
REVIEW ARTICLE 
 
Scavenger Receptors: Promiscuous Players During Microbial Pathogenesis 
 

Rita Pombinhoa, Sandra Sousaa, Didier Cabanesa* 

 
a Instituto de Investigação e Inovação em Saúde, i3S; Instituto de Biologia Molecular e Celular, 
IBMC; Group of Molecular Microbiology; Universidade do Porto; Porto, Portugal 
 
Contact: *Didier Cabanes; didier@ibmc.up.pt; Rua Alfredo Allen, 208, 4200-135 Porto, Portugal 
 
 

Abstract 

Innate immunity is the most broadly effective host defense, being essential to clear the majority of 

microbial infections. Scavenger Receptors comprise a family of sensors expressed in a multitude of host 

cells, whose dual role during microbial pathogenesis gained importance over recent years. SRs regulate 

the recruitment of immune cells and control both host inflammatory response and bacterial load. In turn, 

pathogens have evolved different strategies to overcome immune response, avoid recognition by SRs and 

exploit them to favor infection. Here, we discuss the most relevant findings regarding the interplay 

between SRs and pathogens, discussing how these multifunctional proteins recognize a panoply of ligands 

and act as bacterial phagocytic receptors.  
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Scavenger Receptors: an emergent family of Pattern Recognition Receptors 
Host cells are effective guardians of the immune response through the expression of complex 

surveillance systems, including the Pattern Recognition Receptors (PRRs) (Pluddemann et al. 2011). 

SRs include a diverse and evolutionary conserved family of PRRs that are functionally and structurally 

distinct. They are soluble or cell surface associated proteins originally implicated on the recognition and 

binding of modified lipoproteins. Indeed, the scavenger activity of these receptors was first associated 

to their ability to bind and internalize oxidized low-density lipoproteins (Brown and Goldstein 1979). 

Oxidized low-density lipoproteins were implicated in the pathogenesis of atherosclerosis by challenging 

normal homeostasis (Kzhyshkowska et al. 2012). By recognizing specific epitopes, SRs can differentiate 

between unaltered and modified self-molecules (Greaves and Gordon 2009). However, the range of 

ligands that SRs recognize is extremely diverse and it is now appreciated that SRs eliminate a number 

of altered self- and non-self-ligands (extensively reviewed elsewhere) (Areschoug and Gordon 2008, 

2009; Mukhopadhyay and Gordon 2004; Pluddemann et al. 2006). Diverse cell processes ranging from 



endocytosis to phagocytosis or macropinocytosis are usually undertaken to eliminate unwanted ligands 

and maintain homeostasis (Prabhudas et al. 2014). Importantly, SRs are widely expressed in cells 

patrolling potential portals of pathogen entry, such as macrophages, neutrophils, dendritic cells, 

microglia and B cells, but they are also expressed in endothelial and epithelial cells (Mukhopadhyay 

and Gordon 2004; Murphy et al. 2005; Platt and Gordon 2001). Currently, SRs are categorized into 10 

classes (A-J) grouped according to their sequence similarity or common structural features (Fig. 1) 

(Prabhudas, et al. 2014). Several SRs have been reported to play opposite roles during bacterial 

infection: whereas at portals of pathogen invasion SRs recognize a myriad of microbial proteins 

activating downstream immune responses to fight and eliminate the pathogen, some pathogens hijack 

SRs function exploiting them to bind and invade cells, thus promoting intracellular survival and 

proliferation. Having in mind that SRs have a primordial role to maintain homeostasis by controlling 

cell integrity, which may impact pathogen infection (Trahtemberg and Mevorach 2017), this review 

focuses on SRs as an emergent family of PRRs, and their interplay with different pathogens to either 

promote an effective innate immune response or by the contrary, favor microbial pathogenesis. 

 

Scavenger Receptors from Class A  
Class A SR includes five membrane proteins containing a collagen-like domain with collagen-binding 

activity (Fig. 1) (Gowen et al. 2001; Kodama et al. 1990; Zani et al. 2015). These proteins are primarily 

expressed in tissue-resident macrophages and dendritic cells (Hughes et al. 1995). Their role in bacterial 

pathogenesis was essentially reported for Scavenger Receptor A (SR-A) and Macrophage Receptor with 

Collagenous Structure (MARCO). 

 

SR-A 

SR-A has long been shown to bind to Escherichia coli lipopolysaccharide (LPS) and lipoteichoic acids 

from some Gram-positive bacteria and was thus suggested to be implicated in host defense (Dunne et al. 

1994; Hampton and Raetz 1991). Further studies revealed its involvement in the pathogenesis of different 

microorganisms and importantly, pointed to the dual role of SR-A in infection, either by favoring the host 

response contributing to pathogen elimination or by promoting pathogen survival and dissemination.  

In particular, SR-A was reported to be detrimental for the host during Mycobacterium tuberculosis (Mtb) 

infection of alveolar macrophages. Indeed, SR-A knock-out (KO) mice display increased survival to 

pulmonary tuberculosis (Ulrichs and Kaufmann 2006). Histopathology analysis of infected lungs showed 

Mtb within cholesterol clefts and multinucleated foam cells in SR-A KO mice, whilst necrotic 

macrophages obstructing alveolar and bronchial spaces were detected in wild type (WT) mice (Sever-

Chroneos et al. 2011). In addition, the analysis of cell populations in infected lungs revealed increased 

recruitment of CD4+ lymphocytes and antigen-presenting cells (APCs) in SR-A KO mice, suggesting SR-

A as a negative regulator of pulmonary adaptive immunity during chronic Mtb infection (Fig. 2) (Sever-

Chroneos, et al. 2011). SR-A was also reported to be disadvantageous for the host during Cryptococcus 



neoformans and Pneumocystis carinii infections. As described for Mtb infection, SR-A KO mice 

displayed improved pulmonary fungal clearance, which is intimately associated with stronger 

accumulation of CD4+ T cells and CD11b+ myeloid cells in the lungs (Hollifield et al. 2007; Qiu et al. 

2013). Together, these reports suggest that SR-A confers an advantage for pathogens infecting host lungs 

and reinforce the idea that SRs can be exploited by pathogens to promote their survival within the host. 

SR-A KO mice were less prone to Brucella abortus infection, which is attributed to decreased bacterial 

internalization and intracellular replication within SR-A-deficient macrophages (Kim et al. 2004). SR-A 

was also implicated in the non-opsonic phagocytosis of two major Gram-positive pathogens, 

Streptococcus agalactiae (GBS) and Streptococcus pyogenes, by murine bone marrow-derived 

macrophages. The polysaccharide capsule or the bacterial surface lipoprotein Blr of GBS and the surface 

M protein of S. pyogenes were shown to prevent SR-A-mediated recognition and non-opsonic 

phagocytosis (Fig. 2) (Areschoug and Gordon 2008; Carlsson et al. 2005). 

Reversely, SR-A also appears to be crucial to protect the host from pathogen damage. Neisseria 

meningitidis binds bone marrow-derived macrophages almost exclusively through SR-A and 

independently from LPS, suggesting that SR-A-expressing macrophages may be critical in the innate host 

immune response to meningococci (Peiser et al. 2002). Additionally, binding assays aiming to uncover 

SR-A ligands identified three N. meningitidis proteins: NMB1220, NMB0278 and NMB0667 (Fig. 2). 

Soluble forms of these proteins were shown to block the binding of meningococci to CHO cells stably 

transfected with SR-A. Nevertheless, the authors claimed that only NMB1220 induced SR-A-mediated 

endocytosis in macrophages (Peiser et al. 2006). SR-A-mediated phagocytosis of viable N. meningitidis 

highly stimulates DCs, considered the first line of defense against invading N. meningitidis, and the 

release of pro-inflammatory cytokines, including TNF-α, IL-1β and IL-6 (Fig. 2). Interestingly, SR-A was 

reported transiently dephosphorylated shortly after meningococci contact, suggesting that SR-A 

engagement in response to bacterial binding elicits intracellular signaling to trigger a cellular response 

(Villwock et al. 2008). Importantly, N. meningitidis infected SR-A KO mice showed reduced survival as 

compared to WT mice, exhibiting higher levels of bacteremia and circulating IL-6, which is commonly 

associated with meningococcal septicemia in humans (Fig. 2) (Pluddemann et al. 2009; Prins et al. 1998). 

Additionally, the lack of SR-A was reported to impair host survival against infections by Mycoplasma 

pulmonis and Staphylococcus aureus (Fig. 2) (Booth et al. 2014; Thomas et al. 2000). 

Concerning Listeria monocytogenes infection, different studies pointed to the beneficial role of different 

SR-A isoforms in host protection. SR-AI (SR-A1) KO mice showed higher susceptibility to L. 

monocytogenes infection, with highly increased bacterial burden and decreased host survival (Suzuki et 

al. 1997). The increased susceptibility of SR-AI KO mice to L. monocytogenes infection was related with 

a defect in the uptake or killing of bacteria by macrophages (Fig. 2) (Suzuki, et al. 1997). Mice KO for 

both SR-AI and SR-AII (SR-A1.1) were also shown to be more susceptible to L. monocytogenes infection 

and displayed increased hepatic granuloma formation regarding their number, dimension and persistence 

throughout the infection (Fig. 2) (Ishiguro et al. 2001). Concomitantly, Kupffer cells and peritoneal 



macrophages from SR-AI/II KO mice showed decreased L. monocytogenes phagocytosis. Moreover, the 

listericidal phagocytic activity of WT macrophages was impaired in the presence of an anti-SR-AI/II 

blocking antibody (Ishiguro, et al. 2001). SR-AI/II were thus proposed to play a crucial role in host 

defense against L. monocytogenes infection not only by acting as a receptor for its phagocytosis, but also 

by mediating listericidal mechanisms (Fig. 2) (Ishiguro, et al. 2001). 

SR-A was also suggested to orchestrate innate and adaptive immune response to specific infections. 

Indeed, SR-A was elegantly shown to directly interact with interferon-regulatory factor 5 (IRF5) in 

Schistosoma japonicum infected macrophages, thus impairing IRF5 nuclear translocation, interfering 

with macrophage polarization and ultimately stimulating T-helper responses from type 2. In this context, 

SR-A acts to modulate macrophage polarization and fine-tune T-cell differentiation. SR-A KO mice 

displayed exacerbated death upon S. japonicum infection (Z. Xu et al. 2017).  

Pulmonary surfactant is composed by a variety of lipids and proteins, including surfactant protein A (SP-

A), which prevents alveoli collapsing during expiration (Kuroki and Voelker 1994). It was reported that 

SP-A increases cell surface localization of SR-A and potentiates SR-A-mediated phagocytosis of 

Streptococcus pneumoniae by alveolar macrophages promoting bacterial clearance (Kuronuma et al. 

2004). In agreement, SR-A KO mice displayed increased mortality rate upon S. pneumoniae infection, 

possibly due to an impaired phagocytosis, that lead to reduced clearance of live bacteria from the lungs 

and highly increased lung inflammation (Fig. 2) (Arredouani et al. 2006). Altogether, the data compiled 

above show that SR-A enhances host resistance to several pathogens, being essential to limit the severity 

of certain infections. 

Other reports point to the interplay between SR-A and other pathogens, however specific outcomes in 

the context of infection need further analysis. Clostridium perfringens, which has the ability to survive 

within murine macrophage-like cell lines (O'Brien and Melville 2000), was shown to bind to CHO cells 

in a SR-A-dependent manner (Fig. 2) (O'Brien and Melville 2003). Porphyromonas gingivalis induces 

the expression of SR-A by macrophages (Bodet et al. 2007). This increase is partially dependent on the 

major fimbriae of P. gingivalis FimA and promotes TNF-α, thus suggesting a role for SR-A in 

inflammation (Fig. 2) (Baer et al. 2009). 

Finally, SR-A was reported to act as a receptor for pathogen phagocytosis. This was shown for 

Escherichia coli and Francisella tularensis in dendritic cells and macrophages, respectively (Amiel et 

al. 2007; Pierini 2006). Binding and phagocytosis of yeast Saccharomyces cerevisiae and Candida 

albicans was also shown to be dependent on SR-A (Fig. 2) (Wang and Chandawarkar 2010). In addition, 

SR-A was shown to bind bacterial DNA (Zhu et al. 2001) and double-stranded RNA (DeWitte-Orr et al. 

2010; Limmon et al. 2008) and was involved in virus recognition, namely in the uptake of Adenovirus 

type 5 (Ad5) and endocytosis of Adeno-associated virus serotype 8 (Haisma et al. 2009; van Dijk et al. 

2013).  

SR-A appears thus as a SR capable to recognize a wide range of microbes, and contributes to pathogen 

containment by modulating the recruitment and activation of phagocytic cells and regulating 



inflammatory response through cytokine secretion. To counteract this function, some microbes evolved 

strategies to evade SR-A dependent recognition and phagocytosis. 

 

MARCO 

MARCO (SR-A6) has also an ambiguous involvement in pathogen infections, either being beneficial or 

detrimental for the host response. It is constitutively expressed in specific macrophage subpopulations 

and was primarily reported to bind soluble LPS and intact Gram-positive and Gram-negative bacteria. 

(Elomaa et al. 1995; Sankala et al. 2002). Recent studies deployed an effort to clarify the impact of this 

SR in infection. The lack of MARCO was shown to induce different outcomes upon SR interaction with 

bacteria, virus, fungus and even parasites. 

MARCO induces increased morbidity and mortality of mice with Influenza A associated pneumonia, 

due to a diminished neutrophilic inflammatory response (Ghosh et al. 2011). In addition, it is exploited 

by Herpes Simplex Virus type 1 glycoprotein C to promote cell surface adsorption and infection in the 

skin (Fig.3) (MacLeod et al. 2013). These data suggest that MARCO suppresses an early inflammatory 

response against these viral infections. Curiously, MARCO was shown to significantly enhance 

Adenovirus infection, contributing to an efficient innate virus recognition by macrophages, that in turn 

potentiates a pro-inflammatory response (Maler et al. 2017).  

In opposition, MARCO improves host resistance and promotes pathogen clearance through its capacity 

to recognize, bind and internalize different bacteria. MARCO KO mice intranasally infected with 

Streptococcus pneumoniae displayed a diminished survival rate, due to an impaired ability to clear 

bacteria from the lungs and consequently increased pulmonary inflammation (Fig. 3). Both in vitro 

binding of S. pneumoniae and in vivo uptake of non-opsonized particles were drastically impaired in 

MARCO KO alveolar macrophages (Arredouani et al. 2004). Later, MARCO was revealed crucial 

against S. pneumoniae in the murine model, MARCO KO mice showing a defect on bacterial clearance 

from the nasopharynx. In addition, MARCO deficiency abrogates cytokine production and cellular 

recruitment to the nasopharynx following colonization. Maximal TLR2- and NOD2-dependent NF-κB 

activation was shown to be MARCO-dependent (Fig. 3) (Dorrington et al. 2013). 

Regarding Mycobacterium tuberculosis (Mtb), MARCO-deficient macrophages are unable to mount an 

efficient inflammatory response to bacterial infection. MARCO, which is a tethering receptor for the cell 

wall glycolipid TDM (trehalose 6,6′-dimycolate) of Mtb, presumably presents lipids to the CD14/TLR2 

complex (Bowdish et al. 2009). MARCO is essential for phagocytosis of Mycobacterium marinum by 

zebrafish macrophages, being crucial to control bacterial growth and inflammatory response (Benard et 

al. 2014). Moreover, peritoneal macrophages from MARCO KO mice showed impaired Clostridium 

sordellii phagocytosis, which correlated with MARCO KO mice being more susceptible to C. sordellii 

uterine infection (Thelen et al. 2010). MARCO also efficiently contributes to limit Cryptococcus 

neoformans infection, controlling the recruitment of monocytes and dendritic cells and regulating the 

levels of IFN-γ. Additionally, MARCO is involved in C. neoformans phagocytosis by resident pulmonary 



macrophages and dendritic cells (Xu et al. 2017). These findings confer an important role for MARCO 

as a phagocytic receptor essential to clear pathogens.  

Microbial infection is intimately associated with an increased MARCO expression, which suggests its 

role in host defense. In vivo studies showed a transient but substantial expression of MARCO in liver 

Kupffer cells and red pulp macrophages of the spleen following intravenous infection by Listeria 

monocytogenes (Fig. 3) (Ito et al. 1999). In line with this, MARCO/SR-A double KO mice 

intraperitoneally inoculated with L. monocytogenes displayed slightly higher bacterial loads in the spleen 

and liver than the WT mice, although WT and KO mice showed equal survival rates (Chen et al. 2010). 

The expression of MARCO is also rapidly induced on macrophages, including Kupffer cells, upon 

Bacillus Calmette-Guérin (BCG) infection or injection of purified LPS (van der Laan et al. 1999), and 

in response to both in vitro and in vivo Leishmania major infections. L. major infection of macrophages 

is partially reduced in vitro by specific anti-MARCO monoclonal antibody, supporting a role of MARCO 

in macrophage infection by this parasite (Fig. 3) (Gomes et al. 2009). Besides macrophages, a strong 

increase in MARCO expression was reported in astrocytes during meningococcal-associated meningitis, 

showing that Neisseria meningitidis induces glial cell activation via MARCO (Fig. 3) (Braun et al. 2011). 

Given that MARCO has the ability to recognize N. meningitidis independently from LPS (Mukhopadhyay 

et al. 2006) glial cell activation may dependent on specific meningococcal components. 

Contrarily, the lipoprotein PpiA of Streptococcus mutans negatively regulates the expression of 

MARCO at the transcriptional and translational levels, which in turn contributes for the suppression of 

MARCO-mediated phagocytosis by macrophages (Fig. 3) (Mukouhara et al. 2011). 

So far, MARCO has been involved in the recognition and pathogenesis of both Gram-positive and Gram-

negative bacteria, parasites, fungi and various viruses. It usually behaves as a protective molecule for the 

host, stimulating phagocytosis, cellular recruitment and cytokine production. Several studies have shown 

that MARCO is differentially regulated/expressed in response to certain pathogens, suggesting its 

potential as a host innate immune receptor. This SR is also overcome and/or exploited by some pathogens 

to promote infection. 

 

Other class A SRs 
Among the less characterized members of SRs class A, SCARA5 (SR-A5), which is exclusively expressed 

by epithelial cells, was reported to bind heat-killed Escherichia coli and Staphylococcus aureus (Jiang 

et al. 2006) and SRCL (SR-A4) has the ability to bind and phagocytose bacteria and yeast, suggesting its 

possible role in host defense (Jang et al. 2009; Nakamura et al. 2001; Ohtani et al. 2001). 

 

Scavenger Receptors from class B  
The members that belong to class B SRs are characterized by the presence of two transmembrane domains 

flanking an extracellular loop, with both the amino and carboxyl terminal located within the cytosol (Fig. 



1) (Asch et al. 1987). CD36 is the prototype of class B SR and has been largely involved in microbial 

pathogenesis. 

 

CD36 

CD36 (SR-B2) senses both Gram-positive LTA and Gram-negative LPS, acting as a phagocytic receptor 

for a number of pathogenic bacteria, such as Escherichia coli, Klebsiella pneumoniae, Salmonella 

typhimurium, Staphylococcus aureus and Enterococcus faecalis (Fig. 4) (Baranova et al. 2008). 

Bacterial chaperonin 60, GroEL, and LPS potentially contribute to bacteria-induced inflammation by 

triggering SR-Bs (SR-BI, SR-BII and CD36), which mediate inflammatory signaling thus strongly 

impacting innate immunity and host defense (Baranova et al. 2012). CD36 has a protective role in skin 

infections caused by Hla-producing S. aureus which are characterized by a local inflammatory response 

that often precedes the formation of necrotic lesions. CD36 KO mice intoxicated with sterile S. aureus 

supernatant showed enhanced dermonecrosis, with increased neutrophil accumulation and local IL-1β 

expression. The contribution of neutrophils to tissue injury was confirmed since dermonecrosis is almost 

abolished upon neutrophil depletion (Fig. 4) (Castleman et al. 2015). CD36 also provides host protection 

against Klebsiella pneumoniae and Streptococcus pneumoniae intrapulmonary infections, modulating 

host inflammatory response and enhancing macrophage phagocytosis (Olonisakin et al. 2016; Sharif et 

al. 2013).  

In turn, CD36 was also reported to benefit the pathogens during infection. This is the case for S. aureus 

infection of lung epithelial cells that was suggested to be driven by Tet38 efflux pump by interacting with 

CD36 (Truong-Bolduc et al. 2017), and for Listeria monocytogenes invasion of HeLa cells which 

increases by 20-fold in CD36 overexpressing cells (Vishnyakova et al. 2006). In addition, CD36 

deficiency confers resistance to Mycobacterium tuberculosis infection. CD36 KO mice display reduced 

bacterial burden in both spleen and liver, decreased density of granulomas and diminished levels of 

circulating tumor necrosis factor (TNF) (Fig. 4) (Hawkes et al. 2010). Of note, Porphyromonas gingivalis 

infected macrophages up-regulate CD36 expression via ERK/NF-kβ pathway (Liang et al. 2016).  

Regarding parasite infection, CD36 was demonstrated to be the most common target of the PfEMP1 

proteins of Plasmodium falciparum, tethering parasite-infected erythrocytes to endothelial receptors, thus 

preventing their splenic clearance and allowing increased parasitaemia (Fig. 4) (Hsieh et al. 2016). Taken 

together these data support a dual role for CD36 in infection, being useful or not for pathogen elimination. 

 

SR-B 

Several studies pointed to the involvement of SR-B in viral infection. It was previously recognized 

essential for virus uptake, cell-to-cell transmission and cross-presentation by human dendritic cells. In 

addition, SR-B expression is modulated upon cell contact with Hepatitis C virus (HCV) (Barth et al. 

2008; Fan et al. 2017; Schwarz et al. 2009).  



In bacterial infections, SR-B may act as a multi-recognition receptor crucial to potentiate host response 

or to promote pathogen invasiveness and survival. SR-BI (SR-B1) KO mice showed increased mortality 

throughout Klebsiella pneumoniae infection, which correlates with high bacterial burden in the lung and 

in the blood, increased serum cytokines, neutrophils recruitment to the infected airspace, impaired 

phagocytic clearance and markedly organ injury (Gowdy et al. 2015). 

Reversely, SR-B promotes infection by Chlamydia pneumoniae improving bacterial attachment, 

internalization and growth into epithelial cells, and by Brucella abortus increasing the phagocytic 

activity of trophoblasts giant cells (Korhonen et al. 2012; Watanabe et al. 2010). Although SR-B was 

reported to recognize Mtb, the effects in infection remain to be addressed (Schafer et al. 2009). 

SR-BI, which is a high-density lipoprotein receptor able regulate the formation of lipid domains including 

cholesterol-rich domains (Acton et al. 1996; Urban et al. 2000), was described to mediate bacterial 

adhesion and invasion to mammalian cell (Urban, et al. 2000). In a recent study using Listeria 

monocytogenes intraperitoneal mice infection, SR-BI was proposed to prevent tissue damage without 

altering pathogen burden. SR-BI would activate autophagy mechanisms to protect organs, such as the 

liver and spleen, from the collateral damage induced by antibacterial defenses (Pfeiler et al. 2016). SR-

BI-induced autophagy suppresses tissue damage by preventing necrosis at the infectious foci, stimulating 

the internalization and clearance of apoptotic cells and inhibiting extravasation and accumulation of 

neutrophils and inflammatory macrophages in infected tissues (Pfeiler, et al. 2016). 

The interplay between SR-B and parasites was also addressed. SR-BI significantly boosts hepatocyte 

permissiveness to Plasmodium falciparum, Plasmodium yoelii, and Plasmodium berghei and 

promotes parasite development. Interestingly, SR-B is responsible for the regulation of CD81 

localization at the plasma membrane, mediating a membrane rearrangement that facilitates sporozoites 

penetration (Yalaoui et al. 2008). So far, these data indicate that SR-B not only favors host response but 

also pathogen dissemination. 

 

Scavenger Receptors from classes D and I  
CD68 (SR-D1), the only member of class D SR, is a glycosylated membrane protein that belongs to the 

lysosome-associated membrane protein family (LAMP) (Fig. 1) (Song et al. 2011). Its role in microbial 

pathogenesis is largely unknown. A peptide from Plasmodium was shown to interact with CD68 at the 

surface of Kupffer cells. The exogenous addition of this peptide inhibited sporozoite entry and subsequent 

traversal of Kupffer cells and liver infection, which strongly supports a role for CD68 as a Plasmodium 

receptor in the liver (Cha et al. 2015).  

Class I SRs are also transmembrane proteins characterized by an extracellular region with multiple 

scavenger receptor cysteine-rich (SRCR) domains (Fig.1) (Kristiansen et al. 2001). Among them, CD163 

(SR-I1) is a membrane receptor exclusively expressed in monocytes and macrophages but may be shed 

from cell surface upon cell activation. It plays important roles in the down-regulation of inflammation 

(Etzerodt and Moestrup 2013), but also functions as a sensor for Gram-positive and Gram-negative 



bacteria (Fabriek et al. 2009). In particular, it was demonstrated that soluble CD163 recognizes a specific 

fragment of fibronectin bound to Staphylococcus aureus surface molecules, leading to increased 

phagocytosis and effective bacterial killing by professional phagocytes (Kneidl et al. 2012). In addition, 

interactions of CD163 with some viral species are also known. CD163 is one of the receptors for Porcine 

reproductive and respiratory syndrome virus (PRRSV) (Calvert et al. 2007) and its absence is sufficient 

to protect fetuses following maternal infection with the virus (Prather et al. 2017). The infection process 

by African swine fever virus (ASFV) and Simian hemorrhagic fever virus (SHFV) is also dependent on 

CD163 expression, being knockout cells less permissive to viral infection (Cai et al. 2015; Sanchez-Torres 

et al. 2003). Human immunodeficiency virus-1 (HIV) infection is also enhanced in macrophages through 

the induction of CD163 expression, suggesting a role for this SR as a broad viral receptor that favors 

pathogen dissemination (Tuluc et al. 2014). 

Although CD5 and CD6 are both implicated on the modulation and signalling of T and B cell receptors, 

CD5 is well adapted to interact with fungal associated ligands, while CD6 has evolved to recognize 

bacterial ones (Sarrias et al. 2007; Vera et al. 2009). T cells expressing CD5 were shown to be more 

permissive to Hepatitis C virus (HCV) infection, promoting pathogen dissemination (Sarhan et al. 2012). 

On the other hand DMBT1 (Salivary Agglutinin or gp340) was previously found to inhibit human 

immunodeficiency virus-1 (HIV-1) infection (Chu et al. 2013) and to be associated with the activation of 

the complement (Leito et al. 2011). This SR was shown to interact and agglutinate several Gram-positive 

and Gram-negative bacteria, including Streptococcus mutants (Ericson and Rundegren 1983; Madsen et 

al. 2010). Human Spα has the same domain organization as the extracellular region of CD5 and CD6 and 

may regulate monocyte activation, function and survival (Fig. 1) (Gebe et al. 1997). Human recombinant 

Spα, that is the homologue of the mouse protein AIM, was found to interact in vitro with Gram-negative 

and Gram-positive bacteria, including Listeria monocytogenes (Bessa Pereira et al. 2016; Sarrias et al. 

2005). 

 

Scavenger Receptors from classes E, F, G, H and J 
While class E of SRs includes type II membrane proteins with C-type lectin-like domains, classes F and 

H are type I membrane proteins that contain extracellular domains with multiple Epidermal Growth Factor 

(EGF)-like repeats either alone (class F) or in combination with Fasciclin and laminin EGF-like domains 

(Class H) (Fig. 1) (Politz et al. 2002; Sawamura et al. 1997). Class G is composed by a single member 

that is not structural similar with other SRs. It is a type I transmembrane glycoprotein with a CXC 

chemokine domain and a mucin-like domain (Bazan et al. 1997). The only member of class J of SRs is 

composed by a single transmembrane domain and belongs to the immunoglobulin superfamily (Fig.1) 

(Ibrahim et al. 2013). 

 

 

 



LOX-1 

LOX-1 (SR-E1) was previously implicated on adhesion of Staphylococcus aureus and Escherichia coli 

(Shimaoka et al. 2001). Its expression was shown to be up-regulated in response to Aspergillus 

fumigatus, Chlamydia pneumoniae and Herpes simplex virus I (HSV-1) infection, suggesting a role 

for LOX-1 in host defense mechanisms against pathogen infections (Campbell et al. 2013; Chirathaworn 

et al. 2004; Gao et al. 2016; Li et al. 2015; Yoshida et al. 2006). In addition, E. coli surface-associated 

GroEL is recognized by LOX-1 on macrophages, stimulating their phagocytic capacity and enhancing 

bacterial clearance (Fig. 4) (Zhu et al. 2013). OmpA from Klebsiella pneumoniae was also reported to 

bind LOX1 and SREC, activating macrophages and dendritic cells (DCs) in a TLR2-dependent way. 

Cellular recognition of K. pneumoniae OmpA activates a pro-inflammatory response beneficial for the 

host innate immune response (Jeannin et al. 2005). 

 

DECTIN-1 

Dectin-1 (SR-E2) binds to β-glucans from various fungal pathogens, usually protecting the host from 

infection. Therefore, Dectin-1 KO mice were shown to be more susceptible to infections with Candida 

albicans, Candida glabrata and Aspergillus fumigatus (Chen et al. 2017; Taylor et al. 2007; Werner et 

al. 2009). Phagocytosis stimulation, ROS and cytokine production, inflammasome activation and T 

helper cell differentiation are some of the anti-fungal responses generated by this receptor (Geijtenbeek 

and Gringhuis 2009). 

 

CD206  

The human mannose receptor, CD206 (SR-E3) is involved in the recognition of glycans at the surface of 

some pathogens, such as Mycobacterium tuberculosis, Streptococcus pneumonia, Yersinia pestis, 

Candida albicans, Pneumocystis carinii, Influenza virus and Leishmania promoting their phagocytosis 

(Medzhitov 2007). Moreover, CD206 protects against Cryptococcus neoformans infection due to its role 

in the development of CD4+ T cells that specifically work to eliminate the pathogen (Dan et al. 2008). 

 

SREC 

SREC (SR-F1) was previously described to recognize and internalize molecular chaperones and heat 

shock proteins (Gong et al. 2009). Curiously, Neisseria meningitidis expressing the serotype A of the 

major outer membrane porin PorB (PorBIA) interacts with SREC via Gp96 allowing adherence to host 

cells. However, the invasion process requires the dissociation of Gp96 from SREC, since SREC is 

masked by surface-exposed Gp96, impairing PorBIA binding (Fig. 4). In that sense, the depletion of Gp96 

from host cells prevented adherence but significantly triggered gonococcal invasion.(Rechner et al. 2007) 

Gp96 is an endoplasmic reticulum (ER) resident chaperone previously reported to modulate the 

interaction between pathogens with their host cells. It was shown to interact with the Outer Membrane 

Protein A (OmpA) of Escherichia coli and with the Vip surface protein of L. monocytogenes, thereby 



supporting invasion, however its interaction with SREC was not described in those cases (Cabanes et al. 

2005; Prasadarao et al. 2003). SREC may also have a role in Leptospirosis since it has the potential to 

bind to Leptospira LipL32, which is an immunogenic outer membrane protein (Fig. 4) (Chaemchuen et 

al. 2011). Notable is the cooperation of both SR-AI and SREC-I with TLR2 to recognize Hepatitis C 

virus non-structural protein 3 (NS3) and induce myeloid cell activation (Beauvillain et al. 2010). More 

recently, SREC-I was found to bind Staphylococcus aureus wall teichoic acids (WTAs) and mediate 

adhesion to nasal epithelial cells in vitro (Fig. 4). Additionally, the inhibition of WTA-mediated adhesion 

with a specific SREC-I antibody reduces nasal colonization in the animal model (Baur et al. 2014). 

 

SR-PSOX  

SR-PSOX (SR-G1) mediates adhesion and phagocytosis of both Gram-positive and Gram-negative 

bacteria and it was shown to play a particular role in T and NKT cells chemotaxis, suggesting a role for 

this SR in innate and adaptive immunity during microbial infection (Shimaoka et al. 2003; Xu et al. 

2005). Expression levels of this SR were associated with different pathogenic conditions. High levels 

of SR-PSOX were correlated with lung transplant recipients affected by Human Cytomegalovirus 

(HCMV) (Weseslindtner et al. 2014). In addition, a virulence factor named zonula occludens toxin, 

produced by Campylobacter concisus, induced an upregulation of SR-PSOX, which may provide some 

insights on the bacterial mechanisms that affect the host (Deshpande et al. 2016). Higher expression 

levels of this SR were also associated with a more efficient cell migration to the secondary lymphoid 

organs and infected tissues upon Leptospira infection (Domingos et al. 2017). 

 

STABILIN-1 

Stabilin-1 (SR-H1) was found to bind to Gram-positive and Gram-negative bacteria, suggesting a role 

for this receptor in the defense mechanism against bacterial infection (Adachi and Tsujimoto 2002). 

 

RAGE  

RAGE (SR-J1) plays an important role in inflammation and infection having a dual role in bacterial 

infection. It plays a detrimental role in host response to Streptococcus pneumoniae and influenza A 

virus by promoting bacterial dissemination and potentiating pulmonary inflammatory response (van 

Zoelen et al. 2009a; van Zoelen et al. 2009b). On the other hand, it has a protective role during 

Staphylococcus aureus infection promoting lung injury in the early infection phase and contributing to 

effective antibacterial defense during Klebsiella pneumoniae pneumonia (Achouiti et al. 2016; Achouiti 

et al. 2013). 

 

Conclusion 

Throughout lifetime we are permanently in contact with a multitude of microbial species, which are 

usually targeted by our immune defenses in an effective way to prevent infection. PRRs are key players 



in the initiation of the host innate immune response. SRs compose a diverse family of PRRs mainly 

expressed in cells patrolling pathogen invasion and with an increasing role in pathogen recognition and 

elimination. Whereas, some microbes developed strategies to evade SR-dependent recognition, SRs 

mainly appear as PRRs capable to recognize a wide range of microbes, and contributes to pathogen 

containment by modulating the recruitment and the activation of phagocytic cells, and regulating 

inflammatory response through cytokine secretion. Interestingly, different SRs are capable to recognize 

the same kind of ligands, and different pathogens are recognized by SRs binding various ligands. This 

suggest that, in addition to other PRRs, the host use a range of SRs to recognize specific ligands and 

activate downstream signaling pathways accordingly to their tissue-specific and cell type-specific 

expression. In the future, it will be interesting to understand the mechanisms that regulate these pathways, 

and identify potential crosstalk between SRs that recognize the same ligands or pathogens. 

It is highly probable that other/new SRs will be implicated in microbial pathogenesis, increasing our 

understanding of the host/pathogen interplay and providing crucial insights into the immune responses 

orchestrated by the host to avoid microbial predation. Understanding the complexity of this network may 

pave the way for the identification of novel targets and pathways to limit pathogenic infection by 

amplifying protective the host cell response. 
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Figure Legends 

 

Figure 1. Schematic overview of SRs families. SRs are either transmembrane or soluble proteins 

distributed into 10 classes, from A to J, according to their sequence or structural similarities. Protein and 

carbohydrate domains that compose SR members are indicated. 

 
Figure 2. The most relevant functions of SR-A in microbial pathogenesis. SR-A binds to different 

pathogen components and act as receptor for different bacteria, virus and yeasts. SR-A is a negative 

regulator of chronic Mtb, C. neoformans and P. carinii infections, as SR-A KO mice show increase 

lymphocyte and APCs recruitment. Contrarily, SR-A positively regulates immune response against S. 

pneumoniae, N. meningitidis, M. pulmonis, S. aureus and L. monocytogenes mainly by potentiating 

bacterial phagocytosis and clearance. In vitro assays show that SR-A exposed at the surface of epithelial 

cells mediates adherence to C. perfringens and in the case of N. meningitidis and P. gingivalis, SR-A 

interacts with bacterial proteins, stimulating inflammatory response. S. pyogenes and S. agalactiae display 

evasion mechanisms to avoid SR-A-mediated phagocytosis through the expression of M protein and 

polysaccharide capsule, respectively. SR-A, Scavenger Receptor A; WT, wild-type; KO, knock-down; 

LPS, lipopolysaccharide; LTA, lipoteichoic acid; dsRNA, double-stranded ribonucleic acid; DNA, 

deoxyribonucleic acid; APCs, antigen-presenting cells; FimA, fimbrillin; SP-A, surfactant protein A. See 

text for details. 

 
Figure 3. The most relevant functions of MARCO in microbial pathogenesis. MARCO binds to E. 

coli LPS and to S. aureus and, it promotes cell surface adsorption and skin infection by HSV. MARCO is 

a negative regulator of the inflammatory response against Influenza A virus. However, MARCO is 

essential for controlling host immune response to M. marinum, S. pneumoniae, C. sordellii, L. 

monocytogenes and C. neoformans infections, being WT mice or WT morpholino highly resistant to 

infection. S. pneumoniae clearance, which is MARCO-dependent, stimulates TLR2- and NOD2-

dependent NF-κB activation and signaling. MARCO expression is up-regulated in macrophages, spleen 

and glial cells in response to L. major, N. meningitides, L. monocytogenes and S. pneumoniae infections. 

The lipoprotein PpiA of Streptococcus mutans contributes to the anti-phagocytic activity mediated by 

MARCO. MARCO, macrophage receptor with collagenous structure; WT, wild-type; KO, knock-down; 

LPS, lipopolysaccharide; NOD2, nucleotide-binding oligomerization domain-containing protein 2; 

TLR2, Toll-like receptor 2; NF-kB, nuclear factor kappa B; PpiA, peptidyl-prolyl cis/trans-isomerase. 

See text for details. 

 

Figure 4. The most relevant functions of CD36, LOX-1 and SREC in microbial pathogenesis. CD36 

is a receptor for a number of Gram-positive and Gram-negative bacteria. CD36 negatively regulates 

dermonecrosis upon mice intoxication with S. aureus-producing α-hemolysin. PfEMP1 proteins of 



Plasmodium falciparum target CD36, tethering parasite-infected red-blood cells to endothelial receptors 

to avoid splenic clearance. CD36 plays a crucial role in host defense against K. pneumoniae and S. 

pneumoniae, while it diminishes mice survival upon M. tuberculosis infection. LOX-1 and SREC bind to 

E. coli and S. aureus. LOX-1 expression is increased in response to A. fumigatus, HSV and C. pneumoniae 

within different cell types. GroEL from E. coli is recognized by LOX-1 and stimulates bacterial 

phagocytosis, weather OmpA from K. pneumoniae interact with both LOX-1 and SREC to activate cells 

in a TLR2-dependent way. PorBIA from N. gonorrhoeae interacts with SREC via Gp96 allowing 

adherence to host cells. For bacterial invasion Gp96 needs to dissociate from SREC. SREC also interacts 

with LipL32 from Leptospira and with WTA of S. aureus, stimulating nasal colonization. CD36, cluster 

of differentiation 36; LOX-1, oxidized low-density lipoprotein receptor 1; SREC, scavenger receptor 

expressed by endothelial cells; WT, wild-type; KO, knock-down; RBC, red-blood cell; pfEMP1, 

Plasmodium falciparum erythrocyte membrane protein 1; TLR2, toll-like receptor 2; GroEL, large 

oligomeric chaperone; OmpA, outer membrane protein A; PorB (IA), serotype A of the major outer 

membrane porin; Gp96, glycoprotein 96; LipL32, leptospiral lipoprotein; WTA, wall teichoic acids. 
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Figure 3. 
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