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Abstract 

 

Optical fiber based sensing technology has been the target of increasing interest in 

the research and development of useful applications. The circumstance of the optical 

fiber being simultaneously a sensing element and communication channel, as well as 

its immunity to electromagnetic interferences, allow the development of different 

kinds of sensing solutions, for measurement of physical, chemical and/or other 

environmental relevant parameters.  

 

The following work fits within a broad field that goes from the optical fiber based 

sensing head concept and its development, to the optoelectronic interrogation 

techniques applied to quantify in an adequate way the measurements. Standard and 

microstructured optical fibers were used as the basis of the developed sensing heads.  

 

Multi-parameter measurement is a vital topic because, in general, it allows the 

reduction of the complexity, size and cost of the sensing system, and it also provides 

parameter discrimination, in situations where cross-sensitivity is a major issue. 

Mature structures like fiber Bragg gratings were combined in standard and 

microstructured fiber sensing heads to perform simultaneous measurement of strain 

and temperature. Sensing capabilities of physical parameters with long period gratings 

and rocking filters designed in highly birefringent microstructured fibers were also 

studied. 

 

During the last decade, optical fiber based gas sensing attracted considerable 

attention. Hollow-core microstructured fibers brought the advantage of easy 

alignment with the communication channel – due to its similar size – and a much 

longer interaction length due to the air filled core. An interrogation system relying on 

the wavelength modulation spectroscopy technique was developed and tested to 

quantify small concentrations of methane in the ppm order. A versatile compact and 

portable system for methane detection with multipoint sensing capabilities was then 

built. 
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The multimode operation of short lengths of microstructured fibers brings the 

possibility of building intermodal interferometers with potentially interesting 

characteristics to perform optical fiber sensing. Firstly, using hollow-core 

microstructured fibers and secondly, using highly birefringent microstructured fibers, 

sensing structures were developed, and tested, to measure strain, temperature and 

curvature. 

 

Considering that the associated photodetection, amplification and processing of the 

information obtained from the optical based sensing heads are in most cases in the 

static or quasi-static regime, the measurand readout resolution can be substantially 

affected by the 1/f noise of the electronics. So, an interrogation approach compatible 

with signal photodetection and amplification at higher frequencies was studied and 

implemented: the so called electrical dynamic interrogation. Such an approach was 

also tested in a multiplexed sensing system. 

 

Since the sensing head in a real scenario usually is located far away – a few 

kilometers – from the signal processing machinery, it makes sense to speak in remote 

detection, relevant in many situations, particularly in environmental monitoring. In 

this domain, an in situ optical source for remote sensing was developed. An optical 

fiber based intensity sensor for multiparameter measurements was also proposed. 

Finally, a Raman amplified system for remote sensing was simulated and tested. 

 

In all cases, the fundamental objective was to research and develop optical fiber 

based sensing structures and interrogation approaches looking for the buildup of 

sensing systems with the potential of being implemented in several areas, mainly in 

the context of environmental monitoring. 

 

 



 

Resumo 

 

A tecnologia dos sensores baseados em fibra óptica tem sido alvo de crescente 

interesse na investigação e no desenvolvimento de um vasto conjunto de aplicações. 

A circunstância da fibra óptica ser, simultaneamente, um elemento sensor e um canal 

de comunicação, bem como a sua imunidade às interferências electromagnéticas, 

permite o desenvolvimento de diferentes tipos de soluções sensoras para a medição de 

parâmetros físicos, químicos e outros de relevância em contextos diversos, 

nomeadamente no domínio ambiental. 

 

O presente trabalho situa-se numa ampla área que vai desde o conceito de uma 

cabeça sensora baseada em fibra óptica e do desenvolvimento dessa estrutura, até as 

técnicas de interrogação optoelectrónica aplicadas para quantificar de uma forma 

adequada as medições. Fibras ópticas do tipo convencional e microestruturadas foram 

utilizadas como base das estruturas sensoras desenvolvidas. 

 

A medição multi-parâmetro é um tópico importante porque, em geral, permite 

minimizar o tamanho, complexidade e custo do sistema de detecção, e também 

possibilita a discriminação de parâmetros físicos em situações em que a sensibilidade 

cruzada é uma questão importante. Estruturas como redes de Bragg foram combinadas 

em fibras ópticas do tipo convencional e microestruturadas, formando cabeças 

sensoras capazes de efectuar a medição simultânea de deformação e temperatura. As 

capacidades de detecção de parâmetros físicos de redes de período longo e de rocking 

filters implementados em fibras microestruturadas de elevada birrefringência também 

foram estudadas. 

 

Durante a última década, o desenvolvimento de sensores de gás baseados em fibra 

óptica atraiu considerável atenção. As fibras ópticas microestruturadas de núcleo oco 

trouxeram a vantagem de facilitar o alinhamento com o canal de comunicação – com 

dimensões semelhantes de secção recta – e também por proporcionarem um muito 

maior comprimento de interacção devido ao núcleo destas fibras ser preenchido com 

ar. Um sistema de interrogação baseado na técnica de espectroscopia por modulação 

de comprimento de onda foi desenvolvido e testado para a detecção de pequenas 
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concentrações de metano - na ordem de ppm. Para a detecção de metano, com 

capacidade de medição multiponto, foi construído um sistema compacto e versátil. 

 

A operação multimodo em pequenos comprimentos de fibra microestruturada traz a 

possibilidade de construir interferómetros intermodais com características 

potencialmente interessantes para realizar sensores em fibra óptica. Esta abordagem 

foi investigada recorrendo primeiro a fibras microestruturadas de núcleo oco e, 

posteriormente, a fibras microestruturadas altamente birrefringentes, tendo sido 

desenvolvidas e testadas estruturas sensoras para medição de deformação, temperatura 

e curvatura. 

 

Considerando que a fotodetecção, amplificação e processamento da informação 

proveniente das cabeças sensoras baseadas em fibra óptica são, na maioria dos casos, 

efectuadas em regime DC ou quase-DC, a resolução de leitura do mensurando pode 

ser substancialmente afectada pelo ruído 1/f da electrónica. Assim, uma abordagem 

usando um tipo de interrogação compatível com a fotodetecção do sinal e respectiva 

amplificação a frequências mais elevadas foi estudado e implementado: a chamada 

interrogação eléctrica dinâmica. Esta metodologia foi também testada num sistema 

projectado para a multiplexagem de sensores em fibra óptica. 

 

Considerando que em muitas situações de aplicação a cabeça sensora pode situar-se 

a distâncias de quilómetros do bloco de detecção e processamento, procurou-se o 

desenvolvimento de um sistema de sensorização com a fonte óptica localizada in situ. 

Também foi proposto um sensor de intensidade em fibra óptica para medição 

multiparâmetros. Finalmente, um sistema de amplificação Raman para detecção 

remota foi simulado e testado. 

 

Em todos os casos, foi objetivo fundamental investigar e desenvolver estruturas 

sensoras em fibra óptica bem como técnicas de interrogação que permitissem o 

desenvolvimento de sistemas de detecção com potencial de serem implementados em 

várias áreas, principalmente no contexto da monitorização de parâmetros ambientais. 
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Chapter 1 – Introduction 

 

 

1.1 Background and Thesis Motivation 

 

Optical fiber technology progress provided the availability of a wide range of new 

optical fiber devices and components that permit the revisitation of previous concepts 

and developments, enabling novel and important advances in the optical fiber sensing 

area. Optical fiber intrinsic advantages, such as low weight and size, and 

electromagnetic immunity, will continue to be the motivation to develop fiber sensing 

structures and adequate interrogation techniques for such devices. 

 

Over the past 40 years, the development of optical sources and lightwave 

amplifiers, the appearance of fiber devices such as fiber Bragg gratings, long period 

gratings, modal interferometers and the advent of the revolutionary microstructured 

optical fibers, attracted much interest among researchers due to their special 

properties and potential applications. Hybrid structures have also been introduced to 

form new fiber optical devices that can enhance the capabilities to sense strain, 

temperature, curvature, twist, and several other physical, chemical or environmental 

parameters in gases and liquids. 

 

The multiplexing capability is a clear asset of the optical fiber sensing technology, 

which is routed in the fact that the optical fiber is simultaneously a sensing element 

and a communication channel, which means that a dedicated telemetry channel is not 

required – a unique feature of this technology. Therefore, it is feasible to conceive and 

develop large optical fiber sensing systems for local or remote monitoring. 

 

1.2 Thesis Structure 

 

This thesis is divided in eight chapters as follows: 
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― Chapter 1 gives a brief overview of the thesis content and the contributions 

achieved within its topics. 

― Chapter 2 presents a general state of the art in the optical fiber sensors filed. 

― Chapter 3 highlights a few developments in optical sensing with microstructured 

fibers. 

― Chapter 4 describes briefly the state of the art in optical fiber sensors for gas 

detection and then some research achievements for methane detection with hollow-

core microstructured fibers are presented.  

― Chapter 5 explains how modal interferometry could be used in the fiber sensing 

technology. 

― Chapter 6 describes the principle of operation of a new concept for measuring 

quasi-static parameters, the electrical dynamic interrogation. 

― Chapter 7 presents some optical fiber based configurations for remote sensing of 

physical parameters. 

― Chapter 8 concludes the thesis with a discussion of the obtained results. Future 

work suggestions are also given. 

 

1.3 Contributions 

 

The main contributions of this research work may be summarized as follows: 

 

1. Low loss splicing in a microstructured optical fiber (MOF)  

2. Low Splicing and coupling losses in hollow-core (HC) MOF fibers 

3. Strain and temperature measurements using fiber Bragg gratings (FBG) in MOF 

4. Long Period gratings (LPG) and rocking filters written with a CO2 Laser in a 

highly birefringent (Hi-Bi) MOF 

5. Spectral characterization of MOFs for sensing applications 

6. Gas sensing with MOFs 

7. Methane detection based in wavelength modulation spectroscopy (WMS) and 

HC-MOFs 

8. Remote system for detection of low levels of methane based on WMS 

9. Modal interferometer based on hollow-core MOF for strain and temperature 

measurements 
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10. Intermodal interferometer for sensing applications fabricated in a Hi-Bi MOF 

11. LPGs dynamic interrogation with modulated FBGs and optical amplification for 

refractive index detection 

12. Dynamic interrogation using a LPG sensing head for curvature measurements 

13. Interferometric optical fiber inclinometer with dynamic FBG based 

interrogation. 

14. LPG remote fiber sensor with an in situ optical source 

15. Remote sensing of refractive index with an optical time-domain reflectometer 

(OTDR) 

16. Remote LPG sensor with Raman amplification for temperature detection 

 

1.4 List of publications 

 

The contributions of this research work have led to the following patent and 

publications, in peer-review journals, associated, totally or partially, with research 

reported in this thesis: 

Patents 

 

O. Frazão, D. Viegas, L. Coelho, J. P. Carvalho, “Sistema de Interrogação Remoto 

com Fonte Óptica Acoplada à Cabeça Sensora”, PT105244, Pedido de patente 

registado no Instituto Nacional da Propriedade Industrial, 2010.  

 

Papers in Journals 

 

Thiago V. N. Coelho, Joel P. Carvalho, José L. Santos, Maria José Pontes and Ariel 

Guerreiro, “A Remote Long-Period Grating Sensor with Electrical Interrogation 

assisted by Raman Amplification”, accepted for publication in Optics & Laser 

Technology. 

J. P. Carvalho, A. Anuszkiewicz, G. Statkiewicz-Barabach, J. M. Baptista, O. 

Frazão, P. Mergo, J. L. Santos, W. Urbanczyk, “Long Period Gratings and Rocking 

Filters Written with a CO2 Laser in Highly-Birefringent Boron-Doped Photonic 

Crystal Fibres for Sensing Applications”, Opt Commun. 2012; 285(3):264-8. 
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J. P. Carvalho, L. Coelho, M. J. Pontes, A. P. Barbero, M. A. Martinez, R. M. 

Ribeiro, J. Weyl, J. M. Baptista, M. T. R. Giraldi, I. Dias, J. L. Santos, O. Frazão, 

“Long Period Gratings Dynamic Interrogation with Modulated Fibre Bragg Gratings 

and Optical Amplification”, IEEE Sensors Journal, Vol. 12 , No. 1, pp. 179 – 183, 

January 2012. 

G. Statkiewicz-Barabach, J. P. Carvalho, O. Frazão, J. Olszewski, P. Mergo, J. L. 

Santos, W. Urbanczyk, “Intermodal interferometer for strain and temperature sensing 

fabricated in birefringent boron doped microstructured fiber”, Applied Optics, Vol. 

50, Issue 21, pp. 3742-3749, DOI:10.1364/AO.50.003742, 2011. 

J. P. Carvalho, L. Coelho, J. M. Baptista, J. L. Santos, O. Frazão, “Dynamic 

Interrogation for Optical Fibre Sensors based on Long Period Gratings”,  

Measurement and Science Technology, 22 065201, DOI:10.1088/0957-

0233/22/6/065201, IOP, 2011. 

Diana Viegas, Joel P. Carvalho, Luís Coelho, José L. Santos, Francisco M. Araújo, 

and Orlando Frazão,  “Long Period Grating Fibre Sensor with In Situ Optical Source 

for Remote Sensing”, IEEE Photonics Technology Letters, Vol. 22, No. 20, October 

15, 2010. 

J. P. Carvalho, F. Magalhães, O. Frazão, J. L. Santos, F. M. Araújo and L. A. 

Ferreira, “Splicing and Coupling Losses in Hollow-Core Photonic Crystal Glass 

Fibers”, Solid State Phenomena, Trans Tech Publications, Volume 161 (2010) Glass 

Science and its Applications, pp. 43-50, 2010. 

S. Hashem Aref, Rodrigo Amezcua-Correa, Joel P. Carvalho, Orlando Frazão, José 

L. Santos, Francisco M. Araújo, Hamid Latifi, Faramarz Farahi, Luis A. Ferreira, and 

Jonathan C. Knight, “Spectral characterization of a photonic bandgap fiber for sensing 

applications”, Applied Optics, Vol. 49, Issue 10, pp. 1870-1875, 2010. 

S. H. Aref, R. Amezcua-Correa, J. P. Carvalho, O. Frazão, P. Caldas, J. L. Santos, 

F. M. Araújo, H. Latifi, F. Farahi, L. A. Ferreira, and J. C. Knight , “Modal 

interferometer based on hollow-core photonic crystal fiber for strain and temperature 

measurement”, Optics Express, Vol. 17, Issue 21, pp. 18669-18675, 2009. 

J. P. Carvalho, H. Lehmann, H. Bartelt, F. Magalhães, R. Amezcua-Correa, J. L. 

Santos, J. Van Roosbroeck, F. M. Araújo, L.A. Ferreira, J. C. Knight, “Remote 

System for Detection of Low-Levels of Methane based on Photonic Crystal Fibres 



 

INTRODUCTION 

5 

and Wavelength Modulation Spectroscopy”, Journal of Sensors, Volume 2009, 

Article ID 398403, 10 pages, Hindawi Publishing Corporation, 2009. 

 

Papers published in international conferences 

 

C. R. da Silveira, J. P. Carvalho, M. T. R. Giraldi, P. A. S. Jorge, J. Weyl, "Sensor 

de temperatura baseado em fibra monomodo padrão com afunilamento", MOMAG 

2012, 5-8th August, João Pessoa-Paraíba, Brazil, 2012 

T. V. N. Coelho, J. P. Carvalho, M. J. Pontes, José L. Santos, "Impacto da 

Amplificação Raman em sistemas sensores remotos baseados em grades de difração", 
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Chapter 2 – Optical Fiber Sensing 

 

Equation Chapter (Next) Section 2 

2.1 Introduction 

 

Optical fiber technologies have suffered a huge growth. The increase of research on 

the optical fiber sensors area arouse firstly from the optical communications 

technology, but nowadays the research and development come from the real need of 

sensing functionality in a large spectrum of situations and applications.  

 

In this chapter the field of optical fiber sensors will be briefly described, with 

special attention for technologies such as: fiber Bragg gratings, long period gratings, 

microstructured fibers and modal interferometers. Finally, particular emphasis is 

given to the interrogation techniques available to read optical fiber based sensing 

heads.  

 

2.2 Optical Fiber Sensors 

 

Optical fiber sensors for different applications have been developed in a huge 

variety. According to the measurand modulation, optical fiber sensors can be divided 

in the following categories [1]: intensity, phase, polarization and wavelength. The 

light modulation must always be processed, independently of the type of the sensor 

employed, into an optical intensity signal at the optical receiver, which additionally 

performs an optical-electrical conversion. 

 

In intensity sensors, the magnitude to be measured modifies the optical intensity 

transmitted by the fiber. This type of sensors can be used in a wide spectrum of 

applications, since they use very simple optical components and are technically and 

economically competitive with commercial products based in other sensing 

technologies. 
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Phase sensors are based on a change of the phase of the light which is propagated 

along the fiber. Usually phase modulation must be converted into an intensity 

modulation before detection. This may be accomplished by means of an optical 

interferometer. This type of sensor requires coherent light sources and single mode 

fibers. Usually, the sensitivity of these sensors is higher than the one achieved with 

the intensity sensors. 

 

Polarimetric sensors are based on the modulation of the polarization of the light. An 

example is current measurement based on the Faraday Effect. Moreover, polarization 

effects can also be linked to phase measurements as polarimetric interferometers. 

 

Wavelength or spectroscopy sensors are based on the modulation of the light 

spectrum. 

 

The presented optical fiber sensors categories do not cover all fiber based sensing 

systems. Distributed sensors are usually based on Rayleigh, Raman or Brillouin 

scattering effects of the light inside the fibers [2]. In such distributed sensors, a single 

measurand can be monitored continuously over the fiber light path. They are 

effectively used in applications where monitoring a single measurand is required at a 

large number of points, or continuously over the path of the fiber. 

 

The following sections will focus on topics related with the sensors that have been 

targetted in this thesis.   

 

2.3 Fiber Bragg Gratings 

 

Bragg gratings inside optical fibers were first formed in 1978 by irradiating a silica 

fiber for a few minutes with an intense argon-ion laser beam [3]. The grating period 

was fixed by the argon-ion laser wavelength, and the grating reflected light only 

within a narrow region around that wavelength. The mechanism behind the grating 

formation can be understood as follows. The 4% reflection occurring at the two fiber 

air interfaces creates a standing-wave pattern, such that the laser light is absorbed only 

in the bright regions. If the glass structures changes in such a way that the refractive 
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index increases permanently in the bright regions, an index grating is formed. The 

reflection and transmission spectrum of such device is depicted in Figure 1. 

 

 
Figure 1 - Reflection and transmission spectrum of the very first fiber Bragg grating [3]. 

 

Curiously it was only from 1989 onwards that fiber Bragg gratings (FBGs) became 

a topic of intense investigation, mostly due to the observation of second-harmonic 

generation in photosensitive fibers. In that year, a paper presented a side-exposed 

holographic technique that was used to make FBGs with controllable period [4]. This 

technique was quickly adopted to produce fiber gratings in the third 

telecommunications window, near 1500 nm [5]. During the early 90s considerable 

work was done in order to understand the physical mechanism behind the 

photosensitivity of fibers and to develop techniques that made possible large changes 

in the fiber’s refractive index [6, 7]. By 1995, FBGs became commercially available. 

 

In its simplest form, a fiber Bragg grating consists of a periodic modulation of the 

refractive index of the core of a single-mode optical fiber. Light guided along the core 

of an optical fiber will be scattered by each grating plane; if the Bragg condition is not 

satisfied, the reflected light from each of the subsequent planes becomes progressively 

out of phase and will eventually cancel out. When the Bragg condition is satisfied, the 

contributions of reflected light from each grating plane add constructively in the 

backward direction, to form a back-reflected peak with a centre wavelength defined 

by the grating parameters. The FBG’s principle of operation is schematically 

described in Figure 2 [8]. 
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Figure 2 - Schematic of a Fiber Bragg Grating operation principle  

and spectral response. 

 

In fiber Bragg gratings, the reflected wavelength is given by the following equation: 

 

 2B effn  (2.1) 

  

where 0n is the refractive index of the fiber core and is the modulation period of the 

grating [9].  

 

The Bragg relationship in its differential form is given by 

 

 0

0
B B

n
n

 (2.2) 

   

This equation states that any measurable quantity applied to the grating that causes 

a refractive index change or period change, induces a deviation in the resonant 

wavelength. This is one of the key features of these devices. 

 

Fiber Bragg gratings can be fabricated with extremely low loss (0.1 dB) and a high 

wavelength accuracy is easily achieved ( 0.05 nm). In the case of apodized FBGs [9] 

high adjacent crosstalk suppression (40 dB) can be obtained, as well as flat tops. 
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The sensitivity of the gratings with temperature is a consequence of thermal 

expansion of the silica matrix and thermal dependence of the refractive index. Thus, 

for a temperature deviation T , the correspondent deviation in wavelength is given 

by 

 

 
1 1 eff

B B B
eff

n
T T

T n T
 (2.3) 

  

where  and  are respectively, the thermal expansion coefficient and the thermo-

optical coefficient [10]. In the case of silica, the thermal expansion coefficient has an 

absolute value of  0.55  10
-6

 C
-1

 and the thermo-optical coefficient a value of 

6.7  10
-6

 ºC
-1

. This means that, the change in the reflected wavelength as a result of 

temperature variations is dominated by the change in the refractive index. On the 

other hand, mechanical stress sensitivity comes simultaneously from deformation of 

the silica matrix and alteration of the refractive index due to the photo-elastic effect. 

The resulting change in the resonant wavelength through mechanical strain, for a 

longitudinal deformation , is given by 

 

 
1 1 1eff

B B B e
eff

n
p

n
 (2.4) 

 

where ep  represents the photo-elastic constant of the fiber’s material [10]. For a fiber 

with a germanium doped core, where the typical refractive index is 1.465effn , the 

effective photoelastic constant is 0.22ep . Using these parameters, the expected 

sensitivity of an FBG at 1550 nm is 1.2 pm/ .  

 

The temperature coefficient of a FBG is typically 1.2510
-2

 nm/ºC due to the 

variation in fiber length with temperature. However, it is possible to compensate for 

this change by packaging the grating with a material that has a negative thermal 

expansion coefficient. These passively temperature-compensated gratings have 

temperature coefficients around 0.0710
-2

 nm/ºC. This fact implies a very small 

0.07 nm center wavelength shift over an operating temperature range of 100ºC, which 



 

OPTICAL FIBER SENSING 

14 

means that they can be operated without any active temperature control. The 

previously mentioned properties make fiber gratings very useful devices for optical 

sensing systems applications. 

 

2.4 Long Period Gratings 

 

Long-period gratings (LPGs) are fiber structures where the light guided in the core 

is coupled to several cladding modes at specific resonant wavelengths, as can be seen 

in Figure 3 [11]. Such type of fiber gratings are optically passive devices which share 

the intrinsic characteristics of conventional optical fiber sensors, such as electrically 

passive operation, immunity to electromagnetic interference and multiplexing 

capability, and show some specific characteristics such as low back reflection and low 

insertion loss. The low back reflection characteristic occurs because such devices 

operate in transmission, owing to the coupling of the fundamental guided mode to co-

directional cladding modes.  

 

 
Figure 3 - Transmission spectrum over a broad wavelength range shows the various 

cladding modes to which the fundamental guided mode couples [11]. 

 

The coupling between forward modes occurs when the phase matching vector is 

short, which corresponds to a refractive index spatial modulation periodicity of 

100 µm to 10 mm [1], which means an advantage in terms of fabrication when 

compared with fiber Bragg gratings.  
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The LPG operation principle is based on the coupling of the fundamental mode to 

the co-propagating cladding modes and is given by the following expression 

 

 01
2n

cl  (2.5) 

 

where  is the grating periodicity required to couple the fundamental mode, 01 , to 

the n
th

-cladding mode n
cl . As the propagation constant , is given by  

 

 
2 effn

 (2.6) 

 

the phase matching condition can also be described by 

 

 01( )n cl
nn n  (2.7) 

 

where n is the resonance wavelength between the fundamental guided mode and the 

n
th

-cladding mode, and 01n  and n
cln  are, respectively, the effective refractive index of 

the LP01 mode and the n
th

-cladding mode. Knowing the effective refractive index of 

the propagating core and cladding modes it is possible to infer the resonance 

wavelength for each specific grating period [12].  

 

Because LPGs deal with radiation that propagates in the cladding region, its 

resonance loss band is sensitive to changes in the fiber structure induced by different 

physical parameters, namely torsion, transverse load and, in particular, when bending 

is applied to the section of the fiber containing the grating. They are also prone to 

changes in the surrounding medium, mainly to changes in its refractive index [13]. 

The LPG devices are also sensitive to strain and their temperature sensitivity can be 

substantial. 
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Differentiating equation  (2.7) as a function of temperature the following expression 

is obtained 

 

 
01

01

n
cl nn

cl

d n nd d
n n

dT dT dT
. (2.8) 

 

The first term represents the thermo-optical effects (the material contribution) and the 

second term the variation introduced by the LPG period (the waveguide contribution). 

The LPG response to temperature changes goes from 0.0007 nm/ºC to 2.25 nm/ºC 

[14]. Temperature sensitivity in LPG depends mostly on the material contribution 

term, so the optical fiber type and the resonance mode chosen are the relevant 

parameters.  

 

Differentiating equation  (2.7) as a function of the applied axial strain the following 

expression is obtained 

 

 
01

n
cln n

d n nd d

d d d
. (2.9) 

 

Once more it is clear the material and waveguide contribution in both terms of the 

expression. The first term describes the period changes introduced by the elastic 

deformation of the fiber, and the second one the variation introduced in the fiber 

refractive index due to the applied strain (photo-elastic effect) [12]. The typical 

wavelength response to the applied axial strain is linear but its sensitivity strongly 

depends on the order of the excited cladding mode and it could change between the 

19.42 nm/%ε and 0.32 nm/%ε [15].  

 

Therefore, LPGs are tunable band-rejection filters that find a wide range of 

applications as optical fiber sensors [16]. 
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2.4.1 Optical Fiber Rocking Filters 

 

An optical fiber rocking filter is a special type of a long period grating which 

resonantly couples the fundamental polarization modes launched in the principal axes 

of a single mode birefringent fiber [17, 18]. Typically, the coupling effect is achieved 

by periodic mechanical twist of the birefringent fiber. If the distance between 

successive twist points equals the fiber beat length, resonant coupling between 

orthogonally polarized modes occurs.  

 

From coupled-mode theory [19], the transfer of power between two polarization 

eigenmodes by periodic perturbation may be analyzed. When only one polarization 

mode is excited at the start of the interaction region, the fraction of power coupled to 

the other mode is given by 

 

 2 2 2 2( ) ( )  sinc ( )P z kz z k  (2.10) 

 

where z is the interaction length, k is the coupling constant, and 2= is the detuning 

parameter of the grating, given by 

 

 
2

x y  (2.11) 

 

where x and y are the propagation constants of the two polarization eigenmodes, and 

L is the perturbation length. Complete power transfer can occur only when  = 0. 

This is the longitudinal phase-matching condition and is equivalent to matching the 

spatial period of perturbation L to beat length Lb between the two polarization 

eigenmodes. At this point the input polarization is rotated by π/2, from which it 

follows that  

 

 
2

kL  (2.12) 
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where L is the length at which maximum conversion occurs. The bandwidth for 

maximum conversion is directly related to the number of periods (or the total length) 

and the angle of rotation, thus, broader bandwidths can be obtained by use of higher 

twist angles and shorter total lengths [17, 18], as can be seen on Figure 4. 

 

In the sensing field, similarly to what happens with LPGs, rocking filters have 

proved to be effective sensing elements of different measurands [20]. 

 

 

Figure 4 - Percentage of power converted from one principal axes to the orthogonal axis 

for: (a) 170 cm fiber length and (b) 100 cm fiber length, according to [17, 18].  

 

2.5 Microstructured Optical Fibers 

 

Since the first publication in 1996 of a microstructured optical fiber (MOF) called 

photonic crystal fiber (PCF) [21], the optical fiber community has studied the optical 

properties and fabrication of these new classes of fibers. The different fiber structures 

with a lattice of air holes running along the fiber length, provide a large variety of 

novel  MOF. A commonly accepted classification of MOF divides the fibers into two 

main classes: index-guiding and photonic bandgap [22, 23]. 
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Figure 5 - Scanning electron microscope (SEM) image of the first Photonic Crystal Fiber 

[21]. 

 

With index guiding MOF and in optical sensing, Monro et al. [24] presented a 

review that includes a range of applications in which MOF offer new alternatives for 

sensing applications. On the other hand, Fini [25] presented an interesting work in 

optical sensing of gases and liquids using MOF, reporting improved designs for 

sensing applications, including detailed simulations of guidance properties. 

 

Photonic bandgap fibers rely on an entirely new mechanism for transmitting light. 

Light is trapped in the core not by total internal reflection, but by a photonic bandgap 

(PBG) in the cladding that acts like an insulator for light. This new kind of optical 

fiber propagation was demonstrated in 1995 by Birks et al. [26]. The PBG cladding is 

made with hundreds of periodically spaced air holes in a silica matrix, typically 

arranged in a honey combed-like pattern. Because light guidance is no longer 

dependent on the core’s effective index, it becomes possible to create fibers that guide 

light in an empty or gas-filled core that can be used for optical sensing. Two papers 

published in Science presented the first bandgap guiding fiber in which light is 

trapped in a ring of glass around a central hole [27], and the first hollow-core photonic 

bandgap fiber consisting of a triangular lattice of holes from which seven capillaries 

were removed to form an hollow-core [28]. 

 

With the possibility of filling the air holes of MOF with gas, with large interaction 

lengths, new ways to monitor or detect gases are possible. 
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Fiber Bragg gratings written in germanium-doped microstructured fibers with 

reduced cladding mode losses were demonstrated by Eggleton et al. [29], showing 

high potential for sensing. In the same line, Monro et al. [24] reported that, in certain 

conditions, long period gratings written in MOF were insensitive to the external 

environment. Also, Dobb et al. [30] presented a temperature insensitive sensing head 

based on a long period grating written in a photonic crystal fiber with the capability of 

measure strain and/or bending. Similarly to what happens with LPGs, rocking filters 

were also developed in MOFs and have proved, like stated by Kakarantzas et al. [17, 

31] and by Statkiewicz-Barabach et al. [32], to be effective sensing elements of 

different mesurands. 

 

2.6 Summary 

 

The area of optical fiber sensing can be classified considering its measurand 

modulation as presented in section 2.2. Sections 2.3 to 2.5 briefly described some of 

the technologies that will be discussed and were object of research in the following 

chapters. 

 



 

 

Chapter 3 – Optical Sensing with Microstructured Optical 
Fibers 

 

Equation Chapter (Next) Section 3 

3.1 Introduction 

 

Microstructured optical fiber (MOF) technology has recently attracted much 

interest among researchers because of its special properties and potential applications 

in novel fiber devices. The optical properties of such fibers may vary in a dramatic 

manner depending on its geometry, inter-hole spacing, hole size and hole lattice 

arrangement. Although they have peculiar characteristics, an important issue on the 

practical application of such fibers is their connection with single mode fibers (SMF) 

with a low loss. Section 3.2 presents the study of a splicing technique developed to 

achieve low loss in a splice between a MOF and a SMF.  

 

Further, an evaluation of the coupling losses in a hollow-core MOF is presented in 

section 3.3. A study of the dependence such losses on lateral and axial gap 

misalignment between SMF and two different types of HC-MOFs, and the 

applicability of the splicing technique described in section 3.2, will be also shown. 

 

Multi-parameter measurement/discrimination has been a subject of intensive 

worldwide research and microstructured optical fibers offer new implementation 

possibilities for the measurand discrimination concept. In section 3.4 two sensing 

configurations are proposed, aiming for such functionality, but with different 

characteristics. One of them, based on a single Bragg grating inscription in a 

microstructured optical fiber, permits us to obtain a temperature-independent strain 

measurement; the other, supported by a structure formed by two Bragg gratings, one 

written in a microstructured fiber and the other on a standard SMF fiber, allows us to 

perform simultaneous measurement of these parameters. 

 

Long period gratings (LPGs) can also be written in microstructured fibers. Due to 

the MOFs particular design, interesting behaviours can be observed in the attenuation 
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band spectrum profile of the LPG when it is subjected to a physical parameter. 

Rocking filters are a special type of LPGs that can also be drawn in highly 

birefringent fibers. In section 3.5 the spectral characteristics and sensing capabilities 

of two different kinds of optical filters, LPGs and rocking filters, are compared. Both 

elements were fabricated by the CO2 laser inscription method in a highly birefringent 

photonic crystal fiber. 

 

Several microstructured fibers have a periodic structure layout in the fiber cladding 

that induces a photonic bandgap (PBG) behaviour. The cladding of the fiber acts as a 

periodic crystal that forbids propagation of light in specific wavelength ranges. Light 

with wavelengths in these bandgaps can be confined inside the air core and 

propagates along it. The spectral shift of the PBG edge of a HC-MOF induced by 

physical measurands, such as strain, temperature, curvature, and twist, is 

characterized in section 3.6. 

 

3.2 Microstructured Fiber Splicing 

 

Good splicing of microstructured fibers to standard SMF is vital in order to enhance 

their potential use in communication and sensing systems [33]. Furthermore, the 

splicing of fibers with different glass materials is difficult, due to the different 

coefficients of thermal expansion and melting temperatures of the two fibers. 

 

In 1999, Bennett [34] reported a splice loss of 1.5 dB using a conventional fusion 

splicer between a holey fiber and a SMF-28
TM 

(Corning). An alternative method has 

been proposed in 2003 by Chong [35], using a CO2 laser, and a splice loss in the 

range of 1.3-2.8 dB was obtained. This technique is used in order to avoid holes 

collapsing and condensation trapping inside the microstrutured fiber during the 

splicing process. Also in 2003, Bourliaguet [36] described a simple method that can 

be used to splice microstructured optical fibers, relying only on commercial electric-

arc splicers [37-39]. The results were presented in terms of fusion losses and tensile 

strength. A range between 0.6 and 0.9 dB fusion losses were obtained for 0.40 or 0.45 

second arc durations, respectively. 
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3.2.1 Microstructured Fiber Characteristics 

 

In the following study a simple method to fuse a MOF fiber with a SMF-28
TM 

is 

presented, which achieved, to the best of our knowledge the lowest splice loss 

reported to date with these fibers. 

 

The highly nonlinear photonic crystal fiber used in these experiments has been 

supplied by Crystal Fiber A/S (NL 2.3 1555) [40]. This MOF has a core diameter of 

2.3 µm, a cladding diameter of 125 µm and a numerical aperture of ~ 0.5. An 

effective area of 7 µm
2
, losses of 60 dB/km at 1550 nm and a non-linear coefficient γ 

of 18 W
-1

km
-1 

are specified. The average pitch-to-hole size ratio is d/Λ = 0.5 and the 

pitch Λ (period of hole structure in cladding) is 1.6 µm. According to [41], it exhibits 

single-mode operation at the third window of optical communications since it has a 

/Λ ratio of 0.975. The fiber had a length of 9 meters. Figure 6 shows the cross-

sectional SEM image of the microstructured fiber. This type of microstructured fibers 

can be applied in wavelength conversion setups, Raman and parametric amplification 

schemes, and also for signal regeneration or pulse compression. 

 

 

Figure 6 - Cross-sectional SEM images of the MOF (NL 2. 3 1555) from Crystal Fiber 

A/S. 

 

3.2.2 Experimental Results 

 

The splice technique reported here relies on butting the fibers and then, the electric 

arc discharge being applied over the SMF region. This requires the electric arc fusion 

splicer to be operated in manual mode to control the region of the SMF (core diameter 
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and numerical aperture are respectively 8.2 µm and 0.4) where the electric arc should 

be applied. During the splicing process the results for the losses were obtained, using 

the well-known cutback technique, by injecting light into the SMF from a tuneable 

laser source (TL200C from Thorlabs, Inc.) operating with a wavelength peak of 1550 

nm. The procedure is described as follows.  

 

First, the fibers were automatically positioned at a distance of 25 µm of each other 

(the region where the arc usually happens) as seen in Figure 7 (a). From this moment 

on all the fusion process was manually operated. The microstructured fiber position 

was kept fixed and the SMF was moved against the microstructured fiber, using the 

translation stage of the splice machine. The two fibers were aligned and butted, while 

the fiber losses of this alignment were quantified. After optimization of the alignment, 

a minimum loss of 5 dB was measured. This 5 dB value was achieved when both 

fibers were aligned without any matching. 

 

 
(a)       (b) 

Figure 7 - a) Result of the Fujikura’s splice machine automatic jointing of the fibers (the 

25 µm gap between both fibers is seen). Now the MOF is fixed and the SMF-28
TM

 is 

moved on; b) Result of manual alignment (After this, the electric arc is discharged). 

 

Next, the splicing process was carried out by applying the electric arc near the top 

of the SMF fiber that has been butted to the microstructured fiber, as shown in Figure 

7 (b). Then Fujikura’s internal units for the electric arc current (given in bits in the 

fusion machine display) were chosen to achieve an appropriate splice. Starting, a low 

electric arc discharge of 13.675 mA (5 bit value in Fujikura’s internal units) was 

applied. Usually, in a conventional splice between two SMF fibers, a current of 

~14.2 mA (20 bit value in Fujikura’s internal units) is used. The current choice was 

made through several tests, namely with 5, 10, 15 and 20 bits. Comparing all current 

tests, it was verified that with the 5 bit value (and also a ~14.2 mA current), a 

significant decrease of the splice loss, of about 1dB, was achieved. All the other 

a) b)

SMF-28TM

MOF 

NL 2. 3 1555 SMF-28TM

MOF 

NL 2. 3 1555



 

OPTICAL SENSING WITH MICROSTRUCTURED OPTICAL FIBERS 

25 

parameters that the splice machine uses (overlap, gap, prefuse, etc), had remained the 

same as those normally used for standard single mode fiber. Since the microstructured 

fiber consists of air holes across the fiber cross-section, the electric arc required to 

melt the MOF is expected to be smaller than the required for the SMF. In order to 

protect the MOF properties and the hole-arrangement profile, lower discharge 

currents had been used and the electric arc was mainly applied over the SMF. 

 

The dependence of the splice loss with arc duration was also investigated. The 

results given are presented in terms of arc duration time for a constant current power. 

In this experiment the arc duration time was first set at 2000 ms (time used for SMF 

fibers splicing) and was gradually decreased until the final value corresponding to 

200 ms was reached. The time step of the splice machine is set to 100 ms and the 

measurement results are shown in Figure 8.  
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Figure 8 - Evaluation of losses as a function of arc duration, with a constant current 

power. 

 

The optimized loss of the splice was achieved for an arc duration of 300 ms, where 

a minimum loss value of 0.25 dB was obtained. Up to this value all the splices passed 

the Fujikura’s tension test (corresponding to 200 gr). For an arc duration of 200 ms, 

the loss value was 3.8 dB, and it was verified that the two fibers were not well fused. 
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This result indicates that both fibers are not really spliced, i.e., the arc duration time is 

too small to obtain the glass fusion temperature.  

 

 

Figure 9 shows the splice (X and Y directions) between the MOF and SMF. Several 

splice attempts were carried out and the measured loss obtained for 300 ms and 

13.7 mA was in the range of 0.25-0.6 dB. These results are in good agreement with 

the Crystal Fiber’s NL2.31555 specifications (with splice loss at 1550 nm  0.65 

dB). 

 

 

Figure 9 - Visualization of the SMF-28
TM

/MOF splice in the Fujikura’s FSM-40S screen. 

 

Some tests were also performed by varying the applied discharge current in 0.1 mA 

steps, keeping the arc duration constant at 300 ms. A splice loss in the range of 0.25-

3.3 dB was obtained for electrical arc discharge currents of 4 to 10 bits (in Fujikura’s 

internal units). A statistical study was also conducted that shows that the average 

value for the splice loss between the microstructured fiber and the SMF was 0.4 dB. 

 

3.3 Coupling Losses Evaluation in Hollow Core Microstrutured Fibers 

 

As observed in the previous section, to be practically useful in optical sensing 

systems, microstructured fibers must be connected to standard single mode fibers 

(SMF), which remains a rather delicate process. The splice losses between 
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hollow-core microstructured fibers have been studied in the last years by several 

groups [42-44]. 

 

In order to allow the use of microstructured hollow core fibers in gas sensing, a 

study of the splicing and coupling losses was performed for two different types of 

HC-MOFs, 19-cell and 7-cell HC-MOF, shown in Figure 10.  

 

 

Figure 10 - Hollow-core microstructured fibers from BlazePhotonics:  

a) 7-cell HC-MOF (HC-1550-02); b) 19-cell HC-MOF (HC19-1550-01). 

 

Such fibers were designed to guide light in the 1.55 µm window and its operation 

bandwidth can be observed in Figure 11. 
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Figure 11 - Transmission spectra for a 7-cell HC-MOF (HC-1550-02) and a 

19˗cell HC˗MOF core fiber (HC19-1550-01), both designed for operation at 1.55 µm. 
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3.3.1 Modelling  

 

A brief modelling analysis and experimental measurements were made in order to 

allow the multiple-coupling gaps loss assessment in these types of fibers. The 

coupling coefficient between fiber 1 and fiber 2 can be determined from their mode 

profiles given by the equation (3.1): 

 

 
*

1 2
12

2 2
1 2

E E dS
C

E dS E dS
 (3.1) 

 

If the fibers are separated by a distance d, as depicted in Figure 12, the mode field 

of one fiber has to propagate to the cut-end of the other fiber, as described in equation 

(3.2). 

 

 
Figure 12 - Coupling between two fibers separated by distance d. 
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The mode field of the SMF can be easily computed. The mode fields of 7-cell 

HC-MOF and 19-cell HC-MOF are presented in Figure 13 (a) and (b), respectively. 

 

The modes of HC-MOF are not radially symmetric, therefore to simplify the 

analysis field amplitudes of HC-MOF modes were radially averaged. The side lobes 

around the central spot of the 19-cell HC-MOF are small and have alternating 

amplitude signs. The light transmitted by these side lobes strongly diverge and will 

miss the second fiber core. Also, the side lobes of the first fiber are very probably 

misaligned with the side lobes of the mode of the second fiber. 
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The estimation of the portion of light propagating in the side holes of a 19-cell HC-

MOF is 1.8%. Therefore, it was assumed that the light in the side lobes of 

19-cell HC-MOF is effectively lost and not coupled to the other fiber. The average 

mode profiles of 7-cell HC-MOF, and 19-cell HC-MOF are shown in Figure 13 (c) 

and (d). 

 

 

 

Figure 13 - a) Mode of 7-cell HC-MOF; b) Mode of 19-cell HC-MOF; c) Averaged mode 

of 7-cell HC-MOF; d) Averaged mode of 19-cell HC-MOF. 
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Figure 14 - Radial average of the mode profiles for SMF, 7-cell HC-MOF, and 

19˗cell HC˗MOF 
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The mode profile of the left end fiber of Figure 12 (assuming it is centre-

symmetrical) was used, and simulated how it propagates in the free space between the 

two fibers by decomposing the beam into space Fourier components. The coupling 

coefficients SMF  7-cell HC-MOF, SMF  19-cell HC-MOF, and 19-cell HC-

MOF  19-cell HC-MOF, were then calculated according to equation (3.2).  

 

The decomposition of the mode profiles of SMF, 7-cell HC-MOF, and 19-cell 

HC-MOF showed that more than 95% of the beam is in the zero-order Gaussian beam 

(Figure 14). The major difference between the fibers under analysis is then the mode 

field diameter. Therefore, it is a good approximation to consider that the beams have 

Gaussian profiles. The coupling coefficient between two Gaussian beams radiated 

from two fibers at distance d can be found from equation (3.2) and is defined as 

follows, 

 

 
2

12 2
2 1

1 2 1 2

4

2
C

z z d
z z z z

 (3.3) 

 

where 2 /i iz w  and iw  are the beam waists. In Figure 15 computed results from 

this equation can be found. 
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Figure 15 - a) Coupling coefficients, SMF → 7-cell HC-MOF, SMF → 19-cell HC-MOF; 

b) Coupling coefficients, 19 cell HC-MOF → 19-cell HC-MOF. 

 

For evaluating gap coupling loss between a SMF and a HC-MOF, and also between 

two HC-MOFs, several measurements were made to evaluate the dependence on 
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lateral and axial gap misalignment. A tuneable laser with 10 mW of maximum power 

was used as optical power source. The alignment between different fibers was 

achieved through a system with an axial step resolution of 5 μm and a 

horizontal/vertical step resolution of 0.1 μm. Light detection was made through a 

large area detector for the 1.55 μm wavelength region. The experimental setup used 

for the measurements is the one depicted in Figure 16. 
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(b) 

Figure 16 - Setup used for the experimental evaluation of the coupling loss between:  

a) SMF and HC-MOF; b) two portions of HC-MOF 

 

Figure 17 shows the obtained results for axial displacement between SMF and 

HC˗MOFs, and between two HC-MOFs of the same type. The excess loss values 

presented are referenced to minimal loss corresponding to direct fiber connection 

between the laser and the photodetector. The obtained results show that for similar 

axial displacements, the 19-cell HC-MOF has much lower loss dependence than the 

7-cell HC-MOF, as can be seen on Figure 17 (b). 
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Figure 17 - Excess loss dependence on axial displacement: (a) between a SMF and 19-

cell HC-MOFs, and between two 19-cell HC-MOFs; (b) between a SMF and 

7˗cell HC˗MOF, and between two 7-cell HC-MOFs. 
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Figure 18 (a) shows the obtained results for lateral displacement between SMF and 

HC˗MOFs. Figure 18 (b) shows the results for lateral displacement between two 19-

cell HC˗MOFs. During these measurements, the fibers were kept in close proximity. 

The presented results confirm the previous tendency; the 19-cell HC-MOF loss 

coupling has much lower dependence on lateral displacement both with SMF and with 

another 19-cell HC-MOF. The coupling losses in the 7-cell HC-MOF have always a 

larger dependence either on lateral or axial gap misalignment. This behaviour was 

expected due to the higher mode field diameter of the 19-cell HC-MOF when 

compared to both the SMF fiber and the 7-cell HC-MOF which are quite similar. 

These results indicate that 19-cell HC-MOF is less susceptible to misalignments 

induced during multiple-coupling gaps implementation or during system operation 

due to environmental effects. 
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Figure 18 - Excess loss dependence on lateral displacement: (a) between a SMF and 19-

cell HC-MOF and between a SMF and a 7-cell HC-MOF; (b) between a SMF and 19-cell 

HC-MOFs, and between two 19-cell HC-MOFs. 

 

Furthermore, spectral measurements were performed for evaluating splicing losses 

at different conditions between SMF and 19-cell HC-MOF. Obtained results are 

presented in Figure 19. From the previous experiments it was concluded that for an 

arc current around 13.5 mA, the ideal electric discharge time is around the 

300-400 ms, using the splicing technique described in section 3.2 [45]. 
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Figure 19 - Experimental results obtained for estimation of losses in light coupling 

between SMF and 19-cell HC-MOF in different cases. 

 

A simple analysis of splice losses between 19-cell HC-MOF and SMF showed that 

the lowest insertion loss attainable is ~2 dB. The use of these splicing parameters 

allows reproducible splice losses to be attained.  

 

In Figure 20 photographs of splices obtained under different conditions are 

presented. The physical shapes of the different splices do not significantly affect the 

splice losses between SMF and HC-MOFs. Nevertheless, even using optimum splice 

parameters the coupling efficiency is always lower when compared with straight butt-

coupling. 

 

 
 

Splice with 1 bit, 300 ms. Splice with 1 bit, 400 ms. 

 
Splice with 2 bits, 300 ms. 

Figure 20 - Photographs of the different splices between SMF and 19-cell HC-MOF. 
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3.4 Strain and Temperature Measurements with Microstructured Fibers 

 

The use of microstructured fibers can be an alternative solution not only for gas 

sensing, but also for the deployment of sensors for simultaneous measurement of 

various multi-parameters. The following study is a contribution along this line. Two 

sensing configurations are proposed aiming for such functionality, one based on a 

single Bragg grating inscription on a microstructured optical fiber, and another on a 

structure formed by two Bragg gratings, one written in a microstructured fiber and a 

second on a standard SMF fiber. The characteristics of these configurations are 

experimentally determined and their relative performance compared. 

 

3.4.1 MOF Bragg Grating Structure 

 

Using the phase mask technique with a KrF2 Excimer laser (UV = 248 nm), a 

10 mm long FBG was fabricated on a microstructured optical fiber supplied by 

Crystal Fiber A/S (NL 2.3 1555) [40]. This fiber, shown in Figure 21, had a 

germanium-doped core with 2.3 m diameter and a 125 m cladding diameter. An 

effective core area of 5 m
2
 and a loss of 60 dB/km at 1550 nm were specified. The 

average pitch-to-hole size ratio was d/=0.5 and the pitch period of the hole structure 

in the cladding was =1.6 m. According to the literature [41], this fiber is single-

mode in the third telecommunication window. The microstructured region is slightly 

elliptical (2.8 %), and therefore there is birefringence that turns out into the 

polarization maintaining properties of this fiber. 

 

This birefringence is evident from the optical spectrum of the MOF grating 

structure that can be observed in Figure 21. The two resonance peaks have 

wavelengths of fast = 1508.43 nm (fast axis) and slow = 1508.61 nm (slow axis). 

From the difference between these two values (0.18 nm) a birefringence of 1.59 × 10
-4

  

@ 1508 nm can be calculated, in good agreement with reported values in literature for 

this type of fiber [40]. 
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Figure 21 - Optical spectrum of the FBG written in the NL 2.3 1555 fiber. 

 

The experimental setup is showed in Figure 22. A broadband optical source 

(BBOS) was used to illuminate the sensing head and the Bragg wavelength shifts 

were recorded using an optical spectrum analyser (OSA) with a standard resolution of 

0.05 nm. A LabView platform was utilized for monitoring, processing and storage of 

the data in a personal computer. The sensing head was bonded to a translation stage 

(TS) with a displacement resolution of 1 m and placed in a tubular furnace, which 

permits the temperature of the sensing head to be set with an error smaller than 0.1 ºC. 
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Figure 22 - Experimental apparatus for strain and temperature measurements 

 

The lead and return fiber is a standard SMF-28
TM

 optical fiber. This was spliced to 

the MOF using a conventional splice machine and following the technique described 

in section 3.2, resulting in a splice loss of ~0.3 dB. 
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The response to temperature and strain of the MOF Bragg grating was determined 

separately. Figure 23 shows the experimental results obtained when the temperature is 

fixed to 20 ºC and strain was varied. It can be noticed a difference of ~ 3.2 % between 

the strain coefficients of the two resonance peaks. This difference is attributed to the 

slightly elliptical geometry of the air hole region of the MOF.  
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Figure 23 - Strain response of the fast and slow axis signatures of the grating in the 

microstructured fiber. 

 

On the other hand, Figure 24 shows the results obtained when the temperature 

changed from 20 ºC to 120 ºC at constant strain. In this case, the difference in the 

temperature sensitivity of the two FBG resonant peaks is negligible (smaller than 

1%). Considering the MOF does not have frozen stress regions, this temperature 

behaviour was expectable. It is interesting to note that in standard stress based Hi-Bi 

fibers the strain and temperature dependences are opposite, i.e., the strain sensitivities 

are similar and the temperature sensitivities are different [46]. 
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Figure 24 - Temperature response of the fast and slow axis signatures of the grating in 

the microstructured fiber. 

 

In view of the different strain sensitivities of the fast and slow axis signatures of the 

grating written in the MOF fiber, it is theoretically possible to measure 

simultaneously strain and temperature using the following matrix equation [47] 

 

 slow  fast fast

  slow  fast slow

1

T T

T K K

K KD
  (3.4) 

 

where  fast  slow  fast  slowT TD K K K K . From the coefficients given in Figure 23 

and Figure 24, equation (3.4) turns out to be  

 

fast

slow

1.21 1.251
4.07 4.110.117

T
  (3.5) 

 

This configuration based in two resonant peaks can be used as a temperature 

independent strain sensor due to the different strain sensitivities. Figure 25 shows the 

immunity of the sensing head to temperature and also the response of the sensing head 

to the applied strain. This result was obtained when the system output is given by 
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(slow-fast). A strain resolution of  7  over a total measurement range of 2000  

has been achieved. 
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Figure 25 - Temperature–independent strain behavior of the sensor consisting of a 

Bragg Grating written in a MOF: a) T = 20ºC and b)   

 

The performance of this sensing configuration was experimentally determined by 

undertaking strain variations in a range of 2000  at a fixed temperature (50 ºC) and 

the other way around, i.e., temperature variations in a range of 100 ºC for a specific 

applied strain ( = 1000 ). The results are expressed in Figure 26, from where the 

maximum errors relative to the applied values can be seen.  
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Figure 26 - Sensor output as determined by equations (3.4) and (3.5) for an applied 

strain at a constant temperature and the temperature variation at a constant strain. 

 

The resolutions achieved were  2.3 ºC and  18.5  for temperature and strain, 

respectively, which are typical values for simultaneous measurement schemes relying 

on the two signatures of a Hi-Bi grating.  

 

It is worthwhile to emphasize the simplicity of this structure, where only one FBG 

writing step is required and the problem of the losses appearing in the splice junctions 

of different fibers are avoided when the WDM multiplexing of several sensing heads 

is considered. 

 

3.4.2 MOF and SMF Bragg Gratings Combined Structure   

 

In order to achieve simultaneous measurement of temperature and strain a second 

configuration was studied. It consisted of a sensing head implemented around the 

splice region between a standard SMF and a microstructured fiber. FBGs were written 

in each side of the splice using the phase mask technique described previously, 
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resulting in a separation of 10 mm (being the total length of the sensing head 

< 30mm). The same phase mask was used in both cases, resulting in Bragg 

wavelengths of 1556 nm for the SMF and 1508 nm for the MOF (fast). This indicates 

a difference between the effective refractive indices of the fiber modes (neff) of 

4.2610
-2

. 

 

Figure 27 and Figure 28 show the responses of the two gratings of the sensing head 

to variations of strain and temperature. It can be observed that the measurand 

sensitivities are substantially different for these gratings, particularly concerning 

temperature, where the difference between the sensitivity coefficients reaches ∼60%. 

The large volume of the holes, which are filled with air, has a determinant effect on 

the thermo-optic coefficient of the MOF, decreasing the temperature sensitivity of the 

FBG written in this type of fiber [48]. On the other hand, the strain coefficient of the 

MOF grating is ∼9.6% larger than the one relative to the SMF grating. This result is a 

consequence of the reduction of the Young modulus in the microstructured fiber due 

to the presence of holes [49]. 
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Figure 27 - Strain response of the sensing head made with the MOF and SMF gratings. 
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Figure 28 - Temperature response of the sensing head made with the MOF and SMF 

gratings. 

 

In view of the different strain and temperature sensitivities of the two gratings, it is 

feasible to measure these parameters simultaneously using the following matrix 

equation 

 

 SMF  MOF

 SMF  MOF

1 MOF

T T SMF

T K K

K KD
  (3.6) 

 

where  MOF  SMF  MOF  SMFT TD K K K K . The limitation of most methods 

reported for simultaneous measurement of pairs of quasi-static parameters arises from 

a small value of the matrix determinant, which makes it highly sensitive to noise [50]. 

The proposed MOF/SMF–FBG configuration is substantially immune to this problem 

because the difference in the sensitivity slopes of the two gratings is large. From these 

values, given in Figure 27 and in Figure 28, equation (3.6) becomes 

 

1.13 1.251
10.48 4.118.46

MOF

SMF

T
  (3.7) 

 

The performance of this simultaneous measurement configuration was 

experimentally determined using the same method described for the first proposed 
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structure. The results are expressed in Figure 29, where maximum errors relative to 

the applied values appear. 

 

From these results, resolutions of ±1.5 ºC and ±10.7 με were determined for 

temperature and strain measurements, respectively. The main factor that determines 

these values is the reduced optical power available from the broadband optical source 

in the spectral region where the resonance of the MOF grating (1508 nm) appears. 

Therefore, this performance can be improved either by increasing this power or by 

using more sensitive FBG interrogation techniques [51]. 
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Figure 29 - Sensor output as determined by equations (3.6) and (3.7). 

 

3.5 Long Period Gratings and Rocking Filters in Hi-Bi MOFs 

 

The spectral characteristics and sensing capabilities of two different kinds of optical 

filters, LPGs and rocking filters, make them very interesting for optical fiber sensors 

applications. In this section is demonstrated the possibility of fabricating both kinds of 

gratings with a CO2 laser inscription method in a highly birefringent photonic crystal 

fiber. Further, the sensing capabilities of both structures were also studied regarding 

temperature, strain and hydrostatic pressure sensitivities by interrogating the 

wavelength shifts at different resonances. 
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For fabrication of the LPGs and rocking filters, an highly birefringent (Hi-Bi) MOF 

produced by the Department of Optical Fiber Technology – from the University of 

Marie-Curie Sklodowska (UMCS) in Lublin, Poland – was used. The birefringence in 

this fiber is induced by two holes located symmetrically with respect to the core. The 

cross-section of the fiber obtained in the scanning electron microscope (SEM) is 

shown in Figure 30. 

 

 

Figure 30 - SEM image of the highly birefringent MOF used for fabrication of the 

LPGs. 

 

From this image, the geometrical parameters were determined and gathered in 

Table 1, where F is the pitch distance, D the diameter of the large holes, d the 

diameter of the cladding holes and  the external diameter of the cladding. 

 

Table 1 - Geometrical parameters of the highly birefringent MOF 

F [m] D [m] d [m]  [m] 

3.76 4.6 1.63 127 

 

 

To fabricate the gratings in the Hi-Bi MOF presented in Figure 30 the point-by-

point CO2 laser based inscription system shown in Figure 31 was used.  
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Figure 31 - Setup for LPG and rocking filter inscription using a CO2 laser. 

 

During the gratings fabrication process, the fiber was illuminated using a broadband 

Xe-lamp and the grating growth was monitored using an ANDO AQ6317B optical 

spectrum analyzer (OSA).  

 

In the case of the LPG fabrication, the polarizers ‘P’ and ‘A’ could be discarded, as 

well as the nanorotator. For the rocking filter formation, the nanorotator allows the 

Hi-Bi MOF principal axes to be pre-twisted with a constant angle. After that, the fiber 

twist is partially released by heating the fiber at one point with the CO2 laser beam. 

The polarizers ‘P’ and ‘A’ permit to excite at the fiber input and attenuate at the fiber 

output the desired polarization modes, respectively. 

 

3.5.1 LPG Characterization and Sensing Properties 

 

The investigated LPG contained 25 coupling points fabricated in the Hi-Bi MOF 

using the CO2 laser based system. The grating, with a period of 650 µm and a total 

length of 15.6 mm, was then optically characterized. Its transmission spectrum, shown 

in Figure 32, features three pronounced pairs of attenuation bands centered at 670 nm, 

960 nm and 1450 nm, respectively. 

 

When the two polarizers are rotated it is possible to check if the nature of the 

resonances is due to the polarizing properties of the Hi-Bi MOF. As can be seen in 

Figure 33, the two observed peaks in the first pair of resonances are polarization 

sensitive, which proves they arise due to coupling between the fundamental 

polarization modes and the cladding modes located in the fiber microstructure. The 
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same behavior was observed for the second pair of resonances located around 950 nm. 

On the other hand, the third pair of resonances arising around 1450 nm was not 

polarization sensitive. It is believed that the two observed peaks correspond to 

resonances of different order, each of them having negligible split versus polarization. 

This effect can be attributed to very small birefringence difference between the 

fundamental mode and the cladding mode producing the resonant coupling. 
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Figure 32 - LPG transmission spectrum after 25 exposition points separated by 650 µm. 
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Figure 33 - Location of the LPG resonance pair corresponding to different polarization 

modes in the Hi-Bi MOF in the wavelength region near 670 nm. 
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Concerning the LPG sensing properties, the device was submitted to temperature 

changes and characterized. The third pair of resonances was insensitive to temperature 

in terms of its wavelength dependence, but the same did not happen for the 670 nm 

and ~960 nm resonances, as the data in Figure 34 shows. 

 

A similar linear response for the two peaks in each resonance pair can be observed. 

The data indicates that the sensitivities are ~11 pm/ºC for the first pair of resonances 

and ~21 pm/ºC for the second one. 
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Figure 34 - Variation of the resonance wavelength versus temperature for: a) pair of 

resonances around 670nm region: b) pair of resonances around 960 nm region. 
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Regarding the hydrostatic pressure sensitivity, a wavelength dependence of the 

three pairs of resonances against pressure change was not observed. Although, for the 

first pair of resonances, at the 670 nm region, an amplitude variation for the optical 

transmission spectrum of the two attenuation depths was detected, as can be seen in 

Figure 35. It is important to point out that these measurements were taken while 

monitoring a constant optical source power. 
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Figure 35 - Variation of the LPG resonance power loss as a function of hydrostatic 

pressure (resonance pair in ~ 670nm region). 

 

The results presented were obtained, in a constant temperature measurement, using 

a coupler after the optical source which allowed the monitoring of the Xe lamp power. 

Such a basic optical referencing scheme permitted to obtain the normalized results 

presented in Figure 35. As can be seen, the two resonances at ~ 670 nm (fast and 

slow) show different behaviors, with the peak loss associated with fast showing a 

linear response with hydrostatic pressure, while for the one relative toslow the 

dependence is parabolic.  

 

It was not possible to obtain results for the strain sensitivity with this LPG because 

it broke with the application of strain. Unfortunately, this is one of the impairments of 

the structures developed with a CO2 laser since the exposure of the fiber to the laser 

beam increases tremendously its fragility. 
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These results indicate that LPGs fabricated with CO2 lasers show a moderate 

sensitivity to temperature, between 11 pm/ºC and 22 pm/ºC. The spectral response of 

the LPG to hydrostatic pressure presented no change, but a small increase of optical 

peak loss against pressure for the first pair of resonances was noticed. 

3.5.2 Rocking Filter Characterization and Sensing Properties 

 

The developed rocking filter was formed after 13 beam exposures, physically 

separated by 8 mm, being the rocking angle 30º and the twisted length ~100 m. The 

transmission spectra of the guided mode, as well as, of the orthogonal mode are 

shown in Figure 36, where it is evident four pronounced resonances centered at 

~700 nm, ~1000 nm, ~1300 nm and ~1500 nm, respectively. 
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Figure 36 - Rocking filter (with a period Λ=8 mm and 13 coupling points) transmission 

spectra for the two eigen-polarization components of the fiber. The solid line and dotted 

line correspond to the polarization component parallel (guided mode) and orthogonal, 

respectively, to the input polarization state. 

 

Considering the sensitivity of the resonant wavelengths to temperature, the behavior 

of the second, third and fourth resonances were studied. The expected linear behavior 

of  with temperature can be confirmed by the data in Figure 37. 
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Figure 37 - Rocking filter resonant wavelength as function of temperature for: a) second 

resonance at ~1004nm; b) third resonance at ~1265nm; c) fourth resonance at ~1493nm. 

 

From the previous figure, it should be pointed out that the rocking filter sensitivity 

is decreasing for longer wavelengths. As can be observed, for the fourth resonance a 



 

OPTICAL SENSING WITH MICROSTRUCTURED OPTICAL FIBERS 

50 

sensitivity value of 12 pm/ºC was achieved, which is more than a factor of two 

smaller than the one associated with the second resonance (~26 pm/ºC). 

 

The sensitivity of the resonance wavelengths of the fabricated rocking filter was 

also tested to hydrostatic pressure measurement. The obtained results are shown in 

Figure 38. 
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Figure 38 - Rocking filter resonant wavelength as function of pressure for: a) second 

resonance at ~1004nm; b) third resonance at ~1265nm; c) fourth resonance at ~1493nm. 

 

The sensitivity of the rocking filter to hydrostatic pressure ranges from 5.7 nm/MPa 

down to 3.1 nm/MPa (for the second and the fourth resonance wavelengths, 

respectively). Again, the rocking filter sensitivity is decreasing for longer 

wavelengths. Figure 39 shows the evolution of the fourth resonance of the rocking 

filter for different values of applied pressure. 
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Figure 39 - Spectrum shift of the ~1493 nm resonance for different hydrostatic pressure 

values. 

 

As can be observed, beyond the spectral shift, its shape does not change with 

hydrostatic pressure, a positive feature of this fiber device, when considering the 

implementation of a simple interrogation system [52]. 

 

Finally, it was tried to quantify the rocking filter strain sensitivity. Due to the 

fragility of this Hi-Bi MOF based structure, strain was measured only until the 

application of 300 µ. From Figure 40, a linear dependence could be observed with a 

coefficient of ~0.95 pm/µ. 
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Figure 40 - Dependence of the rocking filter second wavelength resonance with applied 

strain. 
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The results obtained indicate it is feasible to fabricate rocking filters in highly 

birefringent MOFs using a CO2 laser, showing several resonances. Measurements of 

the sensing characteristics of these devices indicate that their sensitivity to 

temperature is moderate (between 12 to 26 pm/ºC), while the sensitivity to hydrostatic 

pressure is higher (between 3.1 and 5.7 nm/MPa). The obtained value for sensitivity 

to strain is low (0.946 pm/), being noticeable that the fiber becomes very fragile 

after CO2 laser beam exposition. As a consequence of such results, the ratio of the 

pressure sensitivity to the temperature sensitivity is high and in the range of 220-260 

ºC/MPa. These results make the rocking filter an adequate solution for hydrostatic 

pressure measurement with relatively small cross-sensitivity to temperature. 

 

3.6 Spectral Characterization of a Hollow-Core MOF for Sensing 
Applications 

 

Several sensing applications with MOFs require fibers with different index 

contrasts between the high and the low refractive-index regions of the photonic crystal 

cladding of the fiber. For a hollow core fiber, of the type presented in Figure 10, a 

characterization of the spectral shift of the photonic bandgap (PBG) edge of a 

HC-MOF, induced by physical measurands such as strain, temperature, curvature, and 

twist, is presented. 

 

To characterize the measurand-induced spectral shift of the PBG edge, a section of 

HC-MOF was spliced directly between two lengths of SMF. For this purpose a 

bandgap fiber that was designed and fabricated at the University of Bath was 

considered. The bandgap of this fiber, shown in Figure 41, is a seven-cell HC-MOF 

with a core diameter of ∼15 μm and an outside diameter of ∼125 μm, with a PBG 

edge at wavelengths around 1540 nm. A cross section view of this fiber is shown in 

Figure 42. 
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Figure 41 - Transmission spectrum of the HC-MOF fiber considered for 

characterization of measurand-induced effects on the PBG edge. 

 

 

Figure 42 - Optical microscope image of the cross section of the selected microstructured 

optical fiber. 

 

It has been observed that the loss pattern of PBG fibers in the PBG edge region is a 

function of the fiber length, particularly when small lengths are considered, i.e., after 

light propagation along 100–200 m of MOF the spectral features of the bandgap 

essentially stabilize. This process involves the shift of the low-wavelength edge to 

longer wavelengths (together with the disappearance of spectral transmission 

oscillations located to the left of the bandgap), and the shift of the high-wavelength 

edge to lower wavelengths [53]. Therefore, a bandgap spectrum narrowing was 

observed with a longer fiber length. Studies indicate that this effect in the bandgap 

low-wavelength region is dominated by the loss via coupling to fiber surface modes 
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[54]. The mechanism by which light is leaked out can be either by intrinsic loss of the 

surface mode or by coupling of the latter to a continuum of leaky modes. On the long-

wavelength side of the bandgap, the shift of the edge is owed to the fact that the 

fundamental mode is no longer supported and higher-order modes propagate, which 

show higher losses and therefore disappear after some propagation length, which 

permits the appearance of an effective bandgap edge. 

 

Focusing on the wavelength region close to the low wavelength edge of the 

bandgap, coupling to fiber surface modes in practical HC-MOF is promoted by 

tunneling mechanisms [55]. The light in this region is less well confined and, 

therefore, it is natural to deduce that the action on the fiber by some physical 

parameters should be accompanied by a relatively strong loss in the fiber. The 

motivation for this research was to verify this hypothesis and to quantify the effect of 

physical measurands on the fiber. Indeed, some previous results already pointed out 

this path [56-58]. As indicated above, the description of the edge shift of a PBG wich 

is due to changes in the refractive-index contrast of the HC-MOF is simply evaluated 

by using the refractive-index scaling law, which is based on the scalar waveguide 

approximation [56, 57]. Based on these findings, Antonopoulos and his co-workers 

reported an experimental demonstration of the frequency shift of the PBG edge that is 

due to refractive-index scaling using D2O-filled HC-MOFs [56]. Also, Sun and Chan 

[58] reported the use of PBG fibers as a refractive-index sensor and described its 

behavior based again on refractive-index scaling laws. In general, it can be expected 

that some physical measurands can change the PBG property of a HC-MOF due to 

changes in refractive-index contrast and geometric effects, therefore inducing a PBG 

spectral shift. 

 

The experimental setup used is shown in Figure 43. The light source used was an 

Er-doped fiber with amplified spontaneous emission power, central wavelength, and 

full width at half-maximum of 1.8 mW, 1550 nm, and 60 nm, respectively. The output 

transmission spectrum was observed with an optical spectrum analyzer (OSA). By 

means of a conventional fusion splicer (Fujikura SM40), the HC-MOF was spliced at 

both ends to SMFs. All the splicing was done manually, and the optimum parameters 

were obtained after some attempts to achieve minimum fusion loss. This resulted in 0 

bit (bit is Fujikura’s internal unit that is used for arc current) and 400 ms for the 
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power and arc time duration, respectively, and a typical splice loss of 1.5 dB. The 

length of the HC fiber was ∼28 cm. To investigate the strain effect on the spectral 

position of the bandgap edge, two micropositioners were used to fix the SMF fibers 

and to apply strain. With regard to the effect of temperature, the HC-MOF was placed 

inside a vessel of heated water and the measurements were taken during the cooling 

period. 
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Figure 43 - Experimental setup for the characterization of the measurand-induced shift 

of the edge of the spectral bandgap; also shown is the configuration that was used to 

apply torsion and curvature to the HC-MOF. 

 

To apply torsion to the HC-MOF, one of the holding stages could be rotated while 

the other was stationary. By moving longitudinally one holder relative to the other, 

curvature could also be applied to the HC-MOF. 

 

When strain is applied to the HC-MOF, it was observed a spectral shift of the PBG 

edge, as indicated in Figure 44, which shows the shift of the PBG edge [Figure 44 

(a)], the variation of the transmission in one wavelength in the edge (located 

approximately at the middle of the edge) [Figure 44 (b)], and the transmission at a 

wavelength located in the PBG passband [Figure 44 (c)]. These results indicate a 

blueshift of the PBG edge with the increase of strain (with a slope of approximately 

−0.7 pm/με). 

 

For wavelengths located approximately in the middle of the edge, Figure 44 (b) 

shows that the loss dependence on a logarithmic scale with strain associated with the 
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PBG edge shift is fairly linear, with a slope of −0.0018 dB/με. As expected, within the 

passband of the bandgap, the transmission is independent of applied strain. 
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Figure 44 - Effect of applied strain to the HC-MOF on (a) the spectral position of the 

PBG lower wavelength edge, (b) the loss variation at the wavelength of 1509 nm, located 

in the PBG edge, (c) the loss variation at the wavelength of 1525 nm, located in the PBG 

passband region. 
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Figure 45 shows the results relative to variations of temperature [Figure 45 (a), edge 

shift; Figure 45 (b), transmission at approximately the middle of the edge]. Different 

from what happens in the case of strain, now a temperature increase results in a 

redshift of the PBG edge with a slope of ∼29 nm/°C.  
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Figure 45 - Effect of temperature variation on (a) the spectral position of the PBG lower 

wavelength edge, (b) the loss variation at the wavelength of 1508 nm, located in the PBG 

edge, (c) the transmission versus temperature at the wavelength of 1525 nm, located in 

the PBG passband region. 
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The results obtained when curvature was applied to the HC-MOF are shown in 

Figure 46. It is clear that this parameter does not affect the PBG.  
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Figure 46 - Effect of curvature variation on (a) the spectral position of the PBG lower 

wavelength edge, (b) the loss variation versus curvature, at the wavelengths of 1508 nm, 

located in the PBG edge, and at the wavelength of 1525 nm, located in the PBG 

passband region. 

 

 

Figure 47 shows the data relative to the application of twist to the HC-MOF. A 

redshift was observed at the PBG edge that was fairly symmetric considering the 

clockwise or counterclockwise twist orientations. 
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Figure 47 - Effect of twist applied to the HC-MOF on (a) the spectral position of the 

PBG lower wavelength edge, (b) the loss variation at the wavelength of 1507 nm located 

in the PBG edge, (c) the transmission versus twist at the wavelength of 1525 nm located 

in the PBG passband region. 

 

The PBG process is a complex phenomenon, and the interpretation of the changes 

induced in the fiber transmission by strain, temperature, and twist requires a 

theoretical study of the problem and its computational simulation. However, the 
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results obtained indicate that the measurand-induced shift of the PBG edge of hollow-

core fibers can be used as the basis for sensing configurations supported by this type 

of fiber. Figure 41 shows that the edge slope can be large, which is favorable for high 

sensitivity readout. Compensation for optical power fluctuations can be obtained if a 

second wavelength in the PBG passband, where its transmission is essentially 

independent of the measurand value, is taken into consideration. 

 

The obtained results show it is feasible to apply HC-MOFs as sensing elements 

based on the measurand-induced PBG edge shift. But it is also feasible to apply these 

fibers for the optical demodulation of signals coming from other sensing heads, where 

the tunability of the PBG edge provides additional flexibility. An example of this role 

is within the context of fiber Bragg grating (FBG) interrogation [1, 59]. Indeed, when 

dealing with FBG sensors, the conversion of the measurand-induced wavelength 

modulation into an optical intensity modulation can be performed when the light that 

returns from the FBG propagates through a length of HC-MOF located in the control 

region, with the tuning of the PBG edge to the optimum sensitivity position achieved 

by application of strain to this fiber. Certainly, many other possibilities can be thought 

of, but the most relevant factor to point out is the dual functionality of HC-MOF, i.e., 

the freedom to use this type of fiber as a sensing or as a processing element. This 

characteristic can be advantageous in several fiber optic sensing applications, and a 

systematic study of its potential is currently under way. 

 

3.7 Summary 

  

The development of systems based on MOFs cannot be viewed as an insuperable 

barrier due to the fusion-splice losses between these fibers and the standard ones. The 

results reported in section 3.2 suggest that the SMF/MOF fusion can be done with 

very good results and high reproducibility. The obtained results are within the range 

of 0.25–0.6 dB for 300 ms arc duration and 13.7 mA discharge current. In spite of 

being very challenging, the splicing process can easily be achieved using standard 

fusion splicers. A technique has been presented whereby a low-loss splice was 

achieved by applying an electric-arc discharge mainly on the SMF region. This avoids 

the collapsing of the air holes in the microstructured fiber, caused by the different 
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melting-point temperatures along the transversal direction of the MOF structure. With 

this technique, it was demonstrated that low splice loss can be achieved. 

 

In section 3.3 an analysis of the coupling losses dependence on axial and lateral 

displacement between SMF and HC-MOF fibers was performed. It was found that 

19-cell HC-MOF presents lower coupling losses than 7-cell HC-MOF. In coupling 

between HC-MOFs of the same type it was observed that loss dependence is higher 

for both axial and lateral misalignments. However, the obtained results are very 

encouraging towards the implementation of practical multiple coupling gap based gas 

sensing systems. A simple analysis of splice losses between 19-cell HC-MOF and 

SMF was also done, being the lowest insertion loss attainable ~2 dB. 

 

The design, fabrication and characterization of two sensing heads based on Bragg 

grating structures for strain/temperature discrimination have been presented in section 

3.4. One of them relies on a single grating written in a microstructured optical fiber 

that exhibits Hi–Bi properties. Monitoring the difference between the two 

polarization-related resonance wavelengths, a temperature-independent strain 

measurement functionality was obtained, which provides a strain resolution of ±7 με. 

The second sensing head is formed by two connected lengths of MOF and SMF fibers 

with gratings impressed. The temperature and strain sensitivities of the MOF–SMF 

gratings on this structure are substantially different, which permitted us to implement 

simultaneous measurements of these two parameters with resolutions of ±1.5 ºC and 

±10.7 με, respectively. 

 

In section 3.5, the possibility of LPGs and rocking filter fabrication with several 

resonances in a Hi-Bi MOF using a CO2 laser inscription technique was presented. 

The observed variations of resonant wavelengths depend on the type of filter (LPG or 

rocking) and on the type of measurand that interacts with the fiber device. The 

sensitivity of the LPG to temperature is low and varies between 11 and 22 pm/°C, 

being similar to that of the rocking filter (12–26 pm/°C). These values are higher than 

those obtained with LPGs fabricated in endlessly single mode MOFs (that range from 

2.0 to 6.0 pm/°C [30, 60-62]). Measurements also show that the wavelength 

sensitivity of the LPG is pressure independent, while it is high for the rocking filter 

(3.1–5.7 nm/MPa). This last result is far greater than the sensitivity of the LPG in 



 

OPTICAL SENSING WITH MICROSTRUCTURED OPTICAL FIBERS 

62 

endlessly single mode MOF (0.1 nm/MPa [63]), as well as the sensitivity of a rocking 

filter in conventional elliptical core fibers (0.5 nm/MPa [64]). The fragility of CO2 

fabricated structures did not allow us to measure the sensitivity of the LPG to strain, 

but for the rocking filter the measured sensitivity was 0.946 pm/με, which is lower 

than the sensitivity of the LPGs in endlessly single mode MOFs (2.0–2.5 pm/με [30, 

61, 62]). These sensitivity results make the rocking filter an adequate device for 

hydrostatic pressure measurements, in view of the small cross-sensitivity to 

temperature. 

 

A measurand-induced spectral shift of the photonic bandgap edge of a hollow-core 

microstructured fiber was characterized in section 3.6. The physical measurands 

considered were strain, temperature, curvature, and twist. To increasing strain a 

blueshift was observed in the spectral position of the PBG edge, whereas a redshift 

appears for increasis in temperature and twist. Curvature does not introduce a 

noticeable change in the bandgap edge. These characteristics indicate the feasibility of 

using this type of fiber for sensing as well as for optical signal processing. 

 



 

 

Chapter 4 – Gas Sensing with Hollow-Core Microstructured 
Optical Fibers 

 

Equation Chapter (Next) Section 4 

4.1 Introduction 

 

Methane is an extremely explosive gas and one of the main constituents of natural 

gas, so its detection is a subject of major importance. The idea of sensing methane by 

laser absorption was first proposed in 1961 by Moore [65], and later demonstrated by 

Grant [66] in 1986 using a He-Ne laser. Although methane has a strong absorption 

line at 3.3 μm, this wavelength region is not suited for optical fiber sensor 

applications due to the high losses in standard optical fibers and also since it is 

difficult to fabricate laser diodes operating at wavelengths higher than 2.2 μm at room 

temperature. 

 

 In order to effectively use the currently available low loss optical fibers, remote 

detection in the near infrared, around 1.1-1.8 μm, is desirable, where optical fibers 

have minimum transmission losses (<1 dB/km). Methane has two absorption bands in 

this region, corresponding to wavelengths of 1.33 μm and 1.65 μm. It was found that 

the 1.65 μm band of methane absorption is more suitable considering the lower loss of 

the optical fiber in this region, the fact that the absorption coefficients are larger and 

also the circumstance that the spectral widths are broader than those in the 1.33 μm 

band [67]. 

 

Further in this chapter an optical fiber sensing system for detecting low-levels of 

methane will be described. The properties of hollow-core photonic crystal fibers are 

explored to have a sensing head with favourable characteristics for gas sensing, 

particularly in what concerns intrinsic readout sensitivity and gas diffusion time in the 

sensing structure. The sensor interrogation was performed by applying the 

Wavelength Modulation Spectroscopy Technique, and a portable measurement unit 

was developed with performance suitable for remote detection of low-levels of 

methane.  
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4.2 Gas sensing with Optical Fibers 

 

Several authors have proposed many configurations using laser diodes, in 

particular, distributed feedback (DFB) lasers with almost monochromatic emission, 

having bandwidths much narrower than the individual gas absorption lines. These 

devices are a suitable solution for optical-based gas sensing since DFB laser 

technology has reached maturity due to its broad use in telecommunication systems, 

with the consequent large reduction of the associated costs.  

 

In 1992, Uehara et al. [68] demonstrated high sensitivity real time remote detection 

of methane in air with a DFB operating at 1.65 μm (transmission and reflection 

schemes). Silveira et al. [69] presented a methane optical sensor using a 1.31 μm DFB 

laser and proposed a new type of signal processing technique based on amplitude 

modulation which provides auto-calibration. 

 

The performance limitations of a fiber optic methane sensor using GRIN lenses in 

either transmission or reflective configurations were examined by Stewart et al. [70]. 

DFB lasers exhibit very long coherence lengths and, therefore, multi-reflections 

occurring within the gas cells and joints/connectors give rise to interference signals 

which produce harmonics in the output indistinguishable from the gas signals.  

 

In 2000, Iseki et al. [71] developed a portable remote methane sensor based on 

frequency modulation using a DFB laser, where a dithering technique is employed 

and the first and second derivative of the absorption line are directly related with the 

gas concentration. 

 

Chan et al. [72, 73] developed an optical remote sensing system for differential 

absorption measurement of various inflammable, explosive, and polluting substances, 

employing low loss optical fiber networks and near-infrared high radiant LEDs. The 

highly sensitive technique was achieved employing the power-balanced two-

wavelength differential absorption method in the system, which enables direct 

detection of differential absorption signals for the specific molecule being monitored. 
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In 2003, Whitenett et al. [74] reported an alternative optical configuration for 

environmental monitoring applications, namely the utilization of cavity ring-down 

spectroscopy using an Erbium Doped Fiber Amplifier (EDFA). This configuration 

monitors the exponential decay of a light pulse inside a gas chamber that ideally 

exhibits very high finesse, causing therefore 1/e ring-down time to be very long and 

very sensitive to small changes in the cavity loss, as induced, for example, by a gas 

absorber in the cavity. 

 

Photo-acoustic spectroscopy (Kosterev et al. [75]) is another technique for 

detection of absorbing analytes and it relies on the photo-acoustic effect. In this 

interesting technique, the sample gas is confined in a chamber, where modulated (e.g., 

chopped) radiation enters, via a transparent window, and is absorbed by the active 

molecular species. The temperature of the gas thereby increases, leading to a periodic 

expansion and contraction of the gas volume, synchronous with the modulation 

frequency of the radiation. This, consequently, produces a pressure wave with 

amplitude (measured with simple microphones) related to the gas concentration. 

 

Another approach, known as multipass transmission absorption spectroscopy, can 

be used, and consists of a chamber with mirrors at each end, filled with the targeted 

sample [76, 77]. The beam is folded back and forth through the cell, creating an 

extended, yet defined, optical path length in a confined space. Although it presents a 

high sensitivity, the slow system response to concentration fluctuations and the 

relatively high volume of the sample required constitute the major disadvantages of 

this technique. 

 

Other approaches have also been implemented, exploring different types of fibers 

(e.g., D fiber) and effects, such as evanescent wave absorption (Culshaw et al. [78]). 

Their major obstacles, namely low sensitivity for short interaction lengths, spurious 

interference effects and degradation through surface contamination, were analysed 

(Stewart et al. [79]) and it was determined that the sensitivity of a D-fiber methane 

gas sensor could be improved by overcoating the flat surface of the fiber with a high 

index layer, reaching a detection limit lower than 5 ppm (Muhammad et al. [80]). 
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More recently, several authors proposed new methods for gas detection. Benounis 

et al. [81] demonstrated a new evanescent fiber sensor based on cryptophane 

molecules deposited on a PCS (polycarbosilane) fiber. Roy et al. [82] demonstrated a 

methane sensor based on the utilization of carbon tubes and nanofibers deposited by 

an electro-deposition technique. 

 

A review of optical sensing methods for methane detection can be found in the 

work of Magalhães [83]. 

 

4.2.1 Gas Sensing with Photonic Crystal Fibers 

 

The holes in microstructured fibers open up new opportunities for exploiting the 

interaction of light with gases or liquids. With the possibility of filling the air holes of 

MOF with gas, with large interaction lengths, new ways to monitor or detect gas are 

possible. Evanescent field gas sensing in the holes of MOF (Monro et al. [84]) or in a 

fiber random hole structure (Pickrell et al. [85]) has been reported. Hoo et al. [86] 

demonstrated an absorption spectroscopy evanescent wave acetylene detection system 

based on a 75 cm length MOF sensing head. Another work of the same group presents 

the design and modelling of a MOF based structure for gas sensing with enhanced 

characteristics, relying on the amplifying effect associated with the use of the multi-

coupling gaps (Hoo et al. [87]).  

 

On the other hand, Ritari et al. [88] studied gas characteristics by monitoring the 

photonic bandgap parameters within hollow-core MOF. Methane detection at the 

1670 nm band using hollow-core MOF has been reported (Cubillas et al. [89]). It is 

estimated a detection limit of 10 ppm/volume with the system configuration used in 

the experience. Cubillas et al. [90] also published a work that describes methane 

sensing with an hollow-core MOF at 1.3 m. Other authors studied the characteristics 

of gas sensing based on evanescent-wave absorption in solid-core by filling the 

cladding air holes (Cordeiro et al. [91, 92], Li et al. [93]). Side access to the holes of 

the MOF was demonstrated by Cordeiro et al. [92]. The method consists in inserting 

the liquid or gas to be sensed laterally to the fiber while the tips are optically 

monitored. An elegant solution to the problem of the long filling time of the gas inside 
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the fiber was proposed by van Brakel et al. [94], using femtosecond-laser drilling 

microchannels in both hollow and solid core MOFs. 

 

4.2.2 Other Gas Species Sensing with Optical Fibers 

 

Hydrogen is one of the cleanest energy sources once it can easily be obtained from 

water via electrolysis or photolysis, and upon plain burning it turns into water, so it 

does not contribute to global warming, via production of CO2. Therefore, it has been 

used in many chemical processes in various fields: propellant in aerospace rockets, 

and fuel for fuel cells and explosion engines in automotive devices.  

 

Control of H2 concentration is of the utmost importance, which implies the 

development of accurate and robust sensors, with sensitivity to H2 as low as ppb 

levels. 

 

Over the last 30 years, a variety of configurations for hydrogen sensing have been 

attempted and successfully demonstrated. Many devices developed in that period have 

found a place in the market, due to the need of monitoring hydrogen-based systems, 

namely with regard to the inherent explosion risk. The need for local detection of 

hydrogen in hazardous atmospheres and/or at high temperatures has consistently led 

to the choice of optical fiber sensors. In fact, when compared with conventional 

sensors, optical fiber-based hydrogen ones possess as main advantage the fact that 

they are risk-free in potentially explosive environments. They also enable remote 

sensing and multipoint measurement, and are immune to electromagnetic 

interferences. So far, Palladium (Pd) has been the most common transducer used with 

the optical fiber, due to its high sensitivity to, and selectivity for molecular hydrogen. 

 

To date, several hydrogen sensors have been described, based on distinct 

physicochemical principles: metal oxide semiconductor sensors [95], electrochemical 

sensors [96], thermoelectric sensors [97], surface acoustic wave sensors [98], and 

optical sensors [99], among others. The latter usually resort to optical fibers as a basis, 

and may in turn be classified according to their working principle: (a) interferometric-

based; (b) intensity- based; or (c) fiber grating-based sensors. 
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Regardless of the technology used, one notices that the recovery time is still quite 

long (many seconds, and in some cases, minutes or hours); hence, further research 

investment is required to address this issue, to eventually be able to design and 

implement better configurations for hydrogen sensing. 

 

A review of palladium-based fiber-optic sensing methods for hydrogen detection 

can be found in the work of Silva et al. [100]. 

 

4.3 HC-MOF Based Sensing System 

 

Hollow-Core microstructured fibers (HC-MOF) are structures where the light is 

guided not by total internal reflection but by a photonic bandgap in the cladding that 

acts like an insulator for light. The HC-MOF cladding is made with hundreds of 

periodically spaced air holes in a silica matrix, typically arranged in a honey 

comb-like pattern. Figure 48 shows the cross section of the hollow-core fiber that was 

used in the experiments. As can be seen, the hollow-core is formed by the suppression 

of some of such periodically spaced honey comb-like air holes.  

 

 

Figure 48 - Optical microscope image of a 7-cell HC-MOF. 
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These fibers exhibit a large potential concerning gas sensing, since long interaction 

lengths can be created when light and gas share a common path, therefore, enabling 

the development of HC-MOF gas sensing heads. This particular fiber is a 7-cell HC-

MOF (due to the fact that 7 of those small structures were removed) with a core 

diameter of 16 μm. To explore the 1.65 μm absorption band of methane, the fiber was 

designed to have a well-defined bandgap in this spectral region. Also, more than 90% 

of the light propagates in the core, assuring a high field overlap with the gas and 

therefore enhanced detection sensitivity [101]. The transmission spectrum of this fiber 

in the region around 1.65 μm is shown in Figure 49, obtained using a tuneable laser. 

 

 
Figure 49 - Spectral transmission of the 7-cell HC-MOF at its operational bandwidth. 

 

4.3.1 Diffusion Time  

 

A critical factor in sensing heads projected for the detection of dangerous gases is 

the measurement time. In most cases this is not limited by the intrinsic time constant 

of the optoelectronic components, but by the diffusion time of the gas into the 

measurement volume. This issue is particularly relevant when these volumes are 

reduced and accessed only through specific inputs, as is the case when MOF fibers are 

considered. Therefore, this problem was studied in detail in the context of this work. 

We considered a HC-MOF fiber with one or two open ends, immersed in a methane 

atmosphere. Methane gradually penetrates the fiber by diffusion. The diffusion was 

characterized by the relative concentration of gas inside the fiber, averaged over the 
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fiber length. This concentration can be found by integration of local concentration that 

is obtained by solving the diffusion equation with the corresponding boundary 

conditions. The diffusion into a piece of MOF of length l , having two open ends, can 

then be described by [87, 102] 
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 (4.1) 

 

This formula gives the gas concentration C(x,t) as a function of the position x along 

the fiber and as a function of t relative to the time t = 0, which represents the moment 

when the gas concentration C0 was released at the open fiber ends. Here, D is the 

binary diffusion coefficient between the trace gas and air. Integrating this equation 

over the entire fiber length gives us the time-dependent average gas concentration C(t) 
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The diffusion coefficient for methane in nitrogen is 0.22×10
-6

 m
2
/s [103]. Using this 

value, the dependence of the average relative concentration on time for four fiber 

lengths (2, 6, 18, and 54 cm) was plotted. The result is shown in Figure 50 (a).  

 

For the case of the fiber with one open end, the average relative methane 

concentration inside the fiber is obtained from equation (4.2) with l  replaced by 2l , 

resulting in the dependence given in Figure 50 (b). It should be mentioned that on 

these calculations surface effects were neglected, given the considerably large 

diameter of the core of the HC-MOF in comparison to the gas molecules size. Table 2 

summarizes the results relative to the diffusion time of methane into the HC-MOF 

with one and two ends open. 
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Figure 50 - Time-dependence of the average relative methane concentration inside 

different lengths of HC-MOF with two open ends (a) and a single open end (b). 

 

Table 2 - Theoretical diffusion times to obtain a 90% average methane concentration in 

the core of HC-MOF fibers for different lengths. 

 Two open ends One open end 

l  (m) t (s) t (min) t (s) t (min) 

0.02 4 0.07 16 0.27 

0.06 34 0.57 136 2.27 

0.18 305 5.08 1220 20.33 

0.54 2745 45.75 10980 183 

 

This analysis allows us to conclude that the length of the fiber used as the sensing 

head will directly affect the response time of the sensing system, limiting the time that 

gases may take to diffuse into the holes. As expected, with two open ends the gas 

diffusion inside the microstructured fibers happens significantly faster compared with 

the single open end configuration. 
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4.4 Hollow core MOF based sensing head  

 

To optimize the sensing head sensitivity without compromising the response time, a 

structure was devised where the introduction of periodic openings along the sensing 

head fiber was considered, as shown in Figure 51(a). The several hollow-core 

microstructured optical fiber (HC-MOF) pieces are connected through butt-couplings 

[101]. As previously stated, the length of each segment can be tuned to control the 

diffusion speed of the gas inside the sensor and hence the response time of the sensor. 

In turn, the number of segments determines the total fiber length and, therefore, 

dictates the sensitivity of the sensing head. Standard zirconium mating sleeves, as 

shown in Figure 51(b), were found suitable for this butt-coupling approach. 

 

L

l l*

 
(a) 

 
 (b) 

Figure 51 - (a) Project of the sensing head with periodic openings in the MOF fiber; (b) 

Butt-coupling of HC-MOF pieces using standard zirconium ferrules connected with a 

standard zirconium mating sleeve. 

 

 

The HC-MOF inside the ferrules was aligned using nanometre resolution 

positioning stages as can be seen in Figure 52. The diameter of the sleeves is 

deliberately slightly smaller than the diameter of the ferrules. A slit along the length 

of the sleeve gives some extra flexibility to the inner diameter and allows the sleeve to 

act like a small spring (in the radial direction).  
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(a) (b) (c) 

Figure 52 - (a) photo of HC-MOF and the ferrule when they are not still in the same 

plane; (b) photo of the HC-MOF transversely and axially aligned with the ferrule; (c) 

detailed photo of the HC-MOF aligned with the ferrule. 

 

This mechanism ensures that the ferrules are clamped inside the sleeve, thus 

optimizing the alignment. Since this is the standard technology for aligning fiber 

connectors, the technology is well established and the components are relatively 

cheap. Furthermore, the slit in the sleeves is also well suited to allow gas in-diffusion 

through open gaps. Figure 53 shows a chain of different HC-MOF segments 

connected with this method.  

 

 

Figure 53 - Multi-segment sensing head containing 4 segments of HC-MOF. 

 

This multi-segment sensor was placed inside a silica tube that acts like a gas 

chamber which facilitates greatly the experimental test. The insertion loss of the 

sensing head is a consequence of the loss induced by each butt joint and can be 

quantified as presented in section (3.3), where the optical coupling was characterised 

in a 19-cell HC-MOF with a core diameter, and thus a guided mode behaviour, quite 

similar to the 7-cell HC-MOF fiber used here. Typically, it was found that the loss in 

each butt-joint was smaller than 1 dB.  

 

With adequate sensing head packaging, that involves fiber wrapping the several 

butt-joints segments, which is possible due to the geometrical flexibility of the optical 

fiber, the volume increase when the number of butt-joint segments increases can 

follow a slow grow.   
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4.5 Wavelength Modulation Spectroscopy 

 

The ability to have sensitive detection of methane with the previously described 

sensing head requires the consideration of a high performance interrogation approach. 

Therefore, the technique of Wavelength Modulated Spectroscopy (WMS) was 

selected, in view of its favourable characteristics (Silver et al. [104]). In WMS, the 

source wavelength is slowly modulated, sweeping the entire absorption peak and an 

higher frequency signal (dithering) is superimposed on this signal. As the emission 

source wavelength slowly scans through the gas absorption line, the wavelength 

modulation becomes an amplitude modulation, presenting its highest amplitude as it 

passes in the highest slope points of the absorption peak, as presented in Figure 54.  

 

 
Figure 54 - Wavelength modulation converted to amplitude modulation in Wavelength 

Modulation Spectroscopy. 

 

As the schemes in this figure indicate, this interrogation method requires that the 

optical source should have a linewidth significantly smaller than the absorption line of 

the gas species to be monitored. Considering that the detection bandwidth is shifted to 

higher frequencies where the laser intensity noise is reduced towards the shot noise, 

the signal-to-noise ratio is substantially increased, which means a better measurement 

resolution. This concept is similar to that of data encoding in the side bands of a radio 

transmission carrier wave. Figure 55 shows the spectral output of a frequency 

modulated laser, where it can be seen the carrier frequency ωc and the side-band 

frequencies ωc±Ω. Therefore, when the laser slowly scans through the absorption line, 

the amount of light absorbed, which by the Lambert-Beer Law [105] is proportional to 

the gas concentration, is “written” into the side bands. Schematically, this is 

represented in Figure 55 as a decrease in the amplitude of the side bands. 

Consequently, the absorption information can be retrieved by means of a lock-in 

amplifier, where a voltage output proportional to gas concentration can be generated.  
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Figure 55 - Spectral contents of the optical signal: left) laser unmodulated; middle) laser 

modulated with no absorption; right) laser modulated with absorption. 
 

 

Some features of this interrogation technique can be better appreciated observing 

the curves shown in Figure 56. They are relative to acetylene, the gas that was used in 

the system development phase because it shows an absorption band around 1530 nm 

(Figure 56 (a); the acetylene strongest absorption peak in the P branch of the 1+3 

band [106]), a highly convenient spectral position considering the large range of 

optical fiber components that can be used in view of its location in the third optical 

communications spectral window.  

 

The interaction between acetylene (pressure ~200 Torr, ~100 % concentration) and 

the optical field happened in a U-bench with 30 mm length. The laser source used for 

these experiments was an Avanex-1905 LMI DFB laser optimized for operation at 

1530 nm. With the lock-in amplifier locked at the dithering frequency, the output 

signal is the first derivative of the gas absorption line, and it equals zero when the 

source wavelength is centred in the absorption peak (Figure 56 (b)).  

 

The lock-in amplifier output for the second harmonic is the derivative trace of the 

output at the dithering frequency, and reaches a maximum at the peak absorption 

wavelength (Figure 56 (c)).  

 

Disabling the slow modulation and stabilizing the source emission wavelength at 

the absorption peak, the dithering gives rise to a transmitted signal with a frequency 

that is twice the dithering one and with an amplitude that depends on the gas 

concentration.  



 

GAS SENSING WITH HOLLOW-CORE MICROSTRUCTURED OPTICAL FIBERS 

76 

-0.05

0.00

0.05

0.10

-0.2

0.0

0.2

0.4

-6

-4

-2

0

 

Wavelength

Wavelength

Wavelength

A
m

p
lit

u
d

e
 (

V
)  2

nd
 harmonic

(b)

A
m

p
lit

u
d

e
 (

V
)

 1
st
 harmonic

(c)


central

1530.35 nm

N
o

rm
a

liz
e

d
 P

o
w

e
r 

(d
B

)

 Acetylene gas cell absorption peak

(a)

 

Figure 56 - Absorption line of an acetylene gas cell (a) and amplitude of the output 

signals at the dithering frequency (b) and at double of this frequency (c) 

 

This detection method thus converts a frequency modulation into an amplitude 

modulation. The measured signal will contain both an AC and a DC component. 

Fluctuations of the optical power (from the source, fiber bends, etc.) will commonly 

modify the AC and DC components of the signal, so the ratio of the AC component 

with the DC component remains fairly unaltered, and therefore only affected by the 

gas concentration. This insensitivity to optical power fluctuations is one of the main 

advantages of the WMS method.  

 

4.3.1 Interrogation Technique Implementation Scheme 

 

Figure 57 shows the detailed scheme of the optoelectronic detection technique 

based in WMS. Ideally, an optical source suited for the WMS method shall have the 

following properties: high power (assures good signal-to-noise ratios and allows 
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sensor multiplexing); narrow line width (in comparison with the line width of the 

methane absorption lines), which is also important to enhance the signal-to-noise 

ratio; and tuneable emission wavelength. Distributed Feedback Lasers meet all these 

demands at an affordable cost. A DFB diode can be tuned in wavelength by changing 

either the temperature or the operating current. While current-tuning is favourable for 

rapid modulation tasks, thermal tuning has the advantage of providing extremely large 

mode-hop free tuning ranges.  
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Figure 57 - Layout of the developed interrogation system based on Wavelength 

Modulated Spectroscopy. 

 

In the configuration presented in the figure, the wavelength of the DFB optical 

source is modulated with a frequency ω by means of current tuning. The light is then 

guided through a directional coupler. Part of the light is sent to a reference gas cell 

whereas the remaining portion of light is sent to a sensing head. The reference cell is 

used to keep the laser wavelength locked to the gas absorption line. Monitoring of the 

light from the reference cell happens with a lock-in amplifier working at the 

modulation frequency and the resulting signal is feedback to the laser driver. The light 

coming from the sensor is analysed for two components. The DC component is 

filtered out using a low-pass filter and the doubled frequency amplitude modulated 
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signal is isolated using synchronous detection at 2 . The information for gas 

concentration is obtained from the ratio  

 

 2AS
DC

 (4.3) 

 

where 2A  is the amplitude of the signal synchronously detected at 2  and DC the 

continuous level. This relation yields the absorbance and hence the gas concentration. 

The resulting signal, as previously stated, should be independent of optical power 

fluctuations. 

 

In order to enable the variation of the gas concentrations and to test the 

implemented setup with the HC-MOF based sensing heads, a gas chamber was 

developed (Figure 58). The chamber was hermetically sealed and had one gas input 

and output, as well as a pressure manometer and an optical feedthrough to allow the 

entrance of fibers. Inside of this chamber there were also two U-benches with 

different path lengths (30 mm and 6.8 mm, respectively) which were used for testing 

purposes before the final implementation of the MOF based sensing head.  

 

 

Figure 58 - Gas chamber for testing the sensing system: (top) computer generated 

pictures; (bottom) photographs of the implemented gas chamber (the U-benches shown 

on the right were used to test the WMS interrogation technique). 
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A LabVIEW
®
 application was developed to control all the signal generation, 

acquisition as well as all the single processing stages. With a standard computer and a 

DAQ board a virtual instrumentation workbench was implemented, with the objective 

of performing the system integration of a portable and customizable solution for 

remote detection of gas species. 

 

4.4 Results 

 

In this section the results for the gas diffusion time in the HC-MOF based sensing 

head are shown. Further the detection limit of the developed WMS interrogation 

system for methane gas quantification is presented. Finally a prototype of a portable 

unit for methane detection is presented as a result of the applied research in this field. 

 

4.4.1 Methane Gas Diffusion Time Measurements 

 

The experimental arrangement implemented to test the gas diffusion time into the 

HC-MOF is shown in Figure 59 (a). Standard SMF transmitted light to the HC-MOF 

and guided it to the detection unit. After injection of gas into the chamber (a mixture 

of 5% of methane and 95% of nitrogen), the decay of transmitted light with time 

caused by the absorbance of the gas inside the HC-MOF was registered. The length of 

the HC-MOF sensing head was 13.7 cm. The optical source, a NEL DFB laser 

optimized to work at 1666 nm, was emitting at the strongest methane absorption line 

in the Q branch of the 23 band (Rothman et al. [107]). The frequency of the dithering 

signal that modulated the DFB was 500 Hz. To allow gas diffusion, the gap between 

the input and output SMF and the HC-MOF was guaranteed by the use of angled 

ferrules (FC/APC) in the side of the standard fibers (Figure 59 (b)). These ferrules, 

exhibiting an angle of 8, were chosen because they do not permit Fresnel (silica-air 

interface) back reflections to be guided. 

 



 

GAS SENSING WITH HOLLOW-CORE MICROSTRUCTURED OPTICAL FIBERS 

80 

SMF SMF

Gas Chamber

HC-MOF

Gas input Gas output
Photodetector

DFB Laser

 
(a) 

125 µm

8º

2
.5

 m
m

~176 µm 

>         <

 
(b) 

Figure 59 - (a) Setup used to measure the diffusion time of gas inside the HC-MOF 

based sensing head; (b) illustration of the joint between SMF and HC-MOF. 

 

The obtained results for methane diffusion inside the HC-MOF are presented in 

Figure 60. It can be observed that the time taken to achieve 95 % of the steady-state 

was about 248 s, while the theoretically predicted value obtained from equation (4.2) 

was about 241 s, thus leading to a relative error of ~2.8 %. This agreement therefore 

confirms the reliability of the adopted model. 
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Figure 60 - Experimental results for the diffusion time of 5% of CH4 inside a HC-MOF 

with a length of 13.7 cm (two open ends). The theoretical expected value (241 s) is shown 

by the vertical dashed line, while the experimentally obtained was 248 s. 
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4.4.2 Methane Detection Limit Quantification 

  

After implementing the WMS based experimental setup described in Figure 57, to 

interrogate the developed HC-MOF sensing head, the detection limit of the methane 

sensing head can be estimated from the signal-to-noise ratio (SNR) of the 

demodulated signal. The S parameter defined by equation (4.3) obtained at 1000 Hz 

(2 )  shows a linear signal-to-noise ratio (S/N) of 316 which corresponds to a 

methane concentration of 5 %, or 50000 ppm.  
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Figure 61 - System response for a methane concentration change  

 

In terms of a voltage signal, the SNR can be written to be 

 

 20 log
S

SNR
N

 (4.4) 

 

where S is the signal and N is the noise level. This gives rise to an SNR of 68.8 dB. 

The noise level yields,  

 

 
20

10
SNR

N S  (4.5) 

 

Therefore, the sensing head with 13.7 cm length and opened in both sides, whose 

gas diffusion time was plotted in Figure 60, permits a methane detection limit of 

158 ppm.  
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If more segments are considered in the sensing head, as shown in Figure 53, the 

detection limit shall improve proportionally to the increase of the light interaction 

length with the gas. However, the presence of a deleterious effect, associated with 

superficial modes at the boundary of the fiber hollow core was noticed. These modes 

induce interference effects that reduce the signal-to-noise ratio. Research is going on 

aiming to overcome this problem. Additional results for methane detection with non-

MOF-based solutions can be found in Appendix 1. 

 

4.4.3 Measurement Portable Unit for Methane Detection 

 

Looking for a field application of the R&D described above, an optoelectronic 

portable measurement unit was developed to measure gas concentration with HC-

MOF based sensors, in straight cooperation with FiberSensing, a world leader 

Portuguese company in the development and production of optical fiber based 

advanced monitoring systems.  

 

The portable unit integrates a computer (motherboard, memory, hard-disk, touch-

screen, etc.), an optoelectronic board and optical switching capability for multiplexing 

four remote photonic crystal fiber sensing heads.  

 

A LabVIEW
®
 application was developed to control the measurement unit system 

and present a graphical interface to the user. A diagram of the implemented system is 

presented in Figure 62 (a), while Figure 62 (b) shows a photo of the equipment. 

Figure 62 (c) gives a unit screen plot representing the system response to a change of 

methane concentration in the sensing head.  
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(a) 

   
(b) (c) 

Figure 62 - (a) Diagram of the gas measurement unit prototype; (b) photo of the 

portable measurement unit; (c) response for three different methane gas concentrations. 

The fluctuations that the different plateau exhibit are due to the effect of the pressure of 

the gas being injected into the chamber which causes a broadening effect on the 

absorption peaks. 

 

4.5 Summary 

 

In this chapter was reported the development of an optical fiber sensing system for 

detection of low-levels of methane, based on a sensing concept that explores the 

favourable characteristics for gas sensing of hollow-core photonic crystal fibers, 

together with the Wavelength Modulation Spectroscopy interrogation technique.  
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Concerning remote gas detection, optical fiber based sensing heads and more 

specifically MOF fibers extend the detection and measurement capabilities of sensing 

small gas sample volumes in the vicinities of pipelines, landfills and mining sites, 

where the increase of gas concentration can naturally occur and consequently reach 

explosive limits. Additionally, the development of hollow-core MOF based gas 

sensing systems enable the direct interaction of light with gases, which consequently 

results in an intrinsically explosion safe solution since the risk of electrical spark 

ignition does not exist.  

 

A MOF sensing head structure was designed that is compatible with sensitive 

methane detection (158 ppm) and has an acceptable measurement time (248 s), which 

is related with the gas diffusion time into the measurement volume. The results 

obtained confirm the potential of this sensing approach, and aiming at field 

applications, a portable measurement unit was developed that has the capacity to 

simultaneously interrogate four remote sensing heads. 

 

Monitoring of multiple sensing points is an effective advantage of the presented 

system and the qualitative monitoring of small changes in gas concentrations (at the 

ppm level) was proved to be possible.  

 



 

 

Chapter 5 – Fiber Sensing with Modal Interferometry 

 

Equation Chapter (Next) Section 5 

5.1 Introduction 

 

Optical fiber sensors based in intermodal interference between core and cladding 

modes have been proposed in recent years and tested for various applications. Such 

interferometric sensors have several advantages over other sensing concepts, 

including small size, high sensitivity and resolution, fast response time and low cost. 

Different solutions to obtain all-fiber intermodal interference in microstructured 

optical fibers are reported in published literature. In section 5.2 a brief review of such 

technology is presented.  

 

Sections 5.3 and 5.4 will describe two different sensors based on the modal 

interference concept using, respectively, a hollow core microstructured optical fiber 

and a highly birefringent microstructured optical fiber.  

 

5.2 Modal Interferometry for Optical Sensing 

 

Microstructured optical fibers based on new hybrid structures have been introduced 

to form fiber modal interferometers [108-113]. For example, in a single mode – 

multimode – single mode fiber structure it was examined the effect of modal 

interference on the performance of a microbend sensor [114], as well as when 

considering strain [115, 116] and temperature [116, 117] measurement. Another 

interesting configuration was based on the series combination of single mode – two 

mode – single mode fiber sections, which generates a transmission interference 

pattern with high extinction ratio [118].  

 

This type of interferometers has also been explored in the general context of 

microstructured optical fibers (MOF). Indeed, a configuration based on tapering an 

index-guiding MOF was suggested for refractive index sensing, in-line variable 
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attenuator and strain sensor, where the complete collapse of the air holes around the 

fiber core originates a region of solid unclad multimode fiber [110, 119, 120]. 

Another approach to implement modal interferometry is by doing a lateral offset in 

the SMF-MOF splice point, to excite higher order modes in the index-guiding fiber 

[108, 111, 121]. 

 

A recently reported technique is based on the partial collapse of the air hole at a 

limited region of a MOF to couple light to higher modes, and it was used for strain 

measurement in conditions of very high temperature in view of the thermal 

characteristics of fused silica fibers [121]. Also, a modal Mach-Zehnder structure in a 

hollow-core fiber with standard single-mode input and output fibers was proposed and 

characterized for high-temperature sensing [122]. 

 

5.3 Modal Interferometers in Hollow-Core Microstructured Fibers 

 

HC-MOF are made with hundreds of periodically spaced air holes in a silica matrix, 

typically arranged in a triangular lattice, using the photonic band gap concept to 

propagate light inside the air-core. These fibers are usually multi-mode waveguides 

supporting, besides the fundamental core mode, higher order core modes, cladding 

modes and surface modes [103, 104]. However, the attenuation of the different types 

of modes varies substantially and after propagation along an extended length of fiber 

only the fundamental core mode subsists. The multimode operation of short lengths of 

HC-MOFs creates the possibility of building up modal interferometers, with 

characteristics potentially interesting to perform optical fiber sensing. 

 

In this section a fiber optic modal interferometer based on an HC-MOF was studied 

and its characteristics for strain and temperature sensing were investigated, as well as 

for curvature. The readout of the interferometric phase was achieved combining white 

light addressing with pseudo-heterodyne signal processing. 
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5.3.1 Sensing Principle 

 

The sensor was fabricated using a piece of HC-MOF directly spliced between two 

lengths of single mode fiber (SMF-28
TM

). A 7-cell HC-MOF with a low-loss 

transmission band centered at 1550 nm and a core diameter of ~16 μm was used. 

Figure 63 (a) shows an optical microscope image of this fiber. The transmission 

characteristics, in the light injection conditions in which the experiments were 

performed, are depicted in Figure 63 (b).  
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Figure 63 - (a) Cross section photograph of a 7 cell HC-MOF and (b) normalized 

spectral transmission of ~1 m of this fiber spliced to a SMF28 illuminating fiber (the 

oscillations at lower wavelengths are artifacts due to the normalization). 
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The developed sensing head uses the effect of modal interference at the exit of the 

HC-MOF to achieve the measurement functionality. Indeed, when light travels 

through the single mode fiber and is injected into the HC-MOF, the fundamental core 

mode and other modes are excited. After propagation of these modes in the HC-MOF, 

they are recombined at the entrance of the output single mode fiber. This simple 

configuration is similar to an all-fiber Mach-Zehnder modal interferometer, with two 

coupling points in series, different from what is most usual when considering in-line 

fiber interferometers, which show a Fabry-Perot structure.  

 

Therefore, when light is injected into the input single mode fiber, we expect to 

observe interference fringes at the output single mode fiber. It should be noticed that 

the fringes are not related to the collapse of air channels of the HC-MOF, like tapering 

in the fusion splice point and/or broadening of fundamental mode in this region, as 

reported in literature [123].  

 

In order to confirm this, some experiments were carried out to check if the fringes 

still appear with butt coupling instead of fusion splicing. The results obtained showed 

that the formation of the interference fringes is independent of the coupling method, 

but the amplitude of the effect is dependent on the coupling conditions. Indeed, it was 

also found that the amplitude of the fringes (interference visibility) can be 

substantially reduced by proper adjustment of the input SMF and the HC-MOF in the 

junction region, which actually is not necessarily the condition for optimum power 

coupling.  

 

The analysis of the obtained results points out to the important role of the HC-MOF 

cladding modes in the operation of this modal interferometer, but further theoretical 

and experimental studies are required for a detailed understanding of the exact type of 

modes involved in this interferometric structure. 

 

Figure 64 (a) shows the splice structure (in the X and Y directions) between the 

SMF-28 and HC-MOF fibers, as well as the observed output channeled spectrum for a 

piece of HC-MOF with a length of 27.8 cm.  
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Figure 64 - (a) Visualization of the SMF-28/HC-MOF splice in the Fujikura’s SM-40 

screen; (b) Channeled spectrum of the interferometric sensing head. 

 

It can be observed that besides the typical two-wave interferometric behavior, there 

is also fringe amplitude modulation, indicating the presence of more than two modes 

interference. The refractive index difference associated with the observed fringe 

periodicity in the figure can be calculated by means of the relation 

 

 
mod 1 2

1 2( )
FM other es
eff effn n

L
 (5.1) 
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Here 
FM
effn  and 

other modes
effn  are, respectively, the effective refractive index of the 

fundamental core mode and the average value of the effective refractive indexes of 

the other modes predominantly excited in the experiment performed. Also, 1  and 2  

are the wavelengths corresponding to two adjacent intensity maxima and L  is the 

length of HC-MOF. It was found that the value of 
other modesFM

eff eff effn n n  is 

0.016, independently of L . 

 

5.3.2 Experimental Setup 

 

The initial experimental set up is shown in Figure 65. A superluminescent Er-doped 

fiber ASE (amplified spontaneous emission) source, operating at 1550 nm, with a 

FWHM (full width at half maximum) of 60 nm and output power of 1.8 mW was used 

to illuminate the concatenated fibers.  
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Figure 65 - Experimental setup for initial characterization of the modal interferometer. 

 

The HC-MOF was spliced in both ends to single mode fibers applying general 

procedures described previously in sections 3.2 and 3.3. The standard splicing 

machine Fujikura FSM 40-S was used and a splice loss of ~1.5 dB was achieved. In 

order to evaluate the dependence of the fringe visibility with the HC-MOF length, 

sensing heads with lengths of 5.1 cm, 11.6 cm, 21.4 cm and 58.8 cm were fabricated 

and the associated channeled spectra analyzed.  

 

For the first three lengths the visibility was around 50%, but when the longer fiber 

length was considered the visibility showed a substantial decrease to ~36%. This 

behavior is compatible with a visibility reduction due to power loss in the higher order 
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modes, originated by the weak propagation guidance of these modes in the longer 

fiber.  

 

In order to investigate the strain, temperature and curvature characteristics of the 

sensing head, two micro-positioners were used to fix the SMF fibers and to apply 

strain and curvature to the HC-MOF. For temperature characterization a furnace was 

used. The length of the HC-MOF was ~28 cm and the fringe visibility was found to 

be ~55%.  

 

5.3.3 Results 

 

Figure 66 shows the strain and temperature wavelength responses of the sensing 

head, obtained by monitoring the shift of the channeled spectrum under the 

measurand action. The interferometric fringes were linearly shifted toward shorter 

wavelengths with the increase of strain or temperature, with slopes of −0.96 pm/με 

and −7.1 pm/°C, respectively.  

 

These sensitivity values can be compared with those of a conventional single mode-

multimode-single mode structure, which are −2.3 pm/με and −15 pm/°C [115, 117]. 

Concerning curvature, no measurable sensitivity was noticed, which is indeed an 

expectable result. The core of the fiber follows the fiber neutral line and, therefore, 

the optical path of the core mode is essentially curvature independent.  

 

On the other hand, the cladding modes integrate along the propagation positive and 

negative variations in their optical path, induced by the presence of curvature in the 

fiber, which means the net effect shall be residual. Therefore, this argument points out 

to an insensitivity of the sensing head to curvature. 
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Figure 66 - Wavelength responses of the sensing head for variations of applied (a) strain 

and (b) temperature. 

 

The blue shift of the channeled spectrum associated with the increase of 

temperature and strain can be understood with the following argument. Considering 

temperature, the thermal expansion implies a longer propagation length for the 

cladding modes when the temperature increases, but is similar to the longer 

propagation length of the core mode, i.e., an increase in temperature shall originate 

for this type of fiber, and in view of the differential operation of the interferometer, a 

residual shift of the channeled spectrum due to the thermal expansion effect. The 

same does not happen when the thermo-optic effect is considered. The experimental 
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results indicate its contribution is associated with the decrease of the absolute value of 

effn . 

 

To understand this, it should be considered what happens with the core mode and 

cladding modes involved in the modal interferometer operation when temperature 

increases. Because the core mode propagates essentially in air, its effective refractive 

index is close to one and residually sensitive to temperature variations. Therefore, the 

variation of effn  is essentially associated with the temperature behaviour of the 

cladding modes. These modes have a substantial fraction of their optical field that 

propagates in silica. It is known that silica has a positive thermo-optic coefficient, 

therefore considering only this effect the effective refractive index of these modes 

would increase with temperature, leading to a larger absolute value of effn  and, 

consequently, to a red shift of the channeled spectrum, contrary to what is observed. 

However, the situation is more complex because the optical field of these cladding 

modes propagates also in the air of the core/cladding holes, and the thermal expansion 

can induce changes in the mode fraction that propagates in the silica and in the air, 

with a net effect that leads to a decrease with temperature of the effective modal 

refractive index. Certainly this is a complex phenomenon that needs further 

theoretical/experimental studies for its detailed understanding. 

 

Concerning strain, the experimental results indicate that the contribution to the 

variation of effn  associated with the elasto-optic effect is dominant relatively to the 

direct expansion effect. This is understandable, considering that the refractive index 

of silica decreases with strain, with the consequence that the effective refractive index 

of the cladding modes decreases with the increase of strain. Having in mind that the 

effective index of the core mode is essentially unaffected by strain, the net effect is a 

reduction of the absolute value of effn  originating a blue shift of the channeled 

spectrum with the increase of applied strain. 

 

To measure the phase changes in the fiber modal interferometer, a second 

interferometer was built to implement coherence reading [124]. Figure 67 shows the 

setup implemented.  
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Figure 67 - Scheme of the experimental setup for phase reading with white light 

interferometry. 

 

The second interferometer is a conventional fiber Michelson interferometer with an 

open air path in one of its arms, which is adjusted to match the optical path difference 

of the sensing interferometer. The fiber in the other arm of this interferometer is 

wrapped around a ringshaped piezoelectric transducer that is modulated with an 

electrical sawtooth waveform, whose amplitude is adjusted to obtain a signal at the 

photodetection suitable for pseudo-heterodyne processing. After adequate electronic 

filtering, this signal has the form of an electric carrier (90 Hz) with a phase that 

mirrors the optical phase of the tandem interferometric system. This pseudo-

heterodyne processing technique is known to provide sensitive interferometric phase 

reading [125]. 

 

Figure 68 shows the phase changes associated with strain and temperature 

variations applied to the sensing head, now with 32 cmL  and with an 

interferometric visibility of ~49 %. Following the behavior represented in Figure 66, 

the sensitivity is constant in the measurement range considered, with values of 

0.76 °/με and 8.1 °/°C for strain and temperature, respectively. 
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Figure 68 - Phase changes induced by strain and temperature variations applied to the 

sensing head, respectively. 

 

To evaluate the measurand resolutions achievable with this sensing head structure 

the step technique was used (Figure 69). If  are the phase r.m.s. fluctuations during 

the periods of constant measurand values, and if a measurand step change X  (being 

X  the applied strain or temperature) originates a phase step change of , then the 

measurand resolution, X  is given by  
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For the case of temperature, in the determination of  privileged the region 

corresponding to water at a stable temperature of 22.5 °C was selected, because it was 

difficult to stabilize the water temperature at 40.5°C after the step change, i.e., for 

some time the temperature of the water continued to increase at a slow rate. Following 

this approach, resolutions of ± 1.4 με and ± 0.2 °C were obtained for strain and 

temperature, respectively. 
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Figure 69 - Phase response of the sensing head implemented with an HC-MOF fiber for 

a step change in (a) strain and (b) temperature, respectively. 
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The pseudo-heterodyne technique used to interrogate the interferometric system can 

be implemented with standard electronics (or using an approach relying on computer-

based virtual instrumentation), which means that besides the demonstration of the 

proposed sensing structure, a step further was done towards the utilization of this 

configuration in field applications. 

 

5.4 Modal interferometers in Hi-Bi microstructured fibers 

 

In this section is demonstrated an in-line fiber intermodal interferometer fabricated 

with a boron-doped highly birefringent microstructured fiber. The boron doped region 

located in the middle of the core, decreases the effective index of the fundamental 

mode and facilitates coupling between the fundamental and the first order mode. The 

coupling regions have the form of tapers, fabricated using CO2 lasers, and are distant 

by a few millimeters. Light from a broadband source is coupled into the fundamental 

LP01 mode of the microstructured fiber. At the fiber output, the light confined mostly 

in the fundamental mode is delivered to the optical spectrum analyzer by the lead-out 

fiber. As a result, the spectral intensity at the sensor output is modulated only by 

intermodal interference produced by a short piece of fiber between the two coupling 

points. Moreover, as the fiber is highly birefringent, each pair of polarization modes 

produces its own intermodal fringes, which results in the contrast modulation of the 

overall interference signal observed at the fiber output. On the other hand, it provides 

an additional degree of freedom in interrogating the interference signal and makes it 

possible to measure simultaneously two physical parameters acting on the 

interferometer.  

 

The typical limitations of MOF based interferometric sensors are related to the 

efficiency in optical power launching, difficulties in controlling light polarization, the 

need for unavailable MOFs based passive devices, and/or incompatibility with 

standard fibers. The proposed sensor deals with almost all of these impairments, 

except the difficulty in polarization control, which was overcome thanks to the high 

fiber birefringence, giving rise to contrast modulation of the intermodal interference 

fringes when the sensor is powered with depolarized light. This was, to the best of our 

knowledge, the first intermodal highly birefringent MOF based interferometric sensor 
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reported in literature. In comparison with fiber Bragg grating sensors, it shows two 

times greater sensitivity to strain and temperature. Moreover, the proposed sensor 

allows for simultaneous measurements of the two parameters, by interrogation of the 

visibility and the displacement of interference fringes. 

 

5.4.1 Sensor Fabrication and Operation Principle 

 

For fabrication of the intermodal interferometer, the boron-doped birefringent 

microstructured fiber shown in Figure 70 was used, which was drawn at the 

Department of Optical Fibers Technology, University of Marie Curie-Sklodowska in 

Lublin, Poland. The birefringence in this fiber is induced by two large holes located 

symmetrically with respect to the core. Its geometrical parameters (see Table 3) 

averaged for the first two layers of holes surrounding the core are as follows: pitch 

distance 3.6 μm, diameter of cladding holes 1.63 μm, diameter of large holes 4.14 μm, 

external diameter of the fiber 100 μm, size of the boron doped inclusion 0.46 × 0.79 

μm, and boron concentration in the inclusion 13 mol%. It is worth mentioning that 

fibers of similar construction, with properly optimized geometry, can be used as a 

wideband fiber optic polarizer [126].  

 

Table 3 - Geometrical parameters of the highly birefringent MOF. 

F [m] D [m] d [m]  [m] 

3.6 4.14 1.63 100 

 

To better understand the behavior of the proposed sensor, in collaboration with the 

Fiber Optics Group of the Institute of Physics at the Wrocław University of 

Technpology, the propagation characteristics of the boron doped fiber were modeled, 

using a fully vectorial mode solver, based on the hybrid edge-nodal finite-element 

method (FEM) with a perfectly matched layer [127]. As it can be seen in Figure 70, 

the cross section of the investigated fiber is not uniform due to technological 

imperfections. The edges of the holes in the cladding and the doped inclusion were 

automatically detected by post processing of the scanning electron microscope (SEM) 

image, which included the modification of the histogram, followed by thresholding 

and binarization. Using this tool, the mesh for FEM calculations could be generated, 

which reflected the actual shape and location of each hole with an accuracy of about 
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30 nm. A precise copying of the fiber geometry is a key requirement for accurate 

modeling of its propagation characteristics. Using such an approach, the spectral 

dependence of effective indices for the fundamental and the first order polarization 

modes, phase and group modal birefringence and the confinement losses for each 

mode were calculated. 

 

 
Figure 70 - SEM image of the birefringent MOF with boron doped inclusion in the 

center of the core (darker spot) used for fabrication of the intermodal interferometer. 

 

Numerical calculations, presented in Figure 71, clearly prove that the boron doped 

inclusion diminishes the effective index of the fundamental mode, while the first 

order mode remains unaffected. This can be intuitively understood on the grounds of 

perturbation theory [128], which predicts that the change in the effective index 

squared for a specific mode can be expressed as the following overlap integral 

 

 
2

2 2
effn n dA  (5.3) 

 

where 
2

 represents the normalized intensity distribution in the considered mode 

and 2n stands for the change in the material refractive index squared introduced by 

the inclusion. As it is shown in Figure 71, the overlap integral between the first order 

mode and the inclusion is close to zero, while for the fundamental mode it takes the 
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highest value. This explains the difference in the impact of the inclusion on the 

fundamental and on the first order mode. Moreover, the lower effective index of the 

fundamental mode causes it to spread deeper into the microstructured cladding in the 

tapered regions, which facilitates its coupling to the LP11 mode.  
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Figure 71 - Field distribution calculated for the fundamental (a) and the first order 

mode (b) at λ = 1.55 μm. Spectral dependence of the effective indices in the fiber with 

boron doped inclusion for the fundamental and the first order modes and the effective 

index change introduced by the inclusion (c). 

 

The operation principle of the proposed interferometer is schematically illustrated in 

Figure 72 (a), while in Figure 72 (b) two tapered regions are shown formed by 

exposing the fiber to a CO2 laser beam and simultaneously stretching it when the glass 

becomes soft. The first taper causes coupling of the LP01 to the LP11 mode, and the 

two modes copropagate from this point onward. At the second taper the two modes 

are recombined producing the interference signal. The LP11 mode is partially filtered 

out at the splice between the boron doped two-mode microstructured fiber and the 
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endlessly single mode leading-out fiber (not shown in Figure 72). As a result, at the 

sensor output was observed only the interference signal carried in the fundamental 

mode. Such an inline fiber Mach–Zehnder interferometer is very compact and easy to 

fabricate. The splices have been made using a fusion arc splicer. Special care was 

taken to minimize the collapse of the microstructured regions. A typical loss of about 

3 dB was achieved at each splice. 

 

 
(a) 

 

● ● ● 

 
(b) 

Figure 72 - (a) Schematic configuration of the proposed intermodal interferometric 

sensor  and the (b) microscope image of the microstructured fiber with the 

interferometer formed by two tapered regions. 

 

For a depolarized broadband input beam, at the fiber output was observed the 

superposition of two interference signals produced by two pairs of orthogonally 

polarized modes. Assuming that the coupling strength is the same for both 

polarizations, one obtains the following expressions for the interference signal 

produced by the modes 01LPx and 11LPx  

 

 
01 11

0

2
( ) 1 cos

x x

x

n n L
I I  (5.4) 

 

and respectively by the modes 01LPy and 11LPy  

 

 
01 11

0

2
( ) 1 cos

y y

y

n n L
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where γ is the fringe contrast. In the output spectrogram, was observed the 

superposition of the two interference signals, which can be represented by the 

following formula 

 

 
01 01 11 11 01 01 11 11

0( ) 2 1 cos cos
x y x y x y x yn n n n L n n n n L

I I  

 (5.6) 

 

The above equation can be represented as 

 

01 11 01 11
0

2
( ) 2 1 cos cos

a an n L n n L
I I  (5.7) 

 

where 01
an  and 11

an  stands respectively for the effective refractive index of the 

fundamental and the first order mode averaged with respect to polarization 

 

 01 01 11 11
01 11,      

2 2

x y x y
a an n n n
n n  (5.8) 

 

and 01n  and 11n  stands for the phase modal birefringence in the fundamental and 

the first order mode 

 

 01 01 01 11 11 11,      x y x yn n n n n n  (5.9) 

 

The first cosine term in equation (5.7) represents the intermodal interference fringes 

averaged with respect to polarization, while the second term constitutes the slowly 

varying envelope determined by the birefringence difference in the fundamental and 

first order mode. The corresponding terms are indicated by black and red lines in 

Figure 73, which shows the output interferogram produced by the 11.7 mm long 

interferometer. 
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Figure 73 - The interference spectrum at the output of an in-fiber Mach–Zehnder 

intermodal interferometer fabricated in the microstructured fiber. 

 

To confirm that the coupling indeed occurs between the fundamental and the first 

order mode, the calculated and measured difference in the group refractive indices for 

these modes, averaged with respect to polarization, 01 11
a aN N , were compared. It is 

well known [129] that the difference 01 11
a aN N  can be determined from the spectral 

interference fringes shown in Figure 73 

 

 
2

01 11
a aN N

L
  (5.10) 

 

where 11.7 mmL  is the interferometer length and  is the separation of 

successive interference fringes. The measured and calculated values of 01 11
a aN N  

presented in Figure 74 show very good agreement.  
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Figure 74 - Calculated (solid line) and measured (dots) difference in group effective 

indices of the LP01 and LP11 modes averaged with respect to polarization. 

 

It was also compared the difference in group modal birefringence between the 

fundamental and the first order mode 01 11N N  calculated and estimated from 

the spectrogram shown in Figure 73. For experimental evaluation of the birefringence 

difference, the following relation was used 

 

 
2

01 11 2
N N

L
 (5.11) 

 

where  indicates the separation of successive contrast extremes (maxima or 

minima). The numerical values of the group birefringence were obtained from FEM 

analysis. The positions of minima and maxima of the interference pattern envelope 

were approximated by a red curve shown in Figure 73 with a precision of about 15 

nm. Figure 75 presents the calculated values of the birefringence difference 

01 11N N  and compares them with the experimental values estimated from 

the spectrogram, with a precision of about 25%. Good agreement between the 

simulation results and measured values of 01 11N N  provides an additional 

argument that the observed fringes result from the interference between the LP01 and 

LP11 modes. 
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Figure 75 - (a) Calculated group modal birefringence of the LP01 (solid line) and LP11 

(dashed line) modes in the investigated fiber with boron doped inclusion and 

(b) comparison of the calculated (solid line) and measured (dots) birefringence 

difference. 

 

5.4.2 Experimental Results and Discussion 

 

The experimental setup for measurement of different physical parameters using the 

proposed interferometer is presented in Figure 76. As the light source, was used an 

amplified spontaneous emission source, with a central wavelength at 1570 nm. The 

transmission spectrum at the output of the interferometer was registered by an optical 

spectrum analyzer, with a resolution of 0.05 nm. 
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Figure 76 - Experimental setup for strain and temperature measurements. 

 

As it is shown in Figure 77, the interference fringes, with the modulation depth 

increasing against the wavelength, were observed in the spectral range of 

1520-1620 nm. Variation of both the modulation depth and the fringe displacement 

were observed in response to changes in temperature and strain applied to the 

interferometer. 
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(b) Wavelength (nm) 

Figure 77 - (a) Transmission characteristic registered in the full spectral range for 

selected values of applied strain and (b) variation of the modulation depth and 

displacement of the third fringe in response to applied strain. 



 

FIBER SENSING WITH MODAL INTERFEROMETRY 

107 

 

According to equation (5.6), the shift of the interference fringes is related to the 

variation of the effective refractive indices of the fundamental and the first order 

mode ( 01
an  and 11

an ) and the interferometer length L . The shift of the interference 

fringe  induced by the measurand change X  can be quantitatively represented 

by the following relation 

 

 
01 11 01 11

0
a a a an n L n n L

X
X

 (5.12) 

 

After performing rather straightforward calculations, one can express the sensitivity 

of the proposed sensors in the following way 

 

 
01 1101 11

01 11 01 11

1 1 1
a aa a

a a a a

n nn n L

X L X XN N n n
 (5.13) 

 

or more conveniently with relation to the phase intermodal sensitivity of the fiber 

 

 
2

01 112
X

a a

K

X N N
 (5.14) 

 

where 

 

 
01 111
a a

XK L X
 (5.15) 

 

and 01
a  and 11

a are the phase shifts averaged with respect to polarization induced by 

the unit change in the measurand in the fiber of unit length. On the other hand, to 

avoid ambiguity, the measurand-induced displacement of the interference fringe must 

be lower than the separation of successive fringes defined by equation (5.10). This 
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leads to a simple relation between the maximum length of the sensor and its operation 

range 

 

 max max
2

X

L X
K

. (5.16) 

 

For the sake of simplicity it was considered that the interferometer length is 

comprised between the narrowest points in the tapered regions. As the taper’s length 

(about 150 μm) is relatively small compared to the interferometer length (10–20 mm), 

the effect of the transition regions on variations of XK  was disregarded and assumed 

that the fiber sensitivity is constant over the entire sensor length. 

 

In strain measurements, the interferometer was elongated up to 1.7 mε, while for 

temperature tests it was placed in an electrical oven, whose temperature was increased 

from 20 °C to 700 °C. The precision of temperature control in the oven was about 

5 °C. In spite of a wide temperature range, it was not observed any change in the 

sensor’s characteristics after several temperature cycles. A possible impact of the 

boron diffusion on the sensor performance is minimized by the fact that the boron 

doped inclusion is located in the center of the core. Therefore, a change in the boron 

concentration profile has little influence on the overlap coefficient with the 

fundamental and the first order modes, which according to the perturbation approach 

represent the impact of the diffusion process on the effective indices of both modes. It 

is however possible that in more demanding applications the boron diffusion may 

limit the maximum temperature range of the proposed sensor. 

 

As it is shown in Figure 77, the interference fringes move toward shorter 

wavelengths and their visibility decreases in response to the applied strain. The 

displacement of the third fringe with the intensity minimum located at 1583 nm, is 

linear in the investigated range of strain 0–1.7 mε, with no trace of hysteresis. The 

sensitivity coefficient for strain is −2.51 nm/mε, as shown on Figure 78 (a). 

Moreover, the visibility of the third fringe (Figure 78 (b)) linearly decreases against 

the applied strain, with a rate of −0.0256 mε-1. The root mean square deviation of the 
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experimental data from a linear trend is equal, respectively, to 35 pm for the fringe 

displacement and 1.4 × 10
−3

 for the visibility change. 
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Figure 78 - (a) Displacement of the third interference fringe against applied strain and 

(b) change in its visibility. 

 

In Figure 79 (a), is presented the measured linear dependence of the third fringe 

displacement induced by temperature change. The resulting sensitivity to temperature 

has a positive sign and equals 16.7 pm/°C. The visibility of the third fringe linearly 

increases against temperature, which results in a sensitivity coefficient equal to 

5.74×10
−5

 /°C. In this case the root mean square deviation of the experimental data 

from a linear trend is 76 pm for the fringe displacement and 1.7×10
−3

 for the visibility 

variation. As the sensitivity coefficients for strain and temperature have opposite signs 
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and are different in absolute values, the sensitivity matrix for these two parameters is 

well conditioned, thus providing the possibility of simultaneous measurements of 

strain and temperature by interrogating the position and the visibility of a selected 

fringe. 
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Figure 79 - Displacement of the third interference fringe against temperature (a) and 

change of its visibility (b). 

 

In terms of interferometric sensitivity, the performance of the proposed sensor is 

similar to other intermodal MOF based sensors reported in literature [112, 123, 130]. 

For example, the sensitivity to strain reported for nonbirefringent MOF ranges from 

2.28 pm/μstrain [112] to 5.3 pm/μstrain [130], while the sensitivity to temperature is 

12 pm/°C [130] and 3–5 pm/°C [123]. These numbers do not differ significantly from 
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the interferometric sensitivity of the proposed sensors, which is equal to −2.51 

pm/μstrain and 16.7 pm/°C, respectively. However, the main advantage of the 

proposed sensor is that thanks to the high birefringence of the MOF one can 

interrogate simultaneously the displacement of the interference fringes and the 

visibility variations. 

 

5.5 Summary 

 

In section 5.3 a sensing head based on hollow-core photonic crystal fiber for 

measurement of strain and temperature has been presented. The sensor consists of a 

piece of 7-cell HC-MOF connected to SMF-28 in both ends. The interference occurs 

between the fundamental mode and higher order modes inside the HC-MOF. A white 

light interferometric technique for coherent phase reading was used. Resolutions of 

±1.4 με and ±0.2 °C were obtained for strain and temperature, respectively. It was 

also found that the fiber structure was not sensitive to curvature. 

 

Further, an in-line fiber Mach–Zehnder interferometer for strain and temperature 

measurements was demonstrated in section 5.4, fabricated in a highly birefringent 

boron doped microstructured fiber, using a CO2 laser. The operation principle of the 

proposed sensor exploits the effect of intermodal interference arising between the 

fundamental LP01 and the first order LP11 mode. Boron doped inclusion facilitates 

coupling between the two modes, which takes place in the fiber tapers fabricated 

using a CO2 laser. The origin of the interference fringes and visibility modulation has 

been confirmed by comparing the measured and calculated values of group effective 

indices and group birefringence for the LP01 and the LP11 modes. Because of the high 

fiber birefringence, the intermodal interference fringes are modulated in contrast 

when the sensor is powered with depolarized light. Sensitivity coefficients were 

determined for temperature and strain corresponding to fringe displacement and 

visibility variations. These coefficients are equal respectively for strain −2.51 nm/mε, 

−0.0256 /mε and for temperature 16.7 pm/°C and 5.74×10
−5

 /°C. As the sensitivity 

matrix is well conditioned, the proposed sensor can be used for simultaneous 

measurements of temperature and strain. 
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Chapter 6 – Dynamic Interrogation of Fiber Optic Sensors 

 

Equation Chapter (Next) Section 6 

6.1 Introduction 

 

Due to their principle of operation and spectral characteristics, LPGs as sensing 

elements are mostly used to detect variations of quasi-static parameters. Their 

interrogation is normally achieved with optical spectrum analyzers or by detecting 

optical power changes at one or more wavelengths, located on the edges of the LPG 

transmission spectrum. If two wavelengths, one in each edge of the LPG, are selected 

(for example using selective filters, such as fiber Bragg gratings), and if the detected 

optical powers in these wavelengths are P1 and P2, respectively, then processing of the 

type  

 

 1 2

1 2
proc

P P
P

P P
 (6.1) 

 

gives a signal proportional to the measurand induced LPG shift, and is independent of 

optical power fluctuations along the system [52, 131, 132]. Considering the associated 

photodetection, amplification and processing are, in most of the cases, in the DC or 

quasi-DC regime, the measurand readout resolution can be substantially affected by 

the 1/f noise of the electronics. Therefore, it would be advantageous to set-up a LPG 

interrogation approach, compatible with signal photodetection and amplification at 

higher frequencies [132-135]. 

 

In this chapter, results are reported of a LPG interrogation technique based on 

modulation at different frequencies of the Bragg wavelengths of two FBGs, spectrally 

located in the edges of the LPG. The amplitudes at these modulating frequencies of 

the signals reflected by the FBGs are detected. These amplitudes are proportional to 

the slopes of the LPG spectral response at the FBG wavelengths, which change with 

the relative spectral movements of the LPG to the FBGs, permitting to generate an 

optical signal proportional to the LPG spectral shift, immune to optical power 
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fluctuations along the system. This technique was tested for the measurement of 

refractive index variations of the surrounding medium, as detailed in section 6.2. 

Also, the impact of introducing Erbium and Raman optical amplification is 

experimentally investigated and shown in section 6.3. 

 

In section 6.4, a systematic description is presented addressing an experimental 

configuration with optimized characteristics focused on curvature measurement, the 

potential of this interrogation approach also being emphasized for the multiplexing of 

fiber optic sensors with spectral loss band characteristics. 

 

Further, a progressed version of the LPG dynamic interrogation technique based on 

modulation at different frequencies of two Distributed-Feedback Lasers (DFB), 

spectrally located near the LPG resonance depth, is presented in section 6.5. This 

technique is tested in a multiplexing scheme to measure refractive index variations of 

two LPGs sensors working in reflection. 

 

6.2 Electrical Dynamic Interrogation  

 

The feasibility of the proposed interrogation approach is dependent on the level of 

slope variation along the LPG spectral resonance. To a good approximation the LPG 

transfer function can be represented by the following expression [136], 

 

 

2

4 ln2

( ) 1  

res

LPG

out oP P m e , (6.2) 

 

where res  and LPG  are the LPG resonance wavelength and spectral width, 

respectively, and m indicates the resonance loss level. For a typical LPG with 20 dB 

of attenuation at res , 0.99m . 
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Figure 80 shows 0( )outP P  as well as 0outdP d P  versus . It can be 

observed that the magnitude of the normalized slope variation along the full LPG 

response is approximately one order of magnitude smaller than the normalized optical 

power variation, which means a corresponding factor for the signal variations 

associated with 0( )outP P  or 0outdP d P , with origin at a LPG spectral shift 

relative to fixed wavelength values (that can be defined by FBGs). Therefore, from 

this argument it seems that the preferable option should be to monitor 0( )outP P , 

i.e., following the standard approach. However, this is a DC reading, consequently 

affected by low-frequency noise, which usually has a 1/f power spectral dependence. 

On the other hand, the slope approach is compatible with interrogation in a frequency 

range far from the 1/f noise region, which means the signal-to-noise ratio can 

eventually be favored by the reduction of the noise level, compensating the 

disadvantage of the reduction in signal amplitude. 
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Figure 80 - Pout ()/P0 in a typical LPG spectrum and (dPout /d)/P0 versus wavelength 

 

The proposed interrogation approach is implemented using an LPG as an optical 

sensing device. The LPG is illuminated by means of an ASE broadband source and is 

adequate to quantify the desired physical parameter. The optical fiber at the LPG right 

side was mirrored with silver nitrate allowing the sensing head to operate in 

reflection. Two fiber Bragg gratings (FBG1, FBG2), designed to be spectrally located 
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on each edge of the LPG were added to the system and had their Bragg wavelengths 

1( , 2)  sinewave modulated, with a fixed amplitude, using two piezoelectric 

transducers (PZTs) driven by two independent signal generators 1(f , 2)f .  

 

After photodetection of the optical signals reflected by the FBGs, the resultant 

electrical signals were added with an electrical circuit and visualized in an electrical 

spectrum analyzer (ESA), with adequate impedance matching. The modulation of the 

FBG resonance originates a relative spectral movement with reference to the LPG 

transfer function, with a consequent optical power modulation at the modulation 

frequencies. The amplitude of this power modulation for each FBG would be constant 

if the LPG response were linear, which is not the case. Therefore, this amplitude is 

function of the LPG spectral position, which changes due to the measurand variation. 

 

The optical peaks observed in the ESA 1(f , 2)f , corresponds to the frequencies at 

which each FBG wavelength 1( , 2)  is being modulated. Due to an adequate 

previous selection of the FBGs Bragg wavelengths, the corresponding reflected 

optical power amplitudes will change in phase opposition, a useful feature for readout 

sensitivity enhancement. The processing adopted was  

 

 1 2

1 2
proc

V V
V

V V
 (6.3) 

 

where 1V  and 2V  are the rms voltage amplitudes of the signals at frequencies 1f  and 

2f , respectively. 

 

6.3 Dynamic Interrogation for Refractive Index Measurements 

 

In order to evaluate the feasibility of the proposed interrogation approach for 

refractive index measurements the setup presented in Figure 81 was implemented. 

Figure 82 shows a LPG with a strong resonance centered at 1550 nm that was 

fabricated using the electric arc technique (period of the refractive index modulation: 
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Λ = 395 μm; coupling to a 5
th

 order cladding mode). The LPG was placed into a 

recipient with an aqueous solution of ethylene glycol and illuminated by means of an 

ASE broadband source. The optical fiber at the LPG right side was mirrored with 

silver nitrate allowing the sensing head to operate in reflection [131]. 

 

 

ASE

source

50:50 

Optical 

coupler

ESA

PZT 2

FBG 2

PZT 1

FBG 1

Photodetector

Sum circuit

5 km LPG

Aqueous solution

50 km LPG

Aqueous solution
LASER 

Raman

WDM

1450 / 1550

(c)

(b)

(a) 1.5 meters LPG

Aqueous solution

EDF

Amplifier
(c) (a) and (b)

 

Figure 81 - Experimental setup for different configurations: a) for 1.5 meters with and 

without EDF amplifier; b) for 5 km with and without EDF amplifier; c) for 50 km with 

and without Raman amplifier. 
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Figure 82 - Optical spectra of the FBGs and LPG in air and immersed in water. 

 

 

FBG1 was modulated at 1f  = 620 Hz and FBG2 at 2f  = 740 Hz, both in a frequency 

region where the system noise level stabilized at approximately ˗90 dBVrms (as can 

be seen in Figure 83). The modulation of the FBG resonance originates a relative 

spectral movement with reference to the LPG transfer function, with a consequent 

optical power modulation at the modulation frequencies. The amplitude of this power 

modulation for each FBG would be constant if the LPG response were linear, which is 

not the case. Therefore, this amplitude is function of the LPG spectral position, which 

changes due to the measurand variation. This effect can also be observed in Figure 82 

for the LPG in air and in water, where it can be seen that the wavelength shift of the 

LPG resonance at 1550 nm is transformed into an amplitude variation of the two 

peaks observed in the ESA (as shown in Figure 84), each one corresponding to the 

frequency in which each FBG is being modulated. Once again, due to an adequate 

previous selection of the FBGs Bragg wavelengths, the corresponding reflected 

optical power amplitudes will change in phase opposition, a useful feature for readout 

sensitivity enhancement. 
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Figure 83 - Noise level of the electronics at low frequencies. 
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Figure 84 - Electrical spectra when modulating FBG1 and FBG2 with f1 = 620 Hz and 

f2 = 740 Hz, respectively, for the LPG immersed in solutions with different refractive 

indexes. 

 

The dynamic electrical interrogation concept previously described was 

implemented with six different schemes that were presented in Figure 81. First, the 

system was tested with a fiber length of 1.5 m, with and without an EDFA amplifier 

with a flat optical power response for the C+L bands. Then, the process was repeated 

for lengths of 5 km and 50 km, simulating a remote detection system with and without 

amplification. In the 50 km remote detection scheme Raman amplification was 

applied instead of using EDF amplification. 



 

DYNAMIC INTERROGATION OF FIBER OPTIC SENSORS 

120 

6.3.1 Results for the Refractive Index Measurement 

 

The setup depicted in Figure 81 was used to estimate procV  in several situations: 

with and without optical amplification, considering local (Figure 81(a)) or remote 

sensing (Figure 81(b) and Figure 81(c)). The obtained responses with the dynamic 

interrogation approach are shown in Figure 85, Figure 86 and Figure 87 respectively 

to 1.5 m, 5.0 km and 50.0 km of fiber length, when the refractive index of the 

environment changes. It can be seen that the proposed interrogation scheme permits 

us to read refractive index variations, exhibiting procV  versus refractive index with a 

linear relationship. Also, as can be observed in Figure 85 and Figure 86 the slopes are 

not substantially different, which is understandable in face of the way procV  is 

defined. On the other hand, the amplification has real impact in the readout resolution 

when the sensing head is located far away.  
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Figure 85 - System output versus refractive index for the case of not using and using 

EDFA amplification. Fiber length to the sensing head: 1.5 m. 
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Figure 86 - System output versus refractive index for the case of not using and using 

EDFA amplification. Fiber length to the sensing head: 5 km. 

 

For the case of 50 km of fiber, located between the sensing head and the processing 

region, simulating therefore the situation of a long haul remote sensor, the results are 

presented in the following graphic. In this case the Erbium amplification was replaced 

by a Raman amplification stage. 
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Figure 87 - System output versus refractive index for the case of not using and using 

Raman amplification. Fiber length to the sensing head: 50 km. 

 

As it can be seen, Raman amplification enhances the sensing unit sensitivity. The 

system resolution with Raman amplification was also estimated by applying a 
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refractive index step change of 0.023 RIU, determining the corresponding signal 

change and rms noise fluctuations as well. It is interesting to observe that Raman 

amplification affects the behavior of procV  versus refractive index as the output slope 

gets the opposite signal. Although it seems weird, it happens due to the fact that the 

Raman gain curve changes the reflected shape of the LPG that will be interrogated by 

the two modulated FBGs. Due to this effect on the signal inversion points of the LPG 

resonance slope, 0outdP d P  versus  as can be seen in Figure 80, the FBGs will 

not be placed exactly in the same location and thus the processing adopted made 

procV  get a different behavior. 

 

Figure 88 shows the obtained refractive index step variation of the dynamic 

interrogation system for the three amplified setups previously described. 
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Figure 88 - System output for a refractive index step variation for the different 

configurations: a) sensing head located 1.5 meters away with an EDF amplifier: b) 

sensing head located 5 km away with EDF amplifier; c) sensing head located 50 km 

away with Raman Amplification. 

 

From the refractive index step variation, the resolution of the interrogation system 

can be calculated. Table 4 summarizes the resolutions obtained with the proposed 

interrogation technique in all considered situations. 
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Table 4 - Refractive index resolutions obtained with the dynamic interrogation 

technique for the studied configurations 

Length of the Fiber to the 

Sensing Head 
Configuration minn  

1.5 m 
Without amplification 2.5  104 

Erbium amplification 2.4  104 

5 km 
Without amplification 4.3  104 

Erbium amplification 
2.2  104 

50 km 
Without amplification 4.5  10 

Raman amplification 7.4  104 

 

An interesting result is the one obtained for the long haul remote sensing head and 

from it comes a resolution of 4104.7   , which is a factor of ~ 6 better compared with 

the situation without amplification. 

 

These results permit us to state that the technique proposed, based on signal reading 

outside the 1/f noise level, is effective for refractive index measurement with a 

resolution that compares favorably with the obtained using the standard DC approach, 

which is typically around 10
-3

 [131]. Moreover, the amplification associated with the 

processing employed provides a combination that permits us to get high resolutions 

when the sensing head is remotely located. These two characteristics route to the 

critical aspect of operating far from the low-frequency noise. Indeed, from Figure 83 

it can be observed that the noise level present in these experiments was ~ 25 dB lower 

than the one shown at 1 Hz, which far compensates the lower signal variations 

associated with the proposed slope readout technique.  

 

6.4 Dynamic Interrogation for Curvature Measurements 

 

Refractive index measurements results obtained with the dynamic interrogation 

approach were presented in section 6.3. Here, a systematic description is presented 

addressing an experimental configuration with optimized characteristics focused on 

curvature measurement, being also emphasized the potential of this interrogation 

approach for the multiplexing of fiber optic sensors with spectral loss band 

characteristics. 
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The setup presented in Figure 89 was implemented. A LPG with a strong resonance 

centred at 1550 nm (Figure 90) was fabricated in standard Corning
®
 SMF-28e

®
 fiber, 

using the electric arc technique (period of the refractive index modulation: 

Λ = 395 μm; coupling to a 5
th

 order cladding mode). The LPG was placed between 

two holders - one of them adjustable by a translation stage - and illuminated by means 

of an amplified spontaneous emission (ASE) broadband source. The optical fiber end 

at the LPG right side was, once more, mirrored with silver nitrate, allowing the 

sensing head to operate in reflection [131], thus improving its behaviour once the light 

travels twice in the sensing head. 
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Figure 89 - Experimental setup to test the LPG dynamic interrogation method for 

curvature measurement purposes. 

 

Two fiber Bragg gratings (FBG1, FBG2), designed to be spectrally located in each 

edge of the LPG 1( , 2)  – as can be seen in Figure 90 – had their Bragg 

wavelengths sinewave modulated with a fixed amplitude, using two piezoelectric 

transducers driven by two independent signal generators 1(f , 2)f . 
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Figure 90 - Optical spectra of the FBGs and LPG, both written in Corning
®
 SMF-28e

® 

fiber. 

 

After travelling through the optical circulator, the optical signal reflected by the 

FBGs, went to the photodetector and that signal was visualized in an electrical 

spectrum analyser (ESA), with adequate impedance matching.  

 

As presented in section 6.2, the modulation of the FBG resonance originates a 

relative spectral movement with reference to the LPG transfer function, that creates a 

power modulation whose amplitude is a function of the LPG spectral position, and 

therefore changes with curvature variation. This effect can be observed in Figure 91 

(a) for a curved LPG, where it can be seen that the wavelength shift of the LPG 

resonance at 1550 nm is transformed into an amplitude variation of the two peaks 

observed in the ESA, each one corresponding to the frequency at which each FBG is 

being modulated. 

 

FBG1 was modulated at f1 = 900 Hz and FBG2 at f2 = 1040 Hz, both in a frequency 

region where the system noise level stabilized at ~-90 dBVrms, as can be observed in 

Figure 91 (b). The inset of this figure shows that the noise level at these frequencies is 

~25 dB lower than the one present at the quasi-DC region, with the corresponding 

positive implications on the achievable measurand resolution. 
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Figure 91 - Optical (a) and electrical (b) spectra of the output signal for the LPG with a 

curvature radius of 5.81 m and 1.85 m, respectively (the spectral position of the FBG1 

and FBG2 resonances are sinewave modulated, with frequencies f1 = 900 Hz and 

f2 = 1040 Hz, respectively). The inset of (b) shows the system electrical noise level at low 

frequencies. 

 

6.4.1 Results for Curvature Measurement 

 

The setup depicted in Figure 89 was used to estimate Vproc. The obtained response 

with the dynamic interrogation approach is shown in Figure 92.  
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Figure 92 - System output versus radius of curvature. 

 

Due to the type of processing adopted, based in the (dPout / d) / P0 ratio, a linear 

system response was not expected. However, in the radius of curvature range form 

1.95 m to 2.61 m, a clear linear behaviour can be observed with a sensitivity 

of -1.023 m
-1

. 

 

To determine the measurand resolution achievable with this sensing head and 

interrogation approach, a curvature step change was applied and, from the associated 

output signal step change and rms noise fluctuations at the regions of constant 

curvature (Figure 93), it results a radius of curvature resolution of ~9.4 mm in the 

linear region shown in Figure 92. 
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Figure 93 - System output signal for step changes of the LPG curvature. 
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These results permit us to state the following: first, the technique proposed based on 

signal reading outside the 1/f noise level is effective for curvature measurements; 

second, the system noise reduction obtained by working outside the 1/f noise region is 

larger than the reduction of the signal level (as can be observed in Figure 91) by 

operating with the derivative of the LPG transfer function. 

 

It should also be emphasized that an important advantage of the proposed 

interrogation approach comes from its application in the multiplexing of spectral loss 

band fiber optic sensors, particularly LPGs. It is just required to place the sensors in 

series, in the sensing head branch, and increase the number of FBGs in the dynamic 

interrogation system branch. For scalability purposes, if N sensing heads are needed 

N+1 FBGs will be used for its interrogation (one for referencing objectives the other 

N for interrogation purposes). The key point is the appropriate choice of the 

wavelengths of LPGs, and FBGs without the need of adding other optical 

components. Figure 94 presents the described concept. 

 

 

Figure 94 - Electrical dynamic interrogation approach of a LPG based 

multiplexed scheme. 

 

An additional application of such an interrogation concept for fiber optic sensors is 

described in Appendix 2 where the preliminary results of an interferometric optical 

fiber inclinometer are presented.  
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6.5 Distributed Feedback Lasers Based Dynamic interrogation  

 

In this section is presented a improved version of the LPG dynamic interrogation 

technique previously presented in sections 6.3 and 6.4, based on modulation, at 

different frequencies, of two Distributed-Feedback Lasers (DFB) spectrally located 

near the LPG resonance depth. The interrogation method relies on detecting with an 

electrical spectrum analyzer (ESA) the amplitude of the first and the second harmonic 

of the electrical signals that result from the optoelectronic conversion of the DFB 

laser spectrum. The amplitude of the first harmonic is proportional to the slope of the 

LPG spectral response at the DFB laser operating wavelengths, being the amplitude of 

the second harmonic also proportional to the second derivative of the LPG original 

spectrum. As mentioned before, both electrical amplitudes, of the first and second 

harmonic, change with the relative spectral movements between the LPG and the 

fixed operation wavelength of the DFB laser, permitting us to obtain a processed 

signal which is proportional to the LPG spectral shift and immune to optical power 

fluctuations along the system. This technique is tested in a multiplexing scheme to 

measure refractive index variations of two LPGs sensors working in reflection. 

 

As stated in section 6.2 a good approximation to the LPG transfer function can be 

represented by equation (6.2). Figure 95, an upgraded version of Figure 78, shows 

0( )outP P , 0outdP d P  and 2 2
0outd P d P  versus . It can be observed that 

the magnitude of the normalized slope variation along the full LPG response is 

approximately one order of magnitude smaller than the normalized optical power 

variation. It is also observed that the second derivative of the normalized FBG 

spectrum is approximately a factor of five smaller than the normalized slope variation. 

These factors translate into corresponding factors for the signal variations associated 

with 0( )outP P , 0outdP d P  and 2 2
0outd P d P , with origin at a LPG 

spectral shift relative to fixed wavelength values defined by the DFB lasers. 
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Figure 95 - Pout ()/P0, (dPout /d)/P0 and (d
2
Pout /d


)/P0 versus wavelength for a LPG. 

 

 

6.5.1 Experimental Setup for the DFB Laser Based Dynamic Interrogation 

 

To evaluate the feasibility of the proposed interrogation approach, the setup 

presented in Figure 96 was implemented. Two LPGs with resonances centred at 

1530 nm (LPG1) and 1565 nm (LPG2), presented in Figure 97, were fabricated using 

the electric arc technique (the periods of the refractive index modulation, Λ, are 

391 μm and 397 μm, respectively; coupling to a 6
th

 order cladding mode). Both LPGs 

were placed between fiber holders, inside a recipient with an aqueous sodium chloride 

(NaCl) solution. 
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Figure 96 - Experimental setup of the multiplexing layout for measuring refractive 

index variations using the electrical dynamic interrogation approach. 
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Figure 97 - Optical reflection spectra of the LPGs multiplexing scheme for refractive 

index measurement. Spectrum of both structures immersed in distilled water (solid 

line); optical response of the multiplexed LPGs in air (dashed line). 

 

The experimental setup is illuminated by means of two DFB lasers emitting at 

1531 nm ( 1 ) and 1566 nm ( 2 ), modulated by two independent signal generators 

with sine waves of ~300 mV of amplitude at the frequencies of 1000 Hz 1( )f  and 

800 Hz 2( )f . These modulations induced corresponding modulations of the lasers 

injection currents around the DC bias values, with the consequent spectral shifts. The 

optical fiber end at the LPGs right side was mirrored with silver nitrate (AgNO3) 

allowing the sensing heads multiplexing scheme to operate in reflection. 
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The system noise level was stabilized at ~ - 85 dBVrms and the processing adopted 

was 

 

 1 2

1 2

proc

V V
V

V V
 (6.4) 

 

where 1V  and 2V  are the rms voltage amplitudes of the first and second harmonic 

signals relative to each DFB laser when modulated (DFB Laser @ 1 : 1 = 1000 Hz, 

2 = 2000 Hz; DFB Laser @ 2 :  1 = 800 Hz, 2 = 1600 Hz) as shown in Figure 98. 

This processing eliminates the deleterious consequences of optical power fluctuations 

considering the amplitudes of these harmonics are both affected. 
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Figure 98 - Electrical spectra of the multiplexed scheme, being (in red) 1 and 2, the 

first and second harmonic of the DFB laser modulation frequency (f1), and (in blue) 1 

and 2, the first and second harmonic of the DFB Laser modulation frequency (f2). 

 

After photodetection of the optical signals reflected by the AgNO3 mirror at the top 

of the sensing fiber, the resultant electrical signals were added with an electrical 

circuit and visualized in an HP 35660A electrical spectrum analyzer (ESA) with 

adequate impedance matching. The modulation of the injection current of each DFB 

lasers originates a relative spectral movement with respect to the LPG transfer 

function, with a consequent optical power modulation at the modulation frequencies 

and their second harmonics. The amplitude of this power modulation is a function of 
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the LPG spectral position, which changes due to the measurand variation. This effect 

can be observed in Figure 97 and Figure 98, where it can be seen that the wavelength 

shift of the LPGs resonances is transformed into an amplitude variation of the two 

harmonics ( 1  and 2 ) observed in the ESA, corresponding to the frequency ( 1f  or 

2f ) in which each DFB laser is being modulated. 

 

6.5.2 Results for the DFB Laser Based Multiplexed Interrogation Scheme 

 

The setup depicted in Figure 94 was used to estimate Vproc for each sensor, as 

shown in Figure 99. 

 

Equation y = a + b*x LPG1

Vproc@1530nm Intercept 0.93527

Vproc@1530nm Slope 0.04761

Equation y = a + b*x LPG2

Vproc@1570nm Intercept 0.97425

Vproc@1570nm Slope 0.01881
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Figure 99 - System output versus refractive index variations for each LPG: LPG1 (in 

blue); LPG2 (in red). 

 

As can be observed, a linear system response was obtained, as stated by the linear 

regression presented in Figure 99. Figure 100 shows the system step response for an 

induced NaCl concentration variation which corresponds to a refractive index change 

for both, LPG1 and LPG2, cases. 
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Figure 100 - Step response for induced refractive index variations of the aqueous 

solution of NaCl of LPG1 (a) and of LPG2 (b). 

 

From the amplitude of the step changes of the output signals induced by the 

refractive index step variations and the rms fluctuations of these signals in the 

situation of constant refractive index, a resolution of 3.3×10
-4

 RIU for LPG1 and 

4.4×10
-4

 RIU for LPG2 was obtained. These results indicate that a refractive index 

resolution is expected to be improved with optimization of the configuration, 

particularly in what concerns the tuning of the relative spectral positions of the LPGs 

and DFB emission lines. Also, no crosstalk was observed between the two sensors of 

the structure. 
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6.6 Summary 

 

In this chapter it was reported a LPG dynamic interrogation technique based on the 

modulation of fiber Bragg gratings located in the readout unit of the system. It permits 

the attenuation of the effect of the 1/f noise of the electronics in the resolution of the 

LPG-based sensing head.  

 

The concept was tested, as presented in section 6.3, to detect variations of the 

external refractive index and a resolution of 2.0 × 10
-4

 RIU was achieved without 

system optimization. Additionally, the effect on the sensor’s resolution when 

introducing Erbium and Raman optical amplification was experimentally investigated. 

 

In section 6.4 the proposed dynamic interrogation technique was tested for 

curvature measurements. The setup was simplified and a radius of curvature 

resolution of ∼9.4 mm was obtained. It was also proposed the application of such a 

technique for the multiplexing of spectral loss band fiber optic sensors, particularly 

LPGs. 

 

Finally, a multiplexing scheme based in an upgraded approach of the electrical 

dynamic LPG interrogation technique was presented in section 6.5. It was based on 

the analysis of the electrical spectrum of two modulated DFB lasers located nearby a 

LPG resonance. A resolution value of 10
-4

 RIU was achieved. 

 

The developed interrogation architectures presented in this chapter easily allow 

multiplexing several sensing heads, as they are simple and also could be applied in 

several structures used for the measurement of DC or quasi-DC measurands, as is the 

case for multimode interferometers (MMI) or other sensing devices based on the 

phenomenon of surface plasmonic resonance (SPR). 
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Chapter 7 – Optical Fiber Sensing Configurations for Remote 
Sensing 

 

Equation Chapter (Next) Section 7 

7.1 Introduction 

 

A concept of long period grattings based optical fiber sensors, with broadband light 

illumination generated just after the sensing structure, is presented in section 7.2. This 

new approach allows the interrogation in transmission of the sensing head, while 

integrated in a reflective configuration, which means the LPG sensor is seen in 

transmission by the optical source but in reflection by the measurement system. Also, 

it is shown that with this illumination layout the optical power balance is more 

favorable when compared with the standard configurations, allowing better sensor 

performances particularly when the sensing head is located far away from the 

photodetection and processing unit. This is demonstrated for the case of an LPG 

structure applied to measure strain and using ratiometric interrogation based on the 

readout of the optical power reflected by two fiber Bragg gratings spectrally located 

in each side of the LPG resonance. 

 

In section 7.3, a remote environmental sensing configuration is presented using a 

standard optical time domain reflectometer (OTDR). The measurement of 

environmental parameters using optical sensors is an expanding area of research with 

growing importance. Fiber optic sensors are an interesting solution for that due to 

their high sensitivity, small size, and capability for on-site or remote, real-time and 

distributed sensing capabilities. The suggested multiplexing sensing scheme approach 

uses transmissive filters (LPGs) interrogated by the OTDR return pulses. The loss 

induced at the resonance wavelengths varies with changes in the environment 

refractive index, temperature or other physical parameters. Experimental results show 

that the insertion of an erbium amplifier improves the measurement resolution in 

certain situations. Further analysis shows that a remote multiplexed sensing scheme 

allows us to perform simple and low cost real time measurement of refractive index 

and temperature over long distances.   
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Finally a remote optical fiber sensor system based on a long period grating, Raman 

amplification and electrical interrogation – described in chapter 6 – was investigated 

and a method to predict its behaviour was tested. The interrogation unit is composed 

by two fiber Bragg gratings modulated by two piezoelectrics transductors. Optical 

fiber sensor systems may be limited to operate at distances of only few kilometers due 

to attenuation effects and noise, that adversely affects the performance of the sensor 

interrogation process. Experimental and simulation results were obtained in the 

context of analysis of remote optical fiber sensors, and are shown in section 7.4. The 

simulation models use numerical methods to compute the Raman interaction between 

the pumps and the sensor signals and allow speeding up the analysis regarding the 

setup to be experimentally implemented to measure environmental temperature. The 

results obtained show that under Raman amplification the power ratio between the 

two central wavelengths of the FBGs has a linear relation with the change of the LPG 

resonance induced by temperature variation. 

 

7.2 In-situ Optical Source for Remote Sensing Purposes 

 

In optical fiber sensing, the measurement system can be configured to operate in 

reflection or in transmission mode. Usually, transmission measurement systems are 

used with specific sensing heads based on spectraly selective loss. Long period 

gratings are a paradigmatic example of such sensing schemes, in which the 

transmission spectrum has depths at wavelengths corresponding to resonance 

coupling to specific cladding modes, that change when the device is subjected to 

different physical interactions. In general, these sensing structures are located 

remotely and the broadband light that propagates in the downlead illuminating fiber 

has its spectrum modulated by the LPG in a way that depends on the measurand 

status. This light propagates back to the measurement unit using a dedicated return 

fiber, where interrogation is performed with a variety of techniques, such as those 

based on derivative spectroscopy [137-139]. The need of a return fiber can be avoided 

by mirroring the fiber end and operating the sensing head in reflection, a situation in 

which light crosses two times the LPG [140, 141]. This layout has advantages, but is 

prone to interference effects that induce modulation of the LPG spectral response, 
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conflicting with its interrogation when interferometric readout is not the objective. In 

both situations (light return using a second fiber or using the same input fiber due to 

the mirroring of the distal end face) the light in the spectral region of the LPG travels 

twice the distance between the LPG location and the optical source. Additionally, 

when the sensor is remote, the losses involved can be substantial, degrading its 

performance, particularly when dealing with sensing networks for multi-point 

measurement. 

 

In field applications of LPG based sensors the relevance of this constraint comes to 

surface in an acute way, which motivated the search for possible solutions to 

overcome it. As a result of this, it turned out that an effective approach would be to 

generate the LPG illuminating light close to the location of the sensing element, using 

a length of erbium doped fiber just after the LPG, pumped by the light of a laser diode 

located remotely in the photodetection/processing system.  

 

This section describes the investigation of such a sensing layout, where the LPG 

sensor is seen in transmission by the optical source, but in reflection by the 

measurement system. The presented study demonstrates, to the best of our knowledge 

and by the time it was done, the first approach of the concept of having a sensing head 

being illuminated in situ by an optical source just after the sensing structure. 

Comparison of the performance obtained in this situation relatively to the standard 

approach is provided for the case of a LPG-strain sensor with FBG based ratiometric 

interrogation. 

 

7.2.1 In Situ Optical Source for Remote Sensing 

 

In order to characterize the performance of the new proposed configuration, the 

system depicted in Figure 101 was implemented. The new layout is based on an 

erbium doped fiber (EDF) optical source, with the active fiber located just after the 

sensing head. As represented, a 1480/1550 nm wavelength division multiplexer 

(WDM) is used which allows the laser pump light to propagate down to the 20 km of 

fiber up to the one meter length EDF, crossing the LPG that is transparent to this 

radiation. The pump laser optical power used was around 200 mW, guaranteeing the 
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saturation regime of the EDF. The EDF bidirectional emitted light illuminates the 

LPG via the direct path or via reflection in the mirrored fiber end. 
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Figure 101 - Experimental setup for the new LPG-sensor layout. 

 

Analysis of the layout in Figure 101 makes it clear that, from the view point of the 

illuminating source, the LPG operates in transmission, but the optical system is 

configured in reflection. The LPG encoded light is directed to the two interrogating 

FBGs and detected by an optical spectrum analyzer (OSA). 

 

7.2.2 Standard Remote Sensing Approach 

 

In order to compare the performance of the proposed new configuration, a standard 

interrogation scheme for a LPG-based sensing head was also implemented. As shown 

in Figure 102, a local optical source was built combining a pump laser diode emitting 

at 1480 nm, a WDM and a one meter EDF. The pump laser used in the configuration 

was the same used in the in situ optical source. In this configuration the EDF will be 

in the oversaturation regime. The light from the local optical source goes to the LPG 

sensor through an optical circulator. To simulate a remote sensing solution, 20 km of 

connecting optical fiber was added to the system. To get a reflective configuration, 

one of the leads of the fiber was mirrored, therefore the light in the relevant spectral 

region runs for 40 km of fiber. The returned light from the LPG circulates towards 

two fiber Bragg gratings (FBG) with resonance wavelengths located in each side of 

the LPG spectrum. The light reflected by the FBGs is detected by an OSA. 
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Figure 102 - Experimental setup for the standard LPG-sensor layout. 

 

7.2.3 Results and Discussion 

 

Figure 103 (a) shows the spectrum of the broadband light detected by the OSA at 

point A relative to the configurations shown in Figure 101 and Figure 102, 

respectively. As expected, the spectral shape is the same, but for the configuration 

here proposed the power spectral density is ~8 dB higher than the value obtained with 

the standard layout in the spectral region of the LPG used as the sensing element for a 

wavelength of 1550 nm. This positive power difference is not constant along the 

erbium emission spectral window, ranging from ~10.5 dB in the peak emission 

around 1530 nm to ~5 dB in the emission spectral edges.  

 

When the LPG is inserted in the system, the effect of its resonance loss band is well 

evident for the case of the new layout (Figure 103 (b)), but less pronounced for the 

case of the standard configuration, a result that can be attributed to the low power 

level that reaches the OSA in this situation. The signal in the standard configuration is 

close to the detection sensitivity limit of the instrument, as is evident from the noisiest 

spectral curve recorded by the OSA. 
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Figure 103 - Optical spectra recorded by the OSA at point A of configurations depicted 

in Figure 101 and Figure 102 when: (a) the LPG is not present; (b) after the insertion of 

the LPG. 

 

Both configurations were tested when the LPG was configured to measure strain. 

The interrogation was performed using the ratiometric technique applied to the optical 

power reflected by the two FBGs with resonances located in the edges of the LPG 

spectrum. Figure 104 shows the relative spectral positions of the LPG/FBGs and 

associated optical powers, in the case of no strain applied to the LPG. Again, it can be 

observed the low power level present in the case of the standard configuration. The 

FBGs select two narrow spectral slices of the returned optical radiation modulated by 

the LPG attenuation band, with powers 1P  and 2P .  
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The ratiometric processing [142] implemented was  

 

 1 2

1 2
proc

P P
P

P P
 (7.1) 

 

enabling referentiation to optical power fluctuations. The dependence of procP with 

strain applied to the LPG is shown in Figure 105. 

 

 

Figure 104 - Relative spectral positions of the LPG/FBGs and associated optical powers 

for the cases (no strain applied to the LPG): (a) local source configuration; (b) remote 

source configuration. 
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The data in Figure 105 clearly shows that with the same pump laser diode and the 

same length of erbium doped fiber, when the LPG sensor is located 20 km away from 

the photodetection/processing unit, with the standard configuration it is not possible to 

read the sensor status, since the weak signals are strongly corrupted by noise, 

originating a strong scatter of Pproc. However, the proposed approach enables the 

sensor readout with a sensitivity of ~100 µε
-1

. This single result indicates the potential 

of the novel configuration when dealing with the remote interrogation of fiber optic 

sensors. Add to this, the fact that in several situations is not advantageous the double 

pass the light through the sensing elements, since the induced resonance loss bands 

can easily lead to excess attenuation, reducing the sensor resolution from the side of 

the signal strength compared to the noise level (a detrimental effect that overcomes 

the advantages of the double pass of the light by the measurement region). This 

condition is quite common in resonance plasmonic sensors, a reason why it is almost 

mandatory to work out in a transmission configuration when addressing such sensors, 

implying the requirement of a dedicated return fiber.  
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Figure 105 - Variation of Pproc versus strain for the two configurations studied. 

 

With the innovative approach proposed here, this extra fiber is not needed in view 

of the circumstance that it is now possible to illuminate the sensor in transmission, 

while operating in a reflective layout from the viewpoint of the measurement system. 

This characteristic, together with the positive impact in the sensor power levels that 

reach the photodetection/processing unit, points out the advantages of using this 

approach to improve the performance levels of several types of optical fiber sensing 
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heads. The sensing concept and the architecture proposed in this work were patented, 

as can be seen in Appendix 3. 

 

7.3 Remote Sensing of Refractive Index with an OTDR 

 

The measurement of chemical parameters using optical sensors is an expanding area 

of research with growing importance, especially in environmental applications. The 

refractive index measurement in liquids is an important mechanism for label-free 

chemical and biological sensing and fiber optic sensors are an interesting platform in 

this regard due to their high sensitivity, small size, and capability for on-site or 

remote, real-time and distributed sensing capabilities. Several schemes and 

interrogation methods for refractive index sensing using optical fibers have already 

been proposed [52, 143]. 

 

An optical time-domain reflectometer (OTDR) is an optical instrument that injects 

optical pulses into a fiber under test, extracting then from the same end of the fiber the 

amount of light that is scattered or reflected back along the fiber. Due to its intrinsic 

characteristics, the OTDR instrument has been also used to characterize fiber optic 

displacement sensors [144, 145]. Special types of fibers, grating structures and 

elaborated sensing heads schemes have already been proposed, for refractive index 

measurements with an OTDR [146, 147]. 

 

In this section, a remote refractive index measurement system using a standard 

OTDR is presented. This approach uses a LPG in which the resonant wavelengths can 

be interrogated by analyzing the strength of the OTDR return pulses that are plotted as 

a function of the fiber length. This is, to the best of our knowledge and by the time the 

study was done, the first refractive index sensor based on a LPG interrogated by an 

OTDR. The effect of optical amplification in the sensor’s performance is also 

investigated. Finally, a multiplexing sensing scheme using two LPGs is also carried 

out to measure refractive index and temperature. 
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7.3.1 Sensing Scheme for Refractive Index Measurements 

 

To implement the proposed sensing scheme, an experimental setup with an Ando 

AQ7250 OTDR and a LPG sensing head placed between two fiber rolls, of 1.3 km 

and 11 km, was prepared as depicted in Figure 106. The amplification scheme, 

comprehending two circulators and an Erbium Doped Fiber Amplifier (EDFA) was 

only introduced later in the experiment.  

 

 

Figure 106 - Experimental setup of the LPG based sensing head for refractive index 

measurements. 

 

The LPG was fabricated using the electric arc technique, with a period of the 

refractive index modulation (Λ) of 395 μm, with strong resonances at 1317 nm 

(coupling to a 5
th

 order cladding mode) and at 1542 nm (coupling to a 6
th

 order 

cladding mode). The OTDR multiwavelength lasers and the LPG spectrum in both 

regions (1310 and 1550 nm) are superimposed and depicted in Figure 107. 

 

In Figure 108, it can be seen a detail of the signal retrieved by the OTDR in the 

vicinity of the 1.3 km fiber length, showing the precise position of the LPG sensing 

head. The resonant peak of the LPG shifts in wavelength in accordance with the 

variations of the refractive index of the surrounding medium. This perturbation thus 

changes the intensity of the 20 ns light pulses that will be backscattered at the position 

where the LPG is located. 

 

Amplification
Scheme
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Figure 107 - OTDR multiwavelength laser and LPG spectrum at (a) 1310 nm and 

(b) 1550 nm ranges. 
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Figure 108 - Detail of the OTDR obtained traces for different refractive index values,  

for the 1550 nm wavelength. 
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As can be observed, with the increase of the refractive index value, a reduction of 

the backscattered optical power is obtained. Plotting the amplitude of such a step as 

function of the refractive index, for the 1300 nm and 1550 nm range, the data depicted 

in Figure 109 is obtained. 

 

It is clear that in the 1550 nm range, the LPG resonance presents a larger 

evanescent field interaction. So, the amount of light lost in the refractive index 

measurements for this wavelength range will be higher than for the 1310 nm range. 

On the other hand, the more favorable relative position between the LPG resonance 

and the OTDR central wavelength, for the 1550 nm range, surely contributes for the 

achievement of higher sensibilities. 
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Figure 109 - Comparison of the LPG (Λ=395µm) attenuation observed in the 1310 nm 

and 1550 nm ranges of an OTDR as function of refractive index variation. 

 

At this point a new LPG was developed, with similar spectral characteristics to the 

previously used, and the experimental procedure was repeated for two different cases, 

without amplification and inserting the amplification scheme module. A Multiwave 

Photonics EDFA-C amplifier was used. The results are presented in Figure 110. 
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Figure 110 - LPG (Λ=395µm) based sensing head attenuation, obtained from the setup 

depicted in Figure 106, for the 1550nm OTDR range, as function of the refractive index 

variations with and without optical  amplification, respectively. 

 

Similarly to the result obtained previously in Figure 109, the sensitivity of the 

sensing system is ~17 dB/RIU. With the introduction of the amplification scheme this 

value is improved to ~48 dB/RIU. Therefore, the sensitivity of the developed setup 

changes with the inclusion of the optical amplification scheme, improving by almost a 

factor of 3. Table 5 presents the refractive index resolutions, calculated considering a 

minimum detectable signal of two times the standard deviation, for the two 

configurations. 

 

Table 5 - Refractive index resolutions obtained for the traces depicted in Figure 110. 

Configuration n 

Without amplification 4.02×10-3 RIU 

Erbium amplification 1.50×10-4 RIU 

 

As can be observed, the amplification scheme introduces an improvement on the 

system resolution and sensitivity. This happens because the erbium gain curve is 

superimposed on the LPG spectrum and enhances the system behavior. The sensitivity 

normally depends only on the sensing element, the LPG in this experiment, but in this 

case, it is highly dependent on the spectral position of the resonance relatively to the 

multimode laser source, meaning that the sensitivity depends also on the initial LPG 

resonance, and also on the optical source conditions. Therefore the additional gain 

improves both the sensitivity, by changing the spectral slope of the laser, and the 

resolution by improving the signal to noise ratio of the overall system. 
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7.3.2 Multiplexing Sensing Scheme for Refractive Index and Temperature 
Measurements 

 

To implement the multiplexing sensing scheme, a new experimental setup was 

implemented using the same OTDR and two LPGs placed between three fiber rolls of 

3 km, 1.2 km and 0.9 km, as depicted in Figure 111. 

 

 

Figure 111 - Experimental setup of the implemented multiplexing scheme for refractive 

index and temperature measurements based in two LPGs. 

 

Two new LPGs were fabricated, using the electric arc technique, with a period of 

refractive index modulation (Λ) of 397μm and 398 μm, with strong resonances at 

1546 nm and 1552 nm (both coupling to 6
th

 order cladding modes), respectively. The 

OTDR multiwavelength laser at 1550 nm and the LPGs spectrums are superimposed 

and depicted in Figure 112. 
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Figure 112 - OTDR multiwavelength laser for the 1550 nm range superimposed with (in 

red) the LPG at 1546 nm (Λ=397 µm) used for refractive index measurement, and (in 

blue) the LPG at 1552 nm (Λ=398 µm) used for temperature discrimination. 

 

Plotting the amplitude of the obtained OTDR backscattered loss steps as a function 

of the refractive index (for the LPG at 1546 nm), and as a function of temperature (for 

the LPG at 1552 nm), the data depicted in Figure 113 is obtained. 



 

OPTICAL FIBER SENSING CONFIGURATIONS FOR REMOTE SENSING 

151 

 

From Figure 113 it can be observed that a dependence of 106 dB/RIU is obtained 

for the refractive index measurement and a sensitivity of 0.06 dB/ºC is achieved. As 

previously stated, the sensitivity of the sensing head is a consequence of its spectral 

characteristics, i.e. it is highly dependent on the spectral position of the LPG 

resonance relatively to the OTDR multiwavelength laser source. Due to an 

appropriate LPG shape, the sensitivity for the refractive index change was improved 

by a factor of 5 in comparison with the initial experiment without amplification and 

by a factor of 2 considering the amplification case. Thus it is clear that the 

amplification scheme is not the only mechanism for improving system performance. 
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Figure 113 - LPGs based sensing head attenuation, obtained from the setup depicted in 

Figure 111, for the 1550 nm OTDR range as function of (a) the refractive index (LPG at 

1546 nm) and (b) temperature (LPG at 1552 nm) variations. 
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The calculations of the resolutions obtained for the multiplexing sensing scheme 

were performed by considering a minimum detectable signal of two times the 

standard deviation, and are presented in Table 6. 

 

Table 6 - Resolutions obtained for the traces depicted in Figure 113 

Measurement Resolution 

Refractive Index n = 3×10-4 RIU 

Temperature T = 0.16 ºC 

 

Considering the ratio between the refractive index and temperature sensitivities of 

the proposed scheme it is noticed that a deviation of 1 ºC introduces an error to the 

index measurement of ~6x10
-4

 RIU. Within this context a simultaneous measurement 

is not recommendable, because the cross sensitivity to temperature could induce an 

error of the same order of magnitude of the resolution of the refractive index 

measurement. 

 

7.4 Remote LPG Sensor with Electrical Interrogation Assisted by Raman 
Amplification 

 

When compared with EDFAs, Raman amplifiers do not need doped or specialized 

fibers, therefore single mode fiber can be used as the gain medium. So, Raman 

amplification can occur in long fiber lengths which is a characteristic of distributed 

amplification. Distributed amplifiers improve the noise figure and reduce the 

nonlinear impairments in fiber optic systems [148]. Additionally, the amplification 

bandwidth size can be adjusted by changing parameters like the number of pump 

lasers, spectral and spatial position and their optical power. 

 

Another important issue in LPG sensor systems is the interrogation technique that 

allows retrieving the wavelength encoded measurement after the propagation in the 

optical fiber. Optical interrogation can be realized, but this approach suffers with high 

cost and low time resolution. An electrical interrogation can offer a better time 

resolution with minimal costs. 

 

Lee et al. [149] demonstrated a Raman amplifier-based long-distance sensing 

system for simultaneous measurement of temperature and strain using a combined 
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sensing probe formed by an erbium-doped fiber (EDF) and a FBG. This scheme 

allows the use of a recycling Raman pump to feed the EDFA, to act as a broadband 

source in the sensing head, achieving a distance of 50 km. Hu et al. [150] also 

reported the Raman amplification capability in remote sensing, combined with two 

EDFAs stages, to achieve an operation distance of 100 km to the FBG sensor head.  

 

Alahabi et al. [151] reported an extended-range distributed temperature sensor 

based on coherent detection of the frequency shift of the spontaneous Brillouin 

backscatter combined with Raman amplification using a microwave detection system. 

Another work that applies Raman amplification in remote fiber sensing was presented 

by Lee et al. [149], that demonstrated a Raman amplifier-based long-distance sensing 

system with optical interrogation for simultaneous measurement of temperature and 

strain, using a combined sensing probe with an erbium-doped fiber (EDF) and a fiber 

Bragg grating. Bravo et al. [152] demonstrated a 253 km remote displacement sensor, 

based on a fiber loop mirror interrogated by a commercial optical time-domain 

reflectometer. All of them consider basically experimental analysis. 

 

This work analyzes different remote sensor setups for temperature measurement 

using Raman amplification. Experiments and numerical simulations that describe the 

propagation, the spontaneous emission noise and the Raman interactions between the 

pumps and the sensor signals along the fiber are presented. The simulations allow the 

performance analysis of the setup to be experimentally implemented in order to 

measure/monitor environmental temperature, using the electric dynamic interrogation 

scheme presented in chapter 6 that shows improved performance. Different schemes 

were investigated and an optimal setup for a remote sensing system based on a LPG 

sensor head was developed, applied to the measurement of temperature. 

 

7.4.1 CW Raman Amplification Applied to Remote Sensing 

 

Raman amplifiers are based on the nonlinear effect of Stimulated Raman Scattering 

(SRS). This physical phenomenon is an inelastic scattering process based on the 

interaction between the incident photons and the silica molecules in the optical fibers. 
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Its main characteristic is the energy transfer from one or more pump wavelengths to 

the wavelength signals [148, 153].  

 

A numerical model [154] was used to describe the spatial propagation and the 

interaction between the signal and pump lasers along the optical fiber, taking into 

account Raman amplification. Effects such as the single and double Rayleigh 

scattering (DRS), the amplifying spontaneous emission (ASE) noise, polarization 

effects and the interaction between signal and pumps, signal-signal and pump-pump 

are also considered. The main equation is 
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where T  is the thermal factor, which correspond to the phonon population, 

defined as 
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P , P ,  and  are the power and attenuation coefficients relative to frequencies 

µ and ν respectively. The superscripts + and – indicate, respectively, the forward and 

backward propagation in the z axis direction, CRµν is the Raman gain efficiency 

between the frequencies µ and ν, Γ is the polarization factor and takes a value 1 if the 

polarizations are preserved and 2 when the polarizations are not maintained, ԑν is the 

Rayleigh scattering coefficient, ћ is the Planck constant, KB is the Boltzman constant, 

T is the absolute temperature in the optical fiber and Bе is the considered noise 

bandwidth. 
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The first term in equation (7.2) corresponds to the optical fiber losses and the 

second term is related to the DRS. The third term refers to the Raman gain at 

frequency generated by higher frequencies. The fourth term gives the ASE at 

frequency, with the thermal factor contribution. The fifth term corresponds to the 

depletion at frequency, due to lower frequencies, and the sixth term is the loss at 

frequency originated by the noise emission at lower frequencies. 

 

The coupled differential equations given by equation (7.2) can be solved with 

numerical methods using boundary conditions. In telecommunications applications, 

these boundary conditions are well known as illustrated in Figure 114. The intensity 

of the signal (Psignal) and pump (Ppump) are input parameters and the reflected signal 

and pump at the end of the fiber can be neglected. 

 

 
Figure 114 - Boundary conditions in a co-propagating Raman amplifier, applied for 

telecommunications systems. 

 

Three main configurations for remote optical fiber sensors were analyzed in this 

work. One a Raman co-propagating amplifying mode, a second with a Raman 

counter-propagating amplifying mode, and the last one including a Raman co-

propagating amplifying mode for the injected signal and a Raman counter-

propagating amplifying mode for the received signal.  

 

An amplified spontaneous emission (ASE) source, from the Erbium doped fiber 

amplifier, is used on each setup to provide an high power broadband source (BRS). 

50 km of single mode fiber (SMF) serve as transmission and Raman amplification 

medium, and are used in the different configurations to connect the interrogation unit 

to the sensor head. An optical spectrum analyzer is included in the interrogation unit 



 

OPTICAL FIBER SENSING CONFIGURATIONS FOR REMOTE SENSING 

156 

to show the LPG received spectrum during the numerical and model validation 

procedure. 

 

The setup showed at Figure 115 utilizes an optical circulator to connect the light 

source to the WDM coupler, which couples the pump laser and the BRS signal into 

the SMF optical fiber.  

 

 
Figure 115 - Co-propagating Raman amplifier remote LPG system. 

 

 
Figure 116 - Counter-propagating Raman amplifier remote LPG system. 

 

Note that Figure 116 differs from Figure 115 due to the pump laser placed now at 

the fiber end. So, the pump wave will propagate to the opposite direction from the 

optical source signal. 

 

The setup depicted at Figure 117 deploys two optical fibers that provide an 

additional path between the optical source and the sensor unit, allowing the detection 

of the reflected signal from the LPG sensor under lower noise levels. The power 

splitter (splitter X:Y) is responsible for dividing the pump power between the two 
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optical paths. So, this configuration allows the use of regular components and part of 

the Raman amplification into the broadband signal and the other part to amplify the 

processed signal delivered by the sensor head. One means no interference between the 

BRS and the reflected sensor signal. 

 

 
Figure 117 - Raman amplifier remote LPG system using two optical fibers. 

 

As the reflected signal intensity, obtained from the sensor head in these setups, is 

not known a priori, the boundary conditions need to be set in order to compute such 

optical powers. The reflected signal intensity (PS
reflected

) depends on the sensor head 

transfer function. The Raman pump power laser is also an input parameter. A method 

to calculate the Raman amplification and include the transmitted and reflected powers 

in the sensor system based in diffraction gratings was developed and consists of three 

steps, given as follow: 

 

i. As a first step, it is defined the initial and boundary conditions, where the 

intensity of the reflected signal (PS
reflected

) and the reflected pump (PP
reflected

) at 

the optical fiber output are null, and the signal intensity (PS) and pump power 

(PP) are input parameters given by the signal input and by the Raman pump 

laser, respectively;  

ii. After completing the first step, the reflected signal can be calculated using the 

reflection characteristics of the sensor head;  

iii. Finally, the first step is repeated, but now PS
reflected

 at the fiber end is identical 

to the value obtained in step ii). Now, the signal reflected by the LPG that 

arrives at the OSA can be calculated. 
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Notice that the estimations performed by step i. provide a good approximated 

solution for the boundary conditions. It happens because in low power signal systems 

the depletion of the pumps by the signals can be neglected [155]. The pumps 

depletion occurs due to interactions among pumps in multi-pump schemes. 

 

Numerical simulations and experimental work were considered in the analysis. The 

implemented numerical routines have been validated by measurements in the 

laboratory, that enabled a careful analysis of the three main configurations of remote 

optical fiber sensors proposed here (Figure 115 to Figure 117). Further numerical 

simulations generated results that allowed choosing the best remote fiber sensor setup. 

 

7.4.2 Validation of the Numerical Modeling Results 

 

Simulations were validated with experimental results obtained for an optical fiber 

sensor system, with only one fiber and one LPG, as shown in Figure 116, which 

considers a counter-propagating pump scheme. Figure 118 shows the comparison 

between the model results (line) and the measured data (symbols) for a remote optical 

fiber sensor system with 50 km of fiber length. 
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Figure 118 - Experimental (symbols) and simulated optical spectrum (straight line) for a 

pump power of (a) 800 mW and (b) 1 W. 

 

Pump powers of 800 mW and 1 W were coupled to the fiber sensor, whose results 

are shown, respectively, in Figure 118 (a) and Figure 118 (b) with a pump wavelength 

of 1455.1 nm. Simulated and measured results show a good agreement. The higher 

deviation observed is ~ 1.5 dB and occurs around 1557 nm when pump power of 1 W 
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is applied. The higher deviation observed to the lower pump power, i.e. 800 mW, is 

reduced and corresponds to ~1 dB. 

 

The CRµν considered in the calculations is a standard value for a singlemode type 

SMF-28 fiber, which is not the measured value to the singlemode fiber used in the 

experiments. The higher deviation between measured and simulated results for higher 

pumps can be attributed to this difference. Moreover, the Raman amplification is 

proportional to the CRµν parameter or to the Raman gain efficiency between the signal 

at frequency ν and the laser pump at frequency µ, as observed in equation (7.2). Note 

that the pump power is multiplied by CRµν.   

 

So, the deviation observed around 1557 nm can be attributed to the CRµν value 

difference, that is higher in this wavelength since the Raman gain peak occurs 

approximately 100 nm above 1455.1 nm, i.e. the Raman pump laser wavelength. As 

the pump power increases, this deviation is also accentuated due to the increase into 

the CRµν (Pµ) factor. 

 

Therefore, these results validate the numerical model, so it can be applied in the 

different setups to analyze the performance of sensing systems of the type considered 

above. 

 

7.4.3 Numerical Analysis 

 

Numerical modeling was applied in the analysis for an appropriate choice of the 

best setup to be used in a remote sensing system to measure environmental 

temperature. Figure 119 shows some of the results obtained.  
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Figure 119 - Optical spectrum at the receiver for the different setups calculated by the 

numerical modeling. 

 

In the first amplification configuration analyzed (set 1: Raman amplification in one 

fiber + co-propagating), with a single channel and co-propagating  pump scheme, the 

spectrum of the LPG vanishes due to the presence of Rayleigh and ASE noise, that are 

higher than the signal intensity in the LPG resonance wavelength. The signal at the 

receiver is too weak to be detected.  

 

The second amplification configuration (set 2: Raman amplification in one fiber + 

counter-propagating) considers one fiber span pumped by a Raman pump laser set in 

a counter-propagating scheme. Despite the lower signal gain, this configuration is 

more advantageous than the previous one, due to the lower noise figure and higher 

signal-to-noise ratio, as occurs in telecommunications systems. However, this 

configuration for some applications is not the best choice, since the pumps will be 

placed near to the sensor location and most of the times these locations are remote and 

of difficult access. 

 

In the setup with two optical fibers and an optical power splitter (set 3: Raman 

amplification in two fibers and splitter, with a split ratio of 0:100), the amplification 

only occurs in the return fiber. In that case the signal arrives on the LPG with residual 

intensity, so the ASE noise due to amplification causes the resonance peak to vanish.  



 

OPTICAL FIBER SENSING CONFIGURATIONS FOR REMOTE SENSING 

161 

 

The case with two optical fibers and a 3-dB optical power splitter (set 4: Raman 

amplification in two fibers and splitter, with a split ratio of 50:50), the LPG resonance 

is slightly observed, although with a poor definition. It means an improvement in the 

spectrum response detection, but not with a resolution that allows the measure with 

good sensitivity. 

 

The case with two optical fibers and the optical power splitter in the 100:0 position 

(set 5: Raman amplification in two fibers and splitter, with a split ratio of 100:0) 

presents the lowest power received, but the resolution of the resonance wavelength is 

the best observed. So, if the photodetector in the system has a sensitivity that can read 

this power levels, this setup is the best choice in terms of measurement sensitivity. 

Therefore, this setup was chosen for practical implementation. The setup with one 

fiber (set 1) was also implemented to be compared to the other four configurations. 

 

7.4.4 Experimental Analysis 

 

After performing numerical simulations, which allowed the analysis and selection 

of the best setup, experimental evaluation of temperature sensing was developed. It is 

important to notice that refractive index measurement is also possible, by including 

small changes in the LPG sensor head, which means adding liquid samples to be 

analyzed. 

 

Two remote optical fiber sensor systems were set with a broadband source (BRS) 

illuminating the temperature sensor, based on a mirrored LPG, placed 50 km away 

from the interrogation unit. A silver mirror spliced at the end of the grating permits 

the system to work in reflection and is responsible for the light signal traveling two 

times on the LPG. It increases the sensitivity of the sensing system. The measured 

mirrored LPG transfer function is shown in Figure 120. The resonance wavelength is 

placed around 1543.5 nm for 300 K. The LPG has been written in a single mode fiber 

(SMF-28) with a modulation period of 392 µm. The presence of the silver mirror at 

the end of the grating is responsible by an asymmetry, around 2 dB, between the right 

and the left side of the grating. 



 

OPTICAL FIBER SENSING CONFIGURATIONS FOR REMOTE SENSING 

162 

 

1530 1540 1550 1560 1570

-45

-40

-35

-30

-25

-20

-15

-10

 

 

T
ra

n
s
fe

r 
F

u
n

c
ti
u

o
n

 (
d

B
)

Wavelength (nm)
 

Figure 120 - Mirrored LPG transfer function measured at 300 K written in a single 

mode fiber (SMF 28). 

 

The first setup is simpler and presents only one optical fiber, as observed in Figure 

121 (a), while the second uses two optical fiber spans, as can be seen in Figure 

121 (b), that is analogous to the scheme presented by [156]. 

 

The interrogation unit is formed by two FBGs, whose central wavelengths are 

respectively positioned just above (1) and below (2) the LPG resonance depth. 

Piezoelectric actuators (PZTs) are responsible for the electrical frequency modulation 

of the FBGs reflection spectrum. An electrical spectrum analyzer (ESA) was used to 

measure the amplitude power at the modulation frequencies of each FBG (f1 and f2) 

induced by the modulated PZTs and the temperature measurement was accomplished 

by a processing technique that relies in the analysis of the amplitude of the electrical 

powers which correspond to the PZTs modulations of 1 and 2. Using the electrical 

dynamic interrogation approach, described in chapter 6, instead of the standard optical 

interrogation methods [52, 131, 157], a more effective cost solution was achieved 

with the benefit that the system operates in a frequency range far from the 1/f noise 

region, which means the signal-to-noise ratio can be favored by the reduction of the 

noise level. 
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(a)      

(b)  

Figure 121 - (a) Remote temperature optical fiber sensor system with one optical fiber 

and a co-propagating pump setup. (b) Remote temperature optical fiber sensor system 

with two optical fibers and the total pump power coupled to the feed optical fiber. 

 

The LPG resonance wavelength shift measurement is carried out by a ratiometric 

technique [142], applied to the signals derived from each FBG reflection in the 

interrogation system placed in the reception. The parameter procP  is defined as  

 

 1 2

1 2
proc

P P
P

P P
 (7.4) 

 

where P1 and P2 are the optical powers reflected by the first and the second FBG, 

respectively, placed above and below the LPG resonance wavelength, modulated by 

the PZTs in the electrical frequencies f1 and f2, respectively. 

 

Figure 121 (a) shows the setup of the remote sensor system with one optical fiber, 

in this case a 50 km standard single mode optical fiber (SMF). Raman amplification is 



 

OPTICAL FIBER SENSING CONFIGURATIONS FOR REMOTE SENSING 

164 

provided by a pump laser with emission at 1455.1 nm, with 1.5 W coupled to the 

SMF through a WDM coupler. 

  

The optical channel shared by the broadband signal and the signal processed by the 

optical sensor is affected by distortions caused by the Rayleigh noise and the 

amplified spontaneous emission (ASE) observed in the SMF and resulting from the 

pump laser. As a consequence, the LPG resonance depth disappears in the presence of 

the noise, as is shown in Figure 122.  
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Figure 122 - Spectrum of the signal processed by the LPG with resonance wavelength at 

1544 nm measured at the input port of the interrogation unit for the two setups; it is also 

shown the transfer function of the FBGs at the interrogation unit. 

 

A simple way to increase the signal reflected by the sensor head and to overcome 

these drawbacks relies in a system with two different fibers, shown in Figure 121 (b). 

The first optical path is used to couple the broadband signal to the sensor and also acts 

as the Raman gain medium, since the pump laser is emitting co-propagating light with 

the broadband signal into the fiber. The second optical path receives the optical signal 

processed by the LPG sensor head and delivers it to the interrogation unit. 

 

The transmission of the optical signal along two separated optical paths reduces 

both the ASE noise and the backward Rayleigh scattering in the return fiber, since 

these effects will be concentrated at the transmission channel and affect mainly the 

signals propagating from the sensor to the source. 
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The LPG works as the sensor element and is set at the SMF output. In this setup, 

the broadband signal used to feed the sensor head and the pumps are propagating 

together in the same single mode fiber. The LPG sensor head is placed in a metal 

surface that can be heated and maintained at a stabilized temperature, using a 

thermostat control circuit. The LPG with a period of 392 µm is spliced to a fiber 

mirror that reflects part of the incident light. An optical isolator is positioned at the 

pump laser output to prevent back reflections. The number of pumps was chosen 

adequately to provide gain over the spectral response of the optical sensor and to 

compensate the losses over a fiber span of 50 km. In this case, just one pump laser 

was used. The spectral response of the sensor was measured with the dynamic 

interrogation approach described above. 

 

Figure 122 shows the power spectrum measured at the input port of the 

interrogation unit for both schemes of Figure 121. The setup with only one optical 

channel presents poor resolution, since this scheme has an higher noise figure, due to 

the Rayleigh backscattering and ASE concentrated in only one fiber. Therefore, the 

resonance wavelength in this setup vanishes in the presence of the noise, as the 

previous simulations predicted in Figure 119. 

 

As can be seen in Figure 122, the LPG spectrum received at the interrogation unit is 

unusual, i.e., the right side of the spectrum around 1561.0 nm shows higher 

amplification. Although it can appear not conventional, the measured spectrum is a 

result of the characteristics of the Raman amplification, due to the continuous wave 

(CW) high power laser pump centered at 1455.1 nm available in the laboratory. It 

should be noted that the Raman gain peak is around 106 nm far away from the pump 

laser wavelength.  

 

The LPG temperature sensitivity is around 0.13 nm/
º
C, which is similar to the one 

encountered in typical LPG sensors and one order greater than the typical value for 

FBG sensors [158]. The change in temperature shifts the resonance wavelength 

incrementally toward longer wavelengths. Therefore, the interrogation unit using the 

ratiometric technique can read this wavelength shifts and interpret these changes as 

temperature variations. 
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Piezoelectric actuators (PZTs) are responsible for the electrical frequency 

modulation of the power reflected by the FBGs. The spectral response of the sensor 

was measured at the interrogation unit composed by two FBGs, centered at 1537.5 nm 

and 1548.4 nm, respectively, and modulated by PZT1 and PZT2. These PZTs are 

activated by two different function generators, set at frequencies f1 (756.6 Hz) and f2 

(600.6 Hz), respectively. So, an electrical spectrum analyzer (ESA) can be used to 

measure power at these frequencies. The advantage of using an interrogation setup 

with electrical measurement instead of optical techniques is the better spectral 

resolution and the lower cost in comparison with optical interrogation methods
 
[62]. 

 

Figure 123 shows the electrical spectra received at the ESA in the remote optical 

fiber sensor using Raman amplification due to a laser pump with power equal to 

1.5 W, centered at 1455.1 nm. The power reflected by the first FBG (P1) was 

modulated with f1 and the power reflected by the second FBG (P2) was modulated 

with f2. Notice that without the Distributed Raman Amplification, these electrical 

peaks (P1 and P2) generated by the modulation of the FBGs are vanished, so the 

electrical interrogation is not suitable anymore. 
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Figure 123 - Electrical power spectrum of the signal received at the ESA for the 

temperatures of 36.2 ºC, 39.5 ºC, 44.50 ºC and 49.00 ºC, respectively. 
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The relationship between the temperature and the parameter procP , derived from the 

measurements performed by the ESA and shown in Figure 123, is depicted in Figure 

124. A linear relationship can be observed between temperature measured 50 km 

away and the output processed signal.  
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Figure 124 - 

procP  parameter as a function of temperature for the setup depicted in 

Figure 121 (b) (laser pump at 1455.1 nm and launched power of 1.5 W). 

 

Without amplification the signal levels were too low and the amplitude modulated 

electrical frequencies of both FBGs were in the same level of the noise floor, 

degrading the sensor sensitivity. The Raman amplification is responsible for 

mitigating the attenuation of these signals and raising the level of the electrical power 

peaks, resulting in a temperature sensitivity of 0.05 ºC
-1

. 

 

The maximum temperature measurement range is a function of the LPG bandwidth. 

As it increases, it enables a larger measurement range, surely with the penalty of a 

reduced sensitivity due to the decreasing of the linear slope in the LPG optical 

spectrum. Also, the LPG depth strongly affects the electrical interrogation sensitivity. 

Therefore, a compromise is observed among sensitivity and measurement range. An 

evaluation of Raman amplification on the optimal sensing system dramatically 

improves the resolution of the electrical interrogation technique when the noise levels 

of the systems are mitigated. The measurement range shown in Figure 124 can be 
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increased if the device used to control the temperature enables temperature reduction 

of the metallic plate where the grating is deployed. 

 

7.5 Summary 

 

An optical fiber sensing layout in which the sensing head (in this case, a LPG 

sensor) is seen in transmission by the optical source, but in reflection by the 

processing unit was demonstrated in section 7.2. The results obtained indicate that for 

a 20km lead fiber, the sensor modulated optical power that reaches the detector is 

~8 dB higher than the value associated with the standard configuration, allowing the 

sensor readout when located far away. Insights about the potential of this new 

approach were presented considering other important merith factors that need to be 

addressed when dealing with specific sensor types, such as resonance plasmonic 

sensors. 

 

In the study presented in section 7.3, a LPG was used in conjunction with an OTDR 

for remote refractive index measurement. A comparison between the system 

responses at the OTDR laser ranges of 1310nm and 1550nm was carried out. 

Moreover its behavior was also assessed with and without Erbium doped fiber 

amplification. The experimental results show that the first setup has a good 

performance and a resolution of 1.5×10
-4

 RIU was obtained without any kind of 

optimization. The obtained results show that the scheme presented is a simple, low 

cost solution for environmental remote monitoring. The multiplexing ability was also 

tested. Refractive index and temperature were measured with two different fiber 

gratings. The measured sensitivities were 106 dB/RIU and 0.06 dB/ºC respectively 

and resolutions of 3x10
-4

 and 0.16 ºC were estimated. The presented configurations 

show high potential for remote sensing, with multiplexing capability, allowing the 

possibility of multiparameter or quasi-distributed sensing for environmental purposes. 

 

The work presented in section 7.4 addressed the importance of optical amplification 

in the operation of optical fiber sensors for remote sensing, showing the relevance of 

Raman amplification to increase the sensing distances and realize environmental 

monitoring in distances of several kilometers. This technology allows the use of the 



 

OPTICAL FIBER SENSING CONFIGURATIONS FOR REMOTE SENSING 

169 

same infrastructure of the optical fiber system using the SMF optical fiber as a gain 

medium. The scalability of the gain bandwidth can be optimized by changing the 

number and characteristics of the pump lasers. The flexibility and possibility of 

incorporating optical sensors directly in already installed systems, strongly suggests 

that Raman amplification can be considered the best choice for remote optical fiber 

systems, mainly when sensor multiplexing is considered due to the tuning capability 

of the Raman gain bandwidth. A numerical model was developed in this work that 

permits us to analyze the performance of the remote optical fiber sensor system based 

on diffraction gratings, mainly LPGs and FBGs. It was based on the differential 

equations that describe spatial propagation and interaction between signal and pumps. 

The model succeed to predict the LPG response and permits us to consider the best 

setup to be used to perform the remote measurement with the best resolution on the 

LPG wavelength. Different setup configurations can be analyzed with the developed 

model. In particular, a remote (50 km) optical fiber system for environmental 

temperature measurement was demonstrated. An electrical interrogation unit was 

used, providing operational performance at a reduced cost. 
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Chapter 8 – Conclusions and further work 

 

Equation Chapter (Next) Section 8 

 

Optical sensing, more specifically fiber based sensing heads and the interrogation 

techniques developed to understand what is happening in the sensing medium are 

nowadays a hot topic of research, looking for developments suitable for specific 

applications in a variety of fields. A brief overview on this thesis content, the 

contributions achieved within its topics and the actual contextualization of such work 

was given in Chapter 1.  

 

Chapter 2 presented a general state of the art in the optical fiber sensors area, with 

particular emphasis in the technologies that were involved in the developments 

presented in the further chapters. 

 

Chapter 3 highlighted a few developments related with microstructured fibers. 

Achievements in coupling light and splicing special types of fibers were described. 

Further sensing capabilities, with the inscription of fiber Bragg gratings, long period 

gratings and rocking filters in microstructured fibers were carried out. The standard 

types of fibers gratings studied will continue to find adequate sensing applications 

once new designs of microstructured optical fibers provide new opportunities that 

bring them up to date. 

 

The state of the art in optical fiber sensors for gas detection and an optical fiber 

sensing system for detecting low-levels of methane was developed and presented in 

Chapter 4. The properties of hollow-core photonic crystal fibers were explored to 

create a sensing head with favourable characteristics for gas sensing, particularly in 

what concerns intrinsic readout sensitivity and gas diffusion time in the sensing 

structure. The sensor interrogation was performed by applying the wavelength 

modulation spectroscopy technique and the results in terms of the system resolution 

were improved using a new optical sensing head. The research involved in the 

developments and achievements described in Chapter 4 will allow improved 

investigation and appropriate technology development for constructing versatile 
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prototypes, able to discriminate and measure simultaneously environmental gaseous 

parameters, of different gas species, using multi-point and/or distributed interrogation 

systems. Underlying this general direction is the purpose of combining with 

advantage for the development of science and technology, area of optical fiber sensors 

with the emerging concepts of biochemistry, biotechnology and biosensors. 

 

Chapter 5 explains how modal interferometry can be used with different kinds of 

microstructured fibers to sense strain, temperature, curvature and torsion. Multimode 

interference sensing presents also interesting solutions, because they can be easily 

fabricated and applied in different situations. Though, multiplexing multimode 

interference sensors for refractive index measurement is still a challenge and this topic 

will certainly be object of intense research in the near future. 

 

The principle of operation of a new concept for measuring quasi-static parameters, 

the electrical dynamic interrogation, was shown in Chapter 6. The analysis of the 

detected first harmonic generated by the electrical modulation of fiber gratings, allows 

generating a signal proportional to the LPG spectral shift and resilient to optical 

power fluctuations along the system. This concept permits the attenuation of the effect 

of the 1/f noise of the photodetection, amplification and processing electronics on the 

sensing head resolution. A variation of this technique, using modulated distributed 

feedback lasers, was also employed in a multiplexing sensing scheme for refractive 

index measurements. The dynamical electrical interrogation concept will certainly 

find an interesting niche for environmental sensing applications. The advantages of 

this technique have to be combined with adequate signal processing techniques in 

order to achieve higher resolution measurements, which will be a topic of intense 

research in the near future. This interrogation method can be applied not only to LPGs 

but also to other band rejection filters based or not in microstructured fibers used for 

the measurement of DC or quasi-DC measurands, like multimode interferometers and 

surface plasmonic resonance devices.  

 

Finally, Chapter 7 presented three different optical fiber based configurations for 

remote sensing of physical parameters. First, an in situ optical source for remote 

detection of refractive index variations was presented. Further an OTDR based 

scheme was also used to perform refractive index interrogation. By last a Raman 
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amplified system was numerically simulated and experimentally tested for remote 

detection of temperature.  
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 Appendix 1  

 

Equation Chapter (Next) Section 9 

 

Methane Detection with Non-PCF Based Solutions 

 

As observed in section 4.4.2, the presence of a deleterious phenomenon associated 

with intermodal interferences effects that unfortunately will reduce the signal-to-noise 

ratio was noticed. Open path gas cells were tested together with the developed 

interrogation system, in order to understand if a better signal-to-noise ratio would be 

obtained, leading to a lower methane detection limit.  

 

Methane Measurements with the U-bench 

 

Using the U-bench, a sensing head with 30 mm of open path, presented in Figure 

125, inside the gas chamber of the optoelectronic system described in section 4.3.1, 

was tested.  

 

 

Figure 125 - Detail of the U-bench, for methane measurements, inside the gas chamber. 

 

This sensing head behavior was characterized in transmission, as depicted in Figure 

126. 
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Figure 126 - Experimental setup of the detection scheme using the U-bench as a sensing 

head. 

 

The experimental results obtained for the second harmonic amplitude, which is 

directly proportional to methane concentration, are shown in Figure 127. 
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Figure 127 - System response for three methane concentration changes. 

 

From Figure 127 a linear S/N value of 3041 was obtained, giving rise to a SNR of 

69.7 dB. Thus, for the sensing head with 30 mm tested in transmission, a value of 
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7 ppm was reached, which is the methane detection limit for the U-bench sensing 

head. 

 

Methane Measurements with a Developed Open-Path Gas-Cell 

 

Another non-PCF-based solution for the sensing head was evaluated as well. This 

alternative solution was based on a reflective open-path gas-cell with a GRIN lens on 

one side and a mirror on the other side. It was designed to be robust and compact, in 

order to be used in real field applications and at the same time a ppm-sized resolution 

was targeted. 

 

  

Figure 128 - Graphical representation of the open path gas cell and expanded view 

revealing the different components of which it is made up. 

 

The reflective open-path gas-cell was placed inside the gas chamber (Figure 129) 

and connected to the detection scheme as depicted in Figure 130. 

 

 

Figure 129 - Detail of 80 mm open path sensing head inside the gas chamber. 
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Figure 130 - Experimental setup of the detection scheme using the developed reflective 

open-path gas-cell. 

 

The experimental result obtained for the behaviour of the second harmonic 

amplitude, which is directly proportional to the gas concentration, using the open-path 

reflective gas cell is shown in Figure 131. 
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Figure 131 - Measured amplitude of the second harmonic for four different methane 

concentrations. 
 

Once more, the sensitivity of the system is determined by the voltage change per 
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reflection, gives rise to a 4 ppm methane detection limit, which is a quite satisfactory 

result. 

 

As could be seen in both experiments, the signal remains very stable during the 

periods of constant gas concentrations. This is an indication that the developed 

detection system has a high repeatability. 
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 Appendix 2  

 

Equation Chapter (Next) Section 10 

 

Interferometric Optical Fiber Inclinometer with Dynamic FBG Based 
Interrogation 

 

This work aims to achieve an interferometric optical inclinometer sensor for 

application in the electric power industry. The earliest application of optical fiber 

sensors in such context dates probably from 1977, where electric current measurement 

using optical fiber sensors was reported [159, 160]. More recently, loading of power 

transmission lines, winding temperature of electrical power transformers, and large 

electrical currents have been measured with FBG based sensors [160].  

 

The goal is to analyze the possibility of using an optical inclinometer to measure the 

bending angle of the catenary of high voltage transmission cables as they are subject 

to overcurrent. Tilt sensors (also known as inclinometers) are required for measuring 

the angular deflection of an object against a reference plane or line. They are 

frequently used in the field of aviation (e.g., monitoring the aircraft landing) and civil 

engineering (e.g., monitoring the inclination of towers and bridge holders) [161]. 

They can also be applied to platform levering, boom angle indication, slope angle 

measurement, etc. Most conventional tilt sensors are realized by transforming the 

inclination into electric signals through a magnetic effect [162, 163] or capacitive 

effect [164]. A significant number of optical inclinometers reported so far are based 

on fiber Bragg gratings (FBGs) coupled to a vertical pendulum. The sensor proposed 

here is based on a tapered fiber Michelson interferometer. A preliminary study of the 

inclinometer spectral behavior is assessed through experimental measurements and its  

computational analysis, aiming to characterize and improve the sensor response. An 

electric interrogation technique was tested, that is based on modulation at different 

electrical frequencies, of the Bragg wavelengths of two FBGs, spectrally located in 

strategic points of the interference pattern, and detection of the amplitude at these 

frequencies of the signals reflected by the FBGs. These amplitudes are proportional to 

the slopes of the fiber-taper Michelson interferometer spectral response at the FBG 
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wavelengths, which change with the relative amplitude changes of the interferometer 

and FBGs modulation movements. This processing allows the generation of a signal 

proportional to the interferometer visibility or wavelength shifts and is immune to 

optical power fluctuations along the system. The performance of this technique was 

tested for measurement of small angle variations. Preliminary results obtained with 

this interrogation technique are reported. 

 

Principle and Discussion 

 

Michelson interferometers based in tapered optical fibers have been intensively 

studied in recent years. This device is used as a sensor to measure a multitude of 

physical parameters as temperature, refractive index and tilt [165]. In this appendix it 

is discussed the use of this kind of interferometer as an optical inclinometer, with the 

intention to analyze the possibility of its use to measure catenary bending in power 

systems cables which suffer elongation due to overcurrent as well as other 

applications in the power system industry. The fiber-taper Michelson interferometer, 

shown in Figure 132, consists of a section of the fiber between a taper, i.e., a small 

region of the fiber with the cladding diameter reduced, and its cleaved end. The taper 

couples a fraction of the core light to the cladding modes which are propagating along 

the cavity, until the tip end. Then they are reflected by the cleaved end, which acts as 

a partial mirror (4% reflection coefficient due to Fresnel reflection on a glass-air 

interface), and coupled back on the taper. 

 

 

Figure 132 - Schematic representation of the fiber-taper Michelson interferometer 

 

The phase difference between the cladding mode ( nmLP ) and the core mode ( 01LP

) traveling in the taper length L  is approximately expressed as, 
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4 nmn L

 (A2.1) 

 

where nmn  is the effective refractive index difference between the two modes and 

 is the wavelength of the traveling light. When the axis of the taper of the Michelson 

interferometer is bended the effective length of the taper is varied, resulting in phase 

and amplitude variations between the fundamental and cladding modes. This kind of 

inclinometer presents some advantages such as its ease of fabrication by the 

arc-discharge technique, operation in a reflective mode (allowing remote 

interrogation) and possibility of miniaturization and compactness. 

 

There are some methods to fabricate tapers on fiber such as flame [166, 167], a 

focused CO2 laser beam [168, 169], a micro furnace and an electronic arc formed 

between a pair of electrodes, such as a in fusion splicer [165]. The fabricated fiber-

taper was done through a built-in program in a standard fusion splicer. The length of 

the taper was configured to be 100 µm. After some preliminary tests the sensor 

selected for testing had an interferometer length of about 21 cm. Figure 133 presents 

the spectrum of the signal received from this interferometer, obtained with a 

broadband source illumination and detection with an optical spectrum analyzer. 

 

 

Figure 133 - Optical spectrum of the optical inclinometer based on tapered optical fiber 

and a 21 cm cavity length (obtained at zero tilt angle). 

 

The first analysis of the optical inclinometer was performed using an optical 

spectrum analyzer (OSA) and acquiring the data to observe the behavior of the 
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interference fringes as the tilt angle was varied in the range from 1 to 15 degrees, with 

steps of 1 degree. The sensor response was then analyzed in terms of fringe visibility 

and peak spectral position. The fringe visibility refers to the contrast between a peak 

and a valley of an interference fringe. The fringe chosen for closer analysis was the 

one with greater visibility, which is located in the spectral range between 1548 nm 

and 1551 nm, as can be seen in the Figure 133. The fringe visibility, , could be 

calculated using the following expression 

 

 max min

max min

I I

I I
 (A2.2) 

 

where maxI  and minI  are the maximum and minimum optical intensity of adjacent 

peaks and valleys of the interference fringe pattern, respectively. The results obtained 

for the visibility in the range studied can be observed in Figure 134 (a). Monitoring 

the spectral position of the interferometric peak was also performed in the same 

angular and spectral ranges and the results are shown in Figure 134 (b). 

 

(a)            

(b)  
Figure 134 - Behavior of the optical inclinometer for the angular range between 0 and 15 

degrees with steps of 1 degree. (a) response of fringe visibility; (b) response of peak 

wavelength position. 

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Angle (degree)

F
ri
n

g
e

 V
is

ib
ili

ty
 

 

 

Experimental data 

   10th degree polinomial fit

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
1548.4

1548.6

1548.8

1549

1549.2

1549.4

1549.6

1549.8

1550

1550.2

1550.4

Angle (degree)

W
a

v
e

le
n

g
th

 (
n

m
)

 

 

Data

   7th degree polinomial fit



 

APPENDIX 2 

185 

 

The results clearly show that the angular range with greater variation of visibility is 

found between 3 to 6 degrees. Therefore, a more detailed analysis was performed 

within this range making measurements with steps of 0.2 degrees. When using FBG 

based interrogation systems, the behavior of optical power intensity at different 

spectral positions can be analyzed and processed into a meaningful measurement. In 

this particular case two FBGs should be selected in spectral regions providing a 

response to angular changes with sensitivity and linearity as large as possible. In order 

to analyze the response of the inclinometer and choose the best positions for the 

interrogation FBGs, based in the aforementioned principles, numerical simulations 

were carried out using Matlab® software. With the developed software it was possible 

to simulate the response of the FBG interrogation system with the “virtual FBG” 

placed at any position of the spectrum. Using the least squares methods, the slope and 

correlation coefficient ( 2R ) of the estimated linear fit for the sensor response was 

computed. The wavelength ranges presenting higher slope in consonance with a value 

of correlation coefficient of at least 0.9 ( 2 0.9R ) were considered as appropriate 

for the spectral localization of the FBGs. In Figure 135 curves of the angular 

coefficient and 2R related to tilt variations between 3 and 6 degrees are shown. It can 

be seen that the best spectral locations for the FBGs are around 1549.2 nm and 1550.3 

nm with values of 2R = 0.994 and 2R = 0.982, respectively. 

 

 

Figure 135 - Plots of the angular coefficient and correlation coefficient (R
2
) referring to 

the changes observed in optical power as a function of wavelength obtained for tilt 

variations between 3 and 6 degrees. The wavelengths with higher sensitivity and 

linearity are 1549.2 nm (R
2
 = 0.994) and 1550.3 nm ( R

2 
=

 
0.982) and are signaled by the 

vertical lines. 
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Considering these optimum wavelengths the following operation was computed to 

obtain the sensor output response, 

 

 1 2

1 2

Normalized output = 
I I

I I
 (A2.3) 

 

where 1I  and 2I  are the optical intensities reflected by FBG1 and FBG2, respectively. 

It is interesting to note that the wavelength of 1551.3 nm could also have been chosen, 

since it presents an angular coefficient even greater and its 2R  is satisfactory. 

However, since the sensor response is based on comparing of optical intensities 

between two spectral points, it is necessary to take into account the behavior of the 

fringes for the tilt range under consideration. For tilt angles within the range of 3 to 6 

degrees, the main characteristic of the fringes is a variation of their visibility, as can 

be confirmed by comparison of Figure 134 (a) and (b). Therefore, in this particular 

case, the best response is achieved if one of the spectral points is located in the 

vicinity of a peak and the second one in a valley. Figure 136 shows the detailed 

spectral behavior of the fringe under study for tilt variations in the aforementioned 

range, and the optimized position for the FBGs signaled by vertical lines. 

 

 
Figure 136 - Interferometric fringes and spectral locations of the interrogation FBGs 

represented by vertical lines. 

 

Following this analysis for the selection of the FBGs, equation (A2.3) was used, 

considering these optimized spectral positions, to evaluate the sensor response. As can 
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be seen in the Figure 137 the optical inclinometer presents a good linear response 

within the range of 3.2 to 6 degrees. 

 

 
Figure 137 - Normalized response of the sensor obtained through simulations. 

 

The angular range between 10 and 14 degrees was also analyzed. This angular 

range presents as its main characteristic a predominant wavelength shift of the 

spectral peak as can be seen in Figure 134 (b).  

 

Similar criterions were used to select the FBG wavelength points for better 

performance. The spectral positions of the FBGs according to higher slope and 

correlation coefficient, were found to be 1549.6 nm and 1551.6 nm, with 2R = 0.969 

and 2R = 0.956, respectively. The response of the sensor was then calculated by 

equation Error! Reference source not found. within the range of 10 to 14 degrees. 

Figure 138 shows the curve of the sensor response for angular variation between 10 

and 14 degrees. As can be noted, the sensor response presents a similar linearity and a 

better sensitivity (0.3 /degree) when compared with the previously studied angular 

range (0.21 /degree). Considering that the ratiometric technique allows for a small 

variation in visibility or wavelength shift to be measured, from this data it can be 

estimated that the sensor will be able to discriminate angular changes in the 10
-2

 

degree range. 

 

3.2 3.4 3.6 3.8 4 4.2 4.4 4.6 4.8 5 5.2 5.4 5.6 5.8 6
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Angle (degree)

N
o
rm

a
liz

e
d
 O

u
tp

u
t

 

 

Normalized output

   linear fit  (R2  = 0.9933)

Sensitivity = 0.21 / degree



 

APPENDIX 2 

188 

 
Figure 138 - Normalized response of the inclinometer optical for the range of 10 to 14 

degrees. 

 

Measurements by means of the dynamic interrogation technique described in 

chapter 5 were also performed. This approach can be an interesting low cost 

alternative to interrogate optical sensors in real systems. In this dynamic electrical 

interrogation approach 0( ) /outP P  is not being monitored, i.e., it was not applied the 

standard DC reading approach consequently affected by low-frequency noise, which 

usually has a 1 / f  power spectral dependence. On the other hand, what is being 

monitored 0( / ) /outdP d P , i.e., the slope approach, which performs an interrogation 

that is compatible with a frequency range far from the 1 / f  noise region, which also 

means that the signal-to-noise ratio can eventually be favoured by the reduction of the 

noise level, eventually compensating, with advantage, the reduction in signal 

amplitude. The schematic diagram of the interrogation technique is showed in Figure 

139. 
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Figure 139 - Setup of the interferometric optical fiber inclinometer with dynamic FBG 

based interrogation. 

 

A broadband source (ASE) was used to illuminate the sensor head. The light is 

reflected back in the cleaved tip of the interferometer and is injected again in the 

optical circulator, propagating towards the two interrogating fiber Bragg gratings 

(FBG1 and FBG2). These FBGs are placed on piezoelectric transducers (PZT1 and 

PZT2) driven by two independent signal generators at different frequencies. The 

optical signals are reflected from the electrically modulated FBGs and are injected 

into a photodiode for detection and conversion into an electrical signal. The detected 

electrical signal may be visualized by means of an electrical spectrum analyzer 

(ESA), where the signals coming from each grating can be identified by their 

corresponding modulation frequency. Then with the voltage values corresponding to 

each of the modulating frequencies the normalized sensor response can be obtained by 

computing  

 

 1 2

1 2

V V
Vproc

V V
 (A2.4) 

 

where 1V  and 2V  are the voltages corresponding to each of the modulating 

frequencies. In this particular experiment, FBG1 and FBG2 were modulated at 

frequencies of 1544 Hz and 1752 Hz, respectively. 
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Preliminary experiments were made with the electric interrogation technique. The 

experiments were carried out in the angular range between 3 and 6 degrees. The FBGs 

available at the time had wavelength peaks of 1549.5 nm and 1551.5 nm, which were 

not at the optimum calculated positions. Although the experiment was carried out 

with the FBGs deviated from their optimum spectral positions, the results obtained 

matched closely the results predicted by the simulations for the range of 3 to 6 

degrees. Figure 140 shows the linear calibration curve obtained with the electrical 

interrogation setup demonstrating its viability (sensitivity of 0.35 /degree). 

 

 
Figure 140 - Normalized output of the electric interrogation system as a function of 

inclination angle of fiber-taper Michelson interferometer for 3.5 to 5.5 degrees. 

 

Conclusions 

 

An optimization study of an optical inclinometer based on a fiber-taper Michelson 

interferometer was presented. An evaluation by means of experimental measurements 

and numerical analysis of the experimental data was done. The numerical results 

indicated a sensor response with good sensitivity and linearity in the range of 3.2 to 6 

degrees and 10 to 14 degrees. In the first range the predominant effect of tilting was a 

change in interferometric visibility. On the other hand, in the higher angular range, the 

predominant effect was a spectral shift of the fringe peak wavelengths. Both 

mechanisms are suitable for interrogation using spectral scanning or strategically 

placed FBGs, in a fashion that is independent off optical power fluctuations. A low 

cost strategy to interrogate the response of sensors using electrically modulated fiber 
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Bragg gratings, a photodetector and frequency analysis was described. Preliminary 

results were obtained with the electrical dynamic interrogation method showing good 

linearity and sensitivity in the range around 3.5 to 5.5 degrees. At this stage 

temperature was kept constant for simplification of the analysis. Further studies are 

underway to assess the possibility of compensating or simultaneously measure 

temperature and inclination. Also reproducibility, long term stability and packaging 

will be the subject of further experiments. 
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 Appendix 3  

 

Equation Chapter (Next) Section 11 

 

Sistema de Interrogação Remoto com Fonte Óptica Acoplada à Cabeça 
Sensora (Portuguese Patent: 105244) 

 

Orlando Frazão, Diana Viegas, Luis Coelho, Joel Carvalho 

 

Resumo 

 

É apresentado um sistema de interrogação para detecção remota de sensores óptico 

de rejeição de banda monitorizados em reflexão usando assim uma única fibra que ler 

o sensor óptico. A nova configuração remota consiste em acoplar uma fonte de 

espectro largo ao sensor óptico. A fonte de espectro largo está localizada depois do 

sensor óptico e o sensor é interrogado em transmissão pela fonte remota. A fonte de 

espectro largo consiste numa fibra dopada com terras-raras em que é bombeada com 

um laser de bombagem que se encontra perto do sistema de processamento de sinal. 

Esta técnica apresenta uma grande vantagem quando comparada com o sistema 

tradicional em que se necessita de duas fibras para interrogar o sensor óptico. Uma 

para iluminar o sensor óptico e outra para levar a informação do sensor ao sistema de 

processamento de sinal.  
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