

MOBILE OBJECT TRACKER

JOSÉ GUILHERME AZEVEDO MARQUES PEREIRA
DISSERTAÇÃO DE MESTRADO APRESENTADA
À FACULDADE DE ENGENHARIA DA UNIVERSIDADE DO PORTO EM
MESTRADO INTEGRADO EM ENGENHARIA ELECTROTÉCNICA E DE COMPUTADORES

M 2015

FACULDADE DE ENGENHARIA DA UNIVERSIDADE DO PORTO

Mobile Object Tracking

José Guilherme Azevedo Marques Pereira

Mestrado Integrado em Engenharia Eletrotécnica e de Computadores

Supervisor: Luís Filipe Pinto de Almeida Teixeira (PhD)

Second Supervisor: João Nuno Castro Gonçalves (MSc)

June 29, 2015

c© José Guilherme Pereira, 2015

i

ii

Resumo

Actualmente, a maioria dos sistemas de vigilância existentes no mercado utilizam, para motivos
de tracking de objetos, técnicas de subtracção de background. A utilização dessas técnicas sim-
plesmente permitem que estes sistemas sejam capazes de ser utilizados em ambientes estáticos,
levando a uma diminuição do seu uso numa vasta possibilidade de cenários, cujo ambiente é
dinâmico. De maneira a combater esse fenómeno, é necessário desenvolver um sistema portátil e
que seja capaz de seguir objectos em ambiente dinâmicos.

Nos últimos anos, existem forças especiais de segurança que recorrem a sistemas de gravação
de vídeo, de forma a gravar os acontecimento ocorridos, e para, posteriormente, poderem ser
analizados por equipas especiais. Nesse contexto, a Fraunhofer AICOS Portugal desenvolveu um
projeto, denominado de SAFETY, que consiste na incorporação de um smartphone num colete
desenhado para auxiliar as forças de segurança. O objectivo desta dissertação, que se encontra
incorporado no projecto SAFETY, tem como intenção a criação de uma aplicação Android capaz
de detectar e seguir pessoas na gravação de vídeo obtida pelo smartphone. O projecto desenvolvido
adicionará uma funcionalidade extra ao projecto SAFETY e ajudará o dia-a-dia das forças de
segurança, fornecendo gravações mais detalhadas das situações encontradas.

A aplicação consiste num sistema de tracking em tempo real e está dividido em duas etapas
principais: o detector automático de pessoas e o algoritmo de tracking. O detector de pessoas im-
plementado baseia-se na utilização do algoritmo Histogram of Oriented Gradients (HOG) com a
ajuda de um classificador, previamente treinado com o INRIA dataset, para detectar positivamente
pessoas, enquanto que o algoritmo de tracking recorre a dois algoritmos: Tracking Learning De-
tection (TLD) ou Consensus-based Matching and Tracking of Keypoints (CMT).

De maneira à aplicação ser testada em termos da sua precisão, é necessário a utilização de
um dataset desenvolvido para esse efeito. A análise dos resultados foi efectuada qualitativamente
e quantitativamente com a ajuda do dataset utilizado e sequências obtidas através da aplicação
implementada. Os resultados obtidos foram positivos e promissores, contudo algumas funcionali-
dades deste projeto podem vir a ser melhorados num futuro trabalho.

iii

iv

Abstract

Nowadays, most of the surveillance systems existent in the market rely in background subtraction
techniques for tracking purposes. Therefore, the system just has the ability to work in environ-
ments with static background, diminishing the array of scenarios where this type of applications
can be used. To counteract that phenomenon, there is the need to develop a portable system which
is capable of tracking objects in dynamic scenarios.

In recent years, exist special security forces that have employed in their equipment visual
recording systems to posteriorly analyze the obtained data. In that sense, Fraunhofer AICOS
Portugal developed a project called SAFETY which incorporates a vest with an integrated smart-
phone to aid security forces in their daily tasks. The objective of this dissertation has to do with
the SAFETY project and aims to develop an Android application capable of detecting and tracking
people along the video frames captured. This project will improve the SAFETY project with an
extra function which will help the security forces analyze teams with video recordings with more
information, facilitating their job.

The application consists of a real-time tracking system and is divided in two important stages:
automatic people detector and tracking algorithm. The people detector is implemented using the
Histogram of Oriented Gradients (HOG) algorithm that relies in a Support Vector Machine (SVM)
classifier trained by the INRIA dataset to more accurately detect people, while the tracking algo-
rithm relies in two different algorithms: Tracking Learning Detection (TLD) or Consensus-based
Matching and Tracking of Keypoints (CMT).

In order to test this application properly, a dataset already developed by other parties was used
to determine the accuracy of this application. The analysis of the results was made qualitatively
and quantitatively with the help of a dataset and some sequences recorded using the Android
application. The obtained application results were positive and promising, yet some features of
this project can still be improved in a future work.

v

vi

Acknowledgements

I would like to thank the institutions of Fraunhofer AICOS Portugal and Faculty of Engineering
of University of Porto for providing a suitable environment for the realization of this dissertation
and the academic background obtained over the last few years.

Prof. Luís Teixeira and Eng. João Gonçalves were key elements in the supervision and guid-
ance during the ongoing project. Therefore, I would like to extend my gratitude for their availabil-
ity and cooperation.

Last but not least, I want to express my thankfulness to all my friends and family who sup-
ported me through this stage of my academic life.

José Guilherme Pereira

vii

viii

“I’m Feeling Lucky”

Google

ix

x

Contents

1 Introduction 1
1.1 Context . 1
1.2 Objectives . 2
1.3 Contributions . 3
1.4 Structure . 3

2 State of the Art 5
2.1 Computer Vision in Object Tracking . 5

2.1.1 Kernel-based Tracking . 5
2.1.1.1 Mean Shift . 6
2.1.1.2 Kanade-Lucas-Tomasi Feature Tracker 8

2.1.2 Point-tracking . 8
2.1.2.1 Kalman Filter . 9
2.1.2.2 Particle Filter . 10

2.1.3 Local Features . 11
2.1.3.1 Scale Invariant Feature Transform 12
2.1.3.2 Histogram of Oriented Gradients 13

2.1.4 Summary . 15
2.2 Computer Vision Software . 15
2.3 Conclusions . 16

3 Real-time Tracking System of Unknown Objects 19
3.1 Architecture . 19
3.2 Software Platforms and Portability . 21

3.2.1 UNIX based Software . 21
3.2.2 Android OS . 23

3.3 Object Tracking Software . 25
3.3.1 Tracking-Learning-Detection . 26

3.3.1.1 Tracking . 27
3.3.1.2 Detection . 28
3.3.1.3 Learning . 33

3.3.2 CMT . 34
3.3.2.1 Matching and Tracking of Keypoints 35
3.3.2.2 Voting . 36
3.3.2.3 Consensus . 37

3.3.3 Software Implementation . 38
3.4 Discussion . 39

xi

xii CONTENTS

4 Evaluation 41
4.1 Evaluation Method . 41
4.2 Dataset . 43
4.3 Results . 44

4.3.1 Qualitative Results . 44
4.3.1.1 Dataset Results . 44
4.3.1.2 Android Application Results 47

4.3.2 Quantitative Results . 53
4.4 Discussion . 55

5 Conclusions and Future Work 57
5.1 Future Work . 58

References 59

List of Figures

2.1 Mean Shift analysis [10] . 6
2.2 Mean Shift tracking results [11] . 7
2.3 KLT tracking results [4] . 8
2.4 Kalman filter model . 9
2.5 SIR algorithm model [20] . 11
2.6 Local features recognition procedure [5] . 12
2.7 Overview of HOG feature extraction and object detection diagram [23] 14

3.1 System framework diagram . 20
3.2 Software project flow . 21
3.3 OpenCV modules . 22
3.4 C/C++ project flowchart diagram . 23
3.5 OpenCV Java API application structure . 24
3.6 OpenCV application structure using NDK . 25
3.7 TLD framework diagram [2] . 26
3.8 OpenTLD architecture . 27
3.9 Recursive tracking method [29] . 27
3.10 Detection cascade approach [28] . 28
3.11 Variance filter output [28] . 30
3.12 Single fern feature calculation [28] . 31
3.13 Distance classification of unknown patches [28] 32
3.14 High confidence sub-windows (yellow) and true detection (green) [28] 32
3.15 P/N Constraints [28] . 34
3.16 CMT tracker principles [3] . 35

4.1 Overlap measurement [28] . 41
4.2 Overlap comparison cases [28] . 42
4.3 TLD algorithm output (green region) over the BoBot video sequences of A, B, C,

E, G, I and K (top to bottom) from frames 1, 100, 200 and 300 (left to right) . . . 45
4.4 CMT algorithm output (blue region) over the BoBot video sequences of A, B, C,

E, G, I and K (top to bottom) from frames 1, 100, 200 and 300 (left to right) . . . 46
4.5 Sequence A1 . 47
4.6 Sequence A2 . 48
4.7 Sequence B1 . 48
4.8 Sequence B2 . 48
4.9 Sequence C1 . 49
4.10 Sequence C2 . 49
4.11 Sequence D1 . 49

xiii

xiv LIST OF FIGURES

4.12 Sequence D2 . 50
4.13 Sequence E . 50
4.14 Sequence F . 51
4.15 Sequence G . 51
4.16 Sequence H . 52
4.17 Sequence I . 52

List of Tables

2.1 Computer Vision software performance benchmark (higher is better) 16

4.1 Description of BoBot Sequences . 43
4.2 Image sequences obtained from MOTrack application 47
4.3 TLD performance with three different values of ω . The values exhibited are re-

spectively the precision and the recall values. 53
4.4 CMT performance with three different values of ω . The values exhibited are re-

spectively the precision and the recall values. 53
4.5 Algorithms processing speed in frames per second (fps) using Desktop application 54
4.6 Algorithms processing speed in frames per second (fps) using MOTrack application 54

xv

xvi LIST OF TABLES

Abbreviations

1NN Nearest Neighbour Classification
ADT Android Development Tools
API Application Programming Interface
BoBoT Bonn Benchmark on Tracking
CAMSHIFT Continuously Adaptive Mean Shift
CMT Consensus-based Matching and Tracking of Keypoints
DoG Difference of Gaussians
FPS Frames Per Second
GPU Graphics Processing Unit
HOG Histogram of Oriented Gradients
IDE Integrated Development Environment
JNI Java Native Interface
KLT Kanade-Lucas-Tomasi
MATLAB Matrix Laboratory
NDK Native Development Kit
NCC Normalized Correlation Coefficient
OpenCV Open Source Computer Vision
OS Operating System
ROI Region of Interest
SIFT Scale Invariant Feature Transform
SIR Sequential Importance Resampling
SIS Sequential Importance Sampling
SVM Support Vector Machine

xvii

Chapter 1

Introduction

Nowadays, with the exponential development of new technologies, smartphones have gradually

become computationally more powerful and complex equipments. Every year, new models of

smartphones arrive into the market, incorporating new and improved features providing new smart-

phone functions over the years. Among these features, built-in sensors such as high resolution

cameras and GPS modules can be accounted for. Most of these features can be used to collect

information relatively to the surrounding world, such as quotidian activities, that can be later used

for entertainment or functional purposes. Normally, most of the smartphone applications, provided

in the market, are used with the objective of entertainment or social connectivity. Nevertheless,

these mobile systems have the potential to run applications for purposes other than entertainment,

such as applications that can improve someone’s life by using them. Initially, this Master’s thesis

work aimed to conceptualize the idea of using a smartphone to visually track an object selected by

the user within a scenario captured by the smartphone’s camera. As the name of the dissertation

implies, the project pretends to track objects using a mobile device. Later on, there was a slight

modification in the project’s objective although the structuring goals persisted. In the end, the

main goal of the project was the development of an application capable of detecting and tracking

people for surveillance purposes, which was a feature included in a project called SAFETY being

developed by Fraunhofer Portugal Research Center for Assistive Information and Communication

Solutions (AICOS). The development of this dissertation was carried out under the scope of a Mas-

ter’s Thesis project for the Integrated Master in Electrical and Computers Engineering at Faculty

of Engineering of University of Porto and in association with Fraunhofer AICOS Portugal.

1.1 Context

Nowadays, most surveillance systems existent in the market have several issues with their imple-

mentation. Firstly, the tracking techniques applied by most of these systems rely on background

subtraction techniques, which imply the need of these systems to have a static environment for the

tracking algorithm to function properly. This inability presented by the surveillance system does

1

2 Introduction

not allow the installation of these equipments in mobile environments, leading to the usual instal-

lations to be in building infrastructures. Another negative point of these systems is the necessity

of using expensive equipment in their installation.

In order to counteract those systems’ limitations, it is necessary the creation of an inexpensive

and mobile system capable of tracking objects in dynamic backgrounds. This new system would

be applicable in mobile systems, such as cars and people, adding new type of scenarios where

security forces could apply surveillance measures. Finally, this contribution could improve the

work of security forces in their daily duties.

1.2 Objectives

At the present time, some security forces around the world have implemented recording cameras in

their vests. The objective of these cameras is to document the scenarios and activities performed

by these entities in special situations. Later, these recordings are analyzed by specialist teams

to determined the causality of the actions performed by the individuals involved. One of the

downfalls of this system, is its non-automation, having the user to turn on the video recorder.

The SAFETY project, in which this dissertation is inserted, is based on a smartphone incorpo-

rated in a vest especially designed for the security forces. This concept has the objective of aiding

the security teams to later analyse the elements existent in their shifts, such as their routes, the time

spent in each section of their route and detecting and recording dangerous activities occurring.

Within the SAFETY project, this dissertation has the main objective to automate the system

already implemented by some security forces, as described before, by automatically detecting and

tracking people in the video capture by a smartphone. Besides, it provides specific information in

the video capture aiding the future analysis by the entities.

To accomplish that goal, it is necessary to develop a real-time visual tracking algorithm com-

bined with a people detector. Its implementation was done in an Android environment with the

help of the OpenCV 1 library, for image processing purposes. Initially, the program was im-

plemented in C++, with the aid of OpenCV, in Linux and later ported to Android via its Native

Development Kit 2 (NDK).

In order to evaluate the performance of these algorithms, a performance test is done using

the BoBoT [1] dataset and applying the method of overlap, in which the overlap between the

groundtruth data from the dataset and the algorithmic output is calculated, to measure the effec-

tiveness of the algorithm.

A complete framework based on the algorithms developed and tested is available, setting a

base for future works to improve the results obtained.

1OpenCV: http://opencv.org/
2Android NDK: https://developer.android.com/tools/sdk/ndk/index.html

1.3 Contributions 3

1.3 Contributions

From the developed work in the scope of this dissertation, several contributions have been made,

such as:

• Development of a tracking framework for an Android application

• Study and implementation of TLD [2] and CMT [3] tracking algorithms in C++ using the

OpenCV API in a host and Android platform

• Benchmarking of results from each algorithm by running tests using the BoBoT [1] dataset

and applying the overlap method to determine their performance.

1.4 Structure

After this introductory chapter, Chapter 2 a literature review of the visual tracking computer vision

algorithms is presented, as well the libraries normally used for the implementation of this kind of

applications. In Chapter 3 an overview of the system’s framework is presented a study of the

platforms used and the study and implementation of the algorithms used for the purpose of this

dissertation. Chapter 4 describes the evaluation method and dataset used for performance metrics

of the system. Finally, in the last chapter the work developed is discussed and the dissertation

main conclusions and future work are presented.

4 Introduction

Chapter 2

State of the Art

In this chapter it will be discussed and analysed some of the algorithms found in the literature

for computer vision systems that are the foundation for most of the video tracking systems used

nowadays. The computer vision software will be analysed and subsequently the more appropriate

choice will be presented.

2.1 Computer Vision in Object Tracking

In the last few years with the increase of robotic systems and artificial intelligence, the field of

computer vision has upscaled significantly improving areas such as pattern recognition. The num-

ber of applications that these types of systems can improve are significant. Process control, event

detection and automatic inspection are some of the applications that computer vision is able to

perform leading the field of robotics and automation to a brighter future.

The event detection feature is the area where the topic of this dissertation, surveillance and

object tracking, mostly fit in. Works in that area will be exploited to provide background infor-

mation as well the state of art algorithms that are used in today’s software. The discussion will

be made upon tracking algorithms, such as Kernel-based Tracking, Point-tracking [4] and local

features algorithms [5].

2.1.1 Kernel-based Tracking

Yilmaz et al. [4] presented a work explaining kernel tracking algorithms. The application of a ker-

nel tracker implies a computation from two consecutive frames of the motion model obtained from

the specified object. The object motion is described as the object’s position variation with refer-

ence to time. Usually it is outlined in the form of a motion vector that interprets the transformation

between two images or like Stiller et al. [6] referred to as parametric object motions. Within this

category there is a subcategory built on templates and density-based appearance models that rely

respectively in the mean shift [7] and KLT algorithm [8].

5

6 State of the Art

2.1.1.1 Mean Shift

In computer vision, mean shift algorithm is a nonparametric clustering technique that works with-

out previous knowledge of the number of clusters and does not inhibit the format of the clusters [9].

According to Comaniciu et al. is possible to obtain the multivariate kernel density estimate using

the following formula, given it a set xi with n points on a d-dimensional space Rd :

f (x) =
1

nhd

n

∑
i=1

K
(

x− xi

h

)
(2.1)

with kernel K(x) and windows radius h.

In order to achieve the mean shift vector it is necessary to perform the gradient of the density

estimator 2.1 present next:

∇ f (x) =
2ck,d

nhd+2

n

∑
i=1

(xi− x)g

(∣∣∣∣∣∣∣∣x− xi

h

∣∣∣∣∣∣∣∣2
)

=
2ck,d

nhd+2

[
n

∑
i=1

g

(∣∣∣∣∣∣∣∣x− xi

h

∣∣∣∣∣∣∣∣2
)]∑

n
i=1 xig

(∣∣∣∣ x−xi
h

∣∣∣∣2)
∑

n
i=1 g

(∣∣∣∣ x−xi
h

∣∣∣∣2) − x

 (2.2)

Based on the equation 2.2 it is possible to verify that the second term of the equation is the

mean shift vector:

mh (x) =
∑

n
i=1 xig

(∣∣∣∣ x−xi
h

∣∣∣∣2)
∑

n
i=1 g

(∣∣∣∣ x−xi
h

∣∣∣∣2) − x (2.3)

Basically the mean shift algorithm aims to locate the maxima of the density function given a set

of points. It is based on an iterative process that shifts the center of the kernel to the mean position

of the points contained in the cluster, refereed to as the estimated maxima. The shifting process

is determined by the mean shift vector 2.3 that stops when there are no more points adequate to

include.

Figure 2.1: Mean Shift analysis [10]

2.1 Computer Vision in Object Tracking 7

Figure 2.1 exhibits the iterative shifting process, it is possible to observe the cluster’s behaviour

as it starts from the initial point until it is impossible to agglomerate any more points.

Based on this approach, Comaniciu et al. [11] added to the computer vision field a new tracking

algorithm using the mean shift theory explained a priori. The Bhattacharrya coefficient [12] is

applied to find the target location depending on a certain feature. Normally, that feature is either

color and/or texture of the object selected and it is retrieved from its histogram. Starting from the

general form of the Bhattacharrya coefficient 2.5 it is possible to find the discrete location that lead

Comaniciu et al. to deduce the following equations where qz is the density function and q̂z is the

discrete density function of the target:

ρ (y) ≡ ρ [p(y) ,q] =
∫ √

pz (y)qz dz (2.4)

ρ̂ (y) ≡ ρ [p̂(y) , q̂] =
m

∑
u=1

√
p̂u (y) q̂u (2.5)

d (y) =
√

1−ρ [p̂(y) , q̂] (2.6)

Resorting to the equations already explained the tracking algorithm is built on the following

steps:

• Step 1 — Initialize the target’s location and its evaluation 2.6.

• Step 2 — Derive the weights achieved after modifying the Bhattacharyya coefficient for

distance minimization.

• Step 3 — Derive the new target’s location using the mean shift vector 2.3.

• Step 4 — Update and evaluate the target’s location 2.6.

• Step 5 — The process stops if the difference between consecutive positions is less than a

predefined threshold.

In summary, the procedure consists in minimizing the Bhattacharrya distance in reference to

the previous location estimate that will be set as the new position of the target model in the current

frame. This algorithm is implemented in OpenCV 1, a computer vision library provided by Intel,

as CAMSHIFT and which results can be seen in the Figure 2.2.

Figure 2.2: Mean Shift tracking results [11]

1OpenCV: http://opencv.org/

8 State of the Art

2.1.1.2 Kanade-Lucas-Tomasi Feature Tracker

Feature extraction is an area of computer vision that its objective involves building features from

sets of data allowing the creation of simplified ways of analysing complex data. KLT feature

tracker is an approach which essentially uses spatial intensity information to find the best position

for the features identified a priori.

Firstly, Lucas and Kanade [13] introduced the idea to weigh the gradients using an approx-

imation to the second derivate of the image for a local search. Later, Tomasi and Kanade [14]

concluded that by tracking features that are suitable for the tracking algorithm it would improve

the algorithm’s technique.

In an one-dimensional case the registration algorithm relies on an approximation of the gradi-

ent of the image, obtaining the displacement between two images.

F ′ (x) ≈ G(x)−F (x)
d

⇔ d ≈ G(x)−F (x)
F ′ (x)

(2.7)

d ≈ ∑x F ′ (x) [G(x)−F (x)]

∑x F ′ (x)2 (2.8)

Nevertheless, 2.7 approach is inaccurate if the displacement d is too large. Therefore, it is

considered a local area surrounding a feature 2.8 to improve that inaccuracy and the calculation of

the displacement is done by using an iterative search style.

After the features registration, they would be selected for tracking if the eigenvalues from the

gradient matrix were bigger than a predefined threshold, ∇d = e. The results obtained from this

method are presented in the Figure 2.3:

Figure 2.3: KLT tracking results [4]

This algorithm is widely used for image alignment or feature position tracking in computer

vision. OpenCV has implemented it using "good features to track" and optical flow algorithm

based on the KLT, creating an array of options for the user to choose the most appropriate algorithm

for its project.

2.1.2 Point-tracking

Yalmaz et al. [4] presented that strategy used for tracking sets upon the correlation of objects

modeled by points across the frames. There are difficulties concerning those algorithms because

2.1 Computer Vision in Object Tracking 9

occlusions, objects out of bounds and detection failures can induce into a bad correspondence

between different frames. This can be split in two different categories such as deterministic and

statistical methods. The statistical methods rely on two of the most used algorithms in computer

vision as filtering algorithms named as Kalman Filter [15] and Particle Filter [16].

2.1.2.1 Kalman Filter

Kálmán [15] developed an algorithm named after himself which utilizes measurements containing

noise and statistically produces estimates of the system state more accurate than capturing sin-

gle measurements instead. This strategy is most fitted when the system is linear and assumes a

Gaussian distribution.

This algorithms consists in two steps, the prediction and correction or update step. Respec-

tively, the prediction step occurs when the filter estimates the current state variables and the update

step exists when there is observable measurement data updating the estimates achieved while using

the prediction step. Subsequently, those steps are modelled using the following equations [17]:

Predict : x̂k|k−1 = Fkx̂k−1 +Bkuk (2.9)

Pk|k−1 = FkPk−1|k−1FT
k +Qk (2.10)

U pdate : x̂k|k = x̂k|k−1 +Kkỹk (2.11)

Pk|k = (I−KkHk)Pk|k−1 (2.12)

Where the ỹk is the measurement residual, Kk the optimal Kalman gain, ˆxk|k is the a posteriori

state estimate and Pk|k is the a posteriori error covariance matrix. A model of the Kalman algorithm

is presented in Figure 2.4 where it demonstrates how the prediction and update steps interact with

each other in order to validate it.

Figure 2.4: Kalman filter model

The Kalman filter has wide applications in the area of technology. Mostly its application is in

10 State of the Art

control systems but has increased its importance in the computer vision field as a filtering algo-

rithm. As explained before, it has the power to process all the measurements taken and statistically

predict according to Gaussian distributions the system’s state variables. This design has improved

dramatically tracking techniques by improving them during the occurrence of occlusions or mis-

matches of the tracking algorithm. Achieving this, most of the computer vision software have

implemented it in their APIs facilitating the use of this technique.

2.1.2.2 Particle Filter

The particle filter is a method utilizing a Monte Carlo technique to solve the problems of the state

estimation [16]. This method is also recognized as a filtering technique and condensation algo-

rithm. The essence of this algorithm is to use sets of random data, also described as particles,

with associated weights to express the posterior density function required. Additionally, these

weighted particles are computed in order to obtain the estimate states needed. If there is a signifi-

cant increase in the number of particles, there is a need of using the Monte Carlo characterization

to represent the probability function and achieve a solution approaching the optimal Bayesian es-

timate [18]. The particle filter overcomes Kalman filter’s limitation, the inefficiency of estimate

states when the variables do not follow a Gaussian distribution [4].

One of the most used algorithms in particle filtering is the purported Sequential Importance

Sampling (SIS) algorithm, that utilizes a resampling step at each instant [18]. SIS exploits a

density which represents one type of density that cannot be computed and it is named importance

density or posterior density in this case. Based on those characteristics samples are drawn from it

instead from the actual density.

The posterior density can be approximated in discrete terms at tk by:

π (x0:k|z1:k) ≈
N

∑
i=1

wi
kδ
(
x0:k− xi

0:k
)

(2.13)

Where δ is a dirac delta function, xi
0:k are the particles with their wi

k weights and x0:k the set of

all states up to tk.

Assuming a Markovian process, the posterior density can be modelled as [19]:

π (xk|z1:k) ≈
N

∑
i=1

wi
kδ
(
xk− xi

k
)

(2.14)

SIS algorithm has one setback pointed as the degeneracy phenomenon. It happens when all

particles but one will have negligible weight causing the update of the particles to have a great

computational cost. In order to overcome this problem a bigger number of particles or resampling

techniques is necessary. The Sampling Importance Resampling (SIR) is one of these techniques

which involves a mapping of random measure {xi
k,w

i
k} into a random measure {xi∗

k ,N
−1} with

uniform weights, which are applied indistinctively at every instant tk [18, 19].

The algorithm SIR consists in three steps and graphically demonstrated in Figure 2.5.

2.1 Computer Vision in Object Tracking 11

• Step 1 (Prediction) — Calculation of the particles weights using the likelihood function.

• Step 2 (Update) — Normalization of the particle weights by calculating the total weight.

• Step 3 (Resampling) — Resampling of the particles by assigning samples and weights aided

by the computation of the cumulative sum of weights.

Figure 2.5: SIR algorithm model [20]

Although this method can overcome the degeneracy problem, its use can create a loss of di-

versity leading to a series of repeated particles in the resultant sample.

One use for this method is the condensation algorithm [21]. Condensation is a probabilistic

algorithm capable of detecting and tracking moving objects’ contours in a cluttered environment

and is an application of SIR. In terms of applications it is usually used for tracking but can also be

applied to recognize human gestures, allowing the machine to capture and recognize simple human

gestures. OpenCV has an implementation of this algorithm that can work as the condensation

algorithm or a particle filter when a likelihood function is created in order to track the particles

under its effect.

2.1.3 Local Features

In computer vision, Grauman et al. [5] defines that local features have the function of producing

an efficient representation of the image structure to allow matching between different images. Ba-

sically, the objective of these methods is to acquire a set of local measurements able to represent

the image and its structure in form of data, they can also be called as keypoints. The process to

obtain local features for matching consists in two phases: feature extraction and feature descrip-

tion. Respectively, the feature extraction should be a process repeatable, precise and distinctive

in order to achieve the same features for similar objects’ structures in different images while the

feature descriptor is a technique used to compare the features obtained using the feature extrac-

tion. In other words, the functionality of the descriptor is to assign a numerical description to

12 State of the Art

the area of the image that the feature refers to and they should be independent of feature position,

robust against transformations and scale independent. Once the descriptors are calculated it is now

possible to compare features obtained in different images to see if they match. The mechanism

explained previously is illustrated in Figure 2.6 and implements the following algorithm [5]:

Figure 2.6: Local features recognition procedure [5]

• Feature Extraction

1. Detection of a set of keypoints.

2. Definition of a region surrounding each keypoint in a invariant way.

3. Extraction and normalization of the region content.

• Feature Description

1. Computation of a descriptor from the normalized region.

2. Matching the descriptors obtained.

In addition, two algorithms that recur to these type of techniques will be discussed: SIFT [22]

and HOG [23], that are largely used in the industry nowadays.

2.1.3.1 Scale Invariant Feature Transform

The Scale Invariant Feature Transform is a combination of a DoG detector and a descriptor of the

same name [22, 24]. Nowadays, SIFT algorithm has multiple applications like object recognition

and identification, 3D modeling and video tracking. The University of British Columbia has the

algorithm patented in the United States of America [25].

Lowe [24] demonstrated the scale-space Laplacian can be approximately achieved using DoG.

Essentially, for the keypoints detection to happen the image is convoluted with Gaussian filters

2.1 Computer Vision in Object Tracking 13

using different scales. Successive images are later subtracted by a scale factor of k. This technique

is called the Difference of Gaussians and its image D(x,σ) can be modeled by:

D(x,σ) = (G(x,kσ)− (x,σ))∗ I (x) (2.15)

The keypoints are identified as local minima/maxima on the DoG images obtained. This step

requires the examination of each pixel in the image with its eight neighbors in the same and

neighboring scales to verify if it corresponds to a maximum or minimum in comparison with the

other pixels in order to be selected as a candidate keypoint.

After the keypoints detection step it follows the SIFT descriptor. The objective of this de-

scriptor is to accomplish robustness in variations of lighting and position by storing the image

information in a localized set of gradient orientation histograms. Initially, the descriptor starts

by sampling the surrounding keypoint area to determine which level of Gaussian blur it repre-

sents. This sampling is computed utilizing a 16x16 grid to cover the interest region. On each

sample, a 4x4 grid is introduced representing gradient orientating with 8 bins, each which weight

is determined by a Gaussian function with a σ of half the width of the descriptor window and cor-

responding pixel’s gradient magnitude. In the end, the descriptor is a vector containing all these

histograms values achieving a 128 (4x4x8) dimensional feature vector. To finalize the vector is

normalized to unit length as an illumination normalization for the extraction procedure. To com-

pensate the effects of non-linear illumination changes a threshold is applied to a maximum value

of 0.2 to the vector and again normalized.

SIFT is one the most used feature descriptors used. Most of computer vision software have

developed its functionality even though it is patented. This is done because of its major potential

comparing to others descriptors. Although it is not ideal and requires a large amount of computa-

tional power, it is still one of the algorithms that presents best results in complex tasks containing

rotation, scaling and motion blur.

2.1.3.2 Histogram of Oriented Gradients

The Histogram of Oriented Gradients is a feature descriptor introduced by Dalal et al. [23] where

local object appearance and shape in the image is defined by intensity gradients or edge direction

distribution. The simpler method to achieve the gradient computation is to employ the 1D cen-

tered point discrete derivative mask in the horizontal and vertical directions. It implies filtering a

grayscale image with the following filter kernels shown:

Dx =
[
−1 0 1

]
Dy =

 1

0

−1

 (2.16)

Given an image I it is possible to obtain its derivatives Ix and Iy by performing a convolution

between I and the filter kernels 2.16. Using the derivatives it is able to obtain respectively the

14 State of the Art

magnitude and orientation of the gradient:

|G| =
√

I2
x + I2

y (2.17)

θ = arctan
Iy

Ix
(2.18)

Resorting to the previous calculations, the HOG algorithm implementation is achieved by

dividing the image into cells and performing within each cell a histogram of gradient directions

or edge orientations. It implies casting a weighted vote from each pixel for a orientation-based

channel. Dalal et al. defined rectangular cells with histogram channels spread from 0 to 180 or

360 degrees depending, respectively, if the gradient is unsigned or signed and the contribution for

the vote weight relies majorly on the gradient magnitude 2.18.

The combination of these histograms are the representation of the descriptors vector. The

performance can be augmented by calculating the measure of intensity in a block and using those

values to normalize all cells within the block. The descriptors block can be of two geometric

types: R-HOG and C-HOG. Normally, they are square grids and are represented by the number of

cells, number of pixels per cell and the number of channels per cell histogram. The normalization

process can be produced with different methods, being the most used the followings:

L2-norm : f =
v√

‖v‖2
2 + e2

(2.19)

L1-norm : f =
v

‖v‖1 + e
(2.20)

L1-sqrt : f =
√

v
‖v‖1 + e

(2.21)

Where v is the non-normalized vector accommodating all the histograms in a certain block.

This normalization process enables a better invariance to illumination changes.

The HOG algorithm with a SVM classifier is one of the most used person detector in computer

vision software. One of the topics of this dissertation resides in surveillance issues so the ability of

detecting people is one of the subjects issued and this feature descriptor algorithm conjoined with

a linear SVM classifier using the INRIA dataset [23] is capable of obtaining good results. The

diagram in Figure 2.7 explains how the process from the input image until the person detection is

made:

Figure 2.7: Overview of HOG feature extraction and object detection diagram [23]

There are programs that uses it in order to track people in video streams. Nevertheless, the

2.2 Computer Vision Software 15

APIs provided from the most used computer vision libraries have a high computational cost be-

cause it is based in a sliding window method resulting in a slow processing speed when dealing

with higher resolution images.

2.1.4 Summary

Tracking systems are very challenging pieces of software. The amount of information contained

within an image is enormous and the ability of gathering the relevant information is a challenge.

The algorithms presented can work on their own but when combining some of them better results

can be achieved. For example, the utilization of filtering algorithm as the ones presented in the sec-

tion 2.1.2 if combined with mean shift algorithm can improve significantly its performance. The

challenge of occlusion and mismatching can be partially resolved using the Kalman or particle

filter because they have the ability to predict the next state and therefore guide the tracking agent

to an estimate position improving the tracking system by eliminating some variables within the

image. Another problem is the computational cost that usually this systems have creating prob-

lems when trying to processing real time video streams or operating with hardware of reduced

processing power. In that sense, the computer vision area is progressing to a domain where is

trying to reduce its computation cost while having the same or better results obtained in the past.

2.2 Computer Vision Software

The ability of producing in a faster and reliable way computer vision software comes from the

application of computer vision libraries developed and which contain most of the state of art and

basic algorithms created in the history of computer vision. Currently, OpenCV and MATLAB’s

Computer Vision System Toolbox are the most used in the industry and for investigation purposes.

OpenCV 2 is a software library developed for real-time computer vision by Intel in 2000. It

is an open-source cross-platform library created for free use. OpenCV possesses multiple mod-

ules containing more than 350 algorithms related to computer vision and is developed in C/C++

allowing a greater processing speed that enables real-time image processing. Since its creation it

has been given support in different programming languages as well in different operation systems

such as Windows, Android, iOS, Linux and OS X.

MATLAB 3 is a high-performance interactive software aimed to perform numerical calculation

and a high-performance language for technical computing developed by MathWorks. MATLAB

software allows numerical analysis, matrix calculus, signal processing, plotting of functions and

data, creation of user interfaces and the ability of multi-platform interface with different languages

programs. Basically, MATLAB’s basic information element is a non-dimensional matrix. Using

it, the systems ability to solve numerical programs is way faster than to transcript it to another

programming language. The Computer Vision System Toolbox provides algorithms, functions

and apps capable of performing computer vision tasks defined by the user.

2OpenCV: http://opencv.org/
3MATLAB: http://www.mathworks.com/products/matlab/

16 State of the Art

Having introduced the software available there is a need of discussing which of them is the

most reliable in terms of image and video processing to implement the software proposed for this

dissertation. According to the information retrieved from Fixational [26] on both programming

environment and tools we were able to produce the benchmark presented in Table 2.1.

Table 2.1: Computer Vision software performance benchmark (higher is better)

Performance Features OpenCV MATLAB
Ease of Use 2 5

Speed 5 1

Resources Needed 5 2

Cost 5 4

Development Environment 3 4

Memory Management 2 5

Portability 4 2

Development of Useful Programming Skill 4 2

Debugging 3 5

Help And Sample Code 5 5

From the scores obtained from the Table 2.1 it is possible to determine that OpenCV as a slight

edge over MATLAB for this objective. MATLAB has its specific language that is easy to use and

learn, has an integrated memory management software and an enormous array of documentation

and sample code but lacks execution speed because of its high computational cost. OpenCV, on the

other hand, having as main programming language C/C++ increases the difficulty on issues related

to debugging, memory management and others, but wins against MATLAB because of being open-

source, ability of embedding the developed code into applications and its processing speed. Those

features come from the key idea that OpenCV was entirely made for image processing use, having

its functions and data structure specially design for the purpose of processing images.

On conclusion, the software chosen for this dissertation was OpenCV mostly because of its ca-

pability of embedding the code created into an application, its major processing speed comparing

to others software and the key factor is the ability to develop applications for Android environ-

ment. The dissertations main topic is the creation of a tracking application for mobile platforms

and OpenCV is the only software capable of fulfilling that need.

2.3 Conclusions

Computer vision systems for non-static surveillance or mobile adaptation are currently areas of

research in progress. There has been a great need in their development since all of surveillance

systems are static and the mobile integration of computer vision systems have not yet been com-

pletely developed. At a scientific level, the algorithms analysed a priori can serve as the base of

2.3 Conclusions 17

an algorithm capable of implementing a dynamic tracking system. The algorithms presented in

this chapter are used in the foundation for a wide variety of image processing algorithms and their

study was needed to obtain more knowledge to better face the problem of this dissertation. Never-

theless, the ability to integrate into a mobile device is one of the big challenges faced because of

processing power. The development of these algorithms normally use a great amount of computa-

tional power and if they see being used in a desktop environment it is easier to assure its real-time

performance because of the system specifications as having a multiple core processors and graphic

processing units. OpenCV in speed comparison to Matlab has a better performance and therefore

for smartphone applications it is more suitable to use OpenCV because of the processing issues

that mobile platforms have.

18 State of the Art

Chapter 3

Real-time Tracking System of Unknown
Objects

In this chapter an overview of the system, software environment, algorithms used and application

development is presented. From a technological perspective, the process since the image cap-

ture until the final output of the tracking application will be explained. In detail, the system’s

framework and how it is able to exploit the best practice for this application will be explained.

Conceptually, the algorithms used will be examined and translated into a programming environ-

ment suitable for the purpose of a mobile platform integration. In this application, the portability

between platforms is crucial because the creation of the system is more efficiently developed in

a controlled environment that permits testing with different tracking datasets allowing to obtain

quantitative results. The application is then transferred to the final module.

3.1 Architecture

The smartphone device should be used to capture video streams from quotidian activities and

process the information received in real-time to track the object selected a priori in the frames

received from the camera.

Therefore, the architecture of the system for tracking single unknown objects selected by the

user must be done according to the next steps:

1. Video capture

• Smartphone camera for recording live video streams.

2. Definition of the region of interest

• After the initialization of the video stream a bounding box must be defined to select

the object of interest selected by the user.

3. Computation of the tracking algorithm

19

20 Real-time Tracking System of Unknown Objects

• Having selected the ROI the algorithm should process the information gathered from

the object selected and the frames captured from the camera providing enough data

capable for the tracking process to perform across all video frames.

4. Visualization of the tracking algorithm result

• There is the need to draw the bounding box obtained from the object tracked in the

current video stream to assure that the user visualizes the results retrieved from the

algorithm.

The previously identified steps indicate how the system should be solved in order to address

the needs of the project. The specification that a predefined object appearance and data is not

provided beforehand the start of the video capturing makes the step 2 of rather importance. Its

importance comes from the need to obtain information about the object to track and consequently

the necessity of having to select it from the video itself. Only then it is possible to process whatever

tracking algorithm for its specific purpose. Without the objects’ information such as features [5],

motion models [4], histograms and others it is impossible to acquire the necessary information

from the video because there is no point of comparison and matching between the frame and the

object. Another important specification from the point of view of the user is the visualization of

the object, step 4, when the algorithms is being processed. It allows the user to acknowledge if the

algorithm is processing the information correctly and if its behaviour is adequate for the object of

interest selected.

On the other hand, most of the surveillance systems are automated and do not require the

user interface to detect and select the objects to be tracked. In that sense, it is necessary to use

an algorithm capable of delivering the detection of the objects to be tracked later using the same

model presented before. The system framework can be translated as a loop and in Figure 3.1 it is

possible to verify that feature.

Figure 3.1: System framework diagram

3.2 Software Platforms and Portability 21

Firstly, in order to facilitate the use of datasets to test the performance of the algorithms imple-

mented, it will be chosen the manual initialization process. This process has the goal to enable the

choosing of the initial region of interest provided from the dataset to be able to execute the evalua-

tion method. If the algorithms present the results expected, the final system will be presented with

the people detector implemented for the selection process, as the final version of this project.

3.2 Software Platforms and Portability

The system’s final stage must be a mobile application for a smartphone. This specification implies

the development of software capable of being easily transferable between UNIX based software

and the Android environment. The software’s purpose is image processing, therefore both envi-

ronments must be able to run and make use of OpenCV library. Android is one of the mobile

phone operating systems that has an OpenCV library functionally developed making it possible to

create applications for image processing more easily. Also Android provides coding techniques

that allow reusing C/C++ code programmed in the desktop version and transfer it with some ad-

justments to the Android environment without great effort. Figure 3.2 demonstrates the process of

the desired system portability between platforms.

Figure 3.2: Software project flow

This section will explain the software’s behaviour in each platform and the techniques used to

allow the transfer between them.

3.2.1 UNIX based Software

The Linux OS has the ability of utilizing the OpenCV library easily while working on the Eclipse

IDE 1. This IDE has the ability of creating C/C++ projects and then include the necessary OpenCV

libraries by linking and including them in the project itself. That capability facilitates the software

development as it allows to effortlessly use the libraries provided by OpenCV. The array of mod-

ules implemented by the version 2.4.11 of OpenCV 2 are as it follows:

• core — module containing the basic functions and data structures that creates the foundation

of OpenCV and are used by the other modules.

1Eclipse: https://eclipse.org/
2OpenCV API Reference: http://docs.opencv.org/modules/refman.html

22 Real-time Tracking System of Unknown Objects

• imgproc — module based on image processing techniques like image filtering presented in

the section 2.1.2, image transformation, histograms, etc.

• video — module which includes tracking algorithms, motion estimation and background

subtraction techniques used for video analysis.

• calib3d — module containing basic camera calibration techniques and multi-view geometry

algorithms for correspondence or reconstruction of objects.

• features2d — module based on feature detection and description techniques as presented

in section 2.1.3.

• objdetect — module used for detection of objects using specific classifiers, like the people

detector explained in the section 2.1.3.

• highgui — module capable of interacting with video and image codecs and application of

user interface techniques.

• gpu — module with the GPU-accelerated algorithms of some of the other modules presented

in the OpenCV library.

Figure 3.3: OpenCV modules

Figure 3.3 shows the modules and what type of processes they translate into the programming

world. Also these modules are responsible for all the algorithms present in the OpenCV library.

In this dissertation, the most used modules were the core, imgproc, objdetect and highgui.

In terms of API for C/C++ programming, the OpenCV provides automatic memory man-

agement and allocation of output data. When handling memory the system has destructors that

deallocate the memory buffers used when using the data structures present in the library when

necessary. Regarding output memory the system deallocates the memory automatically while it

allocates and reallocates the memory for the output arrays with reference to the size of the input

arrays of the function and some other parameters defined by OpenCV.

3.2 Software Platforms and Portability 23

With respect to multi-threading, OpenCV provides a fully re-enterable implementation. This

means that different threads can call the same function, method and class. It creates a faster pro-

cessing because it can run multiples instances of the same function in different threads allowing

parallel programming which leads to faster processing times if the hardware has the correct spec-

ifications.

Concluding, it is possible to affirm that the development of the software in these respective

environments creates a suitable hypothesis considering speed, ease of use and the functionality

intended for the application itself. In those terms the diagram presented in Figure 3.4 can transcribe

how the system is projected in a UNIX based environment.

Figure 3.4: C/C++ project flowchart diagram

3.2.2 Android OS

The computer vision software for mobile applications is far from being ideal. Nevertheless,

OpenCV has adapted its library to the mobile environment such as iOS and Android. The en-

vironment used in this dissertation is Android and OpenCV ensures its collaboration with a library

named OpenCV4Android [27] for Android Studio and SDK tools.

OpenCV4Android SDK package enables the use of OpenCV library in the development of

Android applications. The package itself contains OpenCV libraries for Android, an Android li-

brary for Eclipse projects providing OpenCV Java API, OpenCV C++ headers and native Android

libraries and, finally, Android packages that should be installed on the target device to enable the

OpenCV library. The package installed is OpenCV Manager API.

OpenCV Manager is an Android service that allows users and developers of OpenCV applica-

tions to benefit from:

• OpenCV applications apk-size more compact as a result of all applications using the same

binaries and native libraries from Manager.

24 Real-time Tracking System of Unknown Objects

• Automatic updates and hardware optimizations enabled.

• Trusted OpenCV library source.

Resorting to these packages OpenCV provides a possibility to develop using two different

techniques. The first one utilizes the OpenCV Java API and OpenCV4Android to create applica-

tions using Java programming language and the corresponding OpenCV API. Since the Android

main programming language is Java, having the ability of incorporating OpenCV functions in

the core code enables a more accessible coding and development. One of the problems concern-

ing the use of the Java API is the incomplete implementation of OpenCV functions which leads

to insufficient resources when developing some types of applications. Also, with the Java API,

OpenCV C++ functions continue to be performed at the native level but a Java wrapper is used

as an interface. The problem with the wrapper results comes with a performance shortfall from

the JNI overhead. The Java Native Interface overhead occurs at the start and end of each function

call. Therefore, this performance deficiency improves cumulatively with the number of OpenCV

functions being made within the application.

The OpenCV Java API runs under Dalvik Java virtual machine which is a process virtual

machine of Android OS that executes applications written for Android. The OpenCV Java API

system is translated in the diagram of Figure 3.5. It exemplifies how the function calls are made

using this method.

Figure 3.5: OpenCV Java API application structure

Figure 3.5 demonstrates an Android application calling three OpenCV functions per video

frame. It also shows that each call translates into two JNI overheads, resulting in the addition

of all which translates into the final result of six JNI overheads. The result is a linear overhead

accumulation in respect to the number of function calls made.

The problem with this technique is that it affects the performance of the algorithm used and

it does not follow the requirements of portability between the application created beforehand in

an UNIX based software and the Android platform. Considering these obstacles, the second tech-

nique proves to be more useful for this purpose and it is achieved by using Android’s Native

Development Kit.

3.3 Object Tracking Software 25

NDK is a set of tools used to embed C/C++ code into Android applications. Developers find it

useful when it comes to apps portability between platforms, exploiting already developed libraries

and overcoming performance issues presented by the Java API. Using this approach, most of

the OpenCV functions code is written entirely in C/C++ with direct calls to OpenCV. Therefore,

it is possible to embed all the OpenCV functions into one single C/C++ class which is called

once per frame. In contrast to the Java API, this method only requires two JNI overheads per

frame improving the performance of the software significantly and independently of the number

of OpenCV function calls. This technique reduces the use of Java significantly, basically just being

predominantly used in non-CV aspects of software like the GUI.

Figure 3.6: OpenCV application structure using NDK

Figure 3.6 in comparison to the Figure 3.5 allows the observation of the different software

dynamics happening in both cases. In the NDK case, it significantly improves in terms of per-

formance and ability to transfer the same application between platforms. Therefore, this method

has the specifications desired for the project because it is possible to develop and test the algo-

rithm implementation on a desktop platform, like the one discussed in 3.2.1, being later ported

and implemented into an Android project.

In conclusion, the project work flow will have in the development and test stages of the algo-

rithms implementation on a desktop platform such as Linux and later ported into a mobile platform

with the aid of NDK from Android. This will speed up the process of porting the code to a mobile

platform by facilitating the use of the implementation already done in C/C++ in Linux.

3.3 Object Tracking Software

Having previously discussed how the system’s project work flow is designed and implemented, it

is time to discuss the algorithms underlying the tracking software. In this section two algorithms

implemented during the realization of this dissertation will be presented. Firstly, the theoretical

elements and structures of each algorithm will be explained and later how they are implemented in

the system. The algorithms presented are Tracking-Learning-Detection [2] and Consensus-based

Matching and Tracking of Keypoints [3].

26 Real-time Tracking System of Unknown Objects

3.3.1 Tracking-Learning-Detection

Kalal et al. [2] proposed an algorithm for object tracking that exploits the tracking task into three

steps: tracking, learning and detection. Basically, the tracking algorithm is performed over con-

secutive frames in order to follow the object after being localized by the detector. The detector

has the function of pinpointing all the appearances observed and correct the tracker. In order to

improve the detector return, a learning process that estimates its errors and updates to bypass the

errors already presented before is used. The technique used for the learning step is based on a

P-N learning method: P estimates missed detections, and N estimates false alarms. The TLD

framework explained before is shown in Figure 3.7.

Figure 3.7: TLD framework diagram [2]

After the TLD algorithm by Kalal et al. was proposed some variations of the same algorithm

with some optimizations have appeared, resulting in the achievement of better outputs. One of

these variations is the algorithm presented by Nebehay et al. called OpenTLD [28]. Like the TLD

algorithm, it is also divided into three phases but with fewer modification. Figure 3.8 shows that

the initialization starts the learning process. Next, both Tracking and Detector steps start executing

in parallel, achieving one final result that needs to be validated; if the validation is correct then the

learning is accomplished.

3.3 Object Tracking Software 27

Figure 3.8: OpenTLD architecture

After the architecture description had been made, it is necessary to thoroughly explain each of

the three major steps present. Therefore, the next sections will be referring how they are structured

and work.

3.3.1.1 Tracking

The tracking method goal is to locate the position of the object in the current frame. Specifically,

the method used is the recursive object tracking proposed by Kalal et al. [29].

Figure 3.9: Recursive tracking method [29]

Figure 3.9 demonstrates the principle of recursive tracking. Firstly, in frame t an array of

equally spaced points is constructed inside the bounding box. The optical flow [13] on each point

is estimated and later the points expected to be inaccurate are filtered. This filtering process is

done by applying a normalised correlation coefficient and measuring the forward backward error

[29], which the last one measures the discrepancies between the trajectories performed forward

28 Real-time Tracking System of Unknown Objects

and backward by the tracking algorithm. In the frame t + 1, the remaining filtered points are

exhibit. The remaining points are used to obtain a new bounding box if the average of all forward-

backward errors measures is bellow a predetermined threshold. The new bounding box is then

calculated using the transformation model presented by Kanal et al. [29].

3.3.1.2 Detection

The recursive tracker algorithm is only possible to be used while the selected object is visible in

the image. Therefore, the process of detection is applied to re-initialize the recursive tracker to

avoid tracking failures in case of occlusions because the model of the recursive tracker it is not

able to maintain the object’s model.

Figure 3.10: Detection cascade approach [28]

3.3 Object Tracking Software 29

The object detector uses a sliding-window technique [30, 23]. The objective of this approach

is to filter out most of the non-candidate sub-windows of the input image. In order to be defined as

a candidate, the detector cascade has four stages, as shown in Figure 3.10, and they are presented

next.

Foreground Detection

In this approach, a background model [4] is created and then it is performed a background

subtraction in four steps. Firstly, it is calculated the absolute difference, IabsDi f f , between the

background model, Ibg, and the the image, I.

IabsDi f f =
∣∣Ibg− I

∣∣ (3.1)

Next, a threshold of 16 pixels is applied to IabsDi f f to create a binary image, Ibinary.

Ibinary (x,y) =

1 if IabsDi f f (x,y)> 16

0 otherwise
(3.2)

Later, the labeling algorithm proposed by Chang et al. [31] is applied to calculate smallest

bounding box for the blob originated until this point. Finally, every component from the binary

image smaller than the area of the selected bounding box is removed and the final result is created.

Variance Filter

The variance filter method filters out all image sub-windows with variance lower than a pre-

defined threshold σ2
min which is by default half of the initial selected variance value used. The

calculation of the variance, image uniformity measure, can be speeded up be recurring to integral

images as demonstrated in Equation 3.3 and it is derived from the Equation shown in [28].

σ
2 =

1
n

I′′ (B)−
[

1
n

I′ (B)
]2

(3.3)

I′(B) is the sum of pixels and I′′(B) is the sum of square of pixels inside a bounding box B for

σ2
min:

I′ (B) =
n

∑
i=1

xi (3.4)

I′′ (B) =
n

∑
i=1

x2
i (3.5)

Figure 3.11 exhibits the output of the variance filter by marking with a red box the regions of

lower variance and with a green box the regions of higher variance.

30 Real-time Tracking System of Unknown Objects

Figure 3.11: Variance filter output [28]

Ensemble Classifier

In the third stage of the detection cascade, a random fern classification [32] is employed. A

fern is based on a small set of binary tests which later return the probability that a patch fits to

any of the classes learnt during the training step. The classifier decision is made using the number

of pair wise pixel intensity comparisons [33]. Each sub-window is then subjected to a rejection

criteria if the probability Ppos value is lower than the threshold determined.

In Figure 3.12 the feature calculation process is explained by showing the image to be classi-

fied and the dots referring to the pair wise pixels in the image. At first, an uniform distribution is

used to draw the dots positions and later the intensity between pair of pixels in each box is com-

pared. The comparison is invariant to brightness variations and can be expressed as the Equation

3.6, where di,1 and di,2 are random locations.

fi =

1 otherwise

0 if I (di,1)< I (di,2)
(3.6)

Finally, the comparison result is used to retrieve the probability P(y = 1|F) where the value

of y refers to the class label of the sub-window, either positive if y = 1 or negative if y = 0. Figure

3.3 Object Tracking Software 31

3.12 shows the process for a single fern so the calculation of the final confidence value Ppos is

obtained by averaging the value of multiple ferns.

Figure 3.12: Single fern feature calculation [28]

Template Matching

The final stage of the detector cascade is done using template matching and a Nearest Neigh-

bour Classification (1NN). To enable the algorithm’s learning, it is necessary to built a list of

positive and negative templates. The templates are later translated into patches with the size of

15x15 and by using the Normalized Correlation Coefficient (NCC) [28] is possible to compare

two learnt patches. The NCC Equation (3.7) values vary from 1 to -1 and the closer to 1 the

similar the patches are and the opposite for the -1 value.

ncc(P1,P2) =
1

n−1

n

∑
x=1

(P1(x)−µ1)(P2(x)−µ2)

σ1σ2
(3.7)

where µi and σi are mean and deviations of patches Pi with i = {1,2}. The distance of patches can

also be calculated using the Equation 3.8 and its results can vary from 0 to 1.

d (P1,P2) = 1− 1
2
(ncc(P1,P2)+1) (3.8)

32 Real-time Tracking System of Unknown Objects

Figure 3.13 shows how the confidence p+ from the positive class is expressed. This classifi-

cation is made by combining d+ and d− that are, respectively, the distance between an unknown

image patch and the closest member of a positive and negative class. This assumption can be trans-

lated into the Equation 3.9 and the confidence value achieved can enable a sub-window acceptance

if greater than a threshold.

p+ =
d−

d−+d+
(3.9)

Figure 3.13: Distance classification of unknown patches [28]

In order to finalize the detection process, by the end of the detector cascade there are possible

sub-windows candidates for the object. Figure 3.14 demonstrates this issue by showing multi-

ple high confidence sub-windows around the true detection in green. Blaschko [34] determined

that the choosing of sub-windows with high confidence is difficult to execute. Instead resorting

to non-maximal suppression techniques to combine the result is the most desirable method of

implementation.

Figure 3.14: High confidence sub-windows (yellow) and true detection (green) [28]

3.3 Object Tracking Software 33

Viola et al. [30] describes a method for non-maximal suppression using clusters detections

based on spatial overlap. Meaning that for each cluster, the final and single result is a combination

and average of the bounding boxes.

Finally, a hierarchical clustering algorithm presented in [35] is used. Its implementation is

based on, firstly, the calculation of the pair wise overlap between all bounding boxes with high

confidence. Then, when the starting bounding box is chosen the nearest bounding box is checked.

The distance is measured and if it is less than a predefined threshold , both bounding boxes are

included in a single cluster. If one of these bounding boxes is already in a cluster, they are merged.

If the opposite happens, they are included into a different cluster. This procedure is then continued

for the bounding boxes that remains.

3.3.1.3 Learning

One of the big issues with this algorithm is how to combine the output of the tracking and detection

steps into a final result, like it is shown in Figure 3.8. The learning process requires some criteria

over the final result, if those criteria are met than the P/N learning constraints [36] are enforced

during the learning step. During this, the ensemble classifier and the template matching method

are trained. This section presents how those steps are implemented.

Fusion and Validity
The fusion algorithm is implemented using the following criteria:

• If there is only one detector’s result with higher confidence than the tracker’s result, then the

detector’s result is selected. This enables the recursive tracker’s re-initialization.

• If a bounding box is estimated by the recursive tracker and is not re-initialized because of

the previous point, then the recursive tracker’s result is selected.

• If no bounding box is selected, then it is implied that the object is not visible.

Stating the previous criteria, the only points where the final result is considered valid are the

ones when the tracker is not re-initialized by the detector. In all the other situations the result is

considered invalid unless it follows the next criteria:

• The final result is valid if the previous result was valid and the recursive tracker’s confidence

output is greater than the threshold σ+ (positive class) or σ− (negative class).

P/N Learning
The learning method applied is the semi-supervised learning proposed by Chapelle [37]. This

method has labelled examples and unlabelled data which are used as supervisory information for

the training data. It distributes in classes the unlabelled data and updates the classifier using the

class separation as a training set. In this scenario, the labelled positive example considered is the

initial selected bounding box.

34 Real-time Tracking System of Unknown Objects

Kamal et al. [36] introduced the positive and negative constraints which influenced the semi-

supervised learning method and enabled the learning by restricting the labelling of the unlabelled

data. This method has two types of constraints: P which are used for identification of false negative

outputs and its inclusion in the positive training examples; N creates the opposite effect. Basically,

the P/N learning classifier evaluates the unlabelled data, removes the cases where the object is

classified in disagreement with the structural constraints and adds the right samples to the training

set using an iterative method.

Figure 3.15: P/N Constraints [28]

Let xi and yi correspond, respectively, to the training examples and its class label. Therefore,

while using those variables, the function for the classifier is f : X→Y and is applied to the unseen

data. Figure 3.15 exhibits the unlabelled data Xu under the action of a classifier that assigns it as Yu.

Under structural constraints, Yu and Xu, go under some criterion to help identify the misclassified

examples Xc and Yc. Finally, Xc and Yc are incremented to the training set which will later update

the classifier.

The structural constraints used are the ones proposed by Kamal et al. [36]. P-constraints affirm

that all highly overlapping patches (default: > 60%) with the final result are classified as positive

while N-constraints suggest all the non overlapping patches (default: < 20%) with the final result

are classified as negative examples.

3.3.2 CMT

Nebehay et al. [3] proposed an algorithm called Consensus-based Matching and Tracking of

Keypoints (CMT). Basically, the main idea and structure behind CMT is to obtain the keypoints

from the object of interest by using the BRIEF detector [38]. Later, in each frame it is tried to find

the initial keypoints of the object. There are used two methods to find the keypoints in the current

frame: the use of the optical flow [13] to estimate the keypoints from the previous frame and the

match between keypoints by comparing their descriptors. The problem is that both methods are

prone to error the methods referred before are applied to find the consensus between the keypoints

3.3 Object Tracking Software 35

in order to find the center of the object, as shown in Figure 3.16a, and have a more successful

tracking algorithm. Figure 3.16b exhibits the keypoints votes that are then clustered enabling the

separation of the outlier from the inlier. The remaining keypoints are then used to estimate the

new bounding box.

(a) Keypoints consensus and object’s center (b) Clustered keypoint votes

Figure 3.16: CMT tracker principles [3]

Therefore, having explained the principles of the CMT tracker, its framework and the details

of each method used are now presented.

3.3.2.1 Matching and Tracking of Keypoints

According to Nebehay et al. [3] the method’s object model is represented by a set of keypoints in

Equation 3.10 where each of them stands for a location r ∈ R2 and a descriptor f , this descriptor

is binary for computational reasons.

O = {(ri, fi)}NO

i=0 (3.10)

Given a sequence of images I1, . . . , In and a region of interest b1 initialize in I1, O is initialized

when the keypoints in I1, which are inside b1, are detected and described. Later the keypoints

locations are mean-normalized. The object pose can be recover in the current frame It if a set of

corresponding keypoints is found. In Equation 3.11 the corresponding keypoints are defined and

where a and m respectively refer to the keypoint location in It and is the corresponding keypoint

index in O.

Kt = {(ai,mi)}NKt
i=1 (3.11)

Kt can be found by the use of two complementary methods based on matching and tracking

of keypoints. Candidate keypoints are detected as described in Equation 3.12, and for each it is

36 Real-time Tracking System of Unknown Objects

computed the Hamming distance of its descriptors to the I1 descriptors in Equation 3.13.

P = {(ai, fi)}NP

i=1 (3.12)

d(f 1,d2) =
d

∑
i=1

XOR(f 1
i , f 2

i) (3.13)

The candidate keypoints are matched in P to keypoints in I1 by applying the second nearest

neighbour distance criterion [24] on the descriptors distance d. Later, the matched keypoints set

M is composed by the keypoints in P that match O. In the opposite sense, keypoints that match

the background keypoints are removed from M.

The tracking process is done by computing the displacement of keypoints in consecutive

frames by applying the method of sparse optical flow [13]. Later, the set of tracked keypoints

T is done by removing the wrong correspondences by using the forward-backward error measure

[29].

In the end, T and M are fused into a set K′ of size NK′ , promoting the discardment of tracked

keypoints if there is a matched keypoint correlated with the same model keypoint. Accordingly

to Nebehay [3] because matched keypoints do not depend on recursive estimation they are more

robust. Nevertheless, K′ can still contain outliers because there is still some uncertainty in the

matching and tracking processes.

3.3.2.2 Voting

The location of the object of interest is defined by casting votes h from the candidates keypoints

K′ for the object center, culminating in a set of votes V as shown in Figure 3.16a.

V = {h(ai,mi)}NK′

i=1 (3.14)

(3.15)

If the vote simply suffers translational changes then the vote is represented as presented in

Equation 3.17. The appearance of scale changes affects the voting cast. In order to overcome this

problem the votes are scaled by a factor s as shown in Equation 3.17.

hT (a,m) = a− rm (3.16)

hS(a,m) = a− s · rm (3.17)

The next step is to compute statistics over pairwise geometric properties between the estimated

pairs, expressed by ai, j and ri, j. Being ai, j the Euclidean distance between ai and a j in K′, while

ri, j the Euclidean distance between rmi and rm j in O. To perform such calculations it is adopted

existing heuristics for estimating s. Kalal et al. [29] proposed the estimation of the scale s as in

3.3 Object Tracking Software 37

Equation 3.18.

s = med
({
||ai. j||
||ri. j||

, i 6= j
})

(3.18)

The appearance of an in-plane rotation in the object creates the necessity of updating the voting

system accordingly to the rotation appeared. Therefore updating Equation 3.17 with a 2D rotation

matrix R in order to α .

hR(a,m) = a− s ·Rrm (3.19)

R =

[
cosα −sinα

sinα cosα

]
(3.20)

The rotation α of the object is possible to robustly estimate from the distribution of the pair-

wise angular changes and later computing its median like in Equation 3.21, proposed by Nebehay

et al. [3].

α = med
({

atan2
(
ai, j

y −ai, j
x
)
−atan2

(
ri, j

y − ri, j
x
)
, i 6= j

})
(3.21)

3.3.2.3 Consensus

In this section, the outlier keypoints and their respective votes are identified and removed by

searching for consensus in the voting behaviour in order to find the object center µ , Figure 3.16b

shows examples of that behaviour. To achieve this result, a hierarchical agglomerative clustering

[39] is applied on V , based on the Euclidean distance as a dissimilarity measure. Using this clus-

tering technique it is considered that the subset with the most number of elements is the consensus

cluster V c and Kt the set that voted for V c. One of the advantages of this method is the nonexis-

tence assumptions about the object planarity because the keypoints have a degree of flexibility δ

regarding the keypoints’ drift.

In case V c has fewer elements than θ · |O| elements, the object is determined as non visible.

In the opposite case, the votes used for the consensus cluster are turned into an estimate for the

object center as shown in Equation 3.22, where n = |V c|.

µ =
1
n

n

∑
i=1

V c
i (3.22)

The final object bounding box can be achieved with the help of µ , s and α . The courners of

the bounding box can be retrieved using the Equation 3.23.

c
′
i = µ + s ·Rci (3.23)

38 Real-time Tracking System of Unknown Objects

3.3.3 Software Implementation

In this section it will be explained how the system is implemented using the described tracking

algorithms in the architecture referred in section 3.1.

The algorithms presented in sections 3.3.1 and 3.3.2 were developed under OpenCV API and

using specific C++ libraries developed by Nebehay [40, 41].

The implementation was based in two different processes. The first one based on the user

interface to select the object of interest by determining the ROI and the second where the selection

of the object is made automatically.

The first method involves using one of the two algorithms for the processing step recurring to

the functions supplied by Nebehay in his C++ libraries while doing the rest of the steps using the

C++ OpenCV API. The implementation for the tracker using TLD or CMT relies respectively in

the algorithms 1 and 2.

Algorithm 1 TLD
Input: I1 . . . In

1: while t = 1 . . .n do
2: if aux is true then
3: Rt ← track(It−1, It ,Bt−1)

4: Dt ← detect(It)

5: Bt ← fuse(Rt ,Dt)

6: if valid(Bt) then
7: learn(It ,Bt)

8: end if
9: print(Bt)

10: end if
11: if select(Bt) and aux is f alse then
12: learn(It ,Bt)

13: aux← true

14: end if
15: end while

Algorithm 2 CMT
Input: I1 . . . In

1: while t = 1 . . .n do
2: if aux is true then
3: P← detect(It)

4: M←match(P,KO)

5: T ← track(Kt−1, It−1, It)

6: K′← T ∪M

7: (s,α)← estimate(K′,KO)

8: V ← vote(K′,KO,s,α)

9: V c← consensus(V)

10: Kt ← vote−1(V c)

11: if |V c| ≥ θ · |KO| then
12: Bn← boundingbox(Bt ,µ,s,α)

13: print(Bn)

14: end if
15: end if
16: if select(Bt) and aux is f alse then
17: KO← detect(It ,Bt)

18: aux← true

19: end if
20: end while

This implementation was firstly done in an UNIX environment and then ported to the Android

platform as explained in section 3.2.

3.4 Discussion 39

The second method relies in an automatic process to detect objects, in this case people. There-

fore, in the algorithm there is a change in the process. Instead of manually selecting the region of

interest, the ROI is automatically given by a detector. The detector is the one presented in section

2.1.3.2 called Histogram of Oriented Gradients [23]. The SVM classifier was trained using the

INRIA dataset and provides a default people detector when using HOG algorithm. In conclusion,

it is possible to transform the algorithms 1 and 2 by modifying the part that represents the user

interface and by adding the HOG algorithm to detect the bounding box for the region of interest,

creating an automated process desired for the surveillance application.

3.4 Discussion

In this chapter the system overview was presented, as well as the software platforms and the

algorithms used for the tracking purpose.

The system overview explains how the system was structured in order to facilitate the wanted

outcome of this dissertation. The equipment and software used are explained and reviewed to

get a better understanding on how to use it correctly for this purpose. The software issue is one

of the biggest challenges in this system overview because it is essential when the material to be

developed is a software application. In that sense, it was studied how the portability between an

UNIX and Android platform could be done using the OpenCV library. The use of the Android

NDK is the perfect strategy for the portability wanted and even giving better performance results

when comparing to the Java API use.

The tracking algorithm issue was resolved by using TLD and CMT. Both of them are able

to track unknown objects from the start and are able to behave in dynamic environments. The

system being mobile presents an instability when referring to the video capture and it is necessary

to have algorithms capable of tracking objects in those circumstances. It is also necessary to add

to those algorithms an automatic people detector. Since it is a mobile surveillance system, the

HOG algorithm was combined instead of depending on the user interface developed to choose the

object of interest.

40 Real-time Tracking System of Unknown Objects

Chapter 4

Evaluation

In this chapter, the TLD and CMT algorithms are evaluated empirically on some sequences pro-

vided by the dataset of the Bonn Benchmark on Tracking (BoBoT) 1. The method used to evaluate

the algorithm performance quantitatively relies in the employment of the standard metrics recall

and precision. Qualitatively the algorithm’s output will be discussed of the dataset sequences ex-

hibit. In the end, the differences between the performance in the Unix and Android environment

will be discussed .

All experiments were made under Intel R© CoreTM i7-3770S processor @ 3.10GHz.

4.1 Evaluation Method

In order to evaluate the algorithms performance it is necessary to compare the algorithm output

against the ground truth values provided by the BoBoT dataset. This comparison is possible by

measuring the overlap between the two bounding boxes. Therefore, the equation 4.1 is used from

the PASCAL challenge [42] to measure the overlap.

overlap =
B1∩B2

B1∪B2
=

I
B1 +B2− I

(4.1)

where B1 and B2 are respectively the areas of the two bounding boxes and I the area of the

intersection. Figure 4.1 illustrates this measurement.

Figure 4.1: Overlap measurement [28]

1Bonn Benchmark on Tracking: http://www.iai.uni-bonn.de/ kleind/tracking/

41

42 Evaluation

Matthews et al. [43] demonstrate that this overlap measure penalizes changes in direction and

scale. Therefore, the evaluation method is based in five situations between the algorithm output

and the ground truth as shown in Figure 4.2.

The result of this method can be considered as:

• True Positive (TP): Overlap satisfies the condition of the threshold ω .

• False Negative (FN): The ground truth exist but there is no algorithm output.

• False Positive (FP): The algorithm output occurs but the ground truth does not exist.

• FN and FP: Overlap does not satisfies the condition of the threshold ω

• True Negative (TN): Neither ground truth or algorithmic output exist.

Figure 4.2: Overlap comparison cases [28]

4.2 Dataset 43

The performance of the algorithm is normally expressed in terms of recall and precision [44].

These parameters can be defined by using the number of occurrences of TP, TN, FN and FP in

the video evaluation. Consequently, recall measures the fraction of positive examples that are

classified correctly and is defined by the equation 4.3 while precision measures the fraction of

examples labelled positive that are actually positive and is defined by the equation 4.3.

recall =
T P

T P+FN
(4.2)

precision =
T P

T P+FP
(4.3)

4.2 Dataset

In this section, the sequences used for evaluation are characterized. The final result of this disser-

tation is an Android application and therefore it was necessary to have a dataset where the video

sequences were dynamic and had different situations and objects of interest . These specifications

lead to the sequences from BoBoT [1]. The sequences used are described in Table 4.1.

Table 4.1: Description of BoBot Sequences

Seq. Frame 1st Frame
Target

Object
Attributes

A 602 Ball
Moving cam / Moving target /

Rotation / Fast direction change

B 629 Cup
Moving cam / Moving target /

Background changes / Scale changes

C 404 Juice box
Moving cam / Fast direction changes /

Scale changes

E 305 Person Moving cam / Partial occlusion

G 716 Cube Moving cam / Viewpoint changes

I 1017 Person

Moving cam / Moving target /

Rotation / Similar distractors / Full

occlusion / Outdoor

K 1020 Cup
Moving cam / Viewpoint changes /

Similar distractors / Scale changes

44 Evaluation

All sequences provided by BoBoT also have available the ground truth data and have a default

size of 320x240. The availability of a ground truth allows the use of the evaluation method pro-

posed in Section 4.1. The ground truth annotations have the target’s position relative to the frame

size and the size defined as the tightest-fitting rectangle surrounding the object.

4.3 Results

In this section, the qualitative and quantitative results obtained using the algorithms proposed in

Section 3.3 will be discussed under the dataset presented in this chapter. The qualitative evaluation

rests upon the visualisation of the algorithmic output in the video sequences. On the other hand,

the quantitative evaluation is based in the analysis of the recall and precision values obtained while

running the algorithms.

4.3.1 Qualitative Results

4.3.1.1 Dataset Results

The qualitative evaluation is made for the TLD and CMT results over the sequences presented in

Table 4.1.

It is possible to verify in Figure 4.3 that the TLD algorithm in the sequences A, I and K does

not behave as well as in the other sequences. In case A, the reason for the nonexistent output is

because of the fast movement of the object. In this scenario the learning step fails to update the

detector properly, therefore not enabling the estimation of the new bounding box. Only when one

of the learnt templates appear again in the frame, the detector is able to re-initialize the tracker. In

case I and K, the condition affecting the performance of the TLD algorithm is the appearance of

similar distractors present in the background. In sequence I, as the object of interest is crossed over

and partially occluded by a similar object, the learning step estimates that the other object is the

correct template and updates the detector with the wrong templates, leading to a wrong estimation

of the bounding box and learnt patches. The same problem occurs with sequence K, but this time

it is due to the viewpoint changes and not because of the crossover between objects.

The CMT algorithm shows an inability for the tracking process over the sequence B as shown

in Figure 4.4. This inefficiency is translated by the adaptive model which enables the estimation of

the keypoints in the current frame using optical flow. The background being rather cluttered allows

the estimation of keypoints to be error prone, defining background keypoints as candidates and

translating them as input for the estimation of the new bounding box used for the output function.

As it is possible to observe in sequence B, along the frames the bounding box represented in blue

starts to gradually increase, including some keypoints of the background instead of solely having

as reference the object of interest keypoints.

The comparison between TLD and CMT differs completely when it comes to the failure points

presented. Although both algorithms present good results in most of the BoBoT scenarios tested.

4.3 Results 45

Figure 4.3: TLD algorithm output (green region) over the BoBot video sequences of A, B, C, E,
G, I and K (top to bottom) from frames 1, 100, 200 and 300 (left to right)

46 Evaluation

Figure 4.4: CMT algorithm output (blue region) over the BoBot video sequences of A, B, C, E, G,
I and K (top to bottom) from frames 1, 100, 200 and 300 (left to right)

4.3 Results 47

4.3.1.2 Android Application Results

In this section, several sequences of images resulted from the Android application will be exhibited

and analyzed.

The sequences presented have different specifications and attributes, which can be seen in

Table 4.2. These sequences were chosen to determine how the application behave in different

environments and to determine the accuracy of the algorithms implemented in the Android en-

vironment. The final system of the MOTrack application use the CMT for tracking while the

detection is done by using HOG. This implementation was chosen because, as discussed and seen

in section 4.3.1.1, CMT has shown better results for tracking people.

Table 4.2: Image sequences obtained from MOTrack application

Sequence Algorithm Target Object Attributes

A1 / A2 TLD / CMT Can Mov. Cam / Simple Back.

B1 / B2 TLD / CMT Charger Mov. Cam / Cluttered Back.

C1 / C2 TLD / CMT Can Mov. Cam / Mov. Obj. / Cluttered Back.

D1 / D2 TLD / CMT Book Mov. Cam / Mov. Obj. / Cluttered Back.

E F G H I HOG+CMT Person Mov. Cam / Mov. Obj. / Cluttered Back.

The sequences from A to D are done using the manual selection of the object, while the others

are done using the the people detector.

Sequence A
In sequence A1 and A2, they use, respectively, the algorithms TLD and CMT. Figure 4.5 shows

the output of the MOTrack application using TLD and the object is correctly tracked during the

sequence. One of the problems with the output comes from the similarity between the background

and the object of interest. The primary colour of both, background and object, is white causing the

tracking process of the TLD algorithm to start considering some keypoints from the background

as candidate keypoints. This situation causes the algorithm to start considering the background

as being part of the object of interest. Nevertheless, it is able to track the object during its full

rotation movement.

Figure 4.5: Sequence A1

Figure 4.6 shows the output of the MOTrack application using CMT and the object is not

tracked during the all sequence. This situation occurs because CMT uses keypoint matching to

48 Evaluation

track the object. The initial region of interest contains the keypoints of the frontal surface of

the object, so when the camera is facing the object’s back it cannot track because its surface

is different from the initial surface selected. That occurrence is exhibited in the last image of the

Figure 4.6. Although, when the camera is facing towards the frontal side of the object, the tracking

is reinitialized successfully. The situation where the background starts to get tracked, as shown in

sequence A1, does not happen.

Figure 4.6: Sequence A2

Sequence B
It is possible to observe in Figure 4.7 and 4.8 that both algorithm’s output work accordingly

to expected. In the images of both sequences it is possible to see, along the video frames, that the

object continues being tracked even though the background is completely cluttered. One of the

reasons for this to happen is the existence of an abundant amount of keypoints in the region of

interest selected, allowing the tracking algorithms to perform well in terms of scale and rotation.

Figure 4.7: Sequence B1

Figure 4.8: Sequence B2

Sequence C
The following sequences, exhibit images with moving camera and object as attributes. The

results using the TLD and CMT can be seen, respectively, in Figures 4.9 and 4.10. The TLD

output, as it is possible to see in Figure 4.9, demonstrates an inability to track the object when

it passes through background zones that are similar to the object of interest. Therefore, from the

4.3 Results 49

second to the third image it is possible to observe that after crossing over a white background zone,

the tracking process fails to continue. This is due to the tracking algorithm starting considering the

background as object of interest and, therefore, training the classifier with the incorrect dataset,

which precludes the reinitialization of the tracking stage of the TLD algorithm.

Figure 4.9: Sequence C1

Concerning the CMT algorithm, as Figure 4.10 demonstrates, the problem that occurs in the

TLD algorithms also occurs when the background is completely white. This is due to the similarity

of the object of interest keypoints with the background keypoints. This similarity promotes an error

in the matching stage of the CMT algorithm, considering as candidate keypoints the ones from the

background which results in an inefficiency when it comes to the algorithm’s output.

Figure 4.10: Sequence C2

Sequence D
Sequence D presents similarities with sequence C but has one major different attribute. This

difference comes from the object of interest having a colour not similar with the ones in the back-

ground. This attribute should improve the results of the algorithms comparing to the results from

sequence C.

Figure 4.11 shows the TLD algorithm working properly all over the sequence. These results

exist because the features of the object of interest are completely different from the ones of the

background, providing a correct tracking stage during all the process.

Figure 4.11: Sequence D1

50 Evaluation

Figure 4.12 represents the CMT algorithm’s output and shows that, comparing to the TLD

algorithm, it does not have the same results. The problem comes from the flat surface of the object

of interest. One of the main stages of this algorithm is the matching of keypoints, which uses

the BRISK as detector and descriptor. The surface of the object being flat, the BRISK detector

is unable to detect a large amount of keypoints because there are no contours. Therefore, with

the small amount of keypoints detected is harder for the algorithm to determine the region of

interest. So, in the third image of the Figure 4.12, as there is a sudden change of background,

the algorithms stops tracking the keypoints selected because it cannot use the matching stage to

select the candidate keypoints. This occurred because the initial region of interest detected a small

number of keypoints, enabling the initial tracking process to be done using the optical flow method

other than the matching method, and when the matching method was necessary to determine the

candidate keypoints, the algorithm could not solve its problem because of the initial detection of

the keypoints.

Figure 4.12: Sequence D2

From this part of this section, the sequences to be shown are a result of the algorithm’s output

using the HOG for the people detector and the CMT for the tracking algorithm. These sequences

have as primary object of interest a single person in different scenarios and backgrounds.

Sequence E
Figure 4.13 shows the recorded sequence and the algorithm’s output obtained. In the first

image of the sequence, it is possible to see the result of the HOG algorithm correctly identifying

the person displayed in the scenario. In the other images, it is possible to observe that the CMT

algorithm is able to track the object of interest obtained using the people detector. The person in

this sequence presents a walking route where rotation and scale changes are present. Even with

these changes, the algorithm is able to detect and track the person along the video frames.

Figure 4.13: Sequence E

4.3 Results 51

Sequence F
Sequence F is similar to sequence E, they have the same background and the movement made

by the person is identical, although the results are not the same. Figure 4.14 represents sequence

F and in the last image is possible to visualize that the tracking algorithm is not tracking correctly.

This phenomenon is due to the region of interest obtained using the HOG algorithm. In sequence

F, by contrast with sequence E, the region of interest obtained is bigger and therefore contains

more background elements and its keypoints. The CMT algorithm relies on keypoints matching

and optical flow tracking to determine which are the candidate keypoints. In the third image of the

sequence, the algorithm’s output is based on the result of the matching stage. The region of interest

is the same as the one of the first image which resulted from the output of the people detector. This

means that after some point, the tracking algorithm considers the keypoints from that area as the

candidates because the initial region obtained has a large amount of keypoints that refer to the

background. Therefore, the algorithm determines the region that contains those keypoints as the

output, although it is incorrect and does not correctly follow the person.

Figure 4.14: Sequence F

Sequence G
Figure 4.15 represents sequence G and it is possible to analyze that the algorithm works cor-

rectly over all the sequence. The sequence exhibits changes in the background while the person

is moving in terms of rotation and luminosity. These changes do not affect the outcome of the

algorithm allowing it to perform correctly over the sequence. Sometimes the bounding box do

not represent entirely the object of interest, containing parts of the background, like in the second

image but it still is able to follow the person correctly. Depending on the precision that the user

wants for this application, this sequence is an example that even though the precision is not the

best one, the algorithm is able to track the person along the frames with some accuracy.

Figure 4.15: Sequence G

52 Evaluation

Sequence H
The sequence H, as shown in Figure 4.16, results in the tracking of a person in an hallway.

From the beginning to the end of the sequence, the user and the object of interest move into

each other and the application is able to continuously track the person. The result of the people

detector, as seen in the first image, covers the whole person’s body and increasing the proximity to

the camera, it starts to cover less of the body in each frame. In the last image presented in Figure

4.16 the bounding box is shown merely covering the upper body part of the person.

Figure 4.16: Sequence H

Sequence I
The last sequence of the dataset acquired using the MOTrack application is shown in Figure

4.17. The scenario and background is similar to the one presented in sequence H, but it wants to

track a person’s back and instead of the user and person run into each other, the user follows the

person through an hallway. The first image of the sequence shows the result of the people detector

algorithm, one of the problems with this case is the non total identification of the person. Instead

the algorithm just detected the upper body part of the person. Although this partial detection, it

provides a better region of interest for the tracking algorithm to compute. This region of interest is

smaller and just contains elements of the object of interest, allowing the tracking algorithm to track

more vigorously the person, because it does not contain background keypoints that can mislead

the algorithm.

Figure 4.17: Sequence I

In the end of the sequence’s analysis, it is possible to determine that the application itself runs

properly. In some situations, it is unable to track efficiently, but in most cases it does. One of

the problems comes from the HOG algorithm for the people detector. Most of the times, its use

translates in obtaining a region of interest way larger than the object of interest, which makes

4.3 Results 53

the detection of keypoints from the background as the ones from the object of interest. That

phenomenon lead to the tracking algorithm to have worst results than if the region of interest

corresponded solely to the object of interest.

4.3.2 Quantitative Results

In Section 4.1 the relation between the parameter ω and the algorithm output was presented. The

parameter ω is responsible for the percentage of overlap that is needed between the result of

the algorithm and the ground truth. The increase of ω implies a decrease of both the recall and

precision. These requirements can differ depending on what the application is intended for; the

more accurate, the bigger the ω .

In this section, how the recall and precision change by modifying ω on both algorithms is

analysed. The sequences shown in Table 4.1 are used and three different ω values are defined

(1/3, 1/2 and 2/3) for running the tests.

TLD and CMT recall and precision values obtained using the three different values for ω are

respectively shown in Table 4.3 and Table 4.4.

Table 4.3: TLD performance with three different values of ω . The values exhibited are respectively
the precision and the recall values.

omega = 2/3 omega = 1/2 omega = 1/3

A 0.38/0.50 0.47/0.63 0.53/0.71

B 0.67/0.67 0.75/0.75 1.00/1.00

C 1.00/1.00 1.00/1.00 1.00/1.00

E 0.91/0.91 0.91/0.91 0.91/0.91

G 0.69/0.69 0.83/0.83 0.97/0.97

I 0.14/0.55 0.14/0.56 0.15/0.58

K 0.10/0.10 0.27/0.27 0.57/0.57

Table 4.4: CMT performance with three different values of ω . The values exhibited are respec-
tively the precision and the recall values.

omega = 2/3 omega = 1/2 omega = 1/3

A 0.48/0.49 0.75/0.76 0.91/0.92

B 0.21/0.26 0.21/0.26 0.22/0.27

C 1.00/1.00 1.00/1.00 1.00/1.00

E 0.92/0.92 0.92/0.92 0.92/0.92

G 0.64/0.70 0.64/0.70 0.64/0.70

I 0.72/0.76 0.74/0.78 0.75/0.79

K 0.72/0.72 0.77/0.77 0.81/0.81

54 Evaluation

These results demonstrate the same output as discussed in Section 4.3.1.1 and show an im-

provement of the algorithmic output when a more relaxed ω is applied. The results of recall and

precision for TLD are the lowest for the sequences A, I and K and for CMT for the sequence B.

These numbers confirm the analysis performed in the qualitative evaluation. In these tests, frames

per second that each algorithm produced were also calculated. The algorithms’ processing speed,

achieved while performing these tests using the BoBoT dataset, can be seen in Table 4.5. There-

fore, CMT processes information faster, in average performs better in more type of scenarios and

the variation of ω does not change the results as significantly as in the TLD algorithm, defining a

more stable algorithm independently of the requirements applied.

Table 4.5: Algorithms processing speed in frames per second (fps) using Desktop application

TLD CMT HOG

15 - 20 25 - 30 10 - 13

These quantitative results exhibited in Tables 4.3 and 4.4 are transposable to the MOTrack

application developed. The main difference is the processing speed while running these algorithms

and its mainly because of the less powerful hardware that smartphones have comparing to PCs.

All experiments in Android were made using the smartphone model LG Nexus 4 E960 with the

processor Qualcomm APQ8064 Snapdragon S4 Pro @ 1.5GHz and running Android 5 version.

The use of this model translates in the processing speed exhibit in Table 4.6, this was retrieved by

changing the image resolution in the MOTrack application and measuring the fps in the different

scenarios.

Table 4.6: Algorithms processing speed in frames per second (fps) using MOTrack application

TLD CMT HOG Size

4 - 5 9 - 11 1 800x640

4 - 5 9 - 11 2 640x480

4 - 5 10 - 12 8 320x240

The problem with the automated process is that the people detector is very costly, providing

really low FPS for the process. This feature detection functions poorly if people in the scene

are moving fast that translates into a wrong initial bounding box, because the frame rate cannot

follow up with the people movement. The algorithm used for the automated process was the CMT

because from the analysis done it was the one with better results in tracking people scenarios and

because of its processing speed. Table 4.6 also demonstrates that the decrease of image resolution

affects the HOG algorithm’s performance. This is due to the HOG sliding window searching

method and its default detection window’s size is 8x8. Therefore, the smaller the resolution, the

faster the processing speed of the HOG algorithm because the total scan of the frame is made in

less steps. In the other hand, the decrease of resolution leads to a deficit in terms of performance

in detecting people, creating an issue between the improvement of speed or performance.

4.4 Discussion 55

4.4 Discussion

The results obtained in this chapter are the key references for the algorithms performance and their

evaluation. The method using the overlap ω is rather accurate to evaluate the type of software de-

veloped in this dissertation. The recall and precision parameters are fundamental to evaluate the

performance of the algorithms in different sequences. The BoBoT sequence was used because it

demonstrated the requirements needed for the tests to be performed. The main requirement was

that it would contain videos of a freely moving camera and all of the sequences have that specifica-

tion. Also, it has a lot of different scenarios with different parameters where the algorithms could

be tested. In terms of the results of the MOTrack application, the sequences retrieved using the

application give us a detailed analyze about the type of occurrences in different scenarios. Most of

the scenarios led to positive conclusions, although there is still plenty of room for improvement.

56 Evaluation

Chapter 5

Conclusions and Future Work

In this project an approach for real-time video tracking objects based on an Android platform for

surveillance issues was presented. Android smartphones allow a cheap, flexible, mobile and re-

liable platform to acquire images from daily scenarios and a great portability for the user to use.

However, due to dynamic video sequences, the usual surveillance techniques cannot be performed

because normally these systems are treated in static environments. Therefore, the need of having

algorithms capable of tracking unknown objects in a dynamic environment is necessary. Also, to

enable the use of a smartphone for this purpose, the algorithms should not display a high compu-

tational cost. Nowadays, there is no commercial solution available in the market for the project

developed in this dissertation.

In this work, a framework was applied to obtain the best capable results from the environments

used. This project followed different stages are:

• The definition of the algorithm implemented was done by studying the state of art of tracking

algorithms available nowadays. During this study, several algorithms were reviewed and at

the end the TLD (Tracking Learning Detection) and CMT (Consensus-based Matching and

Tracking of Keypoints) algorithms were chosen to be implemented. The reason behind this

decision was the ability of these algorithms to track unknown objects in dynamic scenarios.

TLD relies on online learning of the templates retrieved from the object of interest to update

the detector and improve the tracking process, whereas the CMT is based in the detection

of the object’s keypoints and finding the consensus between the keypoints from the object

and the image. Both algorithms provide outputs considered relevant for the purpose of this

dissertation.

• The implementation of these algorithms in Linux are done using the OpenCV C++ API. The

OpenCV library has a high number of functions related to computer vision, so the imple-

mentation of computer vision software is facilitated by its use. One of the problems with

OpenCV is its non-optimization in some functions enabling the creation of some applica-

tions with high computational cost. This implementation detail is critical for this project.

57

58 Conclusions and Future Work

The final platform is an Android smartphone so it is necessary to have algorithms with low

computational cost to allow a good frame rate in the application’s final output.

• The final platform is an Android application and therefore the software developed in Linux

is ported to Android using the NDK tools. Having as resource the Android OpenCV library

it was just necessary to create a C++ class to be executed when the Java Native Interface is

called from the main Java program creating the GUI of the application.

These different stages lead to the final product of this project: an Android real-time tracking

application.

In order to evaluate this application, a dataset was used and an evaluation method based in the

overlap between the algorithmic output and the dataset ground truth was performed. The overlap

was then classified as 5 different scenarios that were used to calculate the recall and precision of

the algorithm. Using these parameters it was possible to evaluate quantitatively the algorithmic

output in different scenarios. The results achieved were satisfying and translated in which of the

algorithms was performing the best.

Considering the final results presented it is possible to determined that the goals proposed for

this dissertation were achieved, despite the improvements that can still be done in some aspects of

the project.

5.1 Future Work

During the ongoing dissertation there were some aspects in the project considered problematic

for the tracking application. These problematic aspects were found when implementing some

features of the application. However, these conditions can be solved by upgrading the system and

improving it. Some of the problematic features to be solved in a future work should include:

• Both algorithms should be extended to track multiple objects instead of only one.

• The people detector algorithm should be optimized in order to require less computational

cost.

References

[1] Dominik A., Dirk S., Simone F., and Armin B. Adaptive real-time video-tracking for arbi-
trary objects. In IEEE Int. Conf. on Intelligent Robots and Systems (IROS), pages 772–777,
Oct 2010.

[2] Z. Kalal, K. Mikolajczyk, and J. Matas. Tracking-learning-detection. IEEE Trans. Pat-
tern Anal. Mach. Intell., 34(7):1409–1422, July 2012. URL: http://dx.doi.org/10.
1109/TPAMI.2011.239, doi:10.1109/TPAMI.2011.239.

[3] G. Nebehay and R. Pflugfelder. Consensus-based matching and tracking of keypoints for
object tracking. In Winter Conference on Applications of Computer Vision. IEEE, March
2014.

[4] A. Yilmaz, O. Javed, and M. Shah. Object tracking: A survey. ACM Comput. Surv., 38(4),
December 2006. URL: http://doi.acm.org/10.1145/1177352.1177355, doi:
10.1145/1177352.1177355.

[5] K Grauman and B Leibe. Visual Object Recognition. Synthesis lectures on artificial in-
telligence and machine learning. Morgan & Claypool Publishers, 2010. URL: https:
//books.google.pt/books?id=lAQGBvdm3UsC.

[6] C. Stiller and R. Suntrup. Parametric object motion estimation. In Singapore ICCS/ISITA
’92. ’Communications on the Move’, pages 633–637 vol.2, Nov 1992. doi:10.1109/
ICCS.1992.255187.

[7] D. Comaniciu, V. Ramesh, and P. Meer. Kernel-based object tracking. Pattern Analysis and
Machine Intelligence, IEEE Transactions on, 25(5):564–577, May 2003.

[8] J. Shi and C. Tomasi. Good features to track. In 1994 IEEE Conference on Computer Vision
and Pattern Recognition (CVPR’94), pages 593 – 600, 1994.

[9] D. Comaniciu and P. Meer. Mean shift: A robust approach toward feature space analysis.
IEEE Trans. Pattern Anal. Mach. Intell., 24(5):603–619, May 2002. URL: http://dx.
doi.org/10.1109/34.1000236, doi:10.1109/34.1000236.

[10] C. Lee. An accessible introduction to mean-shift, 2015. URL: http://sociograph.
blogspot.pt/2011/11/accessible-introduction-to-mean-shift.html.

[11] D. Comaniciu, V. Ramesh, and P. Meer. Real-time tracking of non-rigid objects using mean
shift. In Computer Vision and Pattern Recognition, 2000. Proceedings. IEEE Conference on,
volume 2, pages 142–149 vol.2, 2000. doi:10.1109/CVPR.2000.854761.

[12] A. Bhattacharyya. On a measure of divergence between two statistical populations defined
by their probability distributions. Bulletin of Cal. Math. Soc., 35(1):99–109, 1943.

59

60 REFERENCES

[13] B. Lucas and T. Kanade. An iterative image registration technique with an application
to stereo vision. In Proceedings of the 7th International Joint Conference on Artifi-
cial Intelligence - Volume 2, IJCAI’81, pages 674–679, San Francisco, CA, USA, 1981.
Morgan Kaufmann Publishers Inc. URL: http://dl.acm.org/citation.cfm?id=
1623264.1623280.

[14] C Tomasi and T Kanade. Detection and Tracking of Point Features. Shape and motion
from image streams. School of Computer Science, Carnegie Mellon Univ., 1991. URL:
https://books.google.pt/books?id=20wpSQAACAAJ.

[15] R. Kalman. A new approach to linear filtering and prediction problems. ASME Journal of
Basic Engineering, 1960.

[16] J. Liu and R. Chen. Sequential monte carlo methods for dynamic systems. Journal of the
American Statistical Association, 93:1032–1044, 1998.

[17] I. Reid and H. Term. Estimation ii, 2001 (Last accessed May 5, 2015). URL: http://www.
robots.ox.ac.uk/~ian/Teaching/Estimation/LectureNotes2.pdf.

[18] M.S. Arulampalam, S. Maskell, N. Gordon, and T. Clapp. A tutorial on particle filters for
online nonlinear/non-gaussian bayesian tracking. Trans. Sig. Proc., 50(2):174–188, Febru-
ary 2002. URL: http://dx.doi.org/10.1109/78.978374, doi:10.1109/78.
978374.

[19] B. Ristic, S. Arulampalam, and N. Gordon. Beyond the Kalman filter : particle filters
for tracking applications. Artech House, Boston, London, 2004. URL: http://opac.
inria.fr/record=b1102164.

[20] M. Rochoux. Bayesian inference for front-tracking problems - 2013 ipdo conference,
2014 (Last accessed June 3, 2015). URL: http://www.slideshare.net/mrochoux/
bayesian-inference-for-fronttracking-problems.

[21] M. Isard and A. Blake. Condensation—conditional density propagation for visual
tracking. Int. J. Comput. Vision, 29(1):5–28, August 1998. URL: http://dx.doi.org/
10.1023/A:1008078328650, doi:10.1023/A:1008078328650.

[22] D. Lowe. Object recognition from local scale-invariant features. In Proceedings of the
International Conference on Computer Vision-Volume 2 - Volume 2, ICCV ’99, pages 1150–
, Washington, DC, USA, 1999. IEEE Computer Society. URL: http://dl.acm.org/
citation.cfm?id=850924.851523.

[23] N. Dalal and B. Triggs. Histograms of oriented gradients for human detection. In Pro-
ceedings of the 2005 IEEE Computer Society Conference on Computer Vision and Pattern
Recognition (CVPR’05) - Volume 1 - Volume 01, CVPR ’05, pages 886–893, Washington,
DC, USA, 2005. IEEE Computer Society. URL: http://dx.doi.org/10.1109/CVPR.
2005.177, doi:10.1109/CVPR.2005.177.

[24] D. Lowe. Distinctive image features from scale-invariant keypoints. Int. J. Comput. Vi-
sion, 60(2):91–110, November 2004. URL: http://dx.doi.org/10.1023/B:VISI.
0000029664.99615.94, doi:10.1023/B:VISI.0000029664.99615.94.

[25] D. Lowe. Method and apparatus for identifying scale invariant features in an image and
use of same for locating an object in an image, 2004. URL: http://www.google.com/
patents/US6711293.

REFERENCES 61

[26] Fixational. Opencv vs matlab, 2014 (Last accessed June 4, 2015). URL: http://blog.
fixational.com/post/19177752599/opencv-vs-matlab.

[27] OpenCV. Android, 2015 (Last accessed June 5, 2015). URL: http://opencv.org/
platforms/android.html.

[28] G. Nebehay, B. Micusik, C. Picus, and R. Pflugfelder. Evaluation of an online learning
approach for robust object tracking. Technical Report AIT-DSS-TR-0279, AIT Austrian
Institute of Technology, March 2011.

[29] Z. Kalal, K. Mikolajczyk, and J. Matas. Forward-backward error: Automatic detection of
tracking failures. In ICPR, pages 2756–2759. IEEE Computer Society, 2010. URL: http:
//dblp.uni-trier.de/db/conf/icpr/icpr2010.html#KalalMM10.

[30] P. Viola and M. Jones. Rapid object detection using a boosted cascade of simple fea-
tures. In 2001 IEEE Computer Society Conference on Computer Vision and Pattern
Recognition (CVPR 2001), with CD-ROM, 8-14 December 2001, Kauai, HI, USA, pages
511–518, 2001. URL: http://doi.ieeecomputersociety.org/10.1109/CVPR.
2001.990517, doi:10.1109/CVPR.2001.990517.

[31] F. Chang, C. Chen, and C. Lu. A linear-time component-labeling algorithm using contour
tracing technique. Comput. Vis. Image Underst., 93(2):206–220, February 2004. URL:
http://dx.doi.org/10.1016/j.cviu.2003.09.002, doi:10.1016/j.cviu.
2003.09.002.

[32] M. Ozuysal, P. Fua, and V. Lepetit. Fast keypoint recognition in ten lines of code. In
Computer Vision and Pattern Recognition, 2007. CVPR ’07. IEEE Conference on, pages
1–8, June 2007. doi:10.1109/CVPR.2007.383123.

[33] V. Lepetit, P. Lagger, and P. Fua. Randomized trees for real-time keypoint recognition.
In Computer Vision and Pattern Recognition, 2005. CVPR 2005. IEEE Computer Society
Conference on, volume 2, pages 775–781 vol. 2, June 2005. doi:10.1109/CVPR.2005.
288.

[34] M. Blaschko. Branch and bound strategies for non-maximal suppression in object detection.
In Y. Boykov, F. Kahl, V. Lempitsky, and F. Schmidt, editors, Energy Minimization Meth-
ods in Computer Vision and Pattern Recognition, volume 6819 of Lecture Notes in Com-
puter Science, pages 385–398. Springer, 2011. URL: http://dx.doi.org/10.1007/
978-3-642-23094-3_28, doi:10.1007/978-3-642-23094-3_28.

[35] F. Murtagh. A survey of recent advances in hierarchical clustering algorithms. Computer
Journal, 26(4):354–359, 1983.

[36] Z. Kalal, J. Matas, and K. Mikolajczyk. P-n learning: Bootstrapping binary classifiers by
structural constraints. In Computer Vision and Pattern Recognition (CVPR), 2010 IEEE
Conference on, pages 49–56, June 2010. doi:10.1109/CVPR.2010.5540231.

[37] O. Chapelle, B. Schlkopf, and A. Zien. Semi-Supervised Learning. The MIT Press, 1st
edition, 2010.

[38] M. Calonder, V. Lepetit, C. Strecha, and P. Fua. Brief: Binary robust independent elementary
features. In Proceedings of the 11th European Conference on Computer Vision: Part IV,
ECCV’10, pages 778–792, Berlin, Heidelberg, 2010. Springer-Verlag. URL: http://dl.
acm.org/citation.cfm?id=1888089.1888148.

62 REFERENCES

[39] R. Xu and D. Wunsch. Survey of clustering algorithms. Trans. Neur. Netw., 16(3):645–
678, May 2005. URL: http://dx.doi.org/10.1109/TNN.2005.845141, doi:10.
1109/TNN.2005.845141.

[40] G. Nebehay. Opentld, 2015 (Last accessed June 7, 2015). URL: https://github.com/
gnebehay/OpenTLD.

[41] G. Nebehay. Cppcmt, 2015 (Last accessed June 7, 2015). URL: https://github.com/
gnebehay/CppMT.

[42] M. Everingham, L. Gool, C. K. Williams, J. Winn, and A. Zisserman. The pas-
cal visual object classes (voc) challenge. Int. J. Comput. Vision, 88(2):303–338,
June 2010. URL: http://dx.doi.org/10.1007/s11263-009-0275-4, doi:10.
1007/s11263-009-0275-4.

[43] I. Matthews, T. Ishikawa, and S. Baker. The template update problem. Pattern Analysis and
Machine Intelligence, IEEE Transactions on, 26(6):810–815, June 2004. doi:10.1109/
TPAMI.2004.16.

[44] J. Davis and M. Goadrich. The relationship between precision-recall and roc curves. In
Proceedings of the 23rd International Conference on Machine Learning, ICML ’06, pages
233–240, New York, NY, USA, 2006. ACM. URL: http://doi.acm.org/10.1145/
1143844.1143874, doi:10.1145/1143844.1143874.

