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Abstract 

In the past decade, many emergent organic compounds, including 

Pharmaceuticals and Personal Care Products (PPCPs) have been detected in water at 

levels that can negatively impact aquatic ecosystems. The recent knowledge of their 

occurrence has raised concerns about human health effects and ecosystem risks. 

Although these compounds are frequently detected at concentrations that are not likely to 

induce adverse effects in humans and may be too low to cause acute effects in other 

organisms, there is still a serious lack of information about the effects in non-target 

species, particularly considering chronic exposure or effects resulting from interactions 

between them.  

Pharmaceuticals and Personal Care Products enter in aquatic environment from 

different point and non-point sources and for many compounds Wastewater treatments 

plants cannot ensures complete removal, and therefore they may be present at significant 

concentrations in effluents. Hence, it is essential to understand the effects of these 

substances on aquatic organisms. Owing to the large number of new chemicals that must 

go though toxicity testing, short-term early-life-stages have been frequently used as an 

alternative to long-term exposures due to its high sensitivity and logistic advantages. 

 In addition to single exposures, if we aim at improving risk assessment of 

emergent contaminants under real field conditions, it becomes now important to 

understand the effects resulting from an actual environmental exposure and the 

mechanisms of toxic action involved, considering the diversity of contaminants present in 

mixture and their possible interactions. 

Thus, the main aim of the present work was to assess the toxicological risk of five 

emergent chemicals, both under single and combined exposure: simvastatin, sertraline, 

triclocarban, propylparaben and 4-MBC during the embryonic development of zebrafish 

(Danio rerio) and the sea urchin (Paracentrotus lividus).  

All selected compounds induced significant effects on the embryonic development 

of both test species after individual exposure. However our results show that sea urchin 

embryos were more sensitive than zebrafish embryos. Regarding the relative toxicity, 

simvastatin showed the highest toxicity in zebrafish assay, while triclocarban was the 

compound that induced significant effects in sea urchin assay at lower concentrations. 

Furthermore, significant effects were also reported in sea urchin and zebrafish embryos 

exposed to combinations of these compounds.  

In conclusion, this study highlights the risk of these compounds to aquatic 

ecosystems. Hence, it is important to conduct more comprehensive studies about possible 

chemical interactions in environment and mechanisms involved in order to perform more 
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reliable risk assessment and to implement guidelines for the protection of the aquatic 

environment.  
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Resumo 

Na última década, vários compostos orgânicos emergentes, entre os quais 

fármacos e produtos e de uso pessoal, têm sido detetados na água em concentrações 

potencialmente perigosas para os organismos aquáticos. A sua presença levanta sérias 

preocupações sobre os potenciais efeitos na saúde humana e os riscos para os 

ecossistemas afetados. Embora estes compostos sejam detetados em concentrações 

abaixo das que induzem efeitos agudos nos humanos e, possivelmente, para a maioria 

dos organismos expostos, pouco se conhece ainda sobre potenciais efeitos em 

organismos não-alvo, particularmente após uma exposição crónica ou como resultado de 

possíveis interações entre os vários compostos presentes em mistura no ambiente.  

São diversas as vias de entrada no ambiente e para muitos destes compostos não 

existem tratamentos nas estações de tratamento de águas residuais que garantam a sua 

completa remoção, pelo que podem ainda ser detetados nos efluentes em concentrações 

significativas. Torna-se, portanto, essencial compreender o impacto destes compostos 

nos organismos aquáticos. Considerando o elevado número de compostos presentes no 

ambiente, e a consequente necessidade de avaliar a sua toxicidade, os ensaios de 

toxicidade aguda com organismos em fases iniciais do desenvolvimento embrionário têm 

sido frequentemente usados em alternativa aos ensaios de toxicidade crónica, como 

resultado das vantagens logísticas e da sua elevada sensibilidade.  

Tendo por objetivo avaliar o risco toxicológico de uma exposição ambiental, torna-

se, portanto, necessário compreender os efeitos resultantes de uma exposição em 

condições reais e os mecanismos de ação envolvidos, considerando a diversidade de 

contaminantes presentes em mistura e possíveis interações. 

Assim, este estudo teve como objetivo principal avaliar o risco toxicológico de 

cinco compostos emergentes, tanto em exposições individuais como em mistura 

(sinvastatina, sertralina, propilparabeno, triclocarban e o filtro UV 4-MBC), utilizando 

bioensaios baseados no desenvolvimento embrionário de peixe-zebra (Danio rerio) e do 

ouriço-do-mar (Paracentrotus lividus). 

A exposição individual aos compostos selecionados para este estudo induziu 

efeitos significativos no desenvolvimento embrionário de ambas as espécies. Porém, de 

acordo com os resultados obtidos, os embriões de ouriço-do-mar mostraram-se mais 

sensíveis aos compostos testados que os embriões de peixe-zebra. Atendendo à 

toxicidade relativa de cada composto, a sinvastatina foi o mais tóxico para os embriões 

de peixe-zebra, enquanto que os embriões de ouriço-do-mar mostraram-se mais 

sensíveis à exposição a triclocarban, que induziu efeitos significativos no comprimento 

larvar para concentrações mais baixas. Por outro lado, a exposição de embriões de 
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peixe-zebra e de ouriço-do-mar a misturas dos compostos selecionados resultou 

igualmente em efeitos significativos no seu desenvolvimento embrionário. 

Este estudo evidencia o risco destes compostos para os ecossistemas aquáticos. 

Deste modo, torna-se necessário conduzir estudos mais detalhados que contribuam para 

melhorar a compreensão de possíveis interações entre os compostos e os mecanismos 

envolvidos, de forma a permitir avaliações de risco mais fundamentadas e a 

implementação de medidas que garantam a proteção dos organismos mais sensíveis. 
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1. CHAPTER I – Introduction and Objectives 

1.1. State of knowledge of pharmaceuticals and personal care products in 

environment 

1.1.1. Background and history 

Due to analytical chemistry theory and technology advances, many emergent 

organic compounds (EOCs) have been detected in water at low concentrations in the last 

few years (Lapworth et al., 2012; Stuart et al., 2012; Jiang et al., 2013). This EOCs 

designation is applied to compounds that have been reported in the environment but also 

to new compounds that have recently been developed or categorized as contaminants, 

including Pharmaceuticals and Personal Care Products (PPCPs) (Lapworth et al., 2012). 

Although their presence in water has been reported since the 80s, the number of studies 

that investigated the occurrence of PPCPs in the environment has increased since the 

90s, because of the continuous improvement in chemical analysis methodologies 

(Daughton, 2003). Most of these compounds have been detected in the ng/L or µg/L 

range (Kim et al., 2009; Chen et al., 2012; Jiang et al., 2013). 

The recent knowledge of their occurrence has raised concerns about human 

health effects and ecosystem risks. Therefore, an increasing number of studies has been 

focusing on the environmental fate and impact in non-target organisms (Brausch and 

Rand, 2011). Environmental monitoring studies have identified compounds that are 

present in some ecosystems at levels that can induce negative effects for organisms 

(Ferrari et al., 2003). In many cases, negligible effects may occur from a continuous 

exposure during the entire life of organisms or a multi-generational exposure to low 

concentrations of PPCPs. These effects might be cumulative thus affecting the population 

and the ecosystem (Santos et al., 2010). 

 

 

1.1.2. The importance of ecotoxicological studies with individual 

compounds and mixture exposures 

Although the state of knowledge of some contaminants is sufficient to establish 

safety values, most EOC are not yet well characterized with respect to their toxicity, 

behavior, impact and actual environmental occurrence. Compounds selection in many 

studies take into account consumption, predicted environmental concentrations, 

pharmacological and physicochemical compound properties as well as ecotoxicological 

data from previous studies (Lapworth et al., 2012).  

Most of the studies related to toxic effects of PPCPs focus on representative 

organisms of the food chain and were performed with standard ecotoxicological methods 
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defined by guidelines of Organization for Economic Co-operation and Development 

(OECD) for testing chemicals (Hernando et al., 2006).  

Environmental concentrations of pharmaceuticals are much lower than therapeutic 

doses and Personal Care Products (PCPs) are also found at low concentrations. Although 

these concentrations are not likely to induce adverse effects in human and may be too low 

to cause acute effects in other organisms, there is still a serious lack of information about 

the effects in non-target species particularly considering chronic exposure. Moreover, 

even if these compounds are present below the No Observed Effect Concentration 

(NOEC), toxic effects due to a long-term exposure or to a combination of contaminants 

cannot be disregarded (Lapworth et al., 2012). Combination of compounds that share the 

same mechanism of action or that can act at the same target site can result in additive or 

synergetic effects (Hernando et al., 2004). However, some interactions between 

compounds belonging to different classes can induce also antagonistic effects, whereby it 

is not recommended to predict mixture effects directly from results of single compound 

exposures (Chung et al., 2011). 

Taking into account data from several toxicological studies on the effects from a 

single exposure of different compounds, it becomes now important to understand the 

effects resulting from an actual environmental exposure and the mechanisms of toxic 

action involved, considering the diversity of contaminants present in mixture and their 

possible interactions. Some studies have reported significant effects resulting from an 

exposure to multi-component mixtures in a concentration range at which single compound 

exposure do not shows effects (Baas et al., 2010). 

There are two models-based methods frequently used for assessing the effects of 

complex mixtures of a known composition from its individual components: Concentration 

Addition (CA) and Independent Action (IA). Both methods are based in dose-response 

curves of all the individual chemicals present in the mixture to calculate the dose-

response curve of the mixture. IA model is frequently used for mixtures which compounds 

have a presumed dissimilar mode of action. CA model is used for mixtures with chemicals 

that share the same mode of action or the same target site and so components in the 

mixture can be regarded as dilutions of one another. However, some studies that 

compared these two models show similar predicted results when applied in mixtures of 

compounds with different modes of action and the CA model provided conservatively high 

estimates of toxicity (Belden et al., 2007; Cedergreen et al., 2008). Statistically significant 

deviations from the model predictions can be interpreted as chemical interactions (Baas et 

al., 2010). 

There is a need to investigate possible multi-generational life-cycle effects or at 

different life stages or at long-term exposure to assess specific modes of action of PPCPs 
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in order to better evaluate the implications of these compounds mixtures in ecosystems 

and perform more reliable risk assessments (Fent et al., 2006).  

 

 

1.1.3. Sources and pathways 

 

PPCPs enter in the environment from a different number of sources and pathways 

(Figure 1). Some compounds and their metabolites cannot be entirely used by organisms 

and are released into the water by excretion (Jiang et al., 2013). Excretion of the 

compound or products resulting of its biotransformation, improper disposal of unused 

PPCPs in landfills or discharge into the collection system of wastewater, hospital effluents 

and septic tanks are some of possible pathways. On the other hand, waste resulting from 

pharmaceutical production, agricultural activities and industry effluents, as well as 

hospital, veterinary and aquaculture stations waste, contribute to their occurrence in 

Figure 1. Schematic diagram of sources and pathways of PPCPs in environment 
Sources: Lapworth et al., 2012; Stuart el al., 2012 
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wastewater, surface, groundwater and, at a lesser extent, in drinking water (Santos et al., 

2010; Snyder and Benotti, 2010; Lapworth et al., 2012; Jiang et al., 2013). There is no 

treatment in Wastewater Treatments Plants (WWTPs) that ensures complete removal of 

compounds, and so WWTPs effluents may still have significant concentrations of some 

PPCPs (Jiang et al., 2013). 

In comparison to groundwater, the occurrence of EOC in surface water and 

wastewater has been much better characterized and they are known to contain a great 

diversity of EOC. However, this situation may occur due to the reduced number of 

groundwater studies and the limited capacity of analytical methods than actual 

environmental groundwater occurrence (Lapworth et al., 2012). 

 

 

1.1.4. Wastewater treatments 

WWTPs do not present specific processes to remove these compounds from 

wastewaters (Jiang et al., 2013). For this reason effluents from WWTPs are considered 

one of the most important sources of PPCPs in the aquatic environment (Chen et al., 

2012; Lapworth et al., 2012). Treatments like activation sludge and secondary 

sedimentation applied in many WWTPs seem to not completely eliminate some 

compounds and the average elimination is very variable and depends on the different 

physicochemical properties of each compounds. Moreover, even for the same compound 

it has been reported variability between different treatment plants (Table 1). This variation 

is expected in part due to differences in equipment and treatment steps of WWTPs and 

factors such as temperature and weather (Fent et al., 2006). Some compounds are not 

completely degraded and cross through water treatment system with only small reductions 

in their concentration, while other are transformed in new compounds or may be 

completely degraded during the process. 

Thus, a large number of studies have been carried out to explore new technologies 

and methods to treat PPCPs residuals from water and wastewaters (Jiang et al., 2013).  

To evaluate wastewater treatments it is important to understand the processes of 

degradation, transport and fate of the different compounds as well as their 

physicochemical properties. As a result, some techniques have been reported to be 

effective in removing a large percentage of some compounds, namely ozonation, 

oxidation, nanofiltration and reverse osmosis membrane filtration and also activated 

carbon adsorption (Jiang et al., 2013). Some studies have demonstrated that combination 

of different treatments can result in a higher removal rate, by covering a wider range of 

compounds properties (WHO, 2011). 
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Table 1. Removal efficiency of selected pharmaceuticals in WWTWs (%). 

Compound 
Pharmaceutical 

group 
WWTP removal (%) Treatment process 

Propanolol β-Blocker 96 Activated sludge 

Metoprolol β-Blocker 83 Activated sludge 

Sulfamethoxazole Antibiotic 67 Activated sludge 

Carbamazepine Antiepileptic 7 – 10 Activated sludge 

Ibuprofen Analgesic 
60 – 100 Activated sludge 

14 – 65 Biologic filter 

Naproxen Anti-inflammatory 
40 – 78 Activated sludge 

15 – 45 Biologic Filter 

Diclofenac Anti-inflammatory 
69 – 75 Activated sludge 

9 Biologic filter 

Ketoprofen Anti-inflammatory 
69 Activated sludge 

48 Biologic filter 

Gemfibrozil Hypolipidemic  
46 – 69 Activated sludge 

16 Biologic filter 

Bezafibrate Hypolipidemic 
50 – 99,5 Activated sludge 

27 Biologic filter 

 

 

 

1.2. Pharmaceuticals and Personal Care Products 

1.2.1. Characteristics and Effects 

Although PCPs are more often detected in aquatic environment and in higher 

concentrations, most studies have been conducted examining occurrence and effects of 

pharmaceuticals and little is known about PCPs toxicity (Brausch and Rand, 2011). 

Different classes of pharmaceuticals have been detected in several ecosystems, 

including analgesic and anti-inflammatory drugs, β-blockers, steroids and related 

hormones, antibiotics, hypolipidemics and antiepileptics (Hernando et al., 2006). These 

compounds are subject to restrict regulatory approval processes to evaluate the efficacy 

and safety, and studies are performed at doses close to the therapeutic dose. For this 

reason, pharmaceuticals have a substantial margin of safety and are better characterized 

than many others environmental contaminants (WHO, 2011). A major concern is focused 

on antibiotics and steroids compounds because they may cause resistance among natural 

Source: Bound and Voulvoulis, 2005 
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bacterial populations or induce estrogenic responses and alterations in reproduction, 

growth or development of exposed species (Hernando et al., 2006). 

Although pharmaceuticals have been designed to be bioactive in humans, aquatic 

organisms that present conserved signaling pathways can experience the same 

pharmacodynamics effects (Bound and Voulvoulis, 2004). Moreover, secondary effects 

that are less frequent in human treatments may be more relevant in aquatic organisms 

(Seiler, 2002).  

As many PCPs are designed for external use, they are not subjected to 

biotransformation in organisms and thus a large quantity of these unaltered compounds is 

released into the environment through regular usage (Brausch and Rand, 2011). 

According to some recent studies, several PPCPs are used in large quantities and 

could be environmentally persistent, ubiquitous, bioactive and can induce bioaccumulation 

and disrupting of endocrine functions (Fent et al., 2006; Chen et al., 2012; Brausch and 

Rand, 2011). Once in the environment, the concentration of PPCPs can be attenuated by 

different process such as dilution, adsorption, microbial degradation, oxidation, photolysis 

or by abiotic processes (Stuart et al., 2012).  

The rate of metabolism of different compounds in organisms depends on their 

physic and chemical properties, resulting in different excretion rates of unmetabolized 

active ingredient (Table 2). On the other hand, some metabolites can be more toxic than 

the parental compound and represent a threat when excreted into the environment (Lin 

and Lu, 1997).  

Many compounds are considered to be persistent in aqueous ecosystem. 

However, some compounds that seem to be more easily degraded are also frequently 

detected in water due to their continuous introduction into the environment and can induce 

negative effects (Fent et al., 2006). High polarity and low volatility of many compounds 

contribute to their presence in water but their concentration depends also on other factors 

such as their consumption rate in a specific population, metabolism in organism, 

toxicokinetic, its behavior in the environment, natural and anthropogenic processes and 

the effectiveness of treatments applied in WWTPs.  

To humans, consumption of water containing traces of several PPCPs has been 

identified as one of the main sources of exposure (Kolpin et al., 2002), and the most 

vulnerable groups are believed to be more susceptible to any possible negative effects. 

While human exposure to contaminated water occurs in a discontinuous process, 

organisms in aquatic ecosystems are continually exposed to this type of contamination 

and several studies have identified different PPCPs present in water in concentrations that 

can induce adverse effects in organisms (Henschel et al., 1997; Jones et al., 2002; Ferrari 

et al., 2003; Fent et al., 2006). Based on existing information on the activity and potential 
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toxicity of PPCPs, some possible effects resulting from chronic exposure to contaminated 

water are endocrine disruptor activity, resistance to antibiotics, genotoxicity, 

carcinogeniticy, allergic reactions, and also effects on reproduction, embryo development 

and growth (Daughton and Ternes, 1999). 

 

Table 2. Urinary excretion rates of unchanged active ingredient for 
selected pharmaceuticals (%). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Some PPCPs have been classified as Endocrine Disrupting Chemicals (EDCs) 

given their capacity to affect directly or indirectly endocrine systems in humans and 

wildlife, even at low concentrations (Roepke et al., 2005; Wang et al., 2011). EDCs are an 

exogenous substance or mixture that typically exerts effects through receptor-mediate 

process, mimicking endogenous hormones or inhibiting normal hormone activities of 

endocrine and neuroendocrine systems as well as organism metabolism (Roepke et al., 

2005). Some of these chemicals act as estrogens and induce feminization in organisms, 

which limit the reproductive capacity of exposed species and can result in serious 

ecological risks to ecosystems (Roepke at al., 2005). 

The effects of Ethinylestradiol (EE2) in non-target organisms are a good example 

of the risks that low doses of some pharmaceuticals may pose to wildlife (Versonnen and 

Janssen, 2004). EE2 is a synthetic estrogen present in many oral contraceptives pills and 

is reported to show estrogenic activity and induce adverse estrogenic effects in fish even 

Compound Pharmaceutical group 
Parent compound 

excreted (%) 

Amoxicillin Antibiotic 60 

Atenolol β-Blocker 90 

Metoprolol β-Blocker 10 

Bezafibrate Hypolipidemic 50 

Cetirizine Antihistamine 50 

Sulfamethoxazole Antibiotic 15 

Amoxycillin Antibiotic 60 

Erythromycin Antibiotic 25 

Carbamazepine Antiepileptic 3 

Felbamate Antiepileptic 40-50 

Ibuprofen Analgesic 10 

Paracetamol Analgesic 4 

Source: Bound and Voulvoulis, 2005 
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at low levels (0,1 – 5,0 ng/L) (Rodgers-Gray et al., 2000; Kidd et al., 2007; Soares et al., 

2009; Santos et al., 2010). Thus, similarly to other EDC, EE2 can cause behavioral and 

embryonic development changes as well as a significant reduction in fertilization success, 

an increased egg production and decreased expression of secondary male sex 

characteristics. It can also induce higher vitellogenin plasma levels in both males and 

females, which is a common used endpoint for detecting endocrine disruption in fish 

(Versonnen and Janssen, 2004; Santos et al., 2010). In some studies EE2 was detected 

in superficial and drinking water at concentrations closely to those reported to induce 

estrogenic effects (Kolpin et al., 2002) which is an alert to the risks of PPCPs and to 

emphasize the importance of adopting new strategies to reduce their presence.  

 

 

1.2.2. Pharmaceutical and Personal Care Products used in this study 

The PPCPs selected for the present study were chosen based on data from 

literature, taking into account their relevance either by environmental concentrations 

(Table 3) and effects already reported (Table 4) or existing gaps about their 

ecotoxicological effects as well as their relevance in therapeutics. Thus, five compounds 

were chosen, belonging to different categories: hypolimidemic (Simvastatin), 

antidepressants (Sertraline), preservatives (Propylparaben), disinfectants (Triclocarban) 

and an UV filter (4-Methylbenzylidene Camphor). 

 

Table 3. Environmental concentrations of PPCPs selected for this study (ng/L). 

PPCP Concentration  Local Reference 

Triclocarban 

> 10000 WWTPs effluents 1 

6750  Surface water 1 

19 – 1425 Surface water 1 

250  Surface water 2 

100 – 6000  WWTPs effluents 3 

400 – 50000  WWTPs influents 4 

388  Surface water 5 

4-MBC 

600 – 6500  WWTPs influents 6 

100 – 2700  WWTPs effluents 6 

< 2 – 28  Surface water 6 

799  Coastal areas beach 7 

Propylparaben 

2800  WWTPs influents 8 

21  WWTPs effluents 8 

44.1 ng/g Sewage sludge 9 

207  Surface water 10 
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Sertraline 

1.8  – 19.8  WWTP influents 11 

0.9 – 14.6  WWTP effluents 11 

< 0.52  Seawater 11 

0.84 – 2.4  Surface water 11 

570  Surface water 12 

Simvastatin 

1.0  WWTPs effluents 11 

4.0  WWTPs influents 11 

0.1  Surface water 13 

0.2  WWTPs effluents 13 

1.0 WWTPs influents 13 

91. 2  WWTPs influents 14 

 

 

 

 

Table 4. Lethal and sub-lethal doses of PPCPs selected for this study (µg/L). 

PPCP Species Duration / Endpoint  Parameter Reference 

T
ri

c
lo

c
a
rb

a
n

 

Salmo gairdneri 

48h  LC50 = 120 1 

96h acute toxicity 
NOEC = < 49 

LC50 = 120 
4 

Lepomis macrochirus 96h 
LC50 = 97  

NOEC = 49  
1, 4 

Mysidopsis bahia 

48h LC50 = 15 1 

96h LC50 = 10 1 

28d Reproduction 

LOEC = 0.13 

NOEC = 0.06 

EC50 = 0.21 

1, 4 

Daphnia magna 21d Growth 
LOEC = 4.7 

NOEC = 2.9 
1 

Potamopyrgus 

antipodarum 
4w Reproduction 

LOEC = 0.2 

NOEC = 0.05 

EC10 = 0.5 

2 

Ceriodaphnia sp. 
 NOEC = 1.46  3 

48h NOEC = 1.9 4 

 21d chronic toxicity 
NOEC = 2.9 

LOEC = 4.7 
4 

Pimephales promelas 
35d hatch eggs, 

growth, survival 
NOEC = 5 3 

Mercenaria mercenaria  LC50 = 30 3 

Oncorhynchus mykiss 96h acute toxicity LC50 = 180 4 

4
-M

B
C

  
  
  
  
  
  
  
  
  

D. magna 

48h Immobility LC50 = 560 1,5 

21d Growth 

LOEC = 100 

NOEC = 200 

EC10 = 460 

5 

References: (1) Brausch and Rand, 2011; (2) Schultz and Bartell, 2012; (3) Higgins et al., 2009; (4) Chalew 

and Halden, 2009; (5) Zhao et al., 2013; (6) Balmer et al., 2005; (7) Kaiser et al., 2012; (8) González-Mariño 
et al., 2011 (9) Albero et al., 2012; (10) Yamamoto et al., 2011; (11) Santos et al., 2010; (12) Richards and 
Cole, 2006; (13) Miao and Metcalfe, 2003; (14) Kosma et al., 2014. 
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O. mykiss 14d Growth LOEC = 415 1 

Desmodesmus 

subspicatus 
72h Growth IC10 = 810 5 

Danio rerio 72h 

LC50 = 5042 

LC100 = 6359 

EC50 = 3688 

6 

P
ro

p
y
lp

a
ra

b
e
n

 D. magna 

48h LC50 = 12300 9 

24h mobility LC50 = 13000 1 

48h mobility 
LC50 = 7000 

LOEC = 6000 
1 

7d Growth LOEC = 400 9 

7d Reproduction LOEC = 6000 9 

P. promelas 48h LC50 = 9700 1 

Oryzias latipes 

7d VTG LOEC = 9900 1 

96h LC50 = 4900 8 

96h 
LC50 = 9700 

LOEC = 2500 
9 

Dugesia japonica 48h LC50 = 12300 7 

S
e

rt
ra

li
n

e
 

O. mykiss 96h 
LC50 = 380 

NOEC = 100 
10 

D. magna 

48h immobilization 

EC50 = 1300 

LOEC = 180 

NOEC = 100 

10 

21d Reproduction 

LC50 = 120 

EC50 = 66 

LOEC = 100 

NOEC = 32 

10 

Xenopus laevis 96h 
LC50 = 3900 

EC50 = 3300 
11 

S
im

v
a

s
ta

ti
n

 

Dunnaltella tertiolecta 96h Growth EC50 = 22800  

Palaemonetes purgio 

96h Larvae Survival 

LC50 = 1180 

LOEC = 1250 

NOEC = 625 

12 

96h Adult Survival 
LOEC = 10000 

NOEC = 5000 
13 

Nitocra spinipes 96h Growth 
LC50 = 810 

LOEC = 0.16 
14 

 

 

 

 

 

 

 

 

References: (1) Brausch and Rand, 2011; (2) Giudice and Young, 2010; (3) Higgins et al., 2009; (4) Chalew 

and Halden, 2009; (5) Sieratowicz et al., 2011: (6) Vincent, 2011; (7) Li, 2012; (8) Yamamoto et al., 2011; (9) 

Dobbins et al., 2009; (10) Santos et al., 2010; (11) Richards and Cole, 2006; (12) DeLorenzo and Fleming, 

2008; (13) Key et al., 2008; (14) Dahl et al., 2006. 
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1.2.2.1. Hypolipidemic drugs: Simvastatin 

There are two types of hypolipidemic drugs, namely statins and the group most 

frequently detected in the environment, fibrates. These compounds are used to decrease 

cholesterol concentration, and fibrates can also induce a decrease of triglycerides 

concentration in blood plasma. (Fent et al., 2006; Santos et al., 2010). 

Statins interrupt cholesterol synthesis by inhibiting the 3-hydroxymethylglutaril 

coenzyme A reductase (HMG-CoA), an enzyme that enhances an important step of 

cholesterol synthesis. This inhibition induces intracellular cholesterol depletion, which 

results in an increased of low density lipoproteins (LDL) receptors expression, principally 

in hepatocyte membranes. Therefore, LDL of cholesterol are reabsorbed from blood 

plasma to LDL receptors (Fent et al., 2006). Inhibiting HMG-CoA conversion to 

mevalonate, statins interact with mevalonate metabolism, which may result in 

antioxidative and antiinflamatory effects (Fent et al., 2006). 

 

 

IUPAC Name 

(1S,3R,7S,8aR)-8-{2-[(2R,4R)-4-hydroxy-6-
oxotetrahydro-2H-pyran-2-yl]ethyl}-3,7-dimethyl-
1,2,3,7,8,8ª-hexahydronaphthalen-1-yl2,2-
dimethylbutanoate 

Molecular formula C25H38O5 

Water solubility 0.03 mg/L 

octanol–water partitioning 
coefficient (log kow) 

4.68 

Figure 2. Chemical structure and physicochemical properties of Simvastatin. 
Sources: http://www.sigmaaldrich.com/catalog/product/sigma/s6196?lang=pt&region=PT; Key et al. 2008  
 

Simvastatin (SIMV) (Figure 2) belongs to statins group and is frequently 

prescribed, reducing mortality and morbidity from coronary heart diseases (Yang et al., 

2011). Measured simvastatin environmental concentrations have been found to be low 

(Key et al., 2008). However, toxicity data of statins is very limited (Santos et al., 2010).  
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1.2.2.2. Selective Serotonin Reuptake Inhibitors (SSRIs): Sertraline 

Serotonin (5-hydroxytryptamine) is a neurotransmitter involved in important 

physiological processes and cellular functions modulation, related to neuroendocrine 

signaling pathways, immune system, food intake, sexual behavior, reproduction and 

development. This neurotransmitter is released into a synapse space to a pre-synapse, 

but selective serotonin reuptake inhibit this pump, which lead to an increasing of serotonin 

level in the synapse space (Fent et al., 2006; Park et al., 2012). 

Selective serotonin reuptake inhibitors (SSRIs) are prescribed for clinical 

depression and compulsive disorders (Park et al., 2012). The SSRIs fluoxetine, 

fluvoxamine, paroxetine and sertraline (SER) are the most widely used antidepressants 

(Santos et al., 2010). Fluoxetine is frequently used in ecotoxicological research on SSRI 

while there are few studies that have investigated sertraline effects (Park et al., 2012). 

Serotonin occurs in lower vertebrates and invertebrates. As the cellular receptors 

of SSRIs are evolutionary conserved, aquatic organisms may experience similar 

responses or side effects to those reported for humans (Schultz et al., 2011). Thus, SSRIs 

may interfere with functions of nervous, hormonal and immuno systems of these 

organisms (Fent et al., 2006; Schultz et al., 2011; Park et al., 2012). The effects resulting 

from SSRIs exposure are different between phyla but several studies have reported 

alterations in reproduction by affecting endogenous hormone levels and reproductive 

behaviors (Fent et al., 2006; Park et al., 2012).  

 

 

IUPAC Name 
(1S,4S)-4-(3,4-dichlorophenyl)-N-methyl-
1,2,3,4-tetrahydronaphthalen-1-amine 

Molecular formula C17H17Cl2N 

Water solubility 3022 mg/L 

octanol–water partitioning 
coefficient (log kow) 

1.37 ± 0.1 

Figure 3. Chemical structure and physicochemical properties of Sertraline. 
Sources: http://www.trc-canada.com/detail.php?CatNum=S280000; Kwon, J., Armbrust, K. (2008) 

http://www.trc-canada.com/detail.php?CatNum=S280000
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Despite treatments applied in WWTPs, some SSRIs remain biochemically active 

and are released into the environment leading to frequent detection of this compounds in 

surface water (Schultz  et al., 2011; Kolpin et al., 2012) and in tissues of some aquatic 

organisms (Park et al., 2012). Although environmental SSRI concentrations are low, the 

additive effects of a long term exposure to different SSRI can result in chronic effects to 

aquatic organisms (Santos et al., 2010). 

Sertraline is a common prescribed SSRI (Figure 3). Previous studies have 

reported the detection of sertraline and its primary metabolite desmethylsertraline in 

muscle, liver and brain tissues in fish living near an effluent stream (Ramirez et al., 2009). 

 

 

1.2.2.3. Ultra Violet Filter: 4-Methylbenzylidene Camphor 

The effects of ultraviolet (UV) radiation exposure have growing concerns in human 

health and caused an increased usage of UV filters, since the ozone depletion in Australia 

has been discovered. UV filters are widely used in sunscreen products and cosmetics like 

beauty creams, body lotions, hair sprays and shampoos to protect from UV radiation 

(Balmer et al., 2005; Brausch and Rand, 2011). These compounds can also be used as 

additives in plastics, carpets, clothing and washing powder to protect also products from 

UV radiation (Kaiser et al., 2012). 

The effects caused by over-exposure of sunlight include sunburn and light-induced 

cell injury and it was estimated that 90 percent of non-melanoma skin cancers and 65 

percent of melanomas in humans are caused by sunlight exposure (Vincent, 2011). UV 

filters can be organic or inorganic micropigments. Organic UV filters (methylbenzylidene 

camphor) act by absorbing UV radiation while the inorganic (ZnO, TiO2) can also reflect 

and scatter UV radiation. Generally, both UV filters types protect against UVB (280 – 315 

nm) and some offer protection against UVA (315 – 400 nm) radiation too. Sunscreen 

products with high sun protect factors generally have higher concentrations of UV filter 

and often two or more compounds are used in order to cover a larger range of 

wavelengths (Balmer et al., 2005; Kunz et al., 2006). 

Some oxidative damage to DNA may occur due to free radicals generated by the 

UV filter TiO2 when absorbing UV radiation, which can result in cancer development in 

humans (Konaka et al., 1999). Furthermore, sunscreens can enhance the penetration and 

dermal absorption of certain compounds like pesticides, thereby enhance adverse effects 

(Pont et al., 2004; Giokas et al., 2007; Vincent, 2011). Due to photostability and high 

lipophilicity, some UV filters can bioaccumulate and recent in vitro and in vivo studies with 

rats and fish have reported their potential to induce estrogenic activity and adversely 
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effects on fecundity and reproduction (Balmer et al., 2005; Kunz et al., 2006; Brausch and 

Rand, 2011; Zucchi et al., 2011). Considering their physicochemical properties, UV filters 

are also expected to accumulate in human milk (Schlumpf et al., 2008) but also in 

sediments and thus affecting benthic organisms (Kaiser et al., 2012). 

The UV filter 4-methylbenzylidene Camphor (4-MBC) (Figure 4), an organic UV 

filter, is one of the most common UV filters used in sunscreens and it is frequently 

detected in WWTPs effluents (Bachelot et al., 2012).  It has been reported as having 

potential antiestrogenic activity in both in vivo and in vitro studies as well as estrogenic 

and antiandrogenic activity (Schreurs et al., 2005; Schlumpf et al., 2008; Brausch and 

Rand, 2011; Vincent, 2011; Sieratowicz et al., 2011).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1.2.2.4. Preservative: Propylparaben 

Parabens are a group of alkyl esters of p-hydrozybenzoic acid. This class of 

antimicrobial preservatives is widely used in cosmetics such as creams, skin lotions and 

shampoos, but they are also applied in pharmaceuticals and food products, due to their 

large antimicrobial spectrum, stability over a wide pH range and high solubility in water 

(Terasaki et al., 2009; Brausch and Rand, 2011; Yamamoto et al., 2011).  

The extensive use of parabens has growing concerns about their potential chronic 

effects on human health and some recent studies have suggested a possible relationship 

between parabens and breast cancer, possibly due to prolonged dermal exposure (Darbre 

 

IUPAC Name 
(3E)-1,7,7-Trimethyl-3-[(4-
methylphenyl)methylene]-2-nornornanone 

Molecular formula C18H22O 

Water solubility Insoluble 

octanol–water partitioning 
coefficient (log kow) 

5.1 

Figure 4. Chemical structure and physicochemical properties of 4-methylbenzylidene 
camphor. 
Sources: Balmer et al., 2005; Vincent, 2011;  
http://uniproma.en.b2bfoo.com/wholesale/800928/Sell-4-methylbenzylidene-Camphor.html 

http://uniproma.en.b2bfoo.com/wholesale/800928/Sell-4-methylbenzylidene-Camphor.html
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et al., 2004). Although more studies are needed to confirm potential parabens 

carcinogeniticy, new parabens-free PCPs have been recently available in the market 

(González-Mariño et al., 2012). 

Although advanced treatments in WWTPs revealed effective at removing these 

compounds, such as membrane filtration, ozonation and powered activated carbon, most 

of WWTPs still use conventional treatment processes and thus, some parabens present in 

effluents are released into the aquatic environment (Alberto et al., 2012). There are few 

studies that have examined parabens occurrence in WWTPs effluents and surface water 

but existing data reported higher concentrations of parabens in surface water (15 to 400 

ng/L) than WWTPs effluents (50 to 85 ng/L), depending on paraben species (Brausch and 

Rand, 2011). As parabens contain phenolic hydroxyl groups they can easily react with 

free chlorine when mixed with chlorinated tap water and several chlorinated compounds 

have been found in aquatic environment, which may result in adversous effects of 

exposed species (Greenlee et al., 1985; Terasaki et al., 2009; Gozález-Mariño et al., 

2011; Sárkány-Kiss et al., 2012). 

Some studies have previously indicated that increasing chain length of parabens’ 

substituents can increase paraben acute toxicity and also results in water solubility 

decreases and in higher periods required for compound biodegradation (Brausch and 

Rand, 2011; Darbre et al., 2004; González-Mariño et al., 2011; Li, 2012). These 

compounds can be considered “persistent” contaminants due to their common use and 

continuous introduction into the environment (Albero et al., 2012). 

Depending on the physicochemical properties of paraben species, dermal 

absorption is generally rapid and it can be influenced by the presence of enhancers in the 

PCP formulation that can assist the process (Dabre et al., 2004; Albero et al., 2012). As 

other lipophilic compounds, parabens have a high octanol/water partition coefficient, and 

once enter in organism body are able to accumulate in fatty components of tissues similar 

as other lipophilic compounds (Darbre et al., 2004; Tavares et al., 2009). 

Although most studies have classified parabens as non-mutagenic, there are 

reports of chromosomal anomalies caused by parabens exposure, particularly in the co-

presence of polychlorinated biphenyls, as well as carcinogenic activity. Parabens 

exposure can cause cellular function disruption through secretion inhibition of lysossomal 

enzymes and causing also mitochondrial dysfunctions and estrogenic effects (Drabre et 

al., 2004). 

Several in vivo and in vitro studies have reported potential estrogenic activity of 

parabens (Yamamoto et al., 2011; Alberto et al., 2012). Some parabens can cause VTG 

synthesis in male fish at low concentrations and it was also reported a significantly 
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inhibition of spermatogenesis in rats after propylparaben (PP) exposure, without alteration 

in serum testosterone level (Oishi, 2002; Brausch and Rand, 2011). 

Among the different paraben species, methylparaben and propylparaben (Figure 

5) are the most commonly used in cosmetics and normally are co-applied to increase 

preservatives effects (Brausch and Rand, 2011). Furthermore, these two compounds are 

frequently detected in the environment, at higher concentrations than others parabens 

(González-Mariño et al., 2012; Albero et al., 2012). 

 

 

 

 

 

 

 

 

 

 

 

 

 

1.2.2.5. Bacteriocide and antifungal agents: Triclocarban 

Triclocarban (TCC) is widely used as antimicrobial in soaps, deodorants, skin 

creams, toothpaste and plastics, since 1957 (Brausch and Rand, 2011). Different studies 

have reported its bacteriostatic potential against gram positive bacteria (Walsh et al., 

2003). However, some studies have reported also efficacy against gram negative bacteria 

and also fungi, but at higher concentrations.  

The Triclocarban mode of action as an antimicrobial compound is not well 

understood. It presents a C6H5NH2 group, belonging to anilide group compounds (Figure 

6). These compounds are characterized to induce cell death by adsorbing to the 

cytoplasmic membrane of organisms and destroying its semipermeable nature. As a result 

of anilide action, the proton motive force across the bacterial surface is disrupted and the 

active transport and energy metabolism could also be interrupted (Walsh et al., 2003).  

 

IUPAC Name proxyl 4-hydroxybenzoate 

Molecular formula C10H12O3 

Water solubility 500 mg/L 

octanol–water partitioning 
coefficient (log kow) 

2.71 

Figure 5. Chemical structure and physicochemical properties of Propylparaben. 
Sources: Tavares et al., 2009; Dobbins et al., 2009; 
http://blog.absurdouee.fr/post/2012/12/15/Parahydroxybenzoate-de-propyle-sors-de-ma-cr%C3%A8me 

http://blog.absurdouee.fr/post/2012/12/15/Parahydroxybenzoate-de-propyle-sors-de-ma-cr%C3%A8me
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Triclocarban exhibits significance persistence in the environment and has been 

frequently detected in WWTP effluents and surface water over the last years at 

concentrations higher than Triclosan (TCS), another disinfectant compound, and its 

methyl derivate Methyl-Triclosan (Chalew and Halden, 2009; Brausch and Rand, 2011). 

This compound has potential to accumulate in organisms and sediments and some 

recent studies reported TCC endocrine disruption activity (Chen et al., 2008; Chalew and 

Halden, 2009; Giudice and Young, 2010; Schebb et al., 2011). 

 

 

 

1.3. The use of embryos in ecotoxicological studies with pharmaceuticals and 

personal care products 

Chronic life-cycle exposure tests give important information of the toxicity of 

chemicals. However, short-term early-life-stage has been frequently used as an 

alternative to these long-term in face of its simplicity, low costs, sensitivity and the 

potential to be used as a high-throughput approach. Furthermore, early life stages are 

often more susceptible to chemicals action than adults because they are exposed during 

critical stages of their development, and many chemicals can act at specific developing 

process (Versonnen and Janssen, 2004). Thus, this toxicological information is needed to 

perform more reliable risk assessment and to implement protective standards for 

organisms and ecosystems (Bellas et al., 2005).  

A number of different fish early-life-stage toxicity tests have been established 

being the freshwater zebrafish (Danio rerio) the most commonly and well-recognized 

 

IUPAC Name 3-(4-Chlorophenyl)-1-(3,4-dichlorophenyl)urea 

Molecular formula C13H9Cl3N2O 

Water solubility < 0.045  mg/L 

octanol–water partitioning 
coefficient (log kow) 

3.5 ± 0.06 

Figure 6. Chemical structure and physicochemical properties of Triclocarban. 
Sources: http://finesseofsimpleliving.blogspot.pt/2012/06/beauty-detox-truth-about-triclocarban.html;  
Snyder et al., 2010 
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aquatic vertebrate model species used (Carlsson and Norrgren, 2004) due to advantages 

such as egg transparency, rapid development and well-studied embryogenesis 

(Versonnen and Janssen, 2004). 

Similarly, the embryonic and larval stages of marine invertebrates haven been 

used for assessing quality of marine water and sediments and to understand toxic effects 

of several compounds. Sea urchin embryos are frequently selected as models for toxicity 

testing due to their abundance, ecological and commercial relevance as well as embryo 

sensitivity and extensive knowledge of molecular physiology (Bellas et al., 2005; Roepke 

et al., 2005). 

 

 

1.4. Objectives 

The overall aim of the present work was to assess the toxicological risk of five 

emergent chemicals, simvastatin, sertraline, triclocarban, propylparaben and 4-MBC, both 

under single and combined exposure. Embryonic development of zebrafish (Danio rerio) 

and sea urchin (Paracentrotus lividus) were used as models for evaluating toxic effects 

resulting from PPCPs exposures. 
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2. CHAPTER II – Material and Methods 

2.1. Chemicals 

The selected PPCPs Simvastatin (CAS 79902-63-9, 97.0%), Sertraline 

hydrochloride (CAS 79559-97-0, 98.0%), Propyl 4-hydroxybenzoate (CAS 94-13-3, 

99.0%), 3,4,4’-Trichlorocarbanilide (CAS 101-20-2, 99.0%) and 3-(4-Methylbenzylidene) 

camphor (CAS 36861-47-9, 98.5%) were purchased from Sigma-Aldrich. All stock 

solutions were stored in the dark at 4ºC and were prepared in Dimethylsulfoxide (DMSO), 

purchased from Merck. 

Artificial seawater compounds Potassium chloride (CAS 7447-40-7, 99.0 %), 

Calcium chloride (CAS 10043-52-4, 93.0%), Magnesium chloride hexahydrate (CAS 

7791-18-6, 99.9%), Magnesium sulfate (CAS 7487-88-9, 99.5%) were purchased from 

Sigma-Aldrich while Sodium chloride (CAS 7647-14-5, 99.5%) and Sodium bicarbonate 

(CAS 144-55-8) were purchased from Merck. 

 

 

2.2. Species selection  

2.2.1. Zebrafish (Danio rerio) 

Zebrafish (Danio rerio) is a tropical, teleost and cypriniforme fish, native to the 

rivers of India and south Asia (Jiang et al., 2013). Male and female zebrafish can be easily 

distinguished under spawning conditions (Figure 7). Male show a slender body shape, 

whereas females can be recognized by their swollen bellies due to the large number of 

eggs produced (Lammer et al., 2009).  

  

 

 

 

 

These organisms have been largely used as model species for toxicological 

purposes because of several properties that make this species simple to use. Zebrafish 

are easily maintained in stock at the laboratory, due to their dimensions, thus reducing 

costs. Further aspect that supports its use is the available information for this species, 

including full genome sequence, regulatory sequences and expression profile (Chow et 

Figure 7. Zebrafish (Danio rerio) female (A) and male (B). 
Sources:_http://www.seymourfish.com/zebra-danio-care/ 
http://www.practicalfishkeeping.co.uk/content.php?sid=4342 

(A) (B) 

http://www.seymourfish.com/zebra-danio-care/
http://www.practicalfishkeeping.co.uk/content.php?sid=4342
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al., 2012), which is essential for genomic studies and for understanding the toxicological 

mode of action. 

The advantages of their use, associated with the evolutionary relationship to higher 

vertebrates, makes zebrafish an important model not only for toxicological purposes but 

also as an ecotoxicological test species. In fact, it provides insights into many aspects of 

vertebrate biology, genetics, toxicology and disease, being representative for a larger 

group of organisms.  

Under laboratory conditions, zebrafish can be induced to breed all year round with 

a high fecundity and also large number of offspring, with easy observation and 

manipulation (Segner, 2009). It has been suggested that embryos might be more 

susceptible to develop adverse effects as they are exposed during critical stages in their 

development (Versonnen and Janssen, 2004), which make them a helpful model to 

developmental toxicology research. In comparison with other biological models, 

embryonic development is rapid which reduces the duration of the tests and enables to 

obtain results in a short time (Kimmel et al., 1995). The small size of embryos has the 

advantage that they can be incubated in microplates and be easily manipulated either by 

water exposure or by eggs microinjection (Segner, 2009). Other advantage is the optical 

transparency of the zebrafish eggs which allow the monitoring of possible phenotypic 

changes in the live organism during the assay and enable gene expression analysis, for 

instance, in transgenic zebrafish lines (Versonnen and Janssen, 2004; Segner, 2009; 

Soares et al., 2009). 

At the OECD level, the zebrafish embryo toxic assay (FET) has been proposed as 

an alternative test guideline to classical acute fish toxicity testing with live fish, required for 

regulatory activities (Lammer et al., 2009; Kaiser et al., 2012).  

 

 

2.2.2. Sea urchin (Paracentrotus lividus) 

Paracentrotus lividus (Figure 8) is an herbivorous echinoderm present on rocky 

bottoms from intertidal and subtidal zone. It is the most common sea urchin species of the 

Mediterranean Sea infralittoral and along the North-eastern Atlantic coast (from Scotland 

and Ireland to southern Morocco) (Byrne, 1990; Hereu et al., 2005; Pais et al., 2007; 

Sugni et al., 2010), and also very abundant in the Portuguese coastline (Cunha et al., 

2005).  

Sea urchin exhibits an annual cycle of gonadal growth and maturation, with 

temperature and photoperiod stimulus. In general, spawning began in May/June and 

extends to August/September. The end of the breeding season is followed by gonadal 
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growth from October to April (period of decreasing sea temperature) and oocyte 

accumulation in the ovary in March (Byrne, 1990). 

Many compounds that enter in the marine compartment show low seawater 

solubility. For this reason, they may become associated with organic and inorganic 

particles present in suspension and, subsequently, they can be rapidly deposited in 

sediments, where they may persist for a long time (Rojo-Nieto et al., 2013). Animals that 

live in contact with sediments are more susceptible to possible adverse effects. 

 

  

 

 

 

 

 

 

In general, invertebrates were rather disregarded in spite of their role on aquatic 

ecosystems (Sugni et al., 2010). With the recognition of its ecological relevance, it 

becomes important to conduct further studies and define new experimental models to 

understand the effects of PPCPs exposure on this group (Sugni et al., 2010). 

Echinoderms, being deuterostomes, are phylogenetic more related to chordates 

than any other invertebrate group. In fact, these organisms exhibit a developmental 

pattern that is similar to chordates, which means that they may possess similar 

mechanisms of action or share similar signaling pathways to those of vertebrates (Roepke 

et al., 2005; Sugni et al., 2010) and contribute to understand conserved metabolic and 

signalizing pathways.  

As a result of extensive knowledge of its molecular physiology and genome 

characterization, sea urchin becomes an important experimental model to developmental 

toxicology research. The physiology and biochemistry of fertilization and early embryo 

development are well understood (Roepke et al., 2005), with a production of a large 

quantity of gametes and rapid fertilization and embryonic development processes. The 

sea urchin embryo test (SET) has been frequently used for evaluation of seawater and 

marine sediment quality, revealing itself a rapid, sensitive and cost-effective bioassay 

Figure 8. Sea urchin (Paracentrotus lividus) male (left) and female (right). 
 



24 
 

(Saco-Álvarez et al., 2010). Thus, together with other factors like their abundance, 

ecological and commercial relevance, sea urchin embryo provides a useful developmental 

model (Bellas et al., 2005; Roepke et al., 2005). 

 

 

2.3. Fertilization and embryo collection 

2.3.1. Zebrafish (Danio rerio) 

Adult zebrafish were obtained from local suppliers in Singapore, with no history of 

an environmental exposure to contaminants. The stock of female and male zebrafish was 

kept in 250L aquarium with dechlorinated and aerated water in a recirculation system with 

both mechanical and biological filters, at a water temperature of 28.0±1 ºC and under a 

photoperiod of 14:10h (light:dark). The fish were fed four times per day by an automatic 

feeder with a commercial fish diet Tetramin (Tetra, Melle, Germany) supplemented with 

live brine shrimp (Artemia spp.). 

On the day before the assays, a group of males and females in a ratio of 2:1 was 

housed in a breeding box, inside a 30L aquarium and under the same water and 

photoperiod conditions as the stock. The breeding box had a mesh bottom covered with 

marbles to allow the passage of eggs to aquarium and prevent acts of cannibalism by 

parents. At the following day, ovulation and fertilization were stimulated after the onset of 

light period and take place for one hour. Breeding fish were removed and the eggs were 

collected, cleaned and observed at a magnifying glass to select the fertilized eggs for the 

experiments. Fertilized eggs were randomly allocated to 24 wells plate, at most 3 hours 

after fertilization. 

 

 

2.3.2. Sea urchin (Paracentrotus lividus) 

Sea urchin were collected in Granja, Vila Nova de Gaia (N41º 2’ 26,18’’, W -8º 39’ 

2,24’’), and transported to the laboratory in a portable icebox containing seawater . P. 

lividus gametes were obtained by dissection from a single pair of mature adults. Gamete 

quality was checked for the criteria of motility of the sperm and round form of the eggs 

under a Nikon eclipse 50i microscope. Thus, one male and one female showing optimal 

conditions were selected. Eggs were transferred into a 100 mL measuring cylinder 

containing artificial seawater until a dense suspense was formed. A few µL of undiluted 

sperm were added and the contents were gently stirred to allow fertilization. After a few 

minutes, three aliquots of 10µL were taken by a pipette and observed under the 

microscope in order to record the number of eggs present and fertilization success, which 
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was indicated by the presence of a fertilization membrane. The assay was conducted 

when fertilization rate was greater than 97%. 

 

 

2.4. Experimental design and embryo bioassays 

2.4.1. Experimental solutions 

Stock solutions of each compound were prepared by dissolving Simvastatin, 

Sertraline, Triclocarban, Propylparaben and 4-MBC in the organic dissolvent 

Dimethylsulfoxide (DMSO) to obtain the appropriate concentration for experimental use. 

Similarly, stock solutions of tested mixtures were prepared in DMSO, adding each 

compound in a specific concentration, based on results from individual exposures, for both 

organisms tested. The experimental solutions were obtained by diluting the stock 

solutions in artificial seawater (Sea urchin assays) or in freshwater (Zebrafish assays). All 

solutions were prepared in order to have a final DMSO volume of 0.01%. Artificial 

seawater was prepared according to Zaroogian et al. (1969) as in Table 5.  

 

 

Table 5. Artificial seawater composition. 

Compound Weight (g/L) 

NaCl  24.6  

KCl  0.67  

CaCl2 
1.36  

NaHCO3 
0.39  

MgSO4 
2.04  

MgCl2.6H2O 4.66  

 

 

 

Experimental concentrations of selected PPCPs were chosen based on the data 

from the literature, with 10x dilutions, in order to cover a wide range of concentrations. If 

necessary, a new set of concentrations in 2,5x dilutions or intermediate concentrations 

were tested in order to estimate the No Observed Effect Concentration (NOEC) (Table 6).  

 

 

 

Source: Zaroogian et al., 1969 
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Table 6. Compound concentrations tested in zebrafish and sea urchin assays (µg/L). 

Organism SIMV SER 4-MBC PP TCC 

Zebrafish 

5000.0  10000.0  5000.0  10000.0  10000.0  

500.0  8500.0  500.0  8500.0  1000.0  

50.0 6000.0  50.0 6000.0  850.0  

5.0 3500.0  5.0 3500.0  600.0  

 1000.0   1000.0  350.0  

 100.0   100.0  100.0  

 10.0   10.0  10.0  

Sea urchin 

5000.0  10000.0  5000.0  10000.0  10000.0 

500.0  1000.0  500.0  1000.0  1000.0  

50.0 100.0  50.0 400.0  100.0 

5.0 10.0  5.0 160.0  10.0 

2.0 4.0  2.0 100.0  4.0  

0.8  1.6  0.8  64.0  1.6  

0.32  0.8  0.32  10.0  0.64  

    0.256  

    0.1024  

    0.041  

 

Based on results from individual exposures, embryos from both species were 

exposed to a mixture with these five compounds present at their respective NOEC values. 

Sea urchin embryos were also exposed to two other mixtures, according the respective 

LOEC and EC20 values from individual exposures (Table 7).  

Considering the results of individual exposures, the expected concentration-

response relationship of mixture was calculated using the CA model equation: 

 

𝐸𝐶𝑥𝑚𝑖𝑥 = (∑
𝑝𝑖
𝐸𝐶𝑥𝑖

𝑛

𝑖=1

)

−1

 

 

where ECxmix is the concentration of the mixture that induces an overall effect x, ECxi  is 

the concentration of the component i in a n-component mixture that induce the same 

magnitude effect and pi is the proportion of i-component in the mixture (Belden et al., 

2007). 
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Table 7. Nominal concentrations of mixtures compounds tested in zebrafish and sea 
urchin assays (µg/L). 

Mixture SIMV SER 4-MBC  PP TCC 

Zebrafish 

MIX_NOEC_dr 5.0  1000.0  500.0 1000.0  100.0 

Sea urchin 

MIX_NOEC_pl 2.0  4.0  0.8 160.0  0.256  

MIX_LOEC_pl 5.0  10.0  2.0 400.0  0.64  

MIX_EC20_pl 775.0 55.0 494.0 13891.0  20.0 

 

 

2.4.2. Zebrafish (Danio rerio) 

The static-water renewal toxicological tests with zebrafish were performed 

according to OECD guidelines (OECD, 1998). After embryos observation using a 

magnifying glass, 10 fertilized eggs were selected and transferred to 24-wells plates filled 

with 2 mL of freshly prepared solutions and controls per plate. For chemical individual 

exposures, eight replicates for six treatments conditions were set up: an experimental 

control, a solvent control (DMSO) and four concentrations of each chemical (Lammer et 

al., 2009). Mixtures exposures were performed using the same methodology. 

The 24-wells plates were incubated at 26.5ºC during 80h and under the same 

photoperiod conditions as the zebrafish stock. The medium was renewed daily in order to 

maintain oxygen and toxic nominal concentrations constants during the assay and to 

remove fungi or other organisms that could develop in the well. Embryos were not fed 

during exposure. 

Observations were performed at 8hpf, 32hpf and 80hpf and different parameters 

were recorded (Table 8). The observation periods were selected based on a set of 

characteristics present in embryos at these stages of development (Kimmel et al., 1995).  

Mortality was assessed by daily recordings during the entire exposure period and 

coagulated eggs or death embryos were removed. 

In order to reduce the observation period, six embryos per replicate were randomly 

selected and assessed for different endpoints. Morphological abnormalities on head, tail, 

eyes or yolk-sac, pericardial edema, abnormal cell growth and 75% of epiboly stage were 

rated as present or absent. Heart rate was evaluated in one embryo per replicate using a 

stop-watch during 15s, restarting the counting if the embryo moved. 

All zebrafish embryo/larvae observations were performed with a Leica EZ4 

magnifying glass.  
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Table 8. Endpoints recorded at 8hpf, 32hpf and 80hpf in zebrafish assay. 

Endpoint 8hpf 32hpf 80hpf 

Mortality rate * * * 

75% of epiboly stage *   

Abnormal cell growth *   

Head abnormalities  * * 

Tail abnormalities  * * 

Eyes abnormalities  * * 

Yolk-sac abnormalities  * * 

Pericardial edema  * * 

Heart rate  * * 

Hatching rate   * 

Muscular involuntary contractions(1)   * 

 

 

2.4.3. Sea urchin (Paracentrotus lividus) 

The toxicity assays were performed in 24-wells plates. Within 30 minutes after 

fertilization, fertilized eggs were placed in 3 mL solution test in a concentration of 20 

eggs/mL per well. As performed in zebrafish assays, eight replicates for each treatment, 

including the controls, were used for both single and combined exposures. The 24-wells 

plates were isolated with parafilm and embryos were incubated at 20ºC in dark for 48h. At 

the end of exposure time, embryos were fixed by adding three drops of 37% formaldehyde 

and directly observed under an inverted microscope.  

Embryogenesis success was recorded by measuring larvae length of individuals in 

pluteus stage, defined as the distance between the apex and the end of the post-oral arm, 

in the first 15 individuals per well, randomly chosen. Larvae were considered normal by 

the pyramid shape and four separated arms (Saco-Álvarez et al., 2010). 

P. lividus larvae observations were performed with a Nikon Eclipse 5100T inverted 

microscope equipped with a Nikon D5-Fi2 digital cam. Larvae length was measured using 

NIS-Elements version 4.13 image acquisition software. 

 

(1) Only for 4-MBC exposure 
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2.5.  Statistical analysis 

Data were analyzed using SPSS version 21.0 software. All data were tested for 

homogeneity and normality using Levene’s and Kolmogorov-Smirnov test. If these 

assumptions were met, differences between treatments were tested for significance by 

means of one-way factorial ANOVA followed by Newman-Keuls multiple comparison test 

to compare the control groups and each of the exposed groups.  

If the homogeneity and normality were not met even after data transformation, the 

non-parametrical Kruskal-Wallis test, followed by Games-Howell test, were used to 

multiple comparisons between individual treatments (Bellas et al., 2005). 

D. rerio statistical analysis was made to the 80hpf endpoints cumulative mortality 

and hatching rates, pericardial edema and heart rate, abnormalities in head, eyes, yolk-

sac and tail as well as to the 8hpf endpoints abnormal cell growth and 75% of epiboly 

stage. For P. lividus bioassay, control and solvent control were grouped, if no significant 

differences between them were detected.  The EC20 and their 95% confidence intervals 

were calculated according to the Probit method after normalizing data to the mean control 

response using Abbott’s formula (Bellas et al., 2005). 

Data were presented as means ± standard error. The significance level was set at 

0.05. 
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3. CHAPTER III – Results  

3.1. Hypolipidemic drugs: Simvastatin 

3.1.1. Zebrafish (Danio rerio) 

3.1.1.1. Cumulative mortality and Hatching rates 

 

Figure 9. Cumulative mortality (A) and hatching (B) rates of D. rerio exposed to different 
concentrations of simvastatin for 80h (%). Data are expressed as mean ± SE (n=8). Non-
parametric ANOVA Kruskall-Wallis (p<0.05), followed by Games-Howell test for multiple 
comparisons between groups (A) and (B). Bars with a different letter are significantly 
different from each other. 
  

At 8hpf mortality rate ranged from 0 in the 50.0 and 500.0 µg/L groups to 3.75 ± 

1.83 in 5.0 µg/L treatment group (Figure 9A). On the following observation (32hpf), 

mortality ranged from 1.25 ± 1.25 in 5000.0 µg/L group to 5.0 ± 5.35 in the solvent control. 

Cumulative mortality rate at the end of the assay ranged from 3.75 ± 1.83 in the 5.0 and 

50.0 µg/L exposure groups to 100 in the 500.0 and 5000.0 µg/L exposure groups. All 

embryos from the two highest treatments died before 80hpf. The results obtained in the 

two highest concentrations are significantly different (p<0.05) from those of the other 

exposure groups and controls. 

At 80hpf, hatching rate ranged from 88.75 in the 5.0 µg/L to 0 in the 500.0 and 

5000.0 µg/L groups (Figure 9B). The effects of 500.0 and 5000.0 µg/L tested 

concentrations in embryos hatching rate are significantly different (p<0.05) from the other 

treatments. 

 

 

3.1.1.2. Abnormal cell growth and 75% epiboly stage of embryos (8hpf) 

There were no significant differences (p>0.05) among treatments in abnormal cell 

growth and 75% of epiboly stage at 8hpf (Figure 10A and 10B).  
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Figure 10. Abnormal cell growth (A) and 75% of epiboly stage (B) of D. rerio embryos 
exposed to different concentrations of simvastatin at 8hpf (%). Data are expressed as 
mean ± SE (n=8). Non-parametric ANOVA Kruskall-Wallis (A) and (B).   
 

 

3.1.1.3. Head and eyes abnormalities  

 

Figure 11. Head (A) and eyes (B) abnormalities of D. rerio exposed to different 
concentrations of simvastatin at 32hpf and 80hpf (%). Data are expressed as mean ± SE 
(n=8). Non-parametric ANOVA Kruskall-Wallis (p<0.05), followed by Games-Howell test 
for multiple comparisons between groups (A) and (B). Bars with a different letter are 
significantly different from each other. 
 
 

At 32hpf the percentage of embryos with head abnormalities ranged from 0 in both 

controls to 100 at 500.0 and 5000.0 µg/L exposure groups (Figure 11A). There are no 

significant differences between controls and exposure groups at 80hpf (p>0.05). 

Similarly, at 32hpf the percentage of eyes abnormalities ranged from 0 in both 

controls to 100 at the two highest concentrations (Figure 11B). On the next observation 
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(80hpf) the percentage of eyes abnormalities ranged from 0 in both controls to 33.33 ± 

8.33 in the 50.0 µg/L treatment. The results recorded at the end of the assay for the group 

exposed to 50.0 µg/L were significant different (p<0.05) from those obtained in the 

controls and in the 5.0 µg/L group. 

 

 

3.1.1.4. Yolk-sac and tail abnormalities 

 

Figure 12. Yolk-sac (A) and tail (B) abnormalities of D. rerio exposed to different 
concentrations of simvastatin at 32hpf and 80hpf (%). Data are expressed as mean ± SE 
(n=8). Non-parametric ANOVA Kruskall-Wallis (A) and (B).   
  

There were no significant differences in the percentage of embryos with 

abnormalities in yolk-sac between the results obtained from controls and exposure groups 

(Figure 12A). 

All embryos exposed to 500.0 and 5000.0 µg/L of simvastatin reveal tail 

abnormalities at 32hpf (Figure 12B). No statistically significant differences were recorded 

at 80hpf in embryo tail abnormalities among controls and 5.0 and 50.0 µg/L groups.  

 

 

3.1.1.5. Pericardial edema and Cardiac frequency 

The percentage of embryos with pericardial edema at 80hpf ranged from 0 in 

controls to 56.56 ± 8.87 in the 50.0 µg/L group (Figure 13A). On the next observation 

(80hpf), the percentage of embryos with pericardial edema ranged from 0 in controls to 

56.56 ± 8.87 at this concentration. This increase in the percentage of embryos with 

pericardial edema at 80hpf was statistically significant (p<0.05), in comparison to controls 

and 5.0 and 50.0 µg/L groups. 
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Embryos heart rate did not differ significantly among groups at 80hpf (Figure 13B). 

 

 

Figure 13. Pericardial edema (%) (A) and heart rate (bpm) (B) of D. rerio embryos 
exposed to different concentrations of simvastatin at 32hpf and 80hpf. Data are expressed 
as mean ± SE (n=8). Non-parametric ANOVA Kruskall-Wallis (p<0.05), followed by 
Games-Howell test for multiple comparisons between groups (A). One-way-ANOVA (B). 
Bars with a different letter are significantly different from each other. 
 

 

3.1.1.6. Total abnormalities in embryos 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

At 32hpf the percentage of embryos with one or more abnormalities ranged from 

2.08 ± 2.08 in the control to 100 in the 500.0 and 5000.0 µg/L exposed groups (Figure 14). 
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Figure 14. Percentage of total abnormalities in D. rerio embryos exposed to different 
concentrations of simvastatin at 32hpf and 80hpf. Data are expressed as mean ± SE 
(n=8). One-way-ANOVA (p<0.05), followed by Student Newman-Keuls test for multiple 
comparisons between groups. Bars with a different letter are significantly different from 
each other. 
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At the end of the assay, the percentage of total abnormalities in embryos ranged from 0 in 

the control to 66.67 ± 9.45 in the 50.0 µg/L group (Figure 14 and 15). There was a 

significant increase (p<0.05) in the percentage of abnormal embryos exposed to 50.0 µg/L 

of simvastatin. 

 

 

 

 

 

 

 

 

 

 

 

 

3.1.2. Sea urchin (Paracentrotus lividus) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

An exposure of P. lividus embryos to simvastatin resulted in significant effects.  

Simvastatin at 5000.0 µg/L lead to a delay in larvae development so that none reached 

the four arm stage, and therefore length was not recorded (Figure 17). All simvastatin 

a a a b 

(A) (B) 

a b b b b 

(A) (B) 

Figure 15. Stage of development of D. rerio embryos at 80hpf in the control (A) and in 
the 50.0 µg/L of simvastatin exposure group (B). 

Figure 16. Larval length (µm) of P. lividus exposed to different concentrations of 
simvastatin for 48h (A and B).  Control and solvent control were grouped. Data are 
expressed as mean ± SE (n=240 for controls; n=120 simvastatin exposed groups). One-
way-ANOVA (p<0.05), followed by Student Newman-Keuls test for multiple comparisons 
among groups (A). Non-parametric ANOVA Kruskall-Wallis (p<0.05), followed by Games-
Howell test for multiple comparisons between groups (B). Bars with a different letter are 
significantly different from each other. 
  



36 
 

0

10

20

30

40

50

60

70

80

90

100

Control
H20

Control
DMSO

1000.0 3500.0 6000.0 8500.0

M
o

rt
a
li
ty

 r
a
te

 (
%

)

SER (µg/L)

Cumulative mortality rate

8hpf

32hpf

80hpf

treatments induced a significant decrease (p<0.05) of larval length, compared to controls 

(Figure 16A).  

Considering the results of the first assay, a second experiment was carried out 

testing lower concentrations of simvastatin in order to determine the LOEC (Figure 16B). 

Thus, the LOEC of simvastatin exposure in this study was determined as being 5.0 µg/L 

(430.33 ± 2.95 µm). 

 

 

 

3.2. Selective Serotonin Reuptake Inhibitors (SSRIs): Sertraline 

3.2.1. Zebrafish (Danio rerio) 

3.2.1.1. Cumulative mortality and Hatching rates 

 

Figure 18. Cumulative mortality rate (A and B) of D. rerio embryos exposed to different 
concentrations of sertraline for 80h (%). Data are expressed as mean ± SE (n=8). Non-
parametric ANOVA Kruskall-Wallis (p<0.05), followed by Games-Howell test for multiple 
comparisons between groups (A) and (B). Bars with a different letter are significantly 
different from each other. 
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Figure 17. Stage of development of P. lividus embryos after exposure to different 
concentrations of simvastatin for 48h: Solvent control – pluteus larvae (A); 500.0 µg/L – 
pluteus larvae (B); 5000.0 µg/L – prism larvae (C). 
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At 8hpf mortality rate ranged from 0 in the controls, 10.0 and 10000.0 µg/L groups 

to 3.75 ± 1.83 in the 1000.0 µg/L group (Figure 18A). On the next observation (32hpf), an 

increase in the mortality rate was observed, ranging from 1.25 ± 1.25 in the control and 

10.0 µg/L group to 78.75 ± 5.18 in the 10000.0 µg/L group. At 80hpf, all embryos exposed 

to 10000.0 µg/L of sertraline died. The cumulative mortality rate at this concentration was 

significantly different (p<0.05) from the other exposure groups and controls at the end of 

the assay. 

D. rerio embryos were exposed to concentrations between 1000.0 and 10000.0 

µg/L in a second experiment (Figure 18B). At 8hpf mortality rate ranged from 0 in the 

8500.0 µg/L to 2.50 ± 1.64 in the 1000.0 µg/L group. On the next observation (32hpf), 

there was an increase of cumulative mortality, ranging from 1.25 ± 1.25 in the solvent 

control to 92.50 ± 3.13 in the 8500.0 µg/L group. All embryos exposed to 3500.0, 6000.0 

and 8500.0 µg/L of sertraline died before 80hpf. The cumulative mortality rate in these 

exposure groups is significantly different from the other groups (p<0.05). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Based on results of both experiments, an exposure to sertraline resulted in 

statistically significant decreases of embryo hatching rate at concentrations equal or 

higher than 3500.0 µg/L at 80hpf (Figure 19).  
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Figure 19. Hatching rate (A and B) of D. rerio embryos exposed to different 
concentrations of sertraline for 80h (%). Data are expressed as mean ± SE (n=8). Non-
parametric ANOVA Kruskall-Wallis (p<0.05), followed by Games-Howell test for multiple 
comparisons between groups (A) and (B). Bars with a different letter are significantly 
different from each other. 
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3.2.1.2. Abnormal cell growth and 75% epiboly stage of embryos (8hpf) 

 

Figure 20. Abnormal cell growth (A and B) of D. rerio embryos exposed to different 
concentrations of sertraline at 8hpf (%). Data are expressed as mean ± SE (n=8). One-
way-ANOVA (A). Non-parametric ANOVA Kruskall-Wallis (B).   
 

 

Figure 21. 75% of epiboly stage (A and B) of D. rerio embryos exposed to different 
concentrations of sertraline at 8hpf (%). Data are expressed as mean ± SE (n=8). One-
way-ANOVA (p<0.05), followed by Student Newman-Keuls test for multiple comparisons 
between groups (A) and (B). Bars with a different letter are significantly different from 
each other. 
 

An exposure to sertraline did not induce significant differences in the percentage of 

embryos with abnormal cell growth among all groups (p>0.05) in both performed assays, 

at 8hpf (Figure 20). 

The percentage of embryos in 75% of epiboly stage at 8hpf decreased in a dose-

dependent manner and ranged from 97.5 ± 1.64 in the solvent control to 60.0 ± 3.27 in the 

10000.0 µg/L group (Figure 21A). This decrease was statistically significant in the 8500.0 

and 10000.0 µg/L exposure groups (p<0.05) (Figure 21). 
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3.2.1.3. Head and eyes abnormalities  

 

Figure 22. Head abnormalities (A and B) of D. rerio embryos exposed to different 
concentrations of sertraline at 32hpf and 80hpf (%). Data are expressed as mean ± SE 
(n=8). Non-parametric ANOVA Kruskall-Wallis (A) and (B). 
 

 

 

Figure 23. Eyes abnormalities (A and B) of D. rerio embryos exposed to different 
concentrations of sertraline at 32hpf and 80hpf (%). Data are expressed as mean ± SE 
(n=8). Non-parametric ANOVA Kruskall-Wallis (A) and (B). 

  

 

An exposure to sertraline did not induce significant differences (p>0.05) in the 

percentage of D. rerio embryos with head or eyes abnormalities at 80hpf (Figure 22 and 

23). All embryos exposed to concentrations equal or higher than 3500.0 µg/L died before 

80hpf. 
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3.2.1.4. Yolk-sac and tail abnormalities 

 

Figure 24. Yolk-sac abnormalities (A and B) of D. rerio embryos exposed to different 
concentrations of sertraline at 32hpf and 80hpf (%). Data are expressed as mean ± SE 
(n=8). Non-parametric ANOVA Kruskall-Wallis (A) and (B). 
 

 

 

Figure 25. Tail abnormalities (A and B) of D. rerio embryos exposed to different 
concentrations of sertraline at 32hpf and 80hpf (%). Data are expressed as mean ± SE 
(n=8). One-way-ANOVA (A). Non-parametric ANOVA Kruskall-Wallis (B). 
 

There was no significant differences (p>0.05) in the percentage of embryos with 

yolk-sac or tail abnormalities at 80hpf among all groups, for both assays performed 

(Figure 24 and 25).  

At 32hpf, there was an increase in the percentage of embryos with tail 

abnormalities in the 10000.0 µg/L group (Figure 25A). An increase in the percentage of 

embryos with tail abnormalities was recorded for concentrations equal or higher than 

3500.0 µg/L at 32hpf (Figure 25B).  
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3.2.1.5. Pericardial edema and Cardiac frequency 

 

Figure 26. Pericardial edema (A and B) of D. rerio embryos exposed to different 
concentrations of sertraline at 32hpf and 80hpf (%). Data are expressed as mean ± SE 
(n=8). Non-parametric ANOVA Kruskall-Wallis (A). One-way-ANOVA (B). 
 

 

 

Figure 27. Heart rate (A and B) of D. rerio embryos exposed to different concentrations of 
sertraline at 8hpf. Data are expressed as mean ± SE (n=8). One-way-ANOVA (A) and (B). 
 

 

An exposure to sertraline did not induce significant differences (p>0.05) in the 

percentage of embryos with pericardial edema at 80hpf, in both assays (Figure 26).  

Similarly, differences of embryos heart rate between different groups are not 

statistically significant at 80hpf (p>0.05) (Figure 27). 
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3.2.1.6. Total abnormalities in embryos 

 

Figure 28. Percentage of total abnormalities (A and B) in D. rerio embryos exposed to 
different concentrations of sertraline at 32hpf and 80hpf. Data are expressed as mean ± 
SE (n=8). One-way-ANOVA (A) and (B). 
 

An exposure to concentrations equal or higher than 3500.0 µg/L of sertraline 

induced an increase in the percentage of total abnormalities in embryos at 32hpf (Figure 

28). At the end of the assays, the percentage of total abnormalities in embryos was not 

significant different among controls and all exposure groups (p>0.05). All embryos 

exposed to concentrations equal or higher than 3500.0 µg/L died before 80hpf. 

 

 

3.2.2. Sea urchin (Paracentrotus lividus) 

 

An exposure of P. lividus embryos to sertraline lead to a development delay in 

larvae exposed to 1000.0 and 10000.0 µg/L, so that no larvae reached the four arm stage, 

and therefore length was not recorded (Figure 29A and 30). On the first assay, larval 

length in the two other tested concentrations was significantly different from controls 

(p<0.05). 

Hence, a follow up experiment was carried out testing lower concentrations of 

sertraline (Figure 29B). Effects in larval length resulting from an exposure of 4.0 µg/L 

(445.23 ± 2.68 µm) did not significantly differ from those obtained at low concentrations 

and from controls (446.05 ± 1.67 µm). Thus, the LOEC of simvastatin exposure in this 

study was determined as being 10.0 µg/L (434.29 ± 2.69 µm). 
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Figure 29. Larval length (µm) of P. lividus exposed to different concentrations sertraline 
for 48h (A and B). Control and solvent control were grouped. Data are expressed as 
mean ± SE (n=240 for controls; n=120 sertraline exposed groups). Non-parametric 
ANOVA Kruskall-Wallis (p<0.05), followed by Games-Howell test for multiple comparisons 
between groups (A). One-way-ANOVA (p<0.05), followed by Student Newman-Keuls test 
for multiple comparisons between groups (B). Bars with a different letter are significantly 
different from each other. 
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Figure 30. Stage of development of P. lividus embryos and larvae after exposure to 
different concentrations of sertraline for 48h: Control – pluteus larvae (A); Solvent control 
– pluteus larvae (B); 10.0 µg/L – pluteus and prism larvae (C); 100.0 µg/L – prism 
larvae(D); 1000.0 µg/L –  morula stage (E); 10000.0 µg/L – two cell stage (F). 
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3.3. Ultra Violet Filter: 4-Methylbenzylidene Camphor 

3.3.1. Zebrafish (Danio rerio) 

3.3.1.1. Cumulative mortality and Hatching rates 

 

Figure 31. Cumulative mortality (A) and hatching (B) rates of D. rerio embryos exposed to 
different concentrations of 4-MBC for 80h (%). Data are expressed as mean ± SE (n=8). 
Non-parametric ANOVA Kruskall-Wallis (p<0.05), followed by Games-Howell test for 
multiple comparisons between groups (A) and (B). Bars with a different letter are 
significantly different from each other. 
 

 

An exposure of D. rerio embryos to UV filter 4-MBC did not induce significant 

differences (p>0.05) in cumulative mortality rate among controls and all exposure groups 

at 80hpf (Figure 31A).  

The hatching rate at the end of the assay ranged from 98.75 ± 1.25 in the control 

to 38.75 ± 7.66 at the highest tested concentration (Figure 31B). The hatching rate of 

embryos exposed to 5000.0 µg/L was significant different (p<0.05) compared to controls 

and to the other exposure groups at 80hpf.  

 

 

3.3.1.2. Abnormal cell growth and 75% epiboly stage of embryos (8hpf) 

There was no differences in the percentage of abnormal cell growth and 75% of 

epiboly stage of embryos exposed to 4-MBC at 8hpf (p>0.05) (Figure 32).  
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Figure 32. Abnormal cell growth (A) and 75% of epiboly stage (B) of D. rerio embryos 
exposed to different concentrations of 4-MBC at 8hpf (%). Data are expressed as mean ± 
SE (n=8). Non-parametric ANOVA Kruskall-Wallis (A). One-way-ANOVA (B). 
  

 

3.3.1.3. Head and eyes abnormalities 

  

 

 

 

 

 

 

 

 

  

 

 

There were no significant differences (p>0.05) in the percentage of embryos with 

head or eyes abnormalities at 80hpf among groups (Figure 33). 
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Figure 33. Head (A) and eyes (B) abnormalities of D. rerio embryos exposed to different 
concentrations of 4-MBC at 32hpf and 80hpf (%). Data are expressed as mean ± SE 
(n=8). Non-parametric ANOVA Kruskall-Wallis (A) and (B). 
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3.3.1.4. Yolk-sac and tail abnormalities 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The effects in the percentage of embryos with yolk-sac or tail abnormalities after 

exposure to 4-MBC were not significantly different (p>0.05) among exposure groups and 

controls at 80hpf (Figure 34). 

 

 

3.3.1.5. Pericardial edema and Heart rate 
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Figure 34. Yolk-sac (A) and tail (B) abnormalities of D. rerio embryos exposed to different 
concentrations of 4-MBC at 32hpf and 80hpf (%). Data are expressed as mean ± SE 

(n=8). Non-parametric ANOVA Kruskall-Wallis (A) and (B). 

Figure 35. Pericardial edema (%) (A) and heart rate (bpm) (B) of D. rerio embryos 
exposed to different concentrations of 4-MBC at 32hpf and 80hpf. Data are expressed as 
mean ± SE (n=8). One-way-ANOVA (p<0.05), followed by Student Newman-Keuls test for 
multiple comparisons among groups (A) and (B). Bars with a different letter are 

significantly different from each other. 
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At the end of the assay, 4-MBC exposure of D. rerio embryos did not results in 

significant differences (p>0.05) in the percentage of embryos with pericardial edema 

among exposure groups and controls (Figure 35A). 

At 32hpf embryo heart rate ranged from 86.50 ± 3.70 in the 5000.0 µg/L group to 

80.0 ± 2.39 the 5.0 µg/L group (Figure 35B). At the end of the assay, embryo heart rate 

ranged from 127.50 ± 5.15 in solvent control to 95.0 ± 3.0 in the 5000.0 µg/L group. An 

exposure to 4-MBC at the highest tested concentration resulted in a significant decrease 

(p<0.05) of embryo heart rate, at 80hpf.   

 

 

3.3.1.6. Total abnormalities in embryos 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The percentage of embryos of controls and exposure groups with one or more 

abnormalities was similar and no significant differences (p>0.05) were reported at 80hpf 

(Figure 36). 

 

 

3.3.1.7. Muscular involuntary contractions 

At the end of the assay, an exposure to 500.0 and 5000.0 µg/L resulted in a 

percentage of embryos with muscular involuntary contractions of 35.42 ± 11.55 and 85.42 

± 3.78, respectively (Figure 37). A significant increase (p<0.05) in muscular involuntary 

contractions was reported in embryos exposed to the highest tested concentration of 4-

MBC. No effects were recorded in the controls and in the two low 4-MBC concentrations 

treatments. 

Figure 36. Percentage of total abnormalities in D. rerio embryos exposed to different 
concentrations of 4-MBC at 32hpf and 80 hpf (%). Data are expressed as mean ± SE 
(n=8). Non-parametric ANOVA Kruskall-Wallis. 
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3.3.2. Sea urchin (Paracentrotus lividus) 

  

  

 

 

 

 

 

  

 

 

 

 

 

 

 

 

 

An exposure of P.lividus embryos to 5000.0 µg/L of 4-MBC revealed lethal for all 

organisms, and therefore length was not recorded. The other 4-MBC exposure groups 
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Figure 37. Muscular involuntary contractions of D. rerio embryos exposed to different 
concentrations of 4-MBC at 80hpf (%). Data are expressed as mean ± SE (n=8). Non-
parametric ANOVA Kruskall-Wallis (p<0.05), followed by Games-Howell test for multiple 
comparisons between groups. Bars with a different letter are significantly different from 
each other. 

Figure 38. Larval length (µm) of P. lividus exposed to different concentrations of 4-MBC 
for 48h (A and B). Control and solvent control were grouped. Data are expressed as 
mean ± SE (n=240 for controls; n=120 4-MBC exposed groups). Non-parametric ANOVA 
Kruskall-Wallis (p<0.05), followed by Games-Howell test for multiple comparisons 
between groups (A). One-way-ANOVA (p<0.05), followed by Student Newman-Keuls test 
for multiple comparisons between groups (B). Bars with a different letter are significantly 

different from each other. 
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induced a significant (p<0.05) decrease of larval length, compared to controls (Figure 

38A).  

Considering the results of the first assay, a new experiment was carried out testing 

lower concentrations of 4-MBC (Figure 38B). A significant decrease (p<0.05) of larval 

length was reported for concentrations equal or higher than 2.0 µg/L (426.55 ± 3.09 µm), 

compared to controls (441.08 ± 1.67 µm). Thus, the LOEC of 4-MBC exposure in this 

study was determined as being 2.0 µg/L. 

 

 

3.4. Preservative: Propylparaben 

3.4.1. Zebrafish (Danio rerio) 

3.4.1.1. Cumulative mortality and Hatching rates 

 

Figure 39. Cumulative mortality rate of D. rerio embryos exposed to different 
concentrations of propylparaben for 80h (A and B) (%). Data are expressed as mean ± 
SE (n=8). Non-parametric ANOVA Kruskall-Wallis (p<0.05), followed by Games-Howell 
test for multiple comparisons between groups (A) and (B). Bars with a different letter are 
significantly different from each other. 
 

At 8hpf mortality rate ranged from 0 in the control and 100.0 µg/L group to 2.50 ± 

1.64 in the 10.0 and 1000.0 µg/L exposure groups (Figure 39A). On the next observation 

(32hpf), cumulative mortality rate ranged from 1.25 ± 1.25 in the solvent control and 100.0 

µg/L group to 5.0 ± 2.67 in the 1000.0 µg/L group. At the end of this assay, an exposure to 

10000.0 µg/L induced lethal effects for all embryos. Thus, cumulative mortality rate was 

statistically significant (p<0.05) for the highest tested concentration, compared to controls 

and to the other exposure groups at 80hpf.  

No significant differences (p>0.05) in cumulative mortality rate were recorded for 

intermediate concentrations tested in a second experiment, between 1000.0 and 10000.0 

µg/L of propylparaben (Figure 39B). 
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Figure 40. Hatching rate of D. rerio embryos exposed to different concentrations of 
propylparaben for 80h (A and B) (%). Data are expressed as mean ± SE (n=8). Non-
parametric ANOVA Kruskall-Wallis (p<0.05), followed by Games-Howell test for multiple 
comparisons between groups (A) and (B). Bars with a different letter are significantly 
different from each other. 
 

An exposure to propylparaben induced a significant decrease in embryos hatching 

rate for concentrations equal or higher than 6000.0 µg/L at 80hpf (Figure 40B). All 

embryos exposed to 10000.0 µg/L of propylparaben died before hatching (Figure 40A).  

 

 

3.4.1.2. Abnormal cell growth and 75% epiboly stage of embryos (8hpf) 
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Figure 41. Abnormal cell growth  in D. rerio embryos exposed to different concentrations 
of propylparaben at 8hpf (A and B) (%). Data are expressed as mean ± SE (n=8). Non-
parametric ANOVA Kruskall-Wallis (A). One-way-ANOVA (p<0.05) (B). 
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Figure 42. 75% of epiboly stage of D. rerio embryos exposed to different concentrations 
of propylparaben at 8hpf (A and B) (%). Data are expressed as mean ± SE (n=8). One-
way-ANOVA (p<0.05), followed by Student Newman-Keuls test for multiple comparisons 
between groups (A) and (B). 

 

No significant differences (p>0.05) in the percentage of abnormal cell growth were 

reported at 8hpf among controls and exposure groups, in both assays performed (Figure 

41).  

An exposure to propylparaben induced a decrease in the percentage of embryos 

at 75% of epiboly stage at 8hpf in a dose-dependent manner (Figure 42A). The 

percentage of embryos in 75% of epiboly stage ranged from 98.75 ± 1.25 in the solvent 

control to 87.50 ± 3.13 in the 10000.0 µg/L exposure group. Embryos exposed to 10000.0 

µg/L of propylparaben exhibit a significant delay in their development (p<0.05). 

A second experiment was carried out testing intermediate concentrations lower 

than 10000.0 µg/L of propylparaben (Figure 42B). No significant decrease in the 

percentage of embryos at 75% of epiboly stage was reported at 8hpf. 

 

 

3.4.1.3. Head and eyes abnormalities  

In the initial experiment, no significant differences (p>0.05) were recorded in the 

percentage of head or eyes abnormalities in embryos exposed to propylparaben at 80hpf, 

among controls and exposure groups (Figure 43A and 44A). All embryos from the highest 

treatment died before 80hpf. 

A second experiment was carried out with a concentration of propylparaben 

between 1000.0 and 10000.0 µg/L. At 80hpf there was a significant increase (p<0.05) in 

the percentage of embryos with head or eyes abnormalities for concentrations equal and 

higher than 3500.0 µg/L (Figure 43B and 44B). 
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Figure 43. Head abnormalities of D. rerio embryos exposed to different concentrations of 
propylparaben at 32hpf and 80hpf (A and B) (%). Data are expressed as mean ± SE 
(n=8). Non-parametric ANOVA Kruskall-Wallis (p<0.05), followed by Games-Howell test 
for multiple comparisons between groups (A) and (B). Bars with a different letter are 
significantly different from each other. 
 

 

 

Figure 44. Eyes abnormalities of D. rerio embryos exposed to different concentrations of 
propylparaben at 32hpf and 80hpf (A and B) (%). Data are expressed as mean ± SE 
(n=8). Non-parametric ANOVA Kruskall-Wallis (p<0.05), followed by Games-Howell test 
for multiple comparisons between groups (A) and (B). Bars with a different letter are 
significantly different from each other. 
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3.4.1.4. Yolk-sac and tail abnormalities 

 

Figure 45. Yolk-sac abnormalities of D. rerio embryos exposed to different concentrations 
of propylparaben at 32hpf and 80hpf (A and B) (%). Data are expressed as mean ± SE 
(n=8). One-way-ANOVA (p<0.05) (A). Non-parametric ANOVA Kruskall-Wallis (p<0.05), 
followed by Games-Howell test for multiple comparisons between groups (B). Bars with a 
different letter are significantly different from each other. 
 

 

 

Figure 46. Tail abnormalities of D. rerio embryos exposed to different concentrations of 
propylparaben at 32hpf and 80hpf (A and B) (%). Data are expressed as mean ± SE 
(n=8). Non-parametric ANOVA Kruskall-Wallis (p<0.05), followed by Games-Howell test 
for multiple comparisons between groups (A) and (B). Bars with a different letter are 
significantly different from each other. 
 

Similarly to results of head and tail abnormalities, there was no significant 

differences (p>0.05) in percentage of embryos with yolk-sac or tail abnormalities at 80hpf 

in the initial experiments (Figure 45A and 46A).  
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However, an exposure to intermediate concentrations of propylparaben induced a 

significant increase (p<0.05) of abnormal tail and yolk-sac in embryos exposed to 

concentrations equal or higher than 3500.0 µg/L, at 80hpf (Figure 45B and 46B). 

 

 

3.4.1.5. Pericardial edema and Cardiac frequency 

 

Figure 47. Pericardial edema of D. rerio embryos exposed to different concentrations of 
propylparaben at 32hpf and 80hpf (A and B) (%). Data are expressed as mean ± SE 
(n=8). One-way-ANOVA (A). Non-parametric ANOVA Kruskall-Wallis (p<0.05), followed 
by Games-Howell test for multiple comparisons between groups (B). Bars with a different 
letter are significantly different from each other. 
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Figure 48. Heart rate of D. rerio embryos exposed to different concentrations of 
propylparaben at 32hpf and 80hpf (A and B) (%). Data are expressed as mean ± SE 
(n=8). One-way-ANOVA (p<0.05), followed by Student Newman-Keuls test for multiple 
comparisons between groups (A) and (B). Bars with a different letter are significantly 
different from each other. 
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In the initial assay, the percentage of pericardial edema in embryos was not 

significantly different (p>0.05) among controls and exposure groups at 80hpf (Figure 47A). 

Intermediate concentrations tested in the second experiment revealed a significant 

increase (p<0.05) in the percentage of embryos with pericardial edema for concentrations 

equal or higher than 3500.0 µg/L at the end of the experiment (Figure 47B). 

No significant differences (p>0.05) were observed in embryos heart rate among 

controls and exposure groups at 80hpf, in the first experiment (Figure 48A).  

In the second experiment heart rate ranged from 109.0 ± 6.83 in the solvent 

control to 68.0 ± 3.75 in the 8500.0 µg/L group at 32hpf (Figure 48B). At the end of this 

experiment, heart rate ranged from 142.0 ± 4.07 in the control to 67.5 ± 7.98 in the 6000.0 

µg/L group. An exposure to intermediate concentrations induced a significant decrease 

(p<0.05) of embryos heart rate exposed to 6000.0 and 8500.0 µg/L of propylparaben at 

80hpf, compared to controls and to other exposure groups.  

 

 

3.4.1.6. Total abnormalities in embryos 

 

Figure 49. Percentage of total abnormalities in D. rerio embryos exposed to different 
concentrations of propylparaben at 32hpf and 80hpf (A and B) (%). Data are expressed 
as mean ± SE (n=8). One-way-ANOVA (A). Non-parametric ANOVA Kruskall-Wallis 
(p<0.05), followed by Games-Howell test for multiple comparisons between groups (B). 
Bars with a different letter are significantly different from each other. 
 

At 80hpf of the initial assay no significant differences (p>0.05) were observed in 

the percentage of total abnormalities among controls and exposed groups (Figure 49A).  

An exposure of D. rerio embryos to propylparaben in a second experiment resulted 

in a significant increase (p<0.05) of abnormalities in embryos at 80hpf for concentrations 

equal or higher than 3500.0 µg/L, compared to controls and 1000.0 µg/L group (Figure 

49B).  
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3.4.2. Sea urchin (Paracentrotus lividus) 

 

Figure 50. Larval length (µm) of P. lividus exposed to different concentrations of 
propylparaben for 48h (A and B). Control and solvent control were grouped. Data are 
expressed as mean ± SEM (n=240 for controls; n=120 propylparaben exposed groups). 
Non-parametric ANOVA Kruskall-Wallis (p<0.05), followed by Games-Howell test for 
multiple comparisons between groups (A) and (B). Bars with a different letter are 
significantly different from each other. 

 

An initial exposure of P. lividus embryos to propylparaben induced a significant 

decrease (p<0.05) of larval length for concentrations-exposure of 1000.0 µg/L (477.11 ± 

2.79 and 10000.0 µg/L (440.05 ± 2.35 µm), compared to controls (490.23 ± 1.86 µm) 

(Figure 50A).  

Considering the results of the first assay, a second experiment was carried out 

testing concentrations lower than 1000.0 µg/L (Figure 50B). A significant decrease 

(p<0.05) in larval length was observed at 400.0 µg/L (425.38 ± 2.78 µm), compared to 

controls (438.72 ± 1.59 µm), corresponding this concentration to the LOEC of 

propylparaben exposure in this study. 

 

 

3.5. Bacteriocide and antifungal agents: Triclocarban 

3.5.1. Zebrafish (Danio rerio) 

3.5.1.1. Cumulative mortality and Hatching rates 

At 8hpf there was no report of dead embryos in the controls and exposure groups 

in the first assay (Figure 51A). On the next observation (32hpf), mortality was keept at low 

levels in all groups. At the end of the assay, embryos exposed to 1000.0 and 10000.0 

µg/L were all dead, a significant (p<0.05) effect compared to controls and the other 

exposure groups.  
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Considering the results of the first assay, a second experiment was carried out 

testing intermediate concentrations lower than 1000.0 µg/L of triclocarban (Figure 51B). At 

8hpf mortality rate ranged from 1.25 ± 1.25 in the controls and 850.0 µg/L group to 6.25 ± 

2.63 in the 100.0 µg/L group (Figure A). On the next observation (32hpf), cumulative 

mortality rate ranged from 1.25 ± 1.25 in the 850.0 µg/L group to 8.75 ± 2.95 in the 100.0 

µg/L group. At the end of the assay, cumulative mortality rate ranged from 2.50 ± 1.64 in 

the solvent control to 100 in the 850.0 µg/L group. There was a significant increase 

(p<0.05) of cumulative mortality rate for all new test-concentrations in a dose-dependent 

manner at 80hpf. 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 52. Hatching rate of D. rerio embryos exposed to different concentrations of 
triclocarban for 80h (A and B) (%). Data are expressed as mean ± SE (n=8). Non-
parametric ANOVA Kruskall-Wallis (A). One-way-ANOVA (B). 
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Figure 51. Cumulative mortality rate of D. rerio embryos exposed to different 
concentrations of triclocarban for 80h (A and B) (%). Data are expressed as mean ± SE 
(n=8). Non-parametric ANOVA Kruskall-Wallis (p<0.05), followed by Games-Howell test 
for multiple comparisons between groups (A) and (B). Bars with a different letter are 
significantly different from each other. 
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No significant differences (p>0.05) in hatching rate of embryos exposed to 

triclocarban were reported, in both experiments performed (Figure 52). 

 

 

3.5.1.2. Abnormal cell growth and 75% epiboly stage of embryos (8hpf) 

 

Figure 53. Abnormal cell growth in D. rerio embryos exposed to different concentrations 
of triclocarban at 8hpf (A and B) (%). Data are expressed as mean ± SE (n=8). Non-
parametric ANOVA Kruskall-Wallis (A). One-way-ANOVA (B). 
 

 

Figure 54. 75% of epiboly stage of D. rerio embryos exposed to different concentrations 
of triclocarban at 8hpf (A and B) (%). Data are expressed as mean ± SE (n=8). One-way- 
(A). Non-parametric ANOVA Kruskall-Wallis (B). 

 

An exposure to triclocarban did not induced significant differences in the 

percentage of embryos with abnormal cell growth at 8hpf, in both performed assays 

(Figure 53). Similarly, no significant differences were reported in the percentage of 

embryos in 75% of epiboly stage at 8hpf among controls and exposure groups (Figure 

54). 
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3.5.1.3. Head and eyes abnormalities  

 

Figure 55. Head abnormalities of D. rerio embryos exposed to different concentrations of 
triclocarban at 32hpf and 80hpf (A and B) (%). (A) Data are expressed as mean ± SE 
(n=8). (B) Data are expressed as mean ± SE (n=8 for control, solvent control and 100.0 
µg/L; n=3 for 350.0 µg/L; n=1 for 600.0 µg/L triclocarban exposed groups). Non-
parametric ANOVA Kruskall-Wallis (A) and (B).   
 

 

 

Figure 56. Eyes abnormalities of D. rerio embryos exposed to different concentrations of 
triclocarban at 32hpf and 80hpf (A and B) (%). (A) Data are expressed as mean ± SE 
(n=8). (B) Data are expressed as mean ± SE (n=8 for control, solvent control and 100.0 
µg/L; n=3 for 350.0 µg/L; n=1 for 600.0 µg/L triclocarban exposed groups). Non-
parametric ANOVA Kruskall-Wallis (A) and (B).   

 

The percentage of embryos with head or eyes abnormalities was not statistically 

different (p>0.05) among controls and exposure groups at 80hpf, in both experiments 

performed (Figure 55 and 56). All embryos from the two highest test-concentrations of the 

first assay died before 80hpf. 
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3.5.1.4. Yolk-sac and tail abnormalities 

 

Figure 57. Yolk-sac abnormalities of D. rerio embryos exposed to different concentrations 
of triclocarban at 32hpf and 80hpf (A and B) (%). (A) Data are expressed as mean ± SE 
(n=8). (B) Data are expressed as mean ± SE (n=8 for control, solvent control and 100.0 
µg/L; n=3 for 350.0 µg/L; n=1 for 600.0 µg/L triclocarban exposed groups). Non-
parametric ANOVA Kruskall-Wallis (A) and (B).   
 
 

 

Figure 58. Tail abnormalities of D. rerio embryos exposed to different concentrations of 
triclocarban at 32hpf and 80hpf (A and B) (%). (A) Data are expressed as mean ± SE 
(n=8). (B) Data are expressed as mean ± SE (n=8 for control, solvent control and 100.0 
µg/L; n=3 for 350.0 µg/L; n=1 for 600.0 µg/L triclocarban exposed groups). Non-
parametric ANOVA Kruskall-Wallis (A) and (B).   

 

 

Embryos exposed to triclocarban did not showed significant differences (p>0.05) in 

the percentage of yolk-sac or tail abnormalities at 80hpf, in both assays performed (Figure 

57 and 58).  
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3.5.1.5. Pericardial edema and Cardiac frequency 

 

Figure 59. Pericardial edema of D. rerio embryos exposed to different concentrations of 
triclocarban at 32hpf and 80hpf (A and B) (%). (A) Data are expressed as mean ± SE 
(n=8). Non-parametric ANOVA Kruskall-Wallis (B) Data are expressed as mean ± SE 
(n=8 for control, solvent control and 100.0 µg/L; n=3 for 350.0 µg/L; n=1 for 600.0 µg/L 
triclocarban exposed groups). One-way-ANOVA. 

 

 

 

Figure 60. Heart rate of D. rerio embryos exposed to different concentrations of 
triclocarban at 32hpf and 80hpf (A and B) (%). (A) Data are expressed as mean ± SE 
(n=8). One-way-ANOVA. (B) Data are expressed as mean ± SE (n=8 for control, solvent 
control and 100.0 µg/L; n=2 for 350.0 µg/L triclocarban exposed groups). Non-parametric 
ANOVA Kruskall-Wallis. 

 

At the end of assays, few embryos developed pericardial edema as a result of 

triclocarban exposure and no significant differences (p>0.05) were reported among 

controls and exposure groups (Figure 59).  
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In the initial assay, no significant differences (p>0.05) in embryo heart rate were 

reported at 80hpf (Figure 60A).  

Considering the results obtained in the first assay, a second experiment was 

carried out with intermediate concentrations lower than 1000.0 µg/L of triclocarban (Figure 

60B). There was a decrease in embryos heart rate exposed to 350.0 µg/L, although 

differences did not reach significance (p>0.05) because of a high individual variability. 

 

 

3.5.1.6. Total abnormalities in embryos 

 

Figure 61. Percentage of total abnormalities in D. rerio embryos exposed to different 
concentrations of triclocarban at 32hpf and 80hpf (A and B) (%). (A) Data are expressed 
as mean ± SE (n=8). (B) Data are expressed as mean ± SE (n=8 for control, solvent 
control and 100.0 µg/L; n=2 for 350.0 µg/L; n=1 for 600.0 µg/L triclocarban exposed 
groups). Non-parametric ANOVA Kruskall-Wallis (A)  and (B). 
 

Few abnormal embryos were reported in the initial assay and there was no 

significant differences (p>0.05) among controls and exposure groups at 80hpf (Figure 

61A).  

An exposure to intermediate test-concentrations lower than 1000.0 µg/L of 

triclocarban resulted in an increase in the percentage of total abnormalities in embryos in 

the 350.0 and 600.0 µg/L groups (Figure 61B). However, no significant differences 

(p>0.05) were reported among controls and exposure groups. 
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3.5.2. Sea urchin (Paracentrotus lividus) 

 

 

Figure 62. Larval length (µm) of P. lividus exposed to different concentrations of 
triclocarban for 48h (A, B  and C). Control and solvent control were grouped. Data are 
expressed as mean ± SE (n=240 for controls; n=120 triclocarban exposed groups). One-
way-ANOVA (p<0.05), followed by Student Newman-Keuls test for multiple comparisons 
between groups  (A) and (B). Bars with a different letter are significantly different from 
each other. Non-parametric ANOVA Kruskall-Wallis (p<0.05), followed by Games-Howell 
test for multiple comparisons between groups (C). 
 

An exposure of P. lividus embryos to triclocarban induced significant effects in 

larval length at 48h-exposure. An exposure to 100.0, 1000.0 and 10000.0 µg/L of 

triclocarban resulted in an embryo development delay so that none reached the four arm 

stage, and therefore length was not recorded (Figure 62A and 63). Embryos exposed to 

10.0 µg/L (445.3 ± 2.39 µm) showed a significant decrease (p<0.05) of larval length 

compared to controls (455.01 ± 1.76 µm) (Figure 62A). 
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Considering the results of the first assay, a new set of concentrations was tested in 

two another experiments, at concentrations below 10.0 µg/L of triclocarban (Figure 62B 

and 62C). An exposure to 0.64 µg/L (511.41 ± 2.93 µm) induced a significant decrease 

(p<0.05) of larval length compared to controls (529.98 ± 1.71 µm), corresponding this 

concentration to the LOEC of triclocarban exposure in our study. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

3.6. Mixtures 

3.6.1. Zebrafish (Danio rerio) 

3.6.1.1. Cumulative mortality and Hatching rates 

An exposure of D. rerio embryos to MIX_NOEC_dr did not induce significant 

differences (p>0.05) in cumulative mortality rate at the end of the assay (Figure 64A). 

However, hatching rate ranged from 80.0 ± 3.78 in the solvent control to 51.25 ± 

4.41 in the exposure group (Figure 64B). Significant differences (p<0.05) in hatching rate 

were recorded in embryos exposed to MIX_NOEC_dr at 80hpf.  

A 

C 

B 

D 

500 µm 
500 µm 

500 µm 500 µm 

Figure 63. Stage of development of P. lividus embryos after exposure to different 
concentrations of triclocarban for 48h: Solvent control – pluteus larvae (A); 100.0 µg/L – 
prism larvae (B); 1000.0 µg/L – gastrula stage (C); 10000.0 µg/L – early gastrula stage (D) 
of triclocarban. 
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Figure 64. Cumulative mortality (A) and hatching (B) rates of D. rerio embryos exposed to 
MIX_NOEC_dr for 80h (%). Data are expressed as mean ± SEM (n=8). One-way-ANOVA 
(p<0.05), followed by Student Newman-Keuls test for multiple comparisons between 
groups (A) and (B). Bars with a different letter are significantly different from each other. 

 

 

3.6.1.2. Abnormal cell growth and 75% epiboly stage of embryos (8hpf) 

 

Figure 65. Abnormal cell growth (A) and 75% of epiboly stage (B) of D. rerio embryos 
exposed to MIX_NOEC_dr at 8hpf (%). Data are expressed as mean ± SEM (n=8). Non-
parametric ANOVA Kruskall-Wallis (A). One-way-ANOVA (B). 

 

Similarly to single chemical exposure, no significant differences (p>0.05) were 

reported in the percentage of embryos with abnormal cell growth at 8hpf among controls 

and exposed group (Figure 65A). 

An exposure to MIX_NOEC_dr did not induce significant differences (p>0.05) in 

the percentage of embryos in 75% of epiboly stage at 8hpf among controls and exposed 

group (Figure 65B). 
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3.6.1.3. Head and eyes abnormalities  

 

Figure 66. Head (A) and eyes (B) abnormalities of D. rerio embryos exposed to 
MIX_NOEC_dr at 32hpf and 80 hpf (%). Data are expressed as mean ± SEM (n=8). Non-
parametric ANOVA Kruskall-Wallis (p<0.05), followed by Games-Howell test for multiple 
comparisons between groups (A) and (B). Bars with a different letter are significantly 
different from each other. 

 

The percentage of embryos with head abnormalities was not statistically different 

(p>0.05) among controls and exposed group at 80hpf (Figure 66A).  

The percentage of embryos with eyes abnormalities at 80 hpf ranged from 0 in the 

solvent control to 91.67 ± 4.45 in the exposed group (Figure 66B). Although no 

abnormalities in embryos eyes were reported at 32hpf among all groups, MIX_NOEC_dr 

exposure induced a high and significant increase (p<0.05) in the percentage of embryos 

with eyes abnormalities at 80hpf. 

 

 

3.6.1.4. Yolk-sac and tail abnormalities 

Embryos exposed to MIX_NOEC_dr did not showed significant differences 

(p>0.05) in the percentage of embryos with yolk-sac or tail abnormalities at 80hpf (Figure 

67). 
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Figure 67. Yolk-sac (A) and tail (B) abnormalities of D. rerio embryos exposed to 
MIX_NOEC_dr at 32hpf and 80 hpf (%). Data are expressed as mean ± SEM (n=8). Non-
parametric ANOVA Kruskall-Wallis (A) and (B). 
 

 

3.6.1.5. Pericardial edema and heart rate 

 

Figure 68. Pericardial edema (A) and heart rate (B) of D. rerio embryos exposed to 
MIX_NOEC_dr at 32hpf and 80 hpf (%). Data are expressed as mean ± SEM (n=8). Non-
parametric ANOVA Kruskall-Wallis (p<0.05), followed by Games-Howell test for multiple 
comparisons between groups (A). One-way-ANOVA (p<0.05), followed by Student 
Newman-Keuls test for multiple comparisons between groups (B). Bars with a different 
letter are significantly different from each other.  
 

The percentage of embryos with pericardial edema ranged from 0 in the solvent 

control to 54.17 ± 8.77 in the exposed group, at the end of the assay (Figure 68A). An 

exposure to MIX_NOEC_dr induced a significant increase (p<0.05) in the percentage of 

embryos with pericardial edema at 80hpf, compared to controls.  
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Embryo heart rate ranged from 108.0 ± 2.93 in the solvent control to 86.5 ± 3.92 in 

the exposed group at 32hpf (Figure 68B). At the end of the assay, heart rate ranged from 

150.29 ± 4.53 in the control to 124.0 ± 4.42 in the exposed embryos. A significant 

decrease (p<0.05) was reported in heart rate of embryos exposed to MIX_NOEC_dr at 

80hpf. 

 

 

3.6.1.6. Total abnormalities in embryos 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The percentage of total abnormalities in D. rerio embryos exposed to 

MIX_NOEC_dr was statistically significant (p<0.05) compared to controls, at 80hpf (Figure 

69). 

 

 

3.6.2. Sea urchin (Paracentrotus lividus) 

After individual PPCPs exposures, P. lividus embryos were exposed to mixtures of 

PPCPs at different concentrations. 

The CA model was used to predict PPCPs mixture effects in larval length and a 

concentration-response curve was obtained (Figure 70), considering the results from 

effective concentrations of individual compound exposures (Table 9). 

 

 

a 

b 
b 

Figure 69. Percentage of total abnormalities in D. rerio embryos exposed to 
MIX_NOEC_dr at 32hpf and 80 hpf (%). Data are expressed as mean ± SEM (n=8). Non-
parametric ANOVA Kruskall-Wallis (p<0.05), followed by Games-Howell test for multiple 
comparisons between groups. Bars with a different letter are significantly different from 
each other. 



 

69 
 

Table 9. EC20 values for Simvastatin, Sertraline, 4-MBC, Propylparaben and 
Triclocarban from individual exposures of P. lividus embryos. 

PPCP EC20 (µg/L) 95% Confidence limits 

SIMV 775.0 717.0 – 838.0 

SER 55.0 52.0 – 57.0 

4-MBC 494.0 464.0 – 527.0 

PP 13891.0 12354.0 – 16070.0 

TCC 20.0 19.0 – 21.0 

MIX_EC20_pl concentration = 15235.0 µg/L 

 

 

 

 

Figure 70. Concentration-response curve according to the CA model in inhibition of larval 
length (%) by exposure to a mixture of simvastatin, sertraline, triclocarban, propylparaben 
and 4-MBC, present at the same effective concentration those individual exposures. Effect 
of MIX_EC20_pl in larval length inhibition (%). 
 

 

 

An exposure to MIX_NOEC_pl did not induced significant differences (p>0.05) in 

larval length, compared to controls (Figure 71A). 

Significant larval decrease (p<0.05) was reported for embryos exposed to 

MIX_LOEC_pl and MIX_EC20_pl, compared to controls (Figure 71B and 71C). Larval 

length of MIX_EC20_pl exposure group decrease 22.06% compared to controls (Figure 

70 and 71C). 
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Figure 71. Larval length (µm) of P. lividus exposed to MIX_NOEC_pl (A), MIX_LOEC_pl 
(B) and MIX_EC20_pl (C). Blank control and solvent control were grouped. Data are 
expressed as mean ± SEM (n=240 for controls; n=120 mixture exposed group). One-way-
ANOVA (p<0.05), followed by Student Newman-Keuls test for multiple comparisons 
between groups (A), (B) and (C). Bars with a different letter are significantly different from 
each other. 

(A) 
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4. Discussion 

Several PPCPs have been detected in aquatic ecosystems at concentrations that 

might represent a risk for the natural populations. Additionally, important interactions may 

occur between different compounds present in mixture in environment, which can 

significantly increase the individual effects of compounds, even if present at low 

concentrations. However, available data is still too limited to get a clear picture on the 

consequences of PPCPs exposure on the ecosystems (Chalew and Halden, 2009). 

Moreover, some compounds are persistent in the environment due to a continuous input 

and/or low biodegradable rates, and therefore aquatic organisms are continuously 

exposed throughout multiple generations (Chalew and Halden, 2009). 

Embryos of aquatic organisms have been frequently used in toxicology assays due 

to its simplicity and low costs. Moreover, early life stages show a high sensitivity to 

contaminants present in the environment because these active compounds can interfere 

in specific stages of their development. Setting the effective concentrations of PPCPs is 

crucial to perform more reliable risk assessments and to implement new standards of 

protection.  

D. rerio is the most commonly and well-recognized aquatic vertebrate model 

species used in toxicology assays. Egg transparency, rapid development and well-studied 

species embryogenesis allow monitoring its embryonic development and observing the 

occurrence of abnormalities in specific development stages during exposure. Thus, it is 

possible to understand potential mechanisms and pathways affected by PPCPs exposure. 

Similarly, the embryonic and larval stages of P. lividus are frequently chosen to 

toxicological tests due to its sensitivity and extensive data of its molecular physiology. 

When exposing organisms from different taxonomic groups to the same test-

conditions, it is possible to compare the effects of the same compound and more 

effectively anticipate the impact at ecosystem scale. Furthermore, it contributes to 

elucidate possible conserved mechanisms and pathways. 

An exposure of zebrafish embryos to selected PPCPs in this study resulted in 

abnormalities, development delay, decrease of heart beat and lethal effects. These effects 

were compounds and concentration specific. Also, sea urchin embryos exposed to the 

same compounds showed a development delay, body abnormalities, a decrease in larval 

length or an interruption of embryos development (Table 10). These effects can 

compromise survival of affected organisms and thus population balance, by affecting 

locomotion, predation and reproduction of the species. In this study, simvastatin was the 

most toxic compound for zebrafish embryos, while sea urchin embryos were more 

susceptible to the toxic effects of triclocarban than the other selected PPCPs (Table 11). 
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Table 10. Overview of significant effects reported for each endpoint by exposure to 
individual and combined selected PPCPs. 
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Zebrafish 

Mortality rate   x   x - - - 

75% of epiboly stage x  x  x x - - - 

Abnormal cell growth x x x x x x - - - 

Head abnormalities x x x  x x - - - 

Tail abnormalities x x x  x x - - - 

Eyes abnormalities  x x  x  - - - 

Yolk-sac abnormalities x x x  x x - - - 

Pericardial edema  x x  x  - - - 

Heart rate x x   x  - - - 

Hatching rate     x  - - - 

Muscular involuntary contractions - -  - - - - - - 

Sea urchin 

Larval Length      - x   

 

 

 

Table 11. Overview of NOEC and LOEC values of selected PPCPs reported in this study. 
Maximal concentrations of selected PPCPs detected in surface water and in WWTPs 
influents and effluents. (µg/L) 

 Zebrafish  Sea urchin  Maximal concentration  

PPCP NOEC LOEC NOEC LOEC 
WWTPs 

Influents 

WWTPs 

Effluents 
Surface water 

SIMV 5.0 50.0 2.0 5.0 0.09(1) 0.001(2) 0.0001(3) 

SER 1000.0 10000.0 4.0 10.0 0.02(2) 0.015(2) 0.57(4) 

4-MBC 500.0 5000.0 0.8 2.0 6.5(5) 2.7(5) *0.799(6) 

PP 1000.0 10000.0 160.0 400.0 2.8(7) 0.021(7) 0.207(8) 

TCC 100.0 1000.0 0.256 0.64 50.0(9) > 10.0(10) 6.75(10) 

 

  

References: (1) Kosma et al., 2014; (2) Santos et al., 2010; (3) Miao and Metcalfe, 2003; (4) Richard and 

Cole, 2006; (5) Balmer et al., 2005; (6) Kaiser et al., 2012; (7) González-Mariño et al., 2011; (8) Yamamoto 
et al., 2011; (9) Chalew and Halden, 2009; (10) Brausch and Rand, 2011 
*Coastal areas beach 

References: () significant effects; (x) no significant effects; (-) not evaluated. 



74 
 

4.1. Hypolipidemic drugs: Simvastatin 

In this study, simvastatin was the most toxic compound for zebrafish embryos, by 

inducing clearly and statistically significant observed effects at lower concentrations. An 

exposure to 500.0 and 5000.0 µg/L was lethal to all embryos between 32hpf and 80hpf. 

Although cumulative mortality rate at 32hpf was similar for controls and exposure-groups, 

all zebrafish embryos exposed to the two highest test-concentrations of simvastatin 

showed abnormalities in head, eyes and tail at this stage of development. Furthermore, no 

heart rate was recorded due to the high development delay of embryos at these two 

concentrations. These abnormalities and development delay led to death of all zebrafish 

embryos and no hatches were recorded at 80hpf.  

At the end of the assay, an exposure of zebrafish embryos to 50.0 µg/L of 

simvastatin resulted in a significant increase in the percentage of embryos with eyes 

abnormalities and pericardial edema, but no significant differences in heart rate were 

reported for this group at 80hpf. This exposure group showed also a no-significant 

increase in the percentage of embryos with head, tail and yolk-sac abnormalities 

compared to controls and to 5.0µg/L. However, these abnormalities contributed to 

significantly increase the percentage of total abnormalities in zebrafish embryos at 80hpf. 

Sea urchin embryos were also affected by exposure to simvastatin. At the end of 

the assay, an exposure to 5000.0 µg/L of simvastatin results in a significant delay in 

embryo development and no length recording were performed for this exposure group. A 

significant decrease in larval length was recorded for concentrations equal or higher than 

5.0 µg/L. 

In a study performed by Key et al. (2008), after exposure of 96h to different 

concentrations of simvastatin, larval and adult grass shrimp (Palaemonetes pugio) 

showed a LC50 of 1118.0 µg/L and higher than 10000.0 µg/L, respectively. Simvastatin 

treatment-exposure did not significantly affected glutathione and acethylcholinesterase 

biomarkers in larval and adult organisms. However, a significantly lipid peroxidation was 

reported for larval organisms at the lowest (1.0 µg/L) and highest (1000.0 µg/L) 

simvastatin exposures, and for adults at a concentration range between 625.0 and 2500.0 

µg/L. An exposure at 1000.0 µg/L results in a significant decrease in cholesterol levels in 

larvae, but no significant differences were reported for all treated-exposure in adults. In 

our study, all zebrafish embryos exposed to simvastatin at concentrations similar to the 

highest concentrations tested in key et al., died before the end of the assay. For this 

reason, zebrafish embryos seem to be more susceptible to simvastatin exposure than 

adult and larval grass shrimp.  
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In another study, the adults harpacticoid copepod Nitocra spinipes was exposed to 

simvastatin for 96h, which a LC50 of 810.0 µg/L (Dahal et al.,2006). A significant 

decrease in development time of N. spinipes was reported after exposure to simvastatin in 

a range of concentrations between 0.16 and 1.6 µg/L. Also, a concentration of 1.6 µg/L 

lead to a significantly increase in body length and the growth rate was significantly higher 

at 0.16-5.0 µg/L concentrations, in comparison to control. These results were observed at 

the same range of effective concentrations that induced a decrease in sea urchin larval 

length in our study. Simvastatin induced also a delay in zebrafish embryos development 

but at higher concentrations. These differences in effects observed at low and high 

concentrations in Dahal and coauthors study, suggest that simvastatin might have 

different ecotoxicological modes of action. According to the authors, the effects at higher 

concentrations are most related to energy-mediated processes, while effects of endocrine 

disruption in several mechanisms may occur at low concentrations of simvastatin. 

Although data on sinvastatin presence in the environment is limited (see Table 11) 

the tested-concentrations that induce statistically significant differences in the 

development of zebrafish and sea urchin embryos were higher than environmental 

concentrations reported in some studies. However, we cannot rule out the hypothesis of 

interactions with other compounds present in the environment that could result in severe 

effects in long-term exposures even if when present at lower concentrations. 

 

 

4.2. Selective Serotonin Reuptake Inhibitors (SSRIs): Sertraline 

Several studies reported that SSRIs can induce disruption of reproductive 

functions in fish, but some results are inconsistent among studies. In fish, serotonin can 

stimulate gonadotropin-releasing hormone and release of luteinizing hormone. These 

hormones regulate important pathways involved in reproductive physiology, whereby the 

effects reported include repression of sex hormones, increase plasma vitellogenin, 

inhibition of egg production and gene expression modulation of estrogenic signaling 

functions (Park et al., 2012). Although some studies focused on the toxicological effects of 

SSRIs to aquatic organisms, most of these refer to fluoxetine. In fact, there is a lack of 

information concerning the occurrence, fate and effects of sertraline in aquatic 

ecosystems (Park et al., 2012). Furthermore, few studies have investigated sertraline 

effects in initial stages of development. 

In our study, all zebrafish embryos exposed to concentrations of sertraline higher 

than 1000.0 µg/L died before 80hpf. For this reason, no reports of abnormalities, heart 

rate and pericardial edema were made for these exposure-groups at the end of the assay. 
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No significant differences in cumulative mortality rate were observed for the other 

exposure-groups and controls at 80hpf. 

At 8hpf, zebrafish embryos exposed at concentrations equal or higher than 8500.0 

µg/L showed a delay in their development in a dose-dependent manner, resulting in a 

significant decrease in the percentage of embryos at 75% of epiboly stage. 

At 32hpf the percentage of zebrafish embryos with tail abnormalities increases in a 

dose-dependent manner for concentrations equal or higher than 3500.0 µg/L. These 

effects can explain high mortality of embryos at 32hpf for concentrations equal or higher 

than 6000.0 µg/L and the sudden mortality of embryos exposed to 3500.0 µg/L between 

32hpf and 80hpf. An exposure to 10000.0 µg/L induced an increase in the percentage of 

zebrafish embryos with yolk-sac abnormalities at 32hpf. There were no significant records 

of head and eyes abnormalities as well as pericardial edema in embryos of controls and 

exposure groups at 80hpf. However, it was reported a decrease of heart beat in embryos 

exposed to 6000.0 µg/L of sertraline at 32hpf and no heart beat were observed in 

embryos exposed at higher concentrations at the same exposure time. 

Although all zebrafish embryos exposed to concentrations equal or higher than 

3500.0 µg/L were dead at 80hpf, it was possible to record embryo hatching rate at the end 

of the assay. There was a significant decrease in percentage of embryo hatching for these 

exposure groups, but some differences between the two assays performed were also 

observed, with no hatched embryos at 6000.0 and 8500.0 µg/L and a slightly higher 

hatching rate at 10000.0 µg/L than 3500.0 µg/L. These differences between the two 

assays may be related with different sensibilities of embryos from these two spawns. 

However, results from the same toxicological assay are consistent between treatments. 

Sea urchin embryos exposed to sertraline were significantly affected. An 

observation of 10000.0 µg/L exposed-embryos revealed fertilized eggs and embryos in 

the two-cell cleavage stage, and hence the embryonic development was arrested. All 

embryos exposed to 1000.0 µg/L of sertraline were in morula stage at the end of the 

assay. For these reasons, no measurements were performed for these two exposure-

groups. The percentage of abnormal sea urchin larvae at the end of the assay was higher 

at 100.0 µg/L than controls and 10.0 µg/L exposure group. Larval length of organisms of 

these two treatments was significantly lower than controls and different between them. 

Exposures to concentrations bellow 10.0 µg/L did not induce significant differences in 

larval length compared to controls. 

In a study performed by Minagh et al. (2009), sertraline induced acute effects in D. 

magna, Psedokirchneriella subcapitata and O. mykiss, although at higher concentrations 

than those reported in the environment. The most sensitive species tested to sertraline 

was 21d D. magna reproduction (EC50 = 66.0 µg/L) followed by 21d D. magna mortality 
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(LC50 = 120.0 µg/L). An exposure of O.mykiss to different concentrations of sertraline for 

96h results in a LC50 of 380.0 µg/L. In our study, zebrafish embryos were not affected at 

this concentrations range, but significant effects were reported in sea urchin embryo 

exposed to these concentrations.  

Schultz et al. (2011), evaluated the effects resulting from an 21d-exposure of male 

fathead minnows (P. promelas) to several SSRIs at environmentally relevant 

concentrations. The authors reported a significant decrease of organism’s survival in the 

group exposed to 5.2 ng/L of sertraline. Fish exposed to 5.2 ng/L and 1.6 ng/L showed a 

sertraline brain concentration higher than suggested by water concentrations (0.06 ng/L 

and 0.023 ng/L, respectively). A sertraline exposure to 1.6 ng/L resulted in a statistically 

significant decrease in interstitial cell prominence in fish. In our study, no effects were 

reported in zebrafish and sea urchin embryos at this concentration range. 

In another study, Xenopus laevis blastulae (Stage 9) were exposed for 96h to 

different concentrations of sertraline (Richards and Cole, 2006). Sertraline exposure at 

concentrations higher than 2000.0 µg/L has induced tail abnormalities and some thoracic 

edemas, with EC10 and EC50 values of 3000.0 µg/L and 3300.0 µg/L, respectively. The 

authors reported also an LC10, LC50 and LC100 values of 3600.0, 3900.0 and 5000.0 

µg/L, respectively. These results are similar to those obtained in our study for cumulative 

mortality and tail abnormalities in zebrafish, although zebrafish embryos were more 

sensitive than X. laevis.  In fact, zebrafish embryos exposed to sertraline exhibit total 

lethal mortality for concentrations equal or higher than 3500.0g/L, without significant 

effects at lower tested concentrations. The absence of a dose dependent relationship for 

sertraline exposure in our study is comparable to previous findings regarding other SSRIs 

(Schultz et al., 2011). The effective concentrations for sea urchin embryos were in close 

range to actual concentrations in the environment. 

 

 

4.3. Ultra Violet Filter: 4-Methylbenzylidene Camphor 

During the last decade UV filters use has increased as a result of public concern 

about the effects of UV radiation. Therefore, UV screens have been widely and 

extensively used. The consequences of UV filters for aquatic organisms remain unclear. 

The available ecotoxicological studies for UV filters are limited and fragmentary, which do 

not allow to perform reliable risk assessment of these compounds on aquatic ecosystems. 

Thus, it is important to perform new studies in order to understand the toxicokinetics of UV 

filters and to reassess the beneficial and adverse effects of UV screens usage (Schereus 

et al., 2002). 
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Some studies reported a seasonal variation of UV filters in aquatic ecosystems 

related with high recreational activities periods such as bathing and swimming, which is 

considered an important direct input of these compounds into the environment, by 

washing-off from skin (Balmer et al; 2005; Zucchi et al., 2011; Bachelot et al; 2012; Kaiser 

et al., 2012). 

The UV filter 4-MBC is frequently used in sunscreens and some studies have 

reported its potential to induce endocrine disruption. In fact, 4-MBC has the potential to 

affect process mediated by signaling mechanisms of estrogen receptors and can compete 

with estradiol for estrogen binding sites in the uterus, which can disturb the balance of 

calcium activity in the cell (Vincent, 2001). Some studies reported also adverse effects in 

puberty, gene expression and weight of reproductive organ after 4-MBC exposure as well 

as endocrine disruption and depression of thyroid hormones (Schreurs et al., 2002; 

Schlumpf et al., 2008; Nakata et al., 2009; Vincent, 2011).  

Although some studies addressed the impact of 4-MBC in aquatic organisms, 

there is a lack of information about the effects in initial embryonic development (Vincent, 

2011).  

In our study, zebrafish embryos mortality was negligible and there were no 

differences between controls and exposure-groups, and thus no relation to 4-MBC 

exposure. However, significant decrease in hatching rate was reported in embryos 

exposed to the highest tested concentration. 

No significant abnormalities and pericardial edema were reported at the end of the 

assay, but a significant decrease in heart rate zebrafish embryos were observed in the 

5000.0 µg/L exposure group. It is possible that an exposure to 4-MBC at this 

concentration can induce a development delay in embryos, affecting heart beat and 

delaying the hatching time. Although it was not a predicted effect, zebrafish embryos 

exposed to 500.0 and 5000.0 µg/L of 4-MBC showed an increase in the percentage of 

embryos with abnormal involuntary muscular contractions, being significantly different 

from controls in the 5000.0 µg/L exposure group. This effect was not observed in the other 

selected PPCPs exposures and may be related to 4-MBC effects in specific development 

stages of zebrafish embryos. 

All sea urchin embryos exposed to the highest concentration of 4-MBC died and 

therefore no measurements were performed at this exposure group. An exposure to 

concentrations higher than 0.8 µg/L resulted in a significant decrease in larval length, 

compared with controls and lower tested concentrations. Differences in larvae length of 

sea urchin between control groups of different assays are expected and are related to 

maternal nutrition and habitat (Bertram and Strathmann, 1998). 
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In a study performed by Vincent (2011), dechorinated zebrafish embryos were 

exposed to different concentrations of 4-MBC. There was a sharp increase in mortality 

from 3820.0 µg/L to 6360.0 µg/L, which induce total embryo lethality. An exposure to 4-

MBC induced also an increased in the percentage of embryos with axial curvature from 

2540.0 µg/L and all embryos were affected at 5600.0 µg/L. An exposure of zebrafish 

embryos to 3820.0 µg/L of 4-MBC during gastrulation and/or segmentation resulted in 

higher percentage of embryos with altered axial curvature than those obtained for 

pharyngula-only exposure. In our study, this concentration range did not induce significant 

differences in cumulative mortality rate and tail abnormalities of zebrafish embryos 

between controls and exposure-groups. These differences may be related to different 

experimental design or genetic background of the fish stock. In fact, in Vincent‘s study, 

zebrafish embryos exposed to 4-MBC did not had chorion protection, and thus they were 

more susceptible to toxic effects resulting from an exposure, which can explain the high 

mortality rate and tail curvature reported. These results supports the hypothesis that the 

lower sensibility of zebrafish embryos compared to sea urchin embryos may be related in 

part to the embryo protection given by the chorion. 

In the same study, 4-MBC-treated embryos showed swimming incapability and no 

response to tactile stimulations, which might be attributed in part to abnormal axial 

formation (Vincent, 2011). According to this author, the effects in altered axial curvature 

and shortened body are not likely to be caused by endocrine disruption but rather are 

related to failure in notochord differentiation process. Moreover, it was also reported an 

acethylcholinesterase inhibition after 4-MBC exposure, which leads to an accumulation of 

the neurotransmissor acetylcholine and inactivation of acetylcholine receptors, resulting in 

defects in axonogenesis and muscle formation. Thus, the increase in the percentage of 

zebrafish embryos with abnormal involuntary muscular contractions at the two highest 

tested concentrations in our study may be related to muscular dysfunctions. These effects 

in locomotion compromise organisms’ survival and can affect population and ecosystems.  

Balmer and collaborators performed a study in Switzerland to verify the occurrence 

of some UV filters in samples from WWTPs, surface water and in fish tissue. Relative 

quantities of the evaluated UV filters in WWTPs influents were similar to the patterns of 

average contents in sunscreens. 4-MBC was the most persistent UV filter, being detected 

most frequently and at highest concentrations than the other UV filters examined, in 

wastewater effluent, surface water and in fish tissue (Balmer et al., 2005). In the same 

study, the authors reported a seasonal variation of UV filters concentration in WWTPs 

influents, being higher during summer than in spring, which reflects the increased use of 

UV filters (sunscreens) in summer. Similarly, it is possible that 4-MBC concentration in 

intertidal zone increases during summer due to usage of greatest amount of sunscreens 
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and to recreational beach activities. On the other hand, bathing season corresponds with 

sea urchin spawning period and some studies have reported 4-MBC environmental 

concentrations similar or higher than those that have induced significant effects in sea 

urchin embryo development in our study (Balmer et al., 2005; Kaiser et al., 2012). As sea 

urchins are present on intertidal and subtidal zone, it is possible that actual concentrations 

of 4-MBC or other UV filters in this area can affect sea urchin embryo development, 

compromising reproduction success of the species.  

 

 

4.4. Preservative: Propylparaben 

Propylparaben, as well as methylparaben, are widely used in cosmetic 

formulations and frequently detected in aquatic environment. Few studies were performed 

in order to understand long-term effects of parabens in aquatic organisms and there is a 

lack of information about chronic effects resulting from paraben exposure (Brausch and 

Rand, 2011).  

In a studied performed by Albero et al. (2012), methyl- and propylparaben were the 

only parabens detected in sewage sludge collected in different areas of Madrid (Spain). 

Similarly, these two compounds were the most frequently detected and the most abundant 

in raw wastewater, in a study conducted by González-Mariño et al. (2011). 

Generally, parabens with higher hydrocarbonated chain length are more persistent 

in environment and can induce more adverse acute effects in organisms.  In fact, methyl- 

and ethylparaben are rapidly degraded in environment while propyl- and butylparaben 

required more time for the same biodegradation rate (González-Mariño et al., 2011). Li 

(2012), exposed Dugesia japonica to different concentrations of four parabens and 

reported an increase of 48h and 96h LC50 values ranked as butilparaben < propilparaben  

< etilparaben < metilparaben, being the first one the most toxic paraben tested. The 

magnitude of estrogenic response increase also with the alkyl group size, whereby butyl 

ester shower great activity (Oishi, 2002). Similarly, in a study performed by Dobbins et al. 

(2009) the chronic effects of paraben exposure were addressed and the authors reported 

benzyl- and butylparaben as being most toxic to invertebrates and fish, while methyl- and 

ethylparaben appeared less toxic to organism. 

Although low environmental concentrations of parabens does not seem to have 

potential to induce estrogenic effects, some parabens, specifically benzyl-, butyl and 

propylparaben, can induce low-level estrogenic effects in aquatic organisms (Dobbins et 

al., 2009; Alberto et al., 2012). Propylparaben was found to induce increase of VTG 

concentration in plasma and up-regulate the expression of VTG genes in male medaka. 
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Intraperitonial injections of propylparaben in rainbow trout also cause estrogenic 

responses in organisms, with a significant induction of VTG in male fish (Yamamoto et al., 

2012). 

In our study, an exposure to propylparaben induced a lethal mortality for all 

zebrafish embryos in the 10000.0 µg/L exposure group at the end of the assay. For this 

reason, no reports of abnormalities, heart rate and pericardial edema were made for this 

group at 80hpf.  Although no significant differences in mortality were reported among 

controls and exposure groups, an exposure to 8500.0 µg/L resulted in a no-significant 

increase of cumulative mortality rate at 80hpf. 

At 8hpf, an exposure to propylparaben resulted in a significant decrease in the 

percentage of zebrafish embryos at 75% of epiboly stage when exposed to 10000.0 µg/L. 

At 32hpf, zebrafish embryos exposed to 10000.0 µg/L of propylparaben showed an 

increase in yolk-sac and tail abnormalities and also a decrease in heart rate. No 

differences in pericardial edema and head, eyes and yolk-sac abnormalities among 

controls and exposure groups were reported at 32hpf. However, the percentage of 

zebrafish embryos with tail abnormalities increased in a dose dependent manner for 

concentrations equal or higher than 3500.0 µg/L at 32hpf. A sudden and statistically 

significant increase in the percentage of zebrafish embryos with pericardial edema and 

head, eyes, yolk-sac and tail abnormalities were observed at the end of the assay for 

these exposure groups. 

Heart rate was significantly affected by propylparaben exposure. At 32hpf 

zebrafish embryos exposed to concentrations equal or higher than 6000.0 µg/L showed a 

high decrease in heart rate, which was statistically significant at 80hpf. 

Although all zebrafish embryos exposed to 10000.0 µg/L of propylparaben died 

before 80hpf, it was possible to record embryos hatching rate at the end of the assay. No 

hatched embryos were observed in this exposure group and there was a significant 

decrease in embryo hatching rate in the 6000.0 and 8500.0 µg/L exposure groups at the 

end of the assay. Thus, although all zebrafish embryos exposed to concentrations equal 

or higher than 3500 µg/L showed one or more abnormalities at the end of the assay, 

differences in hatching rate and heart beat among these exposure groups reflect the 

increasing severalty of effects resulting from an exposure to increasingly propylparaben 

concentrations.  The effects of an exposure to 10000.0 µg/L observed at 32hpf can 

explain the high mortality of zebrafish embryos in this exposure group and its 

development delay at the end of the assay. 

An exposure of sea urchin embryos to initial concentrations of propylparaben 

resulted in a significant decrease of larval length for concentrations equal or higher than 

1000.0 µg/L. As these compound revealed less toxic than the other selected PPCPs, a 
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new set of intermediate concentrations was tested in order to precise the NOEC of 

propylparaben exposure in sea urchin. Results were consistent between these two assays 

performed and a significant decrease in larval length was recorded for exposures equal or 

higher than 400.0 µg/L of propylparaben. 

To the best of our knowledge, there is a lack of studies reporting the effects of 

propylparaben in embryonic development of zebrafish and sea urchin. 

During 4 weeks, Oishi (2012) exposed male rats to propylparaben present in a 

modified diet at 0, 0.1, 1.0 and 10.0 mg/g and reported adversely effects in testosterone 

secretion and in male reproductive system functions. The body weight of exposed 

organisms was slightly but significantly lower than control organisms, at the highest tested 

concentration, but no effects were reported in organ weights. Thus, this decrease in body 

weight may be a toxic effect induced by propylparaben rather than an estrogenic 

response. The daily sperm production in testes and its efficiency decreased in dose-

dependently manner, being statistically significant in all treated-groups, and resulted in a 

significant decreased of sperm reserves at the two highest tested concentrations. 

Testosterone concentration also decreased in a dose-dependent manner. However, this 

decrease was significant only in the group that received the highest dose of 

propylparaben, which was higher than those that have induced a decrease in sperm 

reserves. Although the decrease in testosterone concentration may result in sperm 

reserves decrease, it seems that decrease in sperm reserves are a direct toxic effect on 

the spermatogenesis or estrogenic action of propylparaben. The propylparaben exposure 

level that induced these effects is the same as the upper-limit acceptable daily intake (10 

mg/kg body weigh/day) of parabens in the European Community and Japan (Oishi, 2012). 

Mikula et al. (2009), studied the influence of propylparaben on vitellogenesis and 

sex ratio in juvenile zebrafish. Experimental juvenile zebrafish with 20 days post hatching 

were fed with a diet containing 500, 1000 or 2000 mg/kg of propylparaben. After 20 days 

of exposure, there were no reports of effects in vitellogenin synthesis but it seemed to 

influence sex differentiation processes in exposed organisms. In fact, after 45 days of 

exposure the number of females was significantly higher in treated-groups than the control 

one, in a diet at 500 mg/kg. Although an exposure to propylparaben did not induced 

estrogenic or antiestrogenic effects in zebrafish, the potential of fish to respond to 

estrogenic stimulation was confirmed by the authors in the positive control, which was 

exposed to 17β-estradiol and resulted in a significantly higher vitellogenin concentration 

than control and all treated-groups. 

An exposure to propylparaben resulted in significant effects in zebrafish and sea 

urchin embryos when exposed to higher concentrations. Actual environmental 

concentrations of propylparaben are lower than the effective concentrations observed in 
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our study, and therefore effects resulting from an acute exposure in the environment are 

not expected to affect embryonic development of these species. However, possible 

adverse effects may result from a long-term exposure to propylparaben in environment 

due to its potential to bioaccumulate in organisms.  

 

 

4.5. Bacteriocide and antifungal agents: Triclocarban 

There are only a few studies reporting triclocarban toxicity in aquatic organisms, 

but recent reports indicate triclocarban is slightly more toxic to aquatic invertebrate and 

fish than triclosan. Due to disinfectants potential sorption to sediment, it is possible that 

triclocarban could affect benthic invertebrates (Brausch and Rand, 2011). Some studies 

show a bioaccumulation of this compound in aquatic organisms, which can promote 

biomagnification on the food chain (Chalew and Halden, 2009; Schebb et al., 2011). 

Some metabolic enzymes present in fish are conserved and similar to mammals. Schebb 

et al. (2011), reported a triclocarban metabolism in Oryzias latipes similar to mammals 

possibly due to similar metabolic pathways to those previously observed in mammals. 

Recent studies have reported endocrine disruption activity of triclocarban by 

amplification of transcriptional activity of steroid hormones or their receptors as well as 

triclocarban affinity for these receptors (Chen et al., 2008; Giudice and Young, 2010).  It 

was also showed in vivo that a diet containing a mixture of triclocarban and testosterone 

result in synergetic effects related to testosterone-induced transcription and an increase of 

the sex organ weight in male castrated rats compared to control diets or single 

compounds diets (Chen et al., 2008). Furthermore, triclocarban affected the transcription 

of genes responding to thyroid hormone in frog and rat cells (Schebb et al., 2011). For 

these reasons, triclocarban should be classified as a new type EDC. 

In our study, an exposure of zebrafish embryos to triclocarban resulted in a 

significant increase in cumulative mortality rate for concentrations equal or higher than 

350.0 µg/L at the end of the assay. In fact, an exposure to concentrations equal or higher 

than 850.0 µg/L was lethal for all zebrafish embryos. For this reason, no reports of body 

abnormalities, heart rate and pericardial edema were made for these exposure groups at 

80hpf. There were no differences in cumulative mortality rate among controls and 

exposure groups at earlier stages of development. 

There were no significant differences in the percentage of zebrafish embryos with 

pericardial edema and abnormalities in head, eyes and yolk-sac among controls and all 

exposed groups at 80hpf. The percentage of embryos with tail abnormalities increased in 

the 350.0 and 600.0 µg/L groups at 80hpf. However, due to high mortality for these 
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exposure groups at the end of the assay, there was a high standard error associated and 

no-significant differences were reported. 

An exposure to triclocarban did not induced significant differences in heart rate of 

zebrafish embryos between controls and exposure groups at 80hpf. There was a 

decrease in heart rate of embryos exposed to 350.0 µg/L but a high standard error 

associated. No heart beat was observed in embryos exposed to 600.0 µg/L of triclocarban 

at 80hpf.  

Although all zebrafish embryos exposed to concentrations equal or higher than 

850.0 µg/L were dead at 80hpf, it was possible to record embryo hatching rate at the end 

of the assays and no-statistically significant differences in the percentage of embryo 

hatching were reported among controls and all exposure groups. 

Triclocarban was the most toxic compound in this study for sea urchin embryos, 

inducing significant effects at lower concentrations. An exposure to concentrations of 

triclocarban equal or higher than 0.64 µg/L resulted in a significant decrease in larval 

length at the end of the assay. An exposure to concentrations equal or higher than 100.0 

µg/L resulted in a significant delay in embryo development and no larvae reached the 

four-arm stage, whereby length was not recorded for these exposure groups. All embryos 

exposed to 1000.0 and 10000.0 µg/L of triclocarban were in gastrula stage at the end of 

the assay. At 100.0 µg/L exposed embryos reached only the prim larvae stage. Exposures 

to concentrations bellow 0.256 µg/L did not induce significant differences in larval length 

compared to controls, being this concentration the NOEC of triclocarban exposure in our 

study. 

In the freshwater mudsnail, Potamopyrus antipodarum, triclocarban exposure 

promoted a significantly increase in embryo production to concentrations equal or higher 

than 0.2 µg/L, with a significantly increase in the number of unshelled embryos 

comparative to controls (Giudice and Young, 2010). In a study performed by Schultz and 

Bartell, a decreased in aggression was seen in Pimephales promelas adults male 

exposed to triclocarban (1.6 µg/L) or present in mixtures (560 ng/L TCS + 179 ng/L TCC 

and 1.6 µg/L TCS + 450 ng/L TCC). This effect seemed to persist until 4 days after the 

end of the exposures and can result in a decrease of organisms’ defense ability and 

reproduction success (Schultz and Bartell, 2012). These concentration ranges are similar 

to those that have induced significant effects in development of sea urchin embryos, in our 

study. Zebrafish embryos were affected by triclocarban exposures only at higher 

concentrations. 

Although actual environmental concentrations of triclocarban are lower than the 

effective concentrations in zebrafish embryos in our study, they are similar to test-

concentrations that have induced significant effects in sea urchin larval length. For this 
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reason, it is possible that sea urchin embryos are being affected by environmental 

occurrence of triclocarban, which compromise their development success and organism’s 

survival. 

 

 

4.6. Mixtures 

Zebrafish embryos were exposed to a mixture of selected PPCPs each present at 

its NOEC (MIX_NOEC_dr). Thus, all compounds were present at a concentration that did 

not induce any significant effect in all the endpoints evaluated in single exposures. 

There were no significant effects in cumulative mortality rate among controls and 

exposed groups at the end of the assay. However, zebrafish embryos exposed to this 

PPCPs mixture showed a significant decrease in hatching rate.  

Embryos exposed to MIX_NOEC_dr did not showed significant differences in the 

percentage of embryos in 75% of epiboly stage at 8hpf and in head, yolk-sac and tail 

abnormalities at 80hpf. A significant increase was reported in the percentage of embryos 

with eyes abnormalities at the end of the assay. Exposed embryos exhibited also a 

significant increase in the percentage of pericardial edema and a significant decrease of 

heart rate at 80hpf. All embryos exposed to MIX_NOEC_dr were abnormal at 80hpf. The 

regulatory processes of PPCPs in the environment take into account results of studies 

with single exposures. For this reason, the results obtained in this study are very 

important since they show that a mixture of compounds, each one present in a 

concentration that did not induced significant effects in organisms, can induce significant 

effects due to possible interactions between the compounds. 

Considering the high sensitivity of larval length as endpoint in all exposures 

performed in our study, sea urchin embryos were exposed to different mixtures of 

selected PPCPs each one present at its NOEC (MIX_NOEC_pl), LOEC (MIX_LOEC_pl) 

or EC20 (MIX_EC20_pl).  

Similarly to those reported for individual exposures at the same PPCPs 

concentration, an exposure to MIX_NOEC_pl did not induce significant differences in 

larval length among controls and exposure group. 

When exposed to MIX_LOEC_pl, there were significant differences in larval length 

at the end of the assay. This effect was expected as each compound was present in 

mixture at concentrations that induced significant effects in individual exposures. 

However, it is important to note that in this mixture, all compounds were present at a 

concentration 2.5x higher than in MIX_NOEC_pl, at which no significant effects were 

reported. Thus, small differences in compounds concentrations can represent a risk to 

embryonic development of embryos and affect ecosystems. In fact, annual or periodic 
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variations in concentrations of PPCPs present in environment are expected to occur. 

Hence, it is important to understand possible effects of combined exposures resulting from 

an environmental relevant mixture.    

After individual exposure of selected compounds, the EC20 values of each PPCP 

were determined and MIX_EC20_pl was performed. CA model was used to predict the 

effects of this mixture in larval length. A concentration-response curve was obtained 

considering the results from effective concentrations of individual compounds exposures 

and assuming that compounds share the same mode of action and contribute equally to 

the overall effect of the mixture. An exposure to MIX_EC20_pl resulted in a larval length 

decrease of 22.06% compared to controls. Although, a significant decrease in larval 

length for this mixture was expected, as each compound was present in mixture at an 

effective concentration, the effect was lower than those estimated by CA model for this 

mixture concentration. Thus, possible antagonistic interactions might have occurred. 

Although mixtures of compounds with the same modes of action tend to be best 

modulated by CA model while mixtures of compounds with different modes of action tend 

to be best modulated by IA model, the predicted results of these two models in studies 

with mixtures compounds with different modes of action were generally similar. For this 

reason, model selection may be mainly based on conservative of its predicted results. In 

fact, CA model tend to provide best conservatively estimates of mixture toxicity compared 

to IA model and with similar predictive accuracy (Belden et al., 2007). Overall, the results 

highlight the importance of testing mixture effects of PPCPs in order to better predict the 

risk to natural populations.    
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5. Conclusions and Future work  

In our study, all selected PPCPs induced significant effects in embryonic and larval 

development of zebrafish and sea urchin, some of them at relevant environmental 

concentrations. Simvastatin was the most toxic compound in embryonic development of 

zebrafish, while sea urchin embryos were more susceptible to the toxic action of 

triclocarban, which induced significant decrease in larval length at lower concentrations. 

Significant effects were also reported for mixture exposures and, therefore, the present 

work contributes to demonstrate that compounds present in mixture may interact and 

induce different and significant effects from those observed in individual exposures.  

The endpoints of D. rerio and P. lividus embryo toxicity tests are well-recognized 

by OECD and Environmental Protection Agency (EPA) and are also considered the most 

sensitive endpoints to evaluate the effects resulting from exposures to different 

compounds for each species. Attending to the results of this study, sea urchin embryos 

are more sensitive to PPCPs exposure than zebrafish. These different are likely to be due 

to genetic differences between the two species. Moreover, as zebrafish embryos present 

chorion during initial stages of development this might work as a barrier that interferes 

with the uptake of PPCPs. 

Larval length seems to be a sensitive and robust endpoint to evaluate the impacts 

of PPCPs exposures in sea urchin embryos. Conversely, abnormal cell growth revealed a 

weak endpoint in evaluating toxic impacts of PPCPs exposures in embryonic development 

of zebrafish, as no significant effects were observed for this endpoint. 

Considering the results obtained in this study, it is now important to perform 

additional studies to understand the action mode of each compound and the biochemical 

and molecular mechanisms involved in the observed effects. It is also relevant to extend 

individual and mixture exposures to all organisms’ life-cycle and perform new toxicological 

assays with other relevant species belonging to different taxonomic groups. Thus, it will be 

possible to understand the consequences at population level as well as identify conserved 

mechanisms of action across different phyla. 

Data from studies of PPCPs effects after individual and mixture exposures are 

important to perform more reliable risk assessments and to implement protective 

standards for the environment and for organisms at their most sensitive development 

stages. 
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