
From sequential to Parallel Inductive Logic

Programming

Rui Camacho

LIACC, Rua do Campo Alegre, 823, 4150 Porto, Portugal
FEUP, Rua Dr Roberto Frias, 4200-465 Porto, Portugal

rcamacho@fe.up.pt

http://www.fe.up.pt/∼rcamacho

tel: +351 22 508 1849 fax: +351 22 508 1443

Abstract. Inductive Logic Programming (ILP) has achieved consider-
able success in a wide range of domains. It is recognized however that
efficiency is a major obstacle to the use of ILP systems in applications
requiring large amounts of data. In this paper we address the problem of
efficiency in ILP in three steps: i) we survey speedup techniques proposed
for sequential execution of ILP systems; ii) we survey different ways of
parallelizing an ILP system and; ii) adapt and combine the sequential
execution speedup techniques in the parallel implementations of an ILP
system. We also propose a novel technique to partition the search space
into independent sub-spaces that may be adequately searched in parallel.

keywords: Inductive Logic Programming, Parallel Automatic Data Analysis

1 Introduction

Inductive Logic Programming (ILP) has achieved considerable success in a wide
range of domains. It is recognized however that efficiency is a major obstacle to
the use of ILP systems in applications requiring large amounts of data. Relational
Data Mining applications are such an example where efficiency is very important.

To address the problem of efficiency in ILP we first look at improvements
in their sequential execution. Techniques have been proposed that substantially
improve the sequential execution time. We then investigate the approaches cur-
rently adopted for the parallel execution of ILP systems. To gain the most we
look at the combination of the two approaches. Some of the sequential improve-
ments may be directly used in a parallel context whereas some others have to be
adapted or partially used. The gains with the proposed combinations dependent
on the parallel strategy used and can involve an increase in the communication
costs.

In this paper we also propose a novel technique for parallel execution of ILP
systems. Our proposal is inspired on a Logic Programming and-parallelism tech-
nique of independence of goals. It consists in the partitioning of the search space
into independent sub-spaces that can therefore be searched in parallel.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Open Repository of the University of Porto

https://core.ac.uk/display/302923937?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


A parallel implementation of an ILP algorithm may: i) improve the quality of
the solutions found by searching more space in the same time of the sequential
execution and/or; process larger datasets distributing the examples among the
computing nodes (loading all of then in a single node may be impossible in some
cases) or; get the same solution of the sequential execution much faster.

The rest of the paper is organised as follows. Section 2 presents the ILP
framework. Sequential execution speedups are surveyed in Section 3. Section 4
surveys the current parallel execution approaches. In Section 5 we identify which
and how sequential speedup techniques can be adapted for a parallel execution
setting. In Section 6 we present our approach to define and search independent
sub-spaces. Finally we draw the conclusions in Section 7.

2 The ILP framework

The objective of an ILP system is the induction of logic programs from a set of
examples (E) and background knowledge (B). Examples are of two kinds: posi-
tive examples (E+) are instances of the target concept and; negative examples
(E−) are not instances of the target concept. Background knowledge is any kind
of information the domain expert thinks relevant for defining the target concept.
Both examples and background knowledge are usually represented as logic pro-
grams. An ILP system induces a logic program where positive examples succeed
and negative examples fail.

By means of defining a generalization relation over the set of clauses, ILP
maps the induction process into a graph search. Thus, learning can be seen as
searching for a correct theory. The states in the search space (designated as
hypothesis space) are concept descriptions (hypothesis) and the goal is to find
one or more states satisfying some quality criterion. The search space may be
“generated” by the transitive closure of a refinement operator [4] starting on the
most general clause. Refinement operators generalize or specialize hypotheses,
thus generating more hypotheses.

Each hypothesis generated during the search is evaluated to determine their
quality. A widely used approach to score a hypothesis is by measuring its cover-
age. The coverage of an hypothesis h is the number of positive (positive cover)
and negative examples (negative cover) derivable from B ∧ h.

A major problem in ILP is that the search space is, in general, very large
and in most cases infinite. In some domains the coverage computation is com-
putationally very expensive due to: a large number of examples or; proving
each example is computationally hard (high non-determinism in the background
knowledge predicates)[5].

To constrain the size of the search space clauses arguments are assigned a type
and I/O sign. These constraints are specified by means of mode declarations[4].



3 Performance improvements for Sequential Execution

The general idea of ILP systems being slow is based on essentially two items of
the technique: the number of nodes to be searched and; the amount of compu-
tation effort used to evaluate each hypothesis (node). Therefore, to get the most
on improving the sequential execution efficiency one has to tackle both items.
To address the first item a system may take advantage of techniques to avoid
the generation of useless hypothesis that is, redundancy avoidance techniques.
One approach is to profit from special purpose declarations such as transitivity
and commutativity declarations or expert provided declarations to avoid redun-
dancy.
Techniques to reduce the computation effort when evaluating an hypothesis in-
clude the following ones. Lazy evaluation of examples [1] aims at the evaluation
of the minimum number of examples necessary to decide if an hypothesis needs
to be specialised, accepted or abandoned. Query packs [6] avoid recomputation of
goals (literals) that are common among a parent clause and its direct refinement
clauses. This is achieved by making the evaluation of a clause and its refinements
together. Exact transformations of queries [2] transform clauses into equivalent
ones that are more efficiently evaluated by a theorem prover. The transforma-
tion depends on characteristics of the clauses. User defined refinement operators

allow the expert to constrain the clause refinements to only the ones he thinks
useful. Caching [8] avoids recomputation of previously obtained results.

4 Parallel execution

As pointed out by Page [3] parallelization of an ILP system is a very promis-
ing line of research to overcome the efficiency bottleneck. The strategies used
so far to parallelize ILP systems can be categorized as: parallel exploration of
the search space [9]; parallel coverage test [9]; and parallel execution of an ILP
system over a partition of the data [10]. Most of the techniques referred in the
previous section are still applicable in a parallel execution setting and therefore
substantial improvement on efficiency may be gained through the combination
of the results of both lines of research.
Since the ILP induction step is performed as a search through a graph (generali-
sation lattice) we can assign different parts of the search graph to different nodes
in a parallel execution setting. When evaluating individual hypothesis (their cov-
erage) we may use a parallel executing theorem proving (parallel Prolog engine,
for example). Data partitioning is performed by distributing the set of examples
among all processors. This approach is of capital importance for applications
where the dataset does not fit into the memory of a single processor node.

5 From Sequential to Parallel execution

In this section we investigate which sequential execution speedups can be di-
rectly used in a parallel execution setting and which ones have to be adapted.



Techniques such as caching, query packs, the exact transformations and the user

defined refinement operators can be directly used in any node of a parallel exe-
cution approach without any overhead of communication or computational cost.
Redundancy avoidance using special purpose declarations may be directly used
when data splitting is adopted in a parallel setting. In such approach each node
searches the same space of the sequential case, only the computational effort to
evaluate an hypothesis is reduced. However in the case of hypothesis space split
there may be extra communication among the nodes to avoid global redundancy.
If no communication is made different nodes may produce redundant clauses in
the overall set of produced clauses.

We distinguish two cases of lazy evaluation: lazy evaluation of negative ex-
amples and; total laziness. In the first case only negative examples are lazily
evaluated whereas in the second the positive examples are evaluated only after
the lazy evaluation of the negatives and only if the clause is consistent with
the negatives. In the lazy evaluation of the negatives the system just evaluates
examples until either it used all of them or it has surpassed the allowed number
of negatives to be covered (the noise level). If the noise level is zero then lazy
evaluation may be directly used in any parallel setting approach. We can still
use lazy evaluation of the negatives directly and without any restrictions in an
hypothesis space split parallel setting. When data is split and the noise level is
not zero we may still take advantage of lazy evaluation by adopting the global
noise level as the threshold for negative lazy evaluation at each processor node.
Only with extra communication effort would we achieve a full lazy evaluation of
negatives making sure that the global computation of the negative cover of the
current hypothesis evaluates the minimum number of examples. Total laziness

may be implemented in a parallel setting with some extra communications. Af-
ter (lazily) evaluating the negatives the processor nodes have to establish if the
clause is consistent or not. In case the clause is not consistent then the positive
examples are not evaluated. A summary of the results of this section are shown
in Figure 1.

technique hypothesis space split data split

exact transformation no no

caching no no

query packs no no

redundancy avoidance extra communication no

lazy evaluation:
negs no extra communication (when noise > 0)
total no extra communication

Fig. 1. Extra effort in implementing sequential execution speedups in a parallel setting.



6 Independent Sub-spaces

We propose a novel approach to parallel execution of ILP systems that is inspired
on a technique from Logic Programming (LP) and-parallelism. We use the LP
result, together with the expert provided mode declarations (Shapiro [4]) to de-
fine sub-spaces that are searched independently (in parallel). Each sub-space is
searched in an individual node and contains only clauses that can be generated
using the subset of mode declarations assigned to that processor node. The pro-
cedure at each processor node searches a sub-space in a “normal ILP” fashion.
Hypotheses are generated, evaluated and refined. Evaluation of hypotheses is
done using a theorem proving to establish which examples are explained by each
hypothesis. The technique we are proposing requires a post-processing step in
order to attain completeness of the induction process. In the post-processing
phase clauses from different sub-spaces have to be combined and evaluated in
order to keep the search complete. The advantage of the proposal is that the
coverage of clauses in the post-processing phase is the intersection of the cover-
ages of the clauses being merged. This results from the fact that the literals of
each original clause constitute a set of independent goals as was proved by the
LP result. If coverage of an hypothesis is stored in a bit array the bitwise AND

operation implements the coverages intersection and is a very efficient computer
operation when compared with theorem proving the examples.

The LP result we used is based on the observation that when executing a
conjunction of goals G1, ..., Gn, failure of a goal Gi will result in attempting to
generate more solutions for goals earlier in the sequence. This effort is useless if
these solutions do not alter the computation of Gi. The and-parallelism exploits
the notion of goal independence by partitioning the goals in a clause into classes
of independent goals. It will execute each class in a separate processor node.
In our approach the classes of independent goals are generated using the mode
declarations.

In pure logic programs, goals depend on each other because they share vari-
ables. Given a function vars(T ) that returns all variables in the term T , two
literals Gi and Gj are said to share, that is the relation Shares(Gi, Gj) holds,
when: i = j ∨ vars(Gi) ∩ vars(Gj ) 6= ∅ The definition ensures that the re-
lation Shares is reflexive and symmetric. Its transitive closure Linked, defined
as the smallest transitive relation that is a superset of Shares, is an equiva-
lence relation. If two goals are in the same equivalence class, we will say they
may be dependent, otherwise we will say they are independent. We would like
to divide the original clause into several conjunctions of independent goals and
execute them separately. Using the mode declarations which specify types and
I/O signs for the predicates arguments we define the sub-spaces assuring that
clauses belonging to different sub-spaces do not share variables.

Unfortunately, checking whether goals are independent is quite expensive.
Ideally, we would like to do so only once when we compile a newly induced clause,
not for every time we run the clause against an example. Our proposal addresses
that concern and uses the mode declarations to guarantee the independence of
the body literals of two clauses belonging to any different sub-spaces.



7 Conclusions

We have surveyed the techniques to improve the performance of sequential ex-
ecution of ILP systems. We have also surveyed the different approaches taken
to execute ILP systems in a parallel framework. We have proposed in the paper
ways of adapting some of the sequential execution speedups in a parallel execu-
tion setting. We have also proposed a novel technique to execute ILP systems in
a parallel environment. The proposal is inspired on a Logic Programming and-
parallelism result and consists in establishing a partition of the search space into
independent sub-spaces.

Acknowledgments

The work presented in this paper has been partially supported by project APRIL
(Project POSI/SRI/40749/2001) and funds granted to LIACC through the Pro-

grama de Financiamento Plurianual, FCT and Programa POSI.

References

1. Camacho, Rui, As lazy as it can be, 8th Proceedings of the Scandinavian Confer-
ence on AI, ed. Biornar Tessen et al. IOS press, 47-58, (2003).

2. V. Costa and A. Srinivasan and R. Camacho and H. Blockeel and B. Demoen
and G. Janssens and J. Struyf and H. Vandecasteele and W. Van Laer, Query
Transformations for Improving the Efficiency of ILP Systems, Journal of Machine
Learning Research, (2002)

3. Page, David, ILP: Just Do It, Proceedings of the 10th International Conference on
Inductive Logic Programming, Springer-Verlag, LNAI, vol 1866, (2000).

4. Shapiro, E.Y., Algorithmic Program Debugging, The MIT Press, (1983).
5. M. Botta and A. Giordana and L. Saitta and M. Sebag, Relational learning: hard

problems and phase transitions, 178–189, Proc. of the 6th Congress AI*IA, LNAI
1792, Springer-Verlag, (1999).

6. Blockeel, H. and Dehaspe, Luc and Demoen, B. and Janssens, G. and Ramon,
J. and Vandecasteele, H. Executing Query Packs in ILP, Proceedings of the 10th
International Conference on Inductive Logic Programming, LNAI, vol 1866, (2000).

7. A. Srinivasan. A study of two sampling methods for analysing large datasets with
ILP. Data Mining and Knowledge Discovery, 3(1):95–123, 1999.

8. James Cussens, Part-of-speech disambiguation using ILP, Oxford University Com-
puting Laboratory, PRG-TR-25-96, (1996).

9. Hayato Ohwada and Fumio Mizoguchi. Parallel execution for speeding up inductive
logic programming systems. In Lecture Notes in Artificial Intelligence, number
1721, pages 277–286. Springer-Verlag, 1999.

10. L. Dehaspe and L. De Raedt. Parallel inductive logic programming. In Proceed-

ings of the MLnet Familiarization Workshop on Statistics, Machine Learning and

Knowledge Discovery in Databases, 1995.
11. S. Muggleton. Optimal layered learning: A PAC approach to incremental sampling.

In Proceedings of the 4th Conference on Algorithmic Learning Theory, Springer-
Verlag, 1993.


