

Abstract— This paper presents a target-specific programming

language (TSL) that was designed to improve the design cycle of

code generation for an industrial embedded system. The native

assembly code, the new language structure and their constructs, are

presented in the paper. The proposed TSL is expressed using words

and terms that are related to the target’s domain and consequently it

is now easier to program, understand and to validate the desired code.

It is also demonstrated the language efficiency by comparing some

code described using the new language against the previous used

code. The design cycle is improved with the usage of the TSL

because description time and debug time are significantly reduced

with this new software tool. This is also a case of university-industry

partnership.

Keywords—Compilers and Interpreters, Embedded Systems,

Programming Languages.

I. INTRODUCTION

HE development time in industrial informatics systems, in

industry environments, is a very important issue for

competitiveness. Companies that develop solutions for

industry usually deal with several levels of abstractions, from

high level languages to assembly. As we move toward the high

to low level languages the effort is greater and the developers

generally want to work with more abstract levels. However, it

is very common for these companies to handle with specific

embedded devices, that require specific programming

languages, mainly low level programming languages. Although

low-level languages have the advantage that they can be

written to take advantage of any peculiarities in the

architecture of the microprocessor/microcontroller and can be

extremely efficient, writing a low-level program takes a

substantial amount of time, as well as a clear understanding of

the inner workings of the processor itself.

Domain-specific languages (DSL) can play an important

role in facilitating the software developers’ task increasing its

productivity. DSL are programming languages for solving

problems in a particular domain. They are much more

expressive in their domain and allow faster development of

programs allowing solutions to be expressed in the idiom and

at the level of abstraction of the problem’s domain. DSL and

TSL provide several advantages over general purpose

programming languages, namely [1] concrete expression of

domain knowledge, direct involvement of the domain expert,

expressiveness, modest implementation cost, reliability,

training costs and design experience. These types of

programming languages are usually small, more declarative

than imperative, less expressive and more attractive than

general-purpose languages because of easier programming,

systematic reuse, better productivity, reliability,

maintainability, and flexibility.

In this paper we describe a TSL to improve developer’s

productivity in industrial embedded systems in the scope of

University-Industry collaboration. Preliminary tests show that

the TSL decreases the development time and increases

developers’ productivity.

 The remainder of this paper is structured as follows: in

Section 2, we introduce the target environment and in Section

3 we describe the native language of the hardware. In Section

4 we present the formalism of the TSL and in Section 5 we

present preliminary tests. Finally, Section 6 concludes this

paper with a discussion of the pre and pos systems

implementation and pointed out some directions of future

work..

II. THE TARGET ENVIRONMENT

Due to confidential constraints, we will not present details

about the module used by the company. This company

develops industrial informatics solutions for other companies,

mainly to the automotive industry. But in general terms, and to

introduce the theme, we can inform that the target module (see

figure 1) is used to actuate over relays and has several internal

units like timers and I/O ports (see table 1) that can be

configured using a dedicated assembly language. Some

module features are: 6 Digital I/O pins; 3 Transistor Outputs; 1

Relay outputs; 2 Analog inputs; 1 counter and 8 32 bit timer

with a time resolution of 1 ms.

Fig. 1 Hardware module

A Target Environment Programming Language

to Improve Developer’s Productivity – A Case

Study

José Metrôlho, Mónica Costa, Fernando Reinaldo Ribeiro, Eurico Lopes

T

Proceedings of the International Conference on Applied Computer Science

530

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Repositório Científico do Instituto Politécnico de Castelo Branco

https://core.ac.uk/display/302933344?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Those modules have a set of registers whose bits have

particular meanings. These registers can be of different types:

read, write or read/write. A feature of the assembly language is

that any time the designer wants to read or write something, he

must knew the register number and each the bits meaningful.

This demands a lot of manual readings and becomes repetitive

for some applications.

Another feature is that the necessary instructions to build

applications are scarce and all well defined. As example a read

or write relay operation is almost the same, but requires

knowing the name of the register and to know the bit number

that must be set or reset to act according the desired action.

Additionally the code is only readable and understandable by

developers that have knowledge about that particular

assembly. A language that could be more intuitive and make

code more documented and understandable was desired.

This leads to the idea that a high-level programming

language, more adapted to the field, can be designed with

proper and intuitive constructs, like in this case relay(on), or

relay(off) avoiding details and constants that are well known

and thus improving developers’ productivity.

The development of applications, before the new tool

described in this paper, was done by writing assembly code

that is uploaded to the modules by a proprietary application.

This fosters a deep knowledge about the assembly and about

the registers and the meaning of its bits. To develops

applications with a low time to market a more abstract tool is

needed, this s the goal of our approach. This paper describes a

tiny language designed and implemented to allow quicker

developing time and also generated assembly code

documented and indented properly to foster faster detection of

software bugs.

III. THE NATIVE LANGUAGE

Here we present some of the assembly language features.

The following piece of code (see figure 2) shows a sample of

the type of details and structure which must be introduced by

the programmer.

$init

 …

MOVI(T0VAL,0)

MOVI(T0MAX,1000)

MOVI(T1VAL,0)

MOVI(T1MAX,500)

…

WREG(A2,5,255)

MOVI(A13,2)

$code

RREG(A4,6)

ANDI(A10,A4,8)

SRI(A10,A10,3)

ANDI(A11,A4,16)

SRI(A11,A11,4)

ANDI(A12,A4,32)

SRI(A12,A12,5)

IFEQ(T0VAL,T0MAX)

ORI(A10,A10,2)

MOVI(T0VAL,0)

ENDIF

….

$end

Fig. 2 Sample of native assembly code.

As it can be observed in Fig. 2, the user must be aware of

the native assembly and a constant set of variables that can be

used and must deal with information about the registers and

also regarding timers, he/she must convert the time unit to

milliseconds. These details are prone to generate errors.

So this case-study has fostered the design of a tiny language

to describe applications for an embedded device that is used in

industrial environments. The main goals of the new language

are, transform the design of new programs as high level as

possible, use intuitive constructs, allow some verifications to

avoid errors, make the code documented and automatically

idented. In other terms, make the design time shorter with less

design effort for the designers of applications involving that

embedded microcontroller.

IV. THE NEW LANGUAGE

Here we will describe the developed tool. First we will

present the structure and then the constructs of the new

language.

A. The new language structure

The new structure has 2 sections, one for declarations and

other for code. This is similar to the target assembly, however

the section delimiters are now ‘{‘ as in common languages.

Within each section the user will now avoid details and will

focus on actions or constructs that are common to

programmers and for designers of that kind of applications.

The constructs were defined to make clear the programs, and

to avoid details. The tool will then generate the proper code..

B. The new language constructs

Number After studying the possible instructions and the

final result in the module, we define a set of keywords to allow

an easy and intuitive definition of those instructions. As

example to control a digital output the bit 0 of the module

register 7 must be set/reset. In assembly this is dome using the

instruction WREG(A0,7,1). As we can observe the user must

put the number of the target register, a variable that transport

the value that must be put over the bit (ex: since A0=0 then the

bit 1 will be reset), and the number of the bit that will suffer

the change (in this case is the 1st bit). However based on the

“clients” feedback we notice that this output is always used for

relay control. So, we defined a language construct “relay” with

a single switch that makes this description easy and intuitive.

Next we present in the left the new language construct usage

and on the right the generated/corresponding assembly.

Proceedings of the International Conference on Applied Computer Science

531

relay(on); → WREG(A0,7,1)

relay(off); → WREG(A1,7,1)

Other examples of usage of the new language constructs and

the corresponding assembly:

var A31=2; → MOVI(A31, 2)

attr A31=A5; → MOV(A31, A5)

IN (0,A3); → RREG(A3, 8)

 ANDI(A3, A3, 1)

startT(0); → MOVI (T0VAL,0)

defT(1,1500); → MOVI (T1MAX,1500)

stopT(1); → MOVI(T1VAL,1501)

Fig. 3 New language constructs.

We’ve defined a set of keywords for the language, in small

number due to the simplicity of the assembly. The total of

keywords is 28 and all them are presented in the following

table.
TABLE I

LANGUAGE CONSTRUCTS

init JMP INOUT_R INPUTS_W attr defT

code JMPI INOUT_W if rele tstTLimit

end JMPIX OUTPUTS_R elif delay stopT

OUT IOCTL_R OUTPUTS_W else startT

IN IOCTL_W INPUTS_R var setT

This is also interesting because a small set of keywords

represents a small time to learn the language.

C. The generation chain

To implement this code converter, from the new language to

the target assembly, the software chain can be represented as

in Figure 4.

Fig. 4 Generation chain.

The code was developed using Java [2] and within the

Eclipse IDE [3]. To implement the lexer and parser we used

ANTLR (ANother Tool for Language Recognition) [4]. It

provides a framework for constructing recognizers,

interpreters, compilers, and translators from grammatical

descriptions containing actions in a variety of target languages

[4] including Java.

V. TESTS

In terms of tests the achievement of a smaller design time

was the main goal. To test it we ask the development team of

the partner company to give us their feedback. The feedback

was positive since the new tool allows to reach sooner and on

a more proper way the target assembly. The code becomes

easily documented and the code is also readably.

In terms of the generated assembly the result is the same, as

expected. However, now the user focus on the desired goals

and the tool translates that for proper assembly.

In the following figures we present the code of a program in

the new language and the resultant generated assembly.

program Exemplo{

 init{

IN(4, A10);

startT(7);

 var A10=0;

 var A11=1;

 var A12=100;

 rele(off);

 defT(0, 5s);

 startT(0);

 defT(1,5s);

 stopT(1);

 defT(2, 4h);

 startT(2);

 defT(6, 19h);

 stopT(6);

…

 }

code{

if(tstTLimit(0)){

 rele(on);

 startT(1);

 stopT(0);

}

if(A10==A12){

 stopT(0);

 stopT(1);

 startT(3);

 var A10=0;

}

…

}

}

Fig. 5 New language code.

As we can notice in Figure 6, the generated code is

automatically commented and formatted. This gives the

designer an easier method to understand code, even at the

assembly level.

Also the generated code in the native language is more

extensive than the new proposed language. This means that the

present effort is less than previously when descriptions were

done in assembly. Also the tools detects errors and signals the

line were they occur, this fosters better software development

in terms of developing time and code quality. Also the reduced

number of language constructs fosters a quick learning of the

language descriptions features.

Proceedings of the International Conference on Applied Computer Science

532

The generated code:

Init Section

$init

Reserved variables

 MOVI(A0,0)

 MOVI(A1,1)

Read Input 4

 RREG(A10, 8)

 ANDI(A10, A10, 5)

Initialize Timer T7

 MOVI(T7VAL,0)

Initialize variable

 MOVI(A10,0)

Initialize variable

 MOVI(A11,1)

Initialize variable

 MOVI(A12,100)

Rlay OFF

 WREG(A0,7,1)

Timer T0 Max value

 MOVI(T0MAX,5000)

Initialize Timer T0

 MOVI(T0VAL,0)

Timer T1 Max value

 MOVI(T1MAX,5000)

Stop Timer T1

 MOVI(T1VAL,5001)

Timer T2 Max value

 MOVI(T2MAX,14400000)

Initialize Timer T2

 MOVI(T2VAL,0)

Timer T6 Max value

 MOVI(T6MAX,68400000)

Stop Timer T6

 MOVI(T6VAL,68400001)

Code Section

$code

IFEQ(T0VAL,T0MAX)

 # Relay ON

 WREG(A1,7,1)

 # Initialize Timer T1

 MOVI(T1VAL,0)

 # Stop Timer T0

 MOVI(T0VAL,5001)

ENDIF

 IFEQ(A10,A12)

 # Stop Timer T0

 MOVI(T0VAL,5001)

 # Stop Timer T1

 MOVI(T1VAL,5001)

 # Initialize Timer T3

 MOVI(T3VAL,0)

 # Initialize variable

 MOVI(A10,0)

ENDIF

 …

$end

Fig. 6 Generated code.

VI. CONCLUSION AND FUTURE WORK

Preliminary experiments and tests show that using the new

language a short effort and design time is needed to achieve

better goals. The goals are the assembly code to be uploaded

for embedded systems that is used for the automotive industry.

The infrastructure can be easily adapted for other similar

targets. The software is running on a platform independent

basis, so portability would be not a problem to other

environments.

As future work we want to implement and editor with code

complete feature for our tool, to increase even more the

development efficiency.

REFERENCES

[1] D. Spinellis, "Notable design patterns for domain specific languages,"

Journal of Systems and Software, vol. 56, pp. 91-99, 2001.

[2] S. Microsystems, "Java," [Online] Available at: http://java.sun.com/,

[Access date: 2009, October].

[3] E. Foundation, "Eclipse," [Online] Available at: http://www.eclipse.org/,

[Access date: 2009, October].

[4] T. Parr, The Definitive ANTLR Reference: Building Domain-Specific

Languages, 2007.

Proceedings of the International Conference on Applied Computer Science

533

