
FACULDADE DE ENGENHARIA DA UNIVERSIDADE DO PORTO

Dynamic QoS Management for
Ethernet-based Video Surveillance

Systems

Tiago José da Silva Rocha

Mestrado Integrado em Engenharia Eletrotécnica e de Computadores

Supervisor: Professor Doutor Luís Miguel Pinho de Almeida

June 25, 2018

© Tiago Rocha, 2018

Resumo

Os sistemas de videovigilância têm vindo a ser implementados em várias áreas ao longo dos anos,
como por exemplo, segurança, controlo de acessos ou monitorização de processos industriais. À
medida que os casos de uso aumentam, aumenta também a necessidade de que estes proporcionem
a melhor qualidade de imagem, utilizando o mínimo de recursos possível, nomeadamente largura
de banda, diminuindo assim os custos. Atualmente, as câmaras profissionais dispoem de fun-
cionalidades de controlo de transmissão que oferecerem transmissão a taxas constantes (CBR) e
majoradas (MBR), limitando a largura de banda utilizada. No entanto, estas carecem de eficiência
na utlização da largura de banda, quando utilizadas em sistemas com várias câmaras, capturando
diferentes cenários, que podem mudar de um momento para o outro. Este problema necessita de
uma solução de gestão global, capaz de te ter uma visão geral das necessidades de todas as câmaras
e tomar decisões de redistribuição da largura de banda consoante essas necessidades.

Esta dissertação descreve um sistema de videovigilância com gestão dinâmica de qualidade
de serviço, que utiliza um gestor de rede para redistribuir a largura de banda global do sistema
dinamicamente, de acordo com as necessidades de cada câmara; e implementa um controlador
PI local de compressão de imagem, para que cada câmara possa adaptar-se à largura de banda
que lhe é atribuída. A distribuição da largura de banda é baseada na teoria dos jogos, usa Linux
TC para aplicar as reservas de largura de banda diretamente nas câmaras e adapta os valores de
largura de banda atribuídos de forma a balancear as qualidades das imagens de todas as câmaras.
Este balanceamento foi implementado através de um fator matemático, desenvolvido numa base
empírica, que foi integrado no controlador do gestor de rede.

As experiências realizadas consistiram na alocação de um valor constante de largura de banda
para provar a capacidade de adaptação utilizando o controlador local; a ligação ao sistema de duas
câmaras em instantes diferentes, com imagens diferentes, para mostrar a eficácia da distribuição
feita pelo gestor; e a ligação de até três câmaras para mostrar a escalabilidade do sistema e a
eficácia do balanceamento de qualidades.

Os resultados foram satisfatórios no que diz respeito à distribuição da largura de banda e ao
controlo de compressão. Relativamente ao balanceamento da qualidade de imagem entre as câ-
maras, o mecanismo criado gerou resultados promissores. No entanto, não foi possível fazer, em
tempo útil, um estudo aprofundado do mesmo de forma a otimizá-lo. Os objetivos propostos rel-
ativamente à possibilidade de definir uma câmara "em foco", que teria uma qualidade de imagem
superior às restantes não foi conseguido.

i

ii

Abstract

Video surveillance systems have been implemented in several areas over the years, namely, se-
curity, access control, monitoring of industrial processes, and, as the use cases increase, so does
the need for them to provide the best quality using the minimum of resources, namely bandwidth,
thus lowering its costs. Although the state-of-the-art rate control features implemented in profes-
sional cameras offer Constant Bit Rate (CBR) and Maximum Bit Rate (MBR), which limit the
bandwidth used, these still lack efficiency in bandwidth utilization when used in systems with
several cameras, capturing different scenarios that may change from time to time. This calls for a
dynamic global management solution, capable of having an overview of the camera’s needs and
taking decisions on bandwidth redistribution according to those needs.

This dissertation describes a video surveillance system with dynamic QoS management, that
uses a network manager to redistribute the global system’s bandwidth dynamically, according to
each camera’s needs; and implements local image compression PI control so each camera can
adapt to the assigned bandwidth. The bandwidth distribution is based on game-theory, uses Linux
TC to enforce bandwidth reservations and adapts the assigned bandwidth to balance the image
qualities of all cameras. This balancing was implemented using a mathematical factor, developed
on an empirical basis, which was integrated in the network manager’s controller.

The experiments performed involved allocating constant bandwidth to a camera to prove the
capability of adaptation using the local controller; connecting two cameras at different instants,
with different scenarios, to show the effectiveness of the network manager’s distribution; and
connecting up to three cameras to show the scalability of the system and the effectiveness of the
quality balancing.

The results were satisfying in which regards the bandwidth distribution and the compression
control. Regarding the image quality balancing between the cameras, the developed mechanism
achieved promising results. However, it could not be fully studied within the given time. The
proposed objectives regarding the possibility of choosing a camera “in focus”, that would have
better image quality than the others, were not accomplished.

iii

iv

Acknowledgements

To my colleagues from the IT lab, for welcoming me and for the support with the problems that
appeared along the way.

To my family and my girlfriend, for the support and motivation.
To my work colleagues and team leaders, for being comprehensive and always holding things

up when I was away to work on this dissertation.
To Gautham Nayak for the support with the control.
To Alexandre Martins and Mikael Lindberg from Axis, for the support with Axis cameras, for

the effort of trying to provide the tools I needed and for the patience to answer all my questions.
To the Instituto de Telecomunicações (IT) for providing the cameras.
To my supervisor, for always being available to help and advise and for the motivation.
To God, for putting these wonderful people in my way and giving me strength to make this

dissertation while keeping up with my job, my personal life and my social life.
Thank you.

Tiago Rocha

v

vi

Contents

1 Introduction 1
1.1 From analog to digital . 1
1.2 IP cameras . 2
1.3 Image quality and data transmission . 2
1.4 Motivation and problem statement . 3

1.4.1 Problem statement . 4
1.5 Goals . 4
1.6 About this dissertation . 4

2 Dynamic QoS management for video 5
2.1 Dynamic QoS management . 5

2.1.1 FTT-SE . 6
2.1.2 DiffServ . 7
2.1.3 Linux TC . 7

2.2 Multimedia compression . 8
2.3 Multimedia transmission . 9

3 Methodology and system architecture 11
3.1 Methodology . 11
3.2 System architecture . 12

3.2.1 Camera . 12
3.2.2 Network Manager . 13
3.2.3 Quality equalization among cameras . 14

4 Implementation 17
4.1 Cameras . 17

4.1.1 Parameter setup . 17
4.1.2 Rate control . 17
4.1.3 Streaming . 19

4.2 Control Station . 19
4.2.1 Compression control . 19
4.2.2 Network Manager . 20

5 Experimental Validation 23
5.1 Experiment 1 . 24
5.2 Experiment 2 . 24
5.3 Experiments 3 and 4 . 27
5.4 Experiment 5 . 29

vii

viii CONTENTS

6 Conclusions and future work 33
6.1 Achievements . 33
6.2 Future work . 34

A Code 35
A.1 Streaming . 35
A.2 Compression Control . 37
A.3 Network Manager . 38

A.3.1 Admission Control . 38
A.3.2 Bandwidth distribution . 43

References 47

List of Figures

3.1 System’s functional architecture . 13
3.2 Compression compensation vs. qdev

c,t for multiple values of Gc 16

4.1 System’s implementation . 18
4.2 Parameters file . 20

5.1 Experiment 1 scenarios: Scenario 1 (Left) and Scenario 2 (Right) 25
5.2 Experiment 1: Quality and bandwidth when changing the complexity of the image

of a single camera . 25
5.3 Experiment 1: Target frame size versus actual frame size size when changing the

complexity of the image with a single camera 25
5.4 Experiment 2: Camera 1 starts seeing the image on the left and at time 40s camera

2 joins seeing a similar image (right) . 26
5.5 Experiment 2: evolution when a second camera joins at t ≈ 39s, both seeing a

similar image . 26
5.6 Experiment 2: Allocated target frame size vs. actual frame size from camera 1 . . 27
5.7 Experiment 2: Allocated target frame size vs. actual frame size of camera 2 . . . 27
5.8 Experiments 3 and 4 scenarios: Scenario 1 (Left) and Scenario 2 (Right) 28
5.9 Experiment 3: Quality and bandwidth evolution when a camera joins with more

complex images . 28
5.10 Experiment 4: Quality and bandwidth evolution when a camera joins with more

simple images . 29
5.11 Experiment 5 scenarios: Camera 1 (Left), Camera 2 (Middle) and Camera 3 (Right) 29
5.12 Experiment 5: Quality evolution when 2 cameras join at different instants and the

quality gain is changed . 30
5.13 Experiment 5: Bandwidth evolution when 2 cameras join at different instants and

the quality gain is changed . 30
5.14 Experiment 5: Cameras QoS evolution in the course of the experiment 31

ix

x LIST OF FIGURES

List of Tables

2.1 FTT-SE message atributes . 6

5.1 Parameter values in each experiment . 24

xi

xii LIST OF TABLES

Abbreviations and symbols

CBR Constant Bit Rate
CCTV Closed-Circuit Television
DiffServ Differentiated Services
DVR Digital Video Recorder
EC Elementary Cycle
FTT Flexible Time-Triggered
FTT-SE FTT implementation for Switched-Ethernet
HTB Hierarchical Token Bucket
HTTP Hypertext Transfer Protocol
IP Internet Protocol
JPEG Joint Photographic Experts Group
Linux TC Linux Traffic Control
MBR Maximum Bit Rate
MJPEG Motion JPEG
NVR Network Video Recorder
PRIO Priority
PTZ Pan, Tilt, Zoom
Qdisc Queuing discipline
QoS Quality of Service
RTCP Real-Time Control Protocol
RTP Real-Time Protocol
RTSP Real-Time Streaming Protocol
SRDB System Requirements Database
TBF Token Bucket Filter
TCP Transmission Control Protocol
TM Trigger Message
UDP User Datagram Protocol
VBR Variable Bit Rate
VCR Video Casette Recording

xiii

Chapter 1

Introduction

Surveillance cameras have become, for some time now, ubiquitous objects in our day by day

landscape, such as in stores, banks, public services, being common to find "Smile, you are being

filmed" signs. This kind of cameras is used in building surveillance, access control to reserved

spaces or industrial process control and has been evolving through the years, thanks to technolog-

ical development.

This chapter introduces video surveillance systems, from an historical perspective, to motivate

the work we will describe next. Then, it lays down our objectives, summarizes our results and

presents the structure of the dissertation.

1.1 From analog to digital

The first video surveillance systems were developed during the 1940s and were then named Closed

Circuit Television (CCTV), as there was no way of accessing the images from outside the system.

In the beginning, this implied constant monitoring due to lack of recording technology, but that

was something that came to change shortly after, with the development of magnetic tape recording.

This tape was stored using big tape reels that would require manual replacing and the tape to

be passed from the source reel, through the recorder, to the final reel. An expensive and time-

consuming process, with low dependability, that made this kind of systems unattractive [1].

With the 1970s came the Video Cassette Recording (VCR) and, with it, a greater easiness to

record and eliminate the recorded content. Until the 1990s, video signals were essentially ana-

log, either in their generation but also transmission and recording. However, in the 1990s, digital

technology gradually started to take the lead: first with digital multiplexing that allowed recording

many cameras using the same recorder [1]; then with the Digital Video Recorders (DVR), that

substantially increased the storage capacity and the accessibility to the data [2]; and finally, still

in this decade, emerged the IP (Internet Protocol) cameras, which will be the object of this dis-

sertation, and which digitalize the video signal at the source and also transmit it in digital form.

Thus, we started having all-digital video systems that built on top of computer data communication

networks such as the Internet.

1

2 Introduction

1.2 IP cameras

IP cameras, which owe their name to the fact of communicating through the Internet, brought a

revolution to the video surveillance panorama. They allowed recording the images with superior

quality; the communication could use a previously installed computer network infrastructure; they

could be accessed from any computer with Internet connection; they could use remote storage

for the recorded data; they could implement features such as data encryption, authentication and

alarms, that would hardly be possible with the previous analog ones; and last but not the least, the

storage capacity could be expanded without limit. Therefore, it can be stated that these cameras

represented a milestone in the history of surveillance cameras [3].

In order for a system composed of several of these cameras to work, making available all

the mentioned features, Network Video Recorders (NVR) are necessary. This is a software that

allows to, simultaneously, visualize and record the images captured by each camera. Some of

the most advanced ones also include features such as visualizing the images of several cameras

simultaneously, the coexistence of different types of recording (continuous, scheduled and event-

triggered), PTZ (Pan, Tilt, Zoom) control, access through web browser, among many others [4].

1.3 Image quality and data transmission

One of most important steps in designing an IP video surveillance system is calculating the sys-

tem’s bandwidth needs. This task includes multiple aspects, three of which are of high importance

for this project: resolution, frame rate and compression [4, 5, 6].

If the desired result is a detailed image, with high quality, then the resolution shall be high;

on the other hand, if the goal is to observe the course of events, then a high frame rate will be

the most important. As the values of both these parameters increase, also does the amount of data

to transmit and that is why we need compression. Compression is applied using codecs which,

based on a given compression level, remove redundancies in such a way that the information to

transmit can be reduced and transmitted efficiently [5]. Codecs can be rated as loss-less or lossy,

depending on whether they preserve the integrity of the image information after compression or

not. The quantification of these three parameters is the first step to consider when calculating the

necessary bandwidth for the system.

The second step, in what regards the cameras’ characteristics, is defining the bit rate, which

can be constant (Constant Bit Rate - CBR), variable (Variable Bit Rate - VBR) and upper bounded

(Maximum Bit Rate - MBR). Using CBR, the cameras always transmit the same amount of data

per time unit; using VBR, the amount of data varies according to the images captured; and MBR

is similar to VBR, except for the fact that the user defines a maximum rate. Statistically, most of

the systems are designed for VBR. However, many companies prefer to use CBR or MBR since

these guarantee that the corresponding bandwidth needed in a link to convey the video stream

is bounded to a pre-defined value. This allows estimating the total bandwidth requirements when

1.4 Motivation and problem statement 3

transmitting several streams together in a link by simply summing the bandwidths of the respective

cameras.

With VBR, the designer has to ensure that the link capacity will support the worst case sce-

nario, in which all the cameras in that link will be using the maximum bandwidth possible. Oth-

erwise, there will be high risk of data loss due to link capacity overrun. This kind of approach,

based on the worst case, entails low bandwidth efficiency and thus high costs for the user [6].

On the other hand, CBR and MBR also have bandwidth efficiency limitations. If a camera

is capturing a complex image, with many artifacts, it will need a certain amount of bandwidth to

transmit it with a reasonable quality, for which the user can have a good perception of all details.

In this case, use of compression has a significant impact on the image quality. However, this same

amount of bandwidth will be excessive if the same camera is capturing a simple image, composed

of large areas with similar colors. Now, higher compression levels will not have as much impact

on the image quality as in the previous case, allowing to reduce the bandwidth needs.

Summarizing, using VBR it is possible that link capacity is overrun in worst-case scenarios,

using CBR or MBR the images quality can be unnecessarily degraded if the bandwidth allocated

to each camera is too small or link bandwidth can be wasted if the bandwidth allocated to each

camera is too large. Later in this document, we will propose an efficient and low cost solution for

this problem that relies on a dynamic management of the bandwidth allocated to each camera.

1.4 Motivation and problem statement

In surveillance systems we typically find concentrations of video streams in certain links, such

as the link of a displaying console, or the link of an NVR. We will focus on one such link and,

without risk of confusion, we will call its capacity the surveillance system bandwidth. We then

explore solutions to control the cameras bandwidth using just their rate control mechanism to find

an efficient and inexpensive way to manage the total bandwidth requirements that avoids capacity

overruns and allocates more bandwidth to the cameras that have higher instantaneous needs, i.e.,

higher compression, thus balancing quality among all video streams. Instead of designing for the

worst case, particularly, complex visual scenarios with low compression, such dynamic manage-

ment approach would keep the global system bandwidth needs within pre-defined bounds while

promoting a more efficient use of the bandwidth allocated to each camera. We can think of such

system as a set of CBR video streams in which the rate is constantly adjusted according to some

goal and respecting certain constraints.

In the last years, several works were done in this direction, particularly from the network

side, providing dynamic channels with bandwidth that can be adapted online, for example: the

development of FTT-Ethernet, a protocol dedicated to QoS management [7]; then enhancing it

to work with switched Ethernet (FTT-SE) [8]; joining FTT-SE with compression control to de-

velop a video monitoring solution for industrial environments [9, 10]; adapting this solution to

video surveillance systems [11]; its improvement, adding cooperation mechanisms and control

theory [12]; and experimenting other mechanisms such as Linux Traffic Control (TC) [13].

4 Introduction

1.4.1 Problem statement

Following the motivation we just expressed, in this project we aim at developing an Ethernet-based

video surveillance system, with limited total bandwidth and the capability of creating virtual chan-

nels, one per camera, which can distribute its bandwidth dynamically among all the cameras, ac-

cording to their needs. The cameras then adjust to the allocated bandwidth, using image compres-

sion adaptation mechanisms. These mechanisms should introduce the least possible compression

for the allocated bandwidth, maximizing the images quality. This shall be implemented using the

Axis Communications P5512-E PTZ cameras available in the laboratory and using Linux TC for

virtualizing the network.

1.5 Goals

The system developed in this project proposes to achieve the following goals:

Functional

F1 - The network shall have virtualization capacity that allows for a reasonable number of

cameras;

F2 - The user shall have the possibility to choose one camera, at any certain moment, to

display with higher quality than the remaining ones, denominated camera "in focus";

F3 - The cameras shall be able to adapt to the bandwidth allocated and, at every moment,

return information about the compression being applied.

Performance

P1 - The camera "in focus" shall have an image quality better than the average quality of

all cameras’ images in a conventional system;

P2 - The quality of the cameras not in focus, shall be as equalized as possible;

P3 - The quality of the cameras not in focus shall be enough for the operator to keep

perception, through peripheral vision, of any important event happening.

1.6 About this dissertation

This dissertation describes the project to develop a system that satisfies the problem formulated

in Section 1.4.1 and fulfills the goals enumerated in Section 1.5. The next chapter addresses

the background of this project, showing some related work. Chapter 3 describes the followed

methodology and the system architecture. Chapter 4 presents the implementation of the system

using the proposed technologies. Chapter 5 shows the experiments performed and analyses their

results. Finally, Chapter 6 shows the achievements of the project and suggests some future work.

Chapter 2

Dynamic QoS management for video

This chapter introduces background concepts in the three main techniques used in this project:

dynamic quality of service (QoS) management, multimedia compression and multimedia trans-

mission. For each one we present some related work and use cases that are currently found in

practice.

2.1 Dynamic QoS management

A system’s QoS is linked to a set of parameters that influence its performance and contribute, or

not, to the accomplishment of its purpose, efficiently and effectively. A dynamic management

of these parameters implies monitoring quality online and actuating upon them, according to the

system’s current state and the user’s requirements.

The use of dynamic QoS management is frequently seen in resource-limited systems or with

high variability. In [14] we find a military application of this kind of management in a surveillance

and target tracking system. The paper presents a system consisting of several Unmanned Aerial

Vehicles (UAV or drone) and a control station and proposes a dynamic management that includes

the compression applied by each UAV’s camera and the bandwidth allocated, mainly focusing

on the multi-layer architecture used for the QoS management. In [15] we can see this kind of

management applied to the Internet of Things (IoT) in which a set of devices that interact among

themselves share the connection to a mobile phone that acts as gateway. In this case, the goal is

not only to manage bandwidth, but also the data processing performed by each device, taking as

inputs its battery level and the amount of data to transmit. Another example, in a different field,

is showed in [16]. Here, the purpose is to distribute the Internet traffic through several servers to

avoid overload. This is done by distributing the contents among the web servers, copying the most

popular ones from overloaded servers to freer ones.

These are some generic examples of dynamic QoS management implementation. As we will

see later in this dissertation, dynamic QoS management can be accomplished through different

methods, e.g., it can be implemented using a software layer running over a generic network or

implemented in a specific network protocol. The second one presents higher robustness due to

5

6 Dynamic QoS management for video

Table 2.1: FTT-SE message atributes

Messages Attributes

Synchronous
Maximum

duration (C)
Period (T) Deadline (D)

Initial phase
(Ph)

Priority (Pr)

Asynchronous
Maximum

duration (C)

Minimum
interarrival
time (mit)

Deadline (D) - Priority (Pr)

enforcing the bandwidth reservations in each node. However, using a generic network, without

controlling who joins the network, might allow some nodes to overflow the network, spoiling the

proper functioning of the system. On the other hand, the first option will also have problems if the

nodes do not respect the allocated bandwidth. The next sections show and analyze examples of

both methods.

2.1.1 FTT-SE

One protocol that was created to support dynamic QoS management is FTT-SE [8]. This protocol

uses of a Master/Multi-Slave architecture in which the network traffic is organized based on a time

unit named Elementary Cycle (EC).

For the purpose of communicating, the Master disposes of three main modules: a database

(SRDB), a scheduling module and a dispatcher. The SRDB stores the information about all the

messages that circulate in the network. Each message is defined by the set of parameters in Ta-

ble 2.1. The scheduler gets this information from the SRDB to schedule the messages in each EC.

The dispatcher gets the information from the scheduler and builds the Trigger Message (TM) for

the EC.

In the beginning of the EC, the Master sends the TM to the Slaves indicating which mes-

sages can be sent within that cycle, being the cycle time shared by synchronous and asynchronous

traffic. The synchronous traffic consists of periodic messages scheduled by the Master, thus glob-

ally synchronized, and has a maximum time window defined (synchronous window) within which

these messages shall be sent and delivered. The asynchronous traffic is triggered by the Master

upon request and is requested by the Slaves (event-triggered) using a signaling mechanism. Asyn-

chronous traffic is divided in two categories: real-time and non real-time, the first having priority

and the second only being transmitted if there is any cycle time left. Besides this, the Master has

a module for dynamic QoS management that monitors the network parameters and handles mes-

sages, bandwidth renegotiation requests, e.g. to change either the period, minimum interarrival

time or maximum duration, and another module for admission control that allows other messages

or nodes to be added or removed from the system on-the-fly without affecting the operation of

the rest of the system. These requests are handled within the time window dedicated to real-time

asynchronous traffic since they are asynchronous in nature.

Coming back to video transmission, this protocol provides dynamic CBR channels that can

be adapted at run-time as needed, providing isolation of different information streams; and allows

2.1 Dynamic QoS management 7

the system to distribute the link bandwidth among the cameras, according to the changes in the

environment, so they can capture all the events with, at least, the minimum quality requirements.

However, it introduces some overhead due to the need of sending TMs at each EC, which increases

when the EC is reduced, and the signaling mechanism used for asynchronous traffic. Also, FTT-

SE cannot ensure that each Slave respects the assigned bandwidth, thus increasing the risk of one

Slave overflowing the network without authorization.

In [12] we find an Ethernet based video surveillance system segmented by a switch, imple-

mented on the FTT-SE protocol. The protocol distributes the network bandwidth dynamically

through the cameras according to their needs. Using game-theory, the Master periodically calcu-

lates the cameras needs based on the normalized error between the bandwidth allocated and the

size of the frames being transmitted, i.e., the bandwidth used, and other user-defined parameters,

and reallocates the bandwidth. The cameras (Slaves), in turn, adapt the compression applied to

the images, using a PI (Proportional Integral) controller, in order to use the allocated bandwidth

efficiently.

2.1.2 DiffServ

The work in [17] presents a solution for traffic shaping using Differentiated Services (DiffServ).

This sets a service class that allows the user to classify packets based, primarily, on Type-of-

service (ToS) flag present in the IP header, but also on the values from other fields of the frame. It

is commonly used by service providers and is implemented in routers, being used to promote, delay

or even discard certain types of traffic based on the Service Level Agreement (SLA) established

between client and the service provider [18]. In the same work [17], DiffServ is used together

with video compression in order to increase the guarantees of delivery for each type of frame,

according to its importance. After measuring the rates of each type of frame and comparing with

predefined parameters, Committed Information Rate (CIR) and Peak Target Rate (PTR), the router

classifies the packets in "Green", "Yellow" and "Red" (decreasing priority), and takes actions to

delay or discard accordingly .

2.1.3 Linux TC

Linux Traffic Control (Linux TC) is a solution similar to DiffServ, except that it is implemented

in Linux-based stations directly over the device network interface and allows some more complex

strategies for scheduling and shaping traffic, such as HTB (Hierarchical Token Bucket) [20], to be

implemented easily [21].

Linux TC does not interfere directly with the applications that generate the data, e.g., cameras.

Applications can transmit whenever they want and the packets are handled by the TC layer on top

of the network interface, applying one or more of the following actions:

Shaping - Delaying packets in order to accomplish a certain transmission rate. This is done

using the entity «class»;

8 Dynamic QoS management for video

Scheduling - Reorganizing packets in the output queues. This done by the entities «Qdisc»

(Queueing discipline), which are assigned to each packet at its arrival. These can be Classless,

i.e., organize the traffic only in one queue, and Classful, i.e., can filter, classify and reorganize

the traffic in several queues depending on the classification;

Classifying - Classifying packets in order to define how to handle them. This is done through

the entities «classifier» and «filter»;

Policing - Measuring and limiting traffic on a certain queue. The is done through the entity

«policer» together with a filter, defining an action to be executed in case traffic rate exceeds a

certain value and another in case it does not;

Marking - Altering the packet introducing control information. This is done using a special

type of Qdisc, the dsmark Qdisc.

These mechanisms allow Linux TC to prioritize certain types of traffic with demanding time

requirements, reduce the transmission jitter and choose what to do in case of overload.

Nevertheless, Linux TC misses a global system view and thus, by itself, it cannot constrain

data sources, which send data to the network, based on the state of internal or output links. Thus,

it cannot prevent overloads or undesired interference.

To address this problem, a global network coordinator must be put in place that, based on the

global system view, configures the TC policies in the data sources adequately. This is the approach

taken work in [13], which presents an experiment that uses Linux TC for traffic enforcement in

Linux-based systems using switched Ethernet. In the system described, a coordinator manages

the network, taking into account the needs of each station for bandwidth. Whenever a new station

wants to join the network, it requests a channel to the coordinator that evaluates if there are enough

resources to create one more channel while respecting the other stations’ minimum requirements.

Once the coordinator accepts the request, both the data producer (requesting device) and con-

sumer register on this channel and the coordinator sends the station a command to configure its

Linux TC module accordingly. When the system uses COTS switches, which usually miss traffic

enforcement or prioritization features, there is a the risk of rogue hosts trying to connect to the

network and consume bandwidth "that does not belong to them". Ways of approaching this kind

of scenarios are also described in that paper.

2.2 Multimedia compression

Multimedia compression algorithms, used in codecs, search for redundancy in data, e.g. similar

pixels, in order to reduce the amount of data to be transmitted and/or stored. Depending on the type

of redundancy searched, spatial or temporal, they can be grouped in two classes: image codecs or

video codecs, respectively. Applied to video surveillance systems, these two types of codecs use

different strategies and have both advantages and disadvantages.

2.3 Multimedia transmission 9

The image codecs process each frame individually and do not depend on past or future frames

for that. This characteristic makes them fast and more robust, since the compression is done

independently per frame, but they risk higher quality losses when higher compression factors are

applied and the maximum compression achievable is limited. Examples of image codecs currently

used in the industry are JPEG and MJPEG (Motion JPEG) [22, 23, 24].

The video codecs search for spatial but also temporal redundancy and to do so, they analyze

the frames in Groups of Pictures (GoP), establishing one as reference (I-frame) to calculate the

compression to apply to the following ones (P-frames and B-frames). A great advantage of this

type of codecs is to achieve high compression levels with reduced quality loss whenever the sce-

nario varies slowly in time, thus also reducing significantly the bandwidth requirements. However,

due to processing the frames in groups, they reveal themselves as a bad choice for on-line video

surveillance since the frames will always be delayed, especially if we consider that the frame

rates used in video surveillance are usually low. Other disadvantages include the fact that losing

the reference image means losing all the GoP, which results in a significant loss of information,

and the fact that due to prioritizing the frame rate stability, they tend to degrade the image qual-

ity in complex scenarios. Examples of video codecs currently used in industry are H.265 [22],

H.264 [22, 23, 24] and MPEG-4 part 2 [23, 24]. The work in [25] presents a detailed study of

the size of each type of frame in video codecs, which can be very useful to control the bandwidth

requirements in these systems.

2.3 Multimedia transmission

The strategy for multimedia transmission depends on the system requirements and the available

resources. For example, video surveillance can be applied in industrial contexts for process mon-

itoring, integrating the class of Media Control Applications (MCA) and, particularly, Multimedia

Embedded Systems (MES) [26]. This type of systems joins high image quality requirements to

real-time requirements, making common network transport protocols like TCP/IP or UDP/IP in-

sufficient only by themselves. The first establishes an end-to-end reliable connection between the

end nodes with potentially unbounded delays in case of packet losses, making it impossible to

support real-time guarantees. The second, on the other hand, due to lacking error recovery, does

not provide delivery guarantees.

Currently, big companies from the video surveillance field like Axis Communications, Bosch

or Sony use transport layer protocols that were specifically developed for multimedia transmission

such as RTP/RTCP (Real-time Transport [Control] Protocol) or RTSP (Real-Time Streaming Pro-

tocol) [22, 23, 27]. These protocols support features such as traffic type identification, packet se-

quencing, time stamping, traffic monitoring, QoS parameters monitoring and multiplexing, which

allow the control of the network load in order to prevent overload and create mechanisms to allow

the delivery of packets timely and orderly. However, these protocols assume CBR channels, only,

which reduces the video transmission efficiency when using cameras in VBR mode, as mentioned

10 Dynamic QoS management for video

before, and might cause, on one hand, the loss of important information with complex images or,

on the other hand, the under-utilization of the allocated bandwidth with simple images.

In spite of the potential of all of these solutions to implement dynamic QoS management hav-

ing been proved, some of them still have disadvantages that made us exclude them. Regarding

dynamic QoS management, FTT-SE does not ensure that the devices connected to the network re-

spect the limitations imposed and introduces overhead with the TMs and the signalling mechanism

and DiffServ is more adapted for the implementation in routers, thus requiring advanced routers

for the effect, and the implementation of complex traffic control schemes is not user-friendly.

Linux TC, cannot control unknown nodes that might join the network and, only by itself, does

not prevent the overload of the network by the connected nodes, since it runs locally in each sta-

tion. However, Linux TC is of easy implementation in any Linux-based station, provides complex

traffic control schemes with few commands and does not have as much overhead as FTT-SE; and

since the available cameras are Linux-based, we decided to use Linux TC.

Regarding the protocol used for transmission, although RTSP/UDP would be more advanta-

geous due to the low overhead, as we will show in 4, we had to use HTTP/TCP due to hardware

limitations.

Chapter 3

Methodology and system architecture

This chapter presents the methodology used to address the problem defined in the previous chapter,

as well as a description of the system’s architecture, namely its structure, functioning and the

interactions between the modules, and a detailed description of each module. We also suggest

some improvements regarding the bandwidth distribution.

3.1 Methodology

The system described in [12] served as basis for the one built in this project. The idea was to build

a similar system, replacing the USB cameras by IP cameras and the FTT-SE protocol by standard

Ethernet with Linux TC and keeping MJPEG as the used codec.

The IP cameras are the state of the art solution for video surveillance systems which justifies

our interest in using this type of cameras. The reason to replace the FTT-SE by standard Ether-

net with Linux TC was three fold. Firstly, there was an interest in studying the performance of

Linux TC comparing to FTT-SE. Secondly, TC is implemented by default in most Linux distribu-

tions, needing only a couple of commands for a simple configuration. Thirdly, many professional

cameras are Linux-based, namely, the ones made available for this project.

Making an initial comparison, the implementation of dynamic QoS management using Linux

TC will have similarities with FTT-SE, namely, the need of a network manager (Master) that

has global system view and imposes some control overhead - trigger messages and asynchronous

polling in FTT-SE and, in Linux TC, Secure Shell (SSH) communication needed to setup the de-

vices remotely. Linux TC brings some advantages regarding bandwidth reservations enforcement,

since this is made directly on the devices, preventing them from exceeding the reservations, and

the potential for reducing communication delay since it does not require polling synchronous or

asynchronous traffic. On the other hand, Linux TC misses global synchronization, which is an

integral part of FTT-SE and allows setting different streams with similar transmission periods out

of phase. However, global synchronization is appealing only, from a delay perspective, when the

images acquisition in the cameras is also globally synchronized. Otherwise, any benefit in trans-

missions latency would be cancelled by extra delays in the cameras communications interface. For

11

12 Methodology and system architecture

the sake of flexibility, the project did not consider global synchronization as a requirement, thus

removing this advantage of FTT-SE.

Apart from these differences, both FTT-SE and Linux TC suffer from similar robustness lim-

itations. Neither solution can prevent the connection of unknown nodes to the network that may

introduce unwanted traffic and both solutions require the nodes to implement the respective trans-

mission control mechanisms.

The flow of this project was resource-driven, i.e., focused on what could be done with the re-

sources available, mainly with the cameras. Being so, the strategy followed was, for each dimen-

sion of the system - parameters setup, stream transmission, compression control and bandwidth

control - to check which features and limitations did the cameras have and develop the system

within those boundaries, exploring them as much as possible.

Therefore, most of the cameras’ limitations were found in the course of the project and not all

of the system’s dimensions could be improved as desired. However, the cameras properties still

allowed meeting the project’s objectives and showing the potential of the system solution.

3.2 System architecture

The system consists of a set of n cameras C = {c1,c2, ...cn} streaming to a monitoring station

and providing information frame size to the network manager. This one distributes the global

system’s bandwidth H dynamically among the cameras and performs admission control, as shown

in figure 3.1.

The cameras, when connecting to the system, request a channel to the manager and receive the

initial image and bandwidth parameters values. After returning a positive response containing the

value for the channel bandwidth, the manager sets up each camera’s channel and then requests a

video stream for control and another video stream for the monitoring station for visualization.

At run time, the manager periodically checks the system’s needs, calculates new bandwidth

values and reassigns them to the cameras. In parallel, at each frame, the cameras check the error

between the assigned bandwidth and the bandwidth corresponding to the actual frame size and

adapt the compression level accordingly. Each of the system’s modules will be described in detail

in the next subsections.

3.2.1 Camera

Each camera captures a stream of images, encodes each image in a corresponding frame using

codecs and then transmits the frames to the monitoring station. Defining the stream as Ic =

{ic,1, ic,2, ...ic,m}, in which c identifies the camera and m is the number of images that are part

of the stream, each element ic,p in this set, p ∈ {1,2, ...m}, will have the following characteristics:

• A quality qc,p that represents, loosely, the percentage of information preserved after encod-

ing and is initialized using a value qc,0;

3.2 System architecture 13

Figure 3.1: System’s functional architecture

• A size sc,p representing the image size after encoding and is comprised between sp,min and

sp,max; these values depend on hardware features (e.g., images resolution) and the codec

type.

The relationship between sc,p and qc,p is not linear, since it depends on many factors such as

the complexity of the scene, the sensor used by the camera and the amount of light that reaches the

sensor. This was explored in previous work ([9, 10]) but, it will not be detailed in this dissertation

since it is outside our specific methodology.

The camera adapts the parameter qc,p to make sc,p match the size corresponding to the target

frame size Sc taking as input the normalized error between the two,

ec,p =
Sc− sc,p

Sc
(3.1)

and feeding it to a PI controller, which is described by the following equation:

q∗c,p = Kp · ep +Ki ·
p−1

∑
j=1

ec,i (3.2)

The raw value obtained is then bounded to the limits defined for this parameter,

qc,p = max(15,min(100,q∗c,p)) (3.3)

We consider 15 the minimum value since it is the lowest level to provide a reasonable image.

Finally, the compression level is set as 100−qc,p.

3.2.2 Network Manager

The network manager performs admission control and periodic bandwidth redistribution. The first

is responsible for creating the virtual channel for each camera that connects to the system, as

explained above, and the second is responsible for modulating it periodically to fit the camera’s

needs.

14 Methodology and system architecture

The bandwidth redistribution divides the global system’s bandwidth H dynamically among the

cameras, allocating a fraction bc to camera c. This implies that,

n

∑
c=1

bc = 1 (3.4)

Regarding each camera, the fraction bc sets the value of allocated bandwidth Bc given by

Bc = bc ·H (3.5)

and, knowing frame rate τc, it also sets the value of the target frame size for camera c,

Sc =
bc ·H

τc
(3.6)

To define bc for all cameras we used the game-theoretic approach described in [12]. The

control is described by the following equation:

bc,t+1 = bc,t + ε · [−λc · fc,t +bc,t ·
n

∑
i=1

(λi · fi,t)] (3.7)

Note that bp,t+1 is the bandwidth fraction that will be allocated to camera c in the next manager

control interval [t, t +1], bc,t is the allocated bandwidth fraction in the previous manager interval

control [t − 1, t] and fc,t is the so-called the matching function, which represents to what extent

the amount of network bandwidth allocated to camera c at the instant t is a good fit for the current

quality.

Besides these parameters directly related to the cameras’ QoS, there are two more that influ-

ence the amount of bandwidth allocated in each manager iteration: ε and λc. The first one affects

the responsiveness and stability of the system. Higher values will provide faster convergence in

trade for some overshooting, while lower values slow down the convergence but increase the ro-

bustness in case of sporadic disturbances. The second one, represents how much the manager is

willing to allocate bandwidth to camera c. Higher values relatively to the other cameras will make

the manager favour camera c, while lower values will do exactly the opposite.

As matching function, similarly to [12], we use the normalized error between frame size and

the target frame size for camera c, where p is the latest frame of camera c at the manager iteration

t:

fc,t =
Sc− sc,p

Sc
(3.8)

Proof of convergence of this method is presented in [12].

3.2.3 Quality equalization among cameras

Although the solution for bandwidth distribution proposed by [12] has been proven to provide

an efficient bandwidth control, it has limitations in what regards to quality equalization. As we

3.2 System architecture 15

will see later in chapter 5, if the system starts with only one camera seeing a simple scenario

and a second camera, seeing a complex scenario, joins the system, it would be expected that the

system would redistribute the bandwidth, providing a bigger share to the second camera, so it could

have a reasonable image quality. However, since with Linux TC we cannot initialize a camera’s

bandwidth with zero when it joins the system - which excludes all types of communication - we

must allocate a low value to reduce its impact in the system when joining. If the quality is also

initialized with a low value for the same reason, what will happen is that the error will be quickly

compensated with low QoS, stabilizing with a complex image with low quality.

Since one of the objectives of this project is to have a system capable of equalizing the quality

of all cameras that are not in focus - we consider "in focus" a camera temporarily selected by an

operator to have more quality than the other ones - we created a factor, that we named quality

balance (Cc for camera c), and that is added to the bandwidth fraction resulting from each network

manager iteration in order to accomplish this equalization. This factor is based on qdev
c,t , the nor-

malized deviation of camera c from the average quality of all cameras q̄t at instant t, and has a

different behaviour depending on whether qdev
c,t is greater or lower than zero.

Initially, we developed this factor making it depend on the value of λc and defining it as

Cc =

−α · (qdev
c,t ·λc)

3, if qdev
p ≤ 0

−β · (qdev
c,t · (1−λc))

3, otherwise

with qdev
c,t given by

qdev
c,t =

qc,t − q̄t

q̄t
(3.9)

and α and β being coefficients that define the speed of compensation, are set up offline and must

always have positive values. The cubic exponent is explained by the initial behavior thought for

the factor: positive compensation for negative quality deviations and negative compensation for

positive quality deviations, with null derivative at zero deviation. However, since we wanted a

different compensation speed in each situation, we decided to divide the factor in two branches.

The quality balance factor was added to the raw result from the bandwidth controller and was

used in the first four experiments that we show in Chapter 5. However, we decided to create a

quality gain (Gc for camera c), that would determine the behavior of the quality balance factor,

ensuring a balanced resource utilization. This way, the quality balance factor would not depend

on or affect other factors also depending on λ . Thus, the function was redesigned as follows to

smooth the impact caused by Gc changes:

Cc =

−α ·Gc · (qdev
c,t)

3, if qdev
c,t ≤ 0

−β · (1−Gc) · (qdev
c,t)

3, otherwise

Gc is a configuration parameter that can be adjusted by the user at any time, for example

using a control panel, with the purpose of accelerating or slowing the compensation for a certain

16 Methodology and system architecture

camera when it is above or below average quality. Internally, the network manager enforces a

normalization of the quality gains as follows:

n

∑
c=1

Gc = 1 (3.10)

Figure 3.2 shows the variation of Cc depending on qdev
c,t and Gc with α = 1 and β = 1. We

can see that, given 0 ≤ Gc ≤ 1, Cc will always be positive if qdev
c,t < 0 and negative otherwise,

effectively contributing to balance camera qualities.

Figure 3.2: Compression compensation vs. qdev
c,t for multiple values of Gc

When the quality gain is Gc = 0.5 the quality balance factor Cc becomes symmetrical with

respect to the quality deviation qdev
c,t . This means the compensation will be the same in magnitude,

whether the quality is lower or higher than the average. In the range 0≤Gc≤ 0.5 the compensation

will be stronger when the qualities are higher than average and lower otherwise. Conversely, the

range 0.5≤ Gc ≤ 1 leads to stronger compensations when the quality is below average.

When in an unbalanced situation, having a quality above average means that the respective

camera has more capacity to reduce its bandwidth than the other ones. In other words, such

camera has higher bandwidth than needed and it is potentially contributing to overrun the system

bandwidth. Thus, it makes sense to increase the magnitude of the compensation when the qual-

ity deviation is positive (qdev
c,t > 0). This is naturally enforced by the normalization of the quality

gains. As more cameras are added, the gains will tend to smaller values promoting stronger com-

pensations for positive quality deviations than for negative deviations.

Chapter 4

Implementation

This chapter describes the implementation of the system, detailing the evolution of the process and

the technologies used. The system hardware architecture is shown in figure 4.1

4.1 Cameras

The cameras available in the lab are Axis Communications professional surveillance cameras,

models P5512 and P5512-E PTZ. Thus, we started by exploring their features in order to see how

they could be useful for the purposes of our project.

4.1.1 Parameter setup

One of the most important features to communicate with the cameras is its embedded HTTP server.

Together with the API VAPIX® [28], developed by Axis Communications, most of the cameras’

parameters can be viewed and changed remotely through common HTTP GET and POST requests.

For example, to request an MJPEG stream or change the compression parameter:

MJPEG Stream: http://«hostname»/axis-cgi/mjpg/video.cgi (GET)

Compression: http://«hostname»/axis-cgi/param.cgi?action=update&

Image.I0.Appearance.Compression=«value» (POST)

The parameters can also be changed using the web application that comes with the cameras, which

also allows controlling the cameras’ Pan, Tilt and Zoom (PTZ).

4.1.2 Rate control

These cameras include control mechanisms to offer CBR (for H.264) and Maximum Frame Size

(for MJPEG), which, in the beginning, seemed like nice features to use advantageously to the

project and maybe avoid the use of Linux TC. However, the cameras would not return the in-

stantaneous compression value thus not allowing the compensation by increasing the allocated

17

18 Implementation

Figure 4.1: System’s implementation

bandwidth in case the compression was too high or too low. This defined the strategy of develop-

ing the compression control module that is described in 4.2.1.

The fact that the cameras are Linux-based opened the door for using Linux TC directly in

the camera instead of having an external computer post-processing the stream. This was pos-

sible through establishing an SSH connection with each camera and sending the configuration

commands directly. The Linux distribution embedded in the cameras did not allow for complex

configurations, though. Ideally, a PRIO qdisc would be used, together with a filter, in order to give

priority to the control traffic and then forward the video traffic to a Token Bucket Filter (TBF) so

it could be shaped to the desired bandwidth. Since the camera did not support the PRIO qdisc,

neither any other classful qdisc, and taking into account that the control traffic would be low

comparing to the stream traffic, the final decision was to go only with the TBF, reserving some

bandwidth for the control traffic in the network manager calculations.

TBF consists, basically, in the CPU generating tokens at a defined rate, which are kept in a

bucket. The size of the bucket is user defined and must be carefully calculated in order to ensure

the desired rate. The tokens roughly correspond to authorizations to send bytes. As long as there

are tokens available in the bucket, data can be sent by the network interface and every time data is

actually transmitted, the corresponding tokens are deduced from the bucket. When the bucket runs

out of tokens, the data is queued, waiting for tokens, until the defined latency or limit is reached.

In that case, the data is discarded.

4.2 Control Station 19

The Linux TC was configured for using TBF with the following command:

tc qdisc replace dev eth0 handle 1: root tbf rate <rate> burst <burst>

[latency <latency> | limit <limit>]

In this command, <rate> is the bandwidth value allocated by the network manager, <burst> is

the amount of data that can be transmitted in one second and latency was set to zero since queuing

packets would lead to undesired streaming delays.

4.1.3 Streaming

The cameras can stream using two different protocols, HTTP and RTSP, both having the possibility

to be requested via VAPIX®. Using RTSP over UDP would, in principle, be the best solution for

streaming efficiently and with low overhead. Unfortunately, if the image parameters are changed,

the RTSP session must be restarted to get a stream with the updated parameters. Since the control

would be done frame by frame, and, to be started, each session needs three requests - DESCRIBE,

SETUP, PLAY - this protocol would impose significant overhead, eventually causing many frames

to be dropped. This limitation also affects the streaming through HTTP over TCP but we chose it

because it takes only one message to be restarted, and it allows the control to get the frame size at

the first frame packet, while with RTSP, the controller would need to receive the whole frame.

4.2 Control Station

The control station runs all the compression control modules that are part of the system, exchang-

ing all the information needed with the cameras. The programming language chosen to implement

them was C, using libcurl [29] and the available examples for implementing the communication

with the cameras through HTTP requests. We used a key file to set the initial value for most of the

system’s parameters. The file structure is shown in figure 4.2.

4.2.1 Compression control

Initially we tried implementing the compression control module in the camera. This way, the

control could be faster since it would not require any external communication as in [12]. However,

this idea was dropped because the development tools for the computers embedded in the cameras

were no longer available.

Therefore, we decided to implement the compression control in the same computer as the

Network Manager, one independent controller per camera. For each camera, two threads were

created: one for receiving the respective stream and another for this control. The first thread checks

every packet received for the word "Length" present in the HTTP header data, which indicates the

size of the next frame to be transmitted. When found, this thread signals the compression control

thread and interrupts the stream so that it can restart it after the new compression parameter is set.

The streaming is a multi-part HTTP request which continues as long as the camera is transmitting

20 Implementation

Figure 4.2: Parameters file

images or until the receiver returns a number different from the number of bytes received. In

this case, e.g., when the callback function receiveStream returns −1, the streaming is interrupted

(see Section A.1 in the Appendix). After being signaled, the compression control thread gets the

frame size, performs the calculations described in 3.2.1, executes the appropriate HTTP request to

change the compression for the new value and signals the streaming thread to restart the stream. To

prevent the integrator from overflowing the output, an anti-windup mechanism was implemented

(see the code in Annex A).

4.2.2 Network Manager

As previously mentioned, the Network Manager comprises the admission control and the band-

width distribution modules. The cameras have a Bonjour server (Apple’s implementation of Ze-

roConf). This allows devices to advertise their services and be discovered in the network without

having an IP within the network range and would be a useful feature to help implementing admis-

sion control. Unfortunately, there was no time to explore this possibility and thus the admission

control was implemented based on the parameters file referred before to acknowledge the cameras

connection to the system. The file key "NrOfCameras" is checked each second for changes. If a

4.2 Control Station 21

change is detected, the module will read the key "Status" of each "Camera x" field to check what

changed and (dis)connect the cameras accordingly.

As for the bandwidth distribution, one of the questions that has arisen when thinking about

the implementation was about making it synchronous or asynchronous. Since Linux TC can be

reconfigured at any time, it provided the possibility of an asynchronous implementation. This

would bring some complex issues to consider, though. Being the initial idea implementing the

control modules in separate devices, a standard communication architecture, such as Master-Slave

or Client-Server, would not be enough. Since all devices would need to send renegotiation requests

to the manager and listening at the same time for eventual updates already being done, this would

bring some unpredictability to the control and would require a more complex implementation to

establish minimum quality requirements for each camera at any instant and avoid race conditions.

Having in mind building a system comparable with others from previous work, and given the time

available, we decided to implement a synchronous network manager, with a user-defined period,

π .

The bandwidth distribution module gets the frame size from the camera and the quality values

from the compression control modules and performs the calculations described in 3.2.2. The result

is constrained to the interval [0.1 0.9] to avoid allocating the whole bandwidth to a single camera

while guaranteeing a minimum value, and is then multiplied by two and used to set the bandwidth

reservation and build the respective Linux TC command, which is then sent through SSH [30]. The

reason why it is multiplied by two is due to the cameras transmitting two simultaneous streams:

one for compression control and one for monitoring (display station). Thus, we are using twice

the bandwidth that would be effectively needed if the compression control was carried out inside

the cameras but it was a practical way to circumvent the limitations of the actual cameras available

for this project. On the other hand, the compression control uses just the control stream, thus

only half of the bandwidth reserved in the respective camera. This value, i.e., half of the reserved

bandwidth, is adjusted to remove the estimated control overhead and used to compute the target

frame size and in further calculations (see the code in Annex A.3).

The value for the overhead was defined based on observations using Wireshark. From these

observations, we derived the maximum packet payload for stream packets (MP = 1448 Bytes), the

stream control overhead (SC = 132 Bytes per frame, including headers and ACK messages), the

SSH messages (SSH = 694 Bytes per Network Manager iteration) and the compression setting (CS

= 600 Bytes per compression control iteration) and added an offset due to frame size variations

(OF = 1500 Bytes). This resulted in the following total overhead per frame calculations:

Total_Overhead_ f rame = (sc,p/MP+1)∗SC+CS+OF+

+
SSH · 1

π

τc

(4.1)

22 Implementation

Chapter 5

Experimental Validation

This chapter presents the system experimental validation in which we used three cameras: two

P5512-E and one P5512. The cameras have a feature that allows to save several positions in order

to make quick transitions. For example, after positioning the cameras, we pointed them to a certain

scenario, using the PTZ control, and saved that position using a name (e.g. Complex scenario).

After planning the scenarios needed for the experiments, this mechanism was used to save these

positions, guaranteeing that the transitions were quick and stable and that the same scenarios

would be used for all experiments in order to get coherent results. The devices were connected

through a switch, similarly to figure 4.1. To validate our system we carried out 5 experiments:

Experiment 1: A camera is given a fixed bandwidth and, at some point, the image is changed

so the compression adaptation mechanism can be observed.

Experiment 2: The system starts with only one camera. At some point, another camera

capturing a similar image joins the system so the bandwidth redistribution can be observed.

Experiments 3 and 4: One camera sees a complex image and the other sees a simple one.

The system starts with one of the cameras and, at some point, the other joins.

Experiment 5: The system starts with camera 1 only and the others join the system sepa-

rately in the course of the experiment.

In all experiments, when the system starts, the global bandwidth is equally distributed through

all the connected cameras. If some camera joins the system during run time, a low value (800Kbit/s)

is allocated to reduce the impact on the cameras already connected and let the system then evolve

according to the needs of all the cameras. The values set for all parameters in each experiment are

shown in table 5.1.

The values for ε , λ , π, α and β were chosen based on several experiments performed to find

the values that provided stability and effectiveness to the system. Since the number of cameras

increased in experiment 5, the previously used value for λ was too high and caused instability

as the system was doing a great effort trying to compensate all cameras with a high bandwidth

23

24 Experimental Validation

Table 5.1: Parameter values in each experiment

Global Bandwidth λ ε π Resolution Frame rate α β

1 7Mbps 0 0 500ms 704x576 20fps 0 0
2-3 50Mbps 0.5 0.2 500ms 704x576 20fps 5 2
5 50Mbps 0.1 0.2 500ms 704x576 20fps 1.5 1.5

fraction. Therefore, we decreased the value of λ . The values for α and β were changed in the last

experiment due to the use of the new Gc function referred in 3.2.3.

It is worth noting that, as the cameras need the stream to be restarted each time its compression

value is changed, this introduces delays in the control thus reducing the frequency of the control

iterations from its ideal value, τ , to a maximum of 8 iterations per second. Several experiments

were conducted to evaluate if this frequency would be higher at lower frame rates, but the maxi-

mum obtained was always 8. However, this did not have a significant impact in the controller as

we will see in the next sections.

5.1 Experiment 1

In this experiment, a camera was pointed at a simple scenario and, between t = 30 and 40 seconds,

the image was changed to a more complex scenario. We used a low value for the global bandwidth

so the controller would need some effort to adapt. Figure 5.1 shows the two images captured by

the camera.

Figures 5.2 and 5.3 show that the bandwidth allocated to the camera is constant during the

whole experiment, except for the initial drop down resulting from the bounding mechanism men-

tioned in 4.2.2. The camera starts pointed at Scenario 1 and, at t ≈ 34s, the camera switches to

Scenario 2 and the compression control immediately starts increasing compression, decreasing

the frame size and the quality of the image, stabilizing at t ≈ 70s. We can see that the real frame

size exceeds the target frame size significantly when the scenario changes. However, this does not

mean that the camera uses more bandwidth than what was allocated. The frame generation system

is totally independent from the Linux TC, which means that, although the generated frame size is

higher than the bandwidth allocated, the amount of data transmitted will never exceed this value.

This means that, between t ≈ 34s until the setpoint is reached again, some frames are lost.

5.2 Experiment 2

In this experiment, two cameras were capturing similar scenarios, as shown in figure 5.4. The

system starts with camera 1 only and, at t ≈ 39s, camera 2 joins the system.

In figure 5.5 we can observe that, when camera 2 joins, some over and undershoot can be

seen in the bandwidth distribution but, after approximately 5 seconds, it stabilizes, with camera 1

returning to the same value as before and camera 2 being allocated some of the spare bandwidth.

5.2 Experiment 2 25

Figure 5.1: Experiment 1 scenarios: Scenario 1 (Left) and Scenario 2 (Right)

Figure 5.2: Experiment 1: Quality and bandwidth when changing the complexity of the image of
a single camera

Figure 5.3: Experiment 1: Target frame size versus actual frame size size when changing the
complexity of the image with a single camera

26 Experimental Validation

At this point, the compression balance factor starts its work, slowly adapting the bandwidth of

both cameras to equalize the quality of both.

In figures 5.6 and 5.7, the matching of the bandwidth allocated to the frame size of cameras 1

and 2, respectively, can be observed. Note that the scales are different to provide a better visual-

ization of the whole experiment. We can see that, after the system stabilizes, the target frame size

and the actual camera frame size follow each other closely, which shows the effectiveness of the

network manager.

Figure 5.4: Experiment 2: Camera 1 starts seeing the image on the left and at time 40s camera 2
joins seeing a similar image (right)

Figure 5.5: Experiment 2: evolution when a second camera joins at t ≈ 39s, both seeing a similar
image

One observation that can be made is that, although camera 1, at the start, and camera 2 when

it joins, have much bandwidth available, their quality is not maximized. This happens due to the

times of actuation of both controllers. Since at the first iteration of the bandwidth distribution,

the value for quality is too low, it adapts to that value, reducing the bandwidth requirements.

5.3 Experiments 3 and 4 27

Given this situation, when the error is compensated, the bandwidth allocated is already low so the

compression controller stabilizes according to this value. This behaviour could be compensated

setting a higher initial quality value, so the difference would not be so significant or setting a more

adequate value for λ in each case, and, perhaps, varying it during the process, to take the most of

the compression controller.

Figure 5.6: Experiment 2: Allocated target frame size vs. actual frame size from camera 1

Figure 5.7: Experiment 2: Allocated target frame size vs. actual frame size of camera 2

5.3 Experiments 3 and 4

In these experiments, one camera was pointed at a complex scenario (scenario 1) and the other one

was pointed to a simple scenario (scenario 2), both shown in Figure 5.8.

Experiment 3 started with camera 1 pointed at scenario 2 and after 44 seconds, camera 2,

which was pointed at scenario 1, joined the system. In experiment 4, the scenarios were switched

between the cameras. These experiments were analyzed together in order to compare how the

system reacts depending on the complexity of the scenario being captured by the joining cameras.

28 Experimental Validation

Figure 5.8: Experiments 3 and 4 scenarios: Scenario 1 (Left) and Scenario 2 (Right)

Figure 5.9: Experiment 3: Quality and bandwidth evolution when a camera joins with more
complex images

5.4 Experiment 5 29

Figure 5.10: Experiment 4: Quality and bandwidth evolution when a camera joins with more
simple images

From both results we can conclude that, when a camera joins with a simpler scenario than the

scenario of another camera already in the system, the network manager tends to compensate the

one pointed at the complex scenario more significantly than when the opposite happens. This is

due to the same behaviour observed in figure 5.2 regarding the camera’s start conditions.

5.4 Experiment 5

In this experiment, the system starts with camera 1 only. At t ≈ 44s camera 2 joins and, at t ≈
102s, camera 3 joins. Figure 5.11 shows the scenarios used. This experiment approximates the

application of this system in a real video surveillance system, with several cameras, joining at

different instants. Figures 5.12 and 5.13 show the results.

Figure 5.11: Experiment 5 scenarios: Camera 1 (Left), Camera 2 (Middle) and Camera 3 (Right)

For t ∈ [0,44]s, the system starts allocating the necessary resources to camera 1, which stabi-

lizes at approximately t ≈ 18s. In this time interval, the Quality Gain is not relevant since there is

30 Experimental Validation

only one camera and thus, the quality deviation is always zero.

At t ≈ 44s, camera 2 joins, and we can see some overshoot and undershoot in the bandwidth

allocation, reaching saturation. This was due to the fact that, although in this experiment the

value chosen for lambda was low, the values chosen for α and β were still too high. Anyway,

the network manager recovers, and the cameras start to stabilize, with the effect of Cc making the

qualities converge to the average, as can be seen between 60s and 102s.

At t ≈ 102s, camera 3 joins, also overshooting, but, right after, Cc starts compensating that and

equalizing the qualities of all cameras.

Figure 5.12: Experiment 5: Quality evolution when 2 cameras join at different instants and the
quality gain is changed

Figure 5.13: Experiment 5: Bandwidth evolution when 2 cameras join at different instants and
the quality gain is changed

Figure 5.14 shows the QoS evolution for all cameras in the course of the experiment.

5.4 Experiment 5 31

Figure 5.14: Experiment 5: Cameras QoS evolution in the course of the experiment

32 Experimental Validation

Chapter 6

Conclusions and future work

This chapter summaries the work developed in this project and presents the conclusions derived

from the experimental results and in the development process. Also it suggests improvements to

be made in future work to turn the system in a more effective and dependable solution.

6.1 Achievements

We proposed to develop an Ethernet-based video surveillance system, with limited bandwidth and

the capability of creating virtual channels, in order to distribute it dynamically among all the cam-

eras, according to their needs. In this system the cameras should respect the allocated bandwidth,

working to take the most advantage of it using image compression adaption mechanisms while

causing as less disturbances as possible in the images transmitted to a monitoring station. The

system should be implemented using the Axis Communications P5512-E PTZ cameras available

in the lab and using Linux Traffic Control for virtualizing the network.

Conditioned by the cameras available, we developed a system composed by a set of n cameras,

a control station and monitoring station. The control station runs a network manager, that provides

admission control and bandwidth distribution based on game-theory, and a PI compression con-

troller for each of the cameras. In the bandwidth distribution algorithm we added a quality balance

factor was added to equalize the quality of all cameras’ images.

With experiment 1, showed to have accomplished F3, as expressed in Chapter 1, allocating a

constant bandwidth channel to a camera and changing its quality (compression) to adapt the image

size using the compression controller.

With experiments 2, 3 and 4, showed to have accomplished F1 for a set of two cameras,

starting the system with one camera only and making another one join, seeing a similar image

in experiment 2 and a totally different one in experiments 3 and 4, to see the network manager

divide the bandwidth among the cameras. Also, we advanced towards accomplishing P2, since

the network manager redistributes the bandwidth in such a way that the image qualities tend to the

average.

33

34 Conclusions and future work

With experiment 5, we accomplished F1 for a set of three cameras, starting the system with

one camera only and making the others join at different instants. Also the quality equalization

mentioned in P2 could be observed.

Although [12] has proved the scalability property for the network manager, F1 could not be

fully accomplished in our system, since the technologies used for implementation introduced high

overhead, namely the communication protocol used and the specific cameras used, which needed

the stream to be restarted each time the parameters values change.

Objectives F2, P2 and P3, related to making a camera in focus and equalizing qualities, could

not be fully verified since the equalization was slow and the quality balance factor could not be

fully studied within the available time. Although, several attempts were made to implement the

camera "in focus" feature using Cc, we could not get successful results. Therefore, we could not

accomplished any of the objectives regarding this feature.

6.2 Future work

As mentioned in the course of this dissertation, there are many improvements that can be made

regarding performance and the technologies used in order to improve the solution effectiveness.

Using cameras with a more recent CPU architecture and the ability to refresh the stream pa-

rameters without the need of restarting the stream would allow the compression control to be

embedded in them and would make worth the use of RTSP/UDP with multicast, reducing the

overhead significantly.

The compression control can also be much improved using appropriate applications to simulate

the controller and find the best control parameters.

Regarding admission control, Bonjour can be used for the admission control module to detect

newly connected devices and a mechanism for preventing unknown devices from flooding the

network could be implemented.

The quality equalization feature using Cc must be better studied to prove its effectiveness in

the general case.

The camera "in focus" feature could be implemented assigning it a fixed bandwidth value,

higher than the others, to the desired camera and isolating it from the distribution loop.

Following the course of [17], an interesting idea would be implementing Linux TC with H.264

to achieve better quality with lower compression, making the transmission more dependable by

prioritizing I-frames traffic.

Appendix A

Code

A.1 Streaming

1 vo id * g e t S t r e a m (vo id * a r g) {

3 c h a r URL [7 0] ;
d e v i c e * camera = (d e v i c e *) a r g ;

5 i n t r e s = −1;

7 / / I n i t i a l i z e h a n d l e
initCURL(&camera−>s t r e a m . St reamHandle) ;

9

/ / Get c o m p l e t e URL wi th camera IP
11 s p r i n t f (URL, " h t t p : / / % s / a x i s−c g i / mjpg / v i d e o . c g i " , camera−>i p _ a d d r) ;

13 / / S e t HTTP r e q u e s t o p t i o n s : URL, a u t h e n t i c a t i o n , c a l l b a c k f u n c t i o n and
s t r u c t u r e t o r e c e i v e p a c k e t s d a t a

c u r l _ e a s y _ s e t o p t (camera−>s t r e a m . StreamHandle , CURLOPT_URL, URL) ;
15 c u r l _ e a s y _ s e t o p t (camera−>s t r e a m . StreamHandle , CURLOPT_USERPWD, " r o o t : d a r t e s ")

;
c u r l _ e a s y _ s e t o p t (camera−>s t r e a m . StreamHandle , CURLOPT_WRITEFUNCTION,

r e c e i v e S t r e a m) ;
17 c u r l _ e a s y _ s e t o p t (camera−>s t r e a m . StreamHandle , CURLOPT_WRITEDATA, (vo id *)&

camera−>s t r e a m) ;

19

/ * Th i s i s t h e loop i n which t h e s t r e a m i s r e q u e s t e d and r e s t a r t e d .
21 * I t w i l l on ly b r e a k when a r e q u e s t f i n i s h e s o r a camera i s d i s c o n n e c t e d . * /

do {
23 / / Wai t s f o r c o m p r e s s i o n c o n t r o l t o f i n i s h .

i f (camera−>s t r e a m . readyGo > 0) {
25

p t h r e a d _ m u t e x _ l o c k (&(camera−>s t r e a m . mutex2)) ;
27 camera−>s t r e a m . readyGo = 0 ;

}

35

36 Code

29

/ * R e q u e s t s s t r e a m . Th i s f u n c t i o n r e t u r n s when t h e r e q u e s t i s c o m p l e t e
31 * or when t h e c a l l b a c k r e t u r n a v a l u e d i f f e r e n t from t h e number o f b y t e s

p a s s e d t o i t . * /
r e s = c u r l _ e a s y _ p e r f o r m (camera−>s t r e a m . St reamHandle) ;

33

/ * Wai t s f o r c o m p r e s s i o n c o n t r o l t o f i n i s h . * /
35 p t h r e a d _ m u t e x _ l o c k (&(camera−>s t r e a m . mutex1)) ;

p t h r e a d _ c o n d _ w a i t (&(camera−>s t r e a m . cond) , &(camera−>s t r e a m . mutex1)) ;
37 p t h r e a d _ m u t e x _ u n l o c k (&(camera−>s t r e a m . mutex1)) ;

39 }
w h i l e (r e s != CURLE_OK && end != 1 && camera−> s t a t u s [0] != ’ 0 ’) ;

41

c u r l _ e a s y _ c l e a n u p (camera−>s t r e a m . St reamHandle) ;
43

r e t u r n NULL;
45

}
47

/ * F u n c t i o n c a l l e d by l i b c u r l when p a c k e t s a r e r e c e i v e d .
49 * S i n c e t h i s i s a c o n t r o l s t r eam , as long as a Length i s r e c e i v e d ,

* t h e r e i s no need t o keep r e c e i v i n g f r a me s so t h e s t r e a m i s i n t e r r u p t e d * /
51 s i z e _ t r e c e i v e S t r e a m (vo id * da ta , s i z e _ t s i z e , s i z e _ t nmemb , vo id * u s e r p) {

53 s i z e _ t r e a l s i z e = s i z e * nmemb ;
St ream * s t r e a m = (St ream *) u s e r p ;

55

/ / Check t h e d a t a r e c e i v e d f o r t h e word " Length "
57 s t r eam−> l e n g t h p t r = f i n d S t r i n g ((c h a r *) da t a , " Length " , r e a l s i z e) ;

59 / / I f found , s i g n a l c o m p r e s s i o n c o n t r o l t o e x e c u t e c o n t r o l l oop and i n t e r r u p t
s t r e a m r e q u e s t

i f (s t r eam−> l e n g t h p t r != NULL) {
61 p t h r e a d _ c o n d _ s i g n a l (&(s t ream−>cond)) ;

p t h r e a d _ m u t e x _ u n l o c k (&(s t ream−>mutex2)) ;
63 s t r eam−>readyGo ++;

r e t u r n −1;
65 }

67 / / I n t e r r u p t s t r e a m r e q u e s t i f program i s s h u t down
i f (end == 1) r e t u r n −1;

69

r e t u r n r e a l s i z e ;
71 }

A.2 Compression Control 37

A.2 Compression Control

1 vo id c o m p r e s s i o n C o n t r o l (d e v i c e * camera , CURL* Con t ro lHand le , i n t sock) {

3

c h a r comp [4] ;
5 f l o a t e r r o r =0 , new_q , new_errorsum = 0 ;

u n s i g n e d i n t f s i z e , f s i z e x ;
7 i n t a d d _ i n t = 1 ;

s t r u c t t i m e v a l s top , s t a r t ;
9 u n s i g n e d i n t d i f f ;

11 g e t t i m e o f d a y (& s t a r t , NULL) ;

13 w h i l e (end != 1 && camera−> s t a t u s [0] != ’ 0 ’) {

15 / / Wait f o r s t r e a m t h r e a d t o s i g n a l
p t h r e a d _ m u t e x _ l o c k (&(camera−>s t r e a m . mutex1)) ;

17 p t h r e a d _ c o n d _ w a i t (&(camera−>s t r e a m . cond) , &(camera−>s t r e a m . mutex1)) ;
p t h r e a d _ m u t e x _ u n l o c k (&(camera−>s t r e a m . mutex1)) ;

19

p t h r e a d _ m u t e x _ l o c k (&(camera−>s t r e a m . mutex2)) ;
21

/ / Rece ived f r a me s c o u n t e r
23 camera−>f r a m e c o u n t e r ++;

25 / / Get f rame s i z e from p o i n t e r t o t h e word " Length " i n t h e HTTP h e a d e r
d a t a

f s i z e = s t r t o l (camera−>s t r e a m . l e n g t h p t r , NULL, 10) ;
27

/ / R e s e t p o i n t e r
29 camera−>s t r e a m . l e n g t h p t r = NULL;

31 / / C a l c u l a t e e r r o r
e r r o r = (camera−>bwframe−f s i z e) / camera−>bwframe ;

33

/ / I n t e g r a t e e r r o r
35 new_errorsum = camera−>e r r o r s u m + e r r o r ;

37 / / C a l c u l a t e new q u a l i t y v a l u e
new_q = camera−>Kp * e r r o r + (camera−>Ki * new_errorsum) ;

39

/ / Bound q u a l i t y v a l u e
41 i f (new_q > 100) {

43 new_q = 100 ;
i f (e r r o r > 0) a d d _ i n t = 0 ;

45 e l s e a d d _ i n t = 1 ;
}

38 Code

47 i f (new_q < 15) {
new_q = 1 5 ;

49 i f (e r r o r < 0) a d d _ i n t = 0 ;
e l s e a d d _ i n t = 1 ;

51 }

53 s p r i n t f (comp , "%d " , (i n t) (100−new_q)) ;

55 / / S e t new c o m p r e s s i o n v a l u e
w r i t e P a r a m (& Con t ro lHand le , camera , COMPRESSION, comp) ;

57

/ / S i g n a l s t r e a m t o r e s t a r t s t r e a m
59 p t h r e a d _ c o n d _ s i g n a l (&(camera−>s t r e a m . cond)) ;

p t h r e a d _ m u t e x _ u n l o c k (&(camera−>s t r e a m . mutex2)) ;
61

/ / Save new v a l u e s
63 camera−> q u a l i t y = new_q ;

i f (a d d _ i n t == 1) camera−>e r r o r s u m = new_errorsum ;
65

p t h r e a d _ m u t e x _ l o c k (&(camera−>s t r e a m . mutex3)) ;
67 camera−>s t r e a m . f r a m e s i z e = f s i z e ;

p t h r e a d _ m u t e x _ u n l o c k (&(camera−>s t r e a m . mutex3)) ;
69

/ / C a l c u l a t e r e a l f rame r a t e
71 g e t t i m e o f d a y (& s top , NULL) ;

d i f f = ((s t o p . t v _ s e c * 1000) + (s t o p . t v _ u s e c / 1000)) − ((s t a r t . t v _ s e c *
1000) + (s t a r t . t v _ u s e c / 1000)) ;

73 i f (d i f f >= 1000) {
camera−>a v g f p s = camera−>f r a m e c o u n t e r * 1000 .0 / d i f f ;

75 camera−>f r a m e c o u n t e r = 0 ;
g e t t i m e o f d a y (& s t a r t , NULL) ;

77 }

79 }
}

A.3 Network Manager

A.3.1 Admission Control

vo id * a d m i s s i o n C o n t r o l (vo id * a r g) {
2

d e v i c e ** cameras = (d e v i c e **) a r g ;
4 c h a r * aux = (c h a r *) ma l lo c (2 0) ;

c h a r * tempID = (c h a r *) ma l lo c (3) ;
6 c h a r * t e m p S t a t u s = (c h a r *) ma l l oc (2) ;

A.3 Network Manager 39

i n t newCamCount = 0 , i = 0 , j = 0 , found = 0 , newCams = CamCount ;
8 FILE* d e v i c e s = fopen (DEVICES_FILE , " r ") ;

10 c o n n e c t i o n *camConn ;
p t h r e a d _ t * camCt r lThreads , * s t r e a m T h r e a d s , * camConnThreads ;

12

camConn = (c o n n e c t i o n *) ma l l oc (MAX_CAMS * s i z e o f (c o n n e c t i o n)) ;
14 camConnThreads = (p t h r e a d _ t *) ma l l oc (MAX_CAMS * s i z e o f (p t h r e a d _ t)) ;

s t r e a m T h r e a d s = (p t h r e a d _ t *) ma l l oc (MAX_CAMS * s i z e o f (p t h r e a d _ t)) ;
16 c a m C t r l T h r e a d s = (p t h r e a d _ t *) ma l l oc (MAX_CAMS * s i z e o f (p t h r e a d _ t)) ;

* cameras = (d e v i c e *) ma l l oc (MAX_CAMS * s i z e o f (d e v i c e)) ;
18

f o r (i = 0 ; i < MAX_CAMS ; i ++) {
20

(* cameras) [i] . s t a t u s = (c h a r *) ma l lo c (2) ;
22 s t r c p y ((* cameras) [i] . s t a t u s , " 0 ") ;

}
24

/ / Get Network Manager p e r i o d
26 getKey (d e v i c e s , " Se tup " , " BWperiod " , &aux) ;

bwper iod = (i n t) s t r t o l (aux , NULL, 10) ;
28

/ / Get G l ob a l Bandwidth v a l u e
30 getKey (d e v i c e s , " Se tup " , "TOTAL_BW" , &aux) ;

t o t a l _ b w = (i n t) s t r t o l (aux , NULL, 10) ;
32

w h i l e (end != 1) {
34

d e v i c e s = fopen (DEVICES_FILE , " r ") ;
36

newCams = CamCount ;
38

getKey (d e v i c e s , " Se tup " , " End " , &aux) ;
40

i f (s t r c mp (aux , " 1 ") == 0) {
42

f c l o s e (d e v i c e s) ;
44 end = 1 ;

b r e a k ;
46 }

48 / / Get number o f cameras and a l l o c a t e s p a c e
getKey (d e v i c e s , " Se tup " , " NrOfCameras " , &aux) ;

50 newCamCount = (i n t) s t r t o l (aux , NULL, 10) ;

52 i f (newCamCount > MAX_CAMS) {
p r i n t f ("Maximum number o f cameras : %d \ n " , MAX_CAMS) ;

54 newCamCount = CamCount ;
f c l o s e (d e v i c e s) ;

40 Code

56 c o n t i n u e ;
}

58

/ * In c a s e new cameras j o i n t h e system , c h ec ks S t a t u s key f o r a l l cameras
60 * i n t h e p a r a m e t e r s f i l e , i n o r d e r t o s e e which cameras (d i s) c o n n e c t e d .

* A f t e r t h a t , i n i t i a l i z e s t h e new cameras . * /
62 i f (newCamCount > CamCount) {

64 f o r (i = 0 ; i < newCamCount ; i ++) {

66 s p r i n t f (aux , " Camera %d " , i +1) ;

68 i f (getKey (d e v i c e s , aux , " ID " , &tempID) == 0) {
i f (getKey (d e v i c e s , aux , " S t a t u s " , &t e m p S t a t u s) == 0) {

70 i f (s t r c mp (t e m p S t a t u s , " 1 ") == 0) {
found = 0 ;

72 f o r (j = 0 ; j < CamCount ; j ++) {

74 i f (s t r c mp (tempID , (* cameras) [j] . i d) == 0) found = 1 ;
}

76 i f (found == 0) {

78 i f (getNewCamera (d e v i c e s , aux , (* cameras) +newCams) != 0)
r e t u r n NULL;

newCams ++;
80 i f (newCams == newCamCount) b r e a k ;

}
82 }

}
84 }

e l s e {
86 p r i n t f (" E r r o r g e t t i n g new cams ! . \ n ") ;

end = 1 ;
88 r e t u r n NULL;

}
90 }

92 / / I n i t i a l i z e SSH a u t h e n t i c a t i o n c r e d e n t i a l s
f o r (i = CamCount ; i < newCamCount ; i ++) {

94

i f ((* cameras) [i] . s t a t u s [0] == ’ 0 ’) c o n t i n u e ;
96 s t r c p y ((* cameras) [i] . camSSH . username , " r o o t ") ;

s t r c p y ((* cameras) [i] . camSSH . password , " d a r t e s ") ;
98

}
100

/ / C r e a t e t h r e a d s f o r c o n n e c t i n g t h e cameras i n o r d e r t o r e q u e s t t h e
c h a n n e l

102 f o r (i = CamCount ; i < newCamCount ; i ++) {

A.3 Network Manager 41

104 i f ((* cameras) [i] . s t a t u s [0] == ’ 0 ’) c o n t i n u e ;
camConn [i] . p o r t = MASTER_PORT + (i * 10) ;

106 p t h r e a d _ c r e a t e (&camConnThreads [i] , NULL, connectCam , &camConn [i]) ;

108 }

110 s l e e p (1) ; / / Delay f o r s o c k e t s t o be c r e a t e d

112 / / C r e a t e a t h r e a d f o r t h e c o m p r e s s i o n c o n t r o l o f each camera
f o r (i = CamCount ; i < newCamCount ; i ++) {

114

i f ((* cameras) [i] . s t a t u s [0] == ’ 0 ’) c o n t i n u e ;
116 p t h r e a d _ c r e a t e (& c a m C t r l T h r e a d s [i] , NULL, camContro l , (vo id *) ((* cameras)

+ i)) ;

118 }

120 / / Open SSH s e s s i o n
f o r (i = CamCount ; i < newCamCount ; i ++) {

122

i f ((* cameras) [i] . s t a t u s [0] == ’ 0 ’) c o n t i n u e ;
124

i f (openSSH ((* cameras) + i) < 0) {
126

f p r i n t f (s t d o u t , " E r r o r i n i t i a l i z i n g %s SSH . \ n " , (* cameras) [i] . name) ;
128 end = 1 ;

go to endAdmCtrl ;
130 }

}
132

/ / I n i t i a l i z e cameras ’ QoS p a r a m e t e r s (bandwidth , e p s i l o n , lambda , . . .)
134 in i tCamQos (* cameras , newCamCount , camConn) ;

136 / / C r e a t e a t h r e a d f o r t h e g e t t i n g t h e s t r e a m from each camera
f o r (i =CamCount ; i < newCamCount ; i ++) {

138

p t h r e a d _ c r e a t e (& s t r e a m T h r e a d s [i] , NULL, ge tS t r eam , (vo id *) ((* cameras) + i
)) ;

140

}
142

p t h r e a d _ m u t e x _ l o c k (&admMutex) ;
144 CamCount = newCamCount ;

p t h r e a d _ m u t e x _ u n l o c k (&admMutex) ;
146

}
148

/ * In c a s e cameras l e a v e t h e system , c h ec ks S t a t u s key f o r a l l cameras

42 Code

150 * i n t h e p a r a m e t e r s f i l e , i n o r d e r t o s e e which cameras d i s c o n n e c t e d .

* A f t e r t h a t , u p d a t e s t h e s t a t u s v a r i a b l e s f o r t h e cameras d i s c o n n e c t e d
152 * i n o r d e r t o s h u t t h e r e l a t e d t h r e a d s down . * /

e l s e i f (newCamCount < CamCount) {
154

f o r (i = 0 ; i < CamCount ; i ++) {
156

s p r i n t f (aux , " Camera %d " , i +1) ;
158

i f (getKey (d e v i c e s , aux , " S t a t u s " , &t e m p S t a t u s) == 0) {
160 i f (s t r c mp (t e m p S t a t u s , " 0 ") == 0 && s t r cmp (t e m p S t a t u s , (* cameras) [i

] . s t a t u s) != 0) {
s t r c p y ((* cameras) [i] . s t a t u s , " 0 ") ;

162 closeSSH ((* cameras) + i) ;
}

164 }
e l s e {

166 p r i n t f (" E r r o r a c c e s s i n g Dev ices f i l e ! . \ n ") ;
end = 1 ;

168 r e t u r n NULL;
}

170 }

172 p r i n t f ("%d cameras has been d i s c o n n e c t e d . \ n " , (CamCount − newCamCount)) ;
p t h r e a d _ m u t e x _ l o c k (&admMutex) ;

174 CamCount = newCamCount ;
p t h r e a d _ m u t e x _ u n l o c k (&admMutex) ;

176

}
178 f c l o s e (d e v i c e s) ;

p t h r e a d _ c o n d _ s i g n a l (&admCond) ;
180 s l e e p (1) ;

}
182

endAdmCtrl :
184

f o r (i = 0 ; i < CamCount ; i ++) {
186

p t h r e a d _ j o i n (camConnThreads [i] , NULL) ;
188 p t h r e a d _ j o i n (s t r e a m T h r e a d s [i] , NULL) ;

p t h r e a d _ j o i n (c a m C t r l T h r e a d s [i] , NULL) ;
190

}
192

f r e e (t e m p S t a t u s) ;
194 f r e e (camConn) ;

f r e e (camConnThreads) ;
196 f r e e (s t r e a m T h r e a d s) ;

f r e e (c a m C t r l T h r e a d s) ;

A.3 Network Manager 43

198 f r e e (aux) ;
f r e e (tempID) ;

200 r e t u r n NULL;
}

A.3.2 Bandwidth distribution

1

i n t redis tBW (d e v i c e * camera , i n t s i z e) {
3

f l o a t mfva lue [s i z e] ;
5 f l o a t matchsum = 0 ;

f l o a t bwperc , qdev , g a i n [s i z e] , a lpha , b e t a ;
7 i n t i , frameOvh [s i z e] , genOvh , avgq = 0 , Gbound = 0 ;

FILE* f i l e ;
9 c h a r aux [2 0] ;

c h a r * v a l u e = (c h a r *) ma l l oc (1 0) ;
11

/ / SSH o v e r h e a d
13 genOvh = (694 * 1000 / bwper iod) ;

15 f i l e = fopen (DEVICES_FILE , " r ") ;

17 / / Get v a l u e s f o r a l p h a and b e t a
getKey (f i l e , " Se tup " , " Alpha " , &v a l u e) ;

19 a l p h a = s t r t o f (va lue , NULL) ;

21 getKey (f i l e , " Se tup " , " Beta " , &v a l u e) ;
b e t a = s t r t o f (va lue , NULL) ;

23

f o r (i = 0 ; i < s i z e ; i ++) {
25

i f (camera [i] . s t a t u s [0] == ’ 0 ’) c o n t i n u e ;
27

s p r i n t f (aux , " Camera %d " , i +1) ;
29

f i l e = fopen (DEVICES_FILE , " r ") ;
31

/ / Get v a l u e s f o r lambda and q u a l i t y g a i n s
33 getKey (f i l e , aux , " Lambda " , &v a l u e) ;

camera [i] . lambda = s t r t o f (va lue , NULL) ;
35

getKey (f i l e , aux , " CGain " , &v a l u e) ;
37 g a i n [i] = s t r t o f (va lue , NULL) ;

39 / / Check i f bandwid th v a l u e i s s a t u r a t e d b e f o r e u p d a t i n g g a i n v a l u e
i f (camera [i] . bwperc == 0 . 9 | | camera [i] . bwperc == 0 . 1) Gbound = 1 ;

44 Code

41

}
43

f c l o s e (f i l e) ;
45

/ * In c a s e t h e bandwid th v a l u e i s s a t u r a t e d and t h e new g a i n i s h i g h e r t h a n
t h e p r e v i o u s ,

47 * i t does n o t u p d a t e t h e g a i n * /
i f (Gbound == 1) {

49

f o r (i = 0 ; i < s i z e ; i ++) {
51

i f (g a i n [i] > camera [i] . G) Gbound = 2 ;
53 }

}
55

i f (Gbound < 2) {
57

f o r (i = 0 ; i < s i z e ; i ++) {
59

camera [i] . G = g a i n [i] ;
61 }

}
63 e l s e p r i n t f (" Compensa t ion g a i n i s a l r e a d y t o o h igh \ n ") ;

65

/ / C a l c u l a t e ma tch ing f u n c t i o n v a l u e s and frame r e l a t e d o v e r h e a d
67 f o r (i = 0 ; i < s i z e ; i ++) {

69 p t h r e a d _ m u t e x _ l o c k (&(camera [i] . s t r e a m . mutex3)) ;
mfva lue [i] = (camera [i] . bwframe − camera [i] . s t r e a m . f r a m e s i z e) / camera [i

] . bwframe ;
71 frameOvh [i] = (((camera [i] . s t r e a m . f r a m e s i z e / 1448) + 1) * (66 + 66)) +

600 + 1500 ; / / (Nr o f p a c k e t s) * (Header o v e r h e a d + ACK o v e r h e a d) +
Compress ion S e t t i n g o v e r h e a d + o f f s e t
p t h r e a d _ m u t e x _ u n l o c k (&(camera [i] . s t r e a m . mutex3)) ;

73

i f (mfva lue [i] == 1) {
75 c o n t i n u e ;

}
77

matchsum = matchsum + (camera [i] . lambda * mfva lue [i]) ;
79

avgq += camera [i] . q u a l i t y ;
81

}
83

85 / / C a l c u l a t e a v e r a g e q u a l i t y v a l u e

A.3 Network Manager 45

avgq /= CamCount ;
87

89 / / Game− t h e o r e t i c bandwid th d i s t r i b u t i o n
f o r (i = 0 ; i < s i z e ; i ++) {

91

i f (camera [i] . s t a t u s [0] == ’ 0 ’ | | mfva lue [i] == 1) c o n t i n u e ;
93

bwperc = camera [i] . bwperc +
95 camera [i] . e p s i l o n * ((− (camera [i] . lambda) * mfva lue [i]) + (camera [i] .

bwperc * matchsum)) ;

97 qdev = (camera [i] . q u a l i t y − avgq) / avgq ;

99 / / Q u a l i t y b a l a n c e f a c t o r
i f (qdev < 0) bwperc += −a l p h a * camera [i] . G * (pow (qdev , 3)) ;

101 e l s e i f (qdev > 0) bwperc += −b e t a * (1 − camera [i] . G) * (pow (qdev , 3)) ;

103 i f (bwperc > 0 . 9) bwperc = 0 . 9 ;
i f (bwperc < 0 . 1) bwperc = 0 . 1 ;

105

camera [i] . bwperc = bwperc ;
107 / / S u b t r a c t o v e r h e a d v a l u e

camera [i] . bwframe = (((bwperc * t o t a l _ b w / 8 * 1024) − genOvh) / camera [i] .
f r a m e r a t e) − frameOvh [i] ;

109

/ / S e t new Linux TC c o n f i g u r a t i o n t h r o u g h SSH
111 i f (setBW (camera+ i , (bwperc * t o t a l _ b w) , ((bwperc * t o t a l _ b w / 8 * 1024) /

camera [i] . f r a m e r a t e)) < 0) {

113 f p r i n t f (s t d o u t , " E r r o r s e t t i n g bandwid th . \ n ") ;
r e t u r n −1;

115 }

117 }

119 r e t u r n 0 ;
}

46 Code

References

[1] Closed-circuit television, 2017. Last access: November 16th, 2017. URL: https://en.
wikipedia.org/wiki/Closed-circuit_television.

[2] Vídeo vigilância - cctv, 2017. Last access: November 13th, 2017. URL: http://www.
tecnicontrol.pt/pt/wiki/item.html?id=48-video-vigilancia-cctv.

[3] Ip camera, 2017. Last access: November 22nd, 2017. URL: https://en.wikipedia.
org/wiki/IP_camera.

[4] Intro to ip video surveillance, 2017. Last access: November 23rd, 2017. URL: https:
//www.videosurveillance.com/ip-video/intro-to-ip-video.asp.

[5] Steve Surfaro. 7 questions to ask in bandwidth calculation, 2013. Last access: November
23rd, 2017. URL: http://www.securityinfowatch.com/article/10892478/
determining-camera-bandwidth.

[6] John Honovich. Bandwidth guide for video networks, 2015. Last ac-
cess: November 24th, 2017. URL: https://ipvm.com/reports/
bandwidth-guide-for-video-networks.

[7] P. Pedreiras, P. Gai, L. Almeida, and G. C. Buttazzo. Ftt-ethernet: a flexible real-time
communication protocol that supports dynamic qos management on ethernet-based systems.
IEEE Transactions on Industrial Informatics, 1(3):162–172, 2005. doi:10.1109/TII.
2005.852068.

[8] R. Marau, L. Almeida, and P. Pedreiras. Enhancing real-time communication over cots eth-
ernet switches. In 2006 IEEE International Workshop on Factory Communication Systems,
pages 295–302, 2006. doi:10.1109/WFCS.2006.1704170.

[9] J. Silvestre, L. Almeida, R. Marau, and P. Pedreiras. Dynamic qos management for mul-
timedia real-time transmission in industrial environments. In 2007 IEEE Conference on
Emerging Technologies and Factory Automation (EFTA 2007), pages 1473–1480. doi:
10.1109/EFTA.2007.4416963.

[10] J. Silvestre-Blanes, L. Almeida, R. Marau, and P. Pedreiras. Online qos management for
multimedia real-time transmission in industrial networks. IEEE Transactions on Industrial
Electronics, 58(3):1061–1071, 2011. doi:10.1109/TIE.2010.2049711.

[11] João Pedro Ramos Reis. Sistema de vídeo-vigilância sobre Ethernet com QoS dinâmica.
FEUP, Porto:, 2013. URL: http://digitool.fe.up.pt:1801/webclient/
DeliveryManager?custom_att_2=simple_viewer&metadata_request=
false&pid=743319.

47

https://en.wikipedia.org/wiki/Closed-circuit_television
https://en.wikipedia.org/wiki/Closed-circuit_television
http://www.tecnicontrol.pt/pt/wiki/item.html?id=48-video-vigilancia-cctv
http://www.tecnicontrol.pt/pt/wiki/item.html?id=48-video-vigilancia-cctv
https://en.wikipedia.org/wiki/IP_camera
https://en.wikipedia.org/wiki/IP_camera
https://www.videosurveillance.com/ip-video/intro-to-ip-video.asp
https://www.videosurveillance.com/ip-video/intro-to-ip-video.asp
http://www.securityinfowatch.com/article/10892478/determining-camera-bandwidth
http://www.securityinfowatch.com/article/10892478/determining-camera-bandwidth
https://ipvm.com/reports/bandwidth-guide-for-video-networks
https://ipvm.com/reports/bandwidth-guide-for-video-networks
http://dx.doi.org/10.1109/TII.2005.852068
http://dx.doi.org/10.1109/TII.2005.852068
http://dx.doi.org/10.1109/WFCS.2006.1704170
http://dx.doi.org/10.1109/EFTA.2007.4416963
http://dx.doi.org/10.1109/EFTA.2007.4416963
http://dx.doi.org/10.1109/TIE.2010.2049711
http://digitool.fe.up.pt:1801/webclient/DeliveryManager?custom_att_2=simple_viewer&metadata_request=false&pid=743319
http://digitool.fe.up.pt:1801/webclient/DeliveryManager?custom_att_2=simple_viewer&metadata_request=false&pid=743319
http://digitool.fe.up.pt:1801/webclient/DeliveryManager?custom_att_2=simple_viewer&metadata_request=false&pid=743319

48 REFERENCES

[12] Gautham Nayak Seetanadi, Martina Maggio, Karl-Erik Årzén, Luis Almeida, and Luis
Oliveira. Game-theoretic network bandwidth distribution for self-adaptive cameras, 2017.

[13] Mario de Sousa Sousa, L. Silva Silva, R. Marau, and L. Almeida. A real-time resource
manager for linux-based distributed systems. In IEEE Real-Time Systems Symp. - RTSS,
pages 13–16, November 2011.

[14] P. Manghwani, J. Loyall, P. Sharma, M. Gillen, and J. Ye. End-to-end quality of service
management for distributed real-time embedded applications. In 19th IEEE International
Parallel and Distributed Processing Symposium, pages 138a–138a, 2005. doi:10.1109/
IPDPS.2005.197.

[15] F. Samie, V. Tsoutsouras, S. Xydis, L. Bauer, D. Soudris, and J. Henkel. Distributed qos
management for internet of things under resource constraints. In 2016 International Con-
ference on Hardware/Software Codesign and System Synthesis (CODES+ISSS), pages 1–10,
Oct 2016.

[16] J. Kim and Y. Won. Dynamic load balancing for efficient video streaming service. In 2015
International Conference on Information Networking (ICOIN), pages 216–221, 2015. doi:
10.1109/ICOIN.2015.7057885.

[17] Pingping Yang and Kunhui Lin. Diffserv based mpeg real-time media streaming transmis-
sion scheme. In 2010 5th International Conference on Computer Science; Education (ICCSE
2010), 24-27 Aug. 2010, 2010 5th International Conference on Computer Science Educa-
tion (ICCSE 2010), pages 1470–3. IEEE, 2010. URL: http://dx.doi.org/10.1109/
ICCSE.2010.5593743, doi:10.1109/ICCSE.2010.5593743.

[18] Ricardo Leite. Diferenciação de serviços, 2003. Last access: June 8th, 2018. URL: https:
//paginas.fe.up.pt/~mrs01003/.

[19] Wikipedia. Differentiated services, 2018. Last access: June 8th, 2018. URL: https:
//en.wikipedia.org/wiki/Differentiated_services.

[20] Devera Martin. Htb home, 2003. Last access: June 10th, 2018. URL: http://luxik.
cdi.cz/~devik/qos/htb/.

[21] M. A. Brown. Traffic control how to, February 2003. Last access: June 6th, 2018. URL:
http://tldp.org/HOWTO/Traffic-Control-HOWTO/intro.html.

[22] Bosch Security Systems. Datasheet: Mic ip starlight 7000i, 2017. URL:
http://resource.boschsecurity.com/documents/MIC_IP_star_7000i_
Data_sheet_esES_30270720139.pdf.

[23] Sony Corporation. Snc-ch280, 2018. Last access: January 29th
2018. URL: https://www.sony.pt/pro/lang/en/pt/product/
video-security-ip-cameras-fixed/snc-ch280/specifications/
#specifications.

[24] Axis Communications. Video compression, 2018. Last access: January
29th 2018. URL: https://www.axis.com/ie/en/learning/web-articles/
technical-guide-to-network-video/video-compression.

http://dx.doi.org/10.1109/IPDPS.2005.197
http://dx.doi.org/10.1109/IPDPS.2005.197
http://dx.doi.org/10.1109/ICOIN.2015.7057885
http://dx.doi.org/10.1109/ICOIN.2015.7057885
http://dx.doi.org/10.1109/ICCSE.2010.5593743
http://dx.doi.org/10.1109/ICCSE.2010.5593743
http://dx.doi.org/10.1109/ICCSE.2010.5593743
https://paginas.fe.up.pt/~mrs01003/
https://paginas.fe.up.pt/~mrs01003/
https://en.wikipedia.org/wiki/Differentiated_services
https://en.wikipedia.org/wiki/Differentiated_services
http://luxik.cdi.cz/~devik/qos/htb/
http://luxik.cdi.cz/~devik/qos/htb/
http://tldp.org/HOWTO/Traffic-Control-HOWTO/intro.html
http://resource.boschsecurity.com/documents/MIC_IP_star_7000i_Data_sheet_esES_30270720139.pdf
http://resource.boschsecurity.com/documents/MIC_IP_star_7000i_Data_sheet_esES_30270720139.pdf
https://www.sony.pt/pro/lang/en/pt/product/video-security-ip-cameras-fixed/snc-ch280/specifications/#specifications
https://www.sony.pt/pro/lang/en/pt/product/video-security-ip-cameras-fixed/snc-ch280/specifications/#specifications
https://www.sony.pt/pro/lang/en/pt/product/video-security-ip-cameras-fixed/snc-ch280/specifications/#specifications
https://www.axis.com/ie/en/learning/web-articles/technical-guide-to-network-video/video-compression
https://www.axis.com/ie/en/learning/web-articles/technical-guide-to-network-video/video-compression

REFERENCES 49

[25] Viktor Edpalm, Alexandre Martins, Karl-Erik Årzén, and Martina Maggio. Camera Net-
works Dimensioning and Scheduling with Quasi Worst-Case Transmission Time. In
Sebastian Altmeyer, editor, 30th Euromicro Conference on Real-Time Systems (ECRTS
2018), volume 106 of Leibniz International Proceedings in Informatics (LIPIcs), pages
17:1–17:22, Dagstuhl, Germany, 2018. Schloss Dagstuhl–Leibniz-Zentrum fuer Infor-
matik. URL: http://drops.dagstuhl.de/opus/volltexte/2018/8986, doi:
10.4230/LIPIcs.ECRTS.2018.17.

[26] F. Gomez-Molinero. Real-time requirement of media control applications. In 19th Euromicro
Conference on Real-Time Systems (ECRTS’07), 4-6 July 2007, 19th Euromicro Conference
on Real-Time Systems (ECRTS’07), page 4. IEEE Computer Society, 2007. URL: http:
//dx.doi.org/10.1109/ECRTS.2007.28, doi:10.1109/ECRTS.2007.28.

[27] Axis Communications. Network technologies: Internet communication, 2018.
Last access: January 30th, 2018. URL: https://www.axis.com/ie/
en/learning/web-articles/technical-guide-to-network-video/
internet-communication.

[28] Axis Communications. VAPIX®, 2018. Last access: June 11th, 2018. URL: https:
//www.axis.com/support/developer-support/vapix.

[29] libcurl, 2018. Last access: June 10th, 2018. URL: https://curl.haxx.se/libcurl/
c/libcurl.html.

[30] Libssh2, the ssh library, 2016. Last access: April 10th, 2018. URL: https://www.
libssh2.org/.

http://drops.dagstuhl.de/opus/volltexte/2018/8986
http://dx.doi.org/10.4230/LIPIcs.ECRTS.2018.17
http://dx.doi.org/10.4230/LIPIcs.ECRTS.2018.17
http://dx.doi.org/10.1109/ECRTS.2007.28
http://dx.doi.org/10.1109/ECRTS.2007.28
http://dx.doi.org/10.1109/ECRTS.2007.28
https://www.axis.com/ie/en/learning/web-articles/technical-guide-to-network-video/internet-communication
https://www.axis.com/ie/en/learning/web-articles/technical-guide-to-network-video/internet-communication
https://www.axis.com/ie/en/learning/web-articles/technical-guide-to-network-video/internet-communication
https://www.axis.com/support/developer-support/vapix
https://www.axis.com/support/developer-support/vapix
https://curl.haxx.se/libcurl/c/libcurl.html
https://curl.haxx.se/libcurl/c/libcurl.html
https://www.libssh2.org/
https://www.libssh2.org/

	Front Page
	Table of Contents
	List of Figures
	List of Tables
	1 Introduction
	1.1 From analog to digital
	1.2 IP cameras
	1.3 Image quality and data transmission
	1.4 Motivation and problem statement
	1.4.1 Problem statement

	1.5 Goals
	1.6 About this dissertation

	2 Dynamic QoS management for video
	2.1 Dynamic QoS management
	2.1.1 FTT-SE
	2.1.2 DiffServ
	2.1.3 Linux TC

	2.2 Multimedia compression
	2.3 Multimedia transmission

	3 Methodology and system architecture
	3.1 Methodology
	3.2 System architecture
	3.2.1 Camera
	3.2.2 Network Manager
	3.2.3 Quality equalization among cameras

	4 Implementation
	4.1 Cameras
	4.1.1 Parameter setup
	4.1.2 Rate control
	4.1.3 Streaming

	4.2 Control Station
	4.2.1 Compression control
	4.2.2 Network Manager

	5 Experimental Validation
	5.1 Experiment 1
	5.2 Experiment 2
	5.3 Experiments 3 and 4
	5.4 Experiment 5

	6 Conclusions and future work
	6.1 Achievements
	6.2 Future work

	A Code
	A.1 Streaming
	A.2 Compression Control
	A.3 Network Manager
	A.3.1 Admission Control
	A.3.2 Bandwidth distribution

	References

