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Summary 
 

The regenerative capacity of the central and peripheral nervous system (CNS and PNS, 

respectively) is fundamentally different, due to both neuronal intrinsic properties and also 

to the different environments that CNS and PNS neurons experience. In a generalized 

way, PNS axons regenerate (successfully) whereas CNS neurons fail to exhibit this ability. 

Understanding the reasons that result in this differential regrowth capacity is fundamental 

to design future approaches aimed at promoting robust and everlasting axon 

regeneration, with the restoration of the original neuronal functions. The conditioning injury 

model, in which a priming lesion to the peripheral branch of dorsal root ganglia neurons 

enhances the regenerative capacity of the central branch, is an elegant paradigm to study 

the neuron-dependent mechanisms that are elicited to promote axon regeneration. Using 

this model, we identified two actin binding proteins differentially regulated after 

conditioning, profilin and adducin, which we studied in detail as presented and discussed 

in this Thesis. 

Adducins are a family of actin binding proteins, known for their plus tip capping activity 

and for enhancing the spectrin/actin interactions, having an overall stabilizer effect 

towards the actin cytoskeleton. To study the consequences of adducin inactivation in the 

nervous system, we used α-adducin KO mice as a model of complete adducin absence. 

Here we show that the lack of adducin leads to progressive axon enlargement and axonal 

loss. Moreover, α-adducin KO axon actin rings – the recently described submembraneous 

axonal cytoskeleton composed of actin, spectrin and adducin – were enlarged, although 

distributed with a regular periodicity. This data raises the exciting prospect that adducins 

regulate axon diameter and that alterations in this regulation may result in axon 

degeneration.  

In the context of axon regeneration, we show using the conditioning lesion model that 

adducins are inhibited in the growth cone of regenerating axons. Analysis of the 

cytoskeleton in this neuronal compartment revealed an increased dynamics/instability 

when adducin is depleted, with an enhancement of both actin retrograde flow and 

microtubule growth speed. In vitro, this increased cytoskeleton dynamics in the growth 

cone was translated into a higher regenerative capacity, both in the presence of 

permissive and non-permissive substrates. Moreover, in vivo the absence of adducin 

increased the regeneration of dorsal column axons after spinal cord injury.  

Profilins are small actin binding proteins that catalyze the exchange of ADP to ATP bound 

G-actin, enabling its incorporation in the barbed end of actin filaments. Our data shows 
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that profilin-1 activity is significantly increased in regenerating growth cones in the 

conditioning lesion model, suggesting that this protein positively modulates axon growth. 

Corroborating this hypothesis, we show that in vitro, in the absence of profilin-1, neurons 

either fail to extend neurites or extend shorter neurites. Moreover, in vivo, in two well-

established models where successful axon regeneration occurs, the sciatic nerve injury 

and the conditioning lesion paradigm, the absence of profilin-1 inhibited axon 

regeneration. Besides, we show that a constitutively active profilin-1 mutant significantly 

increased axon growth. Finally, our data suggests that profilin-1 acts not only via actin 

modulation but also possibly by regulating the microtubule cytoskeleton through the 

GSK3β pathway. 

In summary in this Thesis we provide important evidence strongly supporting that the 

regulation of two actin binding proteins, adducin and profilin, is pivotal to modulate axon 

growth and regeneration. In the case of adducin, we provide further evidence of its 

relevance in the control of axon diameter. These findings will certainly be explored in the 

future to further our understanding of axon biology, and of axon growth and regeneration. 
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Sumário 
 

A capacidade regenerativa do sistema nervoso central (SNC) e periférico (SNP) é 

fundamentalmente diferente, quer devido às propriedades neuronais intrínsecas quer ao 

diferente ambiente que os neurónios do SNC e SNP experienciam. De uma maneira geral 

os neurónios do SNP regeneram com sucesso enquanto neurónios do SNC falham esse 

processo. Perceber quais as razões que determinam esta diferencial capacidade de 

crescimento é fundamental para futuras abordagens que conduzam a uma robusta e 

bem-sucedida regeneração axonal. O modelo da lesão condicionante, no qual uma lesão 

primária no ramo periférico dos neurónios dos gânglios das raízes dorsais aumenta a 

capacidade do ramo central regenerar, é um elegante paradigma para o estudo dos 

mecanismos neuronais que promovem a regeneração axonal. Utilizando este modelo 

identificámos duas proteínas ligantes da actina, a profilina e a aducina, as quais foram 

avaliadas em detalhe, como apresentado e discutido nesta Tese. 

As aducinas são uma família de proteínas ligantes da actina conhecidas pela sua função 

de limitação de incorporação de monómeros da extremidade positiva dos filamentos de 

actina e por aumentar a interação entre a actina e a espectrina, tendo portanto um efeito 

de estabilização do citoesqueleto de actina. De forma a avaliar o efeito da sua inativação 

no sistema nervoso, utilizámos murganhos α-aducina KO como modelo de total ausência 

de aducina. Neste trabalho demonstrámos que a ausência de aducina leva a um 

progressivo cenário de alargamento e perda axonal. Para além disso os anéis de actina – 

que compõem o recentemente descrito citoesqueleto submembranar axonal, composto 

por actina, espectrina e aducina – estão alargados, apesar de distribuídos com a mesma 

periodicidade. Estes resultados levantam a interessante hipótese de que a aducina regula 

o calibre axonal e que alterações nessa regulação podem levar a um cenário de 

degeneração. 

No contexto da regeneração axonal demonstrámos que no modelo de lesão 

condicionante as aducinas estão inibidas nos cones de crescimento dos axónios a 

regenerar. A análise do citoesqueleto no cone de crescimento demonstrou que existe um 

aumento da dinâmica/instabilidade da actina com a depleção da aducina, com um 

aumento do transporte retrogrado da actina e da velocidade de crescimento dos 

microtúbulos. Análises in vitro revelaram que o aumento da dinâmica do citoesqueleto 

traduz-se num aumento de capacidade de crescimento dos axónios, quer em condições 

permissivas quer não permissivas. Para além do aumento do crescimento in vitro, a 

análise à regeneração in vivo demonstrou que a ausência de aducina leva a um aumento 
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da capacidade de crescimento dos axónios do trato dorsal após lesão da espinhal 

medula. 

As profilinas são pequenas proteínas ligantes da actina que catalisam a conversão da 

actina ligada ao ADP para actina ligada ao ATP, permitindo a incorporação dos 

monómeros na extremidade positiva dos filamentos de actina. A nossa análise 

demonstrou que a atividade da profilina-1 está claramente aumentada nos cones de 

crescimento dos axónios regenerantes no modelo de lesão condicionante, sugerindo um 

efeito modulador positivo para a regeneração axonal. Confirmando esta hipótese, 

neurónios depletados in vitro de profilina-1 falham a estender neurites, ou estendem em 

menor escala. Para além disso, a análise in vivo de dois modelos de regeneração bem-

sucedida, a lesão do nervo ciático e a lesão condicionante na espinhal medula 

demonstraram que a ausência de profilina-1 inibe a regeneração axonal. Para além do 

mais, demonstrámos que a forma constitutivamente ativa da profilina-1 aumenta 

significativamente o crescimento axonal. Por fim, os nossos dados indicam também que a 

profilina não exerce o seu efeito pró-neuritogénico apenas via actina, mas também 

através da modulação do citoesqueleto dos microtúbulos, via GSK3β. 

Em resumo, nesta Tese obtivemos importantes evidências que suportam que a regulação 

de duas diferentes proteínas ligantes da actina, profilina e aducina, são boas candidatas 

para modularem o crescimento axonal e a regeneração. No caso da aducina 

demonstrámos também que terá um papel importante no controlo do diâmetro axonal. 

Estes resultados irão certamente ser explorados no futuro para perceber melhor a 

biologia axonal, o crescimento axonal e regeneração. 
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I- The neuronal cytoskeleton 

 

1- Neuronal polarization and axon formation 

Neurons are the basic unit of the nervous system and rely on their shape, and on their 

high polarization, to perform their functions. Most neurons have a typical organization 

where a round cell body has initially thin processes extending: several usually branched 

and small processes – the dendrites; and a long and less branched process, the axon. 

The neuron morphology is fundamental for the information flow. Dendrites receive 

synaptic input that is latter integrated at the cell body and propagated through the axon, 

being transmitted to the next neuron/cell through the synapses (Neukirchen and Bradke, 

2011). What exact processes drive this polarization is a matter of high debate, although 

some key events are already established. Hippocampal neuron cultures are a great tool to 

study the events of process extension and neuronal polarization (Kaech and Banker, 

2006), as is depicted in figure 1. 

 

Figure 1 . The polarization process in cultured hippocampal neurons. Just after plating neurons adhere to the 

substrate and start attempting to extend small processes called neurites (A-B). These neurites will generate 

then an axon and several dendrites (C-D), which will eventually develop synapses in vitro (E). For that reason 

the characteristic capacity of hippocampal neurons to recapitulate the polarization steps in vitro is useful in 

several studies as in studies of axon regeneration, polarization and synapse dynamics. From (Kaech and 

Banker, 2006). 
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Embryonic hippocampal neurons in culture undergo 5 robust stages of differentiation. In 

the first 6 hours after plating neurons are spherical cells that extend lamellipodia, 

generating the known fried-egg shape – stage 1. The transition to stage 2 is characterized 

by the initiation of small and thin processes called the neurites that are the precursors of 

the future axon and dendrites. For symmetry to be broken, the local instability in the actin 

cytoskeleton is fundamental (Bradke and Dotti, 1999; Flynn et al., 2012). Recent studies 

revealed the crucial role of actin retrograde flow in the cortical cytoskeleton to generate 

the gaps in which microtubules are able to protrude towards the cell membrane (Flynn et 

al., 2012). For the early steps of neuritogenesis the activity of the actin binding proteins 

(ABPs) Actin Depolymerizing Factor (ADF)/Cofilin, which are responsible for 

depolymerizing and severing the actin filaments (F-actin), is fundamental (Flynn et al., 

2012). Reinforcing the importance of the destabilization of the cortical actin cytoskeleton 

in neurite generation and extension, the addition of the actin depolarizing agent latrunculin 

B allows the increased formation of neurites, as it promotes the capacity of microtubules 

to protrude (Bradke and Dotti, 1999; Flynn et al., 2012). Conversely, the addition of 

jasplakinolide, which inhibits actin dynamics, abolishes the process of extension (Flynn et 

al., 2012). 

The stage 2 processes are highly dynamic and present several rounds of extension and 

retraction. In the second day in vitro (DIV) one of the processes increases dramatically in 

size while the others arrest their growth – this event is the beginning of stage 3. At this 

point neurons establish the process that will elongate and generate the axon and the 

dendrites. Interestingly, if the growing axon is severed at this stage, another process will 

be assumed as the axon and will start elongation (Gomis-Ruth et al., 2008). During the 

elongation process, growth cone like waves enriched in actin move from the cell body to 

the axon tip, resulting in the supply of actin and associated proteins to the extending 

process (Flynn et al., 2009). Stages 4 and 5 are characterized by the outgrowth of 

dendrites and synapse formation (Kaech and Banker, 2006). 

It is important however to keep in mind that the embryonic cultures of hippocampal 

neurons are performed with polarized post-mitotic cells, which at the time of plating were 

already expressing proteins that are involved in the polarization program and for that 

reason these cells may keep some aspects of the original polarization (Polleux and 

Snider, 2010). Although hippocampal neuron cultures are suitable to understand the cell 

biology events that lead to polarization, they do not reflect exactly the different 

environment that neurons face during development. In nervous system development, for 

polarization to occur, there are three main relevant factors: extracellular cues, intracellular 

signaling and the subcellular organelle localization (Lewis et al., 2013). In vivo axonal 
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initiation is different from what occurs in vitro in hippocampal culture models (Polleux and 

Snider, 2010). Usually neurons migrate long distances after exiting the cell cycle. While 

migrating, cortical neurons start extending the processes that will generate the axon and 

dendrites, as shown in figure 2. In the case of the retinal ganglion neurons and bipolar 

cells from the retina, they inherit the polarization program from progenitor cells (Barnes 

and Polleux, 2009). In the case of long migrating cerebellar granule neurons and 

hippocampal pyramidal neurons, the polarity is achieved during migration (Polleux and 

Snider, 2010). 

 

Figure 2 . In vivo neuronal polarization. The polarization of pyramidal neurons is established during the 

migratory process, in the late embryonic stage. The trailing process (TP) and the leading process (LP) are 

then converted in axon and dendrites, respectively. The neuron is only fully matured in the first weeks after 

birth, exhibiting then the typical axon initial segment (AIS) (in yellow) and the dendritic spines (in grey). Taken 

from (Polleux and Snider, 2010). 

 

2- The components of the neuronal cytoskeleton  

The neuronal cytoskeleton is fundamental for the polarization process. The neuronal 

cytoskeleton is composed by microtubules, actin filaments and neurofilaments. Regulation 

of each of these components is crucial for polarization and for axonal extension. 

 

a. Neurofilaments 

Neurofilaments (NF) are intermediate filaments with approximately 10nm, abundant in 

neurons. NFs are fundamental for several neuronal processes: they mediate radial growth 

of axons, the development and maintenance of the axon caliber and they are fundamental 
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for electric impulses (Yuan et al., 2012). NFs are composed by 4 different forms: 

neurofilament heavy, medium and light, and either α-internexin or peripherin, in the central 

nervous system (CNS) or peripheral nervous system (PNS), respectively (Yuan et al., 

2012). NFs are mostly synthetized in the cell body and transported by the slow component 

of axonal transport, although no detailed mechanism is known (Yuan et al., 2012). NFs 

are regulated by post-translational modifications such as phosphorylation, glycosylation, 

nitration oxidation and ubiquitination (Yuan et al., 2012). 

Supporting their importance in neuron biology, dysregulation in NF organization is present 

in several neurodegenerative disorders such amyotrophic lateral sclerosis (ALS) (Manetto 

et al., 1988), Charcot-Marie-Tooth disease (Abe et al., 2009), neurofilament inclusion 

disease (Perrot and Eyer, 2009), giant axonal neuropathy (GAN) (Ganay et al., 2011; 

Monaco et al., 1985), diabetic neuropathy (Fernyhough and Schmidt, 2002), spinal 

muscular atrophy (SMA) (Cifuentes-Diaz et al., 2002), spastic paraplegia (Wang and 

Brown, 2010), Alzheimer’s disease (Perrot and Eyer, 2009) and Parkinson’s disease 

(Goldman et al., 1983).  

 

b. Microtubules  

Microtubules (MT) are fundamental for the neuronal cytoskeleton. MT stabilization and 

dynamics s is crucial for the axon/dendrite specification and intracellular transport (Janke, 

2014; Janke and Kneussel, 2010). MTs are composed by cylinders of 13 protofilaments, 

composed of polarized α/β heterodimers. While α-tubulin is always bound to GTP, in β-

tubulin GTP is converted to GDP after incorporation into the filament (Desai and 

Mitchison, 1997). MTs are intrinsically dynamic and polarized structures, with a plus and a 

minus end. Polymerization and depolymerization occurs preferentially in the plus tip. 

Depolymerization in the plus tip occurs in the form of catastrophe events that lead to 

shrinkage of MTs (Desai and Mitchison, 1997). The MT net growth is the result of cycles 

of polymerization and catastrophe. Therefore the regulation of these two events is crucial 

and is depicted in figure 3. 
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Figure 3 . Structure and regulation of microtubules. Microtubules are dynamic structures with increased 

polymerization and depolymerization in the plus tip. The balance between the two events will determine the 

net increase or decrease in filament size. The regulation of the different microtubule binding proteins, as well 

as its post-transcriptional regulation will impact filament size and transport through the MTs (Witte and Bradke, 

2008). 

 

In neurons, MTs have an important role in the polarization process. MTs in the axon are 

more stable than in dendrites, with the exception of the microtubules present in the tip of 

the axon, the growth cone (Witte and Bradke, 2008). Several proteins are responsible for 

this duality in the axon and dendrites. Collapsin response mediator 2 is a protein involved 

in the polymerization of MTs: its overexpression leads to increased number of axons and 

dominant-negative mutants abolish axon formation (Kimura et al., 2005). In axons the plus 

tip of the MT is the place of increased instability. The plus-end binding proteins are good 

candidates for mediating the growth rate of MTs and thereby axonal extension 

(Neukirchen and Bradke, 2011). Indeed, plus-end binding proteins such as adenomatous 

polyposis complex and cytoplasmatic linker protein 170 are responsible for decreasing the 

catastrophe rate and increase rescue (Neukirchen and Bradke, 2011). 

Microtubule associated proteins (MAPs) are important for the regulation of MTs in 

neurons, where MAPs are heavily expressed (Dehmelt and Halpain, 2005). Tau and 

MAP2 stabilize and bundle MTs and also interact with actin (Tahirovic and Bradke, 2009). 

Tau and MAP2 are fundamental for axon formation, as suggested by knockdown 

experiments (Caceres and Kosik, 1990; Caceres et al., 1992). However, as suggested in 

Tau and MAP2 KO animals where no neuronal polarity deficits exist, the function of MAPs 

is probably redundant in this context (Dehmelt and Halpain, 2005). 

MTs are more dynamic in dendrites than in the axon shaft. Thereby, another process to 

regulate the axon/dendrite specification is to increase the instability in dendritic MTs. 
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Stathmin/Op18 is a MT destabilizing protein that is active in all neurites with exception of 

the axon (Watabe-Uchida et al., 2006; Wittmann et al., 2004). Moreover it is inhibited by 

phosphorylation by the Rac-1-GEF DOCK7, which is axonal specific. Overexpression of 

DOCK 7 leads to the formation of multiple axons whereas constitutively active 

Stathmin/Op18 leads to the abolishment of axon formation (Watabe-Uchida et al., 2006). 

Besides the regulation by MT binding proteins, MTs have two more different levels of 

regulation, derived from the expression of different α and β tubulin forms in a cell-specific 

fashion and as well as of their complex posttranscriptional regulation (Janke, 2014). The 

expression of the different tubulin isotypes is both cell and temporal diverse. Some cell-

specific MTs require the expression of different tubulin forms. This occurs in MTs of the 

ciliary axonemes (Raff et al., 2008; Renthal et al., 1993); neuronal MTs (Denoulet et al., 

1986; Joshi and Cleveland, 1989) and MTs of the marginal band of platelets that have 

specific β-tubulin forms (Schwer et al., 2001). However the greater level of heterogeneity 

is conferred by post-transcriptional modifications, represented in figure 4. 

Tubulin post-transcriptional modifications (PTM) include polyamination, phosphorylation, 

acetylation, polyglutamylation, polyglycylation, detyrosination and retyrosination and C-

terminal deglutamilation (Janke, 2014; Janke and Kneussel, 2010). 

 

 

Figure 4 . Posttranscriptional modifications in tubulin. Microtubules are composed by αβ tubulin protofilaments. 

Both α and β residues can be posttranscriptionally modified. As represented, the events of polyamination, 

phosphorylation and acetylation occur in the MT lattice, whereas the other posttranscriptional modifications 

are in the tubulin tails, namely polyglutamylation, polyglycylation, detyrosination a C-terminal deglutamilation. 

From (Janke, 2014) 
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Tubulin acetylation in Lysine 40 is usually accepted as having a stabilizing effect, since it 

is enriched in stable MTs, such as those in the axon shaft. Tubulin acetylation has been 

associated with increased anterograde transport given improved kinesin-1 binding to 

microtubules. However the mechanism of stabilization is not yet understood since it 

causes no major ultrastructural changes of the MTs (Howes et al., 2014). The regulation 

of acetylation is performed by the histone deacetylase family member 6 (HDAC6) 

(Rivieccio et al., 2009), NAD-dependent deacetylase sirtuin-2 (Maxwell et al., 2011; North 

et al., 2003) and by the acetyl transferase α-Tat1 (Howes et al., 2014), which specifically 

acetylates α-tubulin at Lysine 40. In neurons, HDAC6 inhibition is responsible for 

increased neurite outgrowth, inclusively in the inhibitory presence of myelin (Rivieccio et 

al., 2009). However, recent and contradictory data suggests that inhibitors of tubulin 

acetylation, as anacardic acid, increase axonal outgrowth in adult Dorsal Root Ganglia 

(DRG) neurons (Lin et al., 2015). Tubulin acetylation is associated with axon-dendrite 

differentiation (Witte et al., 2008). During the axonal extension period the axonal MTs are 

more acetylated than dendritic MTs, as is visible in figure 5. Interestingly, the 

administration of taxol, a microtubule stabilizing drug leads to the growth of multiple axon 

like processes (Witte et al., 2008), and facilitates the outgrowth of neuronal processes in 

adult DRG neurons (Sengottuvel et al., 2011). 

 

Figure 5 . Microtubule acetylation is enriched in axons of polarized (DIV3) mouse hippocampal neurons. 

Axons (highlighted with white arrows) have increased levels of acetylated tubulin (in green) when compared to 

dendrites (smaller processes). Tyrosinated (more dynamic, in red) tubulin is found in all neurons, namely in 

the growth cone of the axon. Scale: 10µm. 

 

Tubulin detyrosination and re-tyrosination are reversible reactions (Arce et al., 1975; 

Hallak et al., 1977). Tyrosinated MTs are usually associated with a dynamic cytoskeleton, 

whereas detyrosinated MTs are stable. The C-terminal deglutamylation is an irreversible 
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PTM, since no retyrosination can occur (Janke, 2014). Reversibly, for deglutamylation to 

occur, detyrosination of tubulin is required. The C-terminal deglutamylation, also known as 

∆2-tubulin given the lack of the two last amino acids, is particularly enriched in aged 

neurons (Paturle-Lafanechere et al., 1994) and cytosolic carboxypeptidases are the 

enzymes responsible for this reaction (Kalinina et al., 2007). In neurons, polyglutamylation 

- when secondary glutamate side chains are formed on γ-carboxyl groups of glutamate 

residues in a protein (Janke, 2014) - can also occur, namely during differentiation 

(Audebert et al., 1993). Despite the enrichment of polyglutamylation in neurons, mice 

lacking polyglutamylase in the brain have no major impairments (Ikegami et al., 2010). 

Conversely in mice with impaired deglutamylase function (deglutamylases are proteins 

from the cytosolic carboxypeptidase family), as is the case of the pcd (Purkinge cell 

degeneration) mouse (Mullen et al., 1976), that has mutations in cytosolic 

carboxypeptidase 1, neurodegeneration, related with the perturbation of axonal transport 

occurs (Maas et al., 2009). The other PTM are thought to have no major roles in neurons 

(Janke, 2014; Janke and Kneussel, 2010). 

 

c. Actin 

Actin is a major component of the neuronal cytoskeleton, specially enriched in subcellular 

components such as the growth cone, dendritic spines and the AIS. Actin cytoskeleton 

dynamics plays a crucial role in neurons, mediating cellular structures such as 

lamellipodia, filopodia, stress fibers and focal adhesions (Neukirchen and Bradke, 2011). 

An important characteristic in all these processes is the dynamic transition between 

monomeric and filamentous actin and the asymmetry of the filament. Actin polymerization 

occurs preferentially at the fast growing end, the “barbed end”, when it is in the ATP-

globular-actin state (ATP-G-actin), and depolymerization occurs in the opposite site of the 

filament, the “pointed end”, which is usually in the ADP-bound state (Carlier et al., 1987; 

Korn et al., 1987). These dynamics are regulated by the intrinsic proprieties of actin, its 

interaction with the environment and by the presence of the ABPs. ABPs closely interfere 

with the polymerization/depolymerization rates, severing, capping, nucleation and 

crosslinking of filamentous actin (Lee and Dominguez, 2010). Figure 6 represents the 

dynamic regulation of the actin filaments. 
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Figure 6 . Actin regulation by actin binding proteins. Actin is present both in the form of monomers and 

filaments. The regulation of filament stability or severing, polymerization and depolymerization or branching, or 

monomer availability for nucleation determines how the actin cytoskeleton is controlled and assembled. 

Neurons critically depend on the actin binding proteins to the polarization process (Witte and Bradke, 2008). 

  

3- The growth cone 

The growth cone is the structure found at the tip of extending axons, characterized by its 

enrichment in actin and its dynamic properties. Although actin enrichment is the hallmark 

of the growth cone, MTs also play a very important function, in both maintaining its 

structure and dynamism. The growth cone is composed by three different domains, the 

peripheral domain (P-domain), the transition domain (T-domain) and the central domain 

(C-domain), as is depicted in figure 7. 

 

Figure 7 . The growth cone. The growth cone is the structure responsible for the extension and guidance of 

the axon. The organization of the growth cone in three different domains is based in its composition. (Left) In 
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the most peripheral part, the P-domain, actin is enriched in the form of both filopodia and lamellipodia and few 

but highly dynamic (tyrosinated) MTs protrude along filopodia. Conversely the central domain, C-domain, as 

the rest of the axon, is composed by bundled and stable MTs and serves as a track to the vesicles and 

organelles travelling to and from the growth cone. In the intermediate part there is the transition zone, T-

domain, where actin is organized in the form of a hemicircumferential ring, perpendicular to the F-actin 

bundles. The contractility of this structure in the T-domain is fundamental for the movement of the growth 

cone. (Right) An in vitro hippocampal neuron growth cone stained with phalloidin, in red (which stains 

filamentous actin) and βIII-tubulin, in green (the specific neuronal β tubulin form). Scale bar 2µm. From 

(Lowery and Van Vactor, 2009) 

 

The role of the growth cone in neurons is to control both the rate and the direction of 

growth. In these mechanisms MTs and actin, have a crucial role. Actin in the growth cone 

is extremely abundant, with a concentration of up to 100 µM (Gomez and Letourneau, 

2014), 1000-fold higher than the critical concentration required for polymerization (Pollard 

and Borisy, 2003). Interestingly, half of the actin in the growth cone is not polymerized 

(Letourneau, 2009). It is noteworthy that in developing neurons, in vitro, the growth cone 

from the future axon is more dynamic and larger than the growth cones on dendrites 

(Stiess and Bradke, 2011). In the P-domain, filamentous actin (F-actin) is present in the 

form of lamellipodia and filopodia. These two forms of actin are the ones responsible for 

pushing the membrane forward during axonal extension (Gomez and Letourneau, 2014). 

For filament growth the supply of G-actin monomers is required as well as free barbed 

ends for monomer incorporation. 

For the supply of G-actin, two proteins are crucial: profilin, a protein that is required for the 

conversion of ADP-G-actin to ATP-G-actin and β-thymosin, which sequesters actin but 

releases it when the concentration of free G-actin decreases, refreshing the actin pool for 

dynamics (Lee et al., 2013). Interestingly, profilin-1 (Pfn1) knockdown mice have 

decreased actin retrograde flow in the growth cones (Lee et al., 2013). Besides the 

availability of G-actin in the leading edge, actin barbed ends must be available for 

monomer incorporation. As such, the capping of barbed ends is a limiting event for the 

actin dynamics of the growth cone (Dent et al., 2011). The capping activity of capZ is 

known to block incorporation of new monomers (Xu et al., 1999), to impair motility and 

promote P-domain addition (Dent et al., 2011). Proteins such as ena, Vasp and Ev1 inhibit 

the capping of F-actin, creating continuously protruding filopodia (Gomez and Letourneau, 

2014). The increase in barbed ends can also be generated by the Arp2/3 complex and 

formins, in two different mechanisms. Arp2/3 complex nucleates a new filament from a 

pre-existing one. The new actin filament is generated as a 70º branch. Formins nucleate 

actin monomers from the freely G-actin pool (Mellor, 2010). For that reason, Arp2/3 
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complex is related with lamellipodia formation and formins with filopodia growth (Mellor, 

2010). Even the ADF/cofilin family that depolymerizes and severs the actin filaments can, 

together with ARP 2/3 complex, generate new barbed ends that will lead to lamellipodia 

formation (Tania et al., 2013). In the growth cone, ezrin-radixin-moesin proteins are 

responsible to bind filopodia and lamellipodia to the plasmalemmal proteins (Letourneau, 

2009), namely L1, a neuronal adhesion molecule. In the absence of ezrin-radixin-moesin 

proteins, F-actin is greatly diminished in the growth cones (Marsick et al., 2012). 

When extending, the depolarization and polarization rates are not even in the growth cone 

(Dent and Gertler, 2003). During extension, the polarization and depolarization cycles 

have increased rates in the leading margin of the growth cone, whereas in the lateral parts 

of the leading edge only depolymerization, but not polymerization, occurs. In fact, the 

extending growth cones turnover their actin cytoskeleton in minutes (Van Goor et al., 

2012). In that process the ADF/Cofilin family has a critical role in degrading F-actin and in 

increasing the pool of G-actin. Gelsolin, another F-actin severing protein has a minor role 

in growth cones (Dent et al., 2011). 

 

 

4- Actin retrograde flow 

The actin filaments in the growth cone are transported backwards from the leading edge 

to the T-domain, in a process called actin retrograde flow. Actin protrusions are resultant 

of the balance of both protrusive activities, such as the incorporation of new monomers in 

the barbed-ends, and actin crosslinking by ABPs, and anti-protrusive activities, such 

ADF/Cofilin mediated depolarization and the forces generated by the myosin motors, in 

the so called actin retrograde flow (Gomez and Letourneau, 2014). This mechanism 

allows the growth cone to control its progression. If the protrusive forces are increased, 

actin polymerizes and pushes the membrane forward, whereas if the anti-protrusive forces 

are increased the actin filaments are withdrawn. If the polymerization rate exceeds 

retrograde flow (which averages 3–6 mm/min), then the growth cone protrudes (Dent et 

al., 2011). The molecules responsible for the retrograde flow are the myosin motors (Lin et 

al., 1996). From the myosin family, myosin II is the form that is more enriched in the P-

domain. Myosin II is a barbed-end directed motor protein that is responsible for limiting 

and guiding growth (Medeiros et al., 2006). Interestingly myosin II is regulated by Rho 

kinase, a known inhibitor of axonal extension (Gallo, 2006). Knockdown of myosin II 

results in increased axonal outgrowth, namely in non-adherent substrates (Yu et al., 

2012). Some myosin II activity is however required for supplying the inner P-domain with 
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F-actin to be severed and recycled (Gomez and Letourneau, 2014). The filaments 

retrogradely transported are from the protrusions that lack adherence to other cells or 

matrices. The accumulation of transported filaments can however block the protrusion of 

MTs. The actin filament extension and consequent protrusions is represented in figure 8. 

 

Figure 8 . The actin protrusions in the growth cone and their interaction with substrates. In response to the 

guidance cues, and under permissive substrates such as collagen, laminin or fibronectin αβ, integrin assembly 

occurs. Integrin then binds to a series of scaffolding proteins, such as talin, paxilin and viculin, focal adhesion 

kinases (FAK) and the Proto-oncogene tyrosine-protein kinase Src (Src), which are regulators of the process. 

In an adherent substrate actin incorporation in the barbed end will generate motion against the cell membrane 

and protrusions will extend the growth cone forward. If the substrate is not permissive the reaction force 

generated by the cell membrane with the activity of myosin II will increase the actin retrograde flow, and 

protrusion velocity will decrease. From (Gomez and Letourneau, 2014). 

 

The growth cone regulation is fundamental for the steering process, is required to the 

proper migration of the axon while extending, and for the enervation of the proper 

destination. The process that controls the extension direction is summarized in figure 9.  
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Figure 9 . Axonal guidance is an orchestrated balance between actin and MT dynamics. The growth cone 

steering is divided in 4 stages, with several dynamic regulations in the steering side. The increase in actin and 

MT dynamics in the side attracted by the guidance molecule leads to an increase in protrusive actin filaments 

and MTs. The axon is then extended in the direction of the guidance cue, in the case of a neuronal 

chemoattractant. From (Dent and Gertler, 2003). 

 

Actin, several ABPs and receptors have a fundamental role in the migratory process of the 

growth cone. When neurons are plated in a homogeneous substrate neurites tend to grow 

straight, with a minor curvature. However, the creation of a chemical gradient of a 

chemoatractant or chemorepulsive substance creates a curvature in the axon growth, 

growing in or off the chemical gradient, respectively. The reactiveness to the chemical 

gradient depends on the ABPs present in the P-domain (Dent and Gertler, 2003). 

Chemoattractans for the neuronal growth cones include nerve growth factor (NGF) and 

netrin, whereas the repulsive cues include semaphoring-3A, slit3 and ephrin-A2 (Bashaw 

and Klein, 2010; Dent and Gertler, 2003). The repulsive cues act via increasing the 

retrograde flow or through the removal or inactivation of the adhesion molecules (Dent 

and Gertler, 2003). 
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5- The Axon Initial Segment 

The AIS is a fundamental component of the mature neuron as it regulates action potential 

initiation and axon-dendritic polarity (Rasband, 2010; Yoshimura and Rasband, 2014). 

Therefore, the establishment of the AIS and its activity are key steps in the maturation 

process of the axon. Typically, this structure is found in the first 20-50 µm of the axon and 

is characterized by a dense actin and microtubule cytoskeleton, similar to the spectrin-

based membrane cytoskeleton found in Red Blood Cells (RBC) (Jones et al., 2014). 

Recent studies suggest that actin is organized in two different fashions in the AIS: either 

small-sized and stable actin filaments (as in the RBC) or long and dynamic filaments 

(Jones et al., 2014). Actin in the AIS is suggested to act as a filter to allow only either 

axon-targeted vesicles or non-specific localized protein vesicles to enter the axon, 

inhibiting dendritic-specific cargos to proceed (Al-Bassam et al., 2012). Interestingly, 

dendritic-specific protein vesicles have similar rates of entering both the axon and 

dendrites, although they are halted and reverse at the AIS. The filter mechanism acts via 

myosin Va, which interacts with the actin filaments that are present in the AIS (Al-Bassam 

et al., 2012). How the actin cytoskeleton is organized in the AIS is a subject of debate. In 

2012 Watanabe et al proposed that actin is organized in the form of patches, with a 2-3µm 

distribution along the AIS. These actin patches are enriched (80%) in barbed ends facing 

the cell body (Watanabe et al., 2012). Therefore, dendritic vesicles, by interaction with 

myosin Va (which moves from pointed to barbed ends) would be stopped and engage in 

the reverse orientation (Watanabe et al., 2012). There are, however, new insights that 

suggest that only a small fraction of these patch-filaments are in such orientation (25%), 

whereas almost half were neutrally orientated and the rest were distally orientated (Jones 

et al., 2014). Nevertheless, actin dynamics is known to be crucial for the proper AIS 

assembly and maintenance (Nakada et al., 2003; Song et al., 2009; Winckler et al., 1999). 

The AIS is the site of anchoring of several proteins, namely ion channels, fundamental for 

the development of its activity (Grubb et al., 2011), as represented in figure 10. 

 

Figure 10 . The AIS allocates several ion channels, responsible for the generation of the action potentials. The 

AIS is composed by several transmembrane proteins and ion channels which are anchored by ankyrinG and 

βIV spectrin, which interacts with actin. Adhesion molecules such as NrCAM, NF186 and ADAM22 are 
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fundamental in the AIS. Interestingly, AIS and the Ranvier Nodes have similar biochemical structures (Grubb 

et al., 2011). 

AnkyrinG is a spectrin-related protein that is specifically found in the AIS. Contrarily to the 

nodes of Ranvier, where the recruitment of Na+ channels requires glial derived signals, 

the AIS is neuronal intrinsic and it does not require any extracellular cues to be assembled 

(Rasband, 2010). AnkyrinG is pivotal in the assembly process since channels have to bind 

it (Hedstrom et al., 2008). Channels that are not bound to ankyrinG are removed by 

endocytosis (Fache et al., 2004). AnkyrinG removal from cells results in the 

disappearance of the polarized distribution of the Na+ channels, K+ channels, cell 

adhesion molecules and of the scaffold protein βIV spectrin (Hedstrom et al., 2008). As 

such, ankyrinG is not only crucial for the AIS assembly but also for its maintenance, since 

the removal of ankyrinG from mature neurons, with an established AIS, results in the loss 

of AIS markers (Hedstrom et al., 2008). 

The AIS is a dynamic and plastic component of neurons. The plasticity of the AIS has 

been clearly demonstrated in hippocampal neuron cultures and in the avian auditory 

brainstem (Grubb and Burrone, 2010; Grubb et al., 2011; Kuba et al., 2010). In rat 

hippocampal cultures, the AIS is relocated distally from the cell body under chronic 

neuronal activity driven by elevated extracellular potassium, returning to its original 

position after the potassium levels return to baseline (Grubb and Burrone, 2010). 

Interestingly, the AIS maintains its ion channel distribution after relocation (Grubb and 

Burrone, 2010). The relocation mechanism occurs through the increase in intracellular 

Ca2+, since blocking the AIS L-type Ca2+ channels inhibits relocation (Grubb and Burrone, 

2010). The avian auditory system is an in vivo example of AIS plasticity, not through 

relocation but by regulating AIS size. Deprivation of the auditory stimuli in chicken causes 

an AIS elongation, which causes increased neuronal excitability (Kuba et al., 2010). The 

available data on AIS plasticity suggests that it could have an important role in some 

diseases such as epilepsy (Buffington and Rasband, 2011). 

 

6- Why Adducin and Profilin? 

In this thesis we focused specifically in the study of two different ABPs, adducin and 

profilin-1. These two proteins were selected based on preliminary data from our group 

supporting their relevance in the context of axon formation and (re)growth, as will be 

expanded in detail in the Results section. In the following sections of this Introduction I will 

summarize and discuss the state-of-the-art on their structure and function.
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II- Adducin 

 

1- Gene and Protein 

 

a. The spectrin-based membrane cytoskeleton 

Adducin, as most of the components of the spectrin-actin cytoskeleton, was first identified 

in the erythrocyte membrane (Gardner and Bennett, 1986). Erythrocytes have a unique 

biconcave disk shape, which is crucial for their activity. Moreover, and despite they lack a 

nuclei, they survive around 120 days in the circulatory system and undergo several shape 

remodeling. The typical shape and incredible deformability that these cells undergo 

depends critically of the spectrin cytoskeleton and of its associated proteins (Baines, 

2009). 

The erythrocyte spectrin-based membrane skeleton has been extensively studied by 

electronic microscopy after extraction with non-ionic detergents (Schwoch and Passow, 

1973). This method that promotes the removal of the membrane lipids leaving only a 

dense meshwork of protein that retains the original cell shape, allowed the deep study of 

the structural and biochemical proprieties of the erythrocyte membranes. This procedure 

originates what is known as the RBC ‘ghosts’ (Schwoch and Passow, 1973; Yu et al., 

1973). The analysis of these RBC ‘ghosts’ allowed understanding how their membrane 

cytoskeleton is organized. The main components of the membrane-based cytoskeleton 

have been identified as actin, organized either in filaments or present in the form of 

monomers (Bennett and Baines, 2001); spectrin (from the Latin word spectre, which 

means ghost) organized in α β heterotetramers; and its associated proteins, ankyrin, 

protein 4.1 and adducin (Baines, 2009; Bennett and Baines, 2001). 

The spectrin-based membrane cytoskeleton was originally considered to be unique to 

erythrocytes, although subsequent analysis revealed it to be ubiquitous in all the 

metazoan (Baines, 2009). Spectrin is fundamental for the cellular shape and function. In 

erythrocytes, spectrin and actin are the main components of the membrane-associated 

cytoskeleton, creating a 2D lattice of α1/β1 spectrin tetramers (composed by two α1/β1 

heterodimers), attached to small actin filaments (of 12-17 monomer length), which are 

capped by α- and β-adducin (in the barbed end). Besides their capping activity, α- and β-

adducins are fundamental for stabilizing the actin-spectrin junctions (Li et al., 1998; 

Matsuoka et al., 1998). The spectrin-based membrane cytoskeleton in erythrocytes is 

depicted in figure 11. 
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Figure 11 . The organization of the spectrin-based membrane cytoskeleton in erythrocytes. (A) Electron 

microscopy of the erythrocyte membrane, revealing the hexagonal lattice of the α/β spectrin dimer 

cytoskeleton, where each spectrin is connected to other 6 spectrin dimers. (B) membrane-cytoskeleton 

connections in erythrocytes. Ankyrin is linked to dimers of the anion exchanger. Each ankyrin is capable of 

cross-linking two anion exchanger dimers and β-spectrin (yellow) interacts with ankyrin. At the NH2-terminal 

region of β-spectrin is a binding site for 4.1 (red). 4.1 forms a ternary complex with the transmembrane protein 

glycophorin C and the membrane-associated guanylate kinase p55 (green). (C) Spectrin-actin junction 

organization. Actin filaments are capped in the pointed (-) end by tropomodulin (light blue) and in the barbed 

(+) end by adducin (dark blue). Besides the capping activity, adducin (and protein 4.1 – in red) also interacts 

with β-spectrin (yellow), promoting it interaction with actin. Nonmuscle tropomyosin (in pink) lies along the 

filament. From (Bennett and Baines, 2001) 

 

In the RBC it is particularly distinguishable the phenotypic consequences of the disruption 

of the spectrin-based membrane cytoskeleton. Dysregulations in spectrin, ankyrin (-R) or 

adducin (α and β) result in hemolytic anemia hereditary spherocytosis, that leads to 

abnormal shaped RBC with decreased deformability and stability (Bennett and Baines, 

2001). The decreased capacity of the RBC to sustain morphological adaptations results in 

decreased survival in circulation and leads to disease in mammals (Bennett and Baines, 

2001). 

 

  



Introduction 

41 

 

b. Adducins: Genes and proteins 

Adducins are a family of actin binding proteins, encoded by three different genes: ADD1, 

ADD2 and ADD3, resulting in α-, β- and γ-adducin proteins, respectively. Adducins were 

first purified from human erythrocytes, in 1986 by Gardner and Bennett. The original given 

name of adducin, calmodulin binding protein 103/97 (CaM-BP103/97), resulted from its 

binding capability to calmodulin and its molecular weight. Gel filtration was the first 

suggestion of the heterodimer configuration, with a proposed stoichiometry of 1:1 of α- 

and β-adducin monomers in the erythrocytes (Gardner and Bennett, 1986). Only by using 

the crosslinker ethylene glycol bis(succinimidylsuccinate) (EGS) it was later found that 

adducin is organized in cells in the form of an heterotetramer, composed by two 

heterodimers (Matsuoka et al., 1996). 

The third form of adducin, γ-adducin, was found 10 years later by screening of a rat 

kidney cDNA library. Given its resemblance to α- and β-adducin and binding capabilities, 

γ-adducin was found to be the α-adducin dimer pair in tissues that lacked β-adducin 

(Dong et al., 1995). Extensive analysis of the expression pattern of the three forms of 

adducin (Gilligan et al., 1999), as well as the generation of the KO mice for the α (Robledo 

et al., 2008), β (Gilligan et al., 1999) or γ adducin (Sahr et al., 2009) revealed the 

distribution of the different adducin forms in different tissues: α-adducin is ubiquitous, β-

adducin is restricted to the RBC, and brain and γ-adducin although ubiquitous, is absent 

from erythrocytes (Gilligan et al., 1999). The α-adducin KO mice also revealed that α-

adducin is the fundamental dimer subunit, since the RBC ‘ghosts’ did not have βγ-adducin 

heterodimers (Robledo et al., 2008), whereas the double βγ-adducin KO still had α-

adducin (Sahr et al., 2009). This evidence raised the possibility of the existence of 

α2homodimers (Sahr et al., 2009). Of note, the depletion of either β or γ-adducin alone 

leads to the compensation of the complementary forms (Sahr et al., 2009). 

As referred to above, in mammals, adducin exists in three different forms: α, β and γ. 

These three proteins are encoded by ADD1, ADD2 and ADD3 genes, respectively. ADD1 

gene is located in chromosome 4 in humans (5 in mice and 14 in rats) leading to a 737 

amino acids long protein (735 in both mice and rat); ADD2 gene is located in chromosome 

2 in humans (6 in mice and 4 in rats) leading to a 726 amino acids long protein (725 in 

mice, 725 in rats); and ADD3 gene is located in chromosome 10 in humans (16 in mice 

and 1 in rats) leading to a 674 amino acids long protein (674 in mice, 673 in rats) 

(Matsuoka et al., 2000; Suriyapperuma et al., 2000). All adducin genes present two 

splicing variants. In the α2 and β2 splicing variants it is noticeable the absence of the 

spectrin-actin binding domain suggesting different functions apart from the well described 

functions of the variants α1 and β1. Adducins have a conserved structure, presenting a 
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distinctive globular and protease resistant head (39kDa) connected by a neck (9kDa) to 

the C-terminus protease sensitive tail domain (33kDa). A comparative alignment of the 3 

human adducin forms is represented in figure 12. 

The primary, secondary and tertiary structure of adducin is fundamental for its function 

and regulation, and adducin is highly conserved through different species, suggesting a 

role in basic cellular functions (Bianchi et al., 2005). In nematodes and in insects adducin 

has only one form (Ohler et al., 2011; Pielage et al., 2011; Vukojevic et al., 2012). 
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Figure 12 . Alignment of different adducin forms. Human α, β and γ-adducin (isoform A) were aligned with 

ClustalW2 (http://www.ebi.ac.uk/Tools/msa/clustalw2/). Correspondence: Symbols - ‘*’ fully conserved 

residue; ‘:’ residue with high similarity; ‘.’ residue with low similarity; no symbol, no similarity. Color code: red, 

small residue; blue, acidic residue; magenta, basic residue; green, Hydroxyl + sulfhydryl + amine + G. 
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c. Adducin: function and regulation 

The adducin tetramer has three main functions related to the actin filaments. It promotes 

the bundling of actin filaments and also by capping their barbed ends, it inhibits the 

incorporation of new monomers into the filament (Gardner and Bennett, 1986). Adducin is 

also involved in the recruitment of spectrin to the ends of the filaments (Hughes and 

Bennett, 1995; Mische et al., 1987). For the actin and spectrin related functions, both the 

neck and the C-terminus tail domain of adducin are fundamental (Matsuoka et al., 1998). 

In the last 22 residues of the tail domain there is a MARCKS-related domain, with high 

homology to the myristoylated alanine-rich C kinase substrate (MARKS) protein (Hughes 

and Bennett, 1995; Joshi et al., 1991). Current data suggests that the neck domain is 

fundamental for the oligomerization (Li et al., 1998) and the tail domain, namely the 

MARCKS related domain, for its interaction with actin (Li et al., 1998). The loss of each of 

these domains abolishes both the capping activity, and the recruitment of spectrin (Li et 

al., 1998). It is from its ability to bind and bundle actin that adducin got its name, derived 

from the Latin word adducere, which means ‘to bring together’ (Mische et al., 1987). In 

figure 13 is represented the actin binding to its partners actin and spectrin. 

 

Figure 13 . Schematic representation of adducin and its interaction with spectrin and actin. (A) Adducin is 

composed by three different domains, the head, neck and tail that contains the MARCKS-related domain. 

Adducin has several phosphorylation sites, being highlighted with black arrows the well characterized ones. 

(B) Adducin interacts with actin and spectrin via MARCKS domain and it is regulated by PKC phosphorylation, 

which decreased the affinity of adducin towards its interactors (Stevens and Littleton, 2011). 

 



Introduction 

45 

 

The affinity of adducin to actin and spectrin is regulated by phosphorylation. Several 

different kinases regulate this interaction, such as protein kinase C (PKC), cyclic- 

adenosine monophosphate (cAMP) dependent protein kinase (PKA) and Rho-associated 

kinase (ROCK), as well as by calmodulin binding (Matsuoka et al., 1996; Matsuoka et al., 

1998; Mische et al., 1987). PKC and PKA phosphorylation of Serine residues in the 

MARCKS domain (in humans: Serine 726, 713 and 662 in α, β and γ-adducin, 

respectively), as well as calmodulin binding, results in loss of affinity for actin and spectrin, 

promoting a more dynamic actin cytoskeleton (Matsuoka et al., 1998). This C-terminus 

Serine phosphorylation is visible in many dynamic cellular processes such as in dendritic 

spines of hippocampal neurons (Matsuoka et al., 1998), in the leading edge of the 

lamellipodia of activated platelets (Matsuoka et al., 1998) and also in the growth cone of 

DRG neurons. Adducin phosphorylation by PKC has been proposed as an important step 

for events of cell shape modulation, cell migration (Chen et al., 2011), tissue 

rearrangements (Rotzer et al., 2014; Wu et al., 2015), neuronal plasticity (Babic and 

Zinsmaier, 2011; Bednarek and Caroni, 2011; Ruediger et al., 2011), among others. 

Moreover, phosphorylation of Serine 726 is the only conserved phosphorylated site in 

both vertebrates and non-vertebrates, suggesting a critical role of adducin regulation in 

this specific residue (Gruenbaum et al., 2003). 

Besides the Serine residues of the C-terminus of adducin, PKA also phosphorylates the 

neck domain Serine residues 408, 438 and 481 of α-adducin, but the functional meaning 

of this phosphorylation is yet to be known (Matsuoka et al., 1996). Adducin interaction with 

actin is also regulated by ROCK. Contrarily to the PKA/PKC C-terminus Serine 

phosphorylation, phosphorylation of the adducin residues Threonine 445 and 480 by 

ROCK is associated with an increased affinity to actin, impacting cellular processes as 

membrane ruffling and cell migration (Fukata et al., 1999), the survival of retina cells 

under adverse conditions (Tura et al., 2009) and also the outer hair cell electromotility, 

which is crucial for the proper function of the mammals ear (Zhang et al., 2003). Adducin 

phosphorylation by ROCK is regulated by myosin phosphatase (Zhang et al., 2003). All 

together, the above findings suggest a double regulation of adducin, either by increasing 

its affinity to actin or by decreasing it. The regulation by PKC is, however, more 

extensively studied. 

Besides regulation that impacts the actin cytoskeleton, other kinases such as glycogen 

synthase kinase 3β (GSK3β) and Fyn kinase are able to phosphorylate several residues 

of adducin. GSK3β was predicted to phosphorylate β-adducin in the tail domain Serine 

residues 600, 613 and 697 (Farghaian et al., 2011). This was proven to occur in cortical 

neuron cultures. In the case of Fyn kinase, its interaction with β-adducin was shown by 
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immunoprecipitation and by immunocytochemistry, where they were co-localized at the 

membrane of COS7 cells (Gotoh et al., 2006; Shima et al., 2001). 

Recently α-adducin was suggested to interact with microtubules, via binding to the non-

conventional myosin-X (Chan et al., 2014). In this work adducin was localized at the 

mitotic spindle and this interaction required α-adducin head domain and phosphorylation 

of Serine 12 and Serine 355 by cyclin-dependent kinase (Chan et al., 2014). Either 

phospho-resistant or phospho-mimetic mutants for each of these residues resulted in loss 

of affinity to the spindle. Moreover, depletion of α-adducin caused aberrant congression 

and segregation of chromosomes in HeLa mitotic cells. This data suggests a new role for 

adducin, which would not only be a regulator of the actin cytoskeleton but would also 

impact the microtubule cytoskeleton (Chan et al., 2014). 

A list of regulators of adducin interaction with actin and microtubules is shown in table 1: 

 

Table 1 - List of known regulators of the adducin. 

Protein Residue (of human α-
adducin) Function Reference(s) 

Calmodulin MARCKS-related motif 
Loss of affinity towards 

actin and spectrin 

(Matsuoka et 
al., 1996; 

Mische et al., 
1987) 

PKA / PKC Serine 726 
Loss of affinity towards 

actin and spectrin 
(Matsuoka et 

al., 1996) 

PKA Serines 408, 438 and 481 Not known 
(Matsuoka et 

al., 1996) 

Rho Kinase Threonines 445 and 480 
Increased affinity to 

actin 

(Fukata et al., 
1999; Kimura 
et al., 1998) 

Fyn Kinase Tyrosine 489 (β-adducin) 
Relocation of β-adducin 

to the plasma 
membrane 

(Shima et al., 
2001) 

GSK3β 
Serines 600/613/697 (β-

adducin) 
Role in the axon 

outgrowth 
(Farghaian et 

al., 2011) 

cyclin-
dependent 
kinase 1 

Serines 12 and 355 

Required for interaction 
with unconventional 

myosin X and the mitotic 
spindle 

(Chan et al., 
2014) 
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2- Physiological roles of adducin: 

 

a. Red blood cells 

Adducin was first identified in the RBC, as part of the membrane associated spectrin-actin 

cytoskeleton (Gardner and Bennett, 1986). The knowledge on the role of adducin in this 

particular cytoskeleton and consequently in the RBC, was greatly improved by the 

development of KO mice for each of the three forms of adducin. Besides other 

phenotypes (that will be described below) both α and β adducin KO animals displayed a 

very critical hemolytic anemia hereditary spherocytosis, characterized by abnormally 

shaped RBC, with decreased deformability and stability (Gilligan et al., 1999; Robledo et 

al., 2008). Interestingly, a similar phenotype occurs in humans with known mutations in 

spectrin and R-ankyrin (Bennett and Baines, 2001; Winkelmann and Forget, 1993). β-

adducin KO mice were the first adducin KOs generated (Gilligan et al., 1999). Although in 

erythrocytes these mice had a small decrease in the levels of α-adducin and a 5-fold 

increase in those of γ-adducin, they presented a decreased deformability and lower 

resistance to osmotic stress. In order to further understand the organization of adducin in 

cells, namely in the RBC, α-adducin KO mice were also generated (Robledo et al., 2008). 

Similarly to the β-adducin KO mice, the ablation of α-adducin resulted in severe hemolytic 

anemia with spherocytosis. Interestingly β and γ-adducin were not present in RBC 

membranes of β-adducin KO mice, whereas EcapZ, the homolog of capping protein in 

erythrocytes was enriched, suggesting a compensatory mechanism by another actin 

barbed-end capping protein, that is however unable to increase the spectrin-actin junction 

stability (Robledo et al., 2008). The double βγ-adducin KO mice have also been generated 

(Sahr et al., 2009). Interestingly, in the erythroid cells of these animals, the levels of α-

adducin were greatly diminished (less than 1% in relation to controls), whereas in non-

erythroid cells the reduction of α-adducin was not as striking (decrease of 25-50%). This 

suggests that erythroid and non-erythroid cells have a different membrane organization of 

adducin and also supports the possibility that, at least in non-erythroid cells, α-adducin 

homodimers can be formed and be functional (Sahr et al., 2009). 

 

b. Cell and tissue rearrangements 

The spectrin-based membrane cytoskeleton plays a crucial role in maintaining the cell 

morphology and function. In respect to epithelia, spectrin-adducin complexes are 

fundamental for the proper apical and tight junction formation, which plays crucial roles in 

epithelial cell adhesion, polarity and differentiation (Naydenov and Ivanov, 2011). Spectrin 
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rods are linked to the actin cytoskeleton through ankyrin and protein 4.1, which also have 

affinity for the cytoplasmatic domains of channels and transmembrane transporters 

(Baines, 2009; Bennett and Baines, 2001). The association of spectrin with actin filaments 

is enhanced by several other proteins, namely adducin (Bennett and Baines, 2001). α- 

and γ-adducins are enriched in the apical and tight junctions and the knockdown of each 

of the adducin forms delayed the reformation of these structures (Naydenov and Ivanov, 

2010), resulting in less stable cell-to-cell contacts (Abdi and Bennett, 2008). The exposure 

of epithelial cells to phorbol esters (PKC activators) results in the loss of cell-to-cell 

contacts by the internalization of AJ and TJ proteins, with increasing levels of 

phosphorylated adducin (Naydenov and Ivanov, 2011). Adducin has also been associated 

with the keratinocyte cell-to-cell adhesions (Rotzer et al., 2014; Wu et al., 2015; Zhao et 

al., 2013; Zhao et al., 2011). 

 

c. Renal tubular cells  

Point mutations in α-adducin have been suggested as an important risk factor for 

hypertension (Hopkins and Hunt, 2003), namely in the Italian (Cusi et al., 1997; Lanzani et 

al., 2005; Manunta et al., 1998), Japanese (Iwai et al., 1997; Tamaki et al., 1998) and 

Chinese (Zhang et al., 2013) populations. Particularly in humans, the polymorphism 

G460W in α-adducin is associated with increased blood pressure (Cusi et al., 1997; 

Manunta et al., 1998). The first observations linking adducin and hypertension came 

however from the studies of the Milan Hypertensive rat strain (MHS) (Bianchi et al., 2005). 

The MHS has a single nucleotide polymorphism in the three adducin forms, F316Y in α-

adducin, Q529R in β-adducin and Q572K in the γ-adducin (Bianchi et al., 2005; Torielli et 

al., 2008). The cellular mechanism by which mutations in adducin are linked with 

hypertension is not fully understood but some key events are described: in rat cells, 

mutant α-adducin F316Y increases the Na-K pump activity and rearrangements in the 

actin cytoskeleton in renal tubular cells. This is due to the fact that mutated α-adducin has 

increased affinity to the Na-K pump, and impairs pump endocytosis (Efendiev et al., 

2004). Interestingly, β-adducin KO mice also develop a hypertension phenotype (Marro et 

al., 2000). These abnormal Na-K exchanges in renal tubular cells lead to sodium 

reabsorption and subsequently to the development of hypertension (Bianchi et al., 2005; 

Bianchi and Tripodi, 2003). 
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d. Nervous system 

Over the last 10 years adducin has been widely associated with the nervous system. 

These studies ranged from the use of simple animal models such as nematodes to more 

complex mammalian organisms, including humans. 

 

e. The Axon Initial Segment 

Using hippocampal neurons cultures, the analysis of their AIS revealed that, contrarily to 

ankyrin-G and spectrin βIV, the levels of adducin in this structure are decreased after the 

DIV 6 (Jones et al., 2014), as is depicted in figure 14. Moreover, in the rest of the axon the 

levels of adducin remained enriched and comparable to those present in dendrites (Jones 

et al., 2014). This data suggests that adducin is not required for AIS formation and 

maintenance, but could have an important role in regulating actin dynamics in the 

neighboring regions of the AIS. 

 

 

Figure 14 . The different components of the AIS have a differential accumulation profile. Adducin is present in 

the initial stages of AIS establishment, with a maximum intensity at DIV6. However its levels are depressed 

after the accumulation of the mature AIS components such ankyrinG and spectrin βIV. From (Jones et al., 

2014). 

 

f. A new axonal cytoarchitecture: adducin and the Actin Rings 

In 2013 a revolutionary model for the organization of actin in axons was proposed. Using 

either DIV5-12 rat hippocampal neuron cultures (when the axon/dendrite specification is 

occurring) or hippocampal slices (Xu et al., 2013) and super-resolution microscopy 

techniques (3D-Stochastic Optical Reconstruction Microscopy – STORM – and 

STimulated Emission Depletion – STED) a very unique axonal cytoskeleton organization 

was observed (depicted in figure 15). The super-resolution techniques revealed the 
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formation of a series of actin rings along the axons, distributed in a conserved periodicity 

of 190 nm (Xu et al., 2013). These actin rings were formed from the cell body towards the 

axon tip (Zhong et al., 2014). Further analysis of the biochemical structure of the rings by 

immunocytochemistry revealed that the periodicity was spatially regulated by parallel 

spectrin heterotetramers along the axon (Xu et al., 2013). Of interest, the interaction of 

spectrin and actin rings was mediated by adducin, as observed by immunocytochemistry 

(Xu et al., 2013). 

 

 

Figure 15 : The axonal actin rings. The actin rings are a novel level of organization of actin in axons. Super-

resolution microscopy revealed actin rings (green) distributed along the axons of cultured hippocampal 

neurons, with a 190 nm periodicity. The periodicity is regulated by spectrin tetramers (purple) and adducin 

heterotetramers mediate the actin-spectrin junctions and actin filament size (blue). From (Xu et al., 2013) 

 

The inner dynamic nature of this structure has been a matter of great interest. Treatment 

with lantruculin A results in loss of the actin rings (Xu et al., 2013). Latrunculin A binds to 

globular actin inhibiting its incorporation in filaments thereby the above results suggest 

that the rings are dynamic, undergoing incorporation and removal of actin subunits from 

the filaments (Gallo, 2013). However, data obtained by βII spectrin-GFP fluorescence 

recovery after photo bleaching (FRAP) suggests that this structure is very stable 

presenting low levels of turnover (Zhong et al., 2014). Interestingly, the latrunculin A 

treatment not only disrupts actin rings but also the associated spectrin βII pattern. This 

further suggests that actin and spectrin association is interdependent (Zhong et al., 2014), 

although the dynamic proprieties of the two components are different. Moreover, besides 

actin and spectrin, adducin is also a putative regulator of the dynamic proprieties of the 
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rings. Adducin is not co-localized with the actin rings until DIV6 (Zhong et al., 2014). Since 

adducin is a stabilizer of the actin cytoskeleton (by capping and bundling actin filaments 

and by crosslinking them with spectrin), it is possible that its localization in actin rings is 

important for stabilization of the actin filaments of the rings and therefore, of the cortical 

cytoskeleton itself. 

Recently, the advent of new cell permeable silicon-rhodamine (SiR) derivatived probes, 

namely SiR-actin (which is conjugated with desbromo-desmethyl-jasplakinolide) allowed 

the visualization of actin rings in neurons by STED and live imaging, without the 

requirement of extraction processes for labelling the actin cytoskeleton (which is 

mandatory when using phalloidin staining) (D’Este et al., 2015; Lukinavicius et al., 2014). 

Surprisingly, with this new technique the actin rings were visible much earlier that with 

phalloidin (from DIV2 and DIV5, respectively) (D’Este et al., 2015). Moreover, not only 

axons developed these structures but also dendrites, although later (DIV5 on) (D’Este et 

al., 2015), although only about 1/3 of the dendrites analyzed revealed the presence of 

actin rings. 

The current knowledge on the new cortical cytoskeleton organization suggests that it 

might be dependent on the establishment of the axon/dendrite polarity: 

i) Although both axons and (some) dendrites have actin rings, in axons they are 

formed earlier (D’Este et al., 2015); 

ii) 3D-STORM failed to revealed actin rings in dendrites (Xu et al., 2013; Zhong et al., 

2014). This was probably due to the fact that after DIV6 actin rings in axons are more 

resistant (and stable) to detergent extraction after fixation (Zhong et al., 2014). MT 

stabilization, using Taxol, that is known to lead to multiple axon formation (Witte et al., 

2008),leads to the appearance of actin rings in all neuronal processes (Zhong et al., 

2014). 

Interestingly, βII spectrin is excluded from the mature AIS, by exchange with spectrin βIV 

(Zhong et al., 2014). This suggests that particularly in the AIS, and Ranvier nodes (D’Este 

et al., 2015), the structure of the actin rings could be different from the one present in the 

rest of the axon. The current model for the assembly and maturation of these structures is 

depicted in figure 16. 
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Figure 16 . Current model for the assembly and maturation of actin rings in hippocampal neuron cultures. In 

axons the actin rings begin to be assembled at DIV2, in a proximal-to-distal fashion. At that time point, actin 

rings are not visible in dendrites, where they only appear at approximately DIV8. As neuronal maturation 

progresses axons start to present actin accumulations, in the form of actin patches (that co-localize with the 

presynaptic marker Bassoon) and longitudinal actin filaments, namely in the AIS. Interestingly, dendrites start 

to develop dendritic spines (enriched in actin) and longitudinal actin filaments. These structures in dendrites 

make it challenging to visualize actin rings, which can underlie the fact that dendrites failed to reveal these 

structures in the original descriptions (D’Este et al., 2015). 

 

Until actin rings were described, axons were thought to depend on microtubules and 

neurofilaments (Perrot and Eyer, 2009; Perrot et al., 2007; Yuan et al., 2012) to be 

maintained and to have a defined caliber. Nevertheless it had been already suggested 

that the spectrin-based membrane cytoskeleton, is important for axonal integrity. In C. 

elegans, the knockdown of the spectrin homologue unc-70 results in impaired axon 

morphology (Hammarlund et al., 2000) and spontaneous axon break as a consequence of 

movement, leading to a series of injury and regrowth attempts (Hammarlund et al., 2007). 

In Drosophila, adducin homolog (hu-li tai shao- HTS, 'too little nursing') mutants display 

axonal growth and guidance deficits in photoreceptor (R) axons, leading to impaired 

innervation of the eye (Ohler et al., 2011). In other model systems, adducin has also been 

proposed to have a role in the regulation of neurite outgrowth. GSK3β regulation of β-

adducin was suggested to be fundamental for the neuritogenic effect of GSK3β, though 

phosphorylation of three adducin Serine residues, 600, 613 and 697 (Farghaian et al., 

2011). Besides β-adducin, γ-adducin was also proposed to have a role in neuritogenesis. 

In fibroblast COS7 cells over-expressing γ-adducin lead to increased ability of extending 

neurites (Lou et al., 2013). However, the over-expression of its C-terminus domain, that 

interacts with actin, in neuroblastoma N2A cells, decreased the percentage of cells with 
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neurites (Lou et al., 2013). Therefore, the role of adducin in neuritogenesis is still not fully 

understood, although the protein is known to be present both in the axon shaft (Gumy et 

al., 2011; Xu et al., 2013) and in growth cones (Estrada-Bernal et al., 2012; Matsuoka et 

al., 2000). 

 

g. Synapses and Memory 

The role of adducin in neurons is most studied in the process of synapse formation and 

activity. The first demonstration of its role in synapses was made in 1995 when Siedel et 

al, in a screening for the different constituents of the synaptic junctions in the rat brain, 

detected α-adducin cDNA (Seidel et al., 1995). In that report, the presence of adducin in 

synapses was confirmed by immunohistochemistry, including immuno-electron 

microscopic analysis in a subset of dendritic spines of the CA1 and CA3 region of the 

hippocampus (Seidel et al., 1995). Besides neurons, adducin was also identified in 

astroglia (Seidel et al., 1995). In 1999, Matsuoka et al, confirmed that adducin was not 

only present in dendritic spines of hippocampal neurons grown in vitro but also that it was 

phosphorylated. This phosphorylation of the C-terminus Serine residue of adducin in 

dendritic spines further suggested a role of this protein in the dynamics of synapse 

formation and function (Matsuoka et al., 2000). The first in vivo evidence of the role of 

adducin in synapses was made in Aplysia californica, where the homolog of adducin was 

found to have increased phosphorylation levels in a model for long-term facilitation 

(Gruenbaum et al., 2003). Long-term facilitation leads to the formation of new spines on 

postsynaptic hippocampal dendrites and to the appearance of multiple spine synapses 

between a single axon terminal and a dendrite (Engert and Bonhoeffer, 1999; Klintsova 

and Greenough, 1999; Maletic-Savatic et al., 1999; Toni et al., 1999). This process was is 

mediated in part by adducin phosphorylation, which was proposed to destabilize the 

spectrin-actin membrane cytoskeleton leading to increased actin polymerization 

(Gruenbaum et al., 2003). 

The advent of the β-adducin KO mice allowed the study of the role of adducin in the 

vertebrate brain, where β-adducin is enriched (Gilligan et al., 1999). In the original 

screening for the expression levels of the different adducin forms, whereas α- and γ-

adducin were found to be ubiquitous (with the exception of the lack of γ-adducin in 

erythrocyte precursors), β-adducin was only present in the brain and in the RBC (Gilligan 

et al., 1999). However, it was only in 2005 (and after the establishment of adducin as an 

important mediator of LTF in Aplysia) that the role of adducin in synaptogenesis in 

mammals was dissected. Rabenstein et al, using β-adducin KO mice observed that 

although their dendritic spines were similar to controls, an impairment in short-term and 
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long-term synaptic plasticity was present, including generalized learning deficits, namely 

in the Morris water maze and in the fear conditioning tests (Rabenstein et al., 2005). 

Interestingly, α-adducin expression analysis by in situ hybridization revealed no 

differences between controls and β-adducin KO mice (Rabenstein et al., 2005). 

Subsequent studies revealed, however, that in the β-adducin KO mice the protein levels of 

γ-adducin were increased (3-fold in the brain). Moreover, western blot analysis revealed 

that not only the total levels of α-adducin but also the levels of its phosphorylated form 

were decreased, both to half the levels of controls (Porro et al., 2010). The dysregulation 

in the levels of the different adducin forms and in their regulatory phosphorylation were 

then associated with the motor coordination deficits of the β-adducin KO mice, that 

present a poorer performance in the open field and in the rotarod tests (Porro et al., 

2010). This dysregulation in the total protein levels may be related to the specific 

requirement of β-adducin in neurons. The inability to form the correct tetramer may then 

lead to degradation of α-adducin monomers, 

Recently, PKC was found to be the in vivo kinase required for adducin phosphorylation in 

synapses, namely in the context of environmental enrichment (Bednarek and Caroni, 

2011). Under standard conditions, CA3 hippocampal neurons of β-adducin KO mice have 

normal active zone densities at the large mossy fiber terminals but present increased 

synapse turnover, suggesting loss of synaptic stability (Bednarek and Caroni, 2011). 

Environmental enrichment exacerbates the turnover of synapses, increasing the rate of 

assembly and disassembly of synapses. Either inhibition of adducin phosphorylation by 

the PKC inhibitor chelerythrine, or absence of β-adducin in the β-adducin KO mouse 

brain, resulted in a worse performance upon environmental enrichment, suggesting that 

the process of synapse turnover is dependent on adducin and on its regulation (Bednarek 

and Caroni, 2011). It has been suggested that for synapse disassembly adducin 

inactivation by phosphorylation is required, whereas active adducin is fundamental for 

synapse assembly (Babic and Zinsmaier, 2011; Bednarek and Caroni, 2011). 

Interestingly, in synapses in the nucleus accumbens (NAc), β-adducin was also found to 

be crucial for remodelling after cocaine exposure (Lavaur et al., 2009). Cocaine, promotes 

increased remodeling of brain synapses, inducing an increase in spine density, in part 

through increased β-adducin phosphorylation, via PKC activation (Lavaur et al., 2009). In 

β-adducin KO mice the exposure to cocaine results in an even greater increase of 

mushroom spine density, reinforcing the role of adducin as a stabilizer of spines (Jung et 

al., 2013). Of interest, rearrangement of the actin cytoskeleton in synapses was recently 

proposed to be regulated via mTORC2, by the canonical PKC pathway and its 

downstream targets, such as adducin (Angliker and Ruegg, 2013).  
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Adducin has also been associated with synapse formation in other organisms such as the 

nematode C. elegans and Drosophila. Studies with the C. elegans adducin homolog 

mutant tm3760 (a loss of function mutant) revealed no impairment in learning but 

impairments in short- and long-term aversive memory (Vukojevic et al., 2012). The actin 

capping adducin function was favored for memory consolidation since cytochalasin B (a 

drug that inhibits actin polymerization and therefore is analogous to the capping activity of 

adducin) restored the short- and long-term aversive memory, similarly to the rescue 

through expression of human α-adducin (Vukojevic et al., 2012). The same study 

associated α-adducin polymorphisms and hippocampus-dependent memory (Vukojevic et 

al., 2012). A subsequent study proposed a mechanism for the acquisition of memory and 

forgetting, based on the role of adducin and musashi, respectively (Hadziselimovic et al., 

2014). In this study, a model on how adducin and musashi impact the retention or 

elimination of dendritic spines (and therefore, memories), was proposed. According to this 

model, in the learning process new dendritic spines are formed by Arp2/3 complex 

activity, leading to increased actin polimerization and subsequent stabilization by adducin. 

Conversely, the forgetting process was proposed to occur by the inhibition of translation 

by musashi, reducing actin branching and inhibiting the formation/maintenance of 

dendritic synapses (Hadziselimovic et al., 2014). 

The Drosophila neuromuscular junction (NMJ) has also been used as a model for the 

study of the role of adducin in synaptogenesis. Of note, in C. elegans and Aplysia, the 

Drosophila adducin homolog Hts is expressed by a single gene. Hts is an important 

regulator of the stability and growth of the NMJ. In Drosophila, downregulation of 

neuronal, but not muscular, Hts-M (the splicing variant equivalent to full length α-adducin 

with the MARCKS-related motif) results in increased levels of retraction and elimination of 

synapses (Pielage et al., 2011). Interestingly, removal of Hts-M results in aberrant 

synapses, with long filopodia-like structures in the pre-synaptic compartment, leading to 

an increased sized NMJ (Pielage et al., 2011). In contrast, over-expression of Hts-M 

results in the restriction of synapse formation and growth. The phosphorylation of the C-

terminus Serine residue 703 (equivalent to the Serine 726 in human α-adducin) is 

fundamental for the proper regulation of synapse growth and regulation (Pielage et al., 

2011). As in C. elegans, the role of adducin as a capping protein is favored to be 

responsible for the phenotypes described above (Pielage et al., 2011). 

Besides β-adducin KO mice, α-adducin KO mice also have impairments at the level of the 

nervous system, as expected given the knockdown of both β and γ forms, resulting in a 

true adducin KO mice – although the expression levels of β and γ-adducin forms remain 

similar to wt animals (Robledo et al., 2008). The α-adducin KO mice develop a lethal 
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hydrocephaly dependent on the genetic background (Robledo et al., 2008; Robledo et al., 

2012). The hydrocephaly rate is 50% in B6/129 mixed background (Robledo et al., 2008) 

whereas in a pure 129 background the hydrocephaly rate is 3% and in the pure B6 

background it is 80% (Robledo et al., 2012). The hydrocephaly cause remains unknown. 

Actually, only 6% of the human hydrocephalies have a well-known genetic cause. One 

possible reason that could explain this phenotype is function of adducin in mediating cell-

cell contacts and cell polarity (Ma et al., 2007; Rolf et al., 2001; Yamamoto et al., 2013). 

Cells lacking adducin or with unbalanced phosphorylation of adducin result in abnormal 

shape (Rotzer et al., 2014; Wu et al., 2015; Zhao et al., 2013; Zhao et al., 2011), therefore 

it is possible that adducin knockdown in the α-adducin KO mice could result in weakened 

cell-cell interactions and tissue remodeling and less strength to resist the Cerebrospinal 

fluid (CSF) pressure. The α-adducin KO mice also revealed decreased density of 

myelinated fibers in femoral nerve axons, suggesting a peripheral nervous system 

involvement (Robledo et al., 2012). Analysis of the α-adducin KO mice also suggested a 

putative muscular impairment, since these animals develop hyperkyphosis that usually 

results from muscle wasting and/or a defect in peripheral enervation (Robledo et al., 

2012). 

 

h. Association of adducin with cerebral palsy and amyotrophic lateral sclerosis 

Recently several insights on adducin dysregulation in disease have been published. 

Cerebral palsy is a neuromotor disability that affects 1 in 500 live births, in which 20% of 

the cases have no identifiable etiology for their symptoms suggesting a heritable nature 

(Leonard et al., 2011). From the known genetic studies some genes were already 

associated with this disorder, including the actin capping protein KANK1 (Lerer et al., 

2005) and α-adducin polymorphisms (Wu et al., 2011). Recently γ-adducin was suggested 

to be a genetic cause in cases of quadriplegic cerebral palsy. The G367D mutation in γ-

adducin causes impairments in actin oligomerization given the decreased actin capping 

activity that ultimately leads to impairments in cell migration (Kruer et al., 2013). 

Confirmation of the deleterious effects of the G367D γ-adducin mutation were visible in 

Drosophila, where mutants displayed neuromotor deficits as impaired locomotion and 

malformations of the brain lamina and medulla (Kruer et al., 2013).  

Adducin is also deregulated in patients and in mouse models of amyotrophic lateral 

sclerosis (ALS) (Hu et al., 2003; Shan et al., 2005). Phosphorylated adducin is increased 

in the spinal cord of both ALS mouse models that overexpress mutant superoxide 

dismutase 1 and in human patients (Hu et al., 2003; Shan et al., 2005), although the 
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contribution of adducin phosphorylation for disease progression is still unknown. Recently 

Gallardo et al proposed a non-cell autonomous neurodegeneration caused by the α2-Na/K 

ATPase/α-adducin complex in astrocytes that overexpress mutant superoxide dismutase 

1. This study shows that phosphorylation of α-adducin in Serine 436 is increased in 

astrocytes of mutant superoxide dismutase 1 mice. The authors found that either the 

knockdown of α-adducin, the heterozygous disruption of the α2-Na/K ATPase, or the 

usage of digoxin (an inhibitor of the Na/K activity) suppressed degeneration (Gallardo et 

al., 2014). This suggests that adducin-mediated neurodegeneration might be 

mechanistically similar to the hypertension phenotype of carriers of adducin 

polymorphisms, where adducin dysregulates the ion channel activity leading to impaired 

homeostasis (Gallardo et al., 2014). 

 

In summary, the role if adducin in neurons, although established for a number of different 

aspects of neurobiology, is still not fully understood. Until recently, its function was mostly 

explored in the context of memory, where β-adducin was established as a key player in 

synapse dynamics (critically dependent on actin regulation). The recent discovery of the 

lattice neuronal cytoskeleton, composed of contiguous actin rings that are spaced by 

spectrin tetramers and co-localized with adducin, has generated a new interest on actin in 

the axon shaft, and consequently on the role of adducin in this compartment. For that 

reason, adducin is a great candidate to study in the context of the development and 

maintenance of the nervous system, including in the process of axon regeneration: 

adducin is expressed in neurons; adducin KO animals have defects in the nervous system 

– in organisms of different phyla; and it is downstream of several important pathways 

involved in cell polarization and axon extension and regeneration. 

 

III- Profilin 

 

1- Gene and Protein 

Profilin is a 14-17kDa family of ABPs that are expressed in eukaryotes (Krishnan and 

Moens, 2009) and in some viruses (Machesky et al., 1994). Profilin is characterized by a 

conserved protein size and structure within eukaryotes (Krishnan and Moens, 2009) and 

is one of the most abundant proteins in cells, with a concentration of 10-150 µM (Birbach, 

2008). In humans profilin is composed by 4 different forms, I to IV (Birbach, 2008). 

Although the four forms have medium sequence similarity, their structure and functions 

are conserved (Birbach, 2008). 
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The four human profilin forms are very similar in size. Profilin-1 has 140 amino acids and 

is located in chromosome 17; profilin-2 (Pfn2) has also 140 amino acids and is located in 

chromosome 3; profilin-3 (Pfn3) has 137 amino-acids and is located in chromosome 5; 

and profilin-4 (Pfn4) has 129 amino acids and is located in chromosome 2. Pfn1 is 

ubiquitously expressed, whereas the other three forms are tissue specific. Pfn2 is 

neuronal, mostly CNS-restricted and Pfn3 and Pfn4 are expressed in germ cells. Pfn2 is 

known to have two different isoforms, Pfn2 IIa and IIb, both expressed in neurons 

(Birbach, 2008; Krishnan and Moens, 2009). 

Profilins are conserved throughout evolution, both in animals and plants (Birbach, 2008; 

Krishnan and Moens, 2009). Interestingly, although low sequence homologies exist 

between species, the tertiary fold of profilins is similar across species, as visible in figure 

17.  

 

Figure 17 . Profilin structure is conserved amongst different kingdoms. Human, yeast, Acanthamoeba and 

Arabidopsis profilin-1 structures are represented (PDB database: 1PFL, 1 KOK, 2PRF and 3 NUL, 

respectively). The helixes are represented in red, strands in cyan and loops in green. From (Krishnan and 

Moens, 2009) 

 

The ubiquitous distribution of profilin through eukaryotes, as well as the high level of 

conservation of the structure indicates an important role of profilin in cells (Birbach, 2008; 
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Krishnan and Moens, 2009). Profilins are usually present in more than one form in 

different organisms, six in plants and 4 in mammals (Moens, 2008). 

 

2- Profilin activity and regulation 

Although small, profilin has several domains that are crucial for its dynamism. Moreover, 

given their small size the domains are overlapped, generating a greater regulatory 

complexity (Moens, 2008). Profilin has three main domains, the actin-binding domain, 

responsible for its interaction with actin; the phosphatidylinositol 4, 5-bisphosphate, 

PI(4,5)P2 (PIP2) binding domain; and the poly-L-proline (PLP) binding domain (Birbach, 

2008; Krishnan and Moens, 2009; Moens, 2008). Different profilin forms have different 

abilities to bind to their ligands. Pfn1 and Pfn2 are a good example of these different 

ligand binding abilities. In humans, Pfn1 has an increased ability to bind actin. 

Interestingly, the opposite is verified in bovine profilin, suggesting species dependent 

variations (Lambrechts et al., 1997). The ability to bind to the PI(4,5)P2 and PLP domains 

is also different amongst different profilin isoforms, but contradictory results are present in 

the literature (Moens, 2008). 

 

a. Profilin interaction with actin 

The actin-binding domain is the most well-known domain of profilin and it was the first 

described activity of this protein (Carlsson et al., 1977). In humans, the Pfn1 actin-binding 

domain comprises residues 59-61, 69, 71-74,82, 119, 121, 122, 124, 125, 128 and 129. 

Mutation of residues Y59, I73, H119, G121 and N124 completely abolishes the actin-

binding capability (Krishnan and Moens, 2009), whereas actin residue F375 is the residue 

required for this interaction (Krishnan and Moens, 2009). 

Profilin has two main functions towards actin. It mediates the transition of ADP-G-actin to 

ATP-G-actin that can be incorporated in the filaments and it is also fundamental for 

releasing actin in the plus tips of F-actin, thereby leading to an increased filament 

size/dynamics (Moens, 2008). The transition from ADP to ATP bound G-actin is increased 

1000-fold in the presence of profilin (Krishnan and Moens, 2009). The ATP-G-actin 

conversion is consider to be an end-specific quasi-polymerizable actin monomer. The 

incorporation of the profilin-actin complex in the barbed ends requires the presence of 

Mg2+ and the hydrolysis of the ATP, which leads to loss of affinity and dissociation from 

the F-actin tip (Moens, 2008). This will generate the opportunity for the next round of 

profilin-actin complex incorporation (Moens, 2008). 
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The ability of profilin to incorporate G-actin into actin barbed ends is dependent on the 

interaction of F-actin with other ABPs. For instance, presence of capping proteins 

enhances profilin sequestration of actin monomers. If the capping proteins are not present 

the sequestering time is reduced and incorporation of monomers can occur (Moens, 

2008). Profilin has complementary functions to those of the ADF/cofilin family, as it is 

responsible for F-actin depolymerization and severing, as shown in figure 18. These 

contradictory functions cause what is known as the treadmilling movement of actin, in 

which there is no filament size increase but movement (and thereby force) is created 

instead. In cells, these continuous cycles of polymerization and depolymerization are 

enhanced by cofilin and profilin activity. In the presence of these ABPs the rate of F-actin 

turnover is 400-fold increased (Didry et al., 1998). 

 

Figure 18 . The synergistic action of profilin and cofilin increases the F-actin treadmilling movement. [1] Cofilin 

depolymerizes F-actin at the minus-tip ends, where ADP-bound actin monomer levels are increased. [2] 

However, when cofilin is phosphorylated it has no capacity to perform F-actin depolymerization. Profilin has 

three different functions: [3] it is responsible for the ADP to ATP transition of actin monomers, required to plus 

end polymerization; [4] for sequestering G-actin, namely when it is phosphorylated and [5] for the 

polymerization of F-actin at the minus ends. [6] The treadmilling movement of actin is the increased rate of 

depolymerization and polymerization undertaken by cofilin and profilin respectively. This movement does not 

increase filament size but it generates a movement, a driving force, instead. Notably, both cofilin and profilin 

phosphorylation by Rho kinase decreases treadmilling movement. In order to simplify the figure, the other 

functions of cofilin, such as severing, are not represented. 

 

b. Profilin and the phosphoinositide binding domain 

Profilin binds to the phosphoinositide PI(4,5)P2 with high affinity and inhibits the 

phospholipase C-γ activity, suggesting a role in signaling (Moens, 2008). The residues 
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responsible for the interaction are not fully known, although residues 126-136 resemble 

the gelsolin binding domain to PI(4,5)P2 (Schutt et al., 1993) and tryptophan 3 and 31 

have also been suggested to be important for this interaction (Moens, 2008). 

Phosphoinositide, namely PI(4,5)P2, is the only know compound that inhibits profilin 

binding to actin (Lassing and Lindberg, 1988). The reason for this inhibition is the partial 

overlap of the actin binding domain and the PI(4,5)P2 binding domain (Lambrechts et al., 

2002). The binding of the ligands is therefore mutually exclusive (Lambrechts et al., 2002) 

and even the binding to PLP is impacted by the binding to PI(4,5)P2, since mutants that 

lack the binding domain for PLP have increased affinity to PI(4,5)P2 (Krishnan and Moens, 

2009). The reason for the incompatibility is the conformational changes caused by 

PI(4,5)P2 binding, that generate a negative environment at the C-terminus (Lambrechts et 

al., 2002). 

 

c. Profilin and the poly-L-proline binding domain 

Profilins were found to bind PLP stretches (Bjorkegren et al., 1993), with exception of the 

Vaccinia viral profilin (Machesky et al., 1994) and human profilin-IIb (Krishnan and Moens, 

2009; Moens, 2008). The interaction of profilin with PLP is extensively studied 

(Lambrechts et al., 2002) and H133 and W3 are the amino acids involved in binding. 

Profilin mutants for this interaction are lethal, irrespectively of the PI(4,5)P2 and actin 

binding activities (Lambrechts et al., 2002). This suggests that PLP binding is crucial for 

profilin function. 

 

d. Profilin Phosphorylation 

Profilin is regulated by phosphorylation, most notably by Rho Kinases (Shao et al., 2008). 

The phosphorylation site of profilin lies on the C-terminus of the protein, in serine 137 

(Shao et al., 2008). This phosphorylation increases the affinity for actin and PLP stretches 

(Moens, 2008). The increased affinity for actin results in increased sequestering time, 

which leads to decreased actin incorporation in filaments. The phosphatase activity is 

performed by protein phosphatase 1 (PP1) (Shao and Diamond, 2012). 

 

3- Profilin in neurons 

The role of profilin in neurons has been established in several publications. Given the 

specific neuronal expression of Pfn2 in mammals, a putative role of Pfn2 was expected in 

neurons. In 2003, Da Silva and colleagues revealed that Pfn2a is a negative regulator of 
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neuritogenesis, via ROCK phosphorylation (Da Silva et al., 2003). More recently, Pfn1 

was also proposed to have a role in neuritogenesis. Pfn1 knockdown studies revealed that 

together with thymosin β4, Pfn1 is fundamental for the supply of G-actin in the leading 

edge of lamellipodia/filopodia in growth cones (Lee et al., 2013). Moreover, Pfn1 KD leads 

to decreased growth cone extension and actin dynamics (Lee et al., 2013). 

Using hippocampal neuron cultures as a model, Michaelsen and colleagues suggested 

that Pfn1 and Pfn2 have both redundant but also independent functions in neurons 

(Michaelsen et al., 2010). The proposed model indicates that although both forms operate 

via actin remodeling, Pfn1 responds in a PI(4,5)P2-mediated pathway, regulating spine 

density, whereas Pfn2 acts through a formin-based signaling pathway, regulating dendritic 

complexity (Michaelsen et al., 2010). 

These differential roles, together with the different affinities for the ligands could explain 

the apparent differential role of Pfn1 and Pfn2 in neurite outgrowth. Lambrechts and 

colleagues explored what Pfn1 ligand interactions are fundamental for the neuritogenesis 

to occur (Lambrechts et al., 2006). Using PC12 cells as a model, Pfn1 high-level 

overexpression lead to the abolishment of neurite outgrowth, whereas low-level 

overexpression suggested increased growth (Lambrechts et al., 2006), indicating that 

Pfn1 regulation is fundamental for the neuritogenic process. The actin binding mutant lead 

to decreased growth (Lambrechts et al., 2006), which was later further supported using 

ALS-associated actin binding incompetent mutants, as discussed below. Interestingly, 

both the PI(4,5)P2 and PLP binding-defective mutants lead to increased outgrowth 

capacity (Lambrechts et al., 2006). The authors also suggested that the PI(4,5)P2 binding 

domain is the one responsible for the ROCK pathway inhibition of neurite outgrowth 

(Lambrechts et al., 2006). 

The role of profilin in neurons has also been studied with the KO animals for either Pfn1 

(Kullmann et al., 2012a; Kullmann et al., 2012b) or Pfn2 (Pilo Boyl et al., 2007). Pfn1 KOs 

are embryonic lethal, in the 2-cell stage due to cytokinesis failure (Witke et al., 2001). In 

order to dissect the role of Pfn1 in neurons, tissue-specific KOs have been generated with 

neuronal-specific promoters, such as Nestin-Cre and L7-cre (Kullmann et al., 2012b). 

Although viable, Nestin-Cre Pfn1 KOs have several impairments in the nervous system, 

such as decreased brain size, cerebellar hypoplasia, aberrant layer organization in the 

cerebellum that leads to motor coordination impairments, and defected radial migration of 

cerebellar granule neurons due to a defect in cell-to-cell contact with glial cells (Kullmann 

et al., 2012a; Kullmann et al., 2012b). Pfn2 KOs were also generated to study its role in 

the nervous system (Pilo Boyl et al., 2007). Pfn2 KO mice have no gross defects in 

development but present behavioral defects (Pilo Boyl et al., 2007), which can be 
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explained by the presence of Pfn2 in dendritic spines (Michaelsen et al., 2010). It is 

however interesting to note that although Pfn1 is also present in dendritic spines 

(Michaelsen et al., 2010), Pfn1 KOs have no deficit in excitatory synapses (Kullmann et 

al., 2012a). Profilins are, however, proteins with such an overlap in structure and in 

function that compensatory mechanism are likely. Therefore, an interesting strategy would 

be a co-knockdown of both Pfn1 and Pfn2 in neurons to avoid any putative compensation 

by the different profilin isoforms. 

 

4- Profilin in Neuronal Diseases 

Recently, Wu and colleagues found that several Pfn1 mutants have been shown to have a 

role in the development of amyotrophic lateral sclerosis (ALS). Namely Pfn1 mutants 

C71G, M114T and G118V have decreased affinity for F-actin and neurons carrying these 

mutants show insoluble and ubiquitinated aggregates, a typical neurodegenerative finding, 

present in several neurodegenerative diseases such as Parkinson and Alzheimer (Wu et 

al., 2012). The presence of the above Pfn1 mutants resulted in small sized growth cones 

with unbalanced (decreased) F/G actin ratio (Wu et al., 2012), as well as decreased 

neurite outgrowth capacity (Wu et al., 2012).  

Besides the actin binding mutants related with ALS, profilin has also been suggested to be 

important in another neurodegenerative disease, the spinal muscular atrophy (SMN) 

(Nolle et al., 2011). Profilin involvement in SMN occurs via ROCK hyper-phosphorylation 

of Pfn2, leading to unbalanced of F/G actin ratio (Nolle et al., 2011).The interaction 

profilin-actin has other known roles in vivo, such as in the control of cell division. Profilin 

disruption leads to multiple defects in actin dependent processes in Drosophila (Verheyen 

and Cooley, 1994), yeast (Haarer et al., 1990) and mice (Ding et al., 2006; Witke et al., 

2001). Interestingly, most of the phenotypes are related with impairments in cell division, 

namely in the formation of the contractile actin ring during cytokinesis. 

 

IV- Regeneration in the CNS and PNS 

 

1- Regeneration as a recapitulation of development 

The regeneration process is, in its principles, similar to what happens during nervous 

system development. In summary, a neuron with a severed axon must be capable to 

recapitulate embryonic development and establish a new growth cone in order to regrow 

the axon and form a competent synapse at the original target, re-enervating it. It is, 
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however, widely known that regeneration in the adult CNS is limited and usually abortive 

(Silver, 2009). Many aspects known for axonal growth during development are 

recapitulated during regeneration. However, several aspects differ greatly. Those 

differences can be divided in neuronal intrinsic and extrinsic. Interestingly, peripheral 

nervous system (PNS) regeneration presents more similarities to development, since in 

the PNS the regeneration process is more efficient. 

 

2- Why is regeneration of the CNS so limited in higher vertebrates? 

Nervous system regeneration is remarkably limited in higher vertebrates, namely in 

mammals, when compared to the lower, and simpler, vertebrates. Moreover, the 

regeneration potential is drastically decreased with age (Harel and Strittmatter, 2006). In 

lower vertebrates regeneration of the CNS is very robust, with adult salamanders being 

able to completely regenerate a transected spinal cord (Ferretti et al., 2003), and Xenopus 

laevis being capable of regenerating the CNS during the larval stages (Ferretti et al., 

2003). Even in lower mammals, as the marsupial opossum, fully functional recovery is 

possible after a spinal cord transection, until the first post-natal week (Saunders et al., 

1998). 

Therefore, the inability of higher mammals to regenerate the CNS has been related with 

their increased complexity. From the evolutionary point-of-view, it is possible to 

hypothesize that natural selection did not favor CNS regeneration, given that the exposure 

of injured animal to its predators would result in death. Therefore, CNS regeneration was 

not positively selected (Harel and Strittmatter, 2006). Simultaneously, a more complex 

CNS was favored during evolution. In this respect, the decreased regenerative capacity 

could be a by-product of the gain in complexity (Harel and Strittmatter, 2006). 

The lack of regenerative capacity of the CNS is not, however, caused by the lack of 

regeneration attempts. Even in the adult CNS, after an injury, transected axons attempt to 

regenerate, as shown in figure 19 (Kerschensteiner et al., 2005). This regeneration is, 

however, slower and less effective than that that occurs in the peripheral counterpart, not 

only due to the decreased speed of axon growth (4.3µm/h, approximately 30% of the 

speed observed in peripheral axons growth) but also to the erratic growth direction and 

increased, but misguided, branching (Kerschensteiner et al., 2005). Most of the 

regenerating axons do not reach any close to their original targets, creating the axonal 

bulbs (also known as retraction bulbs or frustrated growth cones) in the point where 

growth arrests (Kerschensteiner et al., 2005). Interestingly the formation of axonal bulbs 
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and their non-regenerative behavior was proposed already by Santiago Ramon y Cajal, in 

1928 (Bradke and Marin, 2014; Lobato, 2008; Ramon y Cajal and May, 1928). 

 

Figure 19: Confocal images of DRG neurons where regeneration attempts are visible in the spinal cord after 

injury. After injury (highligthed by the asterisk mark) the DRG neurons present a dying back phenotype, 

caused by AAD (acute axonal degeneration), a process of axonal fragmentation that occurs shortly after 

injury. Both distally and proximally, the axonal bulb, a hallmark of abortive regeneration, is visible 

(Kerschensteiner et al., 2005). 

 

3- The neuronal intrinsic mechanisms to axonal growth 

Different neurons react differently to injury. Not only neurons from different regions of the 

nervous system, but also the same neurons in different developmental stages. The 

intrinsic ability of neurons to undergo regeneration is of the utmost importance. 

 

a. The gene expression profile of axonal growth 

After injury, neurons must activate a pro-regenerative program. This is achieved through 

the expression of the regeneration associated genes (RAG) (Fagoe et al., 2014; Harel and 

Strittmatter, 2006; Huebner and Strittmatter, 2009), some with a direct role in the 

regeneration process while others play more indirect roles (Fagoe et al., 2014). RAG 
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expression is regulated by both transcription factors (Harel and Strittmatter, 2006) and 

epigenetic modifications of histones (Fagoe et al., 2014). Several RAGs have been 

identified: GAP43, fos, Gadd45a, CAP23, Itga7, NPY, VIP, galanin, DLK-1, Spirr1a, 

coronin-b, s100c, p21/waf1, a2 macroglobulin, CLP36, VGF, Fn14, Ddit3, Timm8b, Oazin; 

including the transcription factors C-jun, ATF3, STAT3, PI3K, SOX11, C/EBP,, Ankrd1, 

Smad1, KLF4-7, CREB, P53, NFIL3, NFκB, NFAT (Fagoe et al., 2014). Several 

approaches using microarrays allowed the discovery of RAGs and also suggested that the 

expression of RAGs is coordinated after injury (Fagoe et al., 2014). Notably, the PNS 

presents increased capacity to express RAGs after injury, which contributes to the PNS 

increased regeneration ability (Fagoe et al., 2014). 

Recently the epigenetic regulation of axon regeneration was proposed (Cho et al., 2013). 

The histone deacetylase 5 (HDAC5), that mediates the deacetylation of tubulin, was found 

to be exported from the nuclei allowing a proregenerative transcription expression 

program of several RAGs such as c-jun, KLF4, KLF5, Fos and Gadd45a (Cho et al., 

2013). The pharmacological inhibition of HDAC leads to histone H4 hyperacetylation, 

being followed by RAG expression and consequently improvement of axon regeneration 

in mice (Cho et al., 2013). Conversely, activation of acetyltransferases is also crucial for 

the transition to a regenerative program with RAG expression. In this respect, the 

acetyltransferase p300 induces expression of GAP-43, Spirr1a and coronin-b after optic 

nerve crush (Gaub et al., 2011) and the acetyltransferase p300/CBP-associated factor in 

association with the acetyltransferase p300 activates GAP-43, galanin and BDNF 

(Puttagunta et al., 2014). 

Complementarily to the expression of RAGs, the intrinsic mechanism of regeneration is 

also dependent on the inhibition of proteins that antagonize axon regrowth (Fagoe et al., 

2014). The knockdown of several of these regeneration inhibitory proteins results in 

increased axon regeneration/outgrowth capacity. Amongst these inhibitors, the deletion of 

PTEN, SOCS3 and the co-deletion of both has a great impact in the regenerative capacity 

of both optic nerve and spinal cord tracts (Fagoe et al., 2014).  

 

b. Signaling and axonal transport mediate regeneration 

The severed axon triggers a complex injury signaling in order to reprogram the neuronal 

cell body to enter a pro-regenerative program. After axon severing the extracellular 

calcium influx into the axon, leads to cytoskeleton degradation, membrane sealing but 

also triggers the regeneration machinery fundamental for the establishment of a new 

growth cone and consequently regeneration (Bradke et al., 2012). The calcium influx is 
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responsible for the increase in cAMP levels and consequently PKA and DLK-1 expression 

and activation (Bradke et al., 2012). Although the calcium influx is considered critical for 

the establishment of the regeneration machinery, the duration and intensity of the influx 

depends on the neuron type and species (Bradke et al., 2012). Besides calcium signaling, 

axonal transport, both anterograde and retrograde, is fundamental for regeneration to 

occur. Indeed, the blockage of axonal transport in DRG neurons by chelerythrine (an 

inhibitor of PKC) leads to failure in neuritogenesis and neurite retraction (Hiruma et al., 

1999). Several injury signals have been established as mediators of axonal regeneration, 

as is summarized in figure 20. 

 

Figure 20. PNS neurons after injury start a regenerative program. After severing the loss of the distal segment 

of the axon leads to loss of feedback from the enervating cell/tissue. The loss of normal signaling and the 

activation of several injury signals and their retrograde transport to the cell body generates the expression of 

RAGs and transport to the lesion site. The export of HDAC5 from the nuclei is also related with increased 

expression of RAGs (Mar et al., 2014). 

 

Axonal transport is crucial for injury signaling to occur. The retrograde transport of 

activated injury signals such as extracellular signal-regulated kinase, c-Jun N-terminal 

kinases, and signal transducer and activator of transcription (Ben-Yaakov et al., 2012), as 

is visible in the PNS branch of DRG neurons increases the expression of RAGs (Mar et 

al., 2014). Conversely, the interruption of the normal signals that a mature neuron 

receives also plays a role in the establishment of the regeneration expression program 

(Mar et al., 2014).  

 

c. Neurons must generate a competent growth cone 

As part of the intrinsic neuronal capacity to regrow, the ability of severed axons to restore 

a competent growth cone, resembling that of embryonic neurons, is important. 

Interestingly, whereas peripheral axons can restore a growth cone and start to regrow in 

the first 24 hours post injury (Kerschensteiner et al., 2005), CNS axons form an 
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incompetent retraction bulb (Kerschensteiner et al., 2005). The flow of events required for 

the establishment of a new growth cone is summarized in figure 21. 

 

 

Figure 21. To restore a new and competent growth cone requires several steps. (A) Mature neurons establish 

synapses with their targets. (B) After axonal severing, both distal and proximal segments become permeable 

to the extracellular calcium influx that will lead to the activation of axonal proteases and thereby to the 

degradation of the actin and MT cytoskeleton. (C) The Calcium influx must be transitory to inhibit cell death. 

For that reason a sealing patch composed of vesicles is generated, to ensure membrane sealing. The 

membrane sealing allows the decrease of intracellular calcium levels and the restoration of the actin and MT 

cytoskeleton. (D) After the reorganization of the cytoskeleton, a growth cone can be generated, presenting the 

actin and MT cytoskeleton in the typical domain division shape. The restored growth cone requires the local 

expression of proteins as well as axonal transport, via stabilized MT, of vesicles and mitochondria to sustain 

the regenerative capacity. From (Bradke et al., 2012). 
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d. Why do CNS neurons intrinsically fail to start regeneration? 

There are several differences in CNS and PNS neurons that impact drastically in the 

outcome of axonal regeneration. Starting by the calcium spikes in the initial moments of 

the response to axotomy, CNS neurons fail to have high and sustained levels of calcium 

(Bradke et al., 2012). Moreover, CNS neurons are more sensitive to calcium increase than 

PNS neurons (Bradke et al., 2012). Besides, CNS neurons usually fail to activate RAGs in 

contrast to what happens to PNS neurons (Fagoe et al., 2014). In part the lack of histone 

acetylation can also underlie the lack of regeneration of CNS axons (Puttagunta et al., 

2014). Moreover, CNS neurons also express several inhibitors of axonal outgrowth, such 

as PTEN and SOCS3 (Mar et al., 2014). Furthermore whereas after injury, there is local 

protein synthesis in the axon of PNS neurons, a similar mechanism is not found in CNS 

neurons (Mar et al., 2014). All together these factors contribute to the decreased capacity 

of CNS axons to re-grow after injury. 

 

4- The extrinsic factors 

Most of the well-studied factors that impact axon regeneration are part of non-cell 

autonomous mechanisms. Studies using PNS grafts and CNS neurons showed that 

despite the decreased intrinsic capacity of CNS neurons to grow, regeneration was 

possible in a permissive environment, such as that found in the PNS (Mar et al., 2014). 

Several classes of inhibitors have already been described, namely the myelin associated 

inhibitors (MAIs) and the chondroitin sulphate proteoglycans (CSPGs). 

MAIs are a group of proteins expressed by myelinating cells, namely oligodendrocytes in 

the CNS. MAIs impair neurite outgrowth in vitro and therefore also contribute for 

regeneration failure in vivo (Fagoe et al., 2014). MAIs include Nogo-A, myelin-associated 

glycoprotein (MAG), oligodendrocyte myelin glycoprotein (OMgp), epherin-B3 and 

Semaphorin 4D (Huebner and Strittmatter, 2009). Nogo-A, MAG and OMgp inhibit neurite 

outgrowth via Nogo-66 receptor 1 (Huebner and Strittmatter, 2009). In the PNS only MAG 

is present, but after injury it is rapidly removed by glial cells (Huebner and Strittmatter, 

2009). The genetic ablation of each of the three MAIs that interact with Nogo-66 receptor 

1 results in increased neurite outgrowth in vitro, whereas Nogo-A KO promotes axon 

regeneration in vivo (Kim et al., 2003; Simonen et al., 2003), although some reports 

suggest a minimal effect (Lee et al., 2009; Zheng et al., 2003). Interestingly either the 

triple KO of these proteins, and the Nogo-66 receptor 1 KO and the use of an antagonist 

peptide for Nogo-66 receptor 1 do not result in an increased axon regeneration capacity 
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(Lee et al., 2010), although there is a report of robust functional recovery (Cafferty et al., 

2010). 

Axonal severing results in a proximal and in a distal axonal stump. Whereas the proximal 

part of the axon will retract and attempt to restore a growth cone and regenerate, the 

distal part is degraded. The lesion results also in several debris containing myelin proteins 

that are inhibitory for regeneration. A reason underlying the successful PNS regeneration 

is Wallerian degeneration (WD) (Rotshenker, 2011). WD results in the clearance of the 

distal segment of the axon, in the removal of inhibitory debris thereby preparing a 

permissive environment for regrowth of the severed axons and target re-innervation 

(Rotshenker, 2011). In the PNS, shortly after injury, Schwann cells become 

dedifferentiated, reducing the expression of typical markers of differentiated Schwann 

cells and becoming prone to degrade the debris (Rotshenker, 2011). Interestingly, a great 

difference between the CNS and the PNS is the fact that the myelinating cells in the CNS, 

the oligodendrocytes, are not able to dedifferentiate and participate in the removal of 

myelin debris (Vargas and Barres, 2007). Besides Schwann cells, macrophages are also 

crucial for the removal of the debris, although they enter the nerve latter than Schwann 

cells (Rotshenker, 2011), in part as a consequence of the release by Schwann cells of the 

monocyte chemoattractant protein-1, which is required for macrophage migration 

(Rotshenker, 2011). After the removal of growth inhibitors, Schwann cells align and start 

to express pro-regenerative factors such as tropic factors and laminin, generating the 

proper environment for regrowth (Chen and Strickland, 2003). In the CNS, however, the 

process is not similar, which is due in part to the difficulty of macrophages to enter the 

CNS and also to the inability of oligodendrocytes to dedifferentiate, remove debris and 

secrete pro-regenerative factors (Vargas and Barres, 2007). 

The other group of well described inhibitors of axon regeneration in the CNS are CSPGs, 

expressed by reactive astrocytes present in the glial scar that is formed after injury. The 

glial scar, besides being a physical barrier also inhibits axon regeneration through its 

chemical proprieties (Cregg et al., 2014; Silver and Miller, 2004). The CSPGs include 

neurocan, versican, brevican, phosphacan, aggrecan and NG2 (Galtrey and Fawcett, 

2007). The receptors for CSPGs include receptor protein tyrosine phosphatase sigma 

(RPTPσ) (Garwood et al., 2003; Maurel et al., 1994), NgR1, NgR3 and leukocyte common 

antigen receptor (LAR) (Fisher et al., 2011). PTPσ and LAR ablation result in increased 

regenerative capacity (Siebert et al., 2014). Strategies to avoid CSPG inhibition are 

usually related to the use of chondroitinase ABC, a bacterial enzyme produced by Proteus 

vulgaris (Crespo et al., 2007). The use of chondroitinase ABC leads to improvement in 
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functional regeneration, probably through increased plasticity but not by increasing axon 

regeneration (Siebert et al., 2014). 

One pathway common to the inhibition of axon regeneration induced by MAIs, CSPGs 

and repulsive guidance molecules (RGM) is the ROCK pathway (Fujita and Yamashita, 

2014), as is depicted in figure 22. RhoA/ROCK is pivotal in the neurodegenerative 

cascade in several neurological diseases, including traumatic optic nerve and spinal cord 

injury, stroke and neurodegenerative diseases (Fujita and Yamashita, 2014). Thereby 

RhoA/ROCK signaling is a good candidate for a therapeutic approach (Fujita and 

Yamashita, 2014). The inhibition of axon regrowth induced by activation of the 

RhoA/ROCK pathway acts via cytoskeleton remodeling, both by regulating the actin 

cytoskeleton, via phosphorylation of cofilin, profilin, adducin and myosin light chain (MLC) 

amongst others; and also via MT regulation, by phosphorylation of CRMP2 (Fukata et al., 

2002). Inhibition of the RhoA/ROCK pathway using C3 transferase (Boato et al., 2010), 

C3-05 (a cell permeable version of C3) (Lord-Fontaine et al., 2008), Y-27632 (Fournier et 

al., 2003), Y-39983 (Sagawa et al., 2007) and dimethyl-fasudil (Hara et al., 2000) have 

been used for spinal cord injury and optic nerve injury models, with promising results with 

both histological and functional recoveries. Moreover, the RhoA/ROCK inhibitor BA-210, 

cethrin, is currently being used in clinical trials in patients with acute spinal cord injury, 

with promising results (Fehlings et al., 2011). 

 

Figure 22. RhoA/ROCK pathway is downstream of both MAIs and CSPG, leading to axon growth inhibition. 

Both MAIs and CSPGs act via NgR1/3. MAIs act also via NgR2, Lingo-1, p75NTR, TrkB and S1PR2 whereas 

CSPGs act also via LAR and RPTPσ. Downstream effectors of the inhibition cascade are the actin (through 

the phosphorylation of the ABPs cofilin, profilin and adducin and of myosin light chain, among others) and MT 

(CRMP2) cytoskeleton. From (Fujita and Yamashita, 2014) 
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5- How to increase regeneration in the CNS? The conditioning lesion model 

The intrinsic neuronal regenerative capacity can be enhanced by several techniques, such 

as pharmacological treatment and gene overexpression or ablation of both enhancers or 

inhibitors of axon regeneration, respectively (Silver and Miller, 2004). There is, however 

an alternative way to increase the intrinsic regenerative capacity of a specific type of 

neurons, the DRG neurons, which is to perform an injury after a previous injury – 

conditioning lesion paradigm (McQuarrie and Grafstein, 1973). DRG neurons are a class 

of sensory neurons which have the particular characteristic of having a peripheral and a 

central branch, the latest of which enters the spinal cord. As DRG neurons have a 

peripheral and a central branch, they have been widely used for studies of regeneration, 

given the possibility of evaluating differences in neuronal behavior depending on the CNS 

and PNS environment.  

In DRG neurons, when injury to the central axon is preceded by a peripheral injury, the 

central axon gains regenerative capacity and grows beyond the lesion site (Neumann and 

Woolf, 1999). The priming peripheral injury also enhances neurite growth in vitro even in 

the presence of an inhibitory environment, such as in the presence of myelin (Silver, 

2009) – depicted in figure 23. The conditioning lesion model has been a great tool to study 

the gain of intrinsic regenerative capacity in CNS axons. The enhanced neurite outgrowth 

following a peripheral injury is related with several factors. 

 

Figure 23. The conditioning lesion model. After a spinal cord injury there is the formation of a glial scar, a 

mechanical and chemical barrier for axon regeneration (axon in red). However, a previous injury in the 

peripheral branch enhances the capability of the DRG axons to extend through the CNS injury site (axon in 

blue). This is an example of gain of regenerative capacity. From (Silver, 2009) 
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RAG expression is crucial for the conditioning effect and several of the RAGs elicited in 

this model are already established, as GAP43, CAP23, TC10, Fn14, Sprr1a, integrin α7, 

Jun, ATF3, as well as the retrograde transport of the signaling molecules STAT3, JNK and 

ERK1/2 (Fagoe et al., 2014). Interestingly, a peripheral lesion after the central injury also 

enhances the expression of RAGs in DRG neurons (Ylera et al., 2009). Moreover, after 

axotomy using a laser that causes an injury with minimal collateral damage and minimal 

scar formation, the authors suggested that the formation of the glial scar was the limiting 

factor for the regeneration of conditioned axons (Ylera et al., 2009). Besides RAG 

expression, several other aspects of axon biology were studied in the context of a 

conditioning lesion. For instance, the epigenetic control of transcription was also shown to 

be related to the increased growth capacity promoted by the conditioning lesion (Cho et 

al., 2013; Lin et al., 2015). HDAC5, the histone H3 deacetylase is exported from the 

nuclei, in a PKCµ dependent manner, after the axotomy (Cho et al., 2013). Interestingly, 

the export of HDAC5 from the nuclei mimics the conditioning effect, leading to a pro-

regenerative transcriptional program (Cho et al., 2013). The increase of cyclic AMP levels 

is a hallmark of peripheral injury (Neumann et al., 2002). Inhibition of cAMP degradation 

by rolipram (an inhibitor of phosphodiesterase) improved regeneration after spinal cord 

injury in animal models (Costa et al., 2013; Nikulina et al., 2004), but it has limited 

practical application (Zhu et al., 2001). However, the use of cAMP analogs did not 

recapitulate the conditioning phenotype (Blesch et al., 2012). Of note, after a conditioning 

lesion DRG neurons re-gain the capacity to follow a NGF gradient that is restricted to 

embryonic development (Webber et al., 2008). Transport also plays an important role in 

the conditioning effect. It is known that a peripheral injury increases the anterograde 

transport of newly synthesized axonal proteins, organelles and synaptic vesicles (Mar et 

al., 2014). Another novel insight of the mechanisms underlying the conditioning effect is 

the fact that electrical silencing of DRG neurons after peripheral injury (Enes et al., 2010) 

occurs through decrease in the levels of L-type voltage-gated calcium channel. This data 

suggested that electrical activity could be an important negative factor for regeneration in 

the CNS (Enes et al., 2010). 
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Prologue – Understanding the catalytic mechanism of  the axon regeneration- 
enhancer Transthyretin 
 

My interest in the field of axon growth and regeneration comes from my initial studies at 

Mónica Sousa’s lab, where I first tried to understand the role of transthyretin as an axonal 

regeneration enhancer, as is described in this Prologue.  

Under physiological conditions, transthyretin (TTR) is mainly known for its classical 

function of transporting thyroxine and retinol (through retinol binding protein), but in the 

2000’s several papers suggested alternative roles for this protein, namely its involvement 

in the biology of the nervous system (Fleming et al., 2009b; Nunes et al., 2006; Sousa et 

al., 2004). In this respect, our group identified transthyretin as a pro-neuritogenic protein, 

since TTR KO mice were shown to have impaired peripheral nerve regeneration (Fleming 

et al., 2007). It was later shown that the internalization of TTR by DRG neurons, through 

megalin receptor was fundamental for its enhancer activity in the process of axon growth 

(Fleming et al., 2009a). The proteolytic activity of TTR (Liz et al., 2004) was latter shown 

to drive this neuritogenic effect, since a TTR proteolytically-deficient mutant was not able 

to rescue neurite outgrowth of PC12 cells incubated in TTR KO serum, whereas a full 

rescue was obtained with WT TTR (Liz et al., 2009). Therefore, understanding the 

catalytic mechanism and regulation of the proteolytic activity of TTR was of crucial 

importance for the its use as a putative target in regeneration-associated therapies and in 

other CNS pathologies where TTR proteolytic activity was shown to be relevant, as is the 

case of Alzheimer’s disease (Costa et al., 2008; Ribeiro et al., 2012; Stein and Johnson, 

2002; Wang et al., 2014). 
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During my PhD, although as a side project, we characterized the catalytic activity of TTR. 

This work was published in Biochemichal Journal in 2012: Liz MA*, Leite SC*, Juliano L, 

Saraiva MJ, Damas AM, Bur D, Sousa MM. “Transthyretin is a metallopeptidase with an 

inducible active site” (* Equal first-authorship), where we demonstrated that: 

 

• TTR is a metallopeptidase, and not a serine peptidase as the initial data suggested 

(Liz et al., 2004); 

• TTR activity is mediated by a catalytic triad with an HXHXE motif, conserved in 

primates; 

• The catalytic activity could be abolished and restored by removing / adding the 

metallopeptidase co-factors Zn2+ (as also suggested by crystallography studies- 

(Palmieri Lde et al., 2010)), but also by other divalent ions such Mn2+, Co2+ and 

Fe2+ 

The paper is presented below. 
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Transthyretin is a metallopeptidase with an inducible active site
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TTR (transthyretin) was found recently to possess proteolytic
competency besides its well-known transport capabilities. It was
described as a cryptic serine peptidase cleaving multiple natural
substrates (including β-amyloid and apolipoprotein A-I) involved
in diseases such as Alzheimer’s disease and atherosclerosis. In
the present study, we aimed to elucidate the catalytic machinery
of TTR. All attempts to identify a catalytic serine residue were
unsuccessful. However, metal chelators abolished TTR activity.
Proteolytic inhibition by EDTA or 1,10-phenanthroline could be
reversed with Zn2 + and Mn2 + . These observations, supported
by analysis of three-dimensional structures of TTR complexed
with Zn2 + , led to the hypothesis that TTR is a metallopeptidase.
Site-directed mutagenesis of selected amino acids unambiguously

confirmed this hypothesis. The TTR active site is inducible and
constituted via a protein rearrangement resulting in ∼7% of
proteolytically active TTR at pH 7.4. The side chain of His88

is shifted near His90 and Glu92 establishing a Zn2 + -chelating
pattern HXHXE not found previously in any metallopeptidase
and only conserved in TTR of humans and some other primates.
Point mutations of these three residues yielded proteins devoid
of proteolytic activity. Glu72 was identified as the general base
involved in activation of the catalytic water. Our results unveil
TTR as a metallopeptidase and define its catalytic machinery.

Key words: apolipoprotein A-I, amyloid-β peptide, metallopepti-
dase, transthyretin, zinc.

INTRODUCTION

TTR (transthyretin) is a plasma protein existing mainly as
a homotetramer [1]. TTR is well characterized, since point
mutations can cause FAP (familial amyloid polyneuropathy) [2],
a lethal neurodegenerative disorder hallmarked by deposition
of TTR amyloid fibrils [3]. A myriad of crystal structures of
human wtTTR (wild-type TTR) are available from the PDB [4].
Backbone hydrogen bonds between TTR monomers favour dimer
formation, whereas dimers interact predominantly via amino acid
side chains to form a tetramer. TTR stability depends on intact
quaternary and tertiary structure, with partial unfolding initiating
misassembled aggregates [5]. The presence of metal ions [6],
covalent modification of Cys10 [7], lowered pH [8] or point
mutations [9] can destabilize the tetrameric TTR structure and
favour protein rearrangement.

TTR is the transporter of T4 (thyroxine) and retinol owing
to its association with RBP (retinol-binding protein) [10] in
a 1:1 molar ratio in vivo [11], an interaction that stabilizes
TTR more than 15-fold [12]. Besides interacting with T4 and
RBP, approximately 1–2 % of total plasma TTR is associated
with HDL (high-density lipoproteins), through binding to apoA-I
(apolipoprotein A-I) [13]. In-depth analysis of the interaction of
TTR with apoA-I revealed the latter to be a peptidase substrate
of TTR [14]. TTR is currently described as a peptidase of unknown
type (U9G.071) in the MEROPS database [15]. Initial studies
suggested TTR to be a serine peptidase [14] given that it cleaves

apoA-I after a phenylalanine residue at an optimal pH of 7
and that it is apparently inhibited by very high concentrations
of serine peptidase inhibitors [14]. Although binding of small
compounds such as T4 has no effect on the peptidase activity
of TTR, interaction with RBP completely abolishes substrate
cleavage [14]. To date, a significant number of natural substrates
of TTR have been identified such as apoA-I, NPY (neuropeptide
Y) and Aβ (amyloid β-peptide) [14,16,17].

ApoA-I is the main protein component of HDL and is crucial
for reverse cholesterol transport [18]. Limited proteolysis has
demonstrated the vulnerability of the C-terminus of apoA-I
in lipid-poor particles, whereas the lipid-bound protein is
protected from cleavage [18]. The apoA-I N-terminus appears
to be important for stabilizing the lipid-free monomeric structure,
whereas the C-terminus is required for interactions with other
proteins and lipids [19]. After apoA-I cleavage by TTR, HDL
particles display a reduced capacity to promote cholesterol efflux,
and truncated apoA-I displays increased amyloidogenicity [20],
suggesting that TTR might have an impact on the development
of atherosclerosis. In the case of Aβ, cleavage by TTR has only
been demonstrated in vitro [17], and suggested to be a protective
mechanism preventing Alzheimer’s disease [17].

Despite the availability of a large number of wtTTR and
mutated TTR X-ray structures crystallized at pH 7–8, the catalytic
mechanism of TTR is still unknown. In the present study,
we establish TTR as a metallopeptidase and uncover multiple
catalytic residues indispensable for proteolytic activity.

Abbreviations used: Aβ, amyloid β-peptide; Abz, o-aminobenzoyl; ACE, angiotensin-converting enzyme; apoA-I, apolipoprotein A-I; DFP, di-
isopropylfluorophosphate; EDDnp, N-(2,4-dinitrophenyl)-ethylenediamine; HDL, high-density lipoprotein(s); MALDI, matrix-assisted laser-desorption
ionization; RBP, retinol-binding protein; T4, thyroxine; TPCK, tosylphenylalanylchloromethane; TTR, transthyretin; wtTTR, wild-type TTR.
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EXPERIMENTAL

Protein production

Recombinant wtTTR and TTR mutants were produced in BL-21
pLys Escherichia coli cells transformed with pETF1 carrying
TTR cDNA [21]. Proteins were isolated and purified as described
in [14]. Briefly, after bacterial lysis, protein extracts were run
on DEAE-cellulose (Whatman) ion-exchange chromatography,
dialysed, freeze-dried and isolated in native Prosieve® agarose
(FMC) gels. After electrophoresis, the TTR band was excised
and electroeluted in a Elutrap® system (Schleicher and Schuell)
in 38 mM glycine and 5 mM Tris/HCl (pH 8.3) overnight at
50 V (4 ◦C). Finally, the protein was dialysed in 50 mM Tris/HCl
(pH 7.5). Protein quantification was performed using Lowry-
based DC Protein Assay (Bio-Rad Laboratories), following the
manufacturer’s protocol. The TTR molar concentration was
always calculated assuming the exclusive presence of the
tetrameric species.

Site-directed mutagenesis

The TTR cDNA cloned into the pETF1 vector was used to produce
TTR mutants (using the QuikChange® kit; Stratagene). Mutants
were constructed using two mismatched primers, introducing a
base substitution in the original sequence. Minipreps of plasmid
DNA were tested by sequencing at SeqLab (Göttingen, Germany).
After protein production, mutations were confirmed by MALDI
(matrix-assisted laser-desorption ionization)-MS of either the
full-length protein or of the trypsin-digested TTR peptides
(Supplementary Table S1 at http://www.BiochemJ.org/bj/
443/bj4430769add.htm), at the Proteomics Unit, Institute of
Molecular Pathology and Immunology at the University of Porto,
Porto, Portugal.

Kinetic assays

TTR proteolytic activity was tested with the fluorigenic peptide
Abz-YGGRASDQ-EDDnp [where Abz is o-aminobenzoyl and
EDDnp is N-(2,4-dinitrophenyl)-ethylenediamine]. This substrate
was found when screening a library of fluorigenic peptides [22].
Turnover of Abz-YGGRASDQ-EDDnp by TTR is approximately
20-fold higher (kcat/Km = 408.8 s− 1 · M− 1) when compared with
Abz-ESFKVS-EDDnp (kcat/Km = 17.5 s− 1 · M− 1), an apoA-I
sequence encompassing the TTR cleavage site. Hydrolysis of
Abz-YGGRASDQ-EDDnp at 37 ◦C in 50 mM Tris/HCl (pH 7.5)
was followed by measuring the fluorescence at λem 420 nm and
λex 320 nm in an Fmax plate reader (Molecular Devices) for
30 min. Specificity rate constants (kcat/Km) were determined under
pseudo-first-order conditions [23]. TTR (5 μM total protein)
was added to the substrate (tested at 5 μM and 10 μM) in a
final volume of 100 ml of reaction buffer (50 mM Tris/HCl,
pH 7.5). Reactions were monitored for 30 min and pseudo-first-
order rate constants were obtained from linear plots where the
y-axis corresponds to ln[(Fmax − Ftime)/Fmax], where Fmax is
the fluorescence corresponding to total degradation of 5 μM or
10 μM substrate and Ftime is the fluorescence measured at each
time point, and the x-axis corresponds to the time of reaction.
The slope of the linear plots, corresponding to the first-order
rate constants, was divided by the total protein concentration
to provide kcat/Km. Determination of the concentration of active
enzyme in the TTR preparation was performed by titration
with an irreversible phosphonate inhibitor that completely blocks
TTR activity at 1 μM [16]. Active-site titration was carried out
with inhibitor concentrations ranging from 0.01 to 1 μM. After

enzyme/inhibitor incubation for 30 min at 37 ◦C, activity was
monitored as described above. Concentration of active enzyme
was determined from the x-axis intercept in the linear range of the
plot of residual activity as a function of inhibitor concentration
[24].

Chemical modification of TTR with serine peptidase inhibitors

TTR (5 μM) was incubated with each of the following
peptidase inhibitors: Pefabloc SC (4 mM; Roche), DFP
(di-isopropylfluorophosphate) (100 μM; Calbiochem), TPCK
(tosylphenylalanylchloromethane) (100 μM; Roche) and PMSF
(1 mM; Sigma). After 30 min of incubation at 37 ◦C, reaction
mixtures were separated by SDS/PAGE (15% gel) and stained
with Coomassie Blue. MALDI-MS of trypsin-digested gel bands
corresponding to modified TTR was performed at the Protein
Core Facility, Columbia University, New York, NY, U.S.A., as
described in [14]. For chemical modification of apoA-I (1.7 μM)
with PMSF, the protein was incubated with 1 mM inhibitor for
30 min at 37 ◦C. After SDS/PAGE, MALDI-MS was performed
at the Proteomics Unit, Institute of Molecular Pathology and
Immunology at the University of Porto, Porto, Portugal.

Inhibition of TTR cleavage of fluorigenic peptides

For analysis of inhibition of TTR proteolytic activity using
Abz-YGGRASDQ-EDDnp as substrate, TTR (5 μM) was
pre-incubated for 30 min at 37 ◦C in reaction buffer with
the following inhibitors: 1–10 mM EDTA (Merck), 10 μM
E-64 [trans-epoxysuccinyl-L-leucylamido-(4-guanidino)butane]
(Roche), 10 μM phosphoramidon (Roche), 10 μM bestatin
(Sigma), 0.3 μM aprotinin (Sigma), 100 μM TPCK (Roche),
100 μM TLCK (tosyl-lysylchloromethane) (Roche), 100 μM
chymostatin (Sigma), 100 μM leupeptin (Sigma), 1 mM PMSF
(Sigma), 1 μM pepstatin (Sigma), 1 mM 1,10-phenanthroline
(Roche) and 1 mM 1,7-phenanthroline (Alfa Aesar). After
enzyme/inhibitor incubation, 5 μM Abz-YGGRASDQ-EDDnp
was added and activity was monitored as described above.
Relative fluorescence was converted into percentages of residual
activity relative to uninhibited controls. To analyse the effect
of addition of divalent metals to TTR inhibited with either
1,10-phenanthroline or EDTA, TTR was pre-incubated with the
inhibitor (as described above) and then increasing concentrations
of metals were added to the reaction and proteolytic activity was
determined. In the experiments with CaCl2 addition, reactivation
of TTR with Zn2 + was tested in the presence of 1 mM CaCl2.
The apo-enzyme form of TTR was obtained by dialysis of TTR
pre-incubated with 10 mM EDTA. Control measurements of
the reactions where no TTR was added were performed, and the
results obtained were subtracted from the results from reactions
containing the peptidase.

TTR proteolysis assay using full-length apoA-I as substrate

ApoA-I digestion by TTR was performed as described previously
[14]. Briefly, 2 mg of TTR was incubated with 1 mg of apoA-I
in 50 mM Tris/HCl (pH 7.5) at 37 ◦C overnight. The inhibitory
effect of EDTA was tested by the addition of 10 mM or 50 mM
EDTA to TTR, before addition of apoA-I. After incubation for
30 min at 37 ◦C, apoA-I was added and reactions proceeded
at 37 ◦C overnight. Reaction mixtures were subsequently
separated by SDS/PAGE (15% gel) and visualized by silver
staining.
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Determination of Zn2 + levels in TTR

The Zn2 + concentration in TTR samples was measured at the
Chemical Speciation and Bioavailability Laboratory, Center of
Marine and Environmental Research, University of Porto, Porto,
Portugal, as described previously [25]. Briefly, 3.2 mg of TTR was
diluted in Zn2 + -free double-distilled water and total Zn2 + content
was determined by atomic absorption spectrophotometry with
flame atomization (PU 9200X, Philips). For Zn2 + quantification,
a calibration curve was created using Zn2 + standards. For
Zn2 + quantification in TTR treated with EDTA, the protein
was incubated with 10 mM EDTA for 30 min at 37 ◦C and
thereafter the chelator was removed by dialysis against 50 mM
Tris/HCl (pH 7.5). For measurement of Mn2 + , Fe2 + and Co2 +

concentrations, the same protocol was followed.

Thioflavin-T-binding assay

For the thioflavin-T-binding assay, 100 μg of purified TTR was
incubated in 50 mM sodium acetate (pH 4) for 72 h at room
temperature (22 ◦C) in a final volume of 200 μl. For aggregation
assays with 10 mM EDTA, 1 mM 1,10-phenanthroline or Zn2 + ,
TTR was incubated with one of these compounds for 30 min at
37 ◦C and subsequently thioflavin-T was added at a concentration
of 30 μM in 50 mM glycine (pH 9). The excitation spectra
from 400 to 500 nm were recorded on a Horiba Fluoromax-
4 spectrofluorimeter at 19 ◦C. The intensity of fluorescence at
451 nm, which is the characteristic maximum for thioflavin-T
bound to aggregated fibrils, was subtracted from the intensity of
fluorescence at 451 nm of the control without TTR. Results are
presented as a percentage relative to the value obtained for wtTTR.
Each assay was performed in triplicate.

Size-exclusion chromatography

Size-exclusion chromatography experiments were performed
with a pre-packed Superose 12 10/300 GL column (GE
Healthcare). The column was equilibrated with 150 mM NaCl
and 50 mM Tris/HCl (pH 7.5) and a 0.5 ml/min flow rate
was used throughout the experiments. A total of 150 μg of
purified TTR was used in each run. Protein elution was
monitored by measuring the absorbance at 280 nm. Calibration
was carried out using the following protein standards (Stokes
radius, elution volume): catalase (5.22 nm, 11.03 ml), aldolase
(4.81 nm, 11.26 ml), albumin (3.55 nm, 11.76 ml), ovalbumin
(3.05 nm, 12.66 ml), chymotrypsinogen (2.09 nm, 14.66 ml)
and ribonuclease (1.64 nm, 15.14 ml). The void volume was
determined to be 7.21 ml using Blue Dextran 2000. The
Kav parameter was determined according to the equation
Kav = (V e − V0)/(V t − V0), where V e represents the elution
volume, V0 is the void volume of the column, and V t is the total
bed volume. The Stokes radius (Rs) for the experimental data was
calculated by interpolation using: ( − logKav)1/2 = f(Rs).

Data analysis

All assays were performed at least twice with each dataset in
duplicate. Results are means +− S.D.

RESULTS

TTR is not a serine peptidase

TTR has been suggested to be a cryptic serine peptidase [14].
Serine peptidases are hallmarked by an activated nucleophilic
serine [15], an oxyanion hole and a substrate-binding cleft. After

an in-depth analysis of multiple X-ray structures of monomeric,
dimeric and tetrameric TTR, Ser46, Ser77 and Ser85 were selected
as putative candidates that could act as activated nucleophiles. We
mutated each of these three serine residues to glycine or alanine
and confirmed the respective mutations by tryptic MS (results not
shown). All three mutants retained proteolytic activity (results
not shown), suggesting that TTR is not a serine-like peptidase.
Ser8, Ser23, Ser50, Ser52, Ser100 and Ser117 of TTR, although they
were very unlikely to be active-site candidates, were also mutated.
All of these mutants retained proteolytic activity (results not
shown). The only TTR serine residues that were not mutated
were Ser112 and Ser115 as these are located in the hydrophobic
central channel of TTR, described previously to be irrelevant for
TTR activity [14].

As TTR was suggested to be a serine-like peptidase on the
basis of the inhibition of apoA-I cleavage by high concentrations
of serine peptidase inhibitors [14], the effect of these compounds
was re-examined in detail using full-length apoA-I as substrate.
MS analysis of TTR incubated with the covalent binding
serine peptidase inhibitor Pefabloc SC revealed the presence of
multiple modified TTR peptides (Supplementary Table S2 at
http://www.BiochemJ.org/bj/443/bj4430769add.htm), indicating
that highly concentrated Pefabloc SC modifies TTR unspe-
cifically, therefore affecting peptidase activity in a non-specific
manner. For TTR incubated with PMSF, DFP and TPCK, no
modification of TTR was found (results not shown). However,
PMSF was able to modify the substrate (apoA-I) and generate
an aberrant PMSF adduct of a peptide consisting of amino
acids 227–238 of apoA-I (1540.86 Da) (Supplementary Table S3
at http://www.BiochemJ.org/bj/443/bj4430769add.htm). PMSF
modification of the substrate is most likely to be the reason
for reduced apoA-I cleavage by TTR. Besides inhibition of
TTR activity by serine peptidase inhibitors, we previously
observed inhibition of TTR activity with peptide phosphonate
inhibitors when using the fluorigenic apoA-I peptide substrate
[16]. Phosphonate inhibitors are able to block serine peptidases,
but some members of this class of compound are known to
be effective inhibitors of metallopeptidases [26]. Combined,
the absence of catalytic serine residues in TTR and unspecific
modifications of TTR and apoA-I by peptidase inhibitors reveal
that TTR is not a serine peptidase.

TTR proteolytic activity depends on metal ions and is inhibited by
metal chelators

A highly reproducible assay using fluorigenic peptide substrates
was set up to investigate the action of multiple prototypic
peptidase inhibitors on TTR activity (Figure 1a). As we
previously observed interference with proteolytic activity by post-
translational modifications of Cys10 in TTR [16], all assays were
performed with a C10A mutant which was equipotent to wtTTR
(Table 1). Only two well known metallopeptidase inhibitors,
EDTA and 1,10-phenanthroline, could abolish TTR proteolytic
activity (Figure 1a). Interestingly, 1,7-phenanthroline, an isomeric
non-chelating analogue of 1,10-phenanthroline, achieved only
minor inhibition (Figure 1a). These results were corroborated
with a second substrate mimicking the TTR cleavage site
in apoA-I [14] (Figure 1b). Moreover, when using full-length
apoA-I as substrate, when increasing amounts of EDTA are
used, full inhibition is also achieved (Supplementary Figure
S1 at http://www.BiochemJ.org/bj/443/bj4430769add.htm). The
same inhibition profile was observed when wtTTR was used,
proving that inhibition by EDTA and 1,10-phenanthroline is not
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Figure 1 TTR cleavage of fluorigenic peptides is inhibited by EDTA and
1,10-phenanthroline

(a) TTR was pre-incubated with different peptidase inhibitors before cleavage of Abz-
YGGRASDQ-EDDnp was determined. *P < 0.0005. (b) TTR cleavage of Abz-ESFKVS-EDDnp
(mimicking apoA-I cleavage site) after pre-incubation with different peptidase inhibitors.
*P < 0.001. Relative fluorescence values were converted into percentages of residual activity
relative to uninhibited controls. Each experiment was performed twice in duplicate.

dependent on the point mutation C10A (Supplementary Figure
S2 at http://www.BiochemJ.org/bj/443/bj4430769add.htm).

EDTA inhibited TTR in a dose-dependent manner (Figure 2a).
Excess amounts of EDTA had to be scavenged with 1 mM Ca2 +

ions before addition of Zn2 + could surmount inhibition and
restore full TTR proteolytic activity (Figure 2b). Alternatively,
excessive EDTA could be removed via dialysis, yielding an
inactive apo-enzyme that can be reactivated by addition of
Zn2 + (Figure 2c). This indicates that the Zn2 + -scavenging effect
of EDTA leads to proteolytic inactivation of TTR. Similar
results were obtained with wtTTR (Supplementary Figure S3 at
http://www.BiochemJ.org/bj/443/bj4430769add.htm).

Complete inhibition of TTR with 1 mM 1,10-phenanthroline
could be partially reversed by adding Zn2 + (Figure 2d). Zn2 +

at 250 μM restored 36% of proteolytic activity in the presence
of inhibitor. This finding is similar to the results obtained

Table 1 Specificity rate constants (k cat/K m) of different TTR mutants

Each individual mutant was tested at least three times in quadruplicates. Results are
means +− S.D. *P < 0.001, **P < 0.0005 compared with wtTTR.

Protein k cat/K m (s− 1 · M− 1)

wtTTR 408.8 +− 6.3
TTR C10A 367.0 +− 20.5
TTR C10A/H88A 3.5 +− 1.8**
TTR C10A/H90A 1.5 +− 0.3**
TTR C10A/E92A 8.7 +− 4.8**
TTR C10A/E72A 3.7 +− 1.2**
TTR C10A/E89A 76.2 +− 14.8**
TTR C10A/H31G 4.8 +− 0.2**
TTR C10A/K70A 4.2 +− 2.3**
TTR C10A/D74A 168.2 +− 36.0*

with EDTA where the addition of 250 μM Zn2 + restored
43% activity (Figure 2b). Zn2 + concentrations exceeding an
optimal value (250 μM for TTR) inhibited TTR (results not
shown), as described previously for other metallopeptidases [27].
Nevertheless, after inhibition of TTR with 1,10-phenanthroline,
dialysis yielded an active peptidase instead of an inactive apo-
enzyme (results not shown). This effect was described previously
for carboxypeptidase A where inhibition of the enzyme with 1,10-
phenanthroline was reversed by Zn2 + addition, but dialysis of
the enzyme treated with the metal chelator restored the active
enzyme rather than producing the apo-enzyme. In that case, it
was suggested that dialysis leads to dissociation of the Zn2 +

–1,10-phenanthroline complex permitting the re-incorporation of
the Zn2 + ion in the enzyme [28]. Addition of 1 mM CaCl2 did not
sequester 1,10-phenanthroline as observed previously for EDTA,
since binding of 1,10-phenanthroline to Ca2 + is significantly less
strong [29] (Figure 2e). In summary, these results indicate that
Zn2 + plays a crucial role in the proteolytic activity of TTR and
thereby suggest that TTR is a Zn2 + -dependent metallopeptidase.

TTR is reactivated by other divalent metal ions

The active site necessary for proteolytic activity has never
been observed in any X-ray structure of wtTTR obtained at
physiologically relevant pH (pH 7–8). This triggered the question
of whether this might be due to an incorrect metal being
present in crystallization assays. Zn2 + is typically found in the
active site of metallopeptidases, but Co2 + , Cu2 + , Ni2 + , Mn2 + or
Fe2 + can also produce active metallopeptidases as described for
metalloenzymes such as thermolysin [30] or peptide deformylase
[31]. Interestingly, TTR complexed to Mn2 + was even slightly
more active than its Zn2 + analogue (Figure 3a), indicating that
TTR can be active with metals other than Zn2 + in vitro. Further
metals tested (Fe2 + and Co2 + ) also yielded active enzymes
(Figures 3b and 3c), whereas in the presence of Ni2 + or Cu2 + ,
TTR displayed very little proteolytic activity (Supplementary
Figures S4a and S4b respectively at http://www.BiochemJ.
org/bj/443/bj4430769add.htm).

Only a fraction of TTR contains Zn2 + and is proteolytically
competent

Metallopeptidases require a metal ion to correctly locate and
activate a water molecule [15]. The metal ion is often Zn2 +

co-ordinated by three residues of the enzyme and a water
molecule. Such a structural feature could not be found in any
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Figure 2 TTR inhibition by EDTA and 1,10-phenanthroline is reversed by addition of ZnCl2

(a) TTR activity was assessed after pre-incubation with increasing concentrations of EDTA. (b) TTR proteolytic activity was blocked with 1 mM EDTA. Reactivation of TTR with Zn2 + was tested in
either the presence or the absence of 1 mM CaCl2. (c) After dialysis, TTR inhibited by EDTA can be reactivated by Zn2 + . TTR was inhibited with 10 mM EDTA, dialysed and subsequently reactivated
with increasing concentrations of Zn2 + . (d) TTR was incubated with 1 mM 1,10-phenanthroline before activity was tested in the presence of increasing concentrations of Zn2 + . Addition of ZnCl2
to TTR inhibited by 1,10-phenanthroline (1,10-phen) partially restored proteolytic activity. (e) CaCl2 does not affect Zn2 + reactivation of TTR inhibited with 1,10-phenanthroline. TTR proteolytic
activity was blocked with 1 mM 1,10-phenanthroline (1,10-phen). Reactivation of TTR with 250 μM Zn2 + was tested either in presence or absence of 1 mM CaCl2. Each experiment was performed
at least twice in duplicate. *P < 0.05, **P < 0.01, ***P < 0.001.
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Figure 3 TTR inhibited by 1,10-phenanthroline is reactivated by divalent
metal ions

TTR was incubated with 1 mM 1,10-phenanthroline (1,10-phen) before activity was tested in the
presence of increasing concentrations of Mn2 + (a), Co2 + (b) or Fe2 + (c). Each experiment
was performed at least twice in duplicate. **P < 0.01, ***P < 0.001.

wtTTR X-ray structure in the PDB crystallized in the pH
range 7–8. Recently, several structures of TTR double mutants
(F87M/L110M) crystallized in the pH range 4.5–7.5 comprising
multiple Zn2 + -binding sites were described [32]. In one of these
structures, a large reorganization of amino acids 74–90 occurs,
shifting the side chain of His88 by almost 9 Å (1 Å = 0.1 nm)
such that this residue together with His90 and Glu92 co-ordinates
a Zn2 + (e.g. PDB code 3GRG) [32]. These three relocated amino
acids, comprising two neutral (His88 and His90) and one negatively
charged amino acid (Glu92), are reminiscent of active sites in
metallopeptidases.

To determine whether recombinant TTR contains Zn2 + ,
the concentration of this ion in wtTTR preparations was
measured using atomic absorption spectrophotometry with
flame atomization. In 5 μM wtTTR, a Zn2 + concentration
of approximately 1 μM could be measured. Moreover, when
TTR was pre-treated with EDTA before atomic absorption
spectrophotometry, no Zn2 + was detected. As described above,
metals other than Zn2 + were shown to interfere with TTR
proteolytic activity, as is the case for Mn2 + , Fe2 + and
Co2 + ; however, these metals were not detected in the wtTTR
preparations (results not shown).

We analysed the effect of adding Zn2 + directly to recombinant
TTR. Increasing Zn2 + concentrations did not increase proteolytic
activity further, but inhibited it (Figure 4a). Such an effect can
be explained by Zn2 + binding near the active site, as observed
previously in X-ray structures of other metallopeptidases [33].
Such a second Zn2 + -binding site is observed in one of the
analysed TTR X-ray structures [32]. One of its residues, Asp74,
was mutated, but this mutation did not abolish the inhibitory
effect of excessive Zn2 + (Figure 4a). The presence of metal ions
can destabilize the TTR tetrameric structure [6]. To check whether
the inhibitory effect of increasing Zn2 + concentrations on TTR
proteolytic activity was related to an increased TTR aggregation
induced by the metal, we performed thioflavin-T-binding assays
of TTR in the presence of 100 and 250 μM Zn2 + . We observed
that Zn2 + addition did not increase TTR aggregation (Figure 4b).

The molar ratio of TTR and Zn2 + determined in our prepara-
tions (∼5:1 TTR/Zn2 + ) suggested that not all recombinant TTR
is in a proteolytically active state. We therefore determined the
percentage of proteolytically active wtTTR by active-site titration
of a 5 μM TTR solution at pH 7.5 with a strong phosphonate
inhibitor identified previously [16] (Supplementary Figure S5
at http://www.BiochemJ.org/bj/443/bj4430769add.htm), which
labels the enzyme active site by co-ordinating the catalytic Zn2 +

[26]. Surprisingly, only a minor fraction of 340 nM wtTTR (∼7%
of total wtTTR) was in a proteolytically active state (Figure 4c).
This percentage was lower than what was expected given the
TTR/Zn2 + molar ratio. This result indicates that only a minor
amount of wtTTR has proteolytic competence at physiological
pH.

TTR is a metallopeptidase with an inducible Zn2 + -binding site

On the basis of the above results, we hypothesized that TTR
is a metallopeptidase having His88, His90 and Glu92 as the three
relevant residues binding the catalytic Zn2 + . To confirm this
hypothesis, mutants of each of the above residues to alanine
were generated, and their kinetic parameters were determined
(Table 1). Mutating any of these three residues led to inactive
TTR (Table 1), demonstrating that His88, His90 and Glu92 are the
active-site residues.

In metallopeptidases, a reactive hydroxyl ion is generated by
transferring a proton from the catalytic water to a neighbouring
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Figure 4 Only a small fraction of TTR comprises Zn2 + and is proteolytically
competent

(a) Proteolytic activity of either TTR C10A or TTR C10A/D74A was tested in the presence of
increasing concentrations of ZnCl2. Both TTR mutants were inhibited by addition of excessive
amounts of ZnCl2. The statistic analysis was performed relatively to each respective mutant
without ZnCl2 addition. *P < 0.05, **P < 0.01, ***P < 0.001. (b) Aggregation of TTR in the
absence and presence of different Zn2 + concentrations as determined by thioflavin-T-binding
assays. (c) Concentration of active enzyme in wtTTR preparations. The concentration of
proteolytically active enzyme was determined by active-site titration with a phosphonate inhibitor.
TTR activity was tested after pre-incubation with a phosphonate inhibitor. Concentration of active
enzyme was determined from the x-axis intercept in the linear range of the plot of residual activity
as a function of inhibitor concentration. Each experiment was performed twice in duplicate.

residue which acts as a general base. From structural analysis
(Figure 5), Glu72 was favoured to be the general base and Glu89

was a less likely candidate. Supporting this hypothesis, mutating
Glu72 abrogated the proteolytic activity of TTR, whereas
mutating Glu89 resulted in a partial reduction in TTR activity.
This latter residue receives two hydrogen bonds from (i) its own
backbone amide, and (ii) the side chain of Thr96′

of a neighbouring

Figure 5 Structure of TTR active site (PDB code 3GRB)

A TTR monomer is represented by its Cα chain (cyan), and a second monomer is displayed in
dark blue. A Zn2 + ligated by the catalytically important residues His88, His90 and Glu92 (red)
is contacting the catalytic water. A second Zn2 + -binding site consisting of general base Glu72,
His31 and Asp74 (orange) is located vicinal to the first site. Glu89 (green) is in hydrogen-bond
contact with Thr96 ′ (blue) of a second TTR monomer which itself also contacts His88. Lys70 is
shown in green. Attractive forces are indicated by broken lines.

second monomer which itself receives a hydrogen bond from His88

of the first monomer (Figure 5). As such, Glu89 fulfils a triple task
in (i) stabilizing the new conformation of rearranged amino acids
74–90, (ii) strengthening the interaction between two monomers
forming a dimer, and (iii) freezing the required conformation of
Thr96′

which keeps His88 in the orientation required to bind Zn2 +

(Figure 5).
Lys70 is a potential hydrogen-bond partner of the general base

Glu72 and could, as such, influence the pKa and conformational
flexibility of this residue. Modelling studies indicated that Lys70

is also in a position to contact a backbone carbonyl oxygen of the
substrate as described previously for Arg203 in thermolysin and
Arg717 in neprilysin [34]. His31 is a second neighbour of Glu72

and also a putative hydrogen-bond partner. To determine the
influence of these two vicinal amino acids of Glu72 on catalytic
activity, we mutated Lys70 to alanine and His31 to glycine. The
results for both mutants confirmed their importance for catalytic
activity with L70A and H31G having only 1.1% and 1.3%
residual activity (Table 1).

A second Zn2 + -binding site in double mutants of TTR
comprising Glu72, His31 and Asp74 [32] is present in close vicinity
to the TTR catalytic site. Its relevance for proteolysis in general
and the role of Asp74 on proteolytic activity in particular were
not obvious which prompted us to generate D74A. Surprisingly,
this mutant suffered only a 2-fold decrease in peptidase activity
(Table 1), thereby indicating that this second Zn2 + -binding site is
not required for proteolytic activity.

In summary, TTR is a mononuclear metallopeptidase with an
inducible active site with His88, His90 and Glu92 serving as Zn2 + -
complexing ligands.

TTR proteolytic activity is unrelated to protein aggregation and
oligomeric state

Several factors, such as the presence of metal ions [6], covalent
modification of Cys10 [7], lowered pH [8] or point mutations
[9], can destabilize the tetrameric TTR structure. To determinate
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Figure 6 Correlation between TTR proteolytic activity and protein assembly
and aggregation

(a) Thioflavin-T-binding assays of TTR incubated with the metallopeptidase inhibitors
1,10-phenanthroline and EDTA. (b) Thioflavin-T-binding assays of TTR mutants of the
catalytically active residues. (c) Size-exclusion chromatography of TTR. The elution profile
of wtTTR (WT) and variants C10A/E72A, C10A/H88A, C10A/H90A, C10A/E92A are shown.
Size standards (Stokes radius/molecular mass] elution volumes are indicated: A, catalase
(5.22 nm/232 kDa); B, albumin (3.55 nm/67 kDa); C, ovalbumin (3.05 nm/43 kDa); D,
chymotrypsinogen (2.09 nm/25 kDa); E, ribonuclease (1.64 nm/13.7 kDa). Experiments were
performed in triplicate. *P < 0.05, **P < 0.01.

whether TTR aggregation propensity is increased in the presence
of 1,10-phenanthroline and EDTA or by the TTR mutants of
the active-site residues His88, His90, Glu92 and Glu72, we performed
thioflavin-T-binding assays after protein acidification. In the case
of 1,10-phenanthroline and EDTA, no major effects on wtTTR
aggregation potential were observed (Figure 6a). Regarding the
TTR mutants, no increased aggregation was detected after
the thioflavin-T-binding assay in any of the mutants tested, if
compared with wtTTR (Figure 6b). In accordance with the similar
catalytic efficiency and inhibition profile, TTR C10A presented
an aggregation potential similar to that of wtTTR (Figure 6b).
Interestingly, TTR C10A/H88A, TTR C10A/H90A and TTR
C10A/E92A had a decreased aggregation profile if compared
with either wtTTR or TTR C10A. For TTR C10A/E72A, no
differences in aggregation were detected (Figure 6b). Previous
studies with wtTTR in an acidic environment revealed the
importance of the EF helix–loop region of residues 75–90 in
conformational changes leading to disassembly and subsequent
aggregation of TTR monomers [8]. Interestingly, mutation of
these residues may lead to a decrease in the protein aggregation
potential under acidic conditions. These findings demonstrate that

TTR catalytic activity and protein aggregation are independent
protein properties.

To further investigate possible alterations in the protein
oligomerization state introduced by the mutants described in the
present paper, we subjected wtTTR and all TTR variants used
in the present study to size-exclusion chromatography. All TTR
species eluted in a single highly symmetrical peak (Figure 6c)
with an elution volume of 12.25 ml, corresponding to an estimated
Stokes radius of 3.75 nm. This size is in agreement with the size
(3.20–3.40 nm) reported in the literature for the wtTTR tetramer
[35,36]. No species of greater size were detected in any of the
TTR variants elution profiles.

DISCUSSION

TTR is well known as a transporter of T4 and retinol. In the present
study, we have shown that a change in the secondary structure of
TTR can provide this protein with a complete new functionality.
If it undergoes a partial conformational change, it acquires the
ability to bind Zn2 + and to obtain proteolytic competence. Despite
decades of research on TTR, its proteolytic activity remained
elusive, a fact only explained by (i) the low activity of TTR, and
(ii) the unfavourable equilibrium between proteolytic inactive
and active conformation of wtTTR present at neutral pH. The
structural lability of TTR in the region of amino acids 74–90 is
clearly observable in wtTTR X-ray structures obtained at low pH
(4.0 and 3.5) (PDB codes 3D7P and 3CBR) [8]. These structures
revealed significant changes in this region, proving the existence
of multiple conformations in wtTTR. Recent NMR measurements
[32] performed on wtTTR at pH 7.5 and increasing amounts of
Zn2 + left the vast majority of the protein unaffected in the region
74–90 with only a small part assuming a modified conformation.
The authors concluded that multiple conformations of wtTTR
exist in a dynamic equilibrium with only a rather small fraction
being able to complex Zn2 + . These observations coincide well
with our finding that only about 7% of total tetrameric wtTTR is
in a proteolytic competent conformation at neutral pH.

Interestingly, the very short HXHXE Zn2 + -binding pattern
is novel and was not found in any metallopeptidase known
to date. Since there was no perfect match detected in the
MEROPS database [15], we looked for close analogues and
found a permutated analogue HXEXH in family M22 (O-
sialoglycoprotein peptidase) [37]. Coincidentally, both enzymes
are inhibited by EDTA and 1,10-phenanthroline, but are
insensitive towards phosphoramidon, a well-known inhibitor of
metallopeptidases.

A search of Pfam [38] through 597 TTR sequences revealed
that only in humans and in some non-human primates are all
three amino acids (His88, His90 and Glu92) conserved, whereas
most other organisms lack His90. These findings imply that the
proteolytic activity in TTR was introduced only very late in
evolution possibly to modulate and fine-tune concentrations of
specific substrates.

Interestingly, inhibition of proteolytic activity of TTR by metal
chelators in vitro can be reversed by addition of various divalent
metal ions as already observed for thermolysin [30]. In TTR, Zn2 +

and Mn2 + restored full proteolytic activity, whereas other metals
such as Fe2 + and Co2 + only partially reactivated the enzyme. In
vivo, the plasma concentration of a given metal and the stability
of a metal–TTR complex will define which metal is preferentially
bound to the TTR active site. The apparent dissociation constant
[Kd (app)] of Zn2 + –TTR is 1 μM [6], which suggests that plasma
TTR may circulate as a complex with Zn2 + . However, we cannot
fully exclude that Mn2 + plays a (structural) role different from
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the one assumed for Zn2 + (catalytic), but other metallopeptidases
such as thermolysin [30] or peptide deformylase [31] also tolerate
multiple metal ions in their active site. Nevertheless, Mn2 + , Fe2 +

or Co2 + could not be detected in our TTR preparations.
We determined a kcat/Km value of 408.8 s− 1 · M− 1 for the

active fraction of TTR (7%), which translates to an effective
kcat/Km value of 6.0×103 s− 1 · M− 1. In comparison with other
metallopeptidases, TTR has a lower (although comparable in
some cases) activity than thermolysin (3×104 s− 1 · M− 1) [39],
ACE (angiotensin-converting enzyme) (2.9×105 s− 1 · M− 1) [40]
and neprilysin (3.5×106 s− 1 · M− 1) [41]. Nevertheless, taking into
account the higher plasma concentration of TTR (approximately
5 μM, which corresponds to 350 nM of proteolytically active
TTR) if compared with other typical plasma metallopeptidases
such as ACE (205 pM) [42], one can conclude that TTR
proteolytic activity and its physiological impact should not be
neglected. Moreover, cleavage of prominent substrates such as
apoA-I and Aβ, which are both involved in late-onset diseases
of prime interest such as atherosclerosis and Alzheimer’s disease,
drastically increase the significance of TTR proteolysis. In fact,
we have shown previously that cleavage of apoA-I by TTR might
affect the development of atherosclerosis [20]. In addition, TTR
cleavage of Aβ peptide, identified in vitro, might influence Aβ
deposition [17].

In summary, we have determined that TTR is a metallopeptidase
and identified the residues important for catalytic activity. The
identification of TTR catalytic residues enables the assessment
of the physiological relevance of TTR proteolysis by the
generation of transgenic mice carrying either human wtTTR
or proteolytically inactive human TTR. Furthermore, knowing
the TTR catalytic machinery may be useful for the design and
screening of compounds modulating diseases that are dependent
on TTR-mediated proteolysis such as Alzheimer’s disease and
atherosclerosis.
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analytical tools. Márcia Liz, Sérgio Leite, Maria Saraiva, Daniel Bur and Mónica Sousa
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Figure S1 ApoA-I cleavage by TTR is blocked by increasing concentrations of EDTA

Figure S2 Cleavage of fluorigenic peptides by wtTTR is inhibited by EDTA
and 1,10-phenanthroline

wtTTR was pre-incubated with different peptidase inhibitors before cleavage of
Abz-YGGRASDQ-EDDnp was determined. *P < 0.0001. Relative fluorescence values were
converted into percentages of residual activity relative to uninhibited controls. Two independent
experiments, each with datasets in duplicate, were performed.

1 These authors contributed equally to this work.
2 These authors contributed equally to this work.
3 To whom correspondence should be addressed (email msousa@ibmc.up.pt).
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Figure S3 wtTTR inhibition by EDTA is reversed by addition of ZnCl2

(a) TTR proteolytic activity was blocked with 1 mM EDTA. Reactivation of TTR with Zn2 + was
tested in either the presence or absence of 1 mM CaCl2. (b) After dialysis, TTR inhibited by EDTA
can be reactivated by Zn2 + . TTR was inhibited with 10 mM EDTA, dialysed and subsequently
reactivated with increasing concentrations of Zn2 + . Representative results are shown and the
experiment was performed at least twice in duplicate. *P < 0.001.
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Figure S4 TTR inhibited by 1,10-phenanthroline can be reactivated by divalent metal ions

TTR was inhibited with 1 mM 1,10-phenanthroline (1,10-phen) and subsequently reactivation was tested with increasing concentrations of Ni2 + (a) and Cu2 + (b).

Figure S5 Structure of the phosphonate inhibitor used for active-site
titration of TTR

c© The Authors Journal compilation c© 2012 Biochemical Society



M. A. Liz and others

Table S1 MS analysis of full-length TTR or tryptic TTR peptides

For each mutant, both the predicted and the observed mass of the full-length protein or of the tryptic peptide containing the mutated amino acid are shown.

Mutation Peptide Predicted mass (Da) Observed mass (Da)

C10A 1–15 (including initiator methionine) 1603.82 1604.95
H31G 22-35 1414.82 1414.83
K70A 49–76 3083.46 3083.45
C10A/E72A Full-length 13802.50 13804.31
D74A 49–76 3096.53 3096.55
H88A 81–104 2541.28 2541.33
E89A 81–103 2435.25 2435.23
H90A 81–104 2541.28 2541.28
C10A/E92A Full-length 13802.50 13798.51

Table S2 MS analysis of tryptic peptides derived from TTR modified with
Pefabloc SC

Tryptic TTR peptides modified with pefabloc are highlighted in bold. Pefabloc SC modification
corresponds to an increase in mass of 183 Da.

Peptide Predicted mass (Da) Observed mass (Da) Variation

16-34 2021.37 2021.13 − 0.24
16–35 2149.55 2149.29 − 0.26
22–34 1367.59 1367.92 0.33
22–35 1495.77 1495.78 0.01
22–48 2798.13 2797.7 − 0.43
35–48 1449.56 1449.67 0.11

1449.56 1632.95 183.39
36–48 1321.39 1321.51 0.12
49–76 3142.40 3142.46 0.06

3142.40 3325.69 183.29
49–80 3707.04 3706.36 − 0.65
71–80 1269.44 1268.55 − 0.89
77–103 3017.33 3200.24 182.91
81–103 2452.69 2453.05 0.36
104–126 2517.88 2517.81 − 0.07
104–127 2647.00 2646.98 − 0.02
105–126 2361.70 2361.85 0.15

Table S3 MS analysis of tryptic peptides derived from apoA-I modified with
PMSF

The apoA-I tryptic peptide modified with PMSF is highlighted in bold. PMSF modification
corresponds to an increase in mass of 154 Da.

Peptide Predicted mass (Da) Observed mass (Da) Variation

1–10 1226.54 1226.55 0.01
1–12 1453.71 1453.71 0.00
11–27 1878.03 1878.03 0.00
13–27 1650.87 1650.87 0.00
13–40 3032.52 3032.50 − 0.02
24-40 1815.85 1815.85 0.00
46–59 1612.79 1612.78 − 0.01
60–77 2202.12 2202.12 0.00
62–77 1932.93 1932.97 0.04
78–94 2020.99 2021.00 0.01
95–107 1579.85 1579.85 0.00
97–107 1380.72 1380.71 − 0.01
108–116 1283.57 1283.57 0.00
117–131; 119–133 1723.94 1723.94 0.00
119–131 1467.79 1467.78 − 0.01
141–149 1031.52 1031.53 0.01
154–160 781.43 781.43 0.00
161–173 1585.81 1585.82 0.01
189–195 831.44 831.44 0.00
207–215 1012.58 1012.58 0.00
207–226 2224.27 2224.27 0.00
227–238 1386.72 1380.70 − 0.02

1386.72 1540.81 154.09
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Research goals 
 

The main focus of this Thesis was to understand the role of the actin cytoskeleton and of 

its dynamics in axon growth and regeneration. For that, we proposed the following 

objectives: 

 

 

- Understand the role of the actin binding protein adducin in neurons and 

understand how its absence impacts the organization of the neuronal cytoskeleton. 

For that we used α-adducin KO mice, the truly full adducin KO, to study the role of 

adducin in the development and maintenance of the nervous system (Chapter 1) 

 

- Explore the role of adducins during the course of axon growth and regeneration. 

Phosphorylated adducins were found to be increased – i.e. inhibited – in the 

growth cones of regenerating axons, in the conditioning lesion model. We used the 

α-adducin KO mice to mimic the conditioning effect, both in vitro and in vivo to 

understand the role of this actin-binding protein in axon extension (Chapter 2) 

 
 

- Dissect the function of profilin-1 in axon growth and regeneration Profilin-1 was 

also suggested to be an important component in the regulation of axon 

regeneration, as supported by proteomic analysis of regenerating axons. 

Therefore we evaluated its role in neuritogenesis and axon extension (Chapter 3) 
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Summary 

 

The actin-binding protein adducin was recently shown to be part of actin rings in the axon 

subcortical cytoskeleton. Here we analyzed α-adducin knockout mice to uncover 

adducin’s function in actin rings. In vitro, lack of adducin impaired axonal transport and 

cytoskeleton dynamics. In vivo, α-adducin knockout mice presented progressive axon 

enlargement that preceded axon degeneration. Using stimulated emission depletion 

super-resolution microscopy, we observed that in the absence of adducin, the periodicity 

of actin rings was maintained, whereas their diameter was increased. Our data supports 

that adducin’s actin-spectrin crosslinking activity is not essential for generating the 

periodic ring pattern, whereas its capping activity is necessary to control actin filament 

growth within rings. Moreover, we further establish the ubiquitous nature of the periodic 

neuronal actin rings by observing their presence in dorsal root ganglia and retinal ganglion 

cells. Finally, our work raises the possibility that changes in neuronal actin rings trigger 

degeneration. 
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Introduction 

 

In neurons, the tight regulation of cytoskeleton organization and dynamics has emerged 

as a key factor in polarization, synaptogenesis, axon growth and degeneration. Recently, 

using stochastic optical reconstruction microscopy (STORM) a new view on the structure 

of the actin cytoskeleton in neurons was proposed (Xu et al., 2013). Initially observed in 

axons of cultured hippocampal neurons, actin was shown to form ring-like structures 

wrapping around the axonal circumference with an even periodic spacing of 180–190 nm 

(Lukinavicius et al., 2014; Xu et al., 2013). Periodic actin rings were then shown to be also 

present in dendrites and in other neuron types, including the nodes of Ranvier in the 

peripheral nervous system (D’Este et al., 2015). Neuronal actin rings contained adducin, 

an actin-capping protein, and were crosslinked by βII/αII spectrin tetramers (Xu et al., 

2013). In hippocampal neuron cultures, the actin rings emerged early during axon 

development, after axon specification, had a proximal to distal assembly fashion along the 

length of the axon, and were maintained in mature neurons. (Xu et al., 2013; Zhong et al., 

2014). Once assembled, the structure was suggested to be highly stable, with slow 

turnover of its components (Zhong et al., 2014). Although the function of neuronal actin 

rings remains largely elusive, this submembraneous cytoskeleton may provide mechanical 

support for the thin structure of axons and dendrites. Supporting this notion, deletion of β 

spectrin in C.elegans leads to axon breakage upon movement of the worm (Hammarlund 

et al., 2007).  

 So far, adducin is the only actin-binding protein identified as part of neuronal actin 

rings. Adducin has three main functions as a regulator of the actin cytoskeleton: i) it 

promotes the bundling of actin filaments, ii) it caps the actin filament barbed ends 

inhibiting the incorporation of new actin monomers, and iii) it is involved in the recruitment 

and crosslinking of spectrin to the ends of actin filaments (Li et al., 1998). In accordance 

with its function as an actin-binding protein, adducin is found in actin-enriched sites in the 

nervous system, primarily in growth cones and synaptic structures such as dendritic 

spines. In this context, adducin is an important molecule in synapse formation, as mouse 

and fly adducin mutants have decreased synaptic stability (Bednarek and Caroni, 2011; 

Pielage et al., 2011). Adducin has been associated with neurodegenerative conditions 

including amyotrophic lateral sclerosis (Gallardo et al., 2014) and cerebral palsy (Kruer et 

al., 2013), further supporting its important role in the homeostasis of the actin cytoskeleton 

in the nervous system.  
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 Mammalian adducins comprise 3 closely related genes (α, β and γ), with α and γ 

being ubiquitously expressed and β being abundant in the brain and in erythrocytes 

(Matsuoka et al., 2000). Functional tetrameric adducin is composed of two heterodimers, 

in which the presence of the α monomer is an absolute requirement. To further 

understand the participation of adducin in the biology of the nervous system, we 

characterized α-adducin knockout (KO) mice (Robledo et al., 2008; Robledo et al., 2012). 

Here we show that loss of α-adducin in vivo causes progressive axon enlargement and 

degeneration and that, in vitro, adducin-deficient hippocampal neurons have axon actin 

rings with increased diameters. Our data propose a model in which alterations in the 

composition of actin rings may be involved in regulating axon diameter.  

 

Results 

 

α-adducin KO mice develop progressive axon enlargeme nt and degeneration 

Functional adducin consists of a tetrameric complex of two heterodimers where the α 

monomer is essential. Nervous tissue from α-adducin KO mice had severely decreased 

levels of β- and γ-adducin (Figure 1A), similar to what is observed in erythrocytes from α-

adducin KO mice (Robledo et al., 2008). Consistently, in α-adducin KO mouse brains no 

dimer/tetramer formation was visualized by western blot after native PAGE (Figure 1B). In 

the absence of α-adducin, capping protein (EcapZ) levels were similar to those found in 

WT animals (Figure 1C). Immunofluorescence of hippocampal neurons further confirmed 

the absence of adducin in α-adducin KO neurons (Figure 1D). After having confirmed that 

α-adducin KO mice lack functional adducin, we examined this model to uncover adducin’s 

function in the development and homeostasis of the nervous system. 
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Figure 1. α-adducin KO mice have severely decreased levels of β- and γ-adducin and lack functional adducin 

tetramers. (A) Western blot analysis of brain, spinal cord and optic nerve of WT and α-adducin KO mice using 

a pan-specific antibody that recognizes the in α-, β- and γ-adducin forms (Xu et al., 2013). (B) Anti-adducin 

western blot analysis of brain extracts of WT and α-adducin KO brain extracts run on native gels. The 260kDa 

standard is indicated (note that under reducing conditions the observed MW of an adducin dimer is of 

approximately 210-260 kDa (Gardner and Bennett, 1986). (C) Western blot analysis of capping protein (CapZ) 

in brain extracts of WT and α-adducin KO mice. (D) Anti-adducin immunofluorescence in E16 hippocampal 

neurons isolated from WT and α-adducin KO mice. Left panels: DAPI (blue), βIII-tubulin (green) and pan-

adducin (red); right panels: pan-adducin (white). Scale bar: 10µm 

 

To understand the relevance of adducin’s loss in neuron biology, we analyzed the 

central and peripheral nervous system of α-adducin KO mice. In the central nervous 

system, the absence of α-adducin led to axon loss in both the optic nerve (Figure 2A and 

2B) and the spinal cord (Figure 2D and 2E). In the optic nerve, axon loss was progressive 

since normal axon density was observed at postnatal day 20 (P20), but by P100 α-

adducin KO optic nerves had a 40% reduction of axon density (WT: 731044 axons/mm2 

±22718; α-adducin KO: 444215 axons/mm2 ±63918; p<0.01) (Figure 2B). At this age, we 

also observed severe atrophy (Figure 2C) with a 33% decreased optic nerve area in 

mutant nerves (WT: 0.088mm2 ±0.002; α-adducin KO: 0.058mm2 ±0.005; p<0.001). 

Overall, the decreased axon density and nerve cross-sectional area resulted in an 

estimated loss of 60% of the total number of axons in α-adducin KO optic nerves. A 

decreased axon density was also visible in α-adducin KO spinal cords. Analysis of the 

corticospinal tract (CST) revealed a 25% decreased axonal density in the absence of α-

adducin (WT: 462197 axons/mm2 ±35667; α-adducin KO: 305513 axons/mm2 ±13447; 

p<0.05) (Figures 2D and 2E). In the peripheral nervous system, we also observed a 

decreased density of myelinated axons in sciatic nerves from α-adducin KO mice (data 

not shown). Combined, these results support previous analyses in the PNS (Robledo et 
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al., 2012), and highlight that loss of adducin has a major impact in central and peripheral 

nervous system axons. 

 

Figure 2. α-adducin KO mice show progressive axon enlargement and axonopathy. (A) Representative 

12000x microphotographs of ultra-thin sections of optic nerves from WT and α-adducin KO mice at P20, P60 

and P100; Scale bar: 2µm. (B) Axon density in the optic nerve of WT (P20 n=4; P60 n=5; P100 n=5) and α-



Chapter 1 

125 

 

adducin KO mice (P20 n=4; P60 n=5; P100 n=4) at P20, P60 and P100. (C) Representative semi-thin cross 

sections of WT and α-adducin KO optic nerves stained with toluidine blue; Scale bar: 100µm. (D) 

Representative 6000x microphotographs of ultra-thin sections of WT and α-adducin KO corticospinal tracts; 

asterisks highlight axons with enlarged diameter; Scale bar: 1µm. (E) Axon density in the corticospinal tract of 

WT (n=4) and α-adducin KO mice (n=4) at P100. (F-G) Axon distribution according to diameter in P20 (F), 

P60 (G) and P100 (H) WT (P20 n=5; P60 n=4; P100 n=6) and α-adducin KO (P20 n=4; P60 n=4; P100 n=5) 

optic nerves. (I) Representative semi-thin sections of WT and α-adducin KO sciatic nerves; asterisks highlight 

axons with enlarged diameter; Scale bar: 10µm. Graphs show mean ± SEM; p-value *<0.05, **<0.01. 

 

Interestingly, progressive axonal enlargement preceded axon loss in α-adducin KO mice. 

The distribution of axons of different diameters was normal in the P20 optic nerve, but by 

P60 an increase in high diameter (> 2µm) axons was observed and was exacerbated at 

P100 where an overall decrease in small diameter axons was accompanied by an 

increase in large diameter axons (Figures 2F, 2G and 2H). Interestingly, myelin thickness 

as determined by the g-ratio was similar in the optic nerve of P100 WT and α-adducin KO 

mice (data not shown) suggesting that enlarged axons are normally myelinated. 

Abnormally large axons were also found in the spinal cord (Figure 2D, asterisks) and 

sciatic nerve (Figure 2I, asterisks). In summary, our results show that in the absence of 

adducin, there is an enlargement of axon diameter and axonal loss in both the CNS and 

PNS. 

 

Loss of adducin impairs cytoskeleton dynamics in th e growth cone and axonal 

transport  

Cytoskeleton deregulation is generally related to axon enlargement and axonopathy. 

Therefore, we examined the effects of α-adducin depletion on the axonal cytoskeleton. 

P100 α-adducin KO optic nerve axons had a constant axon diameter as observed in 

longitudinal sections, without focal enlargements or visible accumulation of organelles 

(Figure 3A) and with normal microtubule and neurofilament density (Figure 3B and 3C). In 

vitro, the growth cones of α-adducin KO hippocampal (Figure 3D and 3E) and DRG 

neurons (Figure 4A-B) had increased actin retrograde flow as determined after 

transfection with LifeAct-GFP (Riedl et al., 2008), probably resulting from the loss of the 

actin-capping activity of adducin. Moreover, the growth speed of protruding microtubules, 

as assessed after transfection with the microtubule plus-end tracking protein, end-binding 

protein 3 (EB3)-GFP (Stepanova et al., 2003), was also increased in α-adducin KO growth 

cones (Figure 3F and 3G), suggesting a synergistic effect of increased actin dynamics 

and microtubule invasion and growth. Subsequent analysis of microtubule modifications 

by immunofluorescence in hippocampal neuron growth cones suggested that increased 
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microtubule growth speed is probably independent of the dynamic state of tubulin as the 

acetylated/tyrosinated microtubule ratio was normal in α-adducin KO neurons (Figure 3H 

and 3I). This data supports the notion that increased microtubule growth speed in α-

adducin KO growth cones is likely a consequence of actin destabilization. 

 

 

Figure 2. Loss of adducin impairs cytoskeleton dynamics in the growth cone and axonal transport. (A) 

Longitudinal sections of WT and α-adducin KO optic nerves; Scale bar 1µm. (B-C) Analysis of neurofilament 

(B) and microtubule (C) densities were measured in WT (n=6) and α-adducin KO (n=5) optic nerves. (D) 

Representative growth cones of lifeAct-GFP transfected hippocampal neurons (upper) and respective 

kymographs (lower). Red asterisks highlight the region where kymographs were performed. (E) Quantification 

of actin retrograde flow in hippocampal neurons from WT and α-adducin KO mice. (F) Representative growth 

cones of EB3-GFP transfected DRG neurons (upper) and respective kymographs (lower). (G) Quantification of 

microtubule growth speed in DRG neurons from WT and α-adducin KO mice. (D and F) Upper panel: scale 

bar: 2µm; Bottom panel: vertical scale bar- time (t): 50 seconds, horizontal scale bar- distance (d): 1µm. (H) 

Immunofluorescence of acetylated and tyrosinated microtubules (MT) in hippocampal neuron growth cones 

from WT and α-adducin KO mice. Scale bar: 2µm. (I) Quantification of acetylated and tyrosinated microtubules 

in the tip and shaft of growth cones represented in H. (J-O) Analysis in WT and α-adducin KO hippocampal 

neurons of the axonal transport of mitochondria (J, K), lysosomes (L, M) and synaptophysin (N, O); (J, L and 
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N) Upper-still images at t=0 and lower- kymographs; (K, M and O) Quantification of the speed of axonal 

transport. Scale bar: time (t): 100 seconds; distance (d): 5µm. Graphs show mean ± SEM; p-value *<0.05, 

**<0.01. 

As changes in cytoskeleton dynamics and axon enlargement are largely related to 

impaired axonal transport, we compared the movement of organelles and synaptic 

vesicles in WT and α-adducin KO hippocampal and DRG neurons. In hippocampal 

neurons, the absence of adducin affected the speed of axonal transport of mitochondria 

(Figure 3J and 3K) and lysosomes (Figure 3L and 3M). Despite the decreased speed of 

axonal transport in both the anterograde and retrograde directions, we did not observe a 

consistent impact in the percentage of moving cargos (data not shown). Interestingly, no 

difference in the speed of transport of synaptic vesicles was observed (Figure 3N and 

3O). In DRG neurons, similar findings were made, i.e., in the absence of adducin 

decreased speed of transport of organelles and unchanged speed of transport of synaptic 

vesicles were detected (Figure 4C-H). Of note, the levels of motor proteins in WT and α-

adducin KO mice were comparable (data not shown). 

 

 

Figure 4. α-adducin KO impairs actin cytoskeleton and axonal transport in DRG neurons. (A) Representative 

growth cones of lifeAct-GFP transfected DRG neurons (upper) and respective kymographs (lower). Red 

asterisks highlight the region where kymographs were performed. Upper panel: scale bar: 2µm; Bottom panel: 

vertical scale bar (time (t)): 50 seconds, horizontal scale bar (distance (d)): 1µm. (B) Quantification of actin 

retrograde flow in DRG neurons from WT and α-adducin KO mice. (C-H) Analysis in WT and α-adducin KO 
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DRG neurons of the axonal transport of mitochondria (C, D), lysosomes (E, F) and synaptophysin (G, H); (C, 

E and G) Upper-still images at t=0 and lower- kymographs; (D, F and H) Quantification of the speed of axonal 

transport. Scale bar: time (t): 100 seconds; distance (d): 5µm. Graphs show mean ± SEM; p-value *<0.05, 

**<0.01. 

 

The periodic nature of the actin-spectrin submembra neous cytoskeleton is 

conserved in retinal ganglion cells and DRG neurons  

Recently, adducin was shown to be a component of actin rings in hippocampal neurons 

(Xu et al., 2013). The development of silicon rhodamine actin (SiR-actin), and the usage 

of stimulated emission depletion (STED) microscopy, allowed the detection of actin rings 

in axons, dendrites and, at the nodes of Ranvier (D’Este et al., 2015). The function of this 

novel organization of the neuronal actin cytoskeleton remains elusive, and it is not known 

if these structures are present in other neurons. Using SiR-actin and STED microscopy, 

we show that DRG neurons (Figure 5A) and retinal ganglion cell neurons (Figure 5B) also 

assemble actin rings. In these neuron types, the spacing of approximately 190 nm 

between rings was maintained. In DRG neurons the ring periodicity was of 194.4±0.5 nm 

(442 measurements) (Figure 5C) and in retinal ganglion cells 190.2±4.1 nm (62 

measurements) (Figure 5D). Interestingly, in both DIV2 DRG neurons and DIV5 retinal 

ganglion cells, the actin-spectrin lattice was not visible in all of the cells (data not shown). 

In rat DRG neurons, either the rings were visible in all the neurites of a given cell or 

alternatively, they were not detected in any of the neurites (data not shown). Throughout 

the axon shaft, parallel long actin fibers were visible in axons from DRG neurons (Figure 

5E) and retinal ganglion cells (not shown), similar to what has been reported in 

hippocampal neurons (D’Este et al., 2015). In summary, our data further establishes the 

ubiquitous nature of the subcortical cytoskeleton periodicity. 
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Figure 5. The periodicity of actin rings is maintained in retinal ganglion cells and DRG neurons. (A-B) STED 

super resolution microscopy was performed in DIV2 rat DRG (A) and DIV5 mouse retina explants (B). STED 

images were obtained (upper) and deconvolved (lower) using Huygens Essential software. Scale bars: 2µm. 

(C-D) Analysis of the distribution of the axonal actin rings in (A) and (B), respectively. Measurements were 

performed in deconvolved images (DRG neurons: n=16 axons, 442 measurements; retinal ganglion cells: n=2 

axons, 62 measurements). (E) DIV2 DRG neurons present longitudinal actin filaments, highlighted with white 

arrowheads. Scale bar: 1µm.  
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Adducin is not essential for generating the periodi c pattern of neuronal actin rings 

but is necessary for the maintenance of axonal diam eter 

 

The role of adducin in actin ring formation and organization is still unknown. Given the 

different roles of adducin in the regulation of the actin-spectrin cytoskeleton, we 

hypothesized that in the absence of this protein the periodic pattern of rings would be 

disrupted due to decreased crosslinking of actin-spectrin junctions, and/or the lack of 

adducin’s capping activity would give rise to aberrant F-actin sized filaments, resulting in 

enlarged ring diameter. To analyze actin rings in α-adducin KO mice, DIV16 hippocampal 

neurons were stained with SiR-actin. Dendrites were enriched in longitudinal actin fibers 

and actin-enriched dendritic spines laterally. At this stage, as previously described (D’Este 

et al., 2015), the presence of spines highly enriched in actin precluded the identification of 

the periodic actin pattern in dendrites. Axons were clearly distinguished by the low 

abundance of longitudinal actin fibers and absence of dendritic spines (Figure 6A). At 

DIV16, both WT and α-adducin KO axons had actin rings throughout the entire axon shaft. 

The periodic pattern of these structures was independent of the presence of adducin in F-

actin filaments (Figures 6B, 6C). Similar periodicities were seen in WT and α-adducin KO 

axons (WT=194.5±1.0 nm, n=60 axons; α-adducin KO=194.7±2.0 nm, n=38 axons; 

p=0.89) (Figures 6D-F). These data suggest that the N-terminus actin-binding domain of 

spectrin is probably sufficient for actin ring binding to the spectrin lattice.  

In the model proposed for actin ring organization in neurons (Xu et al., 2013), each ring is 

composed by several short and stable actin filaments capped at their barbed ends by 

adducin. Removal of the capping protein is predicted to lead to dysregulation of actin 

filament length, resulting in increased filament size and concomitantly increased diameter 

of the neuronal actin rings. In α-adducin KO axons actin rings had a 1.3-fold enlarged 

diameter (WT: 409.2±21.8 nm, n=50 axons; α-adducin KO: 521.7±29.2nm, n=33 axons; 

p=0.002) (Figure 6G). These findings suggest that the capping activity of adducin, rather 

than its spectrin recruiting activity, is required to maintain axonal actin ring diameter and 

when absent, the rings become enlarged. Together, our findings open the exciting 

possibility that the dysregulation of axonal diameter, such as observed in α-adducin KO 

mice, occurs as a consequence of altered axon actin rings, which ultimately leads to 

axonal degeneration. 
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Figure 4. Analysis of axonal actin rings in WT and α-adducin KO DIV16 hippocampal neurons. (A) STED 

super resolution microscopy of DIV16 hippocampal neurons. One axon is highlighted with white arrowheads. 

Scale bar: 2µm. (B-C) WT (B) and α-adducin KO (C) hippocampal neurons were imaged by STED microscopy 

(upper) and deconvolved (lower). Scale bars: 2µm. (D-E) Analysis of the distribution of axonal actin rings in 

WT (D) and α-adducin KO (E) hippocampal neurons. (F) Quantification of the average ring spacing in WT 

(n=1450 inter-ring spacings, n=60 axons) and α-adducin KO hippocampal neurons (n=1140 inter-ring 

spacings, n=38 axons). (G) Quantification of the average ring diameter in WT (n=1533 measurements, n=50 

axons) and α-adducin KO (n=1164 inter-ring spacings, n=33 axons) hippocampal neurons. All measurements 

were done in deconvolved images. Graphs show mean ± SEM; each dot is the average measurement for a 

given individual axon; p-value **<0.01. 

 

Discussion 

 

The neuronal cytoskeleton is a tightly regulated structure where the interplay of its three 

main components, actin, microtubules and neurofilaments is crucial. Up to the discovery 

of axon actin rings, the neuronal actin cytoskeleton had its relevance mainly restricted to 

growth cones, synaptic structures and the axon initial segment. The identification of these 

novel ring structures certainly opened new exciting prospects on our understanding of 

neurobiology. Still, the molecular details of ring composition, assembly, maintenance, 
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behavior and function (both under physiological conditions and upon dysfunction) are 

largely unknown. Although molecular detail is still lacking, three components have been 

identified in axonal rings namely, actin, spectrin and adducin (Xu et al., 2013). Here we 

show that the absence of adducin in vivo leads to a time-dependent axon enlargement 

and loss, and in vitro to increased actin ring diameter. Previous evidence suggested that 

adducin is an important player in brain homeostasis and disease: some α-adducin KO 

mice develop hydrocephaly in a background dependent manner (Robledo et al., 2008; 

Robledo et al., 2012); β-adducin KO mice have impaired dendritic spine assembly and 

maintenance in conditions of high synaptic turnover (Bednarek and Caroni, 2011); and γ-

adducin mutations are associated with cerebral palsy, possibly resulting from defects in 

neuronal migration (Kruer et al., 2013). Here we showed that the absence of adducin 

leads to axon enlargement and axonal loss. These defects were independent of 

hydrocephaly, as they occurred irrespectively of the presence of ventricle enlargement. 

  

Axonal actin rings, axon diameter and axon degenera tion 

The progressive enlargement of axons in α-adducin KO mice was found to be related to 

an early increase in axon actin ring diameter in vitro. This raises new views on the 

regulation of axon diameter, and its relationship with axon degeneration. As previously 

suggested (Xu et al., 2013; Zhong et al., 2014) and given the actin-capping activity of 

adducin, actin rings are unlikely to be made of continuous F-actin filaments spanning the 

entire ring, but should be made of short adducin-capped filaments. In this context, adducin 

would control the length of F-actin filaments within the ring and thereby function as a 

regulator of ring and axonal diameter. In axonal actin rings, adducin could serve the 

additional function of crosslinking actin to the spectrin lattice. However, our data supports 

that the adducin crosslinking activity is not necessary for the periodicity of the actin-

spectrin lattice, although the possibility that this activity is necessary for the stability of the 

submembraneous actin cytoskeleton remains to be determined. In this respect, adducin 

was suggested to stabilize the actin cytoskeleton during neuronal maturation (Xu et al., 

2013; Zhong et al., 2014). The periodic distribution of spectrin and actin is visualized at 

DIV2-3, whereas adducin’s presence in the rings is only visible at DIV6 (Zhong et al., 

2014). Early adducin-deficient actin rings are probably more sensitive to membrane 

extraction (as needed for phalloidin staining) and this may be the reason why under these 

conditions, actin rings are not detected before DIV5. In contrast, the use of cell-permeable 

probes (such as SiR-actin) allows the observation of actin rings as early as DIV2 (D’Este 

et al., 2015). This increased stability of actin rings may be conferred by adducin 
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recruitment to the lattice that would allow the subcortical cytoskeleton to become more 

stable as axons mature.  

There are several similarities between the spectrin-actin lattice in neurons and 

erythrocytes. In erythrocytes, spectrin, actin and associated proteins are organized into a 

stable cortical cytoskeleton, often referred to as the membrane skeleton, that confers 

strength and elasticity to the red cell (Mohandas and Gallagher, 2008). The absence of 

adducin results in misshaped erythrocytes that are less resistant to mechanic stresses 

such as osmotic pressure (Gilligan et al., 1999; Robledo et al., 2008). However, when 

erythrocytes need to squeeze through small capillaries, the erythrocyte cortical 

cytoskeleton becomes dynamic and deformable. In neurons, it would be interesting to 

assess whether the actin-spectrin lattice is also able to become dynamic in specific 

contexts such as during axon degeneration and plasticity events where actin rings may be 

rearranged/disassembled to promote either constriction of the axonal membrane, axon 

branching, among others.  

 

Axon actin rings, microtubules and axonal transport  

The reason underlying the decreased velocity of axonal transport of mitochondria and 

lysosomes in α-adducin KO neurons remains elusive. The fact that only the transport of 

organelles is impaired, and not that of synaptic vesicles, might be related to the different 

sizes of these cargos or to their different binding partners. Could there be a link between 

the increased axonal diameter in α-adducin KO neurons and the decreased speed of 

axonal transport? This correlation is not straightforward as the rate of fast axonal transport 

is thought to be independent of axon caliber variations, at least within the range of those 

here reported for α-adducin KO axons (Ochs, 1972; Wortman et al., 2014). Decreased 

microtubule density could lead to decreased speed of axonal transport (Wortman et al., 

2014). However, microtubule density was unaffected in α-adducin KO mice. Of possible 

interest, at least in the context of cell cycle, α-adducin was shown to interact with 

microtubules via myosin X (Myo10) (Chan et al., 2014), establishing a link between 

adducin and the microtubule cytoskeleton. Could there be a link between axonal actin 

rings, microtubules and axonal transport? In fact, axonal actin rings are dependent on 

microtubule integrity; microtubule destabilization with nocodazole leads to loss of actin 

rings in axons (Zhong et al., 2014). How these different components of the axonal 

cytoskeleton crosstalk, however, is unknown. A possible relation between actin rings and 

axonal transport has already been raised (Gallo, 2013). According to this hypothesis, actin 

rings could serve as docking sites for axonal cargos associated with myosins, which 
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would allow an approximately 200nm resolution for the control of axonal transport (Gallo, 

2013). Supporting this notion, in neurons, mitochondria dock along axons through 

myosinV, and depletion of myosins results in increased speed and length of microtubule-

based runs (Pathak et al., 2010). Would actin rings with an increased diameter have an 

increased capacity to ‘sequester’ myosin motors, decreasing the average speed of axonal 

transport? The answer to this question, together with several others raised by the 

identification of these novel ring structures, relies intimately on the identification of the 

actin-binding proteins that shape actin rings, on their mechanistic assembly, on 

determining their relevance to the mechanical properties of axons and dendrites, and on 

the characterization of their organization in the course of axon degeneration. 

 

EXPERIMENTAL PROCEDURES 

 

Animals 

α-adducin KO mice and WT littermates were obtained from heterozygous breeding pairs 

and genotyped as described (Robledo et al., 2008). Mice were handled according to 

European Union and National legislation. 

 

Western blotting 

For analyses under denaturing conditions, 10% SDS-PAGE gels or Criterion XT 3-8% 

gradient gels (Bio-rad), were run with brain, spinal cord or optic nerve extracts from at 

least n=3 WT and n=3 α-adducin KO P30 mice. Gels were transferred to nitrocellulose 

membranes for 2 hours using a semi-dry system. For analyses under native conditions, 

4% PAGE gels were used with 50µg of brain extracts from WT (n=3) and α-adducin KO 

mice (n=3). Native gels were run and transferred to a PVDF membrane for 2 hours using 

a semi-dry system. Membranes were washed in Tris buffered saline (TBS) with 0.1% 

Tween-20, blocked in 5% non-fat dried milk in TBS for 1 hour at room temperature, and 

incubated with primary antibodies (in 5% BSA in TBS with 0.1% Tween-20) for 1 hour at 

room temperature or overnight at 4ºC. The following primary antibodies were used: rabbit 

anti-adducin, 1:1000 (Abcam, ab51130); mouse anti-β-actin, 1:5000 (Sigma, A5441); 

mouse anti-capping protein α1/2, 1:50 (Developmental Studies Hybridoma Bank, MAB 

5B12.3) and mouse anti-capping protein β2, 1:150 (Developmental Studies Hybridoma 

Bank, MAB 3F2.3). Membranes were washed and incubated with secondary antibodies in 

5% non-fat dried milk in TBS for 1 hour, at room temperature. The secondary antibodies 
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used were: donkey anti-mouse IgG, donkey anti-rat IgG or donkey anti-rabbit IgG 

conjugated with HRP, 1:5000 (all from Jackson Immunoresearch Europe). Membranes 

were then incubated for 5 minutes at room temperature with Luminata Crescendo 

Western HRP substrate (Millipore) and chemiluminescence was analyzed by either 

exposure to Amersham Hyperfilm ECL (GE healthcare) or detection in ChemiDoc XRS 

System (Bio-Rad). 

 

Hippocampal neuron cultures 

Hippocampal neuron cultures were performed as described (Kaech and Banker, 2006). 

Briefly, E16.5 embryos were individually dissected and genotyped. The hippocampus of 

each individual pup was digested 15 minutes in 0.06% porcine trypsin solution (Sigma, 

T4799), triturated, and plated either at 16000 cells/well in 24-well plates containing pre-

coated glass cover slips treated with 20µg/mL poly-L-lysine (Sigma, P2636), or at 12200 

cells/well in 8-well µ-dishes (IBIDI, 80827) coated with 20µg/mL poly-L-lysine for STED 

microscopy and axonal transport assays. Neurons were cultured in Neurobasal medium 

(Invitrogen) supplemented with 1x B27 (Gibco), 1% penicillin/streptomycin (Gibco) and 

2mM L-glutamine (Gibco). 

 

DRG neuron cultures 

DRG neuron cultures were performed following the protocol detailed in (Fleming et al., 

2009). Briefly, DRG from 8 weeks old Wistar rats were collected, digested for 90 minutes 

with 0.125% collagenase IV-S (Sigma, C1189), triturated and centrifuged in a 15% BSA 

gradient. For STED microscopy, 3750 cells/well were plated in 8-well µ-dishes coated with 

20µg/mL poly-L-lysine (Sigma, P2636) and 5µg/mL laminin (Sigma, L2020) and grown in 

DMEM:F12 (Sigma, D8437) supplemented with 1x B27 (Gibco), 1% 

penicillin/streptomycin (Gibco), 2mM L-glutamine (Gibco) and 50ng/mL NGF (Millipore, 

01-125). 

 

Retina explants cultures 

For retina explants, retinas from P5 Sv129/b6 mice were dissected in neurobasal medium 

and gently titrated with a P1000 tip. For STED microscopy, retina fragments were washed 

3x with neurobasal medium and plated in 8-well µ-dishes (IBIDI, 80827) coated with 

20µg/mL poly-L-lysine (Sigma, P2636) and 2µg/mL laminin (L2020, Sigma). Explants 

were incubated with complete retina explant growth media- Neurobasal (Invitrogen,) 
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supplemented with 1x B27 (Gibco), 1% penicillin/streptomycin (Gibco), 0.2% fungizone 

(Gibco), 1mM L-glutamine (Gibco), 5ng/mL human recombinant BDNF (PeproTech) and 

1ng/mL CNTF (PrepoTech). 

 

Morphometric analysis 

For morphometric analyses, WT and α-adducin KO littermates were sacrificed at 3 

different time points, P20 (n=4 WT; n=4 α-adducin KO), P60 (n=5 WT; n=5 α-adducin KO) 

and P100 (n=5 WT; n=4 α-adducin KO). Spinal cords, optic nerves and sciatic nerves 

were fixed for two weeks in 4% glutaraldehyde (Merck) in 0.1M sodium cacodylate buffer 

(pH 7.4). After post-fixation with 1% OsO4 in 0.1M sodium cacodylate buffer (pH 7.4) for 2 

hours, tissues were dehydrated and embedded in Epon (Electron Microscopy Sciences). 

To determine axon caliber and density in the optic nerve and spinal cord, and 

unmyelinated axon density in sciatic nerve samples, ultrathin sections (60nm) prepared in 

a Leica ultramicrotome were placed on 200-mesh copper grids (Electron Microscopy 

Sciences) and counterstained with alcoholic uranyl acetate solution (2% w/v; 10 minutes), 

uranyl acetate solution (2% w/v; 10 minutes) and lead citrate (4% w/v; 10 minutes). Grids 

were observed in a JEOL JEM-1400 transmission electron microscope equipped with an 

Orious Sc1000 digital camera. Ten to 15 non-overlapping photomicrographs were 

obtained at 12000x (area of each microphotograph was 165µm2) for optic nerve samples, 

and 5 non-overlapping images were obtained at 6000x (area of each microphotograph 

was 635µm2) for spinal cord samples, and used for determinations of axon density. For 

the analysis of axon diameter in the optic nerve, two 165µm2 photomicrographs were 

used, with a minimum of 112 axons measured. 

In sciatic nerves, to determine axon caliber and the density of myelinated axons, 1µm-

thick nerve sections were stained for 10 minutes with 1% p-phenylenediamine (PPD) in 

absolute methanol, dried, and mounted on a drop of DPX (Merck). The entire area of the 

nerve was photographed using an Olympus optical microscope equipped with an Olympus 

DP 25 camera and Cell B software, and images were imported into Photoshop (Adobe).  

 

Actin retrograde flow and microtubule dynamics  

DRG from WT and α-adducin KO P30 mice were nucleofected with either 0.75µg Lifeact-

GFP (Riedl et al., 2008) or 0.5µg EB3-GFP (Stepanova et al., 2003), using the 4D 

Nucleofector Amaxa system (Lonza, CM#137 program), left in suspension in complete 

medium for 24h, and then plated 5700 cells/cm2 in 20µg/mL poly-L-lysine (Sigma) and 
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5µg/mL laminin (Sigma) coated 35mm µ-Dish (IBIDI, 81158). Hippocampal neurons were 

nucleofected with 0.75µg Lifeact-GFP, using the 4D Nucleofector Amaxa system (Lonza, 

CU#133 program) and plated 70000 cells/cm2 in 20µg/mL poly-L-lysine (Sigma) coated 

35mm µ-Dish (Ibidi, 81158). Time-lapse recordings were performed in an Andor 

Revolution XD spinning disk (Andor Technologies) at 37ºC, at DIV2 for DRG neurons and 

DIV3 in hippocampal neurons. For the analysis of actin retrograde flow, neurons were 

imaged for 200 seconds (40 frames, captured each 5 seconds) and kymographs were 

generated with the Kymograph plug-in for ImageJ (DRG neurons: n=217 measurements 

from 40 WT growth cones; n=135 measurements from 27 α-adducin KO growth cones; 

hippocampal neurons: n=103 measurements from 14 WT growth cones; n=123 

measurements from 15 α-adducin KO growth cones). For the analysis of microtubule 

dynamics, neurons were imaged for 200 seconds (100 frames, captured each 2 seconds) 

and kymographs were generated using a Matlab script (LAPSO) (Pereira and Maiato, 

2010) (n=324 measurements from 13 WT growth cones; n=240 measurements from 14 α-

adducin KO growth cones). 

 

Axonal transport  

Hippocampal and DRG neuron cultures were performed as detailed above. For the live 

imaging of axonal transport, DIV4 (DIV5 for synaptophysin) hippocampal neurons (a 

timepoint at which their polarized morphology allows the clear identification of the axon as 

the longest neurite) or DIV2 DRG neurons were used. Briefly neurons were incubated for 

45 minutes with 100nM of either Lysotracker (Life Technologies) or Mitotracker (Life 

Technologies) in complete medium. For synaptic vesicles analysis, DIV4 neurons were 

infected 24 hours with baculovirus expressing synaptophysin-GFP (Life Technologies). 

Transport of axonal mitochondria, lysosomes or synaptic vesicles was analyzed in a Leica 

SP5II confocal microscope (Leica Microsystems) with acquisition at 0.8 Hz for 2 min. Only 

vesicles and organelles moving for 10 consecutive frames were considered. In each case, 

at least 48 vesicles or organelles were measured per condition, from 15 axons; for DRG 

neurons, at least 114 vesicles or organelles were measured per condition from a minimum 

of 14 DRG neurons. 

 

Acetylated/tyrosinated α-tubulin  

The assessment of acetylated/tyrosinated α-tubulin was performed using WT and α-

adducin KO DIV3 hippocampal neurons extracted in PEM buffer (100mM PIPES, 5mM 

EGTA, 1MgCl2, pH6.9) containing 1% Triton X-100, 2% PEG, 2µM phalloidin and 2µM 
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Taxol, and fixed in 2% GTA in 0.1M cacodylate. Immunofluorescence was performed 

using mouse anti-acetylated tubulin (1:20000, # T7451, Sigma) and rat anti-tyrosinated 

tubulin (1:15000, MCA77G, Serotech). The ratio of acetylated versus tyrosinated α-tubulin 

was determined by measuring the fluorescence intensities of acetylated α-tubulin and of 

tyrosinated α-tubulin with ImageJ. Measurements were done in the distal 0-5µm and 5-

10µm of the growth cone tip, considering the labeling in the tyrosinated α-tubulin channel, 

after background subtraction for each channel. At least 150 growth cones were measured 

per condition. 

 

Adducin immunofluorescence 

DIV16 hippocampal neurons were treated with 0.1% Triton-X, blocked and incubated with 

the primary antibodies rabbit anti-adducin, 1:200 (Abcam, ab51130) and mouse anti βIII-

tubulin, 1:1000 (Promega, G7121). Secondary antibodies used were donkey-anti-mouse 

Alexa Fluor 488 and donkey-anti rabbit Alexa Fluor 568, both diluted 1:1000 (Invitrogen, 

A-21202 and A10042 respectively). Coverslips were mounted in fluoroshield (Sigma). 

Images were acquired in a Leica DMI 6000B inverted microscope at 40x. 

 

STED imaging of axonal actin rings 

Actin ring analysis was done using the silicon-rhodamine (SiR)-actin probe (Lukinavicius 

et al., 2014) and stimulated emission depletion microscopy (Lukinavicius et al., 2014), in a 

Leica TCS SP8 STED 3X (Leica Microsystems). DIV16 hippocampal neurons, DIV2 rat 

DRG neurons and DIV5 mouse retina explants were incubated for 1 hour with 2µM SiR-

actin (kindly provided by Prof Kai Johnsson, École Polytechnique Fédérale de Lausanne, 

Switzerland), fixed 20 minutes in 4% PFA and post-fixed in PBS. Samples were initially 

visualized by confocal and then STED microscopy was performed. Axons were fine-tuned 

focused in their lateral outmost points and the focus point was confirmed by STED image 

sharpness. Raw STED images were deconvolved using Huygens Essential software 

(Scientific Volume Imaging B.V), using the adjusted GMLE algorithm. To analyze ring 

distribution, deconvolved images were plotted longitudinally in n=1450 WT inter-ring 

spacings (from 60 axons) and n=1140 α-adducin KO inter-ring spacings (from 38 axons) 

in hippocampal neurons; n=442 inter-ring spacings in rat DRG neurons (from 16 axons); 

and n=62 inter-ring spacings in retina explants (from 2 axons). All measurements were 

performed using Huygens Software. To determine axon diameter, the distance between 

the outer points (brighter, in the focus plane) that formed the actin ring was determined. 
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Only actin rings unequivocally focused in the maximum wide plan were considered 

(n=1533 WT actin rings, from 50 axons and n=1164 α-adducin KO rings, from 33 axons). 

 

Statistics 

Data are shown as mean ± SEM. Statistical significance was determined by Student’s t 

test using Prism (GraphPad Software). 
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Summary 

 

The conditioning lesion model is a well-established paradigm where gain of 

regenerative capacity of dorsal column tract axons occurs. Here we show, by 

comparative proteomic analysis of conditioned and naive DRG neurons, that the α and 

the γ forms of the actin-capping protein adducin are inactivated after conditioning lesion 

both in cell bodies and in growth cones of fast-regenerating axons. α-adducin KO DRG 

neurons, that lack all adducin isoforms, have increased neurite outgrowth capacity in 

vitro, even when grown in the presence of an inhibitory environment, and in vivo, after 

spinal cord injury. These data suggest that adducin is a negative regulator of 

cytoskeleton dynamics and that its inactivation is an important event such that an 

enhanced regenerative capacity is acquired by DRG neurons after a priming peripheral 

injury. 

 

  



Chapter 2 

147 

 

Introduction  

The process of axon extension is greatly dependent on the actin cytoskeleton. The 

growth one, i.e. the structure responsible for the guidance and the growth rate of the 

axons, is enriched not only in actin, but also in different actin binding proteins (ABPs). 

The proper concentration and activity of these ABPs is crucial for the correct regulation 

of the actin cytoskeleton. For that reason, the growth cone is able to ‘interpret’ the 

external cues and therefore accelerate or abolish the actin turnover in a specific 

direction depending on the cue being attractive or inhibitory, respectively (Gomez and 

Letourneau, 2014; Lowery and Van Vactor, 2009). The increase of actin turnover in a 

specific growth cone site leads to increased polymerization of microtubules in that 

region – the axon will consequently turn and extend in that direction. Conversely, an 

inhibitory cue will abolish the actin turnover and microtubules will not protrude in that 

direction. Therefore, if the inhibitory cue is present all over the growth cone, a retraction 

bulb will be generated due to the collapse of actin dynamics, whereas neurons growing 

freely in culture extend their neurites without a particular direction, but often straight 

due to the momentum of extension (Dent and Gertler, 2003; Dent et al., 2011; Lowery 

and Van Vactor, 2009). 

ABPs are crucial in the translation of the axon’s external environment to an effect in 

axon growth. In this context and given our previous data showing that in the absence of 

adducin both actin dynamics and microtubule growth speed in the growth cone are 

increased, adducin emerged as a possible candidate to be involved in actin 

cytoskeleton regulation in the growth cone. Adducins are capping proteins that control 

the addition of actin monomers and consequent extension of actin filaments. Adducin is 

present in growth cones (Estrada-Bernal et al., 2012), and is regulated by pathways 

that are well-established in the context of axon regeneration. Calmodulin (Mische et al., 

1987), PKC and PKA (Matsuoka et al., 1996; Matsuoka et al., 1998) are inhibitors of 

adducin’s affinity to actin. Of note, PKA is activated by cAMP signaling, which is an 

important enhancer of axon regeneration (Nikulina et al., 2004). Besides, calmodulin is 

activated by increased intracellular calcium levels, which also occur (transiently) after 

injury and are fundamental for axon regeneration to occur (Bradke et al., 2012). In 

contrast, adducin’s affinity to actin is increased by phosphorylation by Rho A signaling 

(Fukata et al., 1999), which is a key molecule in axon regeneration inhibition (Fujita and 

Yamashita, 2014). Therefore, adducin is a very interesting candidate molecule to play a 

role in axon growth – and consequently in axon regeneration. 

The conditioning lesion is a very advantageous model to study neuronal intrinsic 

factors that impact axon extension – both positive and negative regulators. In this 
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paradigm, the growth capacity of DRG axons through the inhibitory lesion site formed 

upon a spinal cord injury is increased after a priming lesion to their peripheral branch 

(Neumann and Woolf, 1999; Silver, 2009). The conditioning effect results on the 

reprograming of gene expression (Cho et al., 2013; Hoffman, 2010; Kiryu-Seo and 

Kiyama, 2011; Mar et al., 2014; Puttagunta et al., 2014) that culminates in the 

expression of regeneration associated transcription factors such as CREB and ATF3, 

and growth related genes such as actin, GAP-43 and growth associated tubulin 

isotypes (Fagoe et al., 2014; Mar et al., 2014). Here we explored through a proteomic 

approach proteins differentially expressed/regulated after conditioning lesion. Our 

results support the notion that adducin is an important regulator of actin dynamics in 

the growth cone and that its activity needs to be tightly regulated such that increased 

axon growth is obtained. 

 

Results 

 

C-terminally phosphorylated adducin is upregulated in conditioned axons 

Although the expression profile of DRG neurons in the conditioning lesion model is 

known to be different from that of non-conditioned neurons, at the post-transcriptional 

level the information available is limited. Here we compared the L4-L6 DRG proteome 

from Wistar rats where a sciatic nerve injury was followed 1 week later by a spinal cord 

injury (thereafter referred to as conditioning lesion - CL group) with that of Wistar rats 

where only spinal cord injury (SCI) was performed. For that we used a phospho-site 

antibody array (Kinexus www.kinexus.ca), to identify phosphorylated forms of key 

signaling proteins. This screen examines 37 phosphorylation sites in 32 proteins with 

antibodies that recognize specific phosphorylated epitopes (the identity of the proteins 

that are present in this array is in Table 1). From the 54 epitopes present in the array, 

30 were not detected in our samples (ND) and 12 did not reach significant differences 

amongst samples (NS). The proteins with a fold change CL/SCI lower than 0.75 or 

higher than 1.25 were selected and are highlighted in grey in table 1. Of note, the 

AKT/GSK3β pathway (highlighted in light grey), that was found to be differentially 

regulated following CL, has already been characterized in the context of axon 

regeneration in a previous study of our group (Liz et al., 2014). In our screening, α- and 

γ-adducins emerged as key regulatory proteins with increased phosphorylation levels 

after conditioning lesion. 
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Table 1:  List of proteins assessed using the Kinexus phospho-site antibody array. The ratio of 

modified protein levels in DRG from animals with conditioning lesion (CL)/spinal cord injury 

(SCI) is shown; ND: not detected; NS: without significant differences amongst samples. 

Full name of the protein (abbreviated protein name)  [phosphorylated epitope] CL/SC 
Adducin gamma (ADD3) [S693] 4,30 
Adducin alpha (ADD1) [S726] 2,50 
Mitogen & stress-activated protein-serine kinase 1 (MAPK1) [S376] 1,95 
Raf1 proto-oncogene-encoded protein-serine kinase (c-Raf) [S259] 1,83 
Src proto-oncogene-encoded protein-tyrosine kinase (c-Src) [Y529] 1,57 
Glycogen synthase-serine kinase 3 beta (GSK3β) [S9] 1,55 
Protein-serine kinase B alpha (AKT) [S473] 1,53 
Protein-serine kinase C alpha/beta 2 (PKC α/β2) [T638/T641] 0,73 
p85 ribosomal protein-serine S6 kinase alpha (RPS6KB1) [T389] 0,60 
Glycogen synthase-serine kinase 3 beta (GSK3β) [Y216] (39) 0,59 
Extracellular regulated protein-serine kinase 2 (p42 MAP kinase) (ERK2) 
[T185+Y187] 

0,56 

Glycogen synthase-serine kinase 3 beta (GSK3β) [Y216] 0,52 
MAPK/ERK protein-serine kinase 1/2 (MKK1/2) [S218+S222] NS 
Glycogen synthase-serine kinase 3 alpha (GSK3β) [Y279] NS 
Jun N-terminus protein-serine kinase (stress-activated protein kinase (SAPK)) 
[T183+Y185] 

NS 

Extracellular regulated protein-serine kinase 1 (p44 MAP kinase) (ERK1) 
[T202+Y204] 

NS 

Signal transducer and activator of transcription 1 (STAT1) [Y701] NS 
Glycogen synthase-serine kinase 3 alpha (GSK3α) [S21] NS 
Retinoblastoma-associated protein 1 (RB1) [S807+S811] NS 
Jun N-terminus protein-serine kinase (stress-activated protein kinase (SAPK)) 
[T183+Y185] 

NS 

Raf1 proto-oncogene-encoded protein-serine kinase (c-Raf) [S259] NS 
Protein-serine kinase C alpha (PKCα) [S657] NS 
Mitogen-activated protein-serine kinase p38 alpha [T180+Y182] NS 
cAMP response element binding protein 1 (CREB1) [S133] NS 
B23 (nucleophosmin, numatrin, nucleolar protein NO38) [S4] ND 
Cyclin-dependent protein-serine kinase 1/2 (CDK1/2) [Y15] ND 
Cyclin-dependent protein-serine kinase 1/2 (CDK1/2) [Y15] ND 
Double-stranded RNA-dependent protein-serine kinase (PKR) [T451] ND 
Double-stranded RNA-dependent protein-serine kinase (PKR) [T451] ND 
Glycogen synthase-serine kinase 3 alpha (GSK3α) [Y279] ND 
Jun N-terminus protein-serine kinase (stress-activated protein kinase (SAPK)) 
[T183+Y185] 

ND 

Jun N-terminus protein-serine kinase (stress-activated protein kinase (SAPK)) 
[T183+Y185] 

ND 

Jun proto-oncogene-encoded AP1 transcription factor (c-jun) [S73] ND 
Jun proto-oncogene-encoded AP1 transcription factor (c-jun) [S73] ND 
Jun proto-oncogene-encoded AP1 transcription factor (c-jun) [S73] ND 
Jun proto-oncogene-encoded AP1 transcription factor (c-jun) [S73] ND 
MAPK/ERK protein-serine kinase 3/6 (MKK3/6) [S189/S207] ND 
Mitogen & stress-activated protein-serine kinase 1 (MAPK1) [S376] ND 
Mitogen-activated protein-serine kinase p38 alpha [T180+Y182] ND 
N-methyl-D-aspartate (NMDA) glutamate receptor 1 subunit zeta (GRIN1) [S896] ND 
p70 ribosomal protein-serine S6 kinase alpha (PS6K) [T389] ND 
Protein-serine kinase B alpha (PKBα) [T308] ND 
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Protein-serine kinase C delta (PKCδ) [T507] ND 
Protein-serine kinase C epsilon (PKCε) [S729] ND 
Retinoblastoma-associated protein 1 (RP1) [S780] ND 
Ribosomal S6 protein-serine kinase 1/3 (RSK1/3) [T359+S363/T356+S360] ND 
Ribosomal S6 protein-serine kinase 1/3 (RSK1/3) [T359+S363/T356+S360] ND 
Signal transducer and activator of transcription 1 (STAT1) [Y701] ND 
Signal transducer and activator of transcription 3 (STAT3) [S727] ND 
Signal transducer and activator of transcription 5A (STAT5A) [Y694] ND 
SMA- and mothers against decapentaplegic homologs 1/5/9 
[S463+S465/S463+S465/S465+S467] 

ND 

Src proto-oncogene-encoded protein-tyrosine kinase (c-Src) [Y418] ND 
Src proto-oncogene-encoded protein-tyrosine kinase (c-Src) [Y418] ND 
Src proto-oncogene-encoded protein-tyrosine kinase (c-Src) [Y529] ND 
 

Adducin participates in the regulation of the spectrin-actin cytoskeleton by enhancing 

the interaction of spectrin with actin (Li et al., 1998). In the proteomic analysis, both 

phosphorylated α- and γ-adducin (S726 and S673, respectively) were increased in the 

DRG of conditioned animals. Validation of the array data by western blot in the spinal 

cord lesion site, where the regenerating growth cones are present, confirmed the 

augmented phosphorylation of both α (110kDa) and γ adducin (80kDa), 2.5 and 4.3 

fold, respectively in conditioned animals (figure 1). Interestingly, we did not detect β-

adducin (100kDa) in spinal cord samples as although this isoform is known to be 

nervous system (brain)-restricted it is not enriched in the spinal cord (Chapter 1, Figure 

1). 

 

Figure 1 – Phosphorylated α- and γ-adducin are increased upon conditioning injury. (A) Schematic 

representation of the spinal cord. The injury site is highlighted in blue; the central (dorsal colum tract) and 

peripheral DRG axons are highlighted in red. Spinal cord injury site samples correspond to the region 

2.5mm caudal and 2.5mm rostral from the lesion site. Adapted from (Gilligan et al., 1999). (B) 

Representative western blots of phospho-adducin, total adducin and total ERK1/2 in spinal cord injury 
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samples from rats with either SCI or CL. (C) Quantification of (B). p-value: *<0.05. (A) Adapted from (Alto 

et al., 2009). 

 

To further confirm the increase of adducin in regenerating growth cones 

immunofluorescence of phosphorylated and total adducin was performed in cultures of 

DRG neurons collected from either naïve animals or conditioned animals (i.e., where a 

sciatic nerve lesion was performed 1 week before establishing the culture) (figure 2A 

and 2B). The validation by ICC confirmed that adducin was indeed modulated in the 

conditioning lesion model, being increased in the growth cones of neurons with 

enhanced growth capacity. 

 

Figure 2 – Phosphorylated adducin is increased in fast-growing axons. (A) Immunofluorescence of the 

phosphorylated form of adducin (red) and βIII-tubulin (green) in naïve and conditioned rat DRG neurons. 

(B) Quantification of the ratio of phosphorylated/total adducin in relation to the distance from the leading 

edge of the growth cone. Scale bar: 10µm. p-value *<0.05 

 

Neurite extension and axon regeneration are increas ed in α-adducin KO neurons  

Adducin is an ABP that binds F-actin in the barbed ends and also interacts with 

spectrin-actin junctions, increasing their stability (Matsuoka et al., 1998). For this 

interaction, Serine phosphorylation in the C-terminus MARCKS domain plays a 

fundamental role (Matsuoka et al., 1998). Interestingly, increased phosphorylation of 

adducin leads to loss of affinity towards actin and spectrin, allowing the incorporation of 

new monomers into the F-actin barbed ends and also promoting the disassembly of the 

spectrin-actin junctions (Matsuoka et al., 1996; Matsuoka et al., 1998). As our data 

shows that adducin inactivation is promoted in the conditioned neurons – that grow 

more and with increased speed (Martin et al., 2013), we hypothesized that upon injury, 

the absence of adducin might mimic the conditioning effect. Of note, as described in 

the previous chapter of this thesis, α-adducin KO neurons have increased actin 

retrograde flow and microtubule growth speed, which are parameters positively related 

with the neuritogenic process and axon growth (Bradke and Dotti, 1999; Flynn et al., 

2012). For that reason we analyzed neurite outgrowth in α-adducin KO neurons. α-
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adducin KO hippocampal neurons (DIV3) had an increased growth capacity (figure 3B). 

In DRG neurons of α-adducin KO mice neurite outgrowth was also increased (figure 

3A-B). As adducin was found to be differentially activated in a screening where DRG 

axons need to regenerate in the presence of inhibitory molecules, we assessed 

whether the absence of adducin would mimic the enhanced growth capacity of 

conditioned DRG neurons. For that, we plated WT and α-adducin KO DRG neurons in 

the presence of inhibitory molecules such as the myelin protein fraction and aggrecan, 

a chondroitin sulfate proteoglycan (CSPG) found in the glial scar (Galtrey and Fawcett, 

2007; Siebert et al., 2014). Interestingly, α-adducin KO neurons presented enhanced 

growth ability under both inhibitory conditions (figure 3A-C). This data suggest a 

decreased sensitivity of α-adducin KO neurons to the inhibitory molecules of the glial 

scar. 

Does the absence of α-adducin increase axon regeneration in vivo? To test this 

possibility, regeneration of dorsal column tract axons was assessed in WT and α-

adducin KO mice following spinal cord injury (dorsal hemisection). The analysis of 

regeneration of the dorsal column fibers of WT and α-adducin KO mice revealed that 

the absence of adducin results in a lower degree of inhibition of the regenerating axons 

when entering the glial scar (figure 3D-E), supporting our in vitro data. Although the 

maximal axon extension was not significantly different, only 4 out of 10 WT animals 

extended axons within the glial scar whereas 7 out 8 of α-adducin KO animals were 

able to extend axons within the glial scar. Moreover, the α-adducin KO mice had an 

increased number of axons extending into the glial scar (WT: 1 axon/animal; α-adducin 

KO mice: 6 axons/animal). 
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Figure 3 – The absence of adducin decreases neurite outgrowth in vitro and axon regeneration in vivo. (A) 

Representative photomicrographs of WT and α-adducin KO DRG neurons grown either in a permissive 

substrate (PLL + laminin) or in an inhibitory substrate (PLL + laminin + myelin protein). (B) Neurite length 

of WT and α-adducin KO hippocampal neurons grown in PLL and DRG neurons grown in either PLL + 

laminin or PLL + laminin + myelin protein. (C) Percentage of inhibition of the length of longest neurite in 

WT and α-adducin KO DRG neurons grown in the presence of the CSPG aggrecan. (D) Anti-cholera toxin 

B subunit (CT-B) n immunohistochemistry (brown) of representative longitudinal spinal cord sections of WT 

and α-adducin KO mice with dorsal column hemisection and CT-B injection in the sciatic nerve. 

Counterstaining was done with hematoxilin (blue). The dashed white line represents the boarder of the 

glial scar. Asterisks highlight regenerating axons. (E) Total number of regenerating axons present in the 

glial scar of WT and α-adducin KO mice. Scale bar: 250 µm for DRG neuron cultures (A) and 100µm for 

spinal cord sections (D). *p<0.05 
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Discussion 

 

The conditioning lesion is a very interesting model to study the neuronal intrinsic 

factors that impact axonal extension – both positive and negative regulators. Our 

analysis to understand which proteins, namely which ABPs, are differently regulated in 

conditioned neurons revealed that adducin has increased S726 phosphorylation levels 

after a priming injury i.e., that it’s capping activity towards F-actin is decreased. Our 

data also revealed that this increased phosphorylation occurs not only in the cell body 

but also in the spinal cord lesion site, where regenerating growth cones are present. 

This suggests that accumulation of phosphorylated inactive adducin species in growth 

cones is part of the post-translational events required for enhancement of axon 

(re)growth. In this context, we hypothesized that adducin depletion in α-adducin KO 

mice neurons could mimic the decreased adducin activity found in conditioned 

neurons. 

In α-adducin KO mice, as shown in Chapter 1, all adducin forms are almost completely 

depleted, due to the requirement of α-adducin to generate functional adducin 

heterodimers/heterotetramers. Therefore we proceeded to the analysis of the 

consequences of adducin’s absence in neurons. Dynamic analysis of the growth cones 

of WT and α-adducin KO neurons in vitro by live cell imaging demonstrated increased 

cytoskeleton dynamics – increased actin retrograde flow, due to the putative increase 

in actin polymerization; and increased microtubule growth speed (Chapter 1). Given the 

increased cytoskeleton dynamics in α-adducin KO neurons, we decided to assess 

whether this would be translated in increased growth capacity. Indeed, neurite 

outgrowth assays revealed an increased growth ability, both in hippocampal and DRG 

neurons. Interestingly, a similar phenotype was observed when tropomodulins, the 

capping proteins of the growth cone pointed ends, were abolished (Fath et al., 2011). 

Besides the increased outgrowth under permissive conditions, we also assessed if 

adducin’s absence would be beneficial under non-permissive conditions in vitro. Using 

the myelin protein fraction and the chondroitin sulphate proteoglycan aggrecan as 

inhibitory substrates, we found that α-adducin KO neurons were less inhibited by these 

molecules. Both myelin protein and CSPGs exert their inhibitory effect through 

activation of RhoA signaling (Fujita and Yamashita, 2014), which interestingly is a 

positive regulator of adducin’s capping activity (Kimura et al., 1998). Given our in vitro 

data and the fact that α and γ adducin were inhibited in conditioned regenerating 

axons, we assessed axon regeneration of α-adducin KO mice following spinal cord 

injury. Our analysis of the dorsal column tract (the tract used in our initial screening) 
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showed that the loss of adducin results in increased regeneration capacity, with α-

adducin KO mice presenting an increased number of axons regenerating into the 

inhibitory glial scar. No effect was however observed in the length of the regenerating 

axons when comparing genotypes. In this respect, one should note that the straight α-

adducin knockout model is not a clean model for the assessment of the importance of 

adducin in axon regeneration, given the primary defects of α-adducin KO axons 

illustrated in Chapter 1 that include axonal transport impairment, axonopathy, and axon 

degeneration. It is therefore possible that these primary impairments mask the 

beneficial effect of adducin inactivation in axon outgrowth and regeneration. In order to 

surpass the limitations of this animal model, one possibility would be to have a model 

of inducible tissue specific depletion of adducin to allow a normal nervous system 

development and maturation and the subsequent depletion of adducin immediately 

prior to regeneration studies. 

Other possible alternatives to further consolidate the importance of the regulation of 

adducin in the process of axon regeneration include modulation of PKC (that 

inactivates adducin) and overexpression of PKC phospho-site adducin mutants. The 

PKC family is the better characterized kinase that regulates adducin’s function 

(Matsuoka et al., 1998, 2000). However modulating PKC activity is a complex biological 

event in one hand and on the other PKC has numerous downstream targets (Larsson, 

2006). PKC is a large family of 16 kinases with specific effects – even contradictory – in 

neuritogenesis and neurite extension (Larsson, 2006; Teng and Tang, 2006). The 

specific PKC isoform that phosphorylates adducin is not yet known – the literature 

suggests that PKCδ is the adducin-specific isoform but most of the supporting data is 

based in the usage of rottlerin, a non-specific PKCδ inhibitor (Soltoff, 2007). One 

should also consider that the role of phorbol-12-myristate-13-acetate (PMA), or other 

phorbol esters, as stimulators of PKC activation in assays of axon growth have 

contradictory results in the literature. In some experiments these compounds are 

suggested to have a pro-neuritogenic effect (Brodie et al., 1999; Mehta et al., 1993) 

whereas in other approaches the effect observed was the opposite (Sivasankaran et 

al., 2004; Xu et al., 2011). Overexpression of adducin mutants that interfere with its 

activity, namely S726A (phospho-resistant) and S726D (phospho-mimetic), could 

provide further insight on the importance of the regulation of the activity of this protein 

during axon growth and regeneration. However, it is also possible that confounding 

effects are observed as a result of adducin overexpression. To start with, which would 

be the best adducin form to overexpress? Adducins are organized as heterotetramers, 

composed by two heterodimers (Matsuoka et al., 2000). Overexpression of α-adducin 
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could lead to dysregulated levels of hetero and α/α-homodimers that might impact the 

different adducin activities including the capping activity. There are reports supporting 

that β-adducin overexpression leads to increased outgrowth ability of cortical neurons 

(Farghaian et al., 2011), and that γ-adducin overexpression in COS7 fibroblasts 

increases neuritogenesis (Lou et al., 2013). One would expect that increased adducin 

levels generate a less dynamic actin turnover in the growth cone, and consequently a 

decreased ability to grow, but this should be measured with the appropriate assays. 

 

Conclusion 

How different ABP affect neuritogenesis and neurite extension is still an open field in 

neuroscience. Several studies have established some ABPs as promoters of neurite 

extension and regeneration, whereas others act in a negative fashion, such that their 

inactivity is beneficial to axon regeneration. This work suggests that adducin regulation 

is part of a major regulatory system that enhances axon regeneration, at least following 

a priming (conditioning) lesion. This is a step towards to better understand axon 

regeneration in the CNS, and to develop more effective and elegant strategies to 

promote it. 

 

Material and methods 

 

Animals 

Mice were handled according to European Union and National rules, maintained under 

a 12-h light/dark cycle and fed with regular rodent’s chow and tap water ad libitum. α-

adducin KO mice (kindly provided by Dr Luanne Peters, Jackson Laboratories) were 

generated and genotyped as described (Robledo et al., 2008). Analyses were 

performed using WT and α-adducin KO littermates obtained from heterozygous 

progenitors. 

 

Sciatic nerve and spinal cord lesions 

Sciatic nerve transection: 8-10 weeks old Wistar rats were used. Animals were 

anesthetized with ketamine (75mg/Kg)/medetomidine (0.6mg/Kg). The skin was 

shaved and the sciatic nerve was exposed at the mid-tight. Transections were 
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performed using a scissor. Animals received analgesia (butorphanol) twice a day, for 

48 hours. 

Spinal cord injury (SCI): 10-12 weeks old Wistar rats, or 8 weeks old mice, were used. 

Animals were anesthetized with ketamine/medetomidine, as above. The skin was 

shaved and the spinal cord was exposed at the thoracic level. Laminectomy was 

performed at the T6-T8 level (in rats), or at the T7-T9 level in mice. Dorsal hemisection 

was donewith a microscissor (in rats) or using a micro-scalpel (in mice) for proteomic 

analysis and for dorsal column tract analysis. Animals received analgesia (butorphanol) 

twice a day, for 72 hours and fluid therapy once a day (Duphalyte), for 72 hours. 

Animals also required manual voiding of the bladder twice a day for the rest of the 

experimental period. Wet food was placed in the cage floor and water with antibiotic 

(0.016% Baytril) was supplied in long nipple bottles.  

Conditioning lesion: sciatic nerve injury was performed as described above and one 

week later dorsal hemisection was conducted, also as described above. 

The recovery period after spinal cord injury was: i) 1 week for validation of phospho-site 

broad signaling pathway screen, ii) 4 weeks for dorsal column tract analysis and iii) 5 

weeks for the analysis of raphespinal serotonergic axon regeneration. 

 

Phospho-site broad signaling pathway screen 

DRGs (L4-L6) from a pool of six rats (8 to 10 weeks-old) subjected to either SCI or 

conditioning lesion were sacrificed one week after SCI. DRG were homogenized in 

lysis buffer (20mM 4-morpholinepropanesulfonic acid (MOPS), 2mM ethylene glycol 

tetraacetic acid (EGTA), 5mM ethylenediaminetetraacetic acid (EDTA), 30mM sodium 

fluoride, 60mM β-glycerophosphate, 20mM sodium pyrophosphate, 1mM sodium 

orthovanadate, 1% Triton X-100, 1% dithiothreitol (DTT), 1mM phenylmethylsulfonyl 

fluoride (PMSF) and protease inhibitor cocktail (GE Healthcare, Carnaxide, Portugal)). 

Protein extracts (500µg) were analyzed using the Kinexus phospho-site broad signaling 

pathway screen version 1.3 (KPSS-1.3, Kinexus Bioinformatics Corp, Vancouver, 

Canada). This screen examines 37 phosphorylation sites in 32 proteins with antibodies 

that recognize specific phosphorylated epitopes. The intensities of signals for target 

protein bands on the Kinetworks immunoblots were quantified as described (Pelech et 

al., 2003). Proteins with a fold change CL/SCI lower than 0.75 or higher than 1.25 were 

selected for further validation by Western blot. 
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Western blotting 

For western blotting, the following primary antibodies were used: rabbit anti-

phosphorylated α (S726), β (S713) and γ (S693) adducin, 1:1000 (Santa Cruz, SC-

16736R); rabbit anti-adducin, 1:1000 (Abcam, ab51130); and mouse anti-β-actin, 

1:5000 (Sigma, A5441). The secondary antibodies were: donkey anti-mouse or donkey 

anti-rabbit conjugated with HRP, 1:5000 (Jackson). Samples were homogenized in 

PBS with 0.3%Triton-X100 (Sigma), 1mM sodium orthovanadate (Sigma) and protease 

inhibitor cocktail (Roche). For the western blot of the spinal cord injury site 

(encompassing the region 2.5mm caudal and 2.5mm rostral from the lesion site), 10-

15% SDS-PAGE gels with 50 µg of sample were run and transferred for 2 hours in a 

semi-dry system to a nitrocellulose membrane. Membranes were washed in TBS with 

0.1% of Tween-20, blocked in 5% non-fat dried milk (Sigma) in TBS for 1 hour at room 

temperature, incubated with primary antibody (in either 5% BSA or 5% non-fat dried 

milk, in TBS) 1 hour at room temperature or overnight at 4ºC. Membranes were then 

washed and incubated with secondary antibody in 5% non-fat dried milk in TBS for 1 

hour at room temperature and then incubated 5 minutes at room temperature with 

Pierce ECL (Pierce) for development. Chemiluminescence was analysed by either 

exposure to Amersham Hyperfilm ECL (GE Healthcare) or detection in ChemiDoc (Bio-

rad). The quantification of the western blots was performed by normalizing the ratios of 

phosphorylated adducin/total adducin relatively to those obtained in the spinal cord 

injury samples. 

 

DRG neuron cultures 

DRG neuron cultures were performed as detailed (Miranda et al., 2011). Briefly, WT 

and α-adducin KO mice at either P7-9 (for neurite outgrowth experiments) or 8 weeks-

old Wistar rats either uninjured (naïve) or with sciatic nerve injury (for the analysis of 

phospho/total adducin ratio in growth cones) were sacrificed and DRG were collected 

(in the case of rats, only L4-6 DRG) and digested for 90 minutes with 0.125% 

collagenase IV-S (C1189, Sigma). DRG were then triturated and passed through a 

15% BSA gradient. Cells were counted and plated at a density of 40 cells/mm2 in 

previously treated 24-well plate coverslips, coated with 20µg/mL poly-L-lysine (P2636, 

Sigma) and 5µg/mL laminin (L2020, Sigma). Neurons were grown in DMEM:F12 

(D8437, Sigma) supplemented with 1x B27 (Gibco), 1% penicillin/streptomycin (Gibco), 

2mM L-glutamine (Gibco) and 50ng/mL NGF (01-125, Millipore). For the assessment of 

the ratio of phosphorylated/total adducin, Wistar rat L4-6 DRG collected from either 
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naïve animals or animals with sciatic nerve injury were grown for 12 hours and then 

fixed in 4% PFA for 20 minutes. For immunofluorescence DRG neurons were stained 

with either anti phospho-adducin S726 (SC-16736R, Santa Cruz) or anti total-adducin 

(Ab51130, Abcam) and anti βIII-tubulin (G7121, Promega) and then incubated with 

secondary antibodies. Image acquisition was performed with equal exposure time for 

all the conditions. Measurements were done by drawing a 0.5µm wide and 25µm long 

line from the tip of the growth cone to the cell body. The ratios were calculated using 

Fiji software and plotted with a 1µm resolution. At least 24 growth cones were 

measured in each condition. 

 

Hippocampal neuron cultures 

Hippocampal neuron cultures were performed following the general protocol detailed in 

the Kaech and Banker protocol (2007). Briefly, pregnant α-adducin heterozygous or 

NMRI WT mice at E16.5 were sacrificed and pups were individually dissected and 

genotyped. The hippocampus of each pup was digested 15 minutes in 0.06% porcine 

tryspin solution (T4799, Sigma), triturated and plated at a density of 125 cells/mm2 in 

24 well plates containing glass cover slips previously treated with 20µg/mL poly-L-

lysine (P2636, Sigma). Neurons were plated in Neurobasal (21103-049, Invitrogen) 

supplemented with 1x B27 (Gibco), 1% penicillin/streptomycin (Gibco) and 2mM L-

glutamine (Gibco). 

 

Myelin and Aggrecan inhibition 

Myelin protein fraction was obtained from P3-4 mice. Briefly, crude myelin extracts 

(Mar et al., 2015) were incubated with 3.6% CHAPS in PBS for 1h at 4ºC. After 

centrifugation, the supernatant was dialyzed for 16h with 2 buffer exchanges and 

protein levels were determined using DC Protein Assay (Bio-rad). DRG neurons (from 

P5 mice) were plated either in PLL (20µg/mL) / laminin (1µg/mL) or PLL (20µg/mL) / 

laminin (1µg/mL) / myelin protein fraction (4.3µg/cm2). Eighteen hours later, cells were 

fixed, immunofluorescence for β-III tubulin was performed and the length of the longest 

neurite was determined using NeuronJ plug-in for ImageJ. For experiments using 

aggrecan, DRG neurons (from P5 mice) were plated in either PLL (20µg/mL) / laminin 

(5µg/mL) or PLL (20µg/mL) / laminin (5µg/mL) / aggrecan (25µg/mL) (Sigma). DRG 

neurons were grown for 12h fixed with 4% PFA for 20 minutes and, 

immunofluorescence for β-III tubulin was performed. The length of the longest neurite 
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was determined using NeuronJ plug-in for ImageJ. Inhibition of neurite outgrowth was 

determined based on the following formula: 

%	��	��ℎ���	��� = (1 −
���	���	����	ℎ − ��������	����	ℎ

���	���	����	ℎ
)) ∗ 100 

Where length= average length of the longest neurite.  

 

 

Analysis of regeneration of dorsal column fibers 

Eight weeks-old WT and α-adducin KO mice were subjected to spinal cord dorsal 

hemisection and allowed to recover for 4 weeks. Four days prior euthanasia, 2µL of 1% 

cholera toxin B (CT-B) (List Biologicals, Campbell, CA, USA) was injected in both 

sciatic nerves. Animals were perfused with formalin, tissues were cryopreserved in 

sucrose and sectioned at 50µm. Consecutive spinal cord sagittal sections were 

collected for free floating immunohistochemistry with anti-CT-B (1:30000; List 

Biologicals, #703). Image analysis was done with Photoshop CS5. Dorsal column 

fibers were quantified by counting the total number of axons within the glial scar, in the 

CT-B positive sections (2-4 sections per animal). The length of the longest CT-B 

labeled axon found rostrally to the injury site, was measured using as the origin a 

vertical line placed at the rostral end of the dorsal column tract (that is, where CT-B 

labeling accumulates). Lesion margins were evident under phase-contrast optics as a 

distinct change in the appearance of the structure of the white and grey matter was 

observed. 
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Summary 

 

Although actin is well recognized as a key player in axon growth, how different actin-

binding proteins control its dynamics is still not fully understood. Using the conditioning 

lesion, a model in which the axon regeneration capacity of spinal dorsal column axons 

is increased following a priming lesion to the sciatic nerve, we determined that profilin-1 

(Pfn1) is increased in regenerating axons whereas the inactive form of the protein 

(Phospho-S137) is severely decreased. Profilins provide the pool of competent ATP-

actin monomers that can be added to free filamentous actin ends to support their 

polymerization and growth. Here we show that acute in vitro ablation of Pfn1 precludes 

axon formation in hippocampal neurons and significantly decreases neurite outgrowth 

in DRG neurons, suggesting a critical role of Pfn1 during early neuritogenesis and axon 

growth. To unravel the importance of Pfn1 during axon regeneration, we generated 

mice with an inducible neuronal deletion of Pfn1 using cre-lox technology. Cre+/-Pfn1fl/fl 

neurons, displayed impaired actin dynamics and defective neurite outgrowth which was 

exacerbated after co-ablation of Pfn2. Moreover, in vivo in cre+/-Pfn1fl/fl mice, 

regeneration of both peripheral and central DRG axons was diminished in the absence 

of Pfn1. Interestingly, overexpression of constitutively active profilin-1 (S137A) 

enhanced neurite outgrowth. In summary, our work provides evidence that Pfn1 is a 

determinant of axon regeneration capacity, acting as a key regulator mediating actin 

dynamics after injury. In the future, exploring the mechanisms by which Pfn1 acts in 

neurons would enable to set the foundations for drug screens unveiling modulators of 

its activity with therapeutic potential for spinal cord injury treatment. 
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Introduction 

 

Emerging evidence suggests that regulators of cytoskeleton dynamics might be 

attractive targets to control axon formation, growth and regeneration. Specifically, actin 

dynamics in the growth cone is thought to play a major role in regulating the rate and 

direction of axon extension. As such, interventions aimed at promoting axonal 

regeneration may converge on the manipulation of this mechanism. Although actin is 

well recognized as a key player in axon growth, how different actin-binding proteins 

control its dynamics is still not fully understood. A correctly assembled growth cone is 

fundamental for the regeneration process to occur (Bradke et al., 2012). Actin, as a 

major component of the growth cone peripheral domain is required to generate its 

dynamism and organization (Lewis et al., 2013; Stiess and Bradke, 2011). 

Both cofilin and profilin are two ABPs known to be fundamental for actin dynamics 

(Didry et al., 1998), acting synergistically, increasing the treadmilling rate of actin by 

400 fold (Didry et al., 1998). The continuous incorporation of ATP bound G-actin is 

fundamental for maintaining actin dynamism, and in growth cones this task is 

undertaken by profilin (Lee et al., 2013). Profilins provide the pool of competent ATP-

actin monomers that can be added to free filamentous actin ends to support their 

polymerization and growth. Interestingly, negative regulators of actin dynamism such 

as the Rho kinases operate via profilin (and cofilin) phosphorylation, inhibiting their 

activity (Da Silva et al., 2003). The role of ADF/cofilin in axon formation and growth is 

well established (Flynn et al., 2012; Garvalov et al., 2007). Besides, unpublished work 

from the Bradke lab shows that a conditioning lesion, a model in which an increased 

regenerative capacity of dorsal column axons is induced (Silver, 2009), drives axon 

regeneration through increased cofilin-mediated actin turnover (personal 

communication).  

In humans, profilins comprise a family of small ABPs, in a total of 4 different forms 

(Moens, 2008). Profilin-1 (Pfn1) is ubiquitously expressed, whereas the other three 

forms are tissue specific. Profilin-2 (Pfn2) is neuronal, mostly CNS-restricted and 

Profilin-3 (Pfn3) and Profilin-4 (Pfn4) are expressed in germ cells. In the nervous 

system, profilins have been mainly associated with synapse formation (Michaelsen et 

al., 2010; Neuhoff et al., 2005), axon extension and degeneration (Da Silva et al., 2003; 

Wu et al., 2012) and Purkinje cell survival (Kullmann et al., 2012b). Pfn1 has been 

suggested to have an important function in mediating the turnover of the G-actin pool at 

the leading edge of growth cones (Lee et al., 2013). However, Pfn1 is probably not 
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fundamental for axon extension since Nestin Cre mediated depletion of Pfn1 at the 

early stages of neuronal differentiation, resulted in normal brain formation, with only a 

visible phenotype in neuron migration in the cerebellum (Kullmann et al., 2012b). 

Nevertheless, Pfn1 mutations in the actin-binding site were associated with 

amyotrophic lateral sclerosis (ALS) and mutant motor neurons displayed neurite 

outgrowth impairment that was suggested to result from the loss of actin-related 

function (Wu et al., 2012). In the case of Pfn2, its overexpression in hippocampal 

neurons leads to decreased neurite outgrowth, whereas knockdown leads to increased 

outgrowth (Da Silva et al., 2003). Here we further explored the role of profilins in axon 

growth and regeneration following injury. 

 

Results 

 

A conditioning injury drives an increased Pfn1 acti vity in the growth cone. 

Both cofilin and profilin are two ABPs known to be fundamental for actin dynamics 

(Didry et al., 1998), acting synergistically and increasing the treadmilling rate of actin by 

400 fold (Didry et al., 1998). Given the crucial role of cofilin and profilin in actin 

treadmilling in the growth cone, and to further evaluate their importance during axon 

regeneration, we analyzed their levels in the spinal cord injury site of rats with and 

without a previous sciatic nerve injury (condition lesion – CL). Of note, a conditioning 

lesion (Figure 1A) is a well-established paradigm to induce axon growth in vitro (Ylera 

et al., 2009) and regeneration in vivo (Neumann and Woolf, 1999). Interestingly, the 

spinal cord injury site of animals with conditioning lesion (CL) had increased levels of 

cofilin-1 (Cfl-1), in accordance with data from the Bradke lab, and in the levels of 

profilin-1 (Pfn1), when compared to animals that were just submitted to spinal cord 

injury (SCI) (Figure 1B-C). Moreover, the levels of phosphorylated S137 Pfn1, a 

phosphorylation that inhibits its activity (Shao et al., 2008), were 10-fold decreased in 

spinal cord samples from conditioned rats (Figure 1B-C). These results suggest a 

differential regulation of these two ABPs in the regenerating axons. 
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Figure 1. The levels of the ABPs Pfn1 and Cfl1 are increase following conditioning effect. (A) Schematic 

representation of the spinal cord. The injury site is highlighted in blue; the central (dorsal column tract) and 

peripheral DRG axons are highlighted in red. Spinal cord injury site samples correspond to the region 

2.5mm caudal and 2.5mm rostral from the lesion site. Adapted from (Alto et al., 2009). (B) Western blot 

analysis of Cfl1, Pfn1 and p-Pfn1 in spinal cord injury samples of rats with either spinal cord injury (SCI) or 

conditioning lesion (CL). (C) Quantification of (B); normalized ratios of protein of interest/HPRT are shown. 

p-value: **<0.01. 

 

 

The acute deletion of Pfn1 impairs neuritogenesis a nd neurite outgrowth 

The continuous incorporation of ATP bound G-actin is essential for maintaining the 

dynamism of a growing axon. In growth cones, this is undertaken by profilin (Lee et al., 

2013). Here we assessed the role of Pfn1 in neuritogenesis and axon growth. For that, 

our initial approach was to perform the acute ShRNA-mediated depletion of Pfn1 in 

both hippocampal and DRG neurons. In both neuron types the knockdown of Pfn1 was 

efficient (83% ±0.02 decreased expression for hippocampal neurons (Figure 2A) and 

86% ±0.05 for DRG neurons) (Figure 2C) and was not accompanied by an increased 

expression of Pfn2. Pfn1 depletion precluded the ability of hippocampal neurons to 

form axons and cells were not able to extend filopodia or exit stage 1 (Figure 2B), 

suggesting a fundamental role of Pfn1 during early neuritogenesis. In DRG neurons, 

although the knockdown of Pfn1 was also efficient and did not lead to increased Pfn2 

levels (Figure 2C), neurons were able to form neurites but these had a decreased 

length (Figure 2D, E).  
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Figure 2. Pfn1 is a regulator of neuritogenesis and axon growth. (A) qPCR of Pfn1 and Pfn2 in DIV5 

hippocampal neurons transduced with either a control lentivirus (pLKO) or a lentivirus targeting Pfn1 

(ShRNA Pfn1). The ratio is normalized in relation to the control (pLKO). (B) Representative βIII-tubulin 

immunofluorescence (in grey) in DIV2 (post replating) hippocampal neurons transduced with either an 

empty lentivirus (pLKO) or a lentivirus targeting Pfn1 (ShRNA Pfn1). DAPI - blue; scale bar- 200µm. (C) 

qPCR of Pfn1 and Pfn2 in DIV5 rat DRG neurons treated with either a control lentivirus (pLKO) or a 

lentivirus targeting Pfn1 (ShRNA Pfn1). The ratio is normalized in relation to the control (pLKO). (D) 

Representative βIII-tubulin immunofluorescence in DRG neurons grown for 12 hour post replating treated 

with either an empty lentivirus (pLKO) or a lentivirus targeting Pfn1 (ShRNA Pfn1). Scale bar - 100µm. (E) 

Quantification of length of the longest neurite in DRG neurons shown in (D), treated with either an empty 

lentivirus (pLKO) or a lentivirus targeting Pfn1 (ShRNA Pfn1). p-value ***<0.001. 

 

The absence of Pfn1 leads to reversion of the condi tioning effect and to 

decreased actin retrograde flow in the growth cone 

To further evaluate the role of profilin in axon formation and growth, we crossed the 

Pfn1fl/fl mice, where the first exon of the Pfn1 gene is flanked by loxP sites (Bottcher et 

al., 2009) with the Slick-H mice, that express inducible CreERT2 and YFP under the 

control of the neuronal Thy1 promoter (Young et al., 2008). The deletion of Pfn1 was 

confirmed by western blot in the brain and spinal cord of cre+Pfn1f/f mice (Figure 3A-C) 

and in the DRG, 41% of the neurons were YFP-positive (Liz et al., 2014). We used 

DRG neuron cultures from cre+Pfn1f/f mice as a model of chronic Pfn1 depletion. The 

conditioning lesion effect was clearly visible in vitro, with DRG neurons collected from 

animals with a priming peripheral branch injury displaying a different growth type, with 

decreased branching and increased elongation, resembling embryonic and early post-

natal DRG neurons (Martin et al., 2013). Conditioned neurons from cre+Pfn1fl/fl mice 
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presented a decreased growth ability, when compared to the cre-Pfn1fl/fl controls (cre-

Pfn1fl/fl: 432.1±117.9µm, n=48 cells; cre+Pfn1fl/fl: 371.6±118.6µm, n=39 cells) (Figure 

3D-E). Of note, in cre+Pfn1f/f DRG neurons, depletion of Pfn2 by specific ShRNA 

lentiviral mediated knockdown, resulted in a severe decrease in neurite outgrowth 

(cre+Pfn1f/f + control lentivirus (pLKO): 404±188µm, n=41 cells; cre+Pfn1f/f + Pfn2 

ShRNA directed lentivirus (ShRNA Pfn2): 246±193µm, n=32cells) (Figure 3F-G), 

suggesting that at least in the absence of Pfn1, Pfn2 can regulate neurite outgrowth.  

To evaluate whether the chronic depletion of Pfn1 resulted in an abnormal actin 

dynamics in the growth cone, DRG neuronal cultures of cre+Pfn1wt/wt and cre+Pfn1fl/fl 

were transfected with lifeAct-RFP and actin retrograde flow was measured (Figure 3H-

I). In cre+Pfn1fl/fl DRG neurons, actin retrograde flow was decreased, highlighting the 

role of profilin in mediating the transition of ADP to ATP bound actin, required for the 

dynamism that the growth cones present during axon extension 
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.  

Figure 3. The absence of Pfn1 leads to reversion of the conditioning effect and to decreased actin 

retrograde flow in the growth cone. (A) Western blot against Pfn1 and β-actin of brain and spinal cord 

(SCord) samples of cre+Pfn1f/f and cre+Pfn1wt/wt mice. (B-C) Quanfication of (A). (D) βIII-tubulin 

immunofluorescence of cre+Pfn1fl/fl and cre-Pfn1fl/fl conditioned DRG neurons. Scale bar: 100µm. (E) 

Quantification of the length of the longest neurite in cre+Pfn1fl/fl and cre-Pfn1fl/fl conditioned DRG neurons 

(D). (F) Representative βIII-tubulin immunofluorescence in cre+Pfn1f/f DRG neurons either transduced with 

a control lentivirus (pLKO) or with a Pfn2 ShRNA directed lentivirus (ShRNA Pfn2). Scale bar: 100µm. (G) 

Quantification of the length of the longest neurite in DRG neurons either transduced with a control 

lentivirus (pLKO) or with a Pfn2 ShRNA directed lentivirus (ShRNA Pfn2). (H) Representative growth cones 

of lifeAct-RFP transfected cre+Pfn1wt/wt and cre+Pfn1fl/fl DRG neurons (upper) and respective kymographs 

(lower). Red asterisks highlight the region where kymographs were performed. Upper panel: scale bar: 
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5µm; Bottom panel: vertical scale bar (time (t)): 50 seconds, horizontal scale bar (distance (d)): 1µm. (I) 

Quantification of (H). p-value *<0.05 and ***<0.001 

In vivo regeneration of peripheral and central DRG axons i s diminished in the 

absence of Pfn1. 

To determine whether in vivo the absence of Pfn1 results in decreased axon growth, 

two paradigms that originate a robust axon regeneration were used to compare 

cre+Pfn1wt/wt and cre+Pfn1fl/fl mice: sciatic nerve injury and the conditioning lesion model 

(Silver, 2009). Two weeks after sciatic nerve crush, regeneration of myelinated axons 

was assessed. Of note, using the SlickH cre reporter system most of the axons in the 

sciatic nerve are YFP+ (Figure 4A). cre+Pfn1fl/fl mice had a decreased density of 

myelinated axons after sciatic nerve crush when compared to cre+Pfn1wt/wt (cre+ 

Pfn1wt/wt n=5 animals; cre+Pfn1fl/fl n=8 animals) (Figure 4B-C), supporting a decreased 

axon regeneration capacity. 

To reinforce the importance of Pfn1 for axon regrowth, an alternative model was used, 

the conditioning lesion paradigm. In this model, the enhanced regeneration capacity of 

the dorsal column tract was assessed in animals where a sciatic nerve transection 

preceded an acute spinal cord lesion. The severed tract was clearly identified by the 

YFP axonal staining (in green) and the presence of the tracer – CT-B subunit 

conjugated with Alexa568 (in red) (Figure 4D). Although there was a tendency for a 

decreased number of dorsal column axons regenerating though the glial scar in 

cre+Pfn1fl/fl mice, this did not reach statistical significance (Figure 4D and 4E) 

(cre+Pfn1wt/wt: n=5 animals; cre+Pfn1fl/fl: n=6 animals). However, the length of the 

regenerating axons was severely decreased in animals lacking Pfn1 (Cre+Pfn1wt/wt: 

311.0 µm ±65.4 SD, n=5 animals; Cre+Pfn1fl/fl: 185.8 µm ±58.7 SD, n=5 animals) 

(Figure 4F), further support the importance of Pfn1 in axon growth, including through 

the inhibitory adult spinal cord injury site. 

Taken together, this data strongly support that profilin-1 is essential for axon extension 

and regeneration and reinforce the role of actin – and actin dynamics – in the 

conditioning lesion model. 
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Figure 4. Pfn1 is a key regulator of axon regeneration after injury. (A) Cre+ Pfn1wt/wt YFP sciatic nerve 

section. (B) Representative images of PPD-stained semithin sciatic nerve sections from cre+Pfn1fl/fl and 

cre+Pfn1wt/wt mice two weeks after sciatic nerve crush; scale bar: 50 µm. (C) Quantification of myelinated 

axon density in sciatic nerves from cre+Pfn1fl/fl and cre-Pfn1fl/fl mice, 2 weeks after sciatic nerve crush. Error 

bars are SEM. (D) Representative images of CT-B+ fibers in sagittal spinal cord sections following 

conditioning lesion in cre+Pfn1wt/wt and cre+Pfn1fl/fl mice. YFP+ axons are shown in green and dorsal 

column fibers traced with CT-B are labeled in red. The double positive YFP+/CT-B+ axons are highlighted 

with arrows; scale bar: 100 µm. R: rostral; C: caudal; D: dorsal; V: ventral; Dashed lines label the border of 

the glial scar. (E) Quantification of the number of CT-B+/YFP+ dorsal column fibers that are able to enter 

in the glial scar. (F) Quantification of the length of the regenerating axons within the glial scar, from the 

lesion border. All error bars are SEM. p-value *<0.05, **<0.01 

 

Overexpression of the constitutively active form of  Pfn1 S137A increases axon 

growth 

Our data suggests that the regulation of Pfn1 activity is an important event in conditions 

of increased axon growth. Profilin activity is regulated by phosphorylation of its C-

terminal serine residue 137. This phosphorylation, performed by ROCK1 is inhibitory 

for its activity (Shao et al., 2008). Although the exact mechanism is not fully 



Chapter 3 

177 

 

understood, it is known that Pfn1 S137A mutant binds actin with higher affinity than WT 

Pfn1 (Shao et al., 2008). To further assess the importance of Pfn1 regulation, 

hippocampal neuron cultures were transfected with WT Pfn1 and Pfn1 mutants of the 

phosphorylatable S137 residue (Figure 5A). Given the known regulation of Pfn1, our 

expectations were to have increased outgrowth with the overexpression of the 

constitutively active S137A mutant, and decreased growth capacity with the S173D 

mutant, which should mimic innactivePfn1 phosphorylated by ROCK. Confirming our 

hypothesis, overexpression of the constitutively active Pfn1 mutant S137A increased 

very consistently axon growth (Figure 5B), but not that of dendrites (Figure 5C), 

whereas the WT and the pseudo-phosphorylatable form of Pfn1 had no significant 

impact in axon growth. 

 

Figure 5. Overexpression of constitutively active profilin leads to increased axon outgrowth. (A) E16.5 

hippocampal neurons were co-transfected with pMAX GFP and WT, S137A or S137D profilin and fixed at 

DIV4. During this period of active axon outgrowth, only the constitutively active form increased growth 

capacity (B), whereas the effect in the dendrite outgrowth was not observed (C). (D) The overexpression of 

the WT and profilin mutants was confirmed in CAD cell extracts. Scale bars: 50µm. p-value ***<0.001 

 

  



Profilin-1 modulates axon growth 

178 

 

Pfn1 overexpression impacts intracellular signaling  

Besides its actin-binding activity, Pfn1 binds PIP2 in the cellular membrane (Krishnan 

and Moens, 2009). Given its PIP2 binding activity, we evaluated a possible effect of 

Pfn1 overexpression in the PI3K/GSK3β (Figure 6A) pathway using the neuronal CAD 

cell line overexpressing WT Pfn1 (Figure 6B). Phosphorylated AKT S473 (Figure 6E) 

was increased by Pfn1 overexpression, and phospho-AKT T308 levels were also 

increased although this increase did not reach statistic significance (p-value = 0.09) 

(Figure 6D). The activation of the kinase responsible for the phosphorylation of AKT at 

T308, PDK1 (Hemmings and Restuccia, 2012), was not significantly altered by Pfn1 

overexpression(Figure 6C). These results suggest that the induction of AKT activation 

by Pfn1 overexpression occurs mostly through S473 phosphorylation, which is 

regulated by mTORC2 (Hemmings and Restuccia, 2012). The downstream effector of 

activated AKT, GSK3β was also differently regulated upon Pfn1 overexpression, with a 

2 fold increase in the inhibitory phosphorylation at the S9 residue (Figure 6F). 

Interestingly, GSK3β inactivation increases axon outgrowth (Liz et al., 2014). The 

GSK3β activator phosphorylation at Y216 was unaltered by Pfn1 overexpression 

(Figure 6G). These results suggest that Pfn1 modulates not only the actin cytoskeleton 

but may also impact microtubule regulation, through PI3K/AKT signaling, a central 

pathway in this context (Read and Gorman, 2009). 

 

 

Figure 6. Pfn1 overexpression activates the AKT/GSK3β signaling cascade. (A) Western blot analysis of 

Pfn1, PDK1 (phosphorylated and total levels), AKT (phosphorylated and total levels) and GSK3β 

(phosphorylated and total levels) in control CAD cells (control) and CAD cells overexpressing Pfn1 (Pfn1 

OE). (B-G) Quantification of A. p-value *<0.05 and **<0.01. 
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Discussion 

 

The conditioning lesion is a paradigm of enhanced intrinsic regeneration capacity of 

DRG neurons. These neurons, after a priming injury to their peripheral branch become 

more competent to regenerate their central branch. The nature of this increased ability 

to regrow is dependent on the activation of the transcription machinery that leads to the 

expression of regeneration-associated genes (RAGs) (Hoffman, 2010) and also to the 

increase in the axonal transport of proteins related to axon outgrowth (Hoffman, 2010; 

Mar et al., 2014). Here we show that the levels and activity of Pfn1 are crucial in 

mediating the conditioning effect and actin dynamics during axon growth/regeneration. 

In an acute depletion model downregulation of Pfn1 generated a striking neuritogenic 

deficiency in hippocampal neurons. A similar phenotype is found in ADF/Cofilin dKO 

neurons (Flynn et al., 2012). It is however unlikely that under chronic depletion of Pfn1 

such an effect is visible. In fact, in Nestin-cre+ Pfn1fl/fl mice, which have decrease levels 

of Pfn1 from early neuronal differentiation periods (and no Pfn1 at P1) (Kullmann et al., 

2012a), development occurs without any obvious and striking impairment, and the only 

defect found was in the migration of cerebellar granule neurons (CGN) (Kullmann et al., 

2012a). It is important to note that in the cerebellum, radial migration occurs late in 

development (from P4 to P9) and this may be the reason why no defects are seen in 

other neuron populations as Pfn1 decrease in Nestin-cre+ Pfn1fl/fl is observable at E15 

and complete at P1. In DRG neurons, however, the phenotype after acute depletion of 

Pfn1 was not as severe as that observed in hippocampal neurons, and only a 

decreased neurite outgrowth was observed. The reason underlying the different effect 

of Pfn1 depletion in different neuron types remains to be established. Besides the 

acute depletion of Pfn1, we also used Pfn1 conditional KO mice to further dissect the 

role of this protein in axon growth – namely in the context of in vivo axon regeneration. 

In this model we clearly demonstrate that in vivo, in axon regeneration paradigms that 

are followed by successful axon regeneration, as is the case of sciatic nerve injury and 

conditioning lesion, Pfn1 is required. In Pfn1 KO animals, compensation by Pfn2 might 

not be neglectable, as Pfn2 is not only neuronal specific, but also present in increased 

levels in (CNS) neurons (Pilo Boyl et al., 2007; Witke et al., 1998; Witke et al., 2001). 

Of note, Pfn2 depletion by ShRNA in a Pfn1 KO background led to a decreased neurite 

outgrowth. This reinforces the idea of a compensatory mechanism of Pfn2 when Pfn1 

is depleted, namely in the chronic depletion model generated by the SLICK-H Pfn1fl 

mice. The same is observed with ADF/Cofilin-1 (Flynn et al., 2012) and Cofilin-

1/Cofilin-2 (Frank Bradke, personal communication, Chile 2015). In this context, it 
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would be interesting to have a full Pfn1 and Pfn2 KO mice, to further study the 

importance of profilins for the axon regeneration ability in the absence of any 

compensatory role. For this, the SLICK-H Pfn1fl x PFN2 KO mice should be generated, 

since the full Pfn1 KO mice are unviable (Witke et al., 2001) whereas the Pfn2 KO is 

not (Pilo Boyl et al., 2007). 

Our data demonstrates that profilin is fundamental for axon regeneration. But how does 

Pfn1 exerts its effect? Our analysis suggests that the actin retrograde flow, which is 

crucial for the proper extension of the axon (Gomez and Letourneau, 2014), is impaired 

in the absence of Pfn-1. As it was demonstrated before (Lee et al., 2013), profilin is 

fundamental for the maintenance of the G-actin pool (ATP bound) at the leading edge 

of the growth cone membranes. In its absence, the G-actin pool is decreased as well 

as lamellipodia extension (Lee et al., 2013). Therefore, the role of Pfn1 as the 

exchanger of ADP to ATP bound G-actin monomers and its capacity to be localized at 

the cell membrane is crucial for the growth cone dynamics. 

Interestingly, we show that in the spinal cord lesion site, levels of Pfn1 are increased in 

conditioned animals but, more strikingly, that the inhibitory phosphorylation of Pfn1 is 

almost 10-fold decreased. In vitro, although overexpression of Pfn1 in hippocampal 

neurons did not result in increased neurite outgrowth, the constitutively active Pfn1 

mutant S137A, that cannot be phosphorylayed by ROCK, increased consistently axon 

outgrowth. This result strengths the idea of that active Pfn1 is required for optimal axon 

growth to occur. Interestingly, cofilins are also inhibited through phosphorylation by LIM 

kinases 1 and 2, which are downstream effectors of the Rho kinases ROCK (Sumi et 

al., 1999), cdc42 (Garvalov et al., 2007) and Rac (Arber et al., 1998), inhibiting them. 

Since Rho signaling is a main inhibitory pathway of axonal regeneration in the CNS 

(Fujita and Yamashita, 2014), it is likely that Cfl1 and Pfn1 are two of the main 

downstream targets of its action.In summary, in the conditioning lesion model 

increased regeneration capacity is achieved by increasing the overall pool of Pfn1 and 

Cfn1 in the lesion site. In the case of Pfn1, not only the absolute amounts of the protein 

but also severely decreased levels of the inhibited form of the protein are clearly 

mediating the enhanced growth ability. To further assess the in vivo relevance of this 

mechanism, future experiments should test the delivery of the constitutively active form 

of Pfn1 to regenerating DRG neurons.  

It is important to note that the localization of Pfn1 in the membrane, at the edge of the 

growth cone, is fundamental for its actin-related role. But, interestingly, actin is not the 

only cytoskeleton-related protein that Pfn1 (and Pfn2) is able to interact with. Profilins 

have two additional important domains besides the actin binding domain, that are the 
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poly-L-proline binding motif (which enables interaction with a large group of ABPs) and 

the phosphoinositide binding domain (Goldschmidt-Clermont et al., 1990; Lassing and 

Lindberg, 1988). Through its interaction with PIP2, profilins might regulate the PI3K 

signaling and can have non-actin related functions with impact in the organization of 

the microtubule cytoskeleton. To test this hyposthesis, we performed the analysis of 

the PI3K/AKT pathway in a neuronal cell line overexpressing Pfn1. Our analysis 

revealed that Pfn1 not only impacts the actin cytoskeleton but may also regulate 

microtubule dynamics through modulation of GSK3β activity. The inhibition of GSK3β is 

known to be an important event in the neurite outgrowth process, namely in the 

conditioning lesion model (Liz et al., 2014). In the future one key experiment will be the 

analysis of microtubule dynamics in the context of either overexpression or absence of 

profilin. Together these findings raise new and exciting possibilities, namely that 

increased activity of Pfn1 might result in increased axon regeneration in vivo not only 

through the regulation of actin dynamics in the growth cone, but also through the 

modulation of the microtubule cytoskeleton. 

 

Methods 

 

Animals  

Mice were handled according European Union and National rules. The protocols 

described in this work have been approved by the IBMC Ethical Committee and by the 

Portuguese Veterinarian Board. Mice were bred at the IBMC animal facility, had ad 

libitum access to water and standard rodent food, and were kept on a 12 hour light and 

dark cycle. Genotyping was performed as described (Bottcher et al., 2009). Floxed 

Pfn1 mice (Pfn1fl/fl, a kind gift from Prof R Fassler, Max Planck Institute of 

Biochemistry) and Slick-H mice (a kind gift from Dr Guoping Feng, Duke University 

Medical Center; mice that co-express inducible-CreERT2 and YFP under the control of 

the Thy1 promoter (Young et al., 2008)) were used to generate neuronal-specific 

conditional Pfn1 knockout mice (cre+Pfn1fl/fl). For that, Pfn1fl/fl were crossed with Slick-H 

mice. cre+Pfn1fl/wt were selected and then crossed with Pfn1fl/fl mice and Pfn1wt/wt mice 

in order to generate cre+Pfn1fl/fl mice and the controls cre+Pfn1wt/wt and cre-Pfn1fl/fl. 

Induction of cre expression was performed by tamoxifen injection at weaning (3-4 

weeks of age). In all experiments animals of either sex were used. 
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Sciatic nerve and spinal cord lesions 

Sciatic nerve crush: 7 weeks old mice were anesthetized with 5% isoflurane in a closed 

chamber, followed by delivery of 2-3% of isofluorane using a mask, which was 

maintained through the surgery procedure. Crush was done using hemostatic forceps 

for 2 times during 15 seconds Animals were allowed to recover for two weeks after 

which nerves were collected for analysis of axon regeneration as detailed below. 

Sciatic nerve transection: 8-10 weeks old Wistar rats were anesthetized with ketamine 

(75mg/Kg) and medetomidine (0.6 mg/Kg) and sciatic nerve transections were 

performed using a microscissor,. Animals received analgesia (butorphanol) twice a 

day, for 48 hours. 

Spinal cord injury (SCI): 10-12 weeks old Wistar rats, or 8 weeks old mice, were used. 

Animals were anesthetized with ketamine/medetomidine, as above. The skin was 

shaved and the spinal cord was exposed at the thoracic level. Laminectomy was 

performed at the T6-T8 level (in rats), or at the T7-T9 level in mice. Dorsal hemisection 

was done with a microscissor (in rats) or using a micro-scalpel (in mice) for western 

blot analysis (rats) and for dorsal column tract analysis (mice). Animals received 

analgesia (butorphanol) twice a day, for 72 hours and fluid therapy once a day 

(Duphalyte), for 72 hours. Animals also required manual voiding of the bladder twice a 

day for the rest of the experimental period. Wet food was placed in the cage floor and 

water with antibiotic (0.016% Baytril) was supplied in long nipple bottles. The recovery 

period after spinal cord injury was: i) 1 week for collection of 5mm of the spinal cord 

injury site (2.5mm rostral and 2.5mm caudal to the lesion site) and analysis by western 

blot, as detailed below and ii) 4 weeks for dorsal column tract analysis (also detailed 

below). 

Conditioning lesion: sciatic nerve transection was performed as described above and 

one week later dorsal spinal cord hemisection was conducted, also as described 

above. 

 

Analysis of axon regeneration  

Regeneration of sciatic nerve axons: 7 weeks-old mice (n= 8 cre+Pfn1fl/fl and n= 5 

cre+Pfn1wt/wt mice) were subjected to sciatic nerve crush as detailed above. 2 weeks 

after crush animals were sacrificed and sciatic nerves were collected and fixed for two 

weeks in 4% glutaraldehyde in 0.1M sodium cacodylate buffer (pH 7.4). After post-

fixation with 1% OsO4 in 0.1M sodium cacodylate buffer (pH 7.4) for 2 hours, tissues 

were dehydrated and embedded in Epon (Electron Microscopy Sciences). In sciatic 
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nerves, for the assessment of the density of myelinated axons, 1µm-thick nerve 

sections were stained for 10 minutes with 1% p-phenylenediamine (PPD) in absolute 

methanol, dried, and mounted on a drop of DPX (Merck). The entire area of the nerve, 

distally to the lesion site, was photographed using an Olympus optical microscope 

equipped with an Olympus DP 25 camera and Cell B software, and images were 

imported into Photoshop (Adobe). 

Regeneration of dorsal column axons after conditioning lesion: 8 weeks old 

cre+Pfn1wt/wt (n=6) and cre+Pfn1fl/fl (n=5) mice were subjected to spinal cord dorsal 

hemisection and allowed to recover for 4 weeks, as detailed above. Four days prior 

euthanasia, 2µL of 1% cholera toxin B (CT-B) (List Biologicals, Campbell, CA, USA) 

was injected in both sciatic nerves. Animals were perfused with formalin, tissues were 

cryopreserved in sucrose and sectioned at 50µm. Consecutive spinal cord sagittal 

sections were collected for free floating immunohistochemistry with anti-CT-B (1:30000; 

List Biologicals, #703). The secondary anti-goat biotinylated antibody Alexa fluor 568 

conjugated streptavidin was used to detect the axons from the conditioned DRG 

neurons (and non-conditioned controls). Image analysis was done with Fiji software. 

Dorsal column fibers were quantified by counting the total number of axons within the 

glial scar, in the CT-B positive sections (2-4 sections per animal). The length of the 

longest CT-B labeled axon found rostrally to the injury site was measured using as the 

origin a vertical line placed at the rostral end of the dorsal column tract (that is, where 

CT-B labeling accumulates). Lesion margins were evident under YFP channel 

visualization and the line corresponding to the lesion site was drawn. For scoring, only 

double YFP / Texas Red positive axons were considered. 

 

Western blotting 

For western blots of rat spinal cord injury sites (for comparison of animals with SCI and 

CL), 10-15% SDS-PAGE gels with 50 µg of sample were run; for the analysis of Pfn1 

overexpression (for 48h) in CAD cells, 15% SDS-PAGE gels and 20-25µg of sample 

were used; for the brain and spinal cord samples from floxed animals 15% SDS-PAGE 

gels and 25µg of protein were applied. Gels were transferred for 2 hours in a semi-dry 

system to a nitrocellulose membrane. Membranes were washed in TBS with 0.1% of 

Tween-20, blocked in 5% non-fat dried milk (Sigma) in TBS for 1 hour at room 

temperature, incubated with primary antibody (in either 5% BSA or 5% non-fat dried 

milk, in TBS) 1 hour at room temperature or overnight at 4ºC. Membranes were then 

washed and incubated with secondary antibody in 5% non-fat dried milk in TBS for 1 
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hour at room temperature and then incubated 5 minutes at room temperature with 

Pierce ECL (Pierce) for development. Chemiluminescence was analyzed by exposure 

to Amersham Hyperfilm ECL (GE Healthcare). 

For western blotting the following primary antibodies were used: rabbit anti-phospho-

Akt (S473) (1:1000; Cell Signaling), rabbit anti- phospho-Akt (T308) (1:1000; Cell 

Signaling), rabbit anti- total-Akt (1:1000; Cell Signaling), rabbit anti- phospho-GSK3β 

(S9) (1:500; Cell Signaling), rabbit anti- phospho-GSK3β (Y216) (1:500; Santa Cruz), 

mouse anti-GSK3α/β (1:1000; Santa Cruz), rabbit anti- phospho-PDK1 (S241) (1:1000; 

Cell Signaling), rabbit anti- total-PDK1 (1:1000; Cell Signaling), mouse anti- total-Pfn1 

(1:1000; Santa Cruz Biotechnology), rabbit anti- phospho-Pfn1 (S137) (a kind gift from 

Dr Jieya Shao, University of California, San Francisco), mouse anti- β-actin (1:5000; 

Sigma, rabbit anti- cofilin-1 (kindly provided by Dr James Bamburg, Colorado State 

University, Fort Collins, Colorado, USA); rabbit anti-HPRT, 1:2000 (Santa Cruz 

Biotechnology). The secondary antibodies were: donkey anti-mouse or donkey anti-

rabbit conjugated with HRP, 1:5000 (Jackson). Samples were homogenized in PBS 

with 0.3%Triton-X100 (Sigma), 1mM sodium orthovanadate (Sigma) and protease 

inhibitor cocktail (Roche).  

 

DRG and Hippocampal neuron cultures 

Briefly, for DRG neuron cultures, the animals used were 8 weeks old when sacrificed. 

DRGs were collected and digested for 90 minutes with 0.125% collagenase IV-S 

(C1189, Sigma). DRG were then triturated and passed through a 15% BSA gradient. 

Cells were counted and plated at a density of 40 cells/mm2 in previously treated 24-

well plate coverslips, coated with 20µg/mL poly-L-lysine (P2636, Sigma) and 5µg/mL 

laminin (L2020, Sigma). Neurons were grown in DMEM:F12 (D8437, Sigma) 

supplemented with 1x B27 (Gibco), 1% penicillin/streptomycin (Gibco), 2mM L-

glutamine (Gibco) and 50ng/mL NGF (01-125, Millipore). For neuronal outgrowth of 

cre+Pfn1fl/fl and cre+Pfn1wt/wt neurons, only YFP positive neurons were considered. For 

hippocampal neurons, cultures were performed following the general protocol detailed 

in the Kaech and Banker protocol (Kaech and Banker, 2006). Briefly, pregnant mice at 

E16.5 were sacrificed and pups were individually dissected and genotyped. The 

hippocampus of each pup was digested 15 minutes in 0.06% porcine tryspin solution 

(T4799, Sigma), triturated and plated at a density of 125 cells/mm2 in 24 well plates 

containing glass cover slips previously treated with 20µg/mL poly-L-lysine (P2636, 

Sigma). Neurons were plated in Neurobasal (21103-049, Invitrogen) supplemented 
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with 1x B27 (Gibco), 1% penicillin/streptomycin (Gibco) and 2mM L-glutamine (Gibco). 

For neurite outgrowth analysis, neurons were fixed 12 or 96h post plating (for DRG and 

hippocampal neurons, respectively), and immunofluorescence for βIII-tubulin 

(Promega, G7121, 1:2000) was performed. The length of the longest neurite was 

determined using NeuronJ plug-in for ImageJ. 

 

Virus production and gene transduction 

For viral production, HEK293T cells were seeded at 90% confluence in T75cm2 flasks 

and transfected using Lipofectamine (Invitrogen) with packaging plasmids pPAX (6µg) 

and VSVG (3µg) (a kind gift from Dr. Relvas, IBMC) and a lentiviral vector coding for 

puromycin resistance and expressing the ShRNA of interest (6µg, Sigma): for Pfn1 

TRCN0000011969 and for Pfn2 TRCN0000071642; empty vector (pLKO- Sigma) was 

used as a control. Forty-eight hours post-transfection, the supernatants were collected, 

centrifuged at 1000 rpm for 5 minutes at room temperature and filtered through a 

0.45µm filter. Viral titration was done by infecting HEK 293T cells with serial dilutions of 

viral stock and using puromycin selection. The knockdown efficiency of Pfn1 ShRNA 

was determined by transduction of rat DRG cultures, and selection with 2µg/ml of 

puromycin for 48h. Transcriptomes were obtained using the RNeasy Lipid Tissue Mini 

Kit (Qiagen) and expression levels were quantified by qPCR.  

DRGs from cre+Pfn1 mice or Wistar Rat, or hippocampal neurons from WT NMRI 

E16.5 embryos were isolated as mentioned previously. One (for DRG neurons) or 3 

days (for hippocampal neurons) after plating, cells were infected with lentivirus (5000 

IU per well), produced as described above, for 12–16 hours, and 24 hours later treated 

with puromycin (5µg/ml for DRG and 0.5µg/ml for hippocampal neurons) for 48 h. For 

neurite outgrowth assays, cells were trypsinized, replated for 12 h (for DRG) or for 48 

hours (for hippocampal neurons), fixed and βIII-tubulin immunocytochemistry (1:1000; 

Promega) was done. Calculations of the Pfn1 and Pfn2 expression levels in DRG and 

hippocampal neurons were done by analysis of the Pfn1, Pfn2 and HPRT by qPCR. 

 

Analysis of actin retrograde flow  

DRG neurons from 8-weeks-old cre+Pfn1fl/fl and cre-Pfn1fl/fl mice, dissected and cultured 

as mentioned previously, were nucleofected (4D Nucleofector Amaxa system, Lonza, 

CU137 program) with either 750 ng LifeAct-mCherry (Riedl et al., 2008) (in the case of 

cre+Pfn1fl/fl DRG neurons) or 750 ng LifeAct-mCherry plus 150 ng pmaxGFP™ (Lonza) 

(in the case of cre-Pfn1fl/fl DRG neurons). After transfection, cells were left in 
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suspension overnight and then plated for 12 hours in a PLL (20µg/mL)/laminin 

(5µg/mL) coated µ-Dish 35 mm (Ibidi) previously treated with 2M HCl. Twelve hours 

after plating, time-lapse recordings were performed, in phenol-free DMEM/F12 

(Invitrogen) supplemented as mentioned above, for 40 frames every 5 seconds at 37ºC 

on a Spinning Disk Confocal System Andor Revolution XD (ANDOR Technology, UK) 

equipped with an iXonEM+ DU-897 camera and with IQ 1.10.1 software (all from 

ANDOR Technology, UK). Kymographs were made using Kymograph plugin for 

ImageJ for retrograde flow quantification. Only cells double positive for either YFP (cre+ 

neurons) or GFP (cre- transfected neurons) and RFP (from the lifeact-RFP staining) 

were considered. 

 

Overexpression of WT and Pfn1 mutants in hippocampa l neurons and CAD cells 

Residues of Pfn1 were mutated to generate a phospho-resistant Pfn1 (Pfn1S137A) and 

a phospho-mimetic Pfn1 (Pfn1S137D) mutantby PCR-based site-directed mutagenesis 

using QuickChange II XL (Agilent Technologies). Hippocampal neurons were cultured, 

as described above, and co-transfected with 200 ng pmaxGFP™ (Lonza) and 600 ng 

pCMV-SPORT6 vector coding the full length Pfn1 open reading frame (Addgene, clone 

IRATp970C034D) or each of the mutant plasmids mentioned above, before plating. 

Transfected cells were grown for 4 days and then fixed with 4% PFA (30 minutes). 

Immunofluorescence was done for βIII-tubulin and YFP+/βIII-tubulin+ neurons were 

selected for neurite outgrowth evaluation. For the analysis of the expression levels of 

WT Pfn1 and of the above mutants, transfection of the neuronal cell line CAD (Qi et al., 

1997) was used. Protein extractions were performed 48 hours after transfection. 
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General conclusions and future perspectives 
 

Our work led us to reach interesting conclusions and raises new conceptual 

perspectives that will need to be tested by future experiments. It is known that actin 

plays a crucial role in the neuritogenic process and that axon growth and regeneration 

depends on how efficient is the formation of a new growth-competent growth cone, 

which is critically dependent of the dynamics of its actin cytoskeleton. 

The starting point of this Thesis was to find which actin-related proteins were playing a 

(important) role in the enhanced axon growth paradigm that the conditioning lesion 

model provides. It is known that conditioned neurons gain some embryonic-like 

characteristics, as a preference for extension instead of branching, and also the 

capacity to be sensitive to neurotrophic gradients, a very distinctive feature of the actin 

cytoskeleton in the embryonic growth cone. These features suggest a distinctive 

regulation of the actin cytoskeleton in conditioned neurons. ABPs are therefore very 

good candidates to be modulating this effect. In our analysis, we found two different 

ABPs differently regulated in the conditioning lesion model. Interestingly, one being a 

positive and the other a negative regulator of actin dynamics – Pfn1 and adducin, 

respectively. Moreover, in conditioned neurons Pfn1 activity was increased whereas 

adducin activity was inhibited, which reinforces the idea of the need of increased actin 

dynamics in the growth cone to achieve optimal axon growth. 

Our studies with Pfn1 demonstrated that it is a fundamental component of the 

conditioning effect, which became evident when the double Pfn1 and Pfn2 deletion was 

performed. Moreover, the effect was not only visible in vitro but also in vivo when the 

conditioning lesion was performed in animals depleted of Pfn1 which resulted in 

decreased growth ability. These results are similar to those obtained using the animal 

model of ADF/Cofilin depletion, which lack the Pfn1 partner in the actin filament 

turnover. Contrarily to the Pfn1 depletion, overexpression of the Pfn1 constitutively 

active form – Pfn1S137A, which cannot be modulated by Rho GTPase signaling – led 

to increased axon growth capacity. One key future experiment will be the 

overexpression of this Pfn1 mutant in the DRG in vivo, to assess if the increased 

growth capacity is translated in a physiological context. It is also interesting to find that 

Pfn1 not only modulates the actin cytoskeleton but might also regulate the microtubule 

cytoskeleton. Supporting this hypothesis, that needs to be further substantiated by 

additional experiments, we show that Pfn1 overexpression increases AKT activation 

that leads to GSK3β inactivation through S9 phosphorylation. The GSK3β inhibition is a 
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well-known pro-regenerative event that leads to increased axon growth capacity both in 

vitro and in vivo. 

The other ABP identified as being differently regulated in the conditioning effect was 

adducin – namely the α and γ forms. Interestingly, adducin KO neurons presented a 

highly dynamic actin cytoskeleton in the growth cones that led to an increased 

dynamics of the microtubule cytoskeleton. In culture adducin KO neurons presented 

increased growth capacity, even in non-permissive substrates, as the ones found in the 

spinal cord lesion site, as is the case of CSPGs and myelin. Moreover, when we 

assessed CNS axon regeneration using adducin KO mice, these presented an 

increased capacity to extend axons through the inhibitory glial scar. 

Although the knockdown of adducin appears to be beneficial for CNS regeneration, its 

absence comes with a price. Adducins are ubiquitous ABPs that present inclusively a 

neuron (and erythrocyte) specific form, β-adducin. It is known that β-adducin KO mice 

present a myriad of impairments in the CNS, namely affecting synapse dynamics. 

Therefore, α-adducin KOs, that lack not only β but also α and γ adducin, could have 

additional deleterious effects in the nervous system. Our systematic analysis of the 

nervous system of the α-adducin KO mice revealed a generalized axonopathy, with 

axon enlargement and axon degeneration both in PNS and CNS tracts. Interestingly, 

the axon enlargement phenotype, was discovered when a new and revolutionary 

organization of the actin cytoskeleton – the axon actin rings, was described in neurons. 

Using a super-resolution method of imaging, a new cortical sub-membranar 

cytoskeleton was identified, and adducin was one of its three components (alongside 

actin and spectrin). Our data on adducin KO neurons shows that in the absence of 

adducin this cortical cytoskeleton can be assembled but that the rings of the adducin 

KO neurons are enlarged (i.e., they have an increased diameter). This points to a 

possible link between the absence of one of the components required for the axon 

actin rings with a phenotype of axon enlargement and degeneration. This finding 

certainly warrants further research. 

Given the above, it is my belief that this work is a contribution to the understanding of 

the neuronal mechanisms that participate in axon regeneration and axonal stability 

during nervous system aging. There is still certainly a lot to be done, specifically in 

what respects the understanding of actin ring assembly and function in physiology and 

neurodegeneration but step by step is how the whole picture is drawn and understood. 
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