) back into Equation (C.5), we get:

α (1− φc)
(
Kc

Km
− 1

)
Kc −Km

=

3Km

3Km + 4Gm
(1− φc)

1

Km
(Kc −Km)

Kc −Km

=
3 (1− φc)

3Km + 4Gm
, (C.7)

thus concluding that Equations (C.1a) and (C.1b) are in fact equal.

The process to prove that Equation (5.63b) and (5.43a) are also equal is very similar to the

method described above, therefore will not be demonstrated.
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Appendix D

MATLAB® Script for Post-Processing

Appendix D contains the code developed to obtain the full sti�ness tensor of heterogeneous

materials under analysis. The scripts were developed in MATLAB® and can be found on the

attached CD.

It reads the output �le of MSP that contains the �rst Piola-Kirchho� stress tensor and

the deformation gradient for each increment. With that information, the procedure described

in Section 5.3.2 is performed and a data �le is written with the respective sti�ness tensor,

individual elastic properties and 2-norm of the sti�ness tensor presented.

At the beginning of the script, a couple of options can be de�ned. For example, the user

can choose to input the information about the directory that contains the MSP output �les

trough graphical user interface or through a ".txt" �le (that can contain several directories at

once). After these options are de�ned, the program is fully automatic and can even save all the

information in Microsoft Excel® spreadsheet.
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Appendix E

MATLAB® Script for the Interface of

Abaqus®-MSP

Appendix E contains the code developed to connect Abaqus® with MSP. The scripts were all

developed in MATLAB® and can be found on the attached CD.

It reads the ".inp" �le exported in Abaqus, extracts the data contained on it and writes an

output ".dat" �le that is then loaded on MSP. This data �le has all the information needed to

perform the �nite element analysis.

The program is similar to the one described in Appendix B. However, the way Abaqus®

allocates the nodes and elements information is di�erent from OOF2, hence, a distinct approach

has to be pursued while reading and treating this data.

It is only developed for two di�erent parts (e.g. �bers and matrix), but it can be further

extended based on the same methodology.
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