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" That everyone wants to live on top of the 

mountain, but all the happiness and growth 
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RESUMO 

A glicoproteína P (P-gp) é uma bomba de efluxo dependente de ATP, codificada 

pelo gene MDR1 em humanos, a qual está envolvida na resistência de células 

neoplásicas a múltiplos fármacos anticancerígenos, dada a capacidade que estas células 

apresentam de sobreexpressar esta proteína. No entanto, a P-gp encontra-se igualmente 

expressa em tecidos epiteliais humanos não neoplásicos, onde apresenta uma expressão 

celular polarizada. Considerando o seu largo espetro de substratos e a sua elevada 

capacidade de efluxo, a P-gp pode, assim, desempenhar um papel crucial na diminuição 

da absorção de xenobióticos, reduzindo a sua acumulação intracelular. De facto, este 

mecanismo de defesa pode ser de particular importância a nível intestinal, diminuindo 

significativamente a absorção intestinal de xenobióticos e, consequentemente, evitando o 

seu acesso aos órgãos-alvo. Deste modo, os estudos incluídos nesta tese tiveram como 

objetivo a pesquisa e desenvolvimento de indutores e/ou ativadores da P-gp seguros, 

específicos e potentes, para potencial uso como antídotos em intoxicações causadas por 

substratos tóxicos desta bomba de efluxo. 

No presente trabalho, as células Caco-2 foram usadas como modelo in vitro do 

epitélio intestinal humano. Este modelo celular tem ampla aceitação na previsão da 

absorção e excreção intestinal de fármacos e apresenta uma boa correlação entre os 

níveis de expressão da P-gp e os níveis normalmente expressos no jejuno humano. 

Como modelo de substrato tóxico da P-gp foi utilizado o paraquato (PQ), um herbicida 

cuja toxicidade pulmonar, em ratos intoxicados, foi revertida pelo aumento dos níveis de 

expressão da P-gp no pulmão, após administração de um fármaco indutor da P-gp. Na 

presente tese, foram estudados os mecanismos de entrada do PQ nas células Caco-2, os 

quais parecem envolver mais do que um sistema de transporte, incluindo o sistema de 

captação da colina, o transportador das poliaminas e o sistema de transporte y+ para 

aminoácidos básicos, sendo este um processo sensível ao sistema cálcio/calmodulina  e 

à N-etilmaleimida. Com o propósito de desenvolver antídotos para promover o efluxo do 

PQ, foram utilizados indutores da P-gp, já descritos, como a doxorubicina (DOX), 

colchicina e hipericina (HYP), assim como compostos recentemente sintetizados, 

nomeadamente derivados (tio)xantónicos. Foram, assim, avaliados os seus efeitos na 

expressão e atividade da P-gp, bem como o seu potencial efeito na redução da 

citotoxicidade do PQ. 

Os resultados obtidos demonstraram que as células Caco-2 são um modelo in vitro 

adequado à pesquisa de indutores da P-gp, apresentando uma rápida capacidade de 

resposta a um estímulo indutor, tal como demonstrado pelo aumento significativo na 

expressão desta proteína 6 h após a exposição à DOX. Foi igualmente possível observar, 

neste modelo in vitro, que, tal como a DOX, também a HYP aumentou significativamente 

tanto a expressão como a atividade da P-gp, em função da concentração e do tempo de 

exposição testados, resultando numa significativa proteção contra a citotoxicidade 

induzida pelo PQ. De realçar que a redução da citotoxicidade do PQ mediada pela DOX 
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foi mais pronunciada quando este indutor foi adicionado 6 h após o início da exposição ao 

PQ, o que foi explicado pela simultânea inibição da entrada do PQ (através da inibição do 

sistema de captação da colina) e pelo aumento da sua excreção (através do aumento da 

expressão/atividade da P-gp). Consequentemente foi observada uma redução notável na 

acumulação intracelular do PQ, explicando a marcada redução na sua citotoxicidade. 

Estes dados demonstram que a indução da P-gp é uma abordagem terapêutica valiosa 

em cenários de intoxicação real, em que o antídoto exerce seus efeitos protetores após o 

contacto do tóxico com as células-alvo. 

Com a colchicina, observou-se um aumento significativo na expressão da P-gp, 

apesar da capacidade de efluxo se manter inalterada, o que se explica pela sua ação 

como inibidor competitivo da P-gp, o que foi confirmado pelos estudos realizados in silico. 

Os resultados dos estudos computacionais e biológicos obtidos para a colchicina, HYP e 

DOX salientam a importância da avaliação simultânea da expressão e atividade da P-gp 

na pesquisa de indutores, uma vez que estes parâmetros podem ser regulados de forma 

distinta. Na verdade, o sucesso de um indutor da P-gp contra xenobióticos tóxicos 

dependerá essencialmente do aumento da função da bomba, sem o qual não é possível 

reduzir a acumulação intracelular desses xenobióticos . 

Derivados (tio)xantónicos recentemente sintetizados foram também avaliados como 

potenciais indutores e ativadores da P-gp, verificando-se, pela primeira vez, a capacidade 

destes compostos para aumentar significativamente quer a expressão quer a atividade da 

P-gp, e proteger as células Caco-2 contra a citotoxicidade do PQ. Estes compostos 

demonstraram igualmente a capacidade de aumentar a atividade da P-gp na ausência de 

aumento da sua expressão, um efeito compatível com um fenómeno de ativação da P-gp. 

Com base nestes resultados, foi proposto um mecanismo de co-transporte entre 

(tio)xantonas e PQ, o qual foi suportado por estudos de docking. Estes compostos 

representam, assim, uma nova fonte promissora de antídotos contra intoxicações por 

substratos tóxicos da P-gp, tais como o PQ. Além disso, foram desenvolvidos e 

validados, pela primeira vez, farmacóforos para indutores e activadores da P-gp, que 

podem ser de grande importância, no futuro, para prever novos ligandos, tal como tem 

sido descrito para substratos e inibidores. Adicionalmente foi criado um modelo de 2D 

QSAR para ativadores da P-gp, o qual demonstra que a carga parcial máxima de átomos 

de oxigénio está relacionada com a capacidade das xantonas dihidroxiladas para 

ativação da P-gp.  

Em conclusão, nesta tese, foi demonstrado que vias antidotais eficazes podem ser 

alcançadas através da promoção do efluxo de xenobióticos tóxicos, tal como o PQ, 

resultando numa redução significativa dos seus níveis intracelulares e, 

consequentemente, numa significativa redução da sua toxicidade. Além disso, a 

redundância e/ou multiplicidade de sistemas de transporte deve ser tida em consideração 

para obter uma ação antidotal mais eficaz. 
 

PALAVRAS-CHAVE: Glicoproteína P; Indução; Ativação; Células Caco-2; Paraquato. 
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ABSTRACT 

P-glycoprotein (P-gp) is an ATP-dependent efflux pump encoded by the MDR1 gene 
in humans, which is known to mediate multidrug resistance of neoplastic cells to cancer 
therapy. However, P-gp is also constitutively expressed in normal human epithelial tissues 
with a cellular polarized expression. Therefore, due to its broad substrate specificity and 
its great efflux capacity, P-gp can play a crucial role in limiting the absorption of harmful 
xenobiotics, decreasing their intracellular accumulation. In fact, such a defence 
mechanism can be of particular relevance at the intestinal level, by significantly reducing 
the intestinal absorption of the xenobiotic and, consequently, avoiding its access to the 
target organs. Thus, the studies included in this thesis aimed to develop and screen safe, 
specific and potent P-gp inducers and/or activators, which could be used as potential 
antidotes in intoxications elicited by toxic P-gp substrates. 

In the present work, Caco-2 cells were used as an in vitro model of the human 
intestinal epithelium, considering their wide acceptance for predicting drug intestinal 
absorption and excretion in humans, and the good correlation between the expressed 
levels of the P-gp protein as compared to those of the normal jejunum. Furthermore, 
paraquat (PQ) was used as a model of a toxic P-gp substrate, since the pulmonary toxicity 
of this extremely toxic herbicide was reverted, in vivo, upon administration of a P-gp 
inducer to intoxicated rats. We observed that more than one transport system is involved 
in PQ uptake into Caco-2 cells, including the choline uptake system, the polyamine 
transporter and the y+  basic amino acids transport system, being a Calcium/calmodulin- 
and N-ethylmaleimide- sensitive process. In order to induce and/or activate P-gp, 
described P-gp inducers, such as doxorubicin (DOX), colchicine, and hypericin (HYP), as 
well as newly syntethized (thio)xanthones were used, and their effects on P-gp expression 
and activity were assessed. Furthermore, their potential protective effects in reducing the 
cytotoxic effects of PQ were evaluated. 

Our results demonstrated that Caco-2 cells are a suitable in vitro model for the 
screening of P-gp inducers, showing prompt responsiveness to the induction stimulus, 
with significant increases in P-gp expression observed as soon as 6 h after DOX 
exposure. Furthermore, in this in vitro model, we also observed that HYP, like DOX, 
significantly increased both P-gp expression and activity according to the concentration 
and time of exposure tested, resulting in a significant protection against PQ-induced 
cytotoxicity. Noteworthy, DOX-mediated reduction in PQ cytotoxicity was more 
pronounced when the inducer was added 6 h after the beginning of PQ exposure, which 
was attributed to a dual role in both the inhibition of PQ entrance (through the inhibition of 
the choline uptake system) and the increase in its excretion (through increased P-gp 
expression/activity). Consequently, a remarkable reduction in PQ intracellular 
accumulation was observed, which explains the astonishing reduction in its cytotoxicity. 
These data demonstrated that P-gp induction is a valuable therapeutic approach in real-
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life intoxication scenarios, where the antidote exerts its protective effects well after the 

intoxicant contacts with the target cells. 

When evaluating colchicine, a significant increase in P-gp expression occurred, 

while no significant change in P-gp efflux capacity was observed, which can be explained 

by its action as a competitive inhibitor as supported by the performed in silico studies. 

Noteworthy, both computational and biological data obtained for colchicine, HYP and DOX 

emphasize the importance of simultaneously evaluating P-gp expression and activity for 

the screening of P-gp inducers, since these features may be differentially regulated. In 

fact, the success of a P-gp inducer against harmful xenobiotics is dependent on the 

increase in the pump function, without which it is not possible to reduce the intracellular 

accumulation of toxic P-gp substrates.  

Newly synthetized (thio)xanthonic derivatives were also screened and, for the first 

time, the ability of these compounds to significantly increase P-gp expression and protect 

Caco-2 cells against PQ cytotoxicity was reported. Furthermore, these compounds 

demonstrated the ability to immediately increase P-gp activity, even in the absence of 

increased P-gp expression, an effect compatible with a P-gp activation phenomenon. The 

possibility of a co-transport mechanism between (thio)xanthones and PQ was further 

supported by docking studies. Therefore, these compounds represent a promising new 

source of antidotes against intoxications by harmful P-gp substrates, such as PQ. 

Furthermore, for the first time, pharmacophores for P-gp inducers and activators were 

developed and validated, which can be of utmost importance, in the future, in predicting 

new ligands, as has been long made for P-gp substrates and inhibitors. Additionally, a 2D 

QSAR model was created for P-gp activators, which demonstrated that the maximal 

partial charge for oxygen atoms is related with the ability of dihydroxylated xanthones for 

P-gp activation. 

In conclusion, in this thesis, it was demonstrated that effective antidotal pathways 

can be achieved by efficiently promoting the P-gp-mediated efflux of deleterious 

xenobiotics, such as PQ, resulting in a significant reduction in their intracellular levels and, 

consequently, in a significant reduction in their toxicity. Also, the redundancy and/or 

multiplicity of transports systems needs to be addressed for an effective antidotal action. 
 

KEYWORDS: P-glycoprotein; Induction; Activation; Caco-2 cells; Paraquat. 
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OUTLINE OF THE DISSERTATION 

The present dissertation is divided into four main sections: 

 Part I – General Introduction on P-glycoprotein 

In this section, a review on the existing literature on P-glycoprotein is presented, in order 

to provide a good basis for understanding the objectives and the obtained results of the 

experimental studies. The general objectives are also included in this section. 

 Part II – Experimental section 

In part II, the manuscripts published or submitted for publication in the scope of this 

dissertation are presented. Also, a brief consideration on the experimental in vitro model 

and on the model of the toxic P-gp substrate used in the studies is also included in this 

section. 

 Part III – Discussion and Conclusions 

In this section, an integrated discussion of the results obtained in the scope of this 

dissertation is presented. The discussion of their potential relevance and their connection 

with existing scientific reports is also addressed here. Moreover, part III includes the main 

conclusions taken from the work of the present dissertation.  

 Part IV – References 

In this final part, all the literature references that were used in the introduction and 

discussion sections are listed. 
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I. GENERAL INTRODUCTION ON P-GLYCOPROTEIN 

I.1. Overview of the ABC Transporters 

The bioavailability of a wide variety of compounds, including endogenous 

substances, drugs and xenobiotics, is determined by the balance between uptake and 

efflux transporters that facilitate their movement across the membranes. These 

transporters are important to maintain the cellular homeostasis, as well as to detoxify 

potentially toxic substances (DeGorter et al. 2012). Among the efflux transporters, the 

ATP-binding cassette (ABC) transporters are the most extensively studied. The name 

"ABC transporters" was introduced in 1992 by Chris Higgins based on the reference to the 

highly conserved ATP-binding cassette, the most characteristic feature of this superfamily 

of proteins (Higgins 1992). 

The ABC family of transport proteins represents one of the largest families of 

proteins in living organisms (Dean et al. 2001; Gottesman and Ambudkar 2001) and 

members of this family play a central role in cellular physiology. In fact, this superfamily 

comprises more than 100 membrane transporters/channels, which are involved in diverse 

functions, including the extrusion of harmful compounds, uptake of nutrients, transport of 

ions and peptides, and cell signalling (Chang 2003; DeGorter et al. 2012; Gottesman and 

Ambudkar 2001). Mutations in the ABC transporters have been linked with several human 

diseases, including cystic fibrosis, persistent hyperinsulinemic hypoglycemia of infancy, 

the Dubin-Johnson syndrome, Stargardt disease and Tangier disease (Gottesman and 

Ambudkar 2001). 

These transporters are universally expressed across genera, ranging from bacteria 

and plants to mammals (Higgins 1992). In humans, 49 ABC transporters have been 

identified (Table 1), and classified on the basis of phylogenetic analysis into 7 subfamilies: 

ABCA (12 members; previously ABC1), ABCB (11 members; previously MDR/TAP), 

ABCC (13 members; previously MRP/CFTR), ABCD (4 members; previously ALD), ABCE 

(1 member; previously OABP), ABCF (3 members; previously GCN20) and ABCG (5 

members; previously White) (Table 1) (Couture et al. 2006; Dean et al. 2001; Sharom 

2008; Vasiliou et al. 2009). 

Table 1. List of human ABC genes, chromosomal location, expression and function 

Symbol Alias Location Expression Function 
ABCA     

   ABCA1 ABC1  9q31.1  Ubiquitous Cholesterol efflux onto HDL 
   ABCA2 ABC2  9q34 Brain Drug resistance 
   ABCA3 ABC3, ABCC  16p13.3 Lung Multidrug resistance 
   ABCA4 ABCR  1p22 Rod photoreceptors  N-retinylidene-PE efflux 
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Table 1. (cont.) List of human ABC genes, chromosomal location, expression and function. 

Symbol Alias Location Expression Function 
   ABCA5  17q24.3 Muscle, heart, testes  
   ABCA6  17q24.3 Liver Multidrug resistance 
   ABCA7  19p13.3 Spleen, thymus Cholesterol efflux 
   ABCA8  17q24 Ovary, heart, skeletal 

muscle, liver 
Transports certain lipophilic 
drugs 

   ABCA9  17q24.2 Heart Might play a role in monocyte 
differentiation and 
macrophage lipid homeostasis 

   ABCA10  17q24 Muscle, heart  
   ABCA12  2q34 Stomach  
   ABCA13  7p12.3 Low in all tissues Involved in an Inherited 

disorder affecting the pancreas 
ABCB     
   ABCB1 P-gp,PGY1, MDR1 7q21.12 Liver, kidney, intestine, 

brain, testis, adrenal 
gland, uterus, ovary, 
placenta, pancreas 

Multidrug resistance 

   ABCB2 TAP1 6p21.3 All cells  Peptide transport 
   ABCB3 TAP2 6p21.3 All cells  Peptide transport 
   ABCB4 PGY3, MDR2/3  7q21.1 Liver  PC transport 
   ABCB5  7p21.1 Ubiquitous Melanogenesis 
   ABCB6 MTABC3  2q36 Mitochondria  Iron transport 
   ABCB7 ABC7  Xq13.3 Mitochondria  Fe/S cluster transport 
   ABCB8 MABC1  7q36 Mitochondria Intracellular peptide trafficking 

across membranes 
   ABCB9  12q24 Heart, brain  
   ABCB10 MTABC2  1q42.13 Mitochondria Export of peptides derived 

from proteolysis of inner-
membrane proteins 

   ABCB11 SPGP  2q24 Liver , intestine Bile salt transport 
ABCC     
   ABCC1 MRP1 16p13.1 Lung, PBMC, intestine, 

brain, kidney, testis 
Drug resistance 

   ABCC2 MRP2  10q24 Liver, intestine, kidney Organic anion efflux 
   ABCC3 MRP3  17q22 Lung, intestine, liver, 

kidney, pancreas, 
placenta,  

Drug resistance 

   ABCC4 MRP4  13q32 Prostate, lung, adrenal 
gland, ovary, testis 

Nucleoside transport 

   ABCC5 MRP5  3q27 Skeletal muscle, heart, 
brain 

Nucleoside transport 

   ABCC6 MRP6  16p13.1 Kidney, liver  
   CFTR ABCC7 7q31.2 Exocrine tissues  Chloride ion channel 
   ABCC8 SUR1 11p15.1 Pancreas  Sulfonylurea receptor 
   ABCC9 SUR2  12p12.1 Heart, muscle Encodes the regulatory 

SUR2A subunit of the cardiac 
K+(ATP) channel 

   ABCC10 MRP7  6p21.1 Heart, skeletal, muscle, 
spleen, liver 

Multidrug resistance 

   ABCC11 MRP8 16q12.1 Breast, testis Drug resistance in breast 
cancer 

   ABCC12 MRP9 16q12.1 Breast, testis, brain, 
ovary, skeletal muscle 

Multidrug resistance 
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Table 1. (cont.) List of human ABC genes, chromosomal location, expression and function. 

Symbol Alias Location Expression Function 
   ABCC13  21q11.2 Fetal liver, bone 

marrow 
 

ABCD     
   ABCD1 ALD  Xq28 Peroxisomes  VLCFA transport 
   ABCD2 ALDL1, ALDR  12q12 Peroxisomes Major modifier locus for clinical 

diversity in X-linked ALD (X-
ALD) 

   ABCD3 PXMP1, PMP70 1p21.3 Peroxisomes Involved in import of fatty acids 
and/or fatty acyl-coenzyme A 
into the peroxisome 

   ABCD4 PMP69, P70R  14q24.3 Peroxisomes May modify the ALD 
phenotype 

ABCE     
   ABCE1 OABP, RNS4I  4q31 Ovary, testes, spleen  Oligoadenylate binding protein 
ABCF     
   ABCF1 ABC50  6p21.33 Ubiquitous Involved in susceptibility to 

autoimmune pancreatitis 
   ABCF2  7q36 Ubiquitous Tumour suppression at 

metastatic sites and in 
endocrine pathway for breast 
cancer/drug resistance 

   ABCF3  3q27.1 Ubiquitous  
ABCG     
   ABCG1 ABC8, White  21q22.3 Ubiquitous  Cholesterol transport 
   ABCG2 ABCP, MXR, BCRP  4q22 Placenta, brain, 

intestine  
Toxin efflux, drug resistance 

   ABCG4 White2  11q23.3 Liver, spleen, eye, 
brain and macrophage 

 

   ABCG5 White3  2p21 Liver, intestine  Sterol transport 
   ABCG8  2p21 Liver, intestine  Sterol transport 

ALD, adrenoleukodystrophy; ATP, adenosine triphosphate; CFTR, cysticfibrosis transmembrane conductance 
regulator gene; HDL, high density lipoprotein; PBMC, peripheral blood mononuclear cells; PC, 
Phosphatidylcholine; PE, phosphatidylethanolamine; PIN, prostatic intraepithelial neoplasia; VLCFA, very long 
chain fatty acids [adapted from (Couture et al. 2006; Dean et al. 2001; Vasiliou et al. 2009)]. 

 

The ABC-transporters use energy from ATP hydrolysis to move their substrates 

across biological membranes (plasma membrane, as well as intracellular membranes of 

the endoplasmic reticulum, peroxisome, and mitochondria) and against their concentration 

gradients, thereby limiting the cellular accumulation of their substrates (Borst and Elferink 

2002; Chang 2003; DeGorter et al. 2012). Moreover, they are characterized by the 

presence of a highly conserved ATP-binding motif (DeGorter et al. 2012). ABC 

transporters typically contain a pair of ATP-binding domains, also known as nucleotide 

binding domains (NBD), and two sets of transmembrane domains (TMD), normally 

containing six membrane-spanning α-helices. The NBD contain three conserved domains: 

Walker A and B domains, found in all ATP-binding proteins, and a signature C motif 

(LSGGQ signature C), located upstream of the Walker B site (Hyde et al. 1990). The C 

domain is specific to ABC transporters and distinguishes them from other ATP-binding 
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proteins. The prototype ABC protein contains, as mentioned, two NBD and two TMD, with 

the NBDs located in the cytoplasm, and this topology will be discussed in detail in section 

I.3. These proteins pump substrates in a single direction, typically out of the cytoplasm. 

For hydrophobic compounds, this movement is often from the inner leaf of the 

phospholipid membrane bilayer to the outer layer or to an acceptor molecule (Dean et al. 

2001). 

The previously described typical topology of an ABC transporter is not applicable to 

all members. Indeed, ABC genes are organized into either full transporters, containing (at 

least) two TMD and two NBD, or half transporters, containing one of each domain. The 

half transporters assemble as either homodimers or heterodimers to create a functional 

transporter (Hyde et al. 1990). BCRP is a half-transporter containing 6 transmembrane 

regions and 1 NBD; P-gp, MRP4, MRP5, MRP8, and MRP9 proteins contain 12 

transmembrane regions, split into two halves forming TMDs, each with a NBD (prototype 

ABC proteins); MRP1,MRP2, MRP3, MRP6, and MRP7 have an extra TMD towards the 

N-terminus comprising 5 extra transmembrane regions (Couture et al. 2006). 

The genes that encode ABC genes are widely dispersed in the genome and show a 

high degree of amino acid sequence identity among eukaryotes (Dean et al. 2001). 

Members of this large superfamily important in drug efficacy and toxicity, include P-

glycoprotein (MDR1/ABCB1; P-gp), breast cancer resistance protein (BCRP/ABCG2), and 

transporters of the multidrug resistance-associated protein (MRP/ABCC) family (DeGorter 

et al. 2012). From the previously referred transporters, the present thesis will focus on P-

gp. 

I.2. P-glycoprotein tissue distribution and physiological role 

I.2.1. P-gp tissue distribution and main physiological role 

P-glycoprotein is a member of the ABCB [multidrug resistance (MDR)/(TAP)] 

subfamily of transporters. The ABCB subfamily is composed of four full transporters and 

seven half transporters, being the only human subfamily having both types of transporters 

(Dean et al. 2001). 

P-gp exists in a number of different isoforms, which have more than 70% sequence 

homology and are encoded by a small family of closely related genes. In humans, P-gp is 

encoded by two MDR genes, MDR1/ABCB1 and MDR3/ABCB4 (also designated MDR2), 

which arose from a duplication event, and are located, adjacent to each, on the long arm 

of chromosome 7 (7q21) (Callen et al. 1987; Chin et al. 1989). The MDR phenotype is 

associated with the MDR1 isoform (Hennessy and Spiers 2007). Additionally, the human 

MDR3 isoform functions as a phosphatidylcholine (PC) translocase, or “flippase”, 
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exporting this phospholipid into the bile (Ruetz and Gros 1994). However, under certain 

conditions, the human MDR3 demonstrated to transport some MDR1 substrates, albeit 

inefficiently (Smith et al. 2000). Therefore, since the drug transporting isoform shares 78% 

amino acid sequence identity with the PC-exporting isoform, it has been suggested that 

they may share similar structures and mechanisms of action (Sharom 2007). In rodents, 

P-gp is encoded by three genes: Abcb1a/Mdr1a/mdr3 and Abcb1b/Mdr1b/mdr1, which 

encode drug transporters, and mdr2/Abcb4, that encode for a protein that carries out PC 

export into the bile (Sharom 2007). In the following sections of this dissertation, the term 

P-gp will be used to indicate the ABCB1 gene product (or abcb1a/abcb1b gene products 

in studies performed in rodents). 

P-gp, expressed as a result of the transcription of the ABCB1/MDR1 gene, is the 

most extensively studied mammalian ABC transporter and is often regarded as the 

prototype for understanding their biochemical mechanisms (Gottesman et al. 2002; 

Gottesman et al. 1996; Sharom 2011; Zhou 2008). Moreover, P-gp was the first ABC 

transporter to be cloned and, as already mentioned, is the best characterized protein of 

the ABC transporter superfamily due in part to its significant role in conferring a MDR 

phenotype to cancer cells that develop intrinsic or acquired cross-resistance to diverse 

chemotherapeutic agents, resulting in the failure of chemotherapy for many cancers 

(Ambudkar et al., 1999). In fact, this efflux pump was firstly isolated from colchicine-

resistant Chinese hamster ovary cells, where it modulated drug permeability by reducing 

their apparent cellular permeability (Juliano and Ling 1976) and, therefore associated with 

this resistance phenotype.  

The expression of this efflux pump was afterwards identified in normal tissues 

(Thiebaut et al. 1987), as well as in many cultured cells of mammalian and human origin, 

including 39 of 60 tumour cell lines used by the U.S. National Cancer Institute in the 

discovery of new anti-cancer drugs (Alvarez et al. 1995). Although P-gp was found 

expressed in most human (Thiebaut et al. 1987) and rodent tissues (Croop et al. 1989) at 

low levels, it was found at much higher levels at the apical surface of epithelial cells of the 

large and small intestine, liver bile ductules and kidney proximal tubules (Figure 1) (Chin 

et al. 1989; Fojo et al. 1987; Thiebaut et al. 1987). Therefore, having all these organs 

excretory roles, it suggests that the pump may have a physiological role in the elimination 

of xenobiotics or some endogenous metabolites. P-gp was also found in the pancreatic 

ductules, adrenal gland, placenta, testis (blood testis barrier) and in the apical membrane 

of endothelial cells lining the capillaries of the brain (Chin et al. 1989; Cordon-Cardo et al. 

1990; Cordon-Cardo et al. 1989; Fojo et al. 1987; Schinkel 1999; Thiebaut et al. 1987). 

These lastly mentioned endothelial cells form a continuous monolayer, the so-called 

blood-brain barrier (BBB), which prevents blood components from crossing into the central 
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nervous system. P-gp was found 

oriented in these cells to transport 

substrates towards the blood, 

constituting a major factor in limiting 

their entry into the brain, thus protecting 

against the noxious effects of P-gp 

substrates (Schinkel 1999; Schinkel et 

al. 1994; Schinkel et al. 1996; Schinkel 

et al. 1995). P-gp has also been found 

to play a role in the blood-inner ear 

barrier, where it was found expressed in 

the capillary endothelial cells of the 

cochlea and vestibule (Saito et al. 

1997). Accordingly, the main role of P-

gp in the blood-brain and blood-tissue 

barriers is likely the protection of these 

organs from toxic compounds that gain 

entry into the circulatory system. 

Additionally, high levels of P-gp 

expression were identified at the luminal 

surface of secretory epithelial cells in the 

pregnant endometrium (Arceci et al. 

1988), as well as in the placenta (Gil et 

al. 2005), where it appears to play a 

central role in protecting the fetus from 

the toxicity of a variety of endogenous 

and exogenous molecules (Kalabis et al. 

2005). Interestingly, besides being 

expressed in a stage-specific manner in 

the placenta, P-gp has also restricted 

expression in the developing embryo 

(MacFarland et al. 1994; van Kalken et al. 1992). P-gp present in the apical border of 

fetus-derived epithelial cells facing the maternal circulation is optimally oriented to protect 

the fetus against incoming amphipathic toxins (Lankas et al. 1998).  

Additionally, this efflux protein was also found on the surface of hematopoietic cells, 

albeit its function remains enigmatic (Eckford and Sharom 2009). However, it was 

demonstrated, in vivo, that its presence in hematopoietic progenitor cells of the bone 

Figure 1. P-gp cellular localization in the intestine, 
liver and kidney.  
P-gp is found on the apical/luminal membrane of 
intestinal epithelial cells (A), the canalicular membrane 
of human hepatocytes (B), and the apical/luminal 
membrane of renal proximal tubule cells (C) [taken from 
(Wessler et al. 2013)]. 
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marrow protects these vital cells from toxic drugs during chemotherapy (van Tellingen et 

al. 2003). 

Altogether, the P-gp tissue localizations suggests that the protein plays a 

physiological role in the protection of susceptible organs like the brain, testis and inner ear 

from toxic xenobiotics, in the secretion of metabolites and xenobiotics into bile, urine, and 

the lumen of the gastrointestinal tract, and possibly in the transport of hormones from the 

adrenal gland and the uterine epithelium. In fact, this physiological role has been strongly 

supported by studies with transgenic knockout mice lacking one or both of the genes 

encoding the drug-transporting P-gps, Abcb1a and Abcb1b (Schinkel et al. 1994). Both 

the single and double knockout mice demonstrated a normal lifespan and appeared 

healthy, were fertile, viable, and phenotypically indistinguishable from wild-type mice 

under normal conditions (Schinkel et al. 1994). However, P-gp knockout mice showed 

radical changes in the susceptibility to many drugs. Specifically, when P-gp substrates 

were administered, the drugs were accumulated at very high levels in the brain, when 

compared with wild-type mice, resulting in neurotoxicity (Schinkel et al. 1994). For 

example, Abcb1a knockout mice displayed a disrupted blood-brain barrier and an 

increased sensitivity to the centrally neurotoxic pesticide ivermectin (100-fold) and to the 

carcinostatic drug vinblastine (3-fold) (Schinkel et al. 1994). Thus, this P-gp isoform 

appears to play the major role in preventing accumulation of drugs in the brain (Jette et al. 

1995; Schinkel et al. 1994). Moreover, the double-knockout mouse also proved to be a 

valuable tool for the evaluation of P-gp-mediated transport of drugs that are targeted to 

the central nervous system (Doran et al. 2005). 

Finally, in what concerns to the ABCB4 protein, it is expressed at high levels on the 

bile canalicular membrane of hepatocytes, in accordance with its proposed role in 

transport of PC into the bile (Smit et al. 1994; Smith et al. 1994). 

I.2.2. Other proposed roles of P-glycoprotein in cell physiology 

Apart from its important role in the cellular protection against harmful xenobiotics, in 

vivo, P-gp functions may also include the transport of endogenous molecules and 

metabolites (Eckford and Sharom 2009). In fact, possible endogenous substrates include 

phospholipids and glycolipids, platelet-activating factors (PAF), β-amyloid peptides, small 

cytokines, such as interleukins, and steroid hormones, such as aldosterone and β-

estradiol-17β-D-glucuronide (Eckford and Sharom 2009; Sharom 2011). However, the 

information on the extent of P-gp-mediated transport of these endogenous molecules in 

vivo is scarce (Sharom 2011). Noteworthy, a putative P-gp role in hormone/cytokine 

transport could explain its expression in tissues such as the adrenal gland, hematopoietic 

cells, and lymphocytes (Eckford and Sharom 2009). Daleke et al. described that P-gp is 
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capable of transporting a wide variety of lipids, including NBD [(7-nitro-2,1,3-

benzoxadiazol-4-yl)-aminododecanoyl] glycerol PL (a NBD-phospholipid), sphingolipids 

and PAF (Daleke 2007). P-gp is also able to translocate fluorescent derivatives of simple 

glycosphingolipids such as glucosylceramide (Eckford and Sharom 2005; Lala et al. 

2000). Therefore, the pump present in the Golgi apparatus may have a relevant role in 

flipping glucosylceramide from the cytoplasmic leaflet into the luminal leaflet, which is 

required during the biosynthesis of more complex glycosphingolipids (Lala et al. 2000). 

However, although P-gp can act as a phospholipid flippase (see section I.4.2.1), it is 

unlikely that this is its primary in vivo function, since the rate of flipping is relatively low 

(Romsicki and Sharom 2001). 

As previously referred, P-gp is also expressed in the adrenal gland, on 

hematopoietic stem cells, natural killer (NK) cells, antigen-presenting dendritic cells (DC), 

and T and B lymphocytes (Klimecki et al. 1994; Randolph et al. 1998). Although the 

mdr1a/1b knockout mice displayed a seemingly complete immune-cell repertoire (Schinkel 

et al. 1997), the capacity of these mice to produce an efficient immune response against 

pathogens or tumours, and their relative susceptibility to autoimmunity, is not yet fully 

understood (Johnstone et al. 2000). Therefore, although P-gp expression on blood-tissue 

barriers and on epithelial cells of the gastrointestinal or urinary system is consistent with a 

drug-removal role, the selective expression on adrenal and hematopoietic cells led some 

researchers to propose additional functions for P-gp.  

In fact, several review articles reported additional P-gp roles in cell physiology, and 

among these proposed P-gp functions are its roles in immunology and apoptosis. 

Johnstone et al. (2000) summarized various P-gp physiological functions, such as the 

translocation of cytokines by P-gp in hemotopoietic stem cells, the inhibition of apoptosis 

by P-gp-mediated translocation of sphingomyelin, its involvement in cholesterol 

metabolism and phospholipid translocation, and its role as volume activated chloride 

channel regulator (Johnstone et al. 2000). It was also described that P-gp might play a 

fundamental role in regulating cell differentiation, proliferation and survival (Johnstone et 

al. 2000). Effects of functional P-gp on chloride channel activity, phospholipid transport 

and cholesterol esterification are summarized in Table 2 (Johnstone et al. 2000). 

Additionally, van Meer (2005), in a study of cellular lipidomics showed the vital role 

of lipids in cell signalling, and also reviewed ABC lipid transporters as extruders, flippases, 

or flopless activators (van Meer 2005). Moreover, it was shown that the lipid composition 

of normal cell organelles, membranes, locations of lipid synthesis and lipid rafts is related 

with the translocation of lipids by P-gp (van Meer 2005). It was proposed that if a lipid 

originates from the cytosolic membrane surface, this represents lipid flop and is probably 

a side activity of transporters (van Meer et al. 2006). 



 

 

Table 2. Proposed roles for P-gp in cell physiology. 

Proposed function Cells1 Inhibitors Conclusions 

Volume activated chloride 
channel regulator 

● MDR1 transfected cells: NIH3T3 cells (Bond et al. 

1998; Gill et al. 1992; Hardy et al. 1995; Valverde et 

al. 1992), S1 cells (Valverde et al. 1992), HeLa cells 
(Hardy et al. 1995), CHO cells (Bond et al. 1998), 

BALB/c-3T3 cells (Vanoye et al. 1999). 

● MDR1–MM transfected2: S1 cells (Gill et al. 1992). 

● MDR1-8A, MDR1-8E transfected3: HeLa cells 

(Hardy et al. 1995). 

● MDR1-3SA transfected: BALB/c-3T3 cells (Vanoye 

et al. 1999). 

● mdr1a transfected: CHO cells (Bond et al. 1998; 

Valverde et al. 1996). 

● mdr1b transfected: CHO cells (Bond et al. 1998; 

Valverde et al. 1996). 

Forskolin (Valverde et al. 1992), 

verapamil (Valverde et al. 1992), 

dideoxyforskolin (Bond et al. 1998; 

Valverde et al. 1992), quinine 

(Valverde et al. 1992), antisense 

oligonucleotides (Valverde et al. 

1992), doxorubicin (Gill et al. 1992), 

vincristine (Gill et al. 1992), TPA  
(Bond et al. 1998; Hardy et al. 

1995), PKC (Bond et al. 1998; 

Hardy et al. 1995; Vanoye et al. 

1999), tamoxifen (Valverde et al. 

1996). 

● MDR1 transfected-cells (Bond et al. 1998; Gill et al. 

1992; Hardy et al. 1995; Valverde et al. 1992; Vanoye et 

al. 1999) and mdr1a (Bond et al. 1998; Valverde et al. 

1996) P-gp can regulate the activity of volume-activated 

chloride channels. 

● mdr1b P-gp does not regulate chloride channel activity 

(Bond et al. 1998; Valverde et al. 1996). 

● Chloride channel regulation is inhibited by 

phosphorylation of P-gp by PKC (Bond et al. 1998; Hardy 

et al. 1995; Vanoye et al. 1999). 

Phospholipid translocase ● mdr1a transfected: yeast (Ruetz and Gros 1994), 

LLC-PK1 cells (van Helvoort et al. 1996) 

● mdr1b transfected yeast (Ruetz and Gros 1994) 

● mdr2 transfected yeast (Ruetz and Gros 1994) 

● MDR1 transfected LLC-PK1 cells (van Helvoort et 

al. 1996) 

● MDR3 transfected LLC-PK1 cells (van Helvoort et 

al. 1996) 

● CEM/VBL300 cells (Bosch et al. 1997) 

 

Vanadate (Ruetz and Gros 1994), 

verapamil (Ruetz and Gros 1994; 

van Helvoort et al. 1996), PSC833 

(Bosch et al. 1997), UIC2 antibody 

(Bosch et al. 1997), cyclosporin A 
(Sugawara et al. 2005 ) 

● mdr1a and mdr1b P-gp do not translocate lipids (Ruetz 

and Gros 1994) 

● mdr2 P-gp can function as a PC translocase (Ruetz 

and Gros 1994) 

● mdr2 P-gp flippase activity is ATP-dependent (Ruetz 

and Gros 1994) 

● MDR3 P-gp can function as a PC translocase (van 

Helvoort et al. 1996) 

● MDR3 P-gp flippase activity is ATP-dependent (van 

Helvoort et al. 1996) 

● MDR1 (Bosch et al. 1997; van Helvoort et al. 1996) 

and mdr1a (van Helvoort et al. 1996) P-gp can 

translocate a range of short chain phospholipid analogs 
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Table 2. (cont.) Proposed roles for P-gp in cell physiology. 

Proposed function Cells1 Inhibitors Conclusions 

Cholesterol metabolism ● CHO, HeLa, Caco-2 and HepG2 cells (Debry et al. 

1997); 8226/DOX6 cells (Luker et al. 1999) 

● MDR1 transfected NIH3T3 cells (Luker et al. 1999) 

Steroid hormones (Debry et al. 

1997; Luker et al. 1999), verapamil 

(Debry et al. 1997; Luker et al. 

1999), PSC833 (Debry et al. 1997) 

● MDR inhibitors block esterification of plasma 

membrane cholesterol (Debry et al. 1997; Luker et al. 

1999)  

● Expression of MDR1 P-gp correlates with increased 

esterification of plasma membrane cholesterol (Luker et 

al. 1999) 

Adapted from (Johnstone et al. 2000) 
1Transfected cell lines used in each study with the cDNAs expressed by each plasmid shown in italics.  
2MDR1-MM is an expression plasmid encoding P-gp with Lys to Met mutations at positions 433 and 1076, which has defective ATP hydrolysis. 
3MDR1-8A and MDR1-8E are expression plasmids encoding P-gp with replacement of eight Ser/Thr residues within the P-gp linker region with Ala (8A) or Glu acid (8E). The 
MDR1-8A product mimics non-phosphorylated P-gp, whereas the MDR1-8E product mimics phosphorylated P-gp. MDR1-3SA is an expression plasmid for P-gp with Ser to Ala 
mutations within the linker region at positions 661, 667 and 671. 
PC - phosphatidylcholine 
PKC - Protein kinase C 
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More recently, a detailed review on several P-gp physiological functions was made 

according to the corresponding substrates, except for drug excretion, being these 

functions summarized in Table 3 (Mizutani et al. 2008) 

 
Table 3. Summary of physiological functions of P-gp (ABCB1, MDR1)  

Substrates/Functions  Function References 

Platelet-activating 
factor (PAF) 

Translocation of PAF across the plasma 
membrane 

(Ernest and Bello-Reuss 
1999) 

 PAF inhibition of drug transport by P-gp (Raggers et al. 2001) 
 Phospholipid flippases (Daleke 2007) 

Sphingomyelin (SM) 
and glucosylceramide 
(GlcCer) 

Translocation of SM and GlcCer (Slotte and Bierman 1988) 
Translocation of C6-NBD-GlcCer in the apical 
medium 

(van Helvoort et al. 1996) 

Apoptosis P-gp prevents stem-cell differentiation (Robinson et al. 1997) 
 P-gp prevents programmed cell death, apoptosis (Smyth et al. 1998) 
 P-gp protect cells from death (Johnstone et al. 1999) 

Phosphatidylcholine 
(PC) 

Translocation of C6-NBD-PC across the apical 
membrane 

(Bosch et al. 1997) 

 Translocation of natural PC to the cell surface (Kalin et al. 2004) 

Cholesterol and its 
esterification 

Transport of a variety of steroids (Barnes et al. 1996) 
Transport of glucocorticoids (Gruol et al. 1999) 

 P-gp esterified more cholesterol (Luker et al. 1999) 
 Direct interaction of cholesterol with the substrate 

binding site 
(Wang et al. 2000) 

 Increase of esterified cholesterol according to the 
level of P-gp 

(Gayet et al. 2005) 

Cytokines Transport of cytokines, IL-1β, IL-2, IL-4 and IFN ɣ (Raghu et al. 1996) 
 Release of IL-2 (Drach et al. 1996) 

Chloride channel 
regulator 

Associated with a volume-activated chloride 
channel 

(Hardy et al. 1995)  

 Bifunctional with both transport and channel 
regulator 

(Bond et al. 1998) 

Others Subunit twisting (Hollenstein et al. 2007) 

 
"Gate" opens in transmembrane domains of other 
ABC transporters 

(Ivetac et al. 2007) 

NBD - [(7-nitro-2,1,3benzoxadiazol-4-yl)-aminododecanoyl] glycerol PL. Adapted from (Mizutani et al. 2008) 

I.3. P-glycoprotein topology, structure and synthesis 

Human P-gp is a single 170 kDa polypeptide (Juliano and Ling 1976) consisting of 

1280 amino acids organised in two tandem repeats of 610 amino acids joined by a linker 

region of ~60 amino acids (Chen et al. 1986). As previously referred, the protein appears 

to have arisen by a gene duplication event, by fusing two homologous halves, each 

consisting of six highly hydrophobic transmembrane α-helices (TMHs) and one nucleotide 

binding domain (NBD) located on the cytoplasmic side of the membrane, which binds and 

hydrolyses ATP (Figure 2A) (Hennessy and Spiers 2007; Sharom 2008; Sharom 2011). 
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The two half molecules are separated by a highly charged cytoplasmic ‘linker region’, 

which is phosphorylated at several sites by protein kinase C (PKC) (Higgins et al. 1997). 

The TMHs are considered to form the pathway through which the drug molecules cross 

the membrane (see below). The NH2- and COOH-termini, as well as the NBDs, are 

located intracellularly, and the first extracellular loop is N-glycosylated (Zhou 2008). Each 

NBD consists of two core consensus motifs, referred to as the Walker A and B motifs, 

which are found in many proteins that bind and hydrolyse ATP and GTP, and a LSGGQ 

signature C motif, which, as previously referred, is unique to the ABC superfamily (Figure 

2A) (Walker et al. 1982). These motifs are directly involved in the binding and hydrolysis 

of nucleotides (Sharom 2008; Sharom 2011; Zhou 2008).  

 

Figure 2. Topology and structure of P-gp 
(A) Topological model of P-gp, showing the two homologous halves, each with one TMD, containing six 
TMHs, and one NBD. Taken from (Zhou 2008). (B) Medium‑resolution cryoelectron microscopy structure of 
hamster P-gp bound to the non‑hydrolysable nucleotide analogue AMP‑PNP (adenosine 
5′‑[β,γ‑imido]triphosphate) and with all residues modelled as alanine. A side view of the protein with the NBDs 
(violet) at the bottom with a top view below. The 12 putative membrane-spanning α-helices have been colored 
in pairs to indicate the two halves of the transporter. A pseudo-symmetry relationship is seen. Four additional 
gray-colored helices do not show an obvious symmetry relationship; one (*) is intracellular, tilted, and too short 
to cross a membrane; another (shown in the side view by X) is ambiguous in its location; the other two are at 
the extracellular side of the protein (the dashed lines indicate the putative bounds of a 4.5-nm-thick lipid 
bilayer). ICD, intracytoplasmic domain. Taken from (Rosenberg et al. 2005). 

 

P-gp is synthesised in the endoplasmic reticulum as a core-glycosylated 

intermediate with a molecular weight of 150 kDa, being the carbohydrate moiety 

subsequently modified in the Golgi apparatus prior to the export to the cell surface (Loo 

and Clarke 1999b). Although P-gp is glycosylated on its first extracellular loop, the role of 

glycosylation is unclear. Experiments using P-gp mutants lacking the N-terminal 

glycosylation sites showed that substrate transport was unaffected (Schinkel et al. 1993). 

However, glycosylation may alter trafficking and stability of P-gp within the plasma 

membrane (Hennessy and Spiers 2007). 
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The previously referred P-gp topology has been established and confirmed by 

cysteine (cys) mutagenesis and epitope-insertion experiments (Kast et al. 1996; Loo and 

Clarke 1995b). Earlier studies using various heterologous expression systems suggested 

other topologies in which putative transmembrane (TM) segments were displaced outside 

the membrane, however, it seems likely that these arrangements were the result of 

misfolding, and do not reflect the true topology of the transporter in vivo (Linton and 

Higgins 2002). The TM regions from both P-gp halves form the drug-binding region of the 

protein and drugs enter this binding pocket from the lipid bilayer (Loo and Clarke 1999c). 

Early work by Rosenberg et al. using electron microscopy (EM) single particle image 

analysis of purified P-gp produced a very low resolution structure, which suggested the 

existence of a large, 5 nm diameter, central pore in the protein (Rosenberg et al. 1997). 

This pore was closed at the cytoplasmic face of the membrane, forming an aqueous 

chamber within the membrane from which entry points to the membrane lipid were 

observed. Two widely-separated 3 nm lobes on the cytoplasmic side of the membrane 

were thought to represent the NBDs (Rosenberg et al. 1997). This structure was in 

disagreement with both biochemical studies, which suggested kinetic cooperativity 

between the two catalytic sites, and with the high-resolution X-ray crystal structures of 

other ABC proteins, which showed close physical association of the two NBDs. 

Fluorescence resonance energy transfer (FRET) studies, in which two different 

fluorescent probes were covalently linked to each Walker A motif Cys residue also 

indicated that the positioning of the two NBDs is compatible with a sandwich dimer model 

(see I.4.3) (Qu and Sharom 2001), and Urbatsch et al. found that the two Walker A Cys 

residues could readily crosslink spontaneously (Urbatsch et al. 2001). Additionally, it was 

also demonstrated that Cys residues in the Walker A motifs could be crosslinked at low 

temperatures to Cys residues in the LSGGQ motif (signature C), indicating that the 

signature sequences in one NBD are adjacent to the Walker A site in the other NBD (Loo 

et al. 2002). Moreover, it was later shown that nucleotide binding causes a repacking of 

the P-gp TM regions (Rosenberg et al. 2001), which could open the central pore to allow 

access of hydrophobic drugs directly from the lipid bilayer (Rosenberg et al. 2003). It was 

proposed from this reorganization that ATP binding, not hydrolysis, drives the 

conformational changes associated with transport (Rosenberg et al. 2001) (see I.4.3). The 

vanadate-trapped complex of P-gp displayed a third distinct conformation of the protein, 

suggesting that rotation of TM α-helices had taken place (Rosenberg et al. 2001). Mouse 

P-gp has also been studied by EM and image analysis of 2D crystals of purified protein in 

a lipid bilayer, and the resulting low resolution projection structure (22 Å) was compact, 

and suggested that the two cytoplasmic NBDs interact closely (Lee et al. 2002). 



General Introduction______________________________________________________________ 

16 

The structure of hamster P-gp was then studied by a higher resolution EM, and the 

highest resolution structure [8 Å, (1 Å=0.1 nm); Figure 2B], confirmed the presence of two 

closely associated NBDs (Rosenberg et al. 2005), being this the first three-dimensional 

structure characterized for an intact eukaryotic ABC transporter. Moreover, this structure 

bears a much greater resemblance to the mouse P-gp structure, so it seems likely that the 

NBDs indeed form the “sandwich dimer” observed for other ABC proteins (Rosenberg et 

al. 2005) (see I.4.3). Additionally, this structure also clearly showed the existence of 12 

TMHs, supporting the proposed topology of the protein, but the resolution was not high 

enough to discern further details. The packing arrangement of the P-gp TMHs was 

systematically explored by Loo and co-workers, who introduced Cys residues into defined 

positions within a Cys-less P-gp construct, and then carried out cross-linking studies (Loo 

and Clarke 2000). The observed pattern suggested that TMH 6 is close to TMH 10, 11, 

and 12, whereas TMH 12 is close to TMH 4, 5, and 6. Subsequent work showed that the 

ends of TMH 2 and TMH 11 are close together on the cytoplasmic side of the membrane 

(Loo et al. 2004c), as are the cytoplasmic ends of TMH 5 and TMH 8 (Loo et al. 2004a). 

While the structures of bacterial ABC importers and exporters have been 

established (Dawson and Locher 2006; Hollenstein et al. 2007; Oldham et al. 2007; 

Pinkett et al. 2007; Ward et al. 2007) and P-gp characterized at low resolution by EM (Lee 

et al. 2008; Rosenberg et al. 2003), an x-ray structure of P-gp would be of particular 

interest because of the clinical relevance of this transporter. In 2009, Aller et.al reported x-

ray crystal structures (3.8 - 4.4 Å) of mouse P-gp, both in the absence of substrate, and 

with two stereoisomeric cyclic hexapeptide inhibitors bound to the transporter (Aller et al. 

2009). The authors fully described the structure of mouse P-gp, which has 87% sequence 

identity to human P-gp in a drug-binding competent state. In this report, the structure of P-

gp (Figure 3) represents a nucleotide-free inward-facing conformation arranged as two 

“halves” with pseudo two-fold molecular symmetry, spanning ∼136 Å perpendicular to and 

∼70 Å in the plane of the bilayer. The NBDs are separated by ∼30 Å. In fact, two 

interdigitated bundles of α-helices were observed, each made up of portions from both the 

N-terminal and C-terminal halves (TMHs 1 - 3, 6, 10 and 11, and TMHs 4, 5, 7 - 9 and 12). 

The long intracellular loops of one helix bundle contact the opposing NBD. The inward 

facing conformation formed from the two bundles of six helices results in a large internal 

cavity open to both the cytoplasm and the inner leaflet of the membrane. Also, two portals 

seem to allow the access for entry of hydrophobic molecules directly from the membrane. 

The portals are formed by TMHs 4/6 and 10/12, each of which have smaller side chains 

that could allow tight packing during NBD dimerization. At the widest point within the 

bilayer, the portals are ~9 Å wide and each are formed by an intertwined interface in which 

TMHs 4/5 (and 10/11) crossover to make extensive contacts with the opposite α-helical 
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bundle (Figure 3) (Aller et al. 2009). Each intertwined interface buries ~6,900 Å2 to 

stabilize the dimer interface (Aller et al. 2009) and is a conserved motif in bacterial 

exporters (Dawson and Locher 2006; Ward et al. 2007). In fact, this crossover between 

the two halves of the transporter was also previously seen in the crystal structure of the 

bacterial transporters Sav1866 (Dawson and Locher 2006) and MsbA (Ward et al. 2007). 

 

 

 

 

 

 

 
 

 

Figure 3. Structure of P-gp.  
(A) Front and (B) back stereo views of P-gp. 
TM1-12 are labelled. The N and C-terminal 
half of the molecule are colored yellow and 
blue, respectively. TM4-5 and TM10-11 cross 
over to form intertwined interfaces that 
stabilize the inward facing conformation. 
Horizontal bars represent the approximate 
positioning of the lipid bilayer. The N- and C-
termini are labelled in panel A. 
Transmembrane (TM) α-helices and 
nucleotide binding domains (NBD) are also 
labelled. Taken from (Aller et al. 2009). 

This mouse P-gp crystal structure greatly increased the potential for improved 

structure-based approaches for modulation of P-gp activity, in spite of the highly flexible 

and complex nature of the protein (Klepsch and Ecker 2010). 

I.3.1. The drug-substrate binding sites – substrate binding pocket 

P-gp-mediated transport demonstrated, in vitro, to be saturable, osmotically 

sensitive and to require ATP hydrolysis to generate a substrate concentration gradient 

(Sharom 1997). While drug binding is known to occur within the TMD of P-gp, the 

understanding of where and how substrates bind to this protein is improving. Using 

ATPase inhibition as a measure, Borgnia et al. suggested a single binding site in P-gp for 

all substrates (Borgnia et al. 1996). However, evidence suggests that P-g has multiple 

binding sites divided evenly into two categories: transport and regulation (Martin et al. 

2000; Shilling et al. 2006). These distinct sites may interact as demonstrated by the 

stimulation of Hoechst 33342 transport by rhodamine 123 (Shapiro and Ling 1997c), 

acting by a cooperative mode of action. Results obtained from radioligand-binding studies 
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indicated that there are between two (Homolya et al. 1993; Loo and Clarke 1999c; Raviv 

et al. 1990; Shapiro et al. 1999; Shapiro and Ling 1997c; van Veen et al. 1998) to at least 

four (Martin et al. 2000) substrate-binding sites within the P-gp TMDs. Shapiro and Ling 

proposed the existence of at least two interacting binding sites that display positive 

cooperativity in drug transport (Shapiro and Ling 1997c). One site was suggested to bind 

rhodamine 123, other rhodamine drugs, and anthracyclines (the R-site), and a second site 

was proposed to bind Hoechst 33342 and colchicine (the H-site) (Shapiro and Ling 

1997c). Later, they identified a third binding site in P-gp that binds prazosin and 

progesterone (Shapiro et al. 1999). Martin and co-workers suggested the existence of 

multiple drug binding sites that interact allosterically, based on measurements of 

radiolabeled drug binding to P-gp (Martin et al. 2000). It was also proposed that both the 

N- and C-terminal halves of P-gp contain binding sites, and these two sites may generate 

a single region in the overall protein structure (Loo et al. 2003c; Morris et al. 1994), being 

this drug-binding pocket large enough to accommodate more than one substrate (Loo and 

Clarke 2001c). Indeed, several research studies have demonstrated, both by fluorescence 

methods (Lugo and Sharom 2005a) as well as through binding of a thiol-reactive substrate 

(Loo et al. 2003b), that two different substrates can bind to P-gp at the same time. Also, 

there are relevant data indicating that substrate binding sites may overlap or be 

allosterically coupled (Ayesh et al. 1996; Dey et al. 1997; Ferry et al. 1995), raising the 

possibility that there is only a single common site (Borgnia et al. 1996). However, there is 

evidence for P-gp allosteric sites distinct from transport sites, as compounds such as the 

indolizin sulfone SR33557 and the 1,4-dihydropyridines confer allosteric control to the P-

gp binding site for the transport of vinblastine (Martin et al. 1997). Therefore, the binding 

sites can be classified as both transport and modulating sites (Martin et al. 2000), and 

have the ability to switch between high and low affinity states to accommodate 

substrates/inhibitors (Wang et al. 2003). This switch between high- and low-affinity 

conformations might be caused by stimuli such as substrate binding and/or ATP 

hydrolysis (Zhou 2008). Additionally, conformational changes in P-gp have been 

demonstrated using proteolytic accessibility, and changes in antibody epitope recognition 

(Mechetner et al. 1997; Sonveaux et al. 1999). 

Given the ability of P-gp to transport a diverse range of substrates/modulators 

(Table 4 and Table 5), several studies were conducted to set the key features of the P-gp-

binding site(s). Moreover, the presence of multiple drug binding sites on P-gp could 

provide an explanation for the wide range of compounds known to interact with this 

protein. In early attempts to identify the location of the drug binding sites, P-gp was 

labelled with photoactive analogues of a variety of drug substrates (Bruggemann et al. 

1992; Demeule et al. 1998; Demmer et al. 1997; Greenberger 1993). Identification of the 
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labelled peptides following proteolytic cleavage showed that labelling took place in the 

TMD of both halves of the protein. 

More recent work using Cys-reactive substrate analogues and Cys mutations has 

localized the drug-binding pocket to the regions of P-gp bounded by TMH 4-6 and 10-12, 

as residues from these helices are important for drug binding (Loo and Clarke 1999a; Loo 

and Clarke 1999b; Loo and Clarke 1999c; Loo and Clarke 2000). Thiol cross-linking data 

clearly indicated that substrate binding is closely associated with TMH 1, 4, 5, 6, 9, 10, 11 

and 12 (Bruggemann et al. 1992; Germann 1996; Loo et al. 2006a; Loo and Clarke 1997; 

Loo and Clarke 1999a; Loo and Clarke 2001b; Loo and Clarke 2002; Morris et al. 1994; 

Wang et al. 2003). Also, cys-scanning mutagenesis, reaction with an MTS 

(methanethiosulfonate) thiol-reactive analogue of verapamil (termed MTS–verapamil) and 

cross-linking analysis were conducted to test whether the TMH 7, in the C-terminal-half of 

P-gp, also contributes to drug binding. According to the obtained results, TMH 7 also 

forms part of the P-gp drug-binding pocket (Loo et al. 2006b). Moreover, the reported data 

are in agreement with that derived from both photoaffinity labelling (Ecker et al. 2002; 

Isenberg et al. 2001) and mutational analysis experiments [for review see (Frelet and 

Klein 2006; Peer et al. 2005; Shilling et al. 2006)]. Additionally, targeted mutagenesis of 

these TMHs altered drug resistance (Kajiji et al. 1993; Loo and Clarke 1993), supporting 

their involvement in drug binding. Moreover, mapping of the drug-binding pocket using 

thiol specific cross-linkers with spacer arms, in conjunction with P-gp mutants (cys 

residues introduced), points towards the presence of a central pore being funnel shaped, 

narrow at the cytosolic side, at least 0.9 - 2.5 nm wide in the middle and wider again at its 

extracellular surface (Loo and Clarke 2001c) (Figure 4) Moreover, this central pore is 

accessible to the aqueous medium (Loo et al. 2004b) and located at the interface of the 

two halves of the protein (Loo and Clarke 2005b). This configuration is consistent with the 

EM and image analysis data reported by Rosenberg et al. (Rosenberg et al. 1997; 

Rosenberg et al. 2005). Additionally, this interfacial localization was confirmed using 

propafenone photoaffinity ligands and mass spectrometry, where peptides from TMH 3, 5, 

8, and 11 were specifically labelled (Pleban et al. 2005). When drugs bind, the packing of 

helices is altered in P-gp relative to the drug-free state, as shown by Cys cross-linking of 

pairs of residues (Loo et al. 2003d). The packing changes are specific to each substrate, 

which supports an induced-fit model of drug binding (Loo et al. 2003d). 
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Figure 4. Cross-sectional schematic showing the approximate 
dimensions and shape of the drug-substrate-binding pocket and 
the central pore of P-gp.  
Two drugs (depicted in red and orange) are shown to be simultaneously 
bound in the binding pocket. Taken from (Ambudkar et al. 2006). 

 

 
 

Current models of P-gp drug binding thus suggest that, rather than one or a few 

discrete drug-binding sites, there is a large, flexible drug-binding region, which the high-

resolution crystal structure appears to confirm. According to the X‑ray crystal structure of 

mouse P-gp reported by Aller et al. (2009), the volume of the internal cavity within the lipid 

bilayer is substantial (6000 Å3), and could accommodate at least two substrate molecules 

simultaneously (Aller et al. 2009). This cavity is open to the inner leaflet of the membrane 

via portals, probably to allow drug entry from the lipid bilayer. It is also open to the cytosol, 

suggesting that an inward-facing conformation of the protein has been captured. The 

presumptive drug binding pocket comprises mostly hydrophobic and aromatic residues. Of 

the 73 solvent accessible residues in the internal cavity, 15 are polar and only two (His60 

and Glu871), located in the N-terminal half of the TMD, are charged or potentially charged 

(Aller et al. 2009). Additionally, in this study, P-gp was able to distinguish between the 

stereoisomers of cyclic peptides (QZ59‑RRR and QZ59‑SSS) (Figure 5) resulting in 

different binding locations, orientation and stoichiometry (Aller et al. 2009). Indeed, the 

most important aspect of the P-gp crystal-structure determination was this successful 

elucidation of two different structures with novel peptide inhibitors bound to the drug-

binding region. QZ59‑RRR and QZ59‑SSS peptide stereoisomers bind to distinct sub-

sites in the binding cavity in different orientations, and make different sets of contacts with 

amino acid side chains of the protein. QZ59‑RRR binds one site per transporter located at 

the center of the molecule between TMH 6 and TMH 12. The binding of QZ59-RRR to the 

‘middle’ site is mediated by mostly hydrophobic residues on TMHs 1,5,6,7,11, and 12 (e.g. 

held in place by favourable hydrophobic interactions with phenylalanine, tyrosine, leucine 

and isoleucine residues) (Figure 5). On the other hand, two molecules of QZ5‑SSS are 

found at different locations, ‘upper’ and ‘lower’ sites, within the binding pocket (Figure 5A), 

and some polar residues are involved in interactions with the latter. Indeed, the QZ59-

SSS molecule occupying the “upper” site is surrounded by hydrophobic aromatic residues 

on TMHs 1,2,6,7,11, and 12. The ligand in the “lower” site that binds to the C-terminal half 

of the TMD is in close proximity to TMHs 1,5,6,7,8,9,11, and 12 and surrounded by three 

polar residues (Gln721, Gln986, and Ser989) (Aller et al. 2009). Thus, this crystal 
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structure of P-gp shows overlapping binding sites for the two stereoisomers of the same 

drug, and demonstrated that two molecules of the same drug may be located in different 

regions of the cavity (Figure 5B). Comparison with the QZ59-RRR-bound structure 

allowed visualization for the first time of P-gp’s ability to bind substrate stereoisomers and 

multiple molecules of the same substrate simultaneously, as previously indicated by 

substantial biochemical evidence (Loo et al. 2003c; Lugo and Sharom 2005a) (Dey et al. 

1997; Loo et al. 2003b). Moreover, QZ59-RRR and QZ59-SSS bind to overlapping 

regions of the substrate-binding site, and in different orientations, by interacting with a 

different subset of amino acid residues in the protein. The binding of QZ59 to P-gp also 

confirmed the anticipated importance of TMH 5-6 and 9-12 in substrate binding, as 

predicted by cross-linking studies (Loo and Clarke 2005a). 

 

 

 

 

 

 

 

Figure 5. Binding of novel cyclic peptide P-gp inhibitors 
(A) High‑resolution X‑ray structures of mouse P-gp bound to a single molecule of the cyclic peptide substrate 
QZ59‑RRR (left‑hand panel, peptide in green) and two molecules of its stereoisomer QZ59‑SSS (right‑hand 
panel, peptides in red and yellow). The approximate location of the membrane is indicated by the coloured 
bar. (B) Close‑up views of the peptides inside the substrate‑binding pocket; QZ59‑RRR interacting with the 
middle site (left), and two molecules of QZ59‑SSS occupying the upper and lower sites (right). Taken from 
(Aller et al. 2009).  

 

Also, the co-crystal structures of P-gp with the QZ59 compounds demonstrated that 

the inward facing conformation is competent to bind drugs (Aller et al. 2009). Thus, this 

crystal structure suggests that, upon ATP binding/hydrolysis, the drug-binding cavity 

becomes closed to the inner leaflet and opens to either the outer membrane leaflet or the 

extracellular media, in support of the "vacuum cleaner" and "flippase" mechanisms of 

action (see I.4.2.1). Moreover, according to previous studies that have identified residues 

that interact with verapamil (Loo et al. 2006b; Loo and Clarke 1997), many of these 

residues faced the drug binding pocket in this crystal structure, and were highly 

conserved, suggesting a common mechanism of drug recognition (Aller et al. 2009). For 

both QZ59 compounds, isopropyl groups pointed in the same direction, toward TMH 9-12, 

and although certain residues in P-gp contact both compounds, the specific functional 

roles of the residues binding each inhibitor were different. For example: Phe332 contacts 
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the molecules in the “upper” but not “lower” sites of QZ59-SSS, but does contact the 

inhibitor in the “middle” site (QZ59-RRR); Phe724 was near both the “middle” and “lower”, 

but was much closer to a selenium atom in QZ59-SSS; Val978 plays an important role 

having close proximity to all three QZ59 sites. Interestingly, both Phe724 (human Phe728) 

and Val978 (human Val982) are protected from labelling by MTS-verapamil (Loo et al. 

2006b; Loo and Clarke 1997), indicating that both are important for drug binding. While 

the upper half of the drug binding pocket contains predominantly hydrophobic/aromatic 

residues, the lower half of the chamber has more polar and charged residues (Aller et al. 

2009) and, therefore, hydrophobic substrates that are positively charged may bind to 

these residues. The inward facing conformation of P-gp demonstrated to provide access 

to the internal chamber via portals that were open wide enough to accommodate 

hydrophobic molecules and phospholipids. The portals formed a contiguous space 

spanning the width of the molecule that allow P-gp to “scan” the inner leaflet to select and 

bind specific lipids and hydrophobic drugs prior to transport. Lipids and substrates may 

thus remain together during initial entry into the internal cavity (Aller et al. 2009). Also, 

mouse P-gp protein exhibited typical basal ATPase activity that was stimulated by drugs 

like verapamil and colchicine, and P-gp recovered from washed crystals retained near full 

ATPase activity. Moreover, both QZ59 compounds inhibited the verapamil-stimulated 

ATPase activity in a concentration-dependent manner.  

Therefore, P-gp appears to bind multiple drugs by having a large highly flexible 

binding cavity which can accommodate several compounds in different locations by an 

‘induced fit’ type of mechanism. Biochemical cross‑linking and fluorescence studies had 

already pointed to a substrate‑binding region with these properties (Loo and Clarke 

2005a). The polyspecific nature of the P-gp‑binding pocket and its ability to bind more 

than one drug molecule simultaneously makes the rational design of specific high‑affinity 

inhibitors a challenging problem. 

I.4. P-glycoprotein substrates and mechanism of drug efflux 

I.4.1. P-gp substrates 

P-gp can transport out of the cell a vast array of compounds, which are chemically, 

structurally and pharmacologically unrelated, including natural products, 

chemotherapeutic drugs, calcium channel blockers, steroids, linear and cyclic peptides, 

fluorescent dyes and pesticides, among many others (Table 4) (Hennessy and Spiers 

2007; Kim 2002; Seelig 1998; Sharom 2011; Ueda et al. 1997; Varma et al. 2003; Zhou 

2008). However, direct measurement of transport has been carried out for only a few of 

these putative substrates, and most have been identified on the basis of resistance of P-
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gp-overexpressing cell lines to their cytotoxic effects (Sharom 2011). Most of these 

substrates are weakly amphipathic and relatively hydrophobic, often (but not always) 

containing aromatic rings and a positively charged N atom (Sharom 2011). 

Table 4. Different classes of known P-gp substrates 

Class  Examples 

Analgesic Opioids Morphine, pentazocine, fentanyl 
Antiarrhythmics Quinidine, verapamil, digoxin 
Anticancer agents Antibiotics: Anthracyclines (doxorubicin, daunorubicin), 

Actinomycines (actinomycin D), mytomicin C, mitoxantrone 
Camptothecins: topotecan, irinotecan (CPT-11)  
Antimetabolites: methotrexate, cytarabine, 5-fluorouracil, 
hydroxyurea 
Epipodophyllotoxins: etoposide, teniposide 
Taxanes: paclitaxel, docetaxel 
Vinca alkaloids: vinblastine, vincristine 
Alkylating agents: chlorambucil, cisplatin  
Tyrosine kinase inhibitors: imatinib mesylate, gefitinib 
Others: tamoxifen, bisantrene 

Antidepressants  Amitriptyline, nortriptyline, doxepin 
Anti-diarrheal agents Loperamide (opioid), octreotide 
Antiemetics Ondansetron, domperidone 
Antiepileptics and Anticonvulsants Topiramate, phenytoin, carbamazepine, phenobarbital 
Antigout agentes Colchicine 
Antihelmintics  Ivermectin 

Antihistaminics  Terfenadine, fexofenadine 

Anti-human immunodeficiency virus 
(HIV) agents 

Nelfinavir, ritonavir, saquinavir, amprenavir, indinavir 

Antihypertensives  Reserpine, debrisoquine, celiprolol, losartan, talinolol, prazosin 
Antimicrobial agents Erythromycin, doxycycline, itraconazole, ketoconazole, 

levofloxacin, rifampicin, sparfloxacin, tetracycline, 
grepafloxacin, clarithromycin, gramicidin A, valinomycin 

Calcium channel blockers  Nifedipine, diltiazem, verapamil, azidopine, nicardipine 
Calmodulin antagonists  Trifluoperazine, trans‑flupentixol 
Cardiac glycosides  Digoxin, digitoxin 
Cholesterol-lowering agents Lovastatin, simvastatin 
Cyclic peptides  PSC833, beauvericin 
Fluorescent dyes Rhodamine 123, hoechst 33342, calcein AM (calcein 

acetoxymethylester) 
Histamine H2-receptor antagonists  Cimetidine, ranitidine 
Immunosuppressive agents  Cyclosporin A, tacrolimus,sirolimus, valspodar 
Linear peptides  ALLN (N-acetyl‑L‑leucyl‑L‑leucylnorleucinal),leupeptin, 

pepstatin A 
Muscle relaxant agents Vecuronium 
Natural products Flavonoids, curcuminoids 
Neuroleptics Chlorpromazine, phenothiazine  
Pesticides Methylparathion, endosulfan, paraquat 
Steroid hormones Aldosterone, corticosterone, dexamethasone, cortisol, 

methylprednisolone 

Data are compiled from (Matheny et al. 2001), (Kim 2002), (Zhou 2008), (Sharom 2011) and http://www.tp-search.jp. 
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Due to the nature of P-gp (an efflux pump protecting against a wide variety of 

substances), P-gp substrates vary greatly in size, structure, and function, ranging from 

small molecules, such as organic cations, carbohydrates, amino acids, and some 

antibiotics, to macromolecules such as polysaccharides and proteins (Zhou 2008). Given 

the important role of this efflux pump in drug pharmacokinetics and in drug resistance, 

extensive studies have been undertaken to elucidate the molecular attributes required for 

interaction between this efflux protein and its small substrates, and to identify P-gp 

substrates or develop more potent, selective and specific P-gp inhibitors to overcome the 

problem of MDR. Therefore, the knowledge of the factors that determine substrate 

specificity is crucial for successful drug targeting and for the rational design of new drugs 

(Seelig 1998). Different attempts have been made to find a common set of structural and 

functional features required for a substrate to interact with P-gp. However, the P-gp poly-

specificity (i.e. promiscuity) in substrate and inhibitor recognition makes the designing of 

effective candidate compounds difficult.  

Rather than developing computational models based on complicated statistical 

techniques, earlier attempts were made to find a set of simple rules based on structural 

and functional features that can characterize the interactions between a substrate or 

inhibitor and P-gp. It was initially suggested that the minimum set of structural features 

includes a basic nitrogen atom and two planar aromatic domains (Zamora et al. 1988). 

Later, using a series of reserpine and yohimbine analogs, Pearce et al. (1989) 

demonstrated that these domains must adopt a well-defined conformation (Pearce et al. 

1989). However, the screening of a broader range of compounds, including for example 

steroid hormones, revealed that compounds lacking a basic nitrogen can still interact with 

P-gp (Schinkel et al. 1996; Ueda et al. 1992). Therefore, it was suggested that the only 

common property of P-gp substrates was their relative hydrophobic and amphiphilic 

nature (Gottesman and Pastan 1993; Schinkel et al. 1996). Moreover, the study of the 

hydrophobic and amphiphilic nature of several P-gp substrates, such as domperidone, 

loperamide, and terfenadine, through the evaluation of their surface activity (Seelig et al. 

1994), corroborated the previous assumption. However, the investigation of the surface 

activity of a broader range of P-gp substrates showed that even rather hydrophilic 

compounds, such as morphine, can function as weak P-glycoprotein substrates (Seelig 

1998). The screening of the structures of a hundred chemically diverse compounds, 

previously tested as P-gp substrates was later performed to find potential elements 

responsible for substrate-P-gp interaction and for P-gp over-expression (Seelig 1998). It 

was demonstrated that a compound can interact with P-gp if it contains (a) either two 

electron donor groups with a spatial separation of 2.5±0.3 Å or (b) two electron donor 

groups with a spatial separation of 4.6±0.6 Å or (c) three electron donor groups with a 
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spatial separation of the outer two groups of 4.6±0.6 Å (Seelig 1998). Furthermore, these 

latter features (b and c) appeared to be responsible for P-gp over-expression Therefore, it 

was demonstrated that most P-gp substrates possess two or three electron-donor groups 

with a fixed spatial separation, with an increased number of these elements increasing the 

affinity for drug binding (Seelig 1998). Correspondingly, there is a high percentage of 

amino acids with hydrogen bonding donor side-chains in the transmembrane sequences 

of P-gp responsible for substrate recognition (Zhou 2008). Further studies have also found 

that partitioning into the lipid membrane is the rate-limiting step for the interaction of a 

substrate with P-gp and that dissociation of the P-gp-substrate complex is determined by 

the number and strength of the hydrogen bonds formed between the substrate and P-gp 

(Seelig and Landwojtowicz 2000). Other studies have also suggested that there may exist 

some physicochemical characteristic features, such as lipophilicity, hydrogen-bonding 

ability, molecular weight, and surface area, that contribute to a drug’s binding ability to P-

gp (Bain et al. 1997; Wang et al. 2003).  

Traditionally, experimental in vitro assays were used to assess the transport and 

interactions with P-gp of new chemical entities (Polli et al. 2001). However, these 

experimental assays are expensive, laborious and time-consuming. Moreover, the simple 

set of rules initially stated, although easily understood and used by laboratory scientists as 

well as computational chemists, are too simple to effectively characterize P-gp substrates 

or inhibitors. Therefore, in silico models that provide rapid and cheap screening platforms 

for identifying P-gp substrates or inhibitors have been recognized to be valuable tools 

(Ekins et al. 2007; Hou and Xu 2004). Extensive computational models, based on 

quantitative structure-activity relationship (QSAR) analyses (2D-QSAR and 3D-QSAR), 

pharmacophore modeling and molecular docking techniques, have thus been developed 

to predict P-gp substrates, as well as inhibitors [for a review see (Chen et al. 2012a)]. 

Moreover, a variety of statistical techniques as well as machine learning approaches, 

including for example multiple linear regression (MLR), partial least square discriminant 

analysis (PLSD) and linear discriminant analysis (LDA), have been employed to develop 

the theoretical models (Chen et al. 2012a). A multiple-pharmacophore model that can 

discriminate between substrates and non-substrates of P-gp was identified from a large 

data set of compounds obtained from the literature, and the application of this filter allows 

large virtual libraries to be screened efficiently for compounds less likely to be transported 

by P-gp (Penzotti et al. 2002). Another more general QSAR model was established based 

on a monolayer efflux classification as substrates or non-substrates (Ekins et al. 2002). It 

was later described a pharmacophore model based on the efflux ratios (obtained from 

Caco-2 permeability measurements) and on P-gp inhibition data (using a calcein-AM 

assay) of a diverse set of 129 compounds (Cianchetta et al. 2005). Accordingly to the 
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obtained pharmacophore, it was concluded that the P-gp recognition elements are two 

hydrophobic groups, 16.5 Å apart, and two hydrogen bond-acceptor groups, 11.5 Å apart, 

and that the dimensions of the molecule also play a role in its recognition as a substrate 

(Cianchetta et al. 2005). A QSAR model for discriminating P-gp substrates and non-

substrates was also set up based on calculated molecular descriptors and multivariate 

analysis using a set of 53 diverse drugs (previously classified as substrates and non-

substrates on the basis of the efflux ratio from Caco-2 permeability measurements) 

(Crivori et al. 2006). The model had an accuracy of 88.7% for the training set, but it only 

achieved an accuracy of 72.4% for the external set of 272 compounds (Crivori et al. 

2006). Also, a linear discriminant model was developed to classify a larger data set of 163 

compounds as P-gp substrates or non-substrates (91 substrates and 72 non-substrates) 

(Cabrera et al. 2006). The model was validated through the use of an external validation 

set (40 compounds, 22 substrates and 18 non-substrates), with a 77.50% accuracy 

prediction (Cabrera et al. 2006). More recently, more efficient models have been set up for 

prediction of P-gp substrates with an accuracy greater than 90% (Huang et al. 2007).  

In the earlier stages of the in silico P-gp study, the QSAR and pharmacophore 

modeling techniques were the methods used to predict P-gp substrates (or inhibitors), 

given the lack of available crystal P-gp structures. In 2009, the X-ray structures of mouse 

P-gp were reported by Aller et al., and the crystal P-gp structures provided good starting 

points for molecular docking studies (Aller et al. 2009). In many studies, the homology 

models were developed to characterize the putative ligand-binding sites or to investigate 

the possible conformations of P-gp in different states, and some publications showed the 

P-gp models used to dock compounds into the putative ligand-binding sites (Becker et al. 

2009; Pajeva et al. 2009). 

It is noteworthy that there is an overlap of the P-gp substrate specificity, particularly 

of cytostatic drugs, with other ABC transporters, such as ABCC1, ABCC2, and ABCG2 

(Cascorbi 2006). Also, there is a broad range of overlapping substrate specificities and 

tissue distribution for P-gp and the CYP3A metabolizing enzymes, particularly CYP3A4 

(Cascorbi 2006). Those substrates are known as CYP/P-gp bi-substrates, making P-gp 

and CYP3A a synergistic defence mechanism against the intrusion of xenobiotics. 

Specifically, both P-gp and CYP3A4 act synergistically as a protective barrier in the 

bioavailability of orally administered drugs (Cummins et al. 2002). The localization of P-gp 

and CYP3A proteins indicates that the amount of substrates metabolized by the CYP3A 

enzyme may be controlled by P-gp (Cummins et al. 2002). P-gp is also involved in the 

counteracting active transport of drugs back to the lumen after passive absorption into the 

enterocytes (Cummins et al. 2002). The drug is continuously moved between the lumen 

and enterocytes, thus allowing CYP3A4 to constantly access to the drug molecule. As a 
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consequence, the counter transportation of P-gp and metabolism mediated by CYP3A in 

the intestine reduces the oral bioavailability of a drug by controlling the concentration of 

molecules entering the systemic circulation. Therefore, P-gp influences the extent of drug 

metabolism in the intestine via prolonging the access of drugs to CYP3A4 near the apical 

membrane and decreasing their transport across the cells (Cummins et al. 2002). 

Knowing whether a new compound is a P-gp substrate can thus provide important 

information on its tissue distribution (e.g. to brain) and elimination, which might be a useful 

criterion during drug candidate selection. For example, given that most anti-human 

immunodeficiency virus drugs are P-gp substrates, modification of their chemical 

structures leading to less recognition by P-gp will lead to improved penetration to the 

central nervous system and, thus, a better antiviral profile can be achieved (Zhou 2008). 

I.4.2. Mechanism of drug efflux - P-gp models of pump function 

Early in the study of MDR, it became evident that classical models for membrane 

protein solute transport (such as lactose transport by lactose permease) are not a 

reasonable description for drug efflux processes. Most membrane transporters sequester 

hydrophilic substrates (sugars, ions, etc.) from the hydrophobic bilayer core and shuttle 

them across the membrane via a hydrophilic protein pathway that is lined with polar and 

charged residues (Eckford and Sharom 2009). One feature that is shared, especially for 

P-gp and ABCG2, is the relative hydrophobicity of their transport substrates. Thus, many 

drugs that are substrates for these drug efflux pumps can readily cross lipid bilayers by 

passive diffusion. The exact mechanism by which P-gp couples the ATP hydrolysis to the 

movement of drugs across the plasma membrane, as well as the exact site of substrate 

interaction with the protein, are not well defined. However, several models have been 

advanced to account for the available experimental data, namely the “hydrophobic 

vacuum cleaner”, “flippase” and “pore” models (Figure 6) (Hennessy and Spiers 2007; 

Varma et al. 2003). Additionally, a “two cylinder engine” model has also been suggested 

(Jones and George 1998; Jones and George 2000). The first two models are the most 

widely accepted (Hennessy and Spiers 2007; Sharom 2011; Varma et al. 2003) and will 

be discussed with further detail. Moreover, both the “hydrophobic vacuum cleaner” and 

“flippase” models are consistent with the tertiary structural data for P-gp, indicating that 

substrates gain access to the pore from the lipid phase of the membrane (Rosenberg et 

al. 1997; Rosenberg et al. 2001). 
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I.4.2.1. "Hydrophobic vacuum cleaner" versus "flippase" models of 
function 

The compounds that interact with P-gp are relatively hydrophobic and readily 

soluble in lipid bilayers, and it is now widely accepted that they partition into the 

membrane before interacting with the protein (Seelig and Landwojtowicz 2000). Moreover, 

the P-gp substrate binding sites appear to be, as previously mentioned, contained within 

its TMDs, and drugs gain access to these sites after partitioning into the lipid bilayer 

(Raviv et al. 1990). Thus, the idea that P-gp acts a "hydrophobic vacuum cleaner", that 

expels lipophilic molecules from the membrane into the extracellular medium, was firstly 

suggested by Higgins and Gottesman to account for the lipophilic nature of P-gp 

substrates (Higgins and Gottesman 1992) and has found widespread acceptance. 
 

Figure 6. Models proposed to explain P-gp 
mechanism of drug efflux (A) Pore model, (B) 
Hydrophobic vacuum cleaner model and (C) 
Flippase model. 
In pore model, drugs associate with P-gp in the 
cytosolic compartment and are transported out of 
the cell through a protein channel. In flippase 
model, drugs embed in the inner leaflet of the 
plasma membrane, bind to P-gp within the plane of 
membrane and are translocated to the outer leaflet 
of the bilayer from which they passively diffuse into 
extracellular fluid. The hydrophobic vacuum cleaner 
model combines the features of ‘pore’ and ‘flippase’ 
models. Adapted from (Varma et al. 2003). 

 

The general consensus of the “hydrophobic vacuum cleaner” model (Figure 6B) 

relies on the principle that P-gp recognizes hydrophobic compounds embedded in the 

inner leaf of the plasma membrane (after they have partitioned into the bilayer), and 

pumps them out of the membrane directly to the external aqueous medium (Higgins and 

Gottesman 1992). This pumping action gives rise to a concentration gradient across the 

plasma membrane, with a higher drug concentration in the external aqueous phase. The 

transporter is able to intercept substrates before they have an opportunity to enter the 

cytosol, thus protecting the cell from exposure to potentially toxic molecules (Sharom 

2011). In this model, structural data indicates that substrates could gain access to their 

binding sites through “gates” formed between TMHs 5/8 and 2/11 (Loo et al. 2003d). 

There is substantial experimental evidence to support this model. When the lipophilic 

probe iodonaphthalene-1-azide was used to photolabel P-gp, fluorescence resonance 

energy transfer data showed that the substrate doxorubicin was present within the 

membrane in close proximity to the transporter, rather than inside the cell (Raviv et al. 

1990). This suggested that P-gp may bind doxorubicin from within the membrane and 

extrude it to the cell exterior. When acetoxymethylesters of fluorescent dyes are added to 
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intact cells, P-gp intercepts them before they can come into contact with cytosolic 

esterases and expels them into the extracellular medium (Homolya et al. 1993). This 

model is also strengthened by data demonstrating unidirectional transport of fluorescent 

P-gp substrates from the cytoplasmic leaflet of the plasma membrane to the external 

aqueous environment (Shapiro et al. 1997; Shapiro and Ling 1997b; Shapiro and Ling 

1998b). Indeed, the dye Hoechst 33342 only becomes fluorescent after partitioning into 

the hydrophobic membrane interior, and kinetic measurements showed that its rate of 

transport by P-gp was directly proportional to its concentration in the lipid phase, rather 

than in the aqueous medium (Shapiro and Ling 1997b). Rosenberg et al. (2003) reported 

that 3D conformation of P-gp changes upon nucleotide binding to the intracellular NBD 

(Rosenberg et al. 2003). In the absence of nucleotide, the two transmembrane domains 

form a single barrel with a central pore that is open to the extracellular surface and spans 

much of the membrane depth, while upon binding nucleotides the TMDs reorganize into 

three compact domains that open the central pore along its length in a manner that could 

allow access of hydrophobic drugs directly from the lipid bilayer to the central pore of the 

transporter (Rosenberg et al. 2003). This model is also supported by the recent P-gp X-

ray crystal structures, which, as previously mentioned, demonstrated that two peptide 

stereoisomers are bound deep within the TMDs, also suggesting that they may gain 

access to the protein from within the lipid bilayer (Aller et al. 2009). 

The alternative proposal, the “flippase” model (Figure 6C), assumes that P-gp 

substrates are flipped from the inner leaflet of the lipid bilayer, to either the outer leaflet of 

the plasma membrane or directly to the extracellular environment (Higgins and Gottesman 

1992). Therefore, the flippase model requires that drug substrates localize to one leaflet of 

the bilayer, rather than to the hydrophobic core of the membrane. In accordance, a panel 

of 9 molecules that bind to P-gp were shown to distribute discretely in one membrane 

leaflet, where they were localized to the interfacial region in a similar orientation to 

phospholipids (Siarheyeva et al. 2006). According to this model, it is also necessary a low 

rate of spontaneous movement of substrates between the two bilayer leaflets to allow P-

gp to generate a drug concentration gradient. Indeed, the rate of movement of many P-gp 

substrates across a lipid bilayer ranges from minutes to hours (Eytan et al. 1996), 

whereas lipids have a flip-flop half-time of hours to days (Eckford and Sharom 2009). To 

reinforce this model, P-gp has the ability to bind lipid-like drugs and platelet-activating 

factors (Eckford and Sharom 2006), apart from also translocating fluorescently-labelled 

phospholipids across the membrane in an ATP-dependent fashion (Romsicki and Sharom 

2001). Therefore, this protein may function as a translocase or ‘flippase’ for lipophilic 

molecules (Higgins and Gottesman 1992), moving them from the cytoplasm to the 

extracellular membrane leaflet. Moreover, this model of pump function may perhaps be 
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strengthened by the high level of sequence similarity between P-gp and its close relative 

ABCB4, which is a phosphatidylcholine flippase (Ruetz and Gros 1994) and, thus, they 

may share some functional attributes. The rate of spontaneous transbilayer movement of 

many P-gp substrates is relatively low and, as they appear to be discretely localized in 

one membrane leaflet, the transporter would be able to maintain a higher substrate 

concentration in the outer leaflet (Sharom 2011). Indeed, this flippase activity would also 

give rise to a substrate concentration gradient across the membrane, since the substrate 

in the outer leaflet would rapidly equilibrate with the external medium (Sharom 2011). 

However, because of the rapid partitioning equilibria involved, it is very difficult to 

distinguish between flippase activity and direct transport of a substrate from the 

membrane to the extracellular aqueous phase (Sharom 2011). 

Several groups argued that colchicine, vinblastine and acetoxymethyl esters are 

pumped or “vacuumed” from the plasma membrane to the extracellular space (Hollo et al. 

1994; Homolya et al. 1993; Stein et al. 1994). In support of this, electron spin 

paramagnetic resonance studies based on a model system (P-gp containing 

proteoliposomes obtained from Saccharomyces cerevisiae) indicated that P-gp 

concentrates (25-fold) spin-labelled verapamil in the aqueous phase (Omote and Al-Shawi 

2002). These data agree with P-gp functioning as a “hydrophobic vacuum cleaner”. 

Controversially, a few studies have provided evidence supporting a “flippase” mechanism, 

by demonstrating altered distributions of fluorescent phosphatidylcholine, 

phosphatidylethanolamine, and sphingomyelin derivatives in cells expressing recombinant 

P-gp (van Helvoort et al. 1996) or in drug-selected cells overexpressing the protein 

(Abulrob and Gumbleton 1999). Also, both short-chain (van Helvoort et al. 1996) and long-

chain (Bosch et al. 1997) fluorescent phospholipids were found to accumulate to a lesser 

extent in P-gp-expressing cells, and accumulation was increased upon treatment with a P-

gp inhibitor. In accordance, using purified P-gp reconstituted into proteoliposomes, it was 

directly shown that the protein can flip, between the inner and outer leaflets of the plasma 

membrane, a variety of fluorescently labelled phospholipids and glycosphingolipids in an 

ATP-dependent, vanadate-sensitive fashion (Eckford and Sharom 2005; Romsicki and 

Sharom 2001). Phospholipid and glycosphingolipid translocation was inhibited in a 

concentration-dependent manner by known P-gp substrates, and the inhibitory potency 

was highly correlated with their P-gp binding affinity (Eckford and Sharom 2005; Romsicki 

and Sharom 2001). Conversely, if these labelled lipids were “vacuumed” into the aqueous 

phase, they would rapidly redistribute into the outer leaflet of the lipid membrane by virtue 

of their hydrophobic nature. This would give them the appearance of being transported by 

a “flippase”. 
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Noteworthy, both these models described above assume that P-gp substrates 

partition into the lipid phase prior to interacting with the protein. In fact, this may help to 

explain the P-gp unusually broad substrate specificity, since the primary determinant of 

specificity would be the ability of a substrate to appropriately intercalate into the lipid 

bilayer, with the subsequent interaction with the substrate-binding site being of secondary 

importance (Hennessy and Spiers 2007). Also, and as previously mentioned, both 

biochemical and structural data indicate that the P-gp substrate binding pocket is located 

within the TM regions of the protein that contact the cytoplasmic membrane leaflet (Aller 

et al. 2009; Lugo and Sharom 2005b; Qu and Sharom 2002; Shapiro and Ling 1997b), 

which is consistent with it acting as either a vacuum cleaner or a flippase model. However, 

experimentally it is difficult to distinguish between the “hydrophobic vacuum cleaner” and 

“flippase” models (Hennessy and Spiers 2007).  

I.4.3. P-gp catalytical and transport cycle 

ATP binding and hydrolysis was found to be essential for P-gp-mediated transport 

(Gottesman and Pastan 1993). The drug transport mediated by P-gp is powered by 

hydrolysis of ATP at the two cytoplasmic NBDs (Oswald et al. 2006). Site-directed 

mutagenesis approaches have demonstrated that the three NBDs highly conserved motifs 

(Walker A, Walker B and signature C) are important for the P-gp catalytic function (Frelet 

and Klein 2006). Structural studies on bacterial ABC proteins have yielded useful 

information on their catalytical cycle, leading to the now generally accepted concept that 

the NBDs must dimerize in order to hydrolyse ATP (Smith et al. 2002). According to this 

so-called ‘ATP sandwich dimer’, the NBDs are arranged in a head-to-tail arrangement, 

with two ATP molecules bound along the interface. Each nucleotide is held in place by the 

Walker A and B motifs of one NBD and the signature C motif of the other NBD, which thus 

form a composite binding site (Jones and George 1999). Therefore, each ATP-binding site 

is formed from the Walker A and B motifs of one NBD subunit and the signature C motif of 

the partner NBD motif, and two molecules of ATP are bound in these sites at the dimer 

interface (Sharom 2008). Moreover, these NBDs form a stable dimer in the presence of 

ATP when the catalytical activity is inactivated by mutation, thus supporting the critical role 

of NBD dimerization in the catalytical cycle of all ABC proteins (Hanekop et al. 2006; 

Smith et al. 2002). Nevertheless, the recently described mouse crystal structure of P-gp, 

as it does not contain a bounded nucleotide and since the two NBDs are separated by 30 

Å (Aller et al. 2009), does not help in understanding the putative P-gp dimerization 

process. However, data obtained from cross‑linking studies indicate that the signature C 

and Walker A motifs are close to each other (Loo et al. 2002).  
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The exact mechanism through which ATP hydrolysis is coordinated between the two 

NBDs, or how this energy is used to drive drug transport is still not completely understood 

(Callaghan et al. 2006). P-gp displays a constitutive ATPase activity (3-5 µmol/min/mg of 

purified protein), which is atypical for an ATP-driven transporter. This basal ATPase 

activity takes place in the absence of substrates, and depends on the presence of 

detergents, lipids and drugs (Liu and Sharom 1997; Sharom 2008). Moreover, the Km 

value for ATP hydrolysis is high (0.2-0.5 mM), indicating a relatively low affinity of P-gp for 

nucleotides (Sharom et al. 1995; Urbatsch et al. 1994). Moreover, this high level of basal 

ATPase activity in the absence of substrate (Shapiro and Ling 1994; Sharom et al. 1995; 

Urbatsch et al. 1994) was suggested to be due to uncoupling of ATPase from drug 

transport (Al-Shawi et al. 2003). Upon substrate binding, ATPase activity is increased by 

3-4-fold (Martin et al. 1997; Senior et al. 1995), and in some cases up to 20-fold 

(Ambudkar et al. 1992). However, the modulation of P-gp ATPase activity by substrates 

and modulators occurs in a complex manner (Sharom 2008; Sharom 2011). In fact, some 

drugs stimulate P-gp ATPase activity, whereas others inhibit it, and a biphasic pattern of 

stimulation at low concentrations and inhibition at higher concentrations is also common 

(Garrigos et al. 1997; Litman et al. 1997a). The explanation for these effects is not 

completely understood, although the biphasic pattern might be a consequence of the 

presence of two drug-binding sites, a high-affinity stimulatory site and a low-affinity 

inhibitory site (Litman et al. 1997b). Moreover, since drug transport is driven by ATP 

hydrolysis, there must be conformational communication between the drug-binding pocket 

and the catalytic site. This was demonstrated by a study in which a fluorescent probe 

located close to the site of ATP binding displayed a change in its local environment 

following drug binding to the TM regions of the protein (Liu and Sharom 1996). Moreover, 

the increase in ATPase activity (and presumably transport) in the presence of a drug was 

negatively correlated with the predictive degree of hydrogen bonding of substrate in the 

drug-binding pocket (Omote and Al-Shawi 2006). Substrates with extensive H-bonding 

(daunorubicin) showed low ATPase stimulation and low transport rates, whereas 

substrates with low levels of H-bonding (e.g. spin-labelled verapamil) caused high ATPase 

stimulation and high transport rates. Furthermore, substrate mediated ATPase activity is 

both cell and species dependent. For example, vinblastine inhibits P-gp-mediated ATPase 

activity in Chinese hamsters (Shapiro and Ling 1994; Sharom et al. 1995; Urbatsch et al. 

1994), but increases it in human KB cells (an epithelial carcinoma cell line) (Shapiro and 

Ling 1994; Sharom et al. 1995; Urbatsch et al. 1994). This may reflect differences in the 

amino acid sequences of P-gp in hamster and human cells, or differences in the lipid 

composition of their plasma membranes. With regard to the latter, P-gp localization and 

function are indeed critically dependent on their lipid environment (Doige et al. 1993; 
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Kamau et al. 2005) and, thus, the presence of different lipids and detergents on the 

membrane also affects the drug interaction pattern (Doige et al. 1993; Urbatsch and 

Senior 1995). 

Additionally, the stoichiometry of ATP hydrolysis relative to substrate transport is a 

controversial issue, and it is still not known whether P-gp hydrolyses one or two molecules 

of ATP for each drug molecule it transports (Sharom 2011). Indeed, it was initially 

proposed that one molecule of substrate is effluxed at the expense of two ATP molecules 

(Gottesman and Pastan 1993). Some important mechanistic insights, into the catalytic 

cycle of the protein, were provided by the use of ortho-vanadate (Vi), an inorganic 

phosphate analogue (Sharom 2008; Sharom 2011). Addition of Vi in the presence of ATP 

leads to very rapid loss of ATPase activity, thus inhibiting P-gp catalytic activity. After a 

single catalytic turnover, Pi dissociates, and Vi takes its place, leading to ‘trapping’ of the 

stable complex ADP·Vi·Mg2+ in one NBD (Urbatsch et al. 1995b). The Vi-trapped complex 

is very stable, and its structure is thought to resemble that of the catalytic transition state 

(Smith and Rayment 1996). Thus, the Vi-trapped state represents a post-hydrolysis 

conformation of P-gp. Since trapping of Vi in one NBD abolishes the catalytic activity at 

the other (Urbatsch et al. 1995b), as does the inactivation of one active site by mutation or 

covalent modification (Loo and Clarke 1995b), it is suggested that both active sites must 

be functional for ATP hydrolysis to occur (Sharom 2011). This observation led to the 

proposal that P-gp operates by an ‘alternating sites’ mechanism, in which only one NBD is 

catalytically active at any instant in time, and the two active sites take turns in hydrolysing 

ATP, thus alternating in catalysis (Senior et al. 1995). Thus, if one site is inactivated, 

catalysis halts after a single round of ATP turnover. Moreover, the NBDs have a similar 

affinity for ATP, and hydrolyse it at comparable rates (Loo and Clarke 1995a; Urbatsch et 

al. 1995a; van Veen et al. 1998). In the absence of a P-gp substrate, both NBDs are 

occupied with either ATP or ADP in the resting and transition states (Qu et al. 2003). 

Thus, the “vacant” active site in the vanadate-trapped complex of P-gp can bind ATP 

despite its lack of catalytic turnover (Qu et al. 2003). 

Sauna et al. described the catalytic cycle of P-gp as comprising two cycles where 

substrate and nucleotide binding sites co-ordinately function to efflux the substrates by an 

ATP driven energy-dependent process. The drug and ATP initially bind to the protein at 

their own binding sites, where nucleotide hydrolyses to ADP occurs, yielding energy for 

the drug extrusion. The release of ADP from nucleotide binding site ends the first catalytic 

cycle, which is followed by a conformational change that reduces affinity for both substrate 

and nucleotide. The second catalytic cycle starts with the hydrolysis of another molecule 

of ATP and the released energy is used to reorient the protein to its native conformation. 

Subsequent release of ADP completes another catalytic cycle, returning the P-gp 
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molecule back to the original state, where it again binds to both substrate and nucleotide 

to initiate the next cycle (Sauna and Ambudkar 2001).  

It was also shown that ATP binding, rather than ATP hydrolysis, induces a 

conformational change in the tertiary structure of P-gp (Rosenberg et al. 2003), bringing 

TMHs 1 and 11 into close proximity (Loo et al. 2005). As this interaction does not occur in 

the presence of ADP or AMP-PNP (5'-adenylyl-β,γ-imidodiphosphate, a competitive 

inhibitor of most ATP-dependent systems), it was proposed that this conformational 

change may be involved in the release of substrates following ATP hydrolysis (Loo et al. 

2005). ATP binding also reduces the binding affinity of P-gp for its substrate (Martin et al. 

2001; Rosenberg et al. 2001). Despite this, the general, but not unanimous consensus 

would be that ATP hydrolysis rather than ATP binding is required for substrate transport 

across the cell membrane (Al-Shawi et al. 2003; Hyde et al. 1990; Omote and Al-Shawi 

2006; Senior et al. 1995), and that ATP hydrolysis promotes rotation of one or more 

transmembrane α-helices (Loo and Clarke 2001a). 

There is unequivocal biochemical evidence to support a conformational change in P-

gp upon substrate binding, including changes in epitope accessibility (Druley et al. 2001; 

Mechetner et al. 1997; Ruth et al. 2001; Sonveaux et al. 1999) and vulnerability to 

protease degradation (Julien and Gros 2000; Wang et al. 1998a). Liu and Sharom 

eloquently associated substrate binding to quench fluorescence within the NBDs 

(fluorescently tagged P-gp), thus linking the drug-binding pocket to a conformational 

change in the catalytic site of the NBD (Liu and Sharom 1996). Indeed, and as mentioned, 

substrate binding brings the Walker A sequences of one NBD close to the signature C 

motif of the other NBD (Loo et al. 2003a), such that the two NBDs interlock, with ATP 

interposed along the dimer interface. Interestingly, the conformational change, which 

leads to drug-mediated ATP hydrolysis, appears to be co-ordinated through residue 339 

within TMH 6 (Rothnie et al. 2005). These studies are consistent with the low resolution 

electron crystallographic data showing a significant conformational change in the 3D 

structure of P-gp in the presence of the non-hydrolysable ATP analogue, AMP-PNP. In 

effect, binding of the ATP analogue caused the cylindrical, barrel-like structure of P-gp to 

reorganise into three compact domains, each with a diameter of 2-3 nm and a depth of 5–

6 nm (Rosenberg et al. 2003). 

Moreover, the stable nucleotide sandwich dimer structures reported for various ABC 

proteins and isolated NBDs have only been observed when ATP hydrolysis is blocked by 

either mutation of an essential catalytic residue or the absence of Mg2+, not in situations 

where the proteins are catalytically active (Eckford and Sharom 2009). However, both 

mutational studies (Loo and Clarke 1995a) and the presence of trapped Vi at a single 

active site (Urbatsch et al. 1995b), suggest that the two NBDs of P-gp alternate in 
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hydrolysis. This, in turn, implies that the protein must always form asymmetrical structures 

during catalytic cycling, or the “memory” of which of the two active sites last hydrolysed 

ATP would be lost (Eckford and Sharom 2009). Tombline and co-workers were the first to 

isolate an asymmetric nucleotide-bound structure of P-gp by employing the catalytically 

inactive mutant E552A/E1197A (Tombline et al. 2004; Tombline et al. 2005). They found 

that this protein retained a single molecule of ATP where the binding affinity is 

approximately 50-fold higher than normally observed. This nucleotide is observed to be 

tightly “occluded” within the active site and, unlike loosely bound ATP, cannot be removed 

by washing or column chromatography. It was later reported that a single molecule of the 

non-hydrolysable nucleotide adenosine 5′-(γ-thio)triphosphate (ATPγS) is occluded within 

wild-type catalytically active P-gp (Sauna et al. 2007), again suggesting the existence of 

an asymmetric nucleotide-bound state. More recently, fluorescence spectroscopic 

approaches were used to characterize an asymmetric nucleotide-bound state of wild-type 

P-gp where two molecules of ATPγS are bound, one with the normally observed low 

affinity and one with 100-fold higher binding affinity (Siarheyeva et al. 2010). ADP and 

other non-hydrolysable analogues, including AMP-PNP, are not able to induce the 

asymmetric state, and both nucleotide molecules are bound with low affinity (Siarheyeva 

et al. 2010). The asymmetric intermediate is thought to exist transiently during the normal 

catalytic cycle, but the tightly bound ATP molecule is committed to hydrolysis and rapidly 

enters the transition state. It only appears possible to trap the asymmetric intermediate in 

stable form using ATPγS, or by inactivating an amino acid residue that is required for 

catalysis (Eckford and Sharom 2009). Moreover, this P-gp intermediate with one very 

tightly bound nucleotide (‘occluded’) and one loosely bound nucleotide (Sauna et al. 2007; 

Siarheyeva et al. 2010; Tombline et al. 2004; Tombline et al. 2005), probably represents 

an E•S (enzyme•substrate) intermediate normally present immediately before occurring 

the ATP hydrolysis (Siarheyeva et al. 2010).  

According to what was described until now, many studies have been focused on 

fully clarifying the mechanistic details of how the P-gp NBDs hydrolyse ATP, and how 

drug transport is powered. Moreover, the crystal structures determined for mouse (Aller et 

al. 2009) and C. elegans (Jin et al. 2012) P-gp and other ABC transporters (Zolnerciks et 

al. 2011) have provided structural information about several aspects of substrate binding, 

transport, and ATP hydrolysis (Al-Shawi 2011; Callaghan et al. 2006). However, the drug 

transport mechanism of P-gp still remains controversial. Figure 7 shows a proposed 

catalytic cycle for P-gp that incorporates what is known about ATP binding, stoichiometry 

and affinity, NBD dimerization, and the occluded state where nucleotide is tightly bound at 

one of the active sites. The catalytic cycle starts with P-gp containing two ATP molecules, 

both bound with low affinity (ATPL) (Figure 7, A). This state is stable and has been 
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observed in situations where catalysis is blocked, such as in fluorescently modified P-gp 

with no catalytic activity bound to native ATP (Liu and Sharom 1996) and in native active 

P-gp bound to fluorescent (Qu et al. 2003) or to spin-labelled (Delannoy et al. 2005) 

nucleotide analogues that are very poor substrates for hydrolysis by the protein. In this 

conformation, both halves of the NBD dimer interface are “open”, resulting in low ATP 

binding affinity (Km of 0.2-0.5 mM) (Figure 7, A) (Eckford and Sharom 2009). In 

catalytically active P-gp, the dimer interface rapidly closes around one of the bound ATP 

molecules, which becomes occluded (ATPT), resulting in 50- to 100-fold higher binding 

affinity (Km of 5-10 µM) (Figure 7, B). This asymmetric nucleotide-bound state of P-gp is 

normally transient but can be stabilized by the use of the non-hydrolysable analogue, 

ATPγS (Sauna et al. 2007) and by mutation of an essential Glu residue in the catalytic 

sites (Tombline et al. 2004; Tombline et al. 2005). In native P-gp, the tightly bound ATP 

molecule is committed to be hydrolysed and rapidly enters the transition state. The drug to 

be transported binds to the substrate-binding pocket of P-gp, which is located within the 

cytoplasmic leaflet of the membrane (Figure 7, C). This step is arbitrarily shown as 

occurring after ATP loading and formation of the asymmetric occluded state, but it is 

known that ATP binding and drug binding can take place in any order, and (uncoupled) 

ATP hydrolysis can take place in the absence of transport substrate (Liu and Sharom 

1996). The tightly bound ATP is then hydrolysed to ADP and Pi, and the transport 

substrate is moved to either the opposite side of the membrane or the outer leaflet of the 

bilayer (Figure 7, D). (see I.4.2.1). Hydrolysis of ATP at the occluded site results in 

opening of the dimer interface in that half (Figure 7, D), likely as a result of electrostatic 

repulsion between ADP bound to the Walker A motif in one NBD, and Pi bound to the 

signature C motif of the opposing NBD (Sauna et al. 2007). Opening of one-half of the 

NBD dimer interface results in simultaneous “site switching”, so that the other half of the 

dimer interface now becomes closed (Figure 7, D). The product (ADP) is thus loosely 

bound, and the second ATP molecule now interacts with high affinity and becomes 

occluded (Figure 7, D). Pi leaves from the open half of the dimer interface, and nucleotide 

exchange takes place, so that ADP is replaced by ATP, both loosely bound (Figure 7, E). 

At this stage, the protein has attained the asymmetric nucleotide-bound state once again 

(Figure 7, F). It reloads with drug, and the steps repeat, with ATP hydrolysis taking place 

at the other catalytic site (Figure 7, G - I). During active cycling, all the reaction 

intermediates are asymmetric, thus providing “memory”. The simultaneous ATP site 

affinity switch ensures that catalysis alternates between the two NBDs (Figure 7) 

(Siarheyeva et al. 2010). Movement of drug across the membrane may be driven by the 

energy released during ATP hydrolysis, and would involve switching from an inward-

facing conformation with high drug-binding affinity to an outward-facing conformation with 
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low drug-binding affinity (Figure 7) (Siarheyeva et al. 2010). Other models for the 

mechanism of ABC transporters function have also been proposed, in which ATP binding 

alone drives drug transport [ATP switch model (Higgins and Linton 2004)], or two ATP 

molecules are hydrolysed sequentially to open both halves of the NBD dimer interface 

[processive clamp model (Janas et al. 2003)]. 
 

  

 
 
Figure 7. The P-gp catalytic and transport cycle - proposed cycle of ATP-driven NBD dimerization, 
ATP occlusion and hydrolysis, site-switching of nucleotide binding affinity, and drug transport 
across the membrane. 
The cycle starts with binding of two molecules of ATP to the pump. If the protein is catalytically inactive, or a 
non-hydrolysable ATP analogue such as AMP-PNP is employed, this binding is of relatively low affinity 
(loosely bound ATP is indicated by ATPL). In this symmetric state, both halves of the dimer interface are 
‘open’, with each binding or occluding an ATPL. If the pump is catalytically active, this state rapidly progresses 
to the asymmetric state, in which one ATP molecule is tightly bound or occluded (ATPT) in one NBD, where 
the dimer interface is ‘closed’. The tightly bound ATP molecule is committed to enter the catalytical transition 
state and undergoes hydrolysis, which provides the energy for drug (red sphere) movement from the binding 
pocket within the transporter to the extracellular space. Binding of the drug is shown after ATP binding, but 
these events can take place in a random order. ATP hydrolysis converts the tightly bound ATP to ADP and Pi, 
which are now loosely bound (ADPL), resulting in opening of the dimer interface, and the drug is transported to 
the extracellular environment (or possibly the outer leaflet of the membrane). Drug transport probably involves 
a conformational change from an inward-facing to an outward-facing protein conformation. The other catalytic 
site simultaneously switches to the high-affinity state, resulting in tight binding of the second ATP molecule 
and closure of the dimer interface in the other NBD. In fact, the presence of ADP and Pi leads to opening of 
the closed dimer interface and simultaneous site switching, so that the opposing half of the dimer interface 
closes around the second ATP molecule, which is now occluded. It is known that Pi leaves the catalytic site 
first, after which the loosely bound ADP (ADPL) dissociates and is replaced by another molecule of loosely 
bound ATP (nucleotide exchange). The asymmetric nucleotide-bound state is thus attained again, but with the 
tightly bound ATP in the opposing active site committed to hydrolysis. A second round of ATP hydrolysis and 
drug transport then takes place at the other NBD. P-gp exists in an asymmetric state at all stages of the 
catalytic cycle, thus requiring that the two NBDs alternate in hydrolysing ATP. Moreover, during catalytic 
cycling, at no point does P-gp exist in a symmetric nucleotide-bound state, thus providing “memory” and 
ensuring that the two active sites alternate in catalysis. Adapted from (Siarheyeva et al. 2010). 
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In agreement, the recently reported mouse P-gp apo crystal structure (nucleotide-

free state) assumes that large openings to the cytoplasm and the inner leaflet of the lipid 

bilayer are used for compound entry, but substrate access is blocked from the outer 

membrane leaflet and the extracellular compartment (Aller et al. 2009) (Figure 8). This 

inward-facing conformation represents the molecule in a pre-transport state since it was 

demonstrated drug binding to an internal cavity open to the inner leaflet/cytoplasm. 

Therefore, compounds must be sufficiently membrane permeable to be accessed by P-gp, 

which scans for substrates by sampling a wide cross section of conformations. Once 

bound to the protein, the substrate (such as QZ59 compounds and verapamil used in the 

study) then induces binding of two molecules of ATP triggering a large conformational 

shift resulting in an outward-facing cavity and ejection of the substrate into the 

extracellular space. Hydrolysis of ATP then returns the protein back to its inward facing 

drug binding conformation and reinitiates the transport cycle (Figure 8). Moreover, this 

conformation likely represents an active state of P-gp because protein recovered from 

crystals had significant drug-stimulated ATPase activity (Aller et al. 2009). 

 
Figure 8. Model of substrate transport by P-gp  
(A) Substrate (magenta) partitions into the bilayer 
from outside of the cell to the inner leaflet and 
enters the internal drug-binding pocket through an 
open portal. The residues in the drug binding 
pocket (cyan spheres) interact with QZ59 
compounds and verapamil in the inward facing 
conformation. (B) ATP (yellow) binds to the NBDs 
causing a large conformational change presenting 
the substrate and drug-binding site(s) to the outer 
leaflet/extracellular space. In this model of P-gp, 
which is based on the outward facing conformation 
of MsbA and Sav1866, exit of the substrate to the 
inner leaflet is sterically occluded providing 
unidirectional transport to the outside. Taken from 
(Aller et al. 2009). 

 

In accordance, the putative drug transport route in the recently reported X-ray 

crystal structure of Caenorhabditis elegans also proposed that P-gp is open to the 

cytoplasmic side of the membrane, thus also suggesting that drugs can enter the pocket 

from the inner membrane leaflet (Jin et al. 2012). This intimate connection with the 

membrane suggests that the transporter may be profoundly affected by the 

physicochemical properties of the host bilayer. Indeed, and as previously mentioned, 

membrane composition and biophysical properties are known to affect P-gp function. For 

example, P-gp ATPase activity is modulated by both membrane lipids and detergents 

(Doige et al. 1993; Li-Blatter et al. 2009; Urbatsch and Senior 1995). The binding affinity 

of reconstituted P-gp for drug substrates is sensitive to phospholipid headgroup, acyl 

chain length, and lipid fluidity (Romsicki and Sharom 1999). Inclusion of cholesterol in the 
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host bilayers was also found to affect drug binding, drug transport, and ATPase activity 

(Eckford and Sharom 2008). Also, a decrease in the lateral packing density of the bilayer 

has been proposed to influence the thermodynamics of ATP hydrolysis (Aanismaa et al. 

2008).  

Early work showed that P-gp transport function in plasma membrane vesicles and 

intact cells could be altered by changes in membrane fluidity induced by small molecule 

fluidizers, surfactants, and amphiphiles (Callaghan et al. 1993; Sinicrope et al. 1992; 

Woodcock et al. 1992). The mechanism of MDR reversal in this case does not appear to 

involve direct interaction between these agents and P-gp and may be linked to increases 

in membrane permeability (Drori et al. 1995) (see I.6.1.2.3). From these studies, it has 

been proposed that changing the properties of the membrane may be a useful approach 

for clinical MDR reversal (Regev et al. 1999). If such a strategy is to be successful, it is 

clearly important to have a good understanding of how the properties of the lipid 

environment affect all aspects of the P-gp catalytic cycle. 

In a very recent study, using purified P-gp reconstituted into phospholipid bilayers 

with defined gel to liquid-crystalline melting transitions, the authors aimed to investigate 

the effect of membrane environment on the transporter, as well as three of its substrates. 

Although several studies demonstrated that membrane phase state, composition, and 

fluidity appear to be important parameters in the ability of P-gp to bind and transport 

drugs, the means by which membrane properties affect P-gp function are not fully 

understood. The obtained results demonstrated that Hoechst 33342, LDS-751, and MK-

571 partitioned much more readily into liquid-crystalline phase bilayers than into gel phase 

bilayers, although drug binding affinities revealed that P-gp bound the three substrates 

more tightly when the lipid bilayer was in the gel phase. The binding affinity of the 

transporter for substrates within the bilayer was low, suggesting that it interacts with them 

weakly. Thermodynamic analysis revealed that both drug-P-gp and drug-lipid interactions 

contribute to binding affinity. Moreover, transport rates were found to be sensitive to both 

drug structure and lipid environment. It was also suggested that the rate of drug transport 

depends on both the affinity of P-gp for substrate and protein conformational changes 

(Clay and Sharom 2013). Therefore, transport rates do not appear to be limited 

exclusively by the rate of ATP hydrolysis and may be partially controlled by the rate of 

drug dissociation.  

In conclusion, in spite of the controversy, it is generally believed that P-gp exists in 

at least two major conformations during the catalytic cycle, an “inward-facing” 

conformation with the high affinity drug binding pocket exposed to the cytoplasmic leaflet 

of the membrane and an “outward-facing” conformation in which the drug binding site has 

a lower affinity and is exposed to the outer leaflet or extracellular space. Conversion of the 
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inward-facing conformation to the outward-facing conformation requires hydrolysis of ATP, 

whereas subsequent nucleotide exchange and/or product release involving one (or both) 

NBD(s) is presumed to reset the transporter to the transport (Verhalen et al. 2012). 

I.5. Role of P-glycoprotein in drug pharmacokinetics - importance in drug 
therapy and disease 

As previously referred, P-gp interacts with many drugs in widespread clinical use 

(Table 4). Therefore, the clinical effectiveness of these drugs is greatly affected by P-gp, 

which alters their absorption and tissue distribution (Zhou 2008). As expected, P-gp-

knockout mice displayed increased uptake of substrates from the digestive tract and 

markedly slower elimination from the circulation, which, for some drugs or xenobiotics, 

leads to dramatically increased toxicity (Liu et al. 2002a). Noteworthy, P-gp-knockout mice 

have proved to be very useful in the study of the role of mdr1-type P-gp in tissue 

accumulation and toxicity of various compounds, as well as in identifying or confirming 

drugs as P-gp substrates in vivo (Johnson et al. 2001a; Jonker et al. 1999; Liu et al. 

2002a; Rao et al. 1999; Schinkel et al. 1997; Schinkel et al. 1994; Schinkel et al. 1996; 

Smit et al. 1998; Tsuruoka et al. 2001). Additionally, species differences between mouse 

and human P-gp with respect to substrate specificity appear to be small (Sharom 2011). 

Interaction of a drug with P-gp can cause poor uptake in the intestine, thus reducing 

oral bioavailability, and prevent delivery of drugs to the target organs, such as the brain, 

which is a severe problem in the treatment of brain diseases. Overcoming the presence of 

P-gp in the intestinal epithelium is a serious problem in drug discovery, since new drug 

candidates may be poorly absorbed, making them ineffective clinically. Additionally, it is 

especially important to screen out P-gp substrates when developing drugs targeted to the 

brain, since, in most cases, their efficacy depends on their ability to cross the BBB 

(Sharom 2011). The BBB is formed by the tight junctions that connect the brain 

endothelial cells, thus restricting the entry of compounds from the circulating blood to the 

brain via paracellular and transcellular routes (de Boer and Gaillard 2007a; de Boer and 

Gaillard 2007b). Moreover, it is well established that P-gp, as well as BCRP, localized in 

the apical/luminal membrane of the brain capillary endothelial cells are a major barrier for 

brain penetration of drugs (Terasaki and Ohtsuki 2005). Since a vast number of drugs are 

P-gp substrates (e.g. cancer and antiviral drugs), it is quite hard to achieve drug 

concentrations in therapeutic levels for certain central nervous system conditions such as 

brain tumours and HIV (Zhou 2008). To circumvent the limited access of drugs into the 

brain, different approaches have been investigated, including not only the use of P-gp 

modulators, but also the use of drug delivery systems such as liposomes, nanoparticles, 
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peptide-vector strategies, modulators of endothelial tight junctions, or osmotic pressure 

modification (Zhou 2008). Also, it is important to keep in mind that oxidative stress can 

change P-gp expression in brain capillary-endothelial cells, as well as diseases can up- or 

down-regulate P-gp and other active transcellular transport systems in the BBB (de Boer 

et al. 2003). Apart from brain and intestinal P-gp, the protein localized in the apical 

membrane of renal epithelial cells exports compounds from the cytoplasm of renal tubular 

cells to the urine and, consequently, its substrates are expected to have a higher renal 

elimination than that expected by glomerular filtration (Zhou 2008). 

Many studies have been undertaken to investigate the effects resulting from the co-

administration of a P-gp inhibitor and a known P-gp substrate on blood plasma 

concentrations (Mealey 2004). Studies have been performed using P-gp knockout mice 

that were orally administered with P-gp substrates such as digoxin, opioids, paclitaxel, 

cyclosporine, and many others, and the obtained results have consistently shown that, in 

P-gp knockout mice, the plasma levels of these P-gp substrates are greatly enhanced. 

Similarly, in human studies, the administration of a P-gp inhibitor before taking an oral 

dose of morphine showed a 2-fold increase in blood plasma levels of morphine, when 

compared with those receiving an oral morphine dose alone (Mealey 2004). Therefore, 

this evidence indicates that P-gp activity in intestinal epithelial cells greatly influences the 

bioavailability of many drugs and highlights that: (i) P-gp seems to have a substantial role 

in pumping drugs out of epithelial cells after absorption and back into the intestine for 

excretion; (ii) decreased P-gp activity in the intestine can lead to dramatically increased 

drug bioavailability; and (iii) increased P-gp activity, due to a variety of factors such as 

drug interactions or genetic mutations of the MDR1 gene, could possibly lead to 

therapeutic failure for a wide range of drugs that are P-gp substrates (Zhou 2008). 

The co-administration of two drugs that are both P-gp substrates can also lead to 

major pharmacokinetic effects as they compete for the transporter (Staud et al. 2010). 

Plasma drug levels remain higher for longer periods of time, and a reduction in drug dose 

is often necessary to avoid toxicity. In patients, these drug-drug interactions are indeed 

very frequently a risk and can result in side-effects as simple as minor discomfort to the 

patient, or in extreme cases of life-threatening toxicities (Zhou 2008). Similar effects are 

observed when a P-gp substrate drug is used with foods or herbal supplements containing 

natural products that are also P-gp substrates, such as plant flavonoids or St John’s wort 

(Borrelli and Izzo 2009). Therefore, the importance of P-gp in drug-drug interactions is 

increasingly being identified and it is generally accepted that co-administration of drugs 

that interact with this transporter not only as a substrate, but also as inhibitor or inducer, 

can result in drug-drug interactions that affect the pharmacokinetics and 

pharmacodynamics of the co-administered drugs. For these reasons, it is now 



General Introduction______________________________________________________________ 

42 

recommended, in the process of drug development and approval, the testing for P-gp 

interactions (Giacomini et al. 2010). These tests usually use polarized monolayers of 

epithelial cell lines either transfected with human P-gp, or naturally expressing the pump, 

and the movement of the test compound from the medium on the basolateral side of the 

monolayer to the medium on the apical side (B→A, passive diffusion plus P-gp-mediated 

efflux) is compared with the movement in the opposite direction (A→B, passive diffusion 

only). Also, other in vitro assays that assess the effect of a compound on P-gp ATPase or 

transport activity in membrane vesicles are also frequently used (Sharom 2011). 

It should be also reinforced the role of P-gp in the cancer treatment, which will be 

further detailed in section I.6.1. For several cancers, including AML (acute myelogenous 

leukaemia), ALL (acute lymphoblastic leukaemia) and ovarian tumours, high P-gp 

expression levels are strongly linked to a weak response to chemotherapy treatment, 

since many anticancer drugs are P-gp substrates, and, consequently to a poor overall 

disease prognosis (Polgar and Bates 2005; Steinbach and Legrand 2007). However, in 

other cases, it has proved difficult to link MDR in cancer to P-gp expression, probably 

because there are multiple mechanisms by which some tumours can develop drug 

resistance. Furthermore, there has been much interest in combining P-gp modulators with 

chemotherapy drugs to improve the outcome of cancer treatment (Szakacs et al. 2006).  

In conclusion, P-gp affects the disposition of many clinically administered drugs, 

having a major contribution to their ADME (absorption, distribution, metabolism and 

excretion) and, consequently, being implicated in potential pharmacokinetic drug-drug 

interactions (Lin and Yamazaki 2003a; Lin and Yamazaki 2003b; Mealey 2004; Zhou 

2008). P-gp is of particular importance at the intestinal epithelium where it plays an 

important role in the extrusion of drugs from the blood into the intestinal lumen, and in 

preventing drugs in the intestinal lumen from entering the bloodstream, thus reducing their 

absorption and oral bioavailability (Zhou 2008).  

I.6. P-glycoprotein inhibition, induction and activation 

I.6.1.  P-gp inhibition 

As previously mentioned, drug resistance is considered the major cause of failure in 

anticancer therapy (Lage 2008). In fact, in spite of all the progress made in this field, only 

approximately 50% of all cancers are susceptible to chemotherapy and, of these, more 

than 50% rapidly develop drug resistance (Higgins 2007). Multidrug resistance (MDR) 

may be defined as a phenomenon whereby cancer cells that have been exposed to one 

type of drug develop cross resistance to other drugs that are structurally and functionally 

very dissimilar (Pauwels et al. 2007) 
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Several mechanisms were reported to play an important role in the complex 

phenomenon of MDR such as: induction of the efflux systems (P-gp); altered expression 

or function of target proteins (e.g. topoisomerase and tubulin; induction of detoxification 

pathways (e.g. glutathione-S-transferase that catalyse the conjugation of glutathione and 

drugs); enhanced DNA repair; and alterations in the apoptotic signal pathway (e.g. p53 

mutation and bcl-2 overexpression) (Baguley 2002; Higgins 2007; Lage 2008; Lehnert 

1996; Merino et al. 2004; Modok et al. 2006; Pauwels et al. 2007; Perez-Tomas 2006; 

Szakacs et al. 2006; Wu et al. 2008). Some of these mechanisms may coexist, rendering 

the cells refractory to treatment with drugs acting on a single target. Noteworthy, among 

the mechanisms of MDR reversal, the direct inhibition of P-gp is one of the best studied, 

and emerged, in 1981, with the demonstration that verapamil could reverse MDR (Tsuruo 

et al. 1981). In fact, over the past years, the therapeutic use of P-gp inhibitors to improve 

drug bioavailability by inhibiting P-gp in intestine, brain, liver and kidneys has gained 

considerable interest. Since this recognition that P-gp-mediated drug resistance is 

clinically important, a concerted research effort to screen for P-gp inhibitors or modulators 

has been extensively carried out, indicating the possibility of identifying clinically useful 

reversing agents for MDR. In the following section, an overview on the different 

generations of P-gp inhibitors, and on their corresponding mechanisms of action, will be 

presented. 

I.6.1.1. Mechanisms of P-gp inhibition 

A P-gp inhibitor may act by (a) blocking the substrate binding-site(s), either 

competitively, non-competitively or allosterically (Varma et al. 2003); (b) interfering with 

ATP hydrolysis (Shapiro and Ling 1997a) or (c) altering the integrity of cell membrane 

lipids (Drori et al. 1995) (Figure 9). There are currently many drugs that act as P-gp 

inhibitors, some of which are in use as therapeutic agents for other clinical indications 

(Table 5).  

 

 

 

 
 
 
 
 

Figure 9. Mechanisms of P-
gp inhibition. 
Adapted from (Akhtar et al. 
2011). 
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The calcium channel blocker, verapamil, and the immunosuppressant, cyclosporine 

A, are P-gp substrates that competitively inhibit the efflux pump (Miller et al. 1991; Slater 

et al. 1986; Tsuruo et al. 1981). Although these drugs inhibit the pump function by 

blocking the drug binding sites, the presence of multiple binding sites complicates the 

understanding, as well as hampers the development of conclusive structure-activity 

relation studies for substrates or inhibitors. On the other hand, compounds that inhibit ATP 

hydrolysis could perform better as P-gp inhibitors, since they are unlikely to be transported 

by P-gp, and will require a lower dose, for instance, locally at the gut lumen (Varma et al. 

2003). For example, quercetin, a naturally occurring flavonoid, demonstrated to block P-

gp function by, at least in part, interfering with the P-gp ATPase activity required for 

transport (Shapiro and Ling 1997a). Moreover, since none of the P-gp substrates had, 

until recently, demonstrated to interact with the nucleotide binding sites, thus not 

interfering with the P-gp ATPase catalytic cycle (Varma et al. 2003), further research in 

exploring the mechanism of ATP hydrolysis inhibition will likely provide newer and better 

inhibitors with potent and specific activity. 

Finally, many commonly used pharmaceutical surfactants, such as sodium dodecyl 

sulphate, Tween-20 and Span-80, are emerging as a different class of P-gp inhibitors, 

which act by altering integrity of membrane lipids, thus interfering with membrane fluidity 

(Prakash 2010). This alteration in the membrane’s microviscosity may, in fact, contribute 

to the alteration of the conformation of most transmembrane proteins and, therefore, 

modifications in secondary and tertiary structure were found to be the reason for loss of P-

gp function due to disturbance in hydrophobic environment caused by surfactants (Varma 

et al. 2003). In the next section, a detailed overview will be made on the different 

generations of P-gp inhibitors, which greatly differ on their corresponding mechanism of 

action. 

I.6.1.2. P-gp inhibitors 

P-gp inhibitors are classified into four generations according to their potency, 

selectivity and drug-drug interaction potential, and not according to a chronologic 

development (Table 5) (Palmeira et al. 2012a).  

Table 5. Known P-gp inhibitors 

Class  Examples 
First‑generation  
      Analgesics Meperidine, Pentazocine 
      Anesthetics Chloroform, Benzyl alcohol, Diethyl ether, Propofol 
      Antibiotics: Cefoperazone, Ceftriaxone, Salinomycin, Nigericin, 

Erythromycin, Azithromycin, Brefeldin A, Bafilomycin, 
Clarithromycin, Valinomycin 
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Table 5. Known P-gp inhibitors 

Class  Examples 
      Anticancer Drugs Tamoxifen, Bicalutamide, Mitotane, Gefitinib, Lapatinib, 

Erlotinib, Lonafarnib (SCH 66336), Tipifarnib, Vinblastine 
      Antifungals Itraconazole, Ketoconazole, Econazole, Dihydroptychantol 

A, Aureobasidin A 

      Antihistaminics Benzquinamide, Azelastine, Tesmilifene, Astemizole, 
Terfenadine 

      Anti-inflammatory drugs Zomepirac, Indomethacin, SC236, Curcumin, Ibuprofen, 
NS-398 

      Antidepressants Amoxapine, Loxapine, Sertraline, Paroxetine, Fluoxetine 
      Antimalarial drugs  Quinine  
      Antiprotozoal drugs Hycanthone, Monensin, Metronidazole 
      Antiviral drugs Concanamycin A, Ritonavir, Nelfinavir, Saquinavir  
      Anxiolytics and sedative-hypnotics Midazolam 
      Cardiac/circulation drugs Antiarrhythmics: Amiodarone, Propafenone, Quinidine 

Calcium channel blockers: Verapamil, Deverapamil, 
Emopmil, Nifedipine, Nicardipine, Niguldipine, Nitrendipine, 
Nimodipine, Felodipine, Isradipine, Lomerizine, Tetrandrine, 
Mibefradil, Diltiazem, Bepridil 

 Antiplatelet drug: Dipyridamole 
Antihypertensives: Reserpine, Prazosin, Doxazosin, 
Carvedilol 

      Central nervous system stimulators Caffeine, Pentoxifylline, Nicotine, Cotinine,  
      Cholesterol‑lowering drugs Atorvastatin 

      Immunosuppressive drugs Cyclosporin A, Tacrolimus, Sirolimus 
      Neuroleptics and Anti-psychotics Trans-Flupentixol, Perphenazine, Prochlorpromazine, 

Chlorpromazine, Trifluoperazine, Perospirone, Haloperidol 
      Phosphodiesterase inhibitors  Vardenafil 
      Steroid Hormones Progesterone, Medroxiprogesterone, Cortisol, 

Methylprednisolone, Medroxiprogesterone 17-acetate, 
Mifepristone, Tirilazad, U-74389F, SB4723, SB4769 

      Others  Tetrabenazine, Bromocriptine, Disulfiram, Methadone,  

Second‑generation Dexverapamil, MM36, KR-30031, RO44-5912, PAK-104P, 
Dexniguldipine, Cinchonine, Hydro-cinchonine, Quinine 
homodimer Q2, BIBW22BS, Valspodar (PSC‑833), 
Biricodar (VX‑710), Timcodar (VX-853), Toremifene, SB-
RA-31012 (tRA96023), CGP 42700, WK-X-34, Dofequidar 
(MS-209), Stipiamide homodimer, S9788 

Third‑generation Zosuquidar (LY335979), Tariquidar (XR9576), Elacridar 
(GF120918), Laniquidar (R101933), Ontogen (OC144‑093), 
DP7, PGP-4008, CBT-1 

Fourth‑generation  

      Natural products Flavonoids (quercetin, tangeretin, nobiletin, sinensetin, 
baicalein heptamethoxyflavone)  
Alkaloids (pervilleine F, ellipticine) 
Coumarins (cnidiadin, conferone, praeruptorin A, rivulobirin 
A, DCK) 
Cannabinoids (cannabidiol) 
Taccalonolides (taccalonolides A) 
Diterpenes (jolkinol B, portlanquinol, euphodendroidin D, 
pepluanin A) 
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Table 5. Known P-gp inhibitors 

Class  Examples 
      Natural products (cont.) Sesquiterpenes (dihydro-β-agarofuran 

sesquiterpenes) 
Triterpenes (sipholenone E, uvaol, sipholenol A, oleanolic 
acid) 
Ginsenosides (20S-ginsenoside) 
Polyenes [pentadeca-(8,13)-dien-11-yn-2-one] 
Lignans (schisandrin A, silibinin, nirtetralin) 

      Peptidomimetics Reversin 121, Reversin 205, Peptide 15, XR9051  

      Surfactants and Lipids Pluronic P85, tween-20, triton X-100, cremophor EL, 
poly(ethylene glycol)-300 (PEG-300), Nonidet P40 

      Dual ligands Dual inhibitors of P-gp and tumor cell growth [aminated 
thioxanthones such as 1-[2-(1H-benzimidazol-
2yl)ethanamine]-4-propoxy-9H-thioxanthen-9-one] 

Data are compiled from (Matheny et al. 2001), (Kim 2002), (Zhou 2008), (Sharom 2011) and (Palmeira et al. 
2012a).  

I.6.1.2.1. First- and second-generation P-gp inhibitors 

First-generation inhibitors are pharmacological active compounds, which are already 

in clinical use or compounds under investigation for other therapeutic indications, but also 

showing the ability to inhibit P-gp (Palmeira et al. 2012a; Varma et al. 2003). These 

include calcium channel blockers, such as verapamil; immunosuppressants, like 

cyclosporin A; anti-hypertensives, like reserpine, antiarrhythmics, such as quinidine; and 

antiestrogens, like tamoxifen and toremifen. Therefore, included in this class are not only 

the classic P-gp inhibitors (verapamil or cyclosporine A) but all compounds that had 

previously been described as having other main therapeutic applications, other than P-gp 

inhibition, irrespective of the date of discovery (Palmeira et al. 2012a). Many of these 

agents are themselves P-gp substrates and, thus, act by competing with the cytotoxic 

compounds for efflux by P-gp (Figure 10, competitive inhibition) (Varma et al. 2003). 

However, the clinical use of these compounds is limited by their toxicity, since high serum 

concentrations are achieved with the dose required for P-gp inhibition, given the low 

binding affinity for the pump (Varma et al. 2003). For example, the plasma concentrations 

of 2-6 µM of verapamil required to inhibit P-gp, are associated with serious cardiovascular 

effects in humans (Ford and Hait 1990). 

 
 

 
 

Figure 10. P-glycoprotein inhibition by first- and second-
generation inhibitors (competitive inhibition) 
First and second-generation inhibitors compete as a substrate with the 
cytotoxic agent for transport by the pump, limiting their efflux and 
increasing its intracellular concentration. Adapted from (Thomas and 
Coley 2003). 
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Second- and third-generation inhibitors, that specifically modulate P-gp, were then 

developed to improve the toxicity profile of the first-generation inhibitors. Second-

generation inhibitors are analogues of the initial agents (Fox and Bates 2007; Palmeira et 

al. 2012a), that were developed from compounds with another recognized activity, but 

which were subjected to structural modifications in order to decrease their main 

therapeutic activity and increase P-gp inhibitory activity (specifically inhibit P-gp, with less 

toxicity and greater potency, when compared to the corresponding first-generation 

inhibitors) (Palmeira et al. 2012a). Therefore, these compounds lack the pharmacological 

activity of the first-generation compounds, and usually, possess a higher P-gp affinity 

(Varma et al. 2003). Non-immunosuppresive analogues of cyclosporin A, valspodar (PSC 

833); D-isomer of verapamil, dexverapamil; and other compounds such as biricodar (VX-

710), timcodar (VX-853) and dofequidar (MS-209), are some of the second-generation 

inhibitors. The best characterized and most studied of these agents is valspodar, a non-

immunosuppressive derivative of cyclosporin A, that inhibits P-gp with 5- to 20-fold greater 

activity than cyclosporin A (Kusunoki et al. 1998; te Boekhorst et al. 1992; Twentyman 

and Bleehen 1991). Valspodar has been studied in numerous clinical trials in combination 

with cytotoxic agents, including etoposide, doxorubicin, mitoxantrone or paclitaxel (Advani 

et al. 2001; Baekelandt et al. 2001; Baer et al. 2002; Bates et al. 2001; Bates et al. 2004; 

Bauer et al. 2005; Carlson et al. 2006; Chauncey et al. 2000; Chico et al. 2001; Dorr et al. 

2001; Fracasso et al. 2005; Fracasso et al. 2001; Gruber et al. 2003; Kang et al. 2001; 

O'Brien et al. 2010; Sonneveld et al. 2000).  

However, complex and unpredictable drug-drug interactions may be observed for 

this class of second-generation compounds since they may inhibit two or more ABC 

transporters (Varma et al. 2003). Therefore, these compounds lack P-gp selectivity, as the 

compounds from the first-generation. For example, the pipecolinate derivative biricodar 

citrate (VX-710), which has also undergone extensive clinical development, interferes with 

drug efflux by directly binding with high affinity to P-gp (Germann et al. 1997a; Germann 

et al. 1997b) and also by inhibiting the ABC transporter MRP1 (Yanagisawa et al. 1999). 

Also, S9788 is 1.5 to 30 times more active than verapamil and 1.2 to 120 times more 

active than cyclosporine A but was also found to inhibit BCRP (Merlin et al. 1994; Merlin 

et al. 1995). This interaction of many second-generation modulators with other 

transporters, particularly those of the ABC transporter family, can lead to a decreased cell 

capacity to extrude toxic compounds or xenobiotics in the liver, kidney, or gastrointestinal 

tract (Sharma et al. 2003). For example, the inhibition of BCRP, a functional regulator of 

hematopoietic stem cells, may lead to serious adverse effects, including neutropenia and 

other myelotoxic effects (Bunting 2002). 
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Although second-generation P-gp inhibitors have a better pharmacologic profile, 

when compared to the first-generation compounds, they retain some characteristics that 

limit their clinical usefulness. Specifically, these compounds may significantly inhibit the 

metabolism and excretion of cytotoxic agents leading to unacceptable toxicity, thus 

requiring chemotherapy dose reductions in clinical trials. In particular, many of these 

compounds, such as valspodar and biricodar, are substrates for cytochrome P450 (CYP 

P450), and the competition between chemotherapeutic agents and these P-gp modulators 

for CYP P450 activity has given rise to unpredictable pharmacokinetic interactions. For 

example, valspodar demonstrated to inhibit CYP P450 enzymes, resulting in decreased 

clearance and increased systemic exposure to many cytotoxic agents (Fischer et al. 1998; 

Wandel et al. 1999), and this pharmacokinetic interaction hampered the clinical use of this 

P-gp inhibitor. In fact, this interaction with the pharmacokinetics of the associate 

chemotherapeutic drugs, which results in the chemotherapeutic drug toxicity, may require 

a dose reduction of the anticancer drug of 30-50% (Chico et al. 2001). Moreover, since 

the pharmacokinetic interactions between P-gp inhibitors and cytotoxic agents are 

unpredictable and cannot be determined in advance, reducing the dose of a cytotoxic 

agent may result in under-dosing, thus limiting the use of these second-generation 

modulators in the treatment of MDR cancers (Gottesman et al. 2002). 

I.6.1.2.2. Third-generation P-gp inhibitors 

To overcome the limitations of the first- and second-generation of P-gp modulators, 

several novel third-generation P-gp blockers were developed by using quantitative 

structure-activity relationships (QSAR) and combinatorial chemistry (Palmeira et al. 

2012a). These P-gp inhibitors were developed primarily with the purpose of improving the 

treatment of MDR tumours and to inhibit P-gp with high specificity and potency. Among 

them, zosuquidar (LY335979), elacridar (GF120918), laniquidar (R101933), ontogen 

(OC144093), tariquidar (XR9576), DP7, PGP-4008 and CBT-1 are the most studied 

(Palmeira et al. 2012a; Varma et al. 2003). This class of compounds is composed by the 

most selective and potent P-gp inhibitors known to date, which were obtained by design, 

and many of them entered in clinical trials (Palmeira et al. 2012a). In fact, these 

compounds demonstrated a potency approximately 10-fold higher than the first- and 

second-generation inhibitors (Varma et al. 2003).  

Among the most promising third-generation P-gp inhibitors is tariquidar (XR9576), 

an anthranilamide derivative long described as a specific P-gp inhibitor, which binds to P-

gp by a non-competitive mechanism and with an affinity that greatly exceeds that of the 

transported substrates (Figure 11) (Fox and Bates 2007). In fact, this compound inhibits 

P-gp ATPase activity, although it is not clear whether its binding on P-gp is directed to the 
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ATP binding site or to an allosteric location, thus indirectly blocking the P-gp catalytic 

cycle (Martin et al. 1999). Moreover, it was described that tariquidar binds to the same P-

gp site of the P-gp substrate Hoechst 33342 (Martin et al. 2000), located within the inner 

leaflet of the membrane (Qu and Sharom 2002; Shapiro et al. 1999; Shapiro and Ling 

1997c), thus combining both transport and regulatory functions (Qu and Sharom 2002). 

The P-gp inhibitory effect of this compound largely exceeds those of first- and second-

generation P-gp modulators in what concerns to potency and duration of action. In fact, 

the in vitro effect of tariquidar was evaluated using a panel of human (H69/LX4, 2780AD) 

and murine (EMT6 AR1.0, MC26) MDR cell lines and it potentiated the cytotoxicity of 

several drugs, including doxorubicin, paclitaxel, etoposide, and vincristine; with a 

complete reversal of resistance achieved in the presence of 25-80 nM tariquidar (Mistry et 

al. 2001). Moreover, inhibition of P-gp function was reversible, but the effects persisted for 

longer than 22 h after its removal, in contrast to P-gp substrates, such as cyclosporin A 

and verapamil, which lose their activity within 60 min, suggesting that tariquidar is not 

transported by P-gp (Mistry et al. 2001). Additionally, pharmacokinetic studies in healthy 

subjects demonstrated that single doses of tariquidar, up to 2 mg/kg intravenously or 750 

mg orally, were well tolerated and provided complete P-gp inhibition for at least 24 h, as 

evaluated by rhodamine 123 accumulation in CD56+ lymphocytes (Stewart et al. 2000). It 

was also described that nanoparticles or liposomes delivering a combination of this P-gp 

inhibitor and an anticancer drug (paclitaxel) are a very promising approach to overcome 

tumor drug resistance (Patel et al. 2011; Patil et al. 2009), which could be correlated with 

an increased accumulation of paclitaxel in tumor cells.  

Elacridar, an acridone-carboxamide derivative, is another third-generation P-gp 

inhibitor and was initially described as a multi-drug resistance reversal agent (Hyafil et al. 

1993), restoring the sensitivity of multidrug resistant tumours to doxorubicin. This 

compound acts by binding to the allosteric site of P-gp and reverses the drug resistance at 

the nanomolar range (Akhtar et al. 2011). Moreover, when co-administered with P-gp 

substrates, such as topotecan and paclitaxel, elacridar improved their oral absorption by 

inhibiting intestinal P-gp, thereby preventing efflux of substrate drugs into the intestinal 

lumen (Bardelmeijer et al. 2000; Bardelmeijer et al. 2004; Kruijtzer et al. 2002). 

 
 

Figure 11. P-glycoprotein inhibition by third-generation 
inhibitors (non-competitive inhibition). 
Third-generation P-gp inhibitors, such as tariquidar, bind with high 
affinity to the pump, but are not themselves substrates. This induces 
a conformational change in the protein, thereby preventing ATP 
hydrolysis and transport of the cytotoxic agent out of the cell, 
resulting in an increased intracellular concentration. Adapted from 
(Thomas and Coley 2003)]. 
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However, tariquidar, as well as elacridar, were reported to also bind and inhibit the 

BCRP transporter (de Bruin et al. 1999; Kelly et al. 2011; Kruijtzer et al. 2002; Robey et al. 

2004), thus increasing the potential for pharmacokinetic interactions. In fact, elacridar was 

reported to enhance the cytotoxicity of anticancer drugs in cells expressing BCRP at a 

similar potency to that of P-gp (de Bruin et al. 1999; Hyafil et al. 1993). On the other hand, 

other third-generation agents, such as zosuquidar and laniquidar, demonstrated to be 

more specific for P-gp, rather than for other ABC transporters, avoiding the risk of blocking 

other pumps, which might result in altered bioavailability or excretion of the 

chemotherapeutic agents (Palmeira et al. 2012a). Zosuquidar, which is among the most 

potent P-gp modulators known to date, inhibits the pump at nanomolar concentrations, 

both in vitro and in vivo (Dantzig et al. 2001; Green et al. 2001), and no evidence exist 

that it may act as a MRP or BCRP inhibitor (Palmeira et al. 2012a). However, its 

mechanism of P-gp inhibition is still unclear, although a non-competitive inhibitory 

mechanism has already been suggested, since it is not a substrate and cannot be 

transported by the pump (Dantzig et al. 1996).  

One important feature of the third-generation P-gp inhibitors is that these 

compounds do not affect cytochrome P450 3A4 at relevant concentrations (Coley 2010a). 

For example, zosuquidar was demonstrated, in vivo, to have a significantly lower affinity 

for CYP3A than for P-gp, and to lack modulation of MRP1 or MRP2 (Dantzig et al. 1999). 

As a consequence, changes in the pharmacokinetics of the simultaneously administered 

antitumor agent are not expected, at least not to the extent verified with the previous 

generations, and, consequently, a chemotherapy dose reduction is not necessary (Takara 

et al. 2006).  

However, the main disappointing aspect of the third-generation P-gp inhibitors was 

the unexpected toxic effects observed in several clinical trials [for review see (Palmeira et 

al. 2012a)]. For example, tariquidar was tested on phase III clinical trials on non-small-cell 

lung cancer patients but had to be stopped due to the high toxicity observed (Palmeira et 

al. 2012a). Therefore, in spite of all the progress made in the field of multidrug resistance 

with the discovery of these MDR modulators (suggested to be more potent and more 

specific than their precursors) they are still far from being considered perfect MDR 

modulators capable of effectively and safely overcoming resistance in cancer cells. 

I.6.1.2.3. Fourth-generation P-gp inhibitors 

Random and focused screening, systematic chemical modifications and 

combinatorial chemistry performed over the last three decades have given rise to the first 

three generations of P-gp inhibitors, some of them highly specific and potent. However, 
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given the several side effects and the pharmacokinetic interactions observed, their clinical 

use was limited. For this reason, new strategies were employed to find new P-gp 

inhibitors, such as compounds extracted from natural origins and their derivatives, 

surfactants and lipids, peptidomimetics and agents with dual activity, which constitute the 

fourth generation of P-gp inhibitors (Table 5) (Palmeira et al. 2012a).  

The products of natural origin obtained for the first time from natural sources and 

specifically tested for P-gp inhibition are classified by some authors as belonging to the 

fourth-generation of P-gp inhibitors (Coley 2010b; Palmeira et al. 2012a). This "return" to 

the research for natural products results from the knowledge that some food components, 

such as orange, grapefruit, and strawberry, interfere with the oral bioavailability of many 

drugs, and that these drug-food interactions may involve P-gp. Moreover, starting from the 

active components of food and plant extracts already identified, several chemical 

modifications have been performed to generate novel, selective, and high affinity P-gp 

inhibitors. Among these new natural products, several flavonoids, alkaloids, coumarins, 

cannabinoids, ginsenosides, diterpenes, sesquiterpenes and triterpenes, among others, 

have been identified and tested for P-gp inhibition, with very promising results having 

been obtained [for a review see (Coley 2010b; Palmeira et al. 2012a)]. For example, 

several methoxyflavones present in orange juice (tangeretin, nobiletin, 3,3',4',5,6,7,8-

heptamethoxyflavone) demonstrated to increase the accumulation of [3H]vinblastine in 

Caco-2 cells, in a concentration-dependent manner, by specifically inhibiting the drug 

efflux via P-gp, and none of these methoxyflavones inhibited CYP3A4 (Takanaga et al. 

2000). Also, in another study, tangeretin and nobiletin demonstrated to significantly inhibit 

P-gp function in human T lymphoblastoid leukemia MOLT-4 and its daunorubicin-resistant 

cells (Ishii et al. 2010) 

Many commonly used pharmaceutical surfactants, such as sodium dodecyl 

sulphate, Tween-20 and Span-80, are emerging as a different class of P-gp inhibitors, 

which act by altering the integrity of membrane lipids, thus interfering with membrane 

fluidity (Prakash 2010). In fact, they seem to cause modifications in P-gp secondary and 

tertiary structure, resulting in the loss of P-gp functionality function due to interruption in 

hydrophobic environment by the surfactant molecule (Hugger et al. 2002b). Noteworthy, 

surfactants such as Pluronic P85, Tween-20, Triton X-100 and Cremophor EL can 

modulate MDR by inhibiting P-gp-mediated efflux, with no appreciable effect on the 

transbilayer movement of drugs (Palmeira et al. 2012a). Therefore, surfactants 

demonstrate a transporter-specific interaction rather than unspecific membrane 

permeabilization (Regev et al. 2007). Several in vitro studies performed in Caco-2 cells 

and MDR1-MDCK cells have demonstrated that changes in the membrane’s 

microviscosity caused by surfactants, like poly(ethylene glycol)-300 (PEG-300), 
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cremophor EL and Tween 80, resulted in a significant inhibition of the pump activity 

(Hugger et al. 2002a; Hugger et al. 2002b; Rege et al. 2002). In those studies, PEG-300 

caused an almost complete inhibition of P-gp activity in both Caco-2 and MDR1-MDCK 

cell monolayers, whereas Cremophor EL and Tween 80 only partially inhibited P-gp 

activity in Caco-2 cells (Hugger et al. 2002b). PEG induced changes in P-gp activity are 

probably related to changes in the fluidity of the polar head group regions of cell 

membranes (Hugger et al. 2002b). Moreover, since many surfactants are already 

approved for routine use in pharmaceutical formulations, the use of such compounds 

seems to be an intelligent choice for P-gp modulation. Although, in most of the studies, 

these compounds were tested in vitro, some animal studies are now emerging. For 

example, Eedara and co-workers performed ex vivo, in situ and in vivo studies to evaluate 

the dissolution, permeability and oral bioavailability of fexofenadine hydrochloride by 

preparing lipid surfactant based dispersions. The conducted ex vivo permeation studies, 

using the intestinal gut sac technique, resulted in reduced efflux of the drug by inhibiting 

intestinal P-gp and the in situ perfusion and the in vivo pharmacokinetic studies in male 

wistar rats demonstrated an improved absorption and oral bioavailability from the 

prepared dispersions, when compared to the pure drug (Eedara et al. 2013). Also, in rats 

dosed with raloxifene and tocopheryl polyethylene glycol succinate 1000 (TPPG 1000) it 

was observed an increase in raloxifene oral bioavailability, when compared to control rats 

(Wempe et al. 2009) 

Recently, a growing attention has arisen for the development of multifunctional 

drugs, with the ability to interact with multiple targets related to a specific pathological 

condition (Morphy and Rankovic 2009). In a study performed by Palmeira et al. (2012) 

several aminated thioxanthones were reported as dual inhibitors of cell growth and P-gp 

(Palmeira et al. 2012c), setting a new opportunity for MDR reversal. According to the 

obtained results, 1-[2-(1H-benzimidazol-2yl)ethanamine]-4-propoxy-9H-thioxanthen-9-one 

was the most potent P-gp inhibitor causing, in a P-gp overexpressing cell line (K562Dox 

cells), an accumulation rate of rhodamine123 similar to verapamil. Additionally, other 

strategies have been adopted, such as the design of dual ligands to inhibit P-gp and 

stimulate nitric oxide synthase, as well as inhibitors of more than one transporter from the 

ABC superfamily (Palmeira et al. 2012a). The first strategy has arisen from the observed 

reversal of doxorubicin resistance when HT29-dx resistant cells were incubated with 

inducers of nitric oxide synthesis (Riganti et al. 2005). It was postulated than nitric oxide 

reduces the number of functionally active P-gp, perhaps by altering the proper 

conformation of the transporter (Riganti et al. 2005). In what concerns to the development 

of inhibitors of more than one ABC superfamily transporter, controversial opinions exist. In 

fact, several P-gp inhibitors, such as elacridar and tariquidar, two of the most potent P-gp 
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inhibitors found to date, were reported to interact with other ABC transporters, like the 

BCRP transporter (de Bruin et al. 1999; Kelly et al. 2011; Kruijtzer et al. 2002; Robey et al. 

2004). Therefore, this aspect was faced as a disadvantage since it can increase the 

potential for pharmacokinetic interactions. However, the attempts to develop more 

effective MDR reversers by discovering P-gp selective compounds have, unsurprisingly, 

been unsuccessful. Therefore, an alternative targeting multiple efflux pumps, in some 

instances, may possess a higher therapeutic efficacy than a specific drug (Roth et al. 

2004). A selective P-gp inhibitor would be effective if the tumor to be treated is resistant to 

chemotherapy through P-gp overexpression only. However, if the tumor overexpresses 

both P-gp and MRP1, for example, it would be of great advantage if a “promiscuous” dual 

activity drug targeting both transporters is available. 

In conclusion, although more than 40 years have passed since the isolation of the 

first MDR cells (in 1968) and 32 years since the discovery of the first P-gp inhibitor (in 

1981), an intense search for a “perfect” P-gp inhibitor, that can efficiently modulate the 

pump and restore the efficacy of chemotherapy, continues being performed. The 

demonstrated improved clinical efficacy of various drugs due to P-gp inhibition, especially 

drugs subjected to MDR, led to the design and development of modulators that more 

potent and specifically block P-gp efflux, resulting in improved toxicity profiles (Varma et 

al. 2003). A variety of compounds have been shown to reverse P-gp-mediated MDR and 

some MDR modulators have been undergoing clinical trials. Table 6 illustrates some 

examples of improved pharmacokinetics of P-gp substrates obtained with co-

administration of P-gp inhibitors. The efforts of several investigators and laboratories 

spread all over the world, together with the adoption of new strategies, such as using 

computational techniques as pharmacophore construction or QSAR studies, thus have led 

to an increasing number of new P-gp inhibitors, many of them derivatives of known P-gp 

inhibitors, which have been synthetized according to the features that seem to be 

necessary for P-gp inhibition. However, further clinical investigations are still required to 

accomplish with the clinical reversal of P-gp-mediated MDR. 

 



 

 

Table 6. Examples of improved pharmacokinetics of P-gp substrates with co-administration of P-gp inhibitors. 

P-gp substrate P-gp inhibitor Experimental model Pharmacokinetic effect Literature Reference 
First-generation inhibitors     
     Etoposide Cyclosporine A Cancer patients When used with a high-dose of cyclosporine A, etoposide doses 

should be reduced by approximately 50% to compensate the 
pharmacokinetic effects of cyclosporine A on etoposide; 

(Lum et al. 1992) 

     Daunorubicin Cyclosporine A Cancer patients Interference with daunorubicin pharmacokinetics (List et al. 1993) 
     Doxorubicin  Cyclosporine A Cancer patients Inhibitor dose-dependent permeability enhancement (Erlichman et al. 1993) 
     Mitoxantrone  Quinine Cancer patients No life-threatening toxicity was observed with quinine and it was 

capable of reverting MDR phenotype. Quinine increased  the complete 
remission rate and survival in P-gp-positive myelodysplastic 
syndromes cases treated with intensive chemotherapy 

(Wattel et al. 1998) 

     Digoxina  Verapamil Single-pass perfusion in rats Increase in absorption rate (Sababi et al. 2001) 

Second-generation inhibitors     
     Paclitaxel R-verapamil Cancer patients Delayed mean paclitaxel clearance and increased peak concentration (Tolcher et al. 1996) 
     Doxorubicin  Valspodar (PSC 833)b Cancer patients ∼50% increase in AUC (Giaccone et al. 1997) 

     Paclitaxelc Biricodar (VX-710) Cancer patients More than 50% decrease in paclitaxel clearance (Rowinsky et al. 1998) 
     Paclitaxel Dofequidar (MS-209) Rats and mice 1.9- and 4.5-fold increase in BA in rats and mice, respectively (Kimura et al. 2002) 
     Docetaxel Dofequidar (MS-209) Cancer patients At the highest dose levels, an increase of docetaxel AUC when this 

agent is given in combination with MS209 was observed 
(Diéras et al. 2005) 

Third-generation inhibitors     
     Paclitaxeld Elacridar (GF120918) mdr1ab(−/−) knockout mice 

and wild-type mice 
Increased oral BA (Bardelmeijer et al. 

2000) 
     Doxorubicin  Zosuquidar (LY335979) Cancer patients ~25% increase in BA at doxorubicin dose of 60 mg/m2 and ~15% 

increase at a dose of 75 mg/m2 
(Callies et al. 2003) 

     Paclitaxel Ontogen (OC144093) Cancer patients ∼1.5-fold increase in AUC and ∼2-fold increase in Cmax (Guns et al. 2002) 
     Docetaxele R101933 Cancer patients Pharmacokinetics did not alter in the presence of inhibitor but the 

faecal excretion of docetaxel decreased significantly 
(van Zuylen et al. 2002) 

     Docetaxel Tariquidar Cancer patients Tariquidar was well-tolerated and had less observed systemic 
pharmacokinetic interaction than previous P-gp inhibitors. 
Pharmacokinetic and pharmacodynamic trial using tariquidar showed 
it increased the retention of co-administered docetaxel 

(Kelly et al. 2011) 

     Docetaxel Ontogen (OC144093) Cancer patients The safety of the oral combination of ontogen and docetaxel was good 
and the relative apparent bioavailability was most likely caused by a 
significant effect of ontogen on the oral uptake of docetaxel 

(Kuppens et al. 2005) 

BA, bioavailability; AUC, area under the plasma concentration-time profile curve. a Absorption rate of digoxin varied at different segments of GIT (gastrointestinal tract) at 
different concentrations of verapamil.b Drugs like doxorubicin are transported by P-gp and MRP2, thus non-specific inhibitors (second-generation compounds) when co-
administered largely increase Cmax (maximum concentration ) and AUC. c VX-710 showed a decrease in paclitaxel clearance with a maximum tolerated dose of paclitaxel (<80 
mg/m2) that is roughly half of standard dose of 175 mg/m2.d Pharmacokinetics of paclitaxel in mdr1ab(−/−) knockout mice was not altered by GF120918, whereas a  significant 
increase in oral bioavailability (8.5–40.2%) was observed in wild-type mice. e Docetaxel clearance decreased from 2.5% to less than 1%. Adapted from (Varma et al. 2003). 
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I.6.2. P-gp induction 

Through the up-regulation of drug efflux pumps, such as P-gp, cells can adapt to the 

presence of toxic xenobiotics, providing a long-term survival advantage. In fact, after a 

short-term exposure of cells to a variety of environmental insults, the MDR1 gene is 

activated and a stable MDR phenotype is induced (Sharom 2007; Zhou 2008). It is 

recognized that there are multiple mechanisms by which mRNA synthesis can be 

regulated (splicing, transport, mRNA stability), and some of these mechanisms have 

already been described for the regulation of drug transporters (Lamba et al. 2003; Sharom 

2007; Yague et al. 2003). However, the focus of this dissertation will be limited to those 

situations in which the regulation of expression has been shown to be mediated at the 

level of transcription. In what concerns specifically to the MDR1 expression, it may be up-

regulated by an increase in the amount of MDR1 mRNA through transcriptional regulation, 

or stabilization of the mRNA (Sharom 2007; Yague et al. 2003). The first mechanism will 

be discussed in detail. 

Transcription initiation involves a series of events leading to the formation of the first 

phosphodiester bond in the nascent RNA transcript. Early in the studies of transcription by 

RNA polymerase II (Pol II), the enzyme responsible for the synthesis of protein coding 

RNAs, it became clear that the polymerase alone was not sufficient for specific initiation 

from a DNA template (Scotto and Egan 1998). During the past decade, a tremendous 

effort has been directed at the purification and characterization of the additional protein 

factors required for basal transcription.  

A considerable knowledge on the transcriptional regulation of the MDR1 gene now 

exists (Callaghan et al. 2008; Labialle et al. 2002a; Labialle et al. 2002b; Scotto 2003; 

Scotto and Egan 1998; Shtil and Azare 2005). In general, the transcription of a gene is 

determined by myriad of response elements present within the promoter sequence, by 

their accessibility and complexity, and by transcription factors available to interact with 

these elements (Scotto 2003). The composition of these transcription factors is influenced 

by both the intracellular environment and extracellular signals, which can vary 

tremendously during the life of the cell. Moreover, the multi-protein complexes that 

assemble on the promoter sequence are also dynamic in nature, and influenced by the 

chromatin structure (Scotto 2003). Thus, the nature of these dynamic multiprotein 

complexes is grossly dictated by promoter architecture, yet subtly influenced by different 

signals, leading to profound regulatory switches. Additionally, multiple interacting 

pathways for activation of MDR1 gene appear to be present (Sharom 2007), and this 

redundant network of MDR1 regulation ensures the rapid emergence of resistance in cells 

subjected to chemical stress. Moreover, it appears that the MDR1 gene is regulated by 
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specialized multiprotein complexes that include both common basic components (the 

basal or general transcription factors), as well as unique components that tailor a complex 

for the transduction of signals initiated by particular developmental, metabolic or 

environmental stimuli (Scotto 2003). 

By more fully understanding the molecular mechanisms through which the MDR1 

gene is activated, it may be possible to intervene clinically to increase or prevent its 

transcriptional activation and, consequently, to reduce the intracellular concentration of 

harmful xenobiotics, or to overcome the MDR phenomenon, respectively.  

I.6.2.1. P-gp inducers 

Although P-gp is constitutively expressed in a cell- and tissue-specific manner, it 

may be induced by many drugs, including dexamethasone, rifampicin, the herbal 

antidepressant St John’s wort and chemotherapeutic agents namely, doxorubicin, 

daunorubicin and vinblastine (Chaudhary and Roninson 1993; Chin et al. 1990a; Fardel et 

al. 1997; Harmsen et al. 2009; Hu et al. 1999; Kageyama et al. 2006; Kim et al. 2008; 

Nielsen et al. 1998; Tian et al. 2005; Zhou 2008). Table 7 compiles known P-gp inducers 

reported in the literature, as well as the experimental models and the methods used in 

each study, and highlights the enormous structural diversity of the reported inducers. 

Moreover, P-gp is induced not only by a number of chemical compounds, but also by 

other environmental factors, such as X-irradiation, UV-irradiation, cytokines, oxygen free 

radicals, tumor suppressor genes and heat shock (Chin et al. 1990b; Hu et al. 2000; Kioka 

et al. 1992b; Miyazaki et al. 1992; Ohga et al. 1998; Uchiumi et al. 1993; Wartenberg et al. 

2005; Zastawny et al. 1993; Zhou 2008). 

I.6.2.2. Regulation of P-gp expression at the transcription level 

It is generally accepted that, in many cell lines and human metastatic sarcomas, P-

gp expression is increased through the up-regulation of human MDR1 (hMDR1) mRNA 

levels, (Hennessy and Spiers 2007). The increased hMDR1 mRNA level can be linked 

either to gene amplification and/or increased gene transcription (Fojo et al. 1985; 

Roninson 1992; Scotto et al. 1986; Shen et al. 1986). The MDR1 gene amplification 

seems to involve four to five neighbouring genes, which are not related to MDR and that 

are organized in amplicon (de Bruijn et al. 1986). 

The human MDR1 promoter region is atypical, as it does not contain a TATA 

promoter sequence (TATA-less promoter), and has multiple response elements  (Figure 

12), supporting the complex regulatory pattern controlling P-gp expression (Hennessy and 

Spiers 2007; Labialle et al. 2002b). 



 

 

Table 7. Known P-gp inducers 

Inducer Experimental Model Experimental Method Literature Reference 

2-Acetylaminofluorene Sprague-Dawley rats (Liver) Western blot (Tateishi et al. 1999) 
Human hepatic epithelial Hep G2 cells (hepatocellular carcinoma) and 
human embryonic kidney 293T cells 

RNase protection assay (Kuo et al. 2002) 

Abacavir Human brain microvessel endothelial hCMEC/D3 cells Western blot (Chan et al. 2013a) 

Actinomycin  Human epidermoid cancer KB cells (carcinoma, papilloma) aCAT activity assay (MDR1 promoter 
activity) 

(Asakuno et al. 1994) 

Human T lymphoblastoid cell line CCRF-CEM Northern blot (Gekeler et al. 1988) 

Aldosterone Human epithelial renal HK2 cells Western blot  (Romiti et al. 2002) 
Ambrisentan Human intestinal epithelial LS180 cells (Dukes' type B, colorectal 

adenocarcinoma) 
Western blot and RT-PCR (Weiss et al. 2013) 

Amiodarone Human intestinal epithelial LS180 cells (Dukes' type B, colorectal 
adenocarcinoma) 

Western blot (Schuetz et al. 1996a) 

Wistar rats (Liver, and kidney) Western blot (Cermanova et al. 2009) 

Amprenavir Human intestinal epithelial LS180V cells  (LS180 cells  selected for elevated 
P-gp levels with increasing concentrations of vinblastine) (Dukes' type B, 
colorectal adenocarcinoma) 

Western blot (Perloff et al. 2000) 

Human intestinal epithelial T84 cells (colorectal adenocarcinoma) RT-PCR (Haslam et al. 2008a) 
Human brain microvessel endothelial hCMEC/D3 cells Western blot (Chan et al. 2013a) 

m-Amsacrine Rat  PC12 cells (pheochromocytoma), rat L6 cells (skeletal muscle 
myocyte), rat NRK-52E cells (normal kidney), rat IEC-18 cells (ileum), rat 
H4IIEC cells (liver) and mouse NIH 3T3 cells (fibroblast) 

Slot blot and Northern blot (Chin et al. 1990a) 

Apigenin Human intestinal epithelial Caco-2 cells (colorectal adenocarcinoma) RT-PCR (Lohner et al. 2007) 

Artemisinine Human intestinal epithelial HT29 cells (colorectal adenocarcinoma) Western blot and  RT-PCR (Riganti et al. 2009b) 
Asiatic acid Human intestinal epithelial LS180 cells (Dukes' type B, colorectal 

adenocarcinoma) 
Western blot and Immunocytochemistry (Abuznait et al. 2011b) 

Atazanavir Human brain microvessel endothelial hCMEC/D3 cells Western blot and Immunocytochemistry (Zastre et al. 2009) 

Atorvastatin Human intestinal epithelial T84 cells (colorectal adenocarcinoma) RT-PCR (Haslam et al. 2008a) 

Avermectin Drosophila Schneider 2 (S2) cells Western blot and Immunocytochemistry (Luo et al. 2013) 

Beclomethasone Human intestinal epithelial Caco-2 cells, sub-clone CLEFF 9 (colorectal 
adenocarcinoma) 

Western blot (Crowe and Tan 2012) 

Benzo(a)pyrene Human intestinal epithelial Caco-2 cells (colorectal adenocarcinoma) Western blot and RT-PCR (Sugihara et al. 2007) 

Benzo(e)pyrene Human intestinal epithelial Caco-2 cells (colorectal adenocarcinoma) Western blot and RT-PCR (Sugihara et al. 2007) 
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Table 7. (cont.) Known P-gp inducers 

Inducer Experimental Model Experimental Method Literature Reference 

Berberine Human Hep3B, HepG2, and HA22T/VGH cells (hepatoma cell lines) Flow cytometry (Lin et al. 1999a) 

Betamethasone Cytotrophoblasts isolated from normal human full-term placentas RT-PCR (Manceau et al. 2012) 

Bilirubin Human intestinal epithelial T84 cells (colorectal adenocarcinoma) and 
human intestinal epithelial Caco-2 cells (colorectal adenocarcinoma) 

RT-PCR (Naruhashi et al. 2011) 

Bosentan Human intestinal epithelial LS180 cells (Dukes' type B, colorectal 
adenocarcinoma) 

Western blot and RT-PCR (Weiss et al. 2013) 

Bromocriptine Rat hepatoma Reuber H-35 cells Western blot, RT-PCR and Northern 
blot 

(Furuya et al. 1997) 

Budesonide Human intestinal epithelial LS180 cells (Dukes' type B, colorectal 
adenocarcinoma) 

Western blot and RT-PCR (Maier et al. 2007) 

Human intestinal epithelial Caco-2 cells (colorectal adenocarcinoma) , sub-
clone CLEFF 9 

Western blot (Crowe and Tan 2012) 

Caffeine Human intestinal epithelial LS180 cells (Dukes' type B, colorectal 
adenocarcinoma) 

Western blot and  RT-PCR (Abuznait et al. 2011a) 

Cadmium chloride Human intestinal epithelial Caco-2 cells clone TC7 (colorectal 
adenocarcinoma) 

Western blot (Huynh-Delerme et al. 
2005) 

Capsaicin Human intestinal epithelial Caco-2 cells (colorectal adenocarcinoma) Western blot and RT-PCR (Han et al. 2006) 

Carbamazepine Human intestinal epithelial LS 174T cells (Dukes' type B, colorectal 
adenocarcinoma) 

Northern blot (Geick et al. 2001) 

Healthy humans (biopsy of tissue specimens from the lower duodenum) RT-PCR  (Giessmann et al. 2004) 
Healthy humans (lymphocytes) Western blot and RT-PCR (Owen et al. 2006) 
Sprague–Dawley rats (capillary endothelial vessels, brain cortex and 
hippocampus) 

Western blot and 
Immunohistochemistry 

(Wen et al. 2008) 

Catechin Human intestinal epithelial Caco-2 cells (colorectal adenocarcinoma) Western blot and RT-PCR (Lohner et al. 2007) 

Celiprolol Human intestinal epithelial Caco-2 cells (colorectal adenocarcinoma) Flow cytometry (Anderle et al. 1998) 
Cembratriene Human intestinal epithelial LS180 cells (Dukes' type B, colorectal 

adenocarcinoma) 
Western blot and Immunocytochemistry (Abuznait et al. 2011b) 

R-Cetirizineb Human intestinal epithelial Caco-2 cells (colorectal adenocarcinoma) Flow cytometry and RT-PCR (Shen et al. 2007) 

Cytarabine Human leukaemia cell lines: K562 (bone marrow lymphoblast; chronic 
myelogenous leukaemia), KG1 cells (bone marrow myeloblast; acute 
myelogenous leukaemia) and H9 cells (cutaneous T lymphocyte;lymphoma) 
Human carcinoma cell lines: KB-3-1 (cervix carcinoma ) and EJ cells 
(bladder carcinoma) 

Flow cytometry and cDNA-PCR (Chaudhary and Roninson 
1993) 
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Table 7. (cont.) Known P-gp inducers 

Inducer Experimental Model Experimental Method Literature Reference 

Chlorambucil Human leukaemia K562 cells (bone marrow lymphoblast; chronic 
myelogenous leukaemia 

cDNA-PCR (Chaudhary and Roninson 
1993) 

Cholate Human intestinal epithelial T84 cells (colorectal adenocarcinoma) and 
human intestinal epithelial Caco-2 cells (colorectal adenocarcinoma) 

RT-PCR (Naruhashi et al. 2011) 

Chrysin Human intestinal epithelial Caco-2 cells (colorectal adenocarcinoma) Western blot, Flow cytometry and RT-
PCR 

(Lohner et al. 2007) 

Ciclosenide Human intestinal epithelial Caco-2 cells (colorectal adenocarcinoma) , sub-
clone CLEFF 9 

Western blot (Crowe and Tan 2012) 

Cisplatin Human leukaemia K562 cells (bone marrow lymphoblast; chronic 
myelogenous leukaemia 

cDNA-PCR (Chaudhary and Roninson 
1993) 

Human KB epidermoid carcinoma Kst-6 cellsc aCAT activity assay (MDR1 promoter 
activity) 

(Ohga et al. 1998) 

Sprague-Dawley rats (Liver, kidney and intestine) Western blot (Demeule et al. 1999) 
Porcine kidney epithelial LLC-PK1 cells RT-PCR (Takara et al. 2003b) 

Clotrimazole Human intestinal epithelial LS 180 cells and the adriamycin-resistant 
subline, LS1 80/AD5O cells (Dukes' type B, colorectal adenocarcinoma) 

Western blot (Schuetz et al. 1996a) 

Human intestinal epithelial LS 174T cells (Dukes' type B, colorectal 
adenocarcinoma) 

Northern blot (Geick et al. 2001) 

Colchicine Wistar rats (Liver) Northern blot (Vollrath et al. 1994) 

Human peripheral blood promyeloblasts,  HL-60 cells (acute promyelocytic 
leukaemia) 

Flow cytometry (Decleves et al. 1998) 

Corticosterone Human intestinal epithelial LS 174T cells (Dukes' type B, colorectal 
adenocarcinoma) 

Northern blot (Geick et al. 2001) 

Curcuma extracts Human intestinal epithelial Caco-2 cells (colorectal adenocarcinoma) Western blot and RT-PCR (Hou et al. 2008) 

Cyanidin Human intestinal epithelial Caco-2 cells (colorectal adenocarcinoma) Western blot, Flow cytometry and RT-
PCR 

(Lohner et al. 2007) 

Cycloheximided Primary rat hepatocytes, Human Hep G2 cells (hepatocellular carcinoma), 
Mouse  Hepa 1 cells (mouse hepatoma cells) and Rat RC3 cells (a single 
cell clone of the rat H4-II-E hepatoma cell line) 

Northern blot (Gant et al. 1992) 

Cyclophosphamide Human intestinal epithelial LS180 cells (Dukes' type B, colorectal 
adenocarcinoma) 

Western blot (Harmsen et al. 2009) 59 



 

 

Table 7. (cont.) Known P-gp inducers 

Inducer Experimental Model Experimental Method Literature Reference 

Cyclosporine A Sprague-Dawley rats (tubular cells of the kidney) Western blot and 
Immunohistochemistry 

(del Moral et al. 1997) 

Human epithelial renal HK2 cells Western blot and RT-PCR (Romiti et al. 2002) 

Cytarabine Human peripheral blood promyeloblasts,  HL-60S cells (sensitive to 
doxorubicin) and the sub-lines HL-60 R0.5 and HL-60 R5, resistant to 0.5 
μM and 5 μM doxorubicin, respectively (acute promyelocytic leukaemia) 

Western blot and RT-PCR (Prenkert et al. 2009) 

Daidzein Human intestinal epithelial Caco-2 cells (colorectal adenocarcinoma) Western blot and RT-PCR (Lohner et al. 2007) 

Daunorubicin Rat PC12 cells (pheochromocytoma), rat L6 cells (skeletal muscle myocyte), 
rat NRK-52E cells (normal kidney), rat IEC-18 cells (ileum), rat H4IIEC cells 
(liver) and mouse NIH 3T3 cells (fibroblast) 

Slot blot and Northern blot (Chin et al. 1990a) 

Human leukaemia K562 cells (bone marrow lymphoblast; chronic 
myelogenous leukaemia 

cDNA-PCR (Chaudhary and Roninson 
1993) 

Human CEM/A7R cells (a variant  of CCRF-CEM cells -human peripheral 
blood T lymphoblasts derived from acute lymphoblastic leukaemia) 

Flow cytometry and Northern blot (Hu et al. 1995) 

Murine Ehrlich ascites tumour EHR2 cells Western blot and Immunocytochemistry (Nielsen et al. 1998) 

Human T lymphoblasts MOLT-4 cells (acute lymphoblastic leukaemia) Flow cytometry and RT-PCR (Liu et al. 2002b) 

Daurunavir Human brain microvessel endothelial hCMEC/D3 cells Western blot (Chan et al. 2013a) 

Depsipeptide (FK228) Human peripheral blood mononuclear cells (normal and malignant) 
108, 121, 127, and 143 renal carcinoma cell lines 

RT-PCR 
RT-PCR 

(Robey et al. 2006) 

Human intestinal epithelial SW620 cells (Dukes' type C, colorectal 
adenocarcinoma 

Flow cytometry (Robey et al. 2006) 

Desvenlafaxine Friend Virus B-Type (FVB) mice (intestine) ELISA (Bachmeier et al. 2013) 

Dexamethasone Mouse hepatoma Hepa1c1c cells and Human hepatic HepG2 cells 
(hepatocellular carcinoma) 

Western blot  and RNase protection 
assay 

(Zhao et al. 1993) 

Human intestinal epithelial LS 180 cells and the adriamycin-resistant 
subline, LS1 80/AD5O cells (Dukes' type B, colorectal adenocarcinoma) 

Western blot and  RT-PCR (Abuznait et al. 2011a; 
Schuetz et al. 1996a) 

Sprague-Dawley rats (liver) Western blot  and RNase protection 
assay 

(Salphati and Benet 1998) 

Human hepatic HepG2 cells (hepatocellular carcinoma) and  NMRI mice 
(liver, heart, brain, and colon) 

RT-PCR (Sérée et al. 1998) 

Sprague-Dawley rats (liver and intestine) Western blot (Lin et al. 1999b) 
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Table 7. (cont.) Known P-gp inducers 

Inducer Experimental Model Experimental Method Literature Reference 

Dexamethasone (cont.) 
 
 

Sprague–Dawley rats (brain) Western blot (Aquilante et al. 2000) 

Human intestinal epithelial LS 174T cells (Dukes' type B, colorectal 
adenocarcinoma) 

Northern blot (Geick et al. 2001) 

Human epithelial renal HK2 cells Western blot and RT-PCR (Romiti et al. 2002) 

CD-1 rats (intestinal microsomes and brain microvessel endothelial cells) Western blot (Perloff et al. 2004) 

Wistar rats (lung) Western blot (Dinis-Oliveira et al. 
2006c) 

Wistar rats (Liver and intestine) Western blot (Kageyama et al. 2006) 

Primary rat brain microvascular endothelial cells Western blot (Narang et al. 2008) 

Pregnant FVB mice (placenta) Western blot and RT-PCR (Petropoulos et al. 2010) 

Human retinal pigment epithelial (RPE) D407 cells Western blot and  RT-PCR (Zhang et al. 2012) 

Cytotrophoblasts isolated from normal human full-term placentas RT-PCR (Manceau et al. 2012) 

CD-1 mice (brain capillaries) Western blot (Chan et al. 2013b) 

Diclofenac Human intestinal epithelial Caco-2 cells (colorectal adenocarcinoma) RT-PCR (Takara et al. 2009) 

Digoxin Human intestinal epithelial Caco-2 cells (colorectal adenocarcinoma) and 
Human intestinal epithelial LS 180 cells (Dukes' type B, colorectal 
adenocarcinoma) 

RT-PCR (Takara et al. 2003a; 
Takara et al. 2002) 

Human intestinal epithelial T84 cells (colorectal adenocarcinoma) Western blot, Immunocytochemistry 
and RT-PCR 

(Haslam et al. 2008b) 

Human intestinal epithelial HT29 cells (colorectal adenocarcinoma) Western blot and RT-PCR (Riganti et al. 2009a) 

Human intestinal epithelial T84 cells (colorectal adenocarcinoma) and 
human intestinal epithelial Caco-2 cells (colorectal adenocarcinoma) 

RT-PCR (Naruhashi et al. 2011) 

1α,25-Dihydroxyvitamin 
D3 

Human epithelial renal HK2 cells Western blot and RT-PCR (Romiti et al. 2002) 
efxr(−/−) and wild-type fxr(+/+) mice (kidney and brain) Western blot and RT-PCR (Chow et al. 2011) 

Human brain microvessel endothelial hCMEC/D3 cells, rat brain microvessel 
endothelial RBE4 cells and isolated rat brain capillaries 

Western blot and RT-PCR (Durk et al. 2012) 

Diltiazem Human intestinal epithelial LS 180 cells and its drug-resistant sublines, LS 
180-Ad50 and LS 180-Vb2 cells (Dukes' type B, colorectal adenocarcinoma) 

Western blot and Northern blot (Herzog et al. 1993) 

Dimethylformamide Human intestinal epithelial  SW620 cells (Dukes' type C, colorectal 
adenocarcinoma)  

RNase protection assay (Mickley et al. 1989) 61 



 

 

Table 7. (cont.) Known P-gp inducers 

Inducer Experimental Model Experimental Method Literature Reference 

6,16α-
dimethylpregnenolone 

Human intestinal epithelial LS 174T cells (Dukes' type B, colorectal 
adenocarcinoma) 

Northern blot (Geick et al. 2001) 

Dimethylsulfoxide Human intestinal epithelial  SW620 cells (Dukes' type C, colorectal 
adenocarcinoma)  

RNase  protection assay (Mickley et al. 1989) 

Docetaxel Human intestinal epithelial LS180 cells (Dukes' type B, colorectal 
adenocarcinoma) 

Western blot (Harmsen et al. 2009) 

Doxorubicin Rat PC12 cells (pheochromocytoma), rat L6 cells (skeletal muscle myocyte), 
rat NRK-52E cells (normal kidney), rat IEC-18 cells (ileum), rat H4IIEC cells 
(liver) and mouse NIH 3T3 cells (fibroblast) 

Slot blot and Northern blot (Chin et al. 1990a) 

Human leukaemia cell lines: K562 (bone marrow lymphoblast; chronic 
myelogenous leukaemia) and H9 cells (cutaneous T lymphocyte;lymphoma) 
Human carcinoma cell lines: KB-3-1 (cervix carcinoma )  

cDNA-PCR 
 
cDNA-PCR 

(Chaudhary and Roninson 
1993) 
(Chaudhary and Roninson 
1993) 

Human CEM/A7R cells (a variant  of CCRF-CEM cells -human peripheral 
blood T lymphoblasts derived from acute lymphoblastic leukaemia)  

Flow cytometry and Northern blot (Hu et al. 1995) 

Rat liver epithelial cells and primary rat hepatocytes  Western blot and Northern blot (Fardel et al. 1997) 

Solid human tumours (sarcoma pulmonary metastases) RT-PCR (Abolhoda et al. 1999) 

Human T lymphoblasts MOLT-4 cells (acute lymphoblastic leukaemia) Flow cytometry and RT-PCR (Liu et al. 2002b) 

Mouse skin lymphoblast (lymphocytic leukaemia) Western blot (Boháčová et al. 2006) 
Human intestinal epithelial Caco-2 cells  (colorectal adenocarcinoma) Flow cytometry (Wongwanakul et al. 

2013) 

Doxycycline Human breast carcinoma epithelial MCF-7 cells Western blot and Northern blot (Mealey et al. 2002) 

Efavirenz Human brain microvessel endothelial hCMEC/D3 cells Western blot (Chan et al. 2013a) 

Emetined Primary rat hepatocytes, Human Hep G2 cells (hepatocellular carcinoma), 
Mouse  Hepa 1 cells (mouse hepatoma cells) and Rat RC3 cells (a single 
cell clone of the rat H4-II-E hepatoma cell line) 

Northern blot (Gant et al. 1992) 

Epigallocatechin-3-
gallate (EGCG) 

Human intestinal epithelial Caco-2 cells (colorectal adenocarcinoma) Western blot and RT-PCR (Lohner et al. 2007) 

Epirubicin Human CEM/A7R cells (a variant  of CCRF-CEM cells -human peripheral 
blood T lymphoblasts derived from acute lymphoblastic leukaemia) 

Flow cytometry and Northern blot (Hu et al. 1999; Hu et al. 
1995) 

Eriodictyol Human intestinal epithelial Caco-2 cells (colorectal adenocarcinoma) Western blot  (Lohner et al. 2007) 

Erythromycin Rhesus monkeys (liver) Western blot and Northern blot (Gant et al. 1995) 
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Table 7. (cont.) Known P-gp inducers 

Inducer Experimental Model Experimental Method Literature Reference 

Erythromycin (cont.) Human intestinal epithelial LS180 cells (Dukes' type B, colorectal 
adenocarcinoma) 

Western blot (Schuetz et al. 1996a) 

β-Estradiol Ovariectomized Swiss-Webster mice (uterine endometrial secretory 
epithelium)f 

In situ hybridization and 
Immunocytochemistry 

(Arceci et al. 1990) 

Human intestinal epithelial LS180 cells (Dukes' type B, colorectal 
adenocarcinoma) 

Western blot and  
RT-PCR 

(Abuznait et al. 2011a) 

Etoposide Human leukaemia K562 cells (bone marrow lymphoblast; chronic 
myelogenous leukaemia 

cDNA-PCR (Chaudhary and Roninson 
1993) 

Human KB epidermoid carcinoma Kst-6 cells aCAT activity assay (MDR1 promoter 
activity) 

(Ohga et al. 1998) 

Human epithelial HeLa cells (cervix adenocarcinoma) Luciferase activity assay ( MDR1 
promoter activity) 

(Vilaboa et al. 2000) 

ddY mice (mucosal membrane of the ileal tissues) Western blot (Kobori et al. 2013b) 

Fenbufen Human intestinal epithelial Caco-2 cells (colorectal adenocarcinoma) RT-PCR (Takara et al. 2009) 

Flavone Human intestinal epithelial Caco-2 cells (colorectal adenocarcinoma) Western blot, Flow cytometry and RT-
PCR 

(Lohner et al. 2007) 

C57BL/6 mice (jejunum, duodenum and ileum) Western blot (Lohner et al. 2007) 

Fluorouracil Human leukaemia K562 cells (bone marrow lymphoblast; chronic 
myelogenous leukaemia 

cDNA-PCR (Chaudhary and Roninson 
1993) 

Flutamide Human intestinal epithelial LS180 cells (Dukes' type B, colorectal 
adenocarcinoma) 

Western blot (Harmsen et al. 2009) 

Fluticasone Human intestinal epithelial Caco-2 cells (colorectal adenocarcinoma) , sub-
clone CLEFF 9 

Western blot (Crowe and Tan 2012) 

Genistein Human intestinal epithelial Caco-2 cells (colorectal adenocarcinoma) Western blot, Flow cytometry and RT-
PCR 

(Lohner et al. 2007) 

Ginkgolides A and B Human intestinal epithelial LS180 cells (Dukes' type B, colorectal 
adenocarcinoma) 

Western blot and  RT-PCR (Satsu et al. 2008) 

Hydroxyurea Human leukaemia K562 cells (bone marrow lymphoblast; chronic 
myelogenous leukaemia 

cDNA-PCR (Chaudhary and Roninson 
1993) 

Hyperforin Human intestinal epithelial LS180 cells (Dukes' type B, colorectal 
adenocarcinoma)  

Western blot and  RT-PCR (Abuznait et al. 2011a; 
Tian et al. 2005) 63 



 

 

Table 7. (cont.) Known P-gp inducers 

Inducer Experimental Model Experimental Method Literature Reference 

Hyperforin (cont.) Isolated brain capillaries from CB6F1 hPXR transgenic miceg Western blot and immunocytochemistry (Bauer et al. 2006) 

Hypericin Human intestinal epithelial LS180V cells (MDR sub-line selected from the 
parental LS180 cell line with 4 ng ml−1 vinblastine (Dukes' type B, colorectal 
adenocarcinoma) 

Western blot (Perloff et al. 2001b) 

Hypericum perforatum 
extracts 

Human intestinal epithelial LS180V cells (MDR sub-line selected from the 
parental LS180 cell line with 4 ng ml−1 vinblastine (Dukes' type B, colorectal 
adenocarcinoma) 

Western blot (Perloff et al. 2001b) 

Human intestinal epithelial LS180 cells (Dukes' type B, colorectal 
adenocarcinoma)  

Western blot (Tian et al. 2005) 

Idarubicin Human CEM/A7R cells (a variant  of CCRF-CEM cells -human peripheral 
blood T lymphoblasts derived from acute lymphoblastic leukaemia) 

Flow cytometry and Northern blot (Hu et al. 1999) 

Ifosfamide Human intestinal epithelial LS180 cells (Dukes' type B, colorectal 
adenocarcinoma) 

Western blot (Harmsen et al. 2009) 

Indinavir Human intestinal epithelial LS180V cells  (LS180 cells  selected for elevated 
P-gp levels with increasing concentrations of vinblastine) (Dukes' type B, 
colorectal adenocarcinoma) 

Western blot (Perloff et al. 2000) 

Indomethacin Human intestinal epithelial Caco-2 cells (colorectal adenocarcinoma) RT-PCR (Takara et al. 2009) 

Insulin Rat hepatoma H-4-II-E cells RNase Protection Assay (Zhou and Kuo 1997) 

Sprague–Dawley rats (cerebral cortex and primarily cultured rat brain 
microvessel endothelial cells) 

Western blot and  RT-PCR (Liu et al. 2008) 

Primarily cultured rat brain microvessel endothelial cells Western blot (Liu et al. 2009) 

Isosafrole Fischer rats (Liver) Northern blot (Burt and Thorgeirsson 
1988) 

Human intestinal epithelial LS 180 cells (Dukes' type B, colorectal 
adenocarcinoma) 

Western blot (Schuetz et al. 1996a) 

Isoxanthohumol Human intestinal epithelial Caco-2 cells (colorectal adenocarcinoma) Western blot, Flow cytometry and RT-
PCR 

(Lohner et al. 2007) 

Ivermectin JWZ murine hepatic cells RT-PCR (Ménez et al. 2012) 

Lopinavir Human brain microvessel endothelial hCMEC/D3 cells Western blot (Chan et al. 2013a) 

LY191401 Human intestinal LS1 80/AD5O cells (adriamycin-resistant subline) (Dukes' 
type B, colorectal adenocarcinoma) 

Western blot and Northern blot (Bhat et al. 1995) 

64 



 

 

Table 7. (cont.) Known P-gp inducers 

Inducer Experimental Model Experimental Method Literature Reference 

Mangiferin (polyphenol 
from Mangifera indica) 

Human epithelial renal HK2 cells  Western blot and  RT-PCR (Chieli et al. 2010) 

Methotrexate Human leukaemia cell lines: K562 (bone marrow lymphoblast; chronic 
myelogenous leukaemia) and H9 cells (cutaneous T lymphocyte;lymphoma) 

cDNA-PCR (Chaudhary and Roninson 
1993) 

Mouse fibroblast 3T6-C26 cells Flow cytometry (de Graaf et al. 1996) 

Methylprednisolone Human intestinal epithelial Caco-2 cells (colorectal adenocarcinoma) , sub-
clone CLEFF 9 

Western blot (Crowe and Tan 2012) 

Human alveolar type II-like epithelial A549 cells (lung carcinoma) Western blot and RT-PCR (Zerin et al. 2012) 

Midalozam Human intestinal epithelial LS 180 cells and the adriamycin-resistant 
subline, LS1 80/AD5O cells (Dukes' type B, colorectal adenocarcinoma) 

Western blot (Schuetz et al. 1996a) 

Mifepristone (RU486) Human intestinal epithelial LS 174T cells (Dukes' type B, colorectal 
adenocarcinoma) 

Northern blot (Geick et al. 2001) 

Mitoxantrone Wistar rats (liver, intestine, kidney) and primary cultured rat and mouse 
hepatocytes 

Western blot and Northern blot (Schrenk et al. 1996) 

Rat PC12 cells (pheochromocytoma), rat L6 cells (skeletal muscle myocyte), 
rat NRK-52E cells (normal kidney), rat IEC-18 cells (ileum), rat H4IIEC cells 
(liver) and mouse NIH 3T3 cells (fibroblast) 

Slot blot and Northern blot (Chin et al. 1990a) 

Morphine Sprague–Dawley rats (brain) Western blot (Aquilante et al. 2000) 

Sprague–Dawley rats (brain vessels) Western blot and RT-PCR (Yousif et al. 2012) 

MX2 Human CEM/A7R cells (a variant  of CCRF-CEM cells -human peripheral 
blood T lymphoblasts derived from acute lymphoblastic leukaemia) 

Flow cytometry and Northern blot (Hu et al. 1999) 

Myricetin Human intestinal epithelial Caco-2 cells (colorectal adenocarcinoma) Western blot, Flow cytometry and RT-
PCR 

(Lohner et al. 2007) 

Naringenin Human intestinal epithelial Caco-2 cells (colorectal adenocarcinoma) Western blot  (Lohner et al. 2007) 

Nefazodone Human intestinal epithelial LS180V cells  (LS180 cells  selected for elevated 
P-gp levels with increasing concentrations of vinblastine) (Dukes' type B, 
colorectal adenocarcinoma) 

Western blot (Störmer et al. 2001) 

Nelfinavir Human intestinal epithelial LS180V cells (LS180 cells  selected for elevated 
P-gp levels with increasing concentrations of vinblastine) (Dukes' type B, 
colorectal adenocarcinoma) 

Western blot (Perloff et al. 2000) 

Nevirapine Human brain microvessel endothelial hCMEC/D3 cells Western blot (Chan et al. 2013a) 
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Table 7. (cont.) Known P-gp inducers 

Inducer Experimental Model Experimental Method Literature Reference 

Nicardipine Human intestinal epithelial LS 180 cells and its drug-resistant sublines, LS 
180-Ad50 and LS 180-Vb2 cells (Dukes' type B, colorectal adenocarcinoma) 

Western blot and Northern blot (Herzog et al. 1993) 

Nifedipine Human intestinal epithelial LS 180 cells and its drug-resistant sublines, LS 
180-Ad50 and LS 180-Vb2 cells (Dukes' type B, colorectal adenocarcinoma) 

Western blot and Northern blot (Herzog et al. 1993; 
Schuetz et al. 1996a) 

Human intestinal epithelial LS 174T cells (Dukes' type B, colorectal 
adenocarcinoma) 

Northern blot (Geick et al. 2001) 

Nimesulide Human intestinal epithelial Caco-2 cells (colorectal adenocarcinoma) RT-PCR (Takara et al. 2009) 

Norathyriol (polyphenol 
from Mangifera indica) 

Human epithelial renal HK2 cells  Western blot and  RT-PCR (Chieli et al. 2010) 

Oleocanthal Human intestinal epithelial LS180 cells (Dukes' type B, colorectal 
adenocarcinoma) 

Western blot and Immunocytochemistry (Abuznait et al. 2011b) 

Ouabain Human intestinal epithelial HT29 cells (colorectal adenocarcinoma) Western blot and  RT-PCR (Riganti et al. 2009a) 

Oxycodone Sprague Dawley rats (intestine, liver, kidney and brain) Western blot and (Hassan et al. 2007) 

Paclitaxel Human intestinal epithelial LS180 cells (Dukes' type B, colorectal 
adenocarcinoma) 

Western blot (Harmsen et al. 2009) 

Parthenolide Human intestinal epithelial HT29 cells (colorectal adenocarcinoma) Western blot and  RT-PCR (Riganti et al. 2009b) 

Pentylenetetrazole Human intestinal epithelial LS180 cells (Dukes' type B, colorectal 
adenocarcinoma) 

Western blot and  RT-PCR (Abuznait et al. 2011a) 

Phenobarbital Human intestinal epithelial LS 180 cells and the adriamycin-resistant 
subline, LS1 80/AD5O cells (Dukes' type B, colorectal adenocarcinoma) 

Western blot (Schuetz et al. 1996a) 

Sprague–Dawley rats (capillary endothelial vessels, brain cortex and 
hippocampus) 

Western blot and 
Immunohistochemistry 

(Wen et al. 2008) 

Phenothiazine Fischer rats (Liver) Northern blot (Burt and Thorgeirsson 
1988) 

Wistar rats ( isolated bile canalicular membrane vesicles) Western blot (Watanabe et al. 1995) 

Sprague-Dawley rats (Liver) Western blot (Tateishi et al. 1999) 

Phenytoin Human intestinal epithelial LS 180 cells and the adriamycin-resistant 
subline, LS1 80/AD5O cells (Dukes' type B, colorectal adenocarcinoma) 

Western blot (Schuetz et al. 1996a) 

Sprague–Dawley rats (capillary endothelial vessels, brain cortex and 
hippocampus) 

Western blot and 
Immunohistochemistry 

(Wen et al. 2008) 

Phorbol 12-myristate 
13-acetate (PMA) 

Human promonocytic U937 cells Flow cytometry (Combates et al. 1997) 
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Table 7. (cont.) Known P-gp inducers 

Inducer Experimental Model Experimental Method Literature Reference 

Piperine  Wistar rats (ileum) and Human intestinal epithelial Caco-2 cells (colorectal 
adenocarcinoma) 

Western blot and RT-PCR (Han et al. 2008) 

Platelet-activating factor Human epithelial renal HK2 cells Western blot and RT-PCR (Romiti et al. 2002) 

Prednisolone Dogs (lamina propria lymphocytes of duodenal biopsy samples) Immunohistochemistry (Allenspach et al. 2006) 

5β-Pregnane-3,20-
dione 

Human intestinal epithelial LS 174T cells (Dukes' type B, colorectal 
adenocarcinoma) 

Northern blot (Geick et al. 2001) 

Pregnenolone-16α-
carbonitrile 
 

Human intestinal epithelial LS 174T cells (Dukes' type B, colorectal 
adenocarcinoma) 

Northern blot (Geick et al. 2001) 

Isolated brain capillaries from Isolated brain capillaries from CB6F1 wild 
type mice 

Western blot and immunocytochemistry (Bauer et al. 2006) 

Probenecid Rhesus monkeys (liver) Northern blot (Gant et al. 1995) 

Quercetin Human intestinal epithelial Caco-2 cells (colorectal adenocarcinoma) Western blot, Flow cytometry and RT-
PCR 

(Lohner et al. 2007) 

Quinidine Human intestinal epithelial T84 cells (colorectal adenocarcinoma) RT-PCR (Haslam et al. 2008a) 

Rapamycin or Sirolimus Human intestinal epithelial LS 180 cells (Dukes' type B, colorectal 
adenocarcinoma) 

Western blot (Schuetz et al. 1996a) 

Reduced rifampicin 
derivative (RedRif) 

Rat brain microvessel endothelial RBE4 cells Western blot (Vilas-Boas et al. 2013b) 

Rescinnamine Human intestinal LS1 80/AD5O cells (adriamycin-resistant subline) (Dukes' 
type B, colorectal adenocarcinoma) 

Western blot and Northern blot (Bhat et al. 1995) 

Reserpine Human intestinal LS1 80/AD5O cells (adriamycin-resistant subline) (Dukes' 
type B, colorectal adenocarcinoma) 

Western blot and Northern blot (Bhat et al. 1995) 

Human intestinal epithelial LS 180 cells (Dukes' type B, colorectal 
adenocarcinoma) 

Western blot and Northern blot (Schuetz et al. 1996a) 

Human intestinal epithelial LS 174T cells (Dukes' type B, colorectal 
adenocarcinoma) 

Northern blot (Geick et al. 2001) 

Retinoic acid Human neuroblastoma cell lines: SK-N-SH cells, SH-SY5Y cells, SK-N-
BE(2) cells and LA1-15n cells 

Western blot, Northern blot and RNase 
protection assay 

(Bates et al. 1989) 

Rat brain microvessel endothelial RBE4 cells Flow cytometry (El Hafny et al. 1997b) 
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Table 7. (cont.) Known P-gp inducers 

Inducer Experimental Model Experimental Method Literature Reference 

Rifampicin Rhesus monkeys (liver) Western blot and Northern blot (Gant et al. 1995) 
Human intestinal epithelial LS 180 cells and the adriamycin-resistant 
subline, LS1 80/AD5O cells (Dukes' type B, colorectal adenocarcinoma) 

Western blot and Northern blot (Schuetz et al. 1996a) 

Sprague-Dawley rats (liver) Western blot  and RNase protection 
assay 

(Salphati and Benet 1998) 

Human healthy volunteers (duodenal biopsy specimens) Western blot and 
immunohistochemistry 

(Greiner et al. 1999) 

Human healthy volunteers (duodenal biopsy specimens) Western blot, immunohistochemistry 
and RT-PCR 

(Westphal et al. 2000) 

Human intestinal epithelial LS 174T cells (Dukes' type B, colorectal 
adenocarcinoma) 

Northern blot (Geick et al. 2001) 

Human intestinal epithelial LS180 cells (Dukes' type B, colorectal 
adenocarcinoma)  

Western blot and RT-PCR (Abuznait et al. 2011a; 
Abuznait et al. 2011b; 
Maier et al. 2007; Tian et 
al. 2005; Weiss and 
Haefeli 2013; Weiss et al. 
2013) 

Isolated brain capillaries from CB6F1 hPXR transgenic miceg Western blot and immunocytochemistry  (Bauer et al. 2006) 
Healthy humans (lymphocytes) Western blot and RT-PCR (Owen et al. 2006) 
Wistar rats (Liver and intestine) Western blot (Kageyama et al. 2006) 

Human intestinal epithelial Caco-2 cells (colorectal adenocarcinoma) RT-PCR (Ehret et al. 2007) 
Human intestinal epithelial T84 cells (colorectal adenocarcinoma) Western blot, Immunocytochemistry 

and RT-PCR 
(Haslam et al. 2008b) 

Human brain microvessel endothelial hCMEC/D3 cells Western blot and Immunocytochemistry (Zastre et al. 2009) 
Human brain microvascular endothelial cells (HBMEC) Western blot (Bachmeier et al. 2011) 

Human intestinal epithelial T84 cells (colorectal adenocarcinoma)  RT-PCR (Naruhashi et al. 2011) 

Human brain microvessel endothelial hCMEC/D3 cells Western blot (Chan et al. 2013a) 
Rat brain microvessel endothelial RBE4 cells Western blot (Vilas-Boas et al. 2013b) 

Rilpivirine Human intestinal epithelial LS180 cells (Dukes' type B, colorectal 
adenocarcinoma) 

RT-PCR (Weiss and Haefeli 2013) 

Rhinacanthin-C Human intestinal epithelial Caco-2 cells  (colorectal adenocarcinoma) Flow cytometry (Wongwanakul et al. 
2013) 
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Table 7. (cont.) Known P-gp inducers 

Inducer Experimental Model Experimental Method Literature Reference 

Ritonavir Human intestinal epithelial LS180V cells  (LS180 cells  selected for elevated 
P-gp levels with increasing concentrations of vinblastine) (Dukes' type B, 
colorectal adenocarcinoma) 

Western blot (Perloff et al. 2000; Perloff 
et al. 2001a; Perloff et al. 
2001b; Störmer et al. 
2001) 

CD-1 rats (intestinal microsomes and brain microvessel endothelial cells) Western blot (Perloff et al. 2004) 

Primary bovine brain microvessel endothelial cells (BMEC) Western blot (Perloff et al. 2007) 

Human brain microvessel endothelial hCMEC/D3 cells Western blot and Immunocytochemistry (Zastre et al. 2009) 

Saquinavir Human intestinal epithelial LS180V cells  (LS180 cells  selected for elevated 
P-gp levels with increasing concentrations of vinblastine) (Dukes' type B, 
colorectal adenocarcinoma) 

Western blot (Perloff et al. 2000) 

Small molecule tyrosine 
kinase inhibitors: 
erlotinib, gefitinib, nilotinib, 
sorafenib, vandetanib 

Human intestinal epithelial LS180 cells (Dukes' type B, colorectal 
adenocarcinoma) 

Western blot (Harmsen et al. 2013) 

Sodium arsenite Human kidney epithelial HTB-46 cells (clear cell carcinoma) Northern blot (Chin et al. 1990b) 
Human hepatic HepG2 cells (hepatocellular carcinoma), Human epithelial 
cervix HeLa cells (adenocarcinoma) and monkey CV-I cells 

Slot blot hybridization and RNase 
protection assay 

(Kioka et al. 1992b) 

Mouse FM3A/M and P388/M cells (MDR sub-lines isolated from parental 
P388 mouse leukaemia cell line and FM3A mouse mammary carcinoma cell 
line, respectively) 

aCAT activity assay (MDR1 promoter 
activity) 

(Kim et al. 1998) 

Human epithelial HeLa cells (cervix adenocarcinoma) Luciferase activity assay ( MDR1 
promoter activity) 

(Vilaboa et al. 2000) 

Chronic arsenic-exposed (CAsE) cells (rat liver epithelial TRL1215 cells 
submitted to a long-term exposure (18 or more weeks) to 125-500 nM 
sodium arsenite 

Western blot (Liu et al. 2001) 

Sodium butyrate Human neuroblastoma cell lines: SK-N-BE(2) cells and LA1-15n cells RNase protection assay (Bates et al. 1989) 

Human intestinal epithelial cell lines: SW620 cells (Dukes' type C, colorectal 
adenocarcinoma), HCT-15 (Dukes' type C, colorectal adenocarcinoma), 
LS180 cells (Dukes' type B, colorectal adenocarcinoma) DLD-1 cells 
(Dukes' type C, colorectal adenocarcinoma). 

Western blot, Northern blot, RNase 
protection assay, Flow cytometry and 
cDNA-PCR 

(Frommel et al. 1993; 
Mickley et al. 1989) 

Human intestinal epithelial SW620 cells and a MDR sub-line selected with 
doxorubicin (Ad1000) SW620 cells (Dukes' type C, colorectal 
adenocarcinoma) 

RNase protection assay and luciferase 
activity assay ( MDR1 promoter activity) 

(Jin and Scotto 1998; 
Morrow et al. 1994) 69 



 

 

Table 7. (cont.) Known P-gp inducers 

Inducer Experimental Model Experimental Method Literature Reference 

Sodium butyrate (cont.) Human epithelial HeLa cells (cervix adenocarcinoma) Luciferase activity assay ( MDR1 
promoter activity) 

(Vilaboa et al. 2000) 

Spironolactone Wistar rats (Brush-border membranes from enterocytes of the small 
intestine) 

Western Blot and 
Immunohistochemistry 

(Ghanem et al. 2006) 

Human hepatic HepG2 cells (hepatocellular carcinoma) Western blot and RT-PCR (Rigalli et al. 2011) 

SR12813 Human brain microvessel endothelial hCMEC/D3 cells Western blot and Immunocytochemistry (Chan et al. 2013a; Zastre 
et al. 2009)  

Tacrolimus (FK-506) Human intestinal epithelial LS180 cells (Dukes' type B, colorectal 
adenocarcinoma) 

Western blot (Schuetz et al. 1996a) 

Taldalafil Human intestinal epithelial LS180 cells (Dukes' type B, colorectal 
adenocarcinoma) 

Western blot and RT-PCR (Weiss et al. 2013) 

Tamoxifen Rhesus monkeys (liver) Western blot and Northern blot (Gant et al. 1995) 
Lewis rats (liver) RT-PCR (Riley et al. 2000) 

Tangeretin  Human intestinal epithelial LS180 cells (Dukes' type B, colorectal 
adenocarcinoma) 

Western blot and  RT-PCR (Satsu et al. 2008) 

Taurocholate Human intestinal epithelial T84 cells (colorectal adenocarcinoma) and 
Human intestinal epithelial Caco-2 cells (colorectal adenocarcinoma) 

RT-PCR (Naruhashi et al. 2011) 

Taxifolin Human intestinal epithelial Caco-2 cells (colorectal adenocarcinoma) Western blot, Flow cytometry and RT-
PCR 

(Lohner et al. 2007) 

γ-Tocotrienol Human intestinal epithelial LS180 cells (Dukes' type B, colorectal 
adenocarcinoma) 

Western blot and Immunocytochemistry (Abuznait et al. 2011b) 

Topotecan Human intestinal epithelial T84 cells (colorectal adenocarcinoma) RT-PCR (Haslam et al. 2008a) 

Trazodone Human intestinal epithelial LS180V cells  (LS180 cells selected for elevated 
P-gp levels with increasing concentrations of vinblastine) (Dukes' type B, 
colorectal adenocarcinoma) 

Western blot (Störmer et al. 2001) 

Triactyloleandomycin Human intestinal epithelial LS 180 cells (Dukes' type B, colorectal 
adenocarcinoma) 

Western blot (Schuetz et al. 1996a) 

Trichostatin A Human intestinal epithelial SW620 cells (Dukes' type C, colorectal 
adenocarcinoma) 

RNase protection assay and luciferase 
activity assay(MDR1 promoter activity) 

(Jin and Scotto 1998) 

Trimethoxybenzoylyohi
mbine 

Human intestinal LS1 80/AD5O cells (adriamycin-resistant subline) (Dukes' 
type B, colorectal adenocarcinoma) 

Western blot and Northern blot (Bhat et al. 1995) 
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Table 7. (cont.) Known P-gp inducers 

Inducer Experimental Model Experimental Method Literature Reference 

Venlafaxine Human intestinal epithelial Caco-2 cells (colorectal adenocarcinoma) RT-PCR (Ehret et al. 2007) 

Human brain endothelial cells  (HBMEC) Western blot (Bachmeier et al. 2011) 

Friend Virus B-Type (FVB) mice (intestine) ELISA (Bachmeier et al. 2013) 

Verapamil Human intestinal epithelial LS 180 cells and its drug-resistant sublines, LS 
180-AD50 and LS 180-Vb2 cells (Dukes' type B, colorectal 
adenocarcinoma) 

Western blot, Northern blot and  RT-
PCR 

(Abuznait et al. 2011a; 
Herzog et al. 1993; 
Schuetz et al. 1996a) 

Human intestinal epithelial Caco-2 cells (colorectal adenocarcinoma) Flow cytometry (Anderle et al. 1998) 

Human intestinal epithelial LS180V cells  (LS180 cells  selected for elevated 
P-gp levels with increasing concentrations of vinblastine) (Dukes' type B, 
colorectal adenocarcinoma) 

Western blot (Perloff et al. 2000; Perloff 
et al. 2001a) 

Human monocyte-derived dendritic cells Flow cytometry (Ishri et al. 2006) 

Vinblastine Human leukaemia cell lines: K562 (bone marrow lymphoblast; chronic 
myelogenous leukaemia) and H9 cells (cutaneous T lymphocyte;lymphoma) 

cDNA-PCR (Chaudhary and Roninson 
1993) 

Mouse fibroblast 3T6-C26 cells Flow cytometry (de Graaf et al. 1996) 

Human peripheral blood promyeloblasts, HL-60 cells (acute promyelocytic 
leukaemia) 

Flow cytometry (Decleves et al. 1998) 

Human intestinal epithelial Caco-2 cells (colorectal adenocarcinoma) Flow cytometry, Western blot and RT-
PCR 

(Anderle et al. 1998; 
Shirasaka et al. 2006) 

Human T lymphoblasts MOLT-4 cells (acute lymphoblastic leukaemia) Flow cytometry and RT-PCR (Liu et al. 2002b) 

Human intestinal epithelial LS180 cells (Dukes' type B, colorectal 
adenocarcinoma) 

Western blot (Harmsen et al. 2009) 

Vincristine Mouse skin lymphoblast (lymphocytic leukaemia) Western blot (Boháčová et al. 2006) 

Human intestinal epithelial LS180 cells (Dukes' type B, colorectal 
adenocarcinoma) 

Western blot (Harmsen et al. 2009) 

a CAT - chloramphenicol acetyl-transferase; b Stereoselective regulation of MDR1 expression in Caco-2 cells by cetirizine enantiomers, since S-cetirizine decreased P-gp levels; cKst-6 cells - human 
KB carcinoma cell line that has a stably integrated CAT reporter gene under the control of the human mdr-1 promoter; d The effects observed were not due to the compounds per se, but rather to 
their ability to inhibit the protein synthesis of a trans-acting transcriptional repressor (involved in the regulation of mouse and rat mdr1a and mdr1b and human MDR1 gene expression);e FXR, 
secondary farnesoid X receptor; f In combination with progesterone; g hPXR, human pregnane X receptor. RT-PCR - Real-Time Polymerase Chain Reaction. 
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Figure 12. Schematic representation of the untranslated 5' regulatory region of the hMDR1 gene showing promoter elements and their relative start sites. 
The numbers under each promoter element indicate their position with respect to the +1 start site. Two arrows over the initiator window indicate the major and secondary start 
sites reported in the literature. Note that some binding sites overlap, and it is likely that different factors interact with these sites under different conditions. With the exception of 
PCAF, which is recruited to the MDR1 promoter through interaction with NF-Y and Sp proteins, all other factors shown interact directly with DNA. TCF/LEF binds to several 
sites within the MDR1 promoter, ranging from -1813 to -261. INR: initiator element - sequences between -6 and +11, which are sufficient for proper initiation of transcription; 
GC-Box: GC-rich region - binding site for nuclear transcription factor Sp1 (specificity protein 1); Y-Box: inverted CCAAT element - binding site for nuclear factor Y (NF-Y) and 
Y-box binding protein 1 (YB-1); p53: proposed binding sites for p53 tumor suppressor protein; AP-1: activator protein 1 - binding site for c-jun and c-fos transcription factors; 
CAAT: CAAT element binds a complex of nuclear factor κB/p65 and c-fos proteins; C/EBP: binding site for CCAAT-box/enhancer binding proteins (C/EBP); HSE: heat shock 
elements - binding sites for heat-shock transcription factors (HSF); TCF: T cell factor elements - involved in over-expression of P-gp in tumor cells; invMED1: inverted 
mediator-1 element cis-activates hMDR1; MEF-1: MDR1 promotor-enhancing factor 1 up-regulates hMDR1; NF-R1/2: binding site for recently discovered transcription 
regulatory proteins, NF-R1/2; ETS: binding site for ets (‘E twenty-six’) proteins; SXR: steroid xenobiotic receptor - binding site for pregnane xenobiotic/retinoid xenobiotic 
receptor α (PXR/RXRα) heterodimer; HRE: hypoxia responsive element; CtBP1: binding site for C-terminal-binding protein 1. Adapted from (Labialle et al. 2002b). 
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The hMDR1 gene greatly differs from its murine homologues, since its promoter 

lacks a TATA-box, as previously mentioned, and it contains an initiator element (INR), 

which is necessary to direct basal transcription at the major initiation start point (Figure 

12) (Labialle et al. 2002b; Smale and Baltimore 1989). Moreover, transient transfection 

studies performed in HeLa cells demonstrated that sequences between -6 and +11(INR) 

were sufficient for proper transcriptional initiation, whereas deletion of sequences 

downstream of +11 resulted in a strong reduction of properly initiated transcripts (van 

Groenigen et al. 1993). Additionally, for the hMDR1 gene, several promoter elements 

have already been found, including a GC-box, a Y-box, a p53 element, an inverted 

mediator-1 element (invMED1), an activator protein 1 (AP-1) element, an heat shock 

element (HSE) and a steroid xenobiotic receptor (SXR) element, among others (Figure 

12) (Labialle et al. 2002b). Also, the regulation of the transcriptional activity of the hMDR1 

gene depends on several trans-acting proteins (transcription factors) that bind these 

consensus cis-elements, and does not occur via direct drug binding to P-gp (Figure 12) 

(Labialle et al. 2002b). In the up-regulation of the MDR1 gene transcription, several 

transcription factors are involved, including heat-shock transcription factor 1 (HSF-1), 

specificity protein 1 (Sp1), activator protein 1 (AP-1), CCAAT/enhancer-binding protein 

beta (C/EBPβ or NF-IL-6, nuclear factor for IL-6 expression), nuclear factor Y (NF-Y), 

early growth response protein 1 (EGR-1), and Y-box binding protein 1 (YB-1) (Combates 

et al. 1994; Daschner et al. 1999; Hu et al. 2000; McCoy et al. 1995; Ogretmen and Safa 

1999a; Ohga et al. 1998; Vilaboa et al. 2000). On the other hand, cross-coupling of 

nuclear factor-κB/p65 (NF-κB/p65) and c-fos inhibits its transcription (Ogretmen and Safa 

1999b). In the following sections a detailed overview will be made on the constitutive and 

induced transcription of the hMDR1 gene, highlighting the promoter elements and related 

transcription factors involved. Also, some studies on the transcription regulation of mouse 

mdr1 genes will be focused. The elements involved in the constitutive P-gp 

overexpression in drug-resistant cells [MEF-1 (MDR1 promoter-enhancing factor 1) 

element, InvMED-1 (inverted mediator-1) element and aberrant promoter] (Figure 12) will 

not be discussed in the present dissertation. 

 

I.6.2.2.1. Constitutive transcription of the hMDR1 gene - constitutive 
regulators 

The ‘GC’ elements and the ‘CCAAT’ boxes (Figure 12) referred above are among 

the most ubiquitous Pol II promoter elements and are found in the majority of TATA-less 

promoters (Scotto 2003). Each element can interact with different families of proteins 

through sequence-specific DNA recognition and, since mutation or removal of these 
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elements often leads to a complete transcription loss, the proteins that interact with these 

elements were initially referred to as constitutive or ‘basal’ transcription factors (Scotto 

2003). However, this label can be misleading, since more recent studies have 

demonstrated the role of these factors in mediating activation by exogenous agents, 

particularly those that regulate chromatin structure (Scotto 2003). Moreover, transfection 

analyses of promoter constructs mutated in one or both of these elements confirmed the 

requirement for each element in the constitutive (i.e. operative under normal growth 

conditions) expression of MDR1 in some cell lines (Scotto 2003). Therefore, the following 

elements will be discussed with respect to both constitutive and inducible expression. 

I.6.2.2.1.1. GC-BOX 

In the hMDR1 promoter, two GC-rich regions (GC-box) were identified from -110 to -

103 and -56 to -45 bases upstream of the major +1 start site in the hMDR1 promoter 

(Figure 12), and mutations in these regions were reported to modulate the promoter 

activity (Cornwell and Smith 1993b). 

Located -56 to -45 bases upstream of major +1  start site  is a GC-rich region called 

-50 GC-Box (Figure 12), that interacts with members of the Sp (specificity protein) family 

of transcription factors (Cornwell and Smith 1993a; Cornwell and Smith 1993b; Scotto 

2003; Sundseth et al. 1997). In fact, it was demonstrated that this region is where 

specificity protein 1 (Sp1), a 105 kDa constitutive and ubiquous nuclear transcription 

factor, was found to bind (Cornwell and Smith 1993b). Sp1 was the first acetylene-type 

zinc finger-containing transcription factor to be isolated and cloned from mammalian cells 

and it regulates many proteins, particularly those involved in the regulation of nucleic acid 

biosynthesis and metabolism (including thymidylate synthase, adenine deaminase and 

DNA polymerase), and in the regulation of the cell cycle or proliferation (such as cyclin D, 

E2F, c-fos, transforming growth factor α [TGF-α]) (Safe and Abdelrahim 2005). Moreover, 

previous studies have demonstrated the Sp1 transcriptional stimulatory activity in the 

MDR1 gene, since a mutation in the GC-box resulted in a 5-fold reduction in the promoter 

activity (Cornwell and Smith 1993b). Additionally, it was also demonstrated that this region 

contains overlapping sites that allows the specific binding of Sp1 but also of early growth 

response protein 1 (EGR-1), a zinc finger 80 kDa protein already implicated in the hMDR1 

gene activation (Cornwell and Smith 1993b). In fact, during aberrant P-gp expression in 

hematopoietic cancers, 12-O-tetradecanoylphorbol-13-acetate (TPA) was reported to 

activate the hMDR1 gene promoter through binding of EGR-1, thus increasing hMDR1 

gene transcription (McCoy et al. 1995). Moreover, in the same studies, Wilms' tumor (WT) 

suppressor 1 (WT-1), another member of the EGR family, inhibited the response of the 

MDR1 promoter to TPA in K562 cells, down-regulating hMDR1 gene transcription through 
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direct binding of WT-1 to the same CG element (McCoy et al. 1999). Therefore, these 

results suggest that the hMDR1 gene is antagonistically regulated by EGR-1 and WT-1, 

which compete for the same binding region of the hMDR1 gene promoter, during normal 

and aberrant hematopoiesis.  

Located -110 to -103 bases upstream of major +1 start site in the hMDR1 promoter 

is another GC-rich region, called -110 GC-Box (Figure 12) that is incapable of interacting 

with Sp1, and which demonstrated to act as a binding site for a transcriptional repressor 

(Cornwell and Smith 1993b). In fact, mutation of the -110 G-box (-110 to -103) resulted in 

a 6-fold increase in the promoter activity and inhibited the formation of a specific nuclear 

protein complex, suggesting that this region functions as a transcriptional "repressor” 

binding site in cycling cells (in log-phase KB-8-5 cells) (Cornwell and Smith 1993b). 

Moreover, no binding to purified Sp1 or EGR-1 was observed at this GC-region (Cornwell 

and Smith 1993b). However, the cellular conditions under which the -110 GC-box 

modulates the hMDR1 promoter activity, as well as the identity of the -110 G-box-binding 

protein remain unclear. It was proposed that this GC-region may interact with another 

member of the Sp family or the highly related Kruppel factor family of transcription factors 

(Bieker 2001). 

A very recent study, which aimed to identify cell-specific controls on the MDR1 

transcription in human brain endothelium, using reporter assays, identified a region of 500 

bp around the transcription start site that was optimally active in brain endothelium 

(Gromnicova et al. 2012). Chromatin immunoprecipitation identified specificity protein 3 

(Sp3) and transcription factor II D (TFIID) associated with this region. Moreover, 

electrophoretic mobility shift assays (EMSA) confirmed that Sp3 binds preferentially to a 

Sp-target site (GC-box) on the MDR1 promoter in brain endothelium (Gromnicova et al. 

2012). Therefore, these results contrast with findings in other cell types in which Sp1 

preferentially associates with the MDR1 promoter (Scotto 2003). Moreover, in this same 

study, using Caco-2 cells, it was demonstrated that Sp1 binds to the MDR1 GC-rich box, 

thus agreeing with those previous findings implying Sp1 as the preferential binding 

protein, but also indicating that MDR1 is then differently controlled in brain endothelium 

(Gromnicova et al. 2012). Furthermore, the differences in MDR1 transcriptional control 

between brain endothelium and Caco-2 cells could not be explained by the relative 

abundance of Sp1:Sp3 nor by the ratio of Sp3 variants, because activating variants of Sp3 

were present in both cell types (Gromnicova et al. 2012).  
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I.6.2.2.1.2. Y-BOX (inverted CCAAT element) 

Y-box is a CCAAT element that is found in the sense orientation or in the inverse 

complement ATTGG, present in one-third of all known promoters (Labialle et al. 2002b). 

In the hMDR1 gene, it is present at the -79 to -75 sequence position (Figure 12), and its 

involvement in the hMDR1 gene induction by various anticancer drugs and by UV 

radiation was already demonstrated (Ohga et al. 1998). The Y-box demonstrated to be 

crucial for the basal and inducible expression of the hMDR1 gene, as shown by mutational 

analysis of the MDR1 promoter (Goldsmith et al. 1993; Sundseth et al. 1997). 

Nuclear factor Y (NF-Y), a trimeric transcription factor, was pointed out as the most 

likely protein to bind to this element and, thus, activate the hMDR1 gene in tumor cell lines 

(Figure 13) (Hu et al. 2000; Jin and Scotto 1998; Sundseth et al. 1997). In fact, this 

CCAAT box-binding protein was reported to mediate MDR1 activation by the histone 

deacetylase (HDAC) inhibitors, trichostatin A and sodium butyrate, through the 

recruitment to the promoter of a p300/CREB binding protein-associated factor (P/CAF), a 

transcriptional co-activator with intrinsic histone acetyltransferase (HAT) activity (Jin and 

Scotto 1998). Histone-modifying enzymes, HAT and HDAC, were reported to be involved 

in gene transcriptional activation and repression, respectively. HATs specifically catalyse 

the acetylation of the amino group of lysine residues at the N-terminal domain of histones, 

weakening histone-DNA interactions and leading to a destabilization of nucleosome 

structure (open chromatin), while HDACs remove the acetyl group, leading to a more 

closed chromatin configuration (Jin and Scotto 1998). It has been proposed that this 

restructuring of chromatin regulates accessibility of transcription factors to their DNA 

targets, whereby open chromatin allows for factor binding and closed chromatin does not 

(Jin and Scotto 1998). Incubation of human colon carcinoma SW620 cells with trichostatin 

A, a specific HDAC inhibitor, increased 20-fold the steady-state level of MDR1 mRNA, and 

trichostatin A treatment of cells transfected with a wild-type MDR1 promoter/luciferase 

construct resulted in a 10- to 15-fold induction of the promoter activity. Moreover, deletion 

and point mutation analysis determined that an inverted CCAAT box was essential for this 

activation, and that overexpression of P/CAF activated the wild-type MDR1 promoter, but 

not a promoter containing a mutation in the CCAAT box. Moreover, deletion of the P/CAF 

HAT domain abolished the activation. Additionally, gel shift and super-shift analyses 

identified NF-Y as the CCAAT-box binding protein in these cells, and co-transfection of a 

dominant negative NF-Y expression vector decreased the activation of the MDR1 

promoter by trichostatin A. That was the first report of a natural promoter that is modulated 

by HAT and HDAC activities, in which NF-Y was identified as the transcription factor 

mediating this regulation (Figure 13) (Jin and Scotto 1998). 
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Figure 13. NF-Y mediated activation of the hMDR1 
gene. 
Adapted from (Sukhai and Piquette-Miller 2000). 

 

Other studies have reported that Y-box binding protein 1 (YB-1), a gene regulatory 

protein that preferentially interacts with RNA and single-stranded DNA, specifically 

interacts with the MDR1 Y-Box to mediate transcription (Ohga et al. 1998). In fact, in vitro 

studies demonstrated that UV irradiation significantly increased 2-3-fold the nuclear YB-1 

level in Kst6 cells, but it was unchanged in cells transfected with the antisense plasmid 

(Ohga et al. 1998). Moreover, gel mobility assays with nuclear extracts indicated that UV 

irradiation induced the activation of an inverted CCAAT box (Y-box) binding protein in 

those cells, being that enhancement of DNA binding activity to the Y-box abolished when 

cells were transfected with antisense YB-1 plasmids (Ohga et al. 1998). Thus, UV-induced 

activation of a Y-box DNA binding protein appeared to be correlated with the nuclear 

amount of YB-1 protein (Ohga et al. 1998).  

In an effort to determine whether NF-Y, YB-1, or both transcription factors are 

required for MDR1 induction by UV irradiation, it was demonstrated that the activation of 

the MDR1 promoter by UV irradiation is dependent on the CCAAT box (-82 to -73), as well 

as on a proximal GC element (-56 to -42) (Hu et al. 2000). Moreover, gel shift and super-

shift analyses with nuclear extracts prepared from human KB-3-1 cells identified NF-Y as 

the transcription factor interacting with the CCAAT box, while Sp1 was the predominant 

factor binding to the GC element. Additionally, mutations that abrogated binding of either 

of these factors reduced or abolished MDR1 activation by UV irradiation, and co-

expression of a dominant-negative NF-Y protein reduced the UV-activated transcription. 

Interestingly, it was demonstrated that YB-1 was unable to interact with double-stranded 

oligonucleotides containing the MDR1 CCAAT box in nuclear extracts, while it interacted 

only with a single-stranded oligonucleotide containing this element (Hu et al. 2000). 

Mutations within the MDR1 CCAAT box that abolished transcription and NF-Y binding, 

thus abolishing the MDR1 activation by UV-irradiation, had no effect on the interaction of 

YB-1 with the single-stranded oligonucleotide. Also, co-transfection of a YB-1 expression 

plasmid had a repressive effect on UV-inducible transcription (Hu et al. 2000). These 
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results strongly suggested that NF-Y, but not YB-1, is the factor regulating MDR1 

transcription through the CCAAT element. Therefore, Hu et al. pointed the role of both NF-

Y and Sp1 in the transcriptional activation of the MDR1 gene by genotoxic stress, and 

indicated that YB-1, if involved, is not sufficient to mediate this activation (Hu et al. 2000). 

Nevertheless, a number of studies have linked the YB-1 expression or its nuclear 

localization with an increase in MDR1 gene expression (Bargou et al. 1997b; Oda et al. 

2003; Ohga et al. 1998; Saji et al. 2003). For example, it was demonstrated that the 

acquisition of MDR in B-lymphoblasts (Daudi cells) upon exposure to doxorubicin is 

associated with enhanced YB-1 nuclear translocation and mitogen-activated protein 

kinase (MAPK)/extracellular signal-regulated kinase (ERK) activity (Shen et al. 2011). An 

electrophoretic mobility shift assay revealed that doxorubicin increased binding of YB-1 to 

the Y-box of MDR1 promoter and luciferase reporter assays demonstrated that the Y-box 

region is essential for YB-1 regulation of MDR1 expression (Shen et al. 2011). Silencing of 

YB-1 gene resulted in decreased expression levels of the MDR1 gene and P-gp protein 

induced by doxorubicin. Also, when Daudi cells were pre-treated with a MAPK inhibitor, 

the phosphorylation of ERK was effectively inhibited as well as the nuclear translocation of 

YB-1 and the expression of MDR1 gene. Therefore, doxorubicin can increase P-gp 

expression through activating MAPK/ERK transduction pathway, that in turns increases 

the expression of YB-1, inducing YB-1 nuclear translocation, and enhancing DNA-binding 

activity of YB-1 (Shen et al. 2011). 

The hMDR1 gene transcriptional regulation at Y-box seems to be more complex and 

mutational analyses have demonstrated that the Y-box and the closely located GC-box (-

50 GC-Box) seem to act cooperatively in the regulation of hMDR1 gene expression 

(Sundseth et al. 1997). In fact, these two elements (Y-box and GC elements) were, as 

mentioned above, reported as essential for the hMDR1 gene transcriptional activation 

after UV irradiation (Hu et al. 2000), suggesting a cooperative interaction between the GC- 

and the Y-boxes. Additionally, it was demonstrated that a mutation of the proximal Y-box 

in other promoters can lead to the disruption of binding to the adjacent GC-box (Linhoff et 

al. 1997). Therefore, these results raised the suspicion that NF-Y could play an essential 

role in both the architectural and functional organization of TATA-less promoters, possibly 

by connecting upstream regulators to the general transcriptional machinery (Mantovani 

1998). In conclusion, NF-Y plays a pivotal role in the regulation of MDR1 gene expression 

under genotoxic stress conditions, and it is thought to be a good molecular target to 

overcome the MDR phenotype (Hu et al. 2000). 

To evaluate the stress-induced activation of the MDR1 gene, in a study reported by 

Shareef et al. (2008), the activity of the MDR1 promoter in response to different doses of 

ionizing radiation was investigated (Shareef et al. 2008). In this study, two squamous cell 
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carcinoma oral cavity cell lines, T-167 and T-409 cells, were exposed to either a standard 

clinical dose of 2 gray (Gy, international unit of absorbed dose) or low-dose fractionated 

radiation therapy (LDFRT), delivered as 0.5 Gy in four fractions. MDR1 gene expression 

and degree of cell death were assessed and clinically relevant 2-Gy dose of radiation 

resulted in increased MDR1 expression, as evaluated by RT-PCR and luciferase reporter 

assays in both cell lines (T-167 and T-409), whereas LDFRT did not. Moreover, LDFRT 

caused enhanced apoptosis when compared with the 2-Gy dose in these cells, as 

assessed by terminal nucleotidyl transferase-mediated nick end labelling (TUNEL) assay. 

Interestingly, 2 Gy robustly induced both NF-Y and nuclear factor-κB (NF-κB) in both cell 

lines, but no induction was observed when exposed to LDFRT (Figure 14). Silencing the 

expression of the DNA binding subunit of NF-κB, p50, by small interfering RNA vector 

resulted in a decrease of MDR1 function in T167 cells exposed to 2 Gy, as evaluated by 

the rhodamine 123 efflux assay (Shareef et al. 2008). These results provide evidence for 

NF-Y and NF-κB involvement in MDR1 expression, and suggest an important role for 

LDFRT in combinatorial cancer therapy by preventing P-gp induction and possibly acting 

as an adjuvant for chemotherapy. 
 

Figure 14. Schematic representation 
of the molecular mechanisms 
involved in the modulation of MDR1 
gene by radiation. 
The primary event in the molecular 
response is either the activation or 
inhibition of NF-κB and NF-Y in 
conventional dose irradiation and 
LDFRT, respectively. The activation of 
these factors triggers the induction of 
pro-survival factor Bcl-2, which causes 
induced radiation resistance (IRR) 
potentially through MDR1 expression, 
which induces chemoresistance. When 
there is absence or limited activation of 
these factors, i.e., NF-κB and NF-Y, in 
LDFRT, there is no induction of either 

Bcl-2 or MDR1 gene expression, thereby giving rise to hyper-radiosensitivity (HRS) among the cells. Cells are 
thus more chemosensitive due to the loss of MDR1 induction. Adapted from (Shareef et al. 2008). 

I.6.2.2.1.3. p53 Element 

High levels of expression of multidrug transporters are often observed in drug-naïve 

tumours, even when the tissue of origin exhibits little or no expression of the 

corresponding gene. Hence, constitutive MDR1 gene expression is likely regulated in 

some cells by components that are involved in malignant transformation (Scotto 2003). It 

has been well established that tumours can develop as a result of both uncontrolled 

proliferation and an intrinsic ability to escape cell death, mediated by the altered 

expression of various oncogenes and tumor suppressor proteins. It has become apparent 
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that altered expression of several growth and death-controlling proteins can adversely 

affect drug therapy in two ways: (1) by altering the cell’s ability to respond to death signals 

and (2) by influencing the transcription and, thus, the expression of drug-resistant genes 

(Scotto 2003). Therefore, knowing that several tumours that have never been in contact 

with anticancer drugs express the P-gp-dependent MDR phenotype, and since cellular 

oncogenes and tumor suppressor genes are often reported to be altered in the cancer 

progression, it is likely that the resulting altered proteins may be involved in the regulation 

of P-gp expression (Labialle et al. 2002b). The first evidence that a tumor suppressor 

protein could influence the expression of a drug-resistance gene came from the 

observation that wild-type p53 repressed transcription of the MDR1 gene (Chin et al. 

1992; Thottassery et al. 1997; Zastawny et al. 1993). Since then, several studies focused 

on the effects of the p53 suppressor gene and protein on the MDR phenotype. 

Tumor suppressor protein p53 can either positively or negatively regulate the MDR1 

transcription (Li et al. 1997; Thottassery et al. 1997). In fact, it was reported an inhibitory 

role for wild type p53 on the hMDR1 gene promoter, whereas mutant versions of p53 act 

as activators (Nguyen et al. 1994), probably through the loss of their inhibitor effect (Chin 

et al. 1992; Johnson et al. 2001b). Although several mechanisms had been proposed to 

explain the wild-type p53 repression, it was shown that this effect is mediated by a direct 

interaction of p53 with a novel binding element within the proximal MDR1 promoter (-72 to 

-40) (Figure 12), making MDR1 the prototype for a new class of p53-repressed promoters 

(Johnson et al. 2001b). Moreover, binding of p53 to this element, termed the HT (head-to-

tail) site, appears to induce a novel tetrameric conformation of p53 that converts p53 from 

an activator to a repressor, perhaps through the differential recruitment of co-factors 

(Johnson et al. 2001b). This repression mediated by wild-type p53 has also been reported 

for the mouse and hamster mdr1 homologues (Bush and Li 2002; Zastawny et al. 1993), 

while other studies suggest an activating role of p53 on the murine mdr1 promoter in 

response to DNA damage and stress (Mathieu et al. 2001). 

Paradoxically, as already mentioned, several common mutant p53 proteins 

demonstrated to activate, rather than repress, the MDR1 promoter (Chin et al. 1992; 

Dittmer et al. 1993; Johnson et al. 2001b). At least one of these mutants activates MDR1 

through a cooperative, and apparently mutant-specific, interaction with the proto-

oncogenic ETS-1 transcription factor (E twenty-six’ protein 1) at a binding site within the 

proximal promoter region (located from -69 to -63 bases of the hMDR1 promoter) (Figure 

12) (Sampath et al. 2001).  

The role of p53 in the regulation of drug resistance genes is still controversial, with 

opposite effects observed in different cells or under different conditions (Bahr et al. 2001). 

In fact, in some cases, wild-type p53 demonstrated to activate the gene hMDR1 (Bahr et 
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al. 2001; Goldsmith et al. 1995), an apparent contradiction probably due to relevant 

differences in experimental conditions. The p53-mediated regulation of the hMDR1 gene 

seems to involve the minimal promoter region from -39 to +53, and the consensus p53 

biding site consists of two half-sites, each comprising two repeats of five nucleotides 

arranged head-to-head (May and May 1999). It was later proposed a new model to 

explain the action of p53 on the hMDR1promoter, in which, as previously referred, a 

binding region has been proposed in the hMDR1 gene in which the two half-sites are 

arranged in a head-to-tail configuration leading to p53 repression (Johnson et al. 2001b). 

Together with all the debates concerning the direct binding of p53 on the hMDR1 

promoter, it is also difficult to predict a modulating effect resulting from p53 interaction with 

other factors such as Sp1, NF-Y, C/EBPβ (CCAAT/enhancer-binding protein beta), or AP-

1 (activator protein 1), all binding the hMDR1 promoter (Labialle et al. 2002b) (Figure 12). 

Therefore, the complexity of these systems should not be underestimated, and it is 

important to keep in mind that the intricate architecture of the individual promoters, the 

complement of endogenous p53 (mutant or wild-type), the presence or absence of other 

p53 family members, as well as variations in cell- and tissue-specific co-effectors of p53 

activity are all likely to influence the ultimate transcriptional readout in a given cell, tissue 

or tumor type (Scotto 2003). 

I.6.2.2.1.4. NF-κB, TNF-α and PI3K signalling pathway 

Apart from its involvement in the modulation of the MDR1 gene by radiation (see 

I.6.2.2.1.2), the involvement of NF-κB in the MDR1 expression was also demonstrated in 

other studies. NF-κB is a family of ubiquitous transcription factors. In most cells, the NF-

kB dimers (consisting mainly of the proteins p65 and p50) are retained by an inhibitor 

(IkB) in the cytoplasm of non-stimulated cells (Figure 15). Following different stimuli, such 

as cytokines or DNA-damaging agents, including chemotherapeutic drugs, IκB is 

phosphorylated by the IκB kinase (IKK) complex, polyubiquitinated and degraded (Karin 

1999). Then, the NF-κB nuclear localization signal (NLS) is released allowing the nuclear 

translocation of the transcription factor and the induction of its target genes. These target 

genes code for pro-inflammatory molecules, as well as for pro- or anti-apoptotic proteins 

(Pahl 1999). NF-κB has also been shown to play an anti-apoptotic role in cancer cells. In 

B lymphocytes, Hodgkin disease and some breast cancer cells, NF-κB activity is 

constitutive and protects against apoptosis (Bargou et al. 1997a; Sovak et al. 1997; Wu et 

al. 1996). Indeed, NF-κB inhibition in these cells often induces cell death. Numerous 

apoptotic signals, such as tumor necrosis factor alpha (TNF-α), ionizing radiations and 

chemotherapeutic drugs, have been shown to induce NF-κB (Pahl 1999). In what 

concerns to MDR1 expression, it has been reported that an insulin-induced mdr1 
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expression is mediated by NF-κB in rat hepatoma cells (Zhou and Kuo 1997) and that NF-

κB can protect kidney proximal tubule cells from cadmium and oxidative stress by 

increasing P-gp expression (Thevenod et al. 2000). Also, NF-κB was reported to be 

involved in TNF-α-induced mdr1 expression in rat hepatocytes (Ros et al. 2001), in 2-

acetylaminofluorene-induced MDR1 expression in human liver cells (Kuo et al. 2002) and 

in constitutive MDR1 expression in human drug-resistant cells (Um et al. 2001). Moreover, 

NF-κB induced a significant decrease in the cytotoxicity of chemotherapeutic drugs, which 

was found to be linked to the up-regulation of P-gp expression (Bentires-Alj et al. 2003; 

Thevenod et al. 2000).  

 

 

Figure 15. Classical activation of NF-κB pathway. 
 
Additionally, NF-κB is activated in tumour cells by mutations in genes encoding NF-

κB and in genes that control NF-κB activity, such as the inhibitor of κB (IkB) gene (Melisi 

and Chiao 2007). Chromosomal alterations of NF-κB family genes have frequently been 

found in MDR human cancers, indicating that this transcription factor also plays a crucial 

role in the MDR phenomenon (Hien et al. 2010). Because the MDR1 gene expression 

appears to be NF-κB dependent, inhibitors of this transcription factor used in cancer 

chemotherapy may have the additional desirable effect of helping to prevent or overcome 

MDR. However, the role of NF-κB in MDR1 regulation appears to be more complex, since 

NF-κB has been also shown to repress MDR1 transcription (Ogretmen and Safa 1999b) 

(see below).  

Interestingly, a CAAT element, located at the -116 to -113 sequence position in the 

hMDR1 gene (Figure 12) (Labialle et al. 2002b), has been already implicated as the 

binding site for a protein complex consisting of NF-kB/p65 and c-Fos transcription factors 

(Ogretmen and Safa 1999b). These proteins have demonstrated a negative regulatory 
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effect on sensitive MCF-7 human breast cancer cells, but not on their resistant variant, the 

MCF-7/Adr cells (Ogretmen and Safa 1999b). Moreover, incubating MCF-7 nuclear 

extracts with antibodies specific for NF-κB/p65 or c-Fos almost completely inhibited the 

binding of the complex to the MDR1 promoter, suggesting a cooperative interaction of NF-

κB/p65 and c-Fos with the MDR1 promoter (Ogretmen and Safa 1999b). Furthermore, the 

undetectable levels of NF-κB/p65-c-Fos interacting with the CAAT region of the MDR1 

promoter in MCF-7/Adr cells may explain the increased MDR1 promoter activity in these 

cells (Ogretmen and Safa 1999b).Therefore, these results provided evidence that the 

molecular interplay (cross-coupling) between the NF-κB /p65 and c-Fos transcription 

factors exhibits a negative regulatory function on MDR1 promoter by interacting with the 

CAAT region in MCF-7 cells, but not in MCF-7/Adr cells. As a consequence, these results 

highlight a new regulatory mechanism in which two unrelated factors interact to exert a 

negative transcriptional regulation. NF-κB thus appears to play a dual role in the 

regulation of MDR1, as an intermediate for rapid activation in response to stress, and as a 

transcriptional repressor in cells that have been chronically exposed to chemotherapeutic 

agents. 

Additionally, it was also demonstrated the sensitization to radiation of a head and 

neck cancer cell line, UM-SCC-9 cells, using a mutant IκB (Kato et al. 2000). Also, the 

inhibition of NF-κB activity sensitizes resistant colon cancer cells (HCT15) through a 

decreased MDR1 expression, being this effect cell- and signal-specific and dependent on 

the level of NF-κB inhibition. Indeed, NF-κB or P-gp inhibition in the HCT15 colon cancer 

cells led to increased apoptotic cell death in response to daunomycin treatment. 

Interestingly, NF-κB inhibition through transfection of a plasmid coding for a mutated IkB 

increased daunomycin cell uptake. Moreover, the inhibition of NF-κB reduced MDR1 

mRNA and P-gp expression in these cells. A consensus NF-kB binding site was identified 

in the first intron of the hMDR1 gene and it was demonstrated that NF-κB complexes 

could bind to this intronic site. Also, NF-kB transactivated an MDR1 promoter luciferase 

construct (Bentires-Alj et al. 2003). Therefore, these results demonstrated a role for NF-κB 

and its heterodimeric components in the resistance to chemotherapy through the 

regulation of the MDR1 gene expression in cancer cells, which may be cell type specific 

(Bentires-Alj et al. 2003).  

Another signalling pathway, which is frequently implicated in apoptosis, 

tumorigenesis and chemotherapeutic resistance, is the phosphoinositide-3-kinase 

(PI3K)/Akt cascade (Figure 21). The PI3Ks are a family of lipid kinases that propagate 

intracellular signalling cascades regulating a wide range of cellular processes, being this 

signalling pathway known to influence drug resistance (Wong et al. 2010). The 

serine/threonine kinase Akt (also known as protein kinase B or PKB) is a downstream 
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target of PI3K and has become a major focus of attention because of its critical regulatory 

role in diverse cellular processes, including cancer progression and insulin metabolism. It 

was demonstrated that the PI3K/Akt pathway is also linked to P-gp-mediated 

chemoresistance in the L1210 leukemia cell model (Barancik et al. 2006). Also, 

hyaluronan oligosaccharides have been shown to sensitize P-gp positive vincristine-

resistant lymphoma cells through the modulation of P-gp activity and PI3K/Akt pathway 

(Cordo Russo et al. 2008). Several other studies have demonstrated that inhibitors of the 

PI3K/Akt pathway modulate MDR by impairing the function of P-gp, which allows drugs to 

accumulate in the cells, induce apoptosis and ultimately prevent the growth of drug-

resistant cancer cells (Barancik et al. 2006; Chiarini et al. 2008; Garcia et al. 2009). 

Inhibition of Akt kinase also enhances susceptibility to TRAIL (TNF-related apoptosis-

inducing ligand) by up-regulating death receptors and down-regulating P-gp expression in 

multidrug-resistant human T-acute leukemia cells (Seo et al. 2010). PI3K and Akt are 

upstream signals in the activation of Rac (Figure 21), a small (~21 kDa) signalling G 

protein, which is also associated with the induction of MDR1 expression and may 

contribute to the development of drug resistance in liver cancer cells (Kuo et al. 2002). 

In what concerns to TNF-α, promising results have indicated its potential as an 

anticancer therapeutic agent acting by affecting immunity and cellular remodelling, and 

influencing apoptosis and cell survival (Szlosarek and Balkwill 2003). Evidence from 

numerous studies indicates that expression and activity of P-gp can be controlled by the 

activity of TNF-α. For example, it was found that cells resistant to vincristine and 

doxorubicin are regulated by a TNF-α mediated NF-κB signalling pathway (Figure 21), and 

inhibition of TNF-α or NF-κB may be a useful treatment for MDR leukaemias (Garcia et al. 

2005). Many different pathways of signal transduction are involved in the regulation of 

TNF-α, and recent advances in the understanding of upstream and downstream events 

may allow MDR to be overcome. 

Finally, PTEN, a 403 amino acid protein present on the plasma membrane and in 

the nucleus, which has dual lipid and protein phosphatase function, have demonstrated to 

have a role in MDR and in the regulation of the PI3K/Akt cascade (Lee et al. 2004) (Figure 

21). The PTEN network encompasses signals from cell surface growth factor receptors to 

nuclear transcription factors and includes connections to other tumour suppressor and 

oncogenic signalling pathways (Keniry and Parsons 2008). PTEN keeps cellular 

phosphatidylinositol 3,4,5-triphosphate (PIP3) at a low level in vivo, removing the 3′-

phosphate from PI3K generated PIP3 and converting it to phosphatidylinositol 4,5-

diphosphate (PIP2) (Figure 21)(Maehama and Dixon 1998). The protein phosphatase 

activity of PTEN is suppressive with a dual role in tumorigenesis. Reduction of PTEN in 

the human adenocarcinoma cell line OVCAR-3 resulted in the development of MDR (Lee 
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et al. 2005). These alterations conferred cisplatin resistance via PTEN-mediated activation 

of the PI3K/Akt signalling pathway in a blockade of apoptosis (Lee et al. 2005). PTEN is 

able to alter cell sensitivity to drugs, depending on the mechanism of action of the drug, 

and lead to other specific signalling environments (mitogen-activated protein kinase 

[MAPK], p53, B-cell lymphoma 2 protein [Bcl-2], etc.) that could induce P-gp-mediated 

MDR in various cancers (Ji et al. 2007). 

 

I.6.2.2.1.5. AP-1 Element 

Many studies have proposed that activator protein-1 (AP-1) mediated signals may 

be important regulators of hMDR1 (Labialle et al. 2002b). AP-1 is the general term for 

transcription factor complexes composed of members of the Fos and Jun oncogene 

families (Shaulian and Karin 2001), containing either the leucine zipper proteins, Fos-Jun, 

or Jun-Jun complexes, which bind to target elements and promote transcription 

(Callaghan et al. 2008). AP-1 is constitutively expressed in many cell types, and the 

complex binding to DNA is induced by serum stimulation, phorbol esters, a variety of 

growth factors, as well as by various stress stimuli (Scotto 2003). In fact, AP-1 activity is 

regulated by the cellular redox state, which is thought to be a consequence of specific 

cysteine residues located at the interface between the 2 c-Jun subunits (Janssen et al. 

1995). The stressors invoke a signal cascade that begins with the activation of mitogen-

activated protein kinases (MAPKs) and ends with the activation of AP-1 (Callaghan et al. 

2008).  

There is some evidence, albeit indirect, that the AP-1 complex may be involved in 

the transcription of several drug transporters. One argument that supports the involvement 

of AP-1 in the regulation of hMDR1 is the fact that MDR cells often contain a higher level 

of c-fos and c-jun proteins relative to their sensitive parental cells (Daschner et al. 1999; 

Kim and Beck 1994). Additionally, inhibition of protein kinase A (PKA), an inducer of the 

AP-1 complex, by H-87, a PKA inhibitor, inhibited the activity of the MDR1 promoter in a 

dose-dependent manner, and decreased the expression of hMDR1 in the P388/M 

leukemia cell line (Kim et al. 1993). However, since PKA has also been implicated in the 

regulation by Sp1 (Rohlff and Glazer 1998), the interpretation of this data is complex.  

The roles of cAMP-dependent PKA and its activator cAMP in the development of the 

P-gp-induced MDR phenotype have been extensively studied (Figure 21). cAMP is 

synthesized from ATP by adenylyl cyclase and is rapidly broken down via hydrolysis to 

adenosine 5′-monophosphate (5′-AMP) by cAMP phosphodiesterases (Merkle and 

Hoffmann 2011). Numerous extracellular signals exist, which lead to cAMP-dependent 

activation of PKA-related proteins that could result in activation of the multispecific MDR1 

gene (Rohlff and Glazer 1995). A cAMP-dependent PKA pathway for mdr1 activation was 
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shown in primary rat hepatocytes, supporting that cAMP/PKA phosphatase activity 

modulates P-gp expression (Ziemann et al. 2006). MAPK (Misra and Pizzo 2009) and 

PI3K/Akt (Leone et al. 2007) signalling pathways are also known to affect cAMP and PKA. 

It is likely that the MDR phenotype involves interaction among all these signalling 

pathways (see I.6.2.2.4) (Figure 21). 

Studies of the c-Jun NH2-terminal protein kinase (JNK) (Figure 21), which also 

activates AP-1, also contributed to the evidence of AP-1 involvement in the hMDR1 

transcription. The proposed role for JNK in the regulation of the MDR1 gene has been 

controversially discussed with evidence supporting both an activation effect and a 

repressive effect on the hMDR1 transcription. JNK is a member of the MAPK family, which 

binds to and phosphorylates the NH2-terminal activation domain of the transcription factor 

c-Jun (Weston and Davis 2002), and that is activated in response to many stressful stimuli 

including heat shock, UV irradiation, protein synthesis inhibitors, and inflammatory 

cytokines (Osborn and Chambers 1996). Moreover, evidence suggests that JNK 

modulates the development of the MDR phenotype (Bark and Choi 2010; Lagadinou et al. 

2008; Sui et al. 2011; Zhang et al. 2009). In human KB-3 carcinoma cells, treatment with 

doxorubicin resulted in a time- and dose-dependent activation of JNK up to 40-fold, and 

treatment with vinblastine or etoposide also activated JNK, with maximum increases of 

6.5- and 4.3-fold, respectively. Consistent with these findings, increased c-jun 

phosphorylation was observed after these drug treatments. Additionally, two multidrug-

resistant variants of KB-3 cells, KB-A1 and KBV1, selected for resistance to doxorubicin 

and vinblastine, respectively, showed increased basal levels of JNK activity, when 

compared to the KB-3 parental cell line, with no change in JNK protein expression, 

indicating that JNK is present in a highly activated form in the MDR cell lines. Moreover, 

under conditions optimal for JNK activation, doxorubicin, vinblastine, and etoposide 

induced MDR1 mRNA expression in KB-3 cells, suggesting that JNK activation is an 

important component of the cellular response to structurally and functionally distinct 

anticancer drugs, and may also play a role in the MDR phenotype (Osborn and Chambers 

1996). The overexpression of the MAP3K1 gene (also known as MEKK 1) in the human 

cell line HeLa selectively activated JNK, leading to an increase in the levels of MDR1 

mRNA and P-gp protein (Figure 21) (Comerford et al. 2004). 

Several putative nonconsensus AP-1 binding sites have been reported the hMDR1 

promoter, as well as on rodent P-gp promoters. (Labialle et al. 2002b; Scotto 2003). While 

the AP-1 site in the murine homologue mediates the repression of this gene (Ikeguchi et 

al. 1991), the AP-1-binding elements in the promoters of the hamster (-55 to -49) (Teeter 

et al. 1991a; Teeter et al. 1991b) and human genes (Daschner et al. 1999) are involved in 

transcriptional activation. Located -121 to -115 bases upstream of the major +1 start site 
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in the hMDR1 promoter (Figure 12) is an AP-1 promoter element, being this a binding site 

for important regulators of the hMDR1 gene, such as the c-jun dimer (Daschner et al. 

1999). In this study, it was observed an increase in the amount of both c-jun and c-fos 

mRNA in cells with 12-, 65-, or 200-fold higher resistance to doxorubicin (MDR MCF-7 

cells) when compared to drug-sensitive MCF-7 wild-type cells. Moreover, an increase in 

the DNA binding activity of an AP-1 complex in nuclear extracts from MDR MCF-7 cells 

was shown, when compared to extracts from wild-type cells. Also, it was reported a 

proportional increase in luciferase expression from a reporter vector containing consensus 

AP-1 binding sites in transiently transfected MDR cells, when compared to wild-type MCF-

7 cells, indicating that AP-1 mediated gene expression is increased in drug-resistant MCF-

7 cells. Nuclear extracts from resistant MCF-7 cells also displayed an increased level of 

DNA binding of jun/jun dimers to an oligonucleotide probe that contained the relevant 

MDR1 promoter sequences (-123 to -108), indicating that AP-1 was capable of binding to 

this promoter site (Daschner et al. 1999). Additionally, co-transfection of wild-type cells 

with a c-jun expression vector and AP-1 luciferase constructs demonstrated that c-jun 

could activate gene expression from both the consensus and the MDR1 AP-1 sites in a 

dose dependent manner. Noteworthy, RT-PCR and western blot analysis also showed 

that levels of MDR1 mRNA and P-gp were increased in c-jun transfected wild-type cells. 

Therefore, these data indicate that increased AP-1 activity may be an important mediator 

of MDR by regulating the expression of MDR1 gene (Daschner et al. 1999). 

Additionally, a very recent study performed with vinblastine resistant Caco-2 cells 

(Caco-2 vbl) provided evidence that AP-1 and NF-κB are involved in the P-gp induction in 

these resistant cells (Chen et al. 2013). Since vinblastine induces both AP-1 and NF-κB, 

the role of these transcription factors in the regulation of the MDR1 gene expression was 

investigated using reporter gene assays. The results indicated that the AP-1 and NF-κB 

luciferase activity was higher in Caco-2 vbl cells than in Caco-2 cells. Also, the mRNA 

expression of AP-1 subunit c-Jun and NF-κB was increased, and the c-Jun inhibitor, 

SP600125, and NF-κB inhibitor, pyrrolidine dithiocarbamate (PDTC), suppressed the 

expression of MDR1 mRNA in these Caco-2 vbl cells (Chen et al. 2013). 

However, contradictory results were also reported suggesting that c-Jun and JNK 

activation can inhibit the expression of MDR1 in human MDR cells. MDR FM3A/M cells 

overexpressing P-gp demonstrated to have significantly lower basal and drug-stimulated 

JNK activity than parental FM3A/M cells, and were resistant to anticancer drugs. After 

JNK gene transfection, MDR FM3A/M cells recover the basal and drug-stimulated 

activities of JNK and the susceptibility to anticancer drugs (Kang et al. 2000). Other 

studies indicated that reactive oxygen species (ROS) down-regulated P-gp expression 

and activated JNK in multicellular prostate tumor spheroids (Wartenberg et al. 2001b). 
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Also, TNF-α can suppress MDR1 expression in MDR cells (Stein et al. 1996) and promote 

c-jun expression (Chen and Goeddel 2002). In mouse hepatoma cell lines, a canonical 

AP-1 binding sequence in the promoter of mdr3/mdr-1a negatively regulated gene 

expression (Ikeguchi et al. 1991). Moreover, in a study performed by Miao et al. it was 

demonstrated that c-Jun activation down-regulates MDR1 gene expression in the human 

K562/A02 MDR cell line (Miao and Ding 2003). Indeed, it was shown that salvicine, a 

topoisomerase II inhibitor, suppressed MDR1 expression in MDR cells and promoted c-jun 

expression in both MDR and parental K562 cells. Moreover, the levels of c-jun expression 

were enhanced by salvicine in K562/A02 cells before the reduction of MDR1 mRNA and 

P-gp protein levels. Furthermore, c-jun antisense oligodeoxynucleotides prevented 

salvicine-stimulated enhancement of c-Jun protein and reduction of MDR1 gene 

expression, but did not affect the increase in c-jun mRNA levels, confirming that c-Jun 

activation is a prerequisite for reduction of MDR1 mRNA and P-gp protein levels. Salvicine 

also enhanced the levels of the active forms of JNK (promoting its phosphorylation) and c-

Jun, in both MDR K562/A02 and parental K562 cells, and raised the DNA-binding activity 

of AP-1. Additionally, c-jun antisense oligodeoxynucleotides also inhibited salvicine-

induced apoptosis and cytotoxicity in MDR and parental K562 cells. Therefore, the 

authors proposed a possible pathway for the down-regulation of MDR1 expression by 

salvicine, through the stimulation of JNK phosphorylation and activation, resulting in c-Jun 

phosphorylation and activation. Activated c-Jun promotes expression of c-jun itself, 

represses MDR1 transcription, and triggers pro-apoptotic signals, resulting in low MDR1 

expression and cell death. These findings suggested that c-jun might be a potential drug 

target for circumventing tumor MDR (Miao and Ding 2003). In accordance, it was later 

demonstrated that the adenovirus-mediated enhancement of JNK reduced the level of P-

gp in a dose- and time-dependent manner, being this decrease independent of the protein 

stability, and primarily occurring at the mRNA level (Zhou et al. 2006). It was shown that 

P-gp down-regulation required the catalytic activity of JNK and was mediated by c-Jun, as 

both pharmacologic inhibition of JNK activity and dominant-negative suppression of c-Jun 

remarkably abolished the ability of JNK to down-regulate P-gp. Also, the observed 

decrease in P-gp was associated with a significant increase in intracellular drug 

accumulation and dramatically enhanced the sensitivity of MDR cancer cells to 

chemotherapeutic agents (Zhou et al. 2006). Therefore, this study provided direct 

evidence that enhancement of the JNK pathway down-regulates P-gp and reverses P-gp-

mediated MDR in cancer cells. In a more recent study, using photodynamic therapy with 

pheophorbide, it was also found that JNK pathway activation down-regulated P-gp, which 

enhanced intracellular doxorubicin accumulation in MDR human liver tumor cells (Tang et 

al. 2009). 
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It was recently reported a possible interplay between the JNK/c-Jun/AP-1 and NF-

κB-mediated pathways. In fact, it was demonstrated that PSC833, a well-known non-

immunosuppressant cyclosporine analogue that functionally inhibits P-gp, not only 

sensitizes SK-MES-1/DX1000 cells to doxorubicin by enhancing drug accumulation, but 

also down-regulates MDR1 mRNA and P-gp expression in a time- and concentration-

dependent manner, by activating JNK/c-Jun/AP-1 and suppressing NF-κB (Bark and Choi 

2010). In general, NF-κB and JNK are known to be simultaneously activated under a 

variety of stress conditions. Since, activation of NF-κB inhibits JNK activation, inhibition of 

NF-κB sensitizes stress responses through enhanced or prolonged JNK activation (Zhang 

and Chen 2004). Although the JNK pathway activates MDR1 expression in hypoxia, which 

is dependent on hypoxia-inducible factor 1 rather than AP-1 (Liu et al. 2007), contradictory 

results were also reported, as previously referred, in which the JNK pathway and the 

transcription factor c-Jun play an important role in the down-regulation of MDR1 

expression (Miao and Ding 2003; Zhou et al. 2006). On the other hand, activation of NF-

κB was shown to induce MDR1 expression (Bentires-Alj et al. 2003) (see I.6.2.2.1.4). 

Moreover, it is known that NF-κB and JNK signalling pathways are functionally 

interconnected. In fact, the anti-apoptotic function of NF-κB is mediated in part through its 

ability to down-regulate JNK activation (Nakano 2005). Thus, it is not surprising that JNK 

and NF-κB are involved as rivals in the PSC833-induced down-regulation of MDR1 

expression (Bark and Choi 2010). 

I.6.2.2.1.6. Ras/Raf and WT-1 signalling pathways 

The MDR1 gene seems to be also a target of the ras/raf signalling pathway (Figure 

21) (Kim et al. 1997; Miltenberger et al. 1995). The serine/threonine kinase Raf-1, is a 

component of intracellular signalling pathways that control responses to extracellular 

stimuli (Miltenberger et al. 1995). Raf becomes activated by membrane-associated signals 

once receptor tyrosine kinase-activated Ras recruits cytosolic Raf to the plasma 

membrane (Leevers et al. 1994). Raf then initiates a protein kinase cascade that results in 

activation of the MAPKs [also known as ERKs, for extracellular signal- regulated kinases 

(Howe et al. 1992)] (Figure 21), being this pathway known as Ras/MAPK pathway. The 

MAPKs are a family of serine/threonine kinases that directly regulate cytosolic and cell 

surface enzymes, as well as a number of transcription factors (Davis 1993). Although 

there are alternative signalling pathways that act independently of Ras and Raf, genetic 

evidence indicates that the majority of receptor tyrosine kinase- and/or Ras-dependent 

signalling events are mediated by Raf to the downstream MAPKs (Miltenberger et al. 

1995). Specific inhibitors of the MAPK pathway significantly reduced the survival of 

MDR1-mediated MDR cancer cells, suggesting that the activation of such pathways leads 
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to P-gp overexpression is an intrinsic MDR phenotype (Duraj et al. 2005; Kisucka et al. 

2001). Also, novel derivatives of tetrandrine and 3-(5′hydroxymethyl-2′-furyl)-1-

benzylindazole were shown to effectively reverse P-gp-mediated MDR by inhibiting the 

MAPK signalling pathway (Sui et al. 2012). 

Several transcription factors have been implicated as downstream targets in Raf-

mediated pathways. For example, MAPK-related proteins directly phosphorylate the Ets 

related factor Elk-1(Ets, E-twenty six family of transcription factors) (Janknecht et al. 1993) 

and the proto-oncogene c-jun (Smeal et al. 1991). Phosphorylation of Elk-1 stimulates 

transactivation by the serum response factor (SRF) at the serum response element (SRE) 

to mediate the immediate-early serum response of genes such as c-fos (Gille et al. 1992). 

Complexes of c-Jun and c-Fos bind to AP-1 sites, as previously described, and regulate 

transcription of genes such as collagenase and interleukin 2 in response to growth-

promoting phorbol esters (Angel et al. 1987; Angel and Karin 1991). In support of a link 

between Raf and MAPK, studies have shown that the constitutively active kinase, v-Raf, 

can increase transcription mediated by the SRE or AP-1 sites (Miltenberger et al. 1993). 

Furthermore, Raf inhibition by a dominant-negative mutant that prevents Ras-Raf 

association (Zhang et al. 1993) specifically blocks transcription from overlapping AP-1/Ets 

binding sites (Bruder et al. 1992), indicating that Raf is an obligate upstream regulator of 

AP-1 and Ets factors. 

Moreover, PI3K activation may be necessary for Ras induced MDR, although 

preliminary studies suggest that inhibition of PI3K signalling alone may not be the only 

way to effectively overcome P-gp-mediated MDR in vitro (McCubrey et al. 2006). Indeed, 

activation of multiple signal transduction pathways, including the PI3K/Akt pathway and 

MAPK cascade, induced MDR in cancer cells (Wang et al. 2011). These studies suggest 

that established cancers with Ras mediated pathways may not be sensitive to single-

agent PI3K pathway inhibitors. 

As previously referred, EGR-1, a ubiquitous immediate early factor, and WT-1, the 

Wilms’ tumor suppressor protein 1, also interact with GC sequences through their zinc-

finger domains. Interestingly, both EGR-1 and WT-1 recognize a site within the MDR1 GC 

element that overlaps the Sp1/Sp3-binding sequence, being the activation of MDR1 by 

TPA mediated by EGR-1 (McCoy et al. 1995) and suppressed by WT-1 (McCoy et al. 

1999) (see I.6.2.2.1.1). Therefore, it appears that the regulation of MDR1 expression by 

ras/raf and WT-1 involves a complex interplay of transcription factors within a very 

discrete promoter region (Scotto 2003).  

Additionally, the p38-MAPK pathway, another MAPK cascade, also seems to play 

an important role in modulating P-gp-mediated drug resistance. Constitutive 

overexpression of the MDR1 gene in drug-resistant human gastric cancer SGC7901/VCR 
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cells was shown to be dependent on p38-MAPK phosphorylation (Guo et al. 2008). 

Inhibition of the p38-MAPK pathway restored the sensitivity of these cells not only to P-gp 

substrates but also to non-P-gp-substrates (Guo et al. 2008). Previous reports had shown 

that the MDR phenotype was clearly associated with increased levels and activity of p38 

MAPK in the murine leukaemia cell line L1210/VCR, and SB203580 (an inhibitor of the 

p38 MAPK pathway) significantly reduced the degree of vincristine resistance by inducing 

tumour cell apoptosis (Barancik et al. 2001). Moreover, the p38-MAPK pathway inhibition 

reversed the P-gp-mediated MDR without affecting P-gp expression (Barancik et al. 

2001). This inhibitor did not influence P-gp expression in human colorectal cancer cells 

HCT-15 and SW620-14 (Katayama et al. 2007). Therefore, p38-MAPK appears to 

modulate P-gp transport activity rather than P-gp transcription. The MAPK cascades 

(ERK, p38-MAPK, and JNK) are, thus, important signal transduction pathways that are 

activated by many different stimuli (Breier et al. 2013) and have an important role in P-gp 

modulation.  

I.6.2.2.1.7. NF-R1 and NF-R2 elements 

The sequence between -123 to -115 at the MDR1 promoter has demonstrated to 

bind two different proteins, NF-R1 and NF-R2, resulting in antagonistic effects on the 

MDR1 transcription (Ogura et al. 1992; Takatori et al. 1993) (Figure 12). In fact, Ogura et 

al. identified and purified NF-R1, a 110-kDa protein, and found that it specifically binds to 

two unrelated motifs, the ATTCAGTCA motif (sequence between –123 and –115) and the 

GC-box motif (between -56 and -45; the Sp1/EGR-1 site), on the MDR1 proximal 

promoter (Ogura et al. 1992) (Figure 12). Moreover, methylation interference analysis 

revealed that the nucleotides were in close contact with the purified NF-R1 on the 

ATTCAGTCA and GC-box motifs, and by competition gel mobility shift assay using point 

mutated oligonucleotides it was demonstrated that the nucleotides were required for the 

NF-R1 binding. Additionally, a chloramphenicol acetyltransferase (CAT) expression assay 

was performed, using the corresponding point-mutated MDR1 promoter fused to a CAT 

gene (2 bp scanning mutations within either the upstream or the downstream GC-box), 

and showed the inhibition of NF-R1 binding to the promoter, which resulted in a 2- to 3-

fold increase of CAT activity, as compared to the intact promoter in doxorubicin-resistant 

K562 cells, suggesting the presence of a repressor binding site. Thus, NF-R1 exerts a 

negative regulation of the MDR1 gene transcription (Ogura et al. 1992). While a repressor 

site had already been described in the promoter region of -110 (Cornwell and Smith 

1993b), the presence of a repressor in the downstream site appears to be in conflict with 

the aforementioned study in which Sp1 and EGR-1 functioned as activators at the 
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downstream GC-box. However, different mutations and different cell lines were analysed 

in these conflicting studies, preventing direct comparison of the results. 

On the other hand, NF-R2, another DNA-binding protein, was also reported to 

interact with the MDR1 gene proximal promoter sequence, binding within the -119 and -

111 region, which contains the previously mentioned ATTCAGTCA motif (Takatori et al. 

1993) (Figure 12). This protein was purified from the nuclear extract of K562/ADM cells 

and run as a single protein of 75 kDa on SDS-PAGE. CAT expression assay and gel 

mobility shift competition assay with mutated promoters revealed that the ATTCAGTCA 

motif is a positive regulatory element of MDR1 gene and that the motif is important for NF-

R2 binding, thus suggesting that NF-R2 may be involved in the positive regulation of the 

MDR1 gene transcription (Takatori et al. 1993). Because this overlaps the binding site for 

NF-R1, and mutations in the site reduced the binding of both complexes, the relative role 

of NF-R1 and NF-R2 in MDR1 regulation through the upstream GC-box is not yet clear. In 

fact, the role of these two proteins still remains unclear as no further data have been 

reported. 

I.6.2.2.1.8. TCF Elements 

Among the T-cell factor (TCF) family, some members have already been reported 

as tumor inducers and as being involved in the cancer proliferation and progression 

(Roose and Clevers 1999; Soler et al. 1999). These factors are transcriptionally inactive 

but are activated upon interaction with β-catenin, a dual function protein regulating the 

coordination of cell-cell adhesion and gene transcription (Brembeck et al. 2006; Gumbiner 

2005), and in turn over-activate their target genes as a result of increased levels of β-

catenin in many cancer types, including colorectal adenomas and to skin and liver 

tumours (Labialle et al. 2002b). The elevated levels of β-catenin result from a mutation in 

the adenomatous polyposis coli (APC) gene, a tumor suppressor gene, or from a mutation 

in the β-catenin gene, that stabilize the protein (Labialle et al. 2002b). In fact, mutations in 

the tumor suppressor APC gene have been documented in greater than 80% of all 

sporadic hereditary colon cancers (Bright-Thomas and Hargest 2003). Loss of APC 

function leads to the nuclear accumulation of β -catenin, that co-activates the transcription 

complex TCF/LEF (T-cell factor/lymphoid enhancer factor) (Scotto 2003). Specifically, a 

TCF4/β-Catenin complex, binding to seven elements spanning the -1813 to -261 

sequence of the hMDR1 gene (Figure 12), has been reported as an hMDR1 

transcriptional activator, which may promote early abnormal expression of this gene in 

colorectal carcinogenesis (Yamada et al. 2000), providing one possible explanation for the 

overexpression of MDR1, and ‘intrinsic’ drug resistance in many colorectal cancers. Using 

a large-scale comparison of 7000 genes by two-color fluorescence hybridization of cDNA 
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microarray, MDR1 was found to be transcriptionally down-regulated after the inactivation 

of TCF4. Additionally, aberrant expression of MDR1, concomitant with the accumulation of 

β-catenin, occurs even in small pre-cancerous lesions of familial adenomatous polyposis 

patients. Therefore, it was proposed that the MDR1 gene promoter contains multiple 

TCF4-binding sequences, and is a direct target gene of the TCF4/β-catenin transcriptional 

complex (Yamada et al. 2000). 

Recently, Corrêa et al. demonstrated that the Wnt/β-catenin pathway (also known 

as the canonical Wnt pathway) regulates MDR1 in chronic myeloid leukemia 

(CML)(Correa et al. 2012). In fact, the advanced phases of CML are known to be more 

resistant to therapy, being this resistance associated with the overexpression of MDR1. 

Also, CML progression has been associated, among others, with the canonical pathway of 

Wnt signalling. Activation of this pathway leads to nuclear accumulation of β-catenin, 

which activates the TCF/LEF1 family of transcriptional factors (Figure 16). Therefore, 

given the existence of seven TCF/LEF1 consensus binding sites on the basal promoter of 

this gene (Figure 12) (Labialle et al. 2002b) it was hypothesized the possibility of MDR1 

regulation by the canonical Wnt pathway. Using MDR (overexpressing MDR1) and non-

MDR cell lines (Lucena and K562, respectively) as models of CML, it was demonstrated 

that β-catenin was present in the protein complex on the basal promoter of MDR1 in both 

cell lines, in vitro, but its binding was more pronounced in the resistant cell line, as 

evaluated by a ChIP assay, which allows analysis of nuclear protein-DNA interactions. 

Lucena cells exhibited higher β-catenin levels compared to its parental cell line. Also, it 

was demonstrated that β-catenin binds to the TCF/LEF consensus binding site at the 

MDR1 promoter. MDR1 positive regulation by the canonical pathway of Wnt signalling 

was clearly demonstrated with Wnt1 and β-catenin depletion, and overexpression of 

nuclear β-catenin, together with TCF binding sites activation (Correa et al. 2012).  

The Wnt/β-catenin pathway was also involved in neuroblastoma (NB) (Flahaut et al. 

2009) and breast cancer (Bourguignon et al. 2009) chemoresistance. In fact, Flahaut et al. 

investigated the mechanisms underlying the chemoresistant phenotype in NB by gene 

expression profiling of a doxorubicin (DoxR)-resistant and a sensitive parental cell line 

(Flahaut et al. 2009). Not surprisingly, the MDR1 gene was included in the identified up-

regulated genes, although the highest overexpressed transcript in both cell lines was the 

frizzled-1 Wnt receptor (FZD1) gene, an essential component of the Wnt/β-catenin 

pathway (Figure 16). FZD1 up-regulation in resistant variants was shown to mediate 

sustained activation of the Wnt/β-catenin pathway, as revealed by the nuclear β-catenin 

translocation and target genes transactivation (Figure 16). Interestingly, specific micro-

adapted short hairpin RNA (shRNAmir)-mediated FZD1 silencing induced a parallel strong 

decrease in the expression of MDR1, restoring drug sensitivity, thus revealing a complex 
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role for FZD1 in Wnt/β-catenin-mediated chemoresistance. Moreover, RNA samples from 

21 patient tumours (at diagnosis and post-chemotherapy), showed a highly significant 

FZD1 and/or MDR1 overexpression after treatment (Flahaut et al. 2009). These data 

implicated the Wnt/β-catenin pathway in NB chemoresistance and identified potential new 

targets to treat aggressive and resistant NB. 

 
Figure 16. Wnt signaling pathway. 
A. In the absence of a Wnt ligand, 
cytosolic β-catenin is phosphorylated 
by GSK3β. Adenomatous polyposis 
coli (APC) and axin complex with 
GSK3β and β-catenin to enhance this 
destruction process. Phosphorylated 
β-catenin is recognized by the 
ubiquitin ligase βTrCP, ubiquinated, 
and degraded by the proteasome 
machinery. Hence the Wnt signaling is 
in an “off” state and there is no 
transcription of Wnt target genes (left). 
B. Wnts bind both Frizzled and 
LRP5/6 receptors to initiate GRK5/6-
mediated LRP phosphorylation as well 
as dishevelled/β-arrestin-mediated 
Frizzled internalization. Dishevelled 
membrane translocation and 
phosphorylation lead to dissociation of 
the axin/APC/GSK3β destruction 

complex. C. Hence β-catenin phosphorylation is inhibited and it accumulates in the cytosol. The accumulated 
cytosolic β-catenin translocates into the nucleus to bind to LEF/TCFs co-transcription factors, which results in 
the Wnt-responsive gene transcription (right). Fzd, Frizzled; GBP, GSK3β binding proteins; DVL, Dishevelled; 
βarr, β-arrestin; GRK, G protein-coupled receptor kinase. Taken from (Chen et al. 2010b). 
 
 

Additionally, Bourguignon et al. investigated hyaluronan (HA)-mediated CD44 (an 

HA receptor) interactions with p300 (a histone acetyltransferase) and SIRT1 (a histone 

deacetylase) in human breast tumor cells (MCF-7 cells) (Bourguignon et al. 2009). The 

obtained results demonstrated that HA binding to CD44 up-regulates p300 expression and 

its acetyltransferase activity that, in turn, promotes acetylation of β-catenin and NF-kB-

p65, leading to activation of β-catenin-associated TCF/LEF transcriptional co-activation 

and NF-kB-specific transcriptional up-regulation, respectively. As a consequence, these 

changes increased the expression of the MDR1 gene and of the anti-apoptotic gene Bcl-

x(L), resulting in chemoresistance in MCF-7 cells. In accordance, the down-regulation of 

p300, β-catenin, or NF-kB-p65 in MCF-7 cells (by transfecting cells with p300-, β-catenin-, 

or NF-kB-p65-specific small interfering RNAs) inhibited the HA/CD44-mediated β-

catenin/NF-kB-p65 acetylation and abrogated the aforementioned transcriptional activities, 

with a significant decrease in both MDR1 and Bcl-x(L) gene expression and an 

enhancement in caspase-3 activity and chemosensitivity in these breast tumor cells. 

Further analyses indicated that activation of SIRT1 (deacetylase) by resveratrol (a natural 

antioxidant) induced SIRT1-p300 association and acetyltransferase inactivation, leading to 

A. B. 

C. 
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deacetylation of β-catenin and NF-kB-p65, inhibition of β-catenin-TCF/LEF and NF-kB-

specific transcriptional activation, and the impairment of MDR1 and Bcl-x(L) gene 

expression. All these multiple effects lead to an activation of caspase-3 and a reduction of 

chemoresistance. Together, these findings suggest that the interactions between 

HA/CD44-stimulated p300 (acetyltransferase) and resveratrol-activated SIRT1 

(deacetylase) play pivotal roles in regulating the balance between cell survival versus 

apoptosis, and multidrug resistance versus sensitivity in breast tumor cells (Bourguignon 

et al. 2009). 

 

I.6.2.2.2. Stress induction of the hMDR1 gene – inducible regulators 

From the earliest studies of P-gp function and regulation, it has been suggested that 

P-gp is a ‘stress response gene’ since its activity can be modulated by environmental 

adversity, being highly responsive to these stress signals (Scotto and Egan 1998). MDR1 

is, thus, well equipped for the task of cellular defence, and its promiscuity means that it is 

a highly reliable protective mechanism. Therefore, rapid up-regulation of the multidrug 

transporter by extracellular and intracellular stress protects the cell against a multitude of 

adverse insults, including heat shock, the surgical insult of partial hepatectomy, 

inflammation, exposure to carcinogens, and UV- and X-irradiation (Scotto 2003).  

Additionally, in what concerns to cancer cells, it is recognised that these cells in 

solid tumours encounter a harsh local environment and are exposed to both endogenous 

stresses, such as glucose deprivation, anaerobic metabolism, hypoxia, free radical 

formation, and acidosis, as well as exogenous stress in the form of chemotherapy and 

radiotherapy (Callaghan et al. 2008), causing a breakdown in the oxidant-antioxidant 

balance (Brown and Bicknell 2001). Such adverse conditions force tumour cells to adapt. 

As tumour blood supply is often inadequate and irregular, cells are deprived of oxygen 

and nutrients, leading to a cascade of events responsible for the development of an 

independent tumor vasculature (Bernards and Weinberg 2002).  

Accumulating evidence suggests that ROS are involved in the regulation of signal 

transduction pathways and gene expression, therefore acting as indicators of the level of 

cellular stress that, upon activation of nonspecific stress response pathways, enable the 

cells to adapt to a potentially harmful change in environment (Figure 17) (Callaghan et al. 

2008). 

It was consequently hypothesised that increased ROs levels could increase MDR1 

expression and multiple pathways seem to be involved (Dalton et al. 1999; Klaunig and 

Kamendulis 2004; Nwaozuzu et al. 2003; Ziemann et al. 1999). In a study where several 

signalling pathways were investigated to link H2O2–mediated elevation of ROS with MDR1 
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expression, positive regulation was observed for the PI3K (phosphoinositide 3-kinase), 

ERKs (extracellular signal-regulated kinases; or mitogen-activated protein kinases, 

MAPKs), JNK (c-Jun NH2-terminal protein kinase), and PKC (protein kinase C) pathways 

and a negative regulation for NF-κB (Nwaozuzu et al. 2003). Exposure to H2O2 increased 

the input from the positively regulating pathways but reduced NF-κB-mediated 

suppression of MDR1. Therefore, it was demonstrated that the control of MDR1 

expression is multifactorial involving communication between several pathways and can 

be influenced by changing ROS level by H2O2 treatment (Nwaozuzu et al. 2003). Further 

evidence for ROS-mediated MDR1 transcriptional activation was reported for the stress-

inducing compounds 2-acetylaminofluorene (2-AAF) (Kuo et al. 2002) and cadmium 

(Thevenod et al. 2000), both of which activate the NF-κB pathway, thus showing that NF-

κB can act either as positive or negative regulator of MDR1 transcription. In addition, AP-1 

has also been shown to directly respond to ROS (Abate et al. 1990). 

 

 

 

 
 

 
Figure 17. Induction of MDR1 expression due 
to oxidative stress caused by micro-
environmental factors. 
Adapted from (Callaghan et al. 2008). 

 

 

The following section will focus on how cellular stress induces the expression of the 

multidrug transporter MDR1. Particular attention will be given on how the tumour 

microenvironment itself elicits oxidative stress and how this stress activates downstream 

stress response pathways, and their consequences on the MDR1 expression. As can be 

seen in Figure 17, there is a convergence of various stress factors on the oxidative 

balance of a cell. A primary causative factor for many of these stresses is, as previously 

mentioned, the harsh microenvironment (i.e., the inadequate tumor blood supply), which 

leads to glucose deprivation, hypoxia, reversion to anaerobic respiration, accumulation of 

lactate and pyruvate, and variability in tumor pH (Callaghan et al. 2008).  

I.6.2.2.2.1. Heat Shock  

In response to heat shock, an increase in both hMDR1 mRNA levels (Chin et al. 

1990b) and hMDR1 gene transcription (Kioka et al. 1992b) can be observed. Moreover, 

several putative heat shock element (HSE) sequences have been identified in the hMDR1 
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promoter, suggesting that it may be considered a stress gene (Labialle et al. 2002b). In 

the MDR1 promoter Chin et al. (1990) reported three HSEs upstream from the major 

transcriptional initiation start sites, while the remaining HSEs were located downstream 

between the start sites and the first AUG codon (Chin et al. 1990b). One of these HSEs 

sequences is located at the -99 to -66 sequence position in the hMDR1 promoter (Figure 

12) and has been proposed as a requirement for the heat shock response (Miyazaki et al. 

1992). Also, gel shift assays showed that the heat-shock transcription factor (HSF) could 

bind to a HSE motif located at the -178 to -152 sequence position in the MDR1 promoter 

(Miyazaki et al. 1992) (Figure 12).  

In accordance, it has been shown that both heat shock and sodium arsenite 

increase the activity of hMDR1 promoter via HSEs, and that the Raf-dependent signalling 

pathway controls the transcription of hMDR1 gene via a mechanism involving the 

modulation of HSF activity (Kim et al. 1996; Kioka et al. 1992b; Miyazaki et al. 1992). In a 

study performed by Kioka et al. it was demonstrated that the expression of the hMDR1 

gene in the HepG2 hepatocarcinoma cell line was significantly increased by exposure to 

sodium arsenite. In fact, it was shown that sodium arsenite activated the MDR1 promoter 

and that this response was dependent on a promoter region containing a tandem repeat 

of HSEs. Noteworthy, deletion analysis of the MDR1 promoter indicated that this 

transcriptional activation depended on a 60-bp region (-193 to -133) containing two HSEs 

(-174 to -161 and -161 to -148) (Kioka et al. 1992b).  

Additionally, it was demonstrated that the MDR1 promoter is responsive to the 

activated Raf that, as mentioned before, functions as a component of the MAPK signal 

transduction pathway, and that the Raf over-expression was associated with acquired 

MDR phenotype in monkey kidney fibroblasts CV-1 cells (Kim et al. 1993). Moreover, the 

activated Raf-mediated stimulation of the MDR1 promoter was associated with the 

activation of HSF (Kim et al. 1996). Indeed, phosphorylation of HSFs, which occurs at 

multiple serine and threonine residues, may be important for attaining maximal 

transcriptional activity (Nieto-Sotelo et al. 1990) and the activation of the protein kinase 

cascade, including Raf-1, induces gene expression through phosphorylation of 

transcription factors, including HSF (Hunter and Karin 1992). The stimulation of Raf-

dependent signal transduction increased the activity of the MDR1 promoter with maximum 

activation occurring at a sequence containing an upstream HSE motif without other 

regulatory elements. On the other hand, the constructs containing the downstream HSE 

motif showed a relatively weaker activation by Raf (Kim et al. 1996). Since previous 

studies showed that HSF could bind to the upstream HSE motif (-178 to -152) in the 

MDR1 promoter (Miyazaki et al. 1992) (Figure 12), these results suggested the possibility 

of a strong correlation between the effect of the activated Raf pathway on the induction of 
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the MDR1 gene and the activity of HSF/HSE (HSF might trans-activate the expression of 

MDR1 gene in response to the activated Raf) (Kim et al. 1996). Moreover, given the 

observed induction of the promoter activity (CAT activity) by sodium arsenite (which 

stimulates binding of HSF to HSE) and the activated Raf-induced potentiation of CAT 

activity by sodium arsenite or heat shock, it was suggested the possibility that the 

activated Raf pathway may be associated with phosphorylation of HSF (Kim et al. 1996). 

In addition, there are some evidences that a down-regulation of MDR1 expression 

occurs by inhibition of protein kinase A (PKA) (Abraham et al. 1990; Kim et al. 1996; Kim 

et al. 1993) that binds and activates heat-shock transcription factor 1 (HSF-1) (Murshid et 

al. 2010), thus reinforcing the role of this transcription factor on the regulation of P-gp 

expression. In fact, H-87, a specific PKA inhibitor, decreased the drug resistance and 

MDR1 gene expression in c-raf-1 transfected CV-1 cells (Kim et al. 1993). In another 

study, it was also demonstrated that H-87 inhibited MDR1 promoter activity in both Gxb-I 

and Gha-I cells, and blocked the stimulation of the MDR1 promoter by the activated Raf in 

GHE-L cells (Kim et al. 1996). Moreover, MDR1 promoter deletion analysis suggested that 

H-87 probably inhibits the phosphorylation of HSF and/or the cAMP responsive element 

(CRE) binding protein, showing an important role for PKA in the regulation of the MDR1 

gene (Figure 21) (Kim et al. 1996). Consequently, the authors proposed that both Raf- 

and PKA-dependent pathways control the transcription of the MDR1 gene via a 

mechanism involving the modulation of HSF activity (Kim et al. 1996). 

Accordingly to the previous studies, it has also been reported that MDR cells, such 

as FM3A/M and P388/M cells, show a constitutively activated HSF (constitutive HSF 

DNA-binding activity), and consequently express, in the absence of stress, heat shock 

proteins 70 and 90 (Hsp70 and Hsp90) and P-gp at higher levels than their parental cells, 

suggesting that HSF could be an useful target for reversing MDR (Kim et al. 1997). 

Quercetin, one of the most widely distributed flavonoids in nature, dose-dependently 

inhibits the constitutive HSF DNA-binding activity and the sodium arsenite-induced HSF 

DNA-binding activity in MDR cells and, consequently, suppresses the mdr1 gene 

expression, thereby overcoming the MDR phenotype of FM3A/M cells (Kim et al. 1998). 

Quercetin was also shown to inhibit Hsp synthesis after heat shock in a human colon 

carcinoma cell line and in Hela cells (Hosokawa et al. 1992), and also to interfere with the 

formation of the complex between the HSE and HSF, and to down-regulate the level of 

HSF-1 (Nagai et al. 1995a). The accumulation of MDR1 mRNA after exposure to arsenite 

was also inhibited by quercetin in HepG2 cells(Kioka et al. 1992a), and these data also 

supported the involvement of HSEs in the induction of the MDR1 gene expression, since 

quercetin interacts with HSF to inhibit the induction of the heat shock response (Nagai et 

al. 1995b). 
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Another HSE (HSF1) region located at the -315 to -285 sequence position in the 

hMDR1 promoter (Figure 12) was also reported to regulate the hMDR1 expression 

through a mechanism mediated by the HSF-1 (Vilaboa et al. 2000). In fact, infection of 

HeLa cells with adenovirus-carrying HSF-1+ cDNA, which encodes a mutated form of 

HSF-1 with constitutive transactivation capacity, increased MDR1 mRNA level and P-gp 

cell surface content, decreased rhodamine 123 accumulation and stimulated vinblastine 

efflux activity. Moreover, HSF-1 up-regulation of P-gp expression occurred at the 

transcriptional level since HSF-1+ bound the heat-shock consensus elements in the MDR1 

gene promoter and also activated the expression of a MDR1 promoter driven reporter 

plasmid [pMDR1(21202)] (Vilaboa et al. 2000). Also, heat-shock increased the 

pMDR1(21202) promoter activity and this effect was totally inhibited by co-transfection 

with an expression plasmid carrying HSF-1-, a dominant negative mutant of HSF-1, 

reinforcing the direct regulation of the hMDR1 gene expression by HSF-1(Vilaboa et al. 

2000). 

A recent study has implicated HSF-1 in the regulation of mdr1b expression by a 

distinct mechanism (Krishnamurthy et al. 2012). In fact, HSF-1 ablation [HSF-1(-/-) mice] 

induced the mdr1b in the heart and increased expression of its product. This increase 

enhanced the extrusion of doxorubicin, thus reducing doxorubicin-induced heart failure 

and mortality in mice. NF-κB expression in the heart was also increased. Moreover, DNA-

binding activity of NF-κB was higher in HSF-1(-/-) mice, and IκB, the NF-κB inhibitor, was 

depleted due to enhanced IκB kinase-α activity. According to the obtained results, a 

unique mechanism was proposed in which HSF-1 represses NF-κB activation of the mdr1 

gene in the heart and, consequently, ablation of HSF-1 enhances NF-κB, which in turn 

induces the mdr1b (Krishnamurthy et al. 2012). Moreover, mdr1 promoter activity was 

higher in HSF-1(-/-) cardiomyocytes, whereas a mutant mdr1 promoter with a HSE 

mutation showed increased activity only in HSF-1(+/+) cardiomyocytes. However, deletion 

of HSE and NF-κB binding sites diminished luminescence in both HSF-1(+/+) and HSF-1(-

/-) cardiomyocytes, suggesting that HSF-1 inhibits mdr1 promoter activity in the heart 

(Krishnamurthy et al. 2012). 

In conclusion, HSFs that regulate the expression of HSP genes through the binding 

to specific HSEs sequences present in the promoter of these genes, also enhance MDR1 

gene expression with several proofs of evidence, namely: (a) HSEs have been identified 

in the MDR1 gene promoter (Chin et al. 1990b; Kioka et al. 1992b); (b) typical stress 

inducers, such as heat-shock and arsenite, which induce HSP gene expression, also 

induced MDR1 gene expression in some cell types (Chin et al. 1990b; Kioka et al. 1992b); 

(c) some MDR cell lines exhibit constitutively high HSF-DNA binding activity (Kim et al. 
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1997), (d) quercetin, which inhibits HSF-HSE binding, also inhibits HSF-DNA binding and 

P-gp expression in MDR cells, reverting this phenotype (Kim et al. 1998) and (e) detection 

of HSF-1 bound to HSEs in the MDR1 gene promoter denotes regulation at the 

transcriptional level (Vilaboa et al. 2000). 

I.6.2.2.2.2. Inflammation -C/EBP and GR 

The ‘acute-phase response’ is a general term for the complex changes that take 

place in mammals in response to inflammatory stimuli such as bacterial infection or burn 

injury. This response is often experimentally simulated in vivo by the administration of 

bacterial lipopolysaccharide (LPS). In response to LPS, macrophages secrete 

inflammatory cytokines such as interleukin (IL)-1, IL-6 and TNF-α, which in turn act on the 

liver to induce a change in the gene expression program, resulting in the synthesis of a 

range of acute-phase proteins (Akira and Kishimoto 1992). 

Most of the studies on the expression of drug transporters during inflammation have 

relied on the rodent model system, and data have been obtained primarily for the 

transcription of the rodent homologues (Scotto 2003). Although not necessarily applicable 

to the human genes, the high degree of promoter conservation among family members, 

together with the similar response of the human and rodent genes to inflammatory agents, 

suggests that similar transcription pathways exist (Scotto 2003). 

Under acute-phase conditions, P-gp genes were reported to be induced in the liver 

(Nakatsukasa et al. 1993). Furthermore, several studies have shown that the IL-6-induced 

CAAT enhancer-binding protein (C/EBPβ, also called NF-IL-6) can activate the mouse 

and human MDR1 genes in transfection assays (Figure 18) (Combates et al. 1997; 

Combates et al. 1994; Yu et al. 1995). The CCAAT-enhancer-binding proteins (C/EBP) 

are a family of transcription factors involved in the basal and tissue-specific expression of 

a number of genes (Labialle et al. 2002b; Ramji and Foka 2002) having, therefore, an 

important role in a number of processes, including differentiation, inflammatory response, 

liver regeneration and metabolism (Ramji and Foka 2002).  

C/EBPβ is usually expressed at low levels in most tissues (Labialle et al. 2002b). 

However, in response to inflammatory cytokines (IL-1, IL-6 and TNF-α), 

lipopolysaccharides, and retinoic acid, its expression may be rapidly induced (Labialle et 

al. 2002b; Ramji and Foka 2002) (Figure 18). At the hMDR1 gene, the putative binding 

sequence for this transcription factor is located between positions -147 to -139 (Figure 12 

and Figure 18) (Labialle et al. 2002b). It was also shown that the homologous region in 

the hamster p-gp1 promoter also contains a C/EBPβ binding site and that activation 

through this site can be modulated by the binding of the glucocorticoid receptor (GR) 

(Scotto 2003). These results suggest that this element may be important as a site for 
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crosstalk between the inflammatory signals (mediated by cytokines through C/EBPβ), and 

the anti-inflammatory signals (mediated by glucocorticoids through their receptor). 

 

 

 

 

 

 

 

 

 
 
Figure 18. Activation of hMDR1 gene by NF-IL-6 in 
response to several stress stimuli. 

 

 

A number of studies have also suggested a role for glucocorticoids in the regulation 

of MDR1 gene transcription, but the responses are cell-type and gene-class dependent 

(Scotto 2003; Scotto and Egan 1998). Using the mouse hepatoma cell lines, Hepa 1–6 

and hepa1c1c, it was demonstrated that the synthetic glucocorticoid, dexamethasone, 

elicited an increase in the expression of the two murine MDR1 homologues, mdr1a and 

mdr1b, but not in mdr2 expression (Zhao et al. 1993). This increase occurred at least in 

part at the transcriptional level, and the induction apparently required new protein 

synthesis since no increases in mdr1a and mdr1b transcripts were found when cultured 

cells were simultaneously treated with dexamethasone and cycloheximide, an inhibitor of 

protein synthesis. Therefore, the observed induction abrogation under protein synthesis 

inhibition suggested that GR was influencing this promoter through an indirect mechanism 

(Zhao et al. 1993). A similar increase in hMDR1 mRNA levels was observed in the HepG2 

human hepatoma cell line (Zhao et al. 1993). In rat primary hepatocytes, however, 

dexamethasone treatment led to a decrease in mdr1b expression, and no increase was 

seen in the non-hepatoma mouse LMtk- and NIH3T3 cell lines, or in the human HeLa cell 

line upon dexamethasone treatment, suggesting that the effect is cell line-specific (Zhao 

et al. 1993). 

A glucocorticoid response element (GRE) was identified in the promoter of the 

hamster mdr1 homologue, p-gp1 (Scotto 2003; Scotto and Egan 1998). This site, between 

-96 and -83, mediated the repression of p-gp1 transcription by GR in both DC-3F Chinese 

hamster lung cells and in a human osteosarcoma cell line, U2-OS. The GRE overlaps a 
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binding site for C/EBPβ and it appears that GR represses p-gp1 transcription by 

interfering with the actions of C/EBPβ, as both sites are required for repression to occur. 

Interestingly, these elements are conserved in the hMDR1 gene and MDR1 transcription 

can also be repressed by GR in some cell types, suggesting that a similar mechanism 

may be involved (Scotto 2003; Scotto and Egan 1998).  

Finally, NF-κB is another factor involved in the inflammatory response and can also, 

as previously referred, regulate P-gp expression (Zhou and Kuo 1997) (see I.6.2.2.1.4).  

I.6.2.2.2.3. Alteration of Bioenergetic Metabolism 

A major consequence of the poor tumor blood supply is the reduction of oxygen 

availability, which severely compromises aerobic respiration, forcing tumor cells to revert 

to glycolytic metabolism, resulting in elevated acidic metabolites, such as lactate, 

(Callaghan et al. 2008), that accumulate since the reduced blood flow prevents their 

removal. As a consequence, tumor tissue is intrinsically more acidic than normal tissue, 

sometimes having a pH ≤ 6 (Helmlinger et al. 1997). It has also been shown that acidosis 

activates the transcription factors NF-κB and AP-1 (Sies 1997), both having been 

demonstrated to regulate MDR1 expression as previously discussed. Additionally, a study 

performed by Thews et al., using prostate carcinoma cells exposed to an acidic 

extracellular environment (pH 6.6) for up to 24 hours, showed that reduced extracellular 

pH had no effect on MDR1 expression but doubled the activity of the protein after 3 to 6 

hours (Thews et al. 2006), indicating that the increased transport rate is the result of 

functional modulation. In fact, the data indicated that P-gp activity was increased by low 

extracellular pH presumably as a result of lowered intracellular calcium levels and 

inhibition of protein kinase C (PKC). Moreover, the cytotoxicity of daunorubicin showed 

pronounced reduction at low pH, an effect that was reversible upon co-incubation with a 

P-gp inhibitor (Thews et al. 2006). Therefore, these findings may explain the reduced 

cytotoxicity of chemotherapeutic agents in hypoxic/acidic tumours. Unfortunately, the link 

between the regulation of signalling pathways, acidosis, and the expression of MDR1 is 

relatively unstudied, and therefore its contribution to MDR remains unclear. 

Moreover, in what concerns to PKC, an isoenzyme with serine/threonine kinase 

function that has been shown to play a key role in the signal transduction pathway elicited 

by a variety of extracellular stimuli, such as growth factors, hormones and 

neurotransmitters, early observations led to the conclusion that PKC acts as a 

downstream effector of the Ras system (Rimler et al. 2006). In addition, phorbol ester 

activation of PKC induced a transient MDR phenotype in wild-type human breast cancer 

cells, which was associated with decreased intracellular drug accumulation and increased 

drug resistance (Fine et al. 1988). Fine et al. reported that cellular PKC activity was 
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elevated in doxorubicin-selected MCF7-MDR cells compared with the parental cells (Fine 

et al. 1988). This was subsequently attributed to a 30-fold increase in PKCα and a 

decrease in other PKC isozymes in the drug-selected cells (Blobe et al. 1993). This 

finding was supported by other studies that showed that phorbol ester PKC activation 

induces resistance to chemotherapeutic drugs and causes a corresponding reduction in 

intracellular drug accumulation (Bergman et al. 1997; Brugger et al. 2002; Gekeler et al. 

1995). 

I.6.2.2.2.4. Glucose Deprivation 

Reduced blood supply to tumor cells can also result in glucose deprivation. Studies 

involving chemically induced glucose deprivation in MCF-7 breast carcinoma cells have 

shown rapid induction of cellular oxidative stress, thought to be due to depletion of 

intracellular pyruvate (Lee et al. 1998; Spitz et al. 2000). Moreover, MAPK was activated 

within 3 min after culture in glucose-free medium and remained activated for 3 h (Lee et 

al. 1998). Also, the observed glucose deprivation-induced cytotoxicity and alterations in 

MAPK signal transduction are mediated by oxidative stress in MCF-7/ADR cells. In fact, 

these effects were suggested to prevent the breakdown of endogenous oxygen radicals; 

thereby disrupting the oxidant-antioxidant balance (Lee et al. 1998; Spitz et al. 2000). 

Subsequent studies have demonstrated that glucose deprivation of liver cancer cells (rat 

hepatoma cell line, Fao cells) generated resistance to doxorubicin via increased mdr1 

expression (Ledoux et al. 2003). Indeed, incubation of Fao cells with a glucose-free 

medium enhanced mdr1 mRNA and protein expression in a time-dependent manner, up 

to 400% at 40 h, an effect that was also associated with a stimulation of [3H]vinblastine 

efflux by P-gp. This effect was reproduced by inducers of endoplasmic reticulum stress 

response, such as 2-deoxyglucose (DG), tunicamycin, and thapsigargin (Ledoux et al. 

2003). Moreover, P-gp mRNA induction by DG was preceded by an increase in activator 

protein binding activity, c-Jun expression, and phosphorylation. In contrast, NF-kB binding 

activity was unaffected by DG. Furthermore, the antioxidant N-acetylcysteine partially 

reversed the increase in P-gp mRNA and protein levels induced by DG, as well as 

decreased the enhancement of c-Jun phosphorylation and activator protein binding 

activity. Finally, transient transfection of the cells with a deleted mutant of c-Jun abolished 

the DG-induced P-gp mRNA expression and mdr1b promoter activation. In conclusion, 

glucose deprivation enhanced P-gp expression and transport function in liver cancer cells 

and this effect was mediated by endoplasmic reticulum stress response and involved 

MDR transcriptional induction through c-Jun activation. These results emphasize the 

importance of glucose metabolism in chemoresistance (Ledoux et al. 2003). Noteworthy, 

the observed partial reversion of DG-induced increases in mdr1 mRNA and protein levels 
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by N-acetyl-cysteine suggest a key role for ROS in mediating the effect (Ziemann et al. 

1999). 

ROS generation is also involved in mdr1 overexpression induced by a number of 

factors including, UV irradiation, epidermal growth factor (EGF), TNF-α, and doxorubicin 

(Ziemann et al. 1999). In a study performed by Ziemann et al., primary rat hepatocyte 

cultures, which exhibit time-dependent overexpression of the mdr1b gene, were used as a 

model system to investigate whether ROS might participate in the regulation of intrinsic 

mdr1b overexpression (Ziemann et al. 1999). Addition of H2O2 to the culture medium 

resulted in a significant increase in mdr1b mRNA and P-gp after 3 days of culture, with 

maximal (~2-fold) induction being observed with 0.5 - 1 mM H2O2. Furthermore, H2O2 led 

to activation of poly(ADP-ribose) polymerase, a nuclear enzyme activated by DNA strand 

breaks, indicating that ROS reached the nuclear compartment (Ziemann et al. 1999). 

Moreover, the use of antioxidants, such as ascorbate, markedly suppressed intrinsic 

mdr1b mRNA and P-gp overexpression. Also, using rhodamine 123 as substrate it was 

observed that mdr1-dependent efflux was increased in hepatocytes pre-treated with H2O2 

and decreased in antioxidant-treated cells. Therefore, the induction of mdr1b mRNA and 

of functionally active P-gp by elevation in intracellular ROS levels, and the repression of 

intrinsic mdr1b mRNA and P-gp overexpression by antioxidant compounds, support the 

conclusion that the expression of the mdr1b P-gp is regulated in a redox-sensitive manner 

(Ziemann et al. 1999). 

On the other hand, in what concerns to the regulation of glucose homeostasis, 

insulin was reported to up-regulate the MDR1 gene (Liu et al. 2008; Liu et al. 2009; Zhou 

and Kuo 1997). Insulin is a key hormone regulating glucose homeostasis and has many 

cellular effects on metabolism, growth, and differentiation (Liu et al. 2009). It was reported 

that insulin-induced signal transduction occurs via PI3K, MAPK and PKC signalling 

pathways (Angelova et al. 2004; Brand et al. 2006; Cao et al. 2007). Both PKC and PI3K 

were, as previously stated, reported to be associated with the P-gp regulation (Barancik et 

al. 2006; Fine et al. 1996). PKC is activated by insulin, and receptor tyrosine kinase 

regulates insulin-induced activation of PKC (Brand et al. 2006). It was reported that the 

activation of the PKC pathway was linked to up-regulated expression of P-gp (Fine et al. 

1996), and several experimental evidence suggested that phosphorylation of P-gp by PKC 

might play a role in regulating MDR (Germann et al. 1995; Grunicke et al. 1994). 

Consequently, P-gp phosphorylation was found to be determinant for P-gp expression. 

Therefore, tyrosine protein kinase and PKC were considered as promising targets for 

inducing P-gp. NF-κB is also a downstream signalling molecule of the insulin signal 

transduction and can be, as mentioned before, a potent activator in modulating gene 

transcription (Vivanco and Sawyers 2002). Moreover, it was shown that NF-κB mediated 
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the induction of mdr1b expression by insulin in rat hepatoma cells (Zhou and Kuo 1997), 

so NF-κB might also be a promising target for inducing P-gp.  

PKB/Akt is another major downstream target of receptor tyrosine kinases in 

response to stimuli such as insulin or insulin growth factors, and it is activated by PI3K 

(Vara et al. 2004). Moreover, it was reported that PI3K/Akt kinase pathway was possibly 

involved in modulation of P-gp in a direct way, in addition to the NF-κB-mediated pathway 

described before (Barancik et al. 2006). More recently, a study aimed to investigate 

whether the PKC/NF-κB pathway or the PI3K/Akt pathway were involved in insulin-

mediated P-gp function and expression in the blood-brain barrier, using rat brain 

microvessel endothelial cells as an in vitro model (Liu et al. 2009). Previous work 

performed by the same authors, showed that, both in vivo and in vitro, treatment of rats 

with insulin increased the function and expression of P-gp in the BBB (Liu et al. 2008). 

Moreover, in vitro, the insulin-induced function and expression of P-gp occurred in 

concentration-dependent manner (Liu et al. 2008). Additionally, insulin restored impaired 

function and expression of P-gp in diabetic BBB (Liu et al. 2008). However, the exact 

mechanism by which insulin regulated P-gp expression was not well understood. 

Therefore, they latter evaluated the intracellular pathways involved in insulin-mediated 

regulation of P-gp and it was found that, after incubation with 50 mU/l insulin, P-gp 

function and expression in rat brain microvessel endothelial cells were significantly 

increased (Liu et al. 2009). This induction effect was blocked by an insulin receptor 

antibody, an insulin receptor tyrosine kinase inhibitor (I-OMe-AG538), a PKC selective 

inhibitor (chelerythrine) and a NF-κB inhibitor (pyrrolidine dithiocarbamate ammonium; 

PDTC). However, the effect was not inhibited by the selective inhibitor of the PI3K/Akt 

pathway (LY294002). Moreover, insulin receptor, receptor tyrosine kinase, PKC inhibitor, 

and NF-κB inhibitor had no effect on rhodamine 123 uptake in rat brain microvessel 

endothelial cells in the absence of insulin, showing that baseline insulin did not affect P-gp 

function, and excluded the possibility that the five inhibitors decreased the P-gp function in 

a non-specific way (Liu et al. 2009). Therefore, these results indicated that the regulatory 

effect of insulin on P-gp function and expression occurs through signal transduction 

pathways involving the activation of PKC/NF-κB, but not the PI3K/Akt pathway (Liu et al. 

2009). Although previously demonstrated that the PI3K/Akt kinase pathway was possibly 

involved in the modulation of P-gp-mediated MDR (Barancik et al. 2006), another study 

also showed that LY294002 did not block insulin-induced P-gp function (Vlahos et al. 

1994), thus reinforcing that the PI3K/Akt pathway might not be involved in insulin-

mediated regulation of P-gp in rat brain microvessel endothelial cells. 
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I.6.2.2.2.5. Hypoxia -HIF-1α 

In addition to deprivation of nutrients, another hallmark of inadequate vascularization 

is oxygen insufficiency. In fact, the microenvironment of many large and rapidly growing 

tumours lacks a sufficient vascular supply, resulting in oxygen deprivation or hypoxia 

(Callaghan et al. 2008; Scotto 2003; Scotto and Egan 1998). Prolonged hypoxia has been 

linked to metastasis, since it increases genomic instability, genomic heterogeneity, and 

may act as a selective pressure for tumor cell variants (Subarsky and Hill 2003). This 

hypoxic environment results in the induction of many stress-response genes, including 

glycolytic enzymes, proangiogenic factors and pro-inflammatory genes (Semenza 1998). 

Accordingly, it has been demonstrated that P-gp expression is increased in hypoxic cells, 

and that this increase is mediated by the hypoxia-inducible factor-1α (HIF-1α), a 

transcription factor that normally resides in the cytoplasm of normoxic cells and is believed 

to be shuttled to the nucleus upon hypoxic stress (Scotto 2003). In fact, HIF-1α mediates 

essential homeostatic responses to reduced O2 availability in mammals and recent studies 

provided insights into the O2-dependent regulation of HIF-1α expression, target genes 

regulated by HIF-1α, and the effects of HIF-1α deficiency on cellular physiology and 

embryonic development (Semenza 1998; Semenza 2002). This transcription factor plays, 

thus, a central role in cellular response to hypoxia by up-regulating the expression of 

numerous hypoxia inducible genes (Semenza 1998; Semenza 2002). 

The majority of studies under hypoxic conditions support a positive correlation 

between the HIF-1α activity and MDR1 expression (Wartenberg et al. 2003). Indeed, 

Wartenberg et al. argued that the altered oxygen tension in 3D tumor spheroid models is 

directly correlated with P-gp expression (Wartenberg et al. 2003; Wartenberg et al. 

2001a), while Comerford et al. have demonstrated that JNK pathway activation is required 

for hypoxia-induced HIF-1α activity (Comerford et al. 2004; Comerford et al. 2002). In 

addition, the JNK inhibitor, SP600125, inhibits hypoxia-induced MDR1 promoter activity 

(Comerford et al. 2004). Therefore, these results suggest that under hypoxia, the MDR1 

gene expression is dependent on HIF-1α activation and that this activation is partially 

dependent on signalling through JNK activation (see below).  

Given the apparent presence of an HIF-1α binding site in the MDR1 promoter 

(Hypoxia Responsive Element, HRE, located between positions -49 to -45) (Figure 12) 

(Ueda et al. 1987) two questions may arise: is there proof of a direct link between HIF-1α 

and MDR1 expression? Or is there an indirect effect of altered oxygen tension on MDR1 

expression through oxidative stress? Comerford et al. suggested the former hypothesis, in 

a study where the response of epithelia cell lines to reduced oxygen tension was 

evaluated by quantitative RNA analysis, and a moderate (2-fold) increase in MDR1 

transcripts subsequent to a 6-hour hypoxia, and a 7-fold increase after an 18-hour 
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exposure, were observed (Comerford et al. 2002). Moreover, the P-gp increases at the 

cell surface were not detectable until 24 to 48 hours of hypoxia, a time course that 

correlated with increasing doxorubicin resistance of a multicellular spheroid model of 

tumor growth (Comerford et al. 2002). Importantly, the introduction of antisense 

oligonucleotides to HIF-1α blocked both HIF-1α expression and the hypoxia-induced 

increase in MDR1 transcription, causing a nearly complete loss of basal MDR1 

expression. Furthermore, fusions of regions of the MDR1 promoter region to a reporter 

gene (luciferase) demonstrated the presence of a HIF-1α binding site upstream of the 

transcription start site that was both necessary and sufficient for hypoxia induced 

activation of the reporter gene (Comerford et al. 2002). These studies using luciferase 

promoter constructs revealed a significant increase in promoter activity in cells subjected 

to hypoxia, and such hypoxia inducibility was lost in truncated constructs lacking the HIF-

1α site and in HIF-1α binding site mutants (Comerford et al. 2002). Moreover, this P-gp 

induction may increase tumour cell capacity to actively extrude chemotherapeutic agents 

and, thus, may contribute to tumour drug resistance (Comerford et al. 2002). In a later 

study, the same authors investigated, as previously referred, the role of JNK in the 

signalling mechanisms underlying these events (Comerford et al. 2004). Overexpression 

of MEKK-1 (a protein kinase of the STE11 family), which preferentially activates JNK 

(Figure 21), mimicked the hypoxia-induced activity of the MDR1 promoter and expression 

of MDR1 mRNA and P-gp. Furthermore, the JNK inhibitor SP600125 selectively and 

specifically inhibited both hypoxia- and MEKK-1-induced MDR1 promoter activity in a 

dose-dependent manner. JNK inhibition also reversed hypoxia- and MEKK-1-induced 

activity of an HIF-1α-dependent reporter gene. MEKK-1-induced MDR1 expression 

depended on a functional HIF-1α binding site (the hypoxia-responsive element). Also, 

hypoxia-dependent HIF-1α-DNA binding and transcriptional activation were inhibited by 

SP600125, indicating that hypoxia-induced signalling to HIF-1α depends on JNK 

activation. Moreover, since ROS are increased in hypoxia and related to JNK activation, 

their role in this signalling was also investigated. Whereas exogenous addition of H2O2 

was sufficient to activate JNK, ROS scavengers were without effect on hypoxia-induced 

JNK or HIF-1α activation, indicating that these events are independent of the generation 

of reactive oxygen intermediates, and that JNK may represent a therapeutic target in the 

prevention of tumour resistance to chemotherapeutic treatment (Comerford et al. 2004). 

Moreover, HIF-1α activates the MDR1 promoter through a consensus binding sequence 

(5`GCGTG3`; -49 to -45) (Figure 12) that overlaps the GC element, which is, as previously 

referred, involved in both constitutive and inducible MDR1 expression (Comerford et al. 

2002). Indeed, preliminary evidence suggests that the GC-binding protein Sp1 may also 

be involved in the hypoxic response (Comerford et al. 2002). All these previously 
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discussed results may in part explain the reason for hypoxic tumour cells being more 

refractory to anticancer agents (Brown and Giaccia 1998).  

However, an alternative view was presented by Song et al. In fact, it was 

demonstrated that hypoxia-induced chemoresistance to cisplatin and doxorubicin in 

human non-small cell lung cancer cells (NSCLC) occurred through the HIF pathway in 

these cells (Song et al. 2006). However, no significant increase in P-gp expression was 

induced by hypoxia, suggesting that MDR1 regulation may be at least partially unrelated 

to hypoxia-induced chemoresistance (Song et al. 2006). In accordance, in a more recent 

study, the expression of three genes (MDR1, HIF-1α and MRP1) were investigated and 

associated with resistance to chemotherapy and radiotherapy in chordoma and in a 

chordoma cell line, CM-319 cells. Expression of HIF-1α and MRP1 was observed in most 

chordoma specimens and in CM-319 cells, and the expression of HIF-1α was correlated 

with MRP1. On the other hand, expression of MDR1 was not correlated with the 

expression of HIF-1α or MRP1. In fact, MDR1 was not expressed in CM-319 cells, and 

only very weakly expressed or not at all in more than 50% of the chordoma samples 

studied. Therefore, the authors concluded that both HIF-1α and MRP1 may play a role in 

the multidrug resistance of chordoma to chemotherapy. (Ji et al. 2010). 

Different results were reported in a very recent study, which aimed to evaluate the 

expression of HIF-1α and P-gp in human laryngeal squamous cell carcinoma (LSCC) 

tissues and also to investigate the regulation of the MDR1 gene expression by HIF-1α in 

Hep-2 cells under hypoxic conditions. Under hypoxia, HIF-1α expression was inhibited by 

RNA interference. HIF-1α and P-gp expression was high in the LSCC tissues and was 

associated with the clinical stage and lymph node metastasis. HIF-1α expression was 

positively correlated with P-gp expression. In the Hep-2 cells, HIF-1α and P-gp expression 

significantly increased in response to hypoxia. The inhibition of HIF-1α expression 

synergistically downregulated the expression of the MDR1 gene in hypoxic Hep-2 cells. 

Therefore, the positive correlation between HIF-1α expression and P-gp expression found 

in LSCC indicates that the two proteins may serve as potential biomarkers for predicting 

the malignant progression and metastasis of LSCC. Moreover, HIF-1α may be critical for 

the upregulation of MDR1 gene expression induced by hypoxia in Hep-2 cells (Xie et al. 

2013). 

Hypoxia does, however, induce oxidative stress, through a number of distinct 

mechanisms. For example, necrosis and DNA degradation caused by hypoxia results in 

the up-regulation of the enzyme thymidine phosphorylase, which breaks down thymidine 

to thymine and 2-deoxy-D-ribose-1-phosphate (Brown et al. 2000). The latter compound is 

a very powerful reducing sugar that glycates proteins, which can result in oxidative stress 

given the high level of oxidants within carcinoma cells. Furthermore, this enzyme has 
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been shown to cause oxidative stress in vitro, as well as being up-regulated in human 

breast carcinomas (Brown et al. 2000). Interestingly, the removal of vasculature leading to 

hypoxia can increase vascular endothelial growth factor (VEGF) production, promoting 

angiogenesis and leading to restoration of oxygen supply. However, reoxygenation or 

reperfusion is known to drive ROS formation, therefore causing oxidative stress. The 

culminating activation of stress pathways from both hypoxic and oxidative stress could in 

turn result in substantially increased MDR1 expression (Callaghan et al. 2008). Whether 

this is directly correlated with drug resistance in cancer cells has yet to be determined. 

In conclusion, several studies have clearly demonstrated that the loss of a vascular 

network or, to a lesser extent, macrophage infiltration, leads to a variety of stresses, be it 

oxidative, hypoxic, or acidic upon tumor cells. In order to overcome these adverse 

conditions, the cells adapt and activate nonspecific stress-response pathways, activating 

general stress responses. One of these responses involves the up-regulation and 

expression of MDR1. It appears likely that hypoxia and glucose deprivation play a role in 

MDR1 regulation with oxidative stress being a common feature for both in signal 

transduction activation. 

I.6.2.2.2.6. Chemotherapeutic drugs 

In the previous sections, the MDR1 expression was faced in the context of stress 

induced due to the inherent properties of a tumor. However, MDR1 expression is also 

known to be up-regulated in vivo by the cellular damage caused by the treatment 

designed to destroy the tumor, namely chemotherapy and radiotherapy. Indeed, 

considerable evidence have indicated that the expression of drug transporter genes can 

be transiently induced in response to chemotherapeutics (Asakuno et al. 1994; Brugger et 

al. 2002; Chin et al. 1990a; Gekeler et al. 1988; Hu et al. 1995; Ichihashi and Kitajima 

2001; Kohno et al. 1989; Liu et al. 2002b; Ohga et al. 1996; Schuetz et al. 1996a). This 

effect was first reported in CCRF-CEM/ActD cells that exhibited an increased steady-state 

level of MDR1 RNA following short-term exposure to actinomycin D, being this increase 

mediated, at least in part, at the transcriptional level. (Gekeler et al. 1988). Moreover, 

early studies indicated that the MDR1 promoter region from -136 to -76 was involved in 

activation by actinomycin D (Ohga et al. 1996), and the interaction of this site with a 

transcription factor believed to be YB-1 (although not directly shown) was increased in the 

presence of actinomycin D (Asakuno et al. 1994; Ohga et al. 1996). This region was later 

characterized as the MDR1 enhancesome (Hu et al. 2000; Jin and Scotto 1998; Jin et al. 

2007; Scotto 2003) (see I.6.2.2.2.8). 

Although it was initially assumed that only those drugs associated with the MDR 

phenotype would induce the expression of P-gp genes, further studies in a variety of cell 
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lines derived from tumor types indicated that MDR1 transcription could also be induced by 

non-MDR-inducing drugs, such as antifolates, cisplatin and hydoxyurea (Chaudhary and 

Roninson 1993). MDR1 induction was associated with morphological indications of cell 

damage, suggesting that increased MDR1transcription could be part of a general cellular 

response to damaging agents (Chaudhary and Roninson 1993).  

The finding that MDR1 gene expression can be induced by transient exposure to 

chemotherapeutics has since then gained potential clinical significance. In fact, in vivo 

experiments in human patients have shown that transient exposure to doxorubicin leads 

to a rapid (20–50 min) induction of MDR1 expression in lung metastases (Abolhoda et al. 

1999). This observation may explain why a correlation between outcome and P-gp 

expression has been difficult to establish in solid tumours, since this transient 

overexpression of P-gp induced by the MDR drug itself would not be detected in tumours 

subsequent to treatment. 

Interestingly, some drugs, such as mitomycin C and other DNA cross-linking agents, 

can suppress mRNA expression of the MDR1 gene, leading to a subsequent suppression 

of P-gp protein levels and a concomitant decrease in drug efflux, although the mechanism 

by which this occurs has not yet been fully determined (Ihnat et al. 1997). Moreover, pre-

treatment with mitomycin C led to a 5- to 10-fold decrease in the EC50 for cell killing by a 

second agent, such as the P-gp substrate doxorubicin, but did not affect the lethality of the 

non-P-gp substrate, cisplatin. Accordingly, using stably transfected Madin-Darby canine 

kidney C7 epithelial cells expressing a human P-gp tagged with green fluorescent protein 

under the proximal human MDR1 gene promoter, it was demonstrated that mitomycin C 

and doxorubicin have differential effects on P-gp expression and function (Maitra et al. 

2001). Doxorubicin caused a progressive increase in the cell-surface expression of P-gp 

and function and, in contrast, mitomycin C initially increased plasma membrane 

expression and function at a time when total cellular P-gp was constant and P-gp mRNA 

expression had been suppressed. This was followed by a rapid and sustained decrease in 

cell-surface expression at later times, presumably as a consequence of the initial 

decrease in mRNA expression (Maitra et al. 2001). These studies imply that there are at 

least two independent chemosensitive steps that can alter P-gp biogenesis: one at the 

level of mRNA transcription and the other at the level of P-gp trafficking. Understanding 

the combined consequences of these two mechanisms might lead to novel 

chemotherapeutic approaches to overcome drug resistance in human cancers by altering 

either P-gp mRNA expression or trafficking to the membrane. 

Damage exerted by chemotherapeutics may also induce ROS generation causing a 

dramatic elevation of oxidants that exceeds the compensatory changes in the levels of 

enzymatic and nonenzymatic antioxidants (Corna et al. 2004; Schweyer et al. 2004). 
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Moreover, as noted earlier, the oxidative stress induced by chemotherapy activates 

signalling pathways such as NF-κB, MAPK and PKC (Chaudhary and Roninson 1993; 

Wang et al. 1998b), and the prolonged activation of these pathways ultimately leads to 

apoptosis. However, transient activation is suggested to cause the transcriptional 

activation of genes, such as MDR1 (Chaudhary and Roninson 1993; Davis et al. 2001). 

Therefore, the induction of MDR1 expression may be mediated through a common ROS-

induced pathway independent of the cytotoxic stimulus. Moreover, if a ROS-inducing 

compound such as 2-AAF (a NF-κB pathway activator) (Deng et al. 2001) is capable of 

inducing MDR1, such an effect would seem inherently applicable to chemotherapeutics. 

This proposal is supported by the fact that anthracyclines, etoposides, and platinum 

complexes, all demonstrated to generate ROS (Yokomizo et al. 1995). Anthracyclines, 

such as daunorubicin, activate neutral sphingomyelinase enzyme and induce elevated 

levels of the potent signalling lipid ceramide. This induction of ceramide contributes to 

ROS generation, as evidenced by the effects of cell-permeant ceramides on U937 human 

monoblastic leukemia cells. The increased ROS produces JNK activation and apoptosis. 

Moreover, the cell permeant ceramides are inhibited by the antioxidants N-acetylcysteine 

and pyrrolidine dithiocarbamate (Mansat-de Mas et al. 1999). 

Moreover, other signalling pathways may also be involved in the chemotherapy-

induced P-gp expression. It was demonstrated that repeated oral administration of 

etoposide (ETP), an anticancer drug, which is a P-gp substrate (Allen et al. 2003), 

attenuates oral morphine analgesia with a decrease in its serum and brain levels possibly 

attributed to the up-regulation of intestinal P-gp (Fujita-Hamabe et al. 2012). It was also 

reported that the up-regulation of intestinal P-gp was caused by activating the Ras 

homolog gene family member A (RhoA) (Kobori et al. 2012) and RhoA-associated coiled-

coil containing kinase (ROCK) (Kobori et al. 2013a), one of the effectors of RhoA (Figure 

21). The ezrin/radixin/moesin (ERM) protein family (Kobori et al. 2013a) has also been 

shown to regulate the localization of several drug efflux transporters to the plasma 

membrane (Kikuchi et al. 2002; Luciani et al. 2002; Yang et al. 2007). Oral treatment with 

ETP dramatically increased the association of ERM with the plasma membrane (Kobori et 

al. 2013a). This action results in the activation of ERM (Hirao et al. 1996) or in the 

production of phosphorylated ERM (p-ERM), which leads to prolongation of the activated 

state of ERM (Matsui et al. 1998). Interestingly, activation or phosphorylation of ERM has 

been shown to be dependent upon RhoA or ROCK, respectively (Kobori et al. 2013a), 

which is consistent with other reports (Hirao et al. 1996; Matsui et al. 1998). Therefore, it 

was postulated that repeated oral treatment with ETP increased P-gp expression at the 

ileal membrane by a mechanism possibly mediated by increased expression of ERM/p-

ERM via activation of RhoA/ROCK, resulting in decreases in the analgesia of oral 
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morphine (a substrate for P-gp) (Kobori et al. 2013a; Kobori et al. 2012). However, reports 

indicating the temporal changes in either ERM, RhoA or ROCK, after initiation and 

cessation of repeated treatment with the P-gp substrate drugs, including ETP, were 

lacking. 

Patients usually receive cancer chemotherapy on several consecutive days (e.g., 5–

21 days) followed by discontinuation of therapy for 1 week or a few weeks (Stadler et al. 

2006; Walker et al. 2011). Moreover, repeated treatment with P-gp substrate drugs for 

several consecutive days results in an increase in P-gp expression, whereas P-gp 

expression declines to values similar to control levels after cessation of treatment (Fujita-

Hamabe et al. 2012; Jette et al. 1996; Lin 2003). Several reports have focused on the 

involvement of various factors, including tumor necrosis factor-alpha (TNF-α) and 

endothelin-1 (ET-1) (Bauer et al. 2007, Hartz, 2008 #1845), JNK/c-Jun/AP-1 (Hartz et al. 

2008), and RhoA/ROCK signalling (Figure 21) (Doublier et al. 2008; Riganti et al. 2006; 

Zhong et al. 2010), in the alteration of the expression or functional activity of intestinal P-

gp. However, reports examining the details of the relationships between temporal changes 

in the expressions of P-gp and those of RhoA, ROCK, ERM, and p-ERM, after initiation 

and/or cessation of repeated treatment with substrate drugs for P-gp were lacking. In a 

very recent study, the same authors aimed to investigate the time-dependent changes in 

P-gp expression, in addition to changes in the expression of RhoA, ROCK, ERM, and p-

ERM in the ileum, after initiation or cessation of repeated oral treatment with ETP (Kobori 

et al. 2013b). According to the obtained results, RhoA at the ileal membrane was 

increased 3 days after initiating ETP treatment. Moreover, on treatment days 5 or 7, the 

expression of ROCK, ERM, and p-ERM was increased along with increments in P-gp 

expression, leading to decreases in oral morphine analgesia. All these changes returned 

towards normal levels 3 days after cessation of ETP. These data suggest that regulating 

the active state of the above-mentioned proteins during cancer chemotherapy, or creating 

a timeframe of discontinuation a few days after cessation of chemotherapy, may enable 

effective palliative care using oral opioids (Kobori et al. 2013b). 

It should also be noted that overexpression of MDR1 gene in response to 

chemotherapeutics was shown to be a result of changes in mRNA stabilization and 

translational initiation in several leukemia cell lines, with no apparent transcriptional 

component (Yague et al. 2003). Thus, it is likely that multiple mechanisms exist in different 

cell types that either cooperatively or exclusively regulate MDR1 gene output.  

I.6.2.2.2.7. Ionizing radiation 

Numerous research studies have demonstrated the effect of ionizing radiation on 

MDR1 levels (see I.6.2.2.1.2 and Figure 14). Most of these studies (employing cell lines 
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rather than more complex tumor models) are consistent with the surviving cell population 

showing greater expression of the MDR1 protein, with concomitant increase in the future 

drug resistance of the radiation-selected cells (Callaghan et al. 2008; Hill et al. 1994; 

McClean et al. 1993; Nielsen et al. 1998). Noteworthy, transcriptional activation of the 

MDR1 gene by ionizing radiation is not a common feature of these studies. Instead, it was 

proposed that radiation may select for, or stabilize, a chromosomal alteration which leads 

to greater MDR1 expression in the surviving cells (McClean et al. 1993). Since ionizing 

radiation itself is known to cause almost instantaneous increases in ROS (Spitz et al. 

2004), it was suggested that therapeutic doses of radiation may cause transcriptional 

activation of MDR1 via ROS mediated stress response pathways. 

In contrast, other forms of irradiation such as UV (where the proportion of surviving 

cells is greater in vitro) have been shown to cause increases in the transcription of the 

MDR1 gene via a Y-box element in the promoter region (Ohga et al. 1998) (see 

I.6.2.2.1.2). Indeed, initial studies demonstrated that UV-irradiation activates a human 

MDR1-CAT reporter construct approximately by 20-fold following transfection into human 

KB cells, and two elements, one extending from -136 to -76 and the second extending 

from +1 to +121, were required for this activation (Uchiumi et al. 1993). More recently, it 

was shown that the induction of MDR1 transcription is mediated by the inverted CCAAT 

box, and that down-regulation of the CCAAT box binding protein, YB-1, decreases 

promoter response to UV (Ohga et al. 1998).  

I.6.2.2.2.8. MDR1 enhancesome 

According to the previous sections, it has been well established that the MDR1 gene 

expression can be activated by UV radiation, differentiation agents such as sodium 

butyrate, HDAC inhibitors, phorbol esters and certain chemotherapeutics. Additionally, 

several studies have indicated that the signals from all these divergent stimuli converge 

on a region of the MDR1 promoter later referred to as the ‘MDR1 enhancesome’ (Figure 

19) (Hu et al. 2000; Jin and Scotto 1998; Jin et al. 2007; Scotto 2003). This region 

includes binding sites for the trimeric transcription factor NF-Y and the Sp family of GC-

binding transcription factors (Hu et al. 2000; Jin and Scotto 1998; Jin et al. 2007; Scotto 

2003) (see I.6.2.2.1.1 and I.6.2.2.1.2). Together, these DNA-binding proteins cooperate to 

recruit the histone acetyltransferase P/CAF to the MDR1 promoter, resulting in the 

acetylation of promoter-proximal histones and subsequent transcriptional activation that is 

likely mediated by further chromatin remodelling (Scotto 2003). Also, chromatin 

immunoprecipitation studies have identified a ‘switch’ in DNA-binding Sp family members 

following induction (Scotto 2003). Further studies are required to determine whether this 

change in binding factors results in recruitment of new coactivators/corepressors to the 



General Introduction______________________________________________________________ 

114 

MDR1 promoter, and whether other factors that have been shown to bind to the MDR1 

GC element are also involved in stress response through the enhancesome complex 

(Scotto 2003). Although the mechanism by which each agent transduces the signal that 

results in promoter activation has yet to be determined, the role of the MDR1 

enhancesome in the regulation of transcription by a variety of stimuli makes it an attractive 

target for therapeutic intervention. 

 

 
 

Figure 19. The MDR1 'enhancesome' 
A variety of environmental signals, including those 
induced by hormones (all-trans retinoic acid, ATRA), 
radiation, HDAC inhibitors (trichostatin A, butyrate), 
some chemotherapeutics, phorbol esters and others 
converge on the MDR1 enhancesome, which includes 
the DNA binding proteins Sp1, Sp3 and NF-Y, the 
histone acetylases P/CAF and P/300. Depending on 
the conditions, the transcription factors egr1, WT-1 
and the corepressor HDAC1 may also be found at the 
promoter. Taken from (Scotto 2003). 

 

More recently, it was demonstrated that C-terminal-binding protein 1 (CtBP1), a 

transcriptional co-regulator, was increased (~4-fold) in human MDR cancer cell lines, 

NCI/ADR-RES and A2780/DX, as compared to their sensitive counterparts (Jin et al. 

2007). CtBP1 has long been known as a transcriptional co-repressor. Although the exact 

mechanism of its repressive effect on gene transcription has not yet been fully defined, it 

is generally accepted that through association with transcription factors that contain Pro-

X-Asp-Leu-Ser (PXDLS) motifs, CtBP1 can be recruited to DNA, thereby repressing gene 

transcription through epigenetic events, such as chromatin remodelling (Jin et al. 2007). 

However, in the previously mentioned study, the effect of CtBP1 on MDR1 gene 

transcription was stimulatory rather than repressive, since silencing of CtBP1 expression 

decreased the MDR1 mRNA and P-gp, enhanced the sensitivity of MDR cells to 

chemotherapeutic drugs that are transported by P-gp, and increased intracellular drug 

accumulation. Moreover, it was show that CtBP1 directly binds to the MDR1 promoter, 

and enhances the promoter activity of this gene. Indeed, in a reporter gene assay, co-

transfection of MDR1 promoter constructs with a CtBP1 expression vector resulted in a 

~2-4-fold induction of MDR1 promoter activity. These results revealed the role for CtBP1 

as an ‘‘activator’’ of MDR1 transcription. In chromatin immunoprecipitation and 

electromobility shift assays, CtBP1 appeared to contribute to the activation of MDR1 

transcription through directly interacting with the MDR1 promoter, as evidenced by its 

physical binding to the promoter region of the MDR1 gene. Using MDR1 promoter deletion 

constructs, the sequence between -75 and -4 was identified as the CtBP1 responsive 
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region. This conclusion was further supported by the results of chromatin 

immunoprecipitation and electromobility shift assays, which, respectively, showed that 

CtBP1 binds to the MDR1 promoter sequence and that the binding occurs between -75 

and -50 within the promoter (Jin et al. 2007) (Figure 12). Since these sequences contain 

the MDR1 enhancesome, a promoter region that, as previously referred, includes binding 

sites for some transcription factors such as NF-Y and Sp1 and responds to a variety of 

stressful stimuli, it is likely that CtBP1 acts on the MDR1 enhancesome. These results 

suggest that, in addition to acting as a transcription co-repressor, CtBP1 can also activate 

gene transcription through its direct effect on the promoter region of genes. The function 

of CtBP as a transcriptional activator has also been reported for Wnt target genes. It was 

demonstrated that CtBP directly activates Wnt transcriptional targets through its 

interaction with the Wnt-regulated enhancer of the genes (Fang et al. 2006).  

Additionally, the role for CtBP1 in the activation of MDR1 expression was also 

demonstrated not only in MDR cancer cell lines whose expression of P-gp is induced by 

drug treatments, but also in the cancer cells that intrinsically express P-gp (Jin et al. 

2007). These results revealed a novel role for CtBP1 as an activator of MDR1 gene 

transcription, and suggest that CtBP1 might be one of the key transcription factors 

involved in the induction of the MDR1 gene. Therefore, also CtBP1 may represent a 

potential new target for inhibiting drug resistance mediated by overexpression of the 

MDR1 gene.  

I.6.2.2.2.9. Nuclear Receptors 

Nuclear receptors (NRs) are important components of mammalian intercellular 

signalling mechanisms and the mammalian NR superfamily comprises more than 70 

distinct members that are divided into two general subclasses, based on their ligand 

binding requirement (Chen et al. 2012b). The first subclass is comprised of ligand-

dependent NRs that are regulated by a diverse group of exogenous compounds and 

endogenous substrates. These receptors include the glucocorticoid receptor (GR), 

estrogen receptor, androgen receptor (AR), and the retinoic acid receptor (RAR). The 

second subclass of nuclear receptors includes the so-called orphan receptors. These 

receptors share sequence identity with NRs but their regulatory ligands have yet to be 

fully identified (Chen et al. 2012b). Orphan receptors actually account for approximately 

60% of the known NRs. Several key orphan receptors, including peroxisome proliferator 

activated receptors (PPARs), liver X receptors (LXRs), aryl hydrocarbon receptor (AhR), 

constitutive androstane receptor (CAR) and pregnane X receptor (PXR; also termed 

steroid xenobiotic receptor, SXR), are known to play crucial roles in development, 

homeostasis, and disease, therefore justifying the reason for the intense academic and 
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industrial research efforts concerning these targets for the development of novel 

therapeutic agents (Chen et al. 2012b). 

Multi-drug resistance is, as previously referred, a clinical phenomenon characterized 

by decreased intracellular drug retention and changed tumor response, being, therefore, 

one of the primary factors that limit effective cancer therapy (Leonessa and Clarke 2003). 

Great attention has been directed towards the mechanism(s) underlying drug resistance 

and many efforts have been put into identifying therapeutic approaches that mitigate drug 

resistance. However, these clinical applications have shown limited success, partially 

because MDR is a complex process and no single drug metabolizing enzyme (DME) 

(Garcia-Martin et al. 2006) or ABC transporter (Haber et al. 2006) can induce MDR alone. 

Therefore, novel multi-targeted strategies are needed to overcome the induction of MDR. 

Several NRs families that regulate drug metabolism and disposition are increasingly 

recognized for their significance in this process, and treatments targeting them are 

promising new opportunities to attenuate, or even prevent, MDR. Among these NRs, PXR 

and CAR exhibit great flexibility in recognizing structurally diverse compounds, share 

significant similarities in ligand binding, and cross communicate during the transcriptional 

activation of their target gene promoters, which include cytochrome P450s (CYP 450, e.g. 

CYP2B6, CYP3A4 and CYP2C9) (Gerbal-Chaloin et al. 2002; Sueyoshi and Negishi 

2001) and MDR-associated ABC transporters (e.g. P-gp) (Maglich et al. 2002) (Figure 20). 

PXR and CAR have been speculated to play important roles in cancer MDR, because of 

their elevated expressions in breast, prostate, intestinal, colon and endometrial cancers, 

and because of their roles as master transcription regulators of a broad spectrum of genes 

that encode phase I DMEs, phase II DMEs and efflux transporters (Chen et al. 

2012b)(I.6.2.2.3). 

Nuclear receptors are transcription factors that function as heterodimers to regulate 

target promoters (Chen et al. 2012b). Retinoid xenobiotic receptor (RXR) is present in all 

heterodimers and the second partner determines the substrate ligand and the target 

promoters that will be activated (Freedman 1999). Apart from CAR and PXR, other NRs 

have also been shown to be involved in transcription of drug transporters, including RAR 

and farnesoid receptor (FXR). The RXR-containing heterodimers regulate a broad range 

of hepatic metabolic functions, including bile acid synthesis, fatty acid and oxysterol 

metabolism, and cytochrome oxidase drug metabolism (Scotto 2003). 

RARα in complex with RXRα has been shown to regulate transcription of the rat 

mrp2 promoter (Denson et al. 2000). However, although the MDR1 promoter is activated 

in neuroblastoma cell lines by all-trans retinoic acid, this activation appears to be 

independent of RAR/RXR binding, and is instead mediated by the differential binding of 

Sp family members to the GC element within the MDR1 enhancesome (Scotto 2003). 
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In what concerns to PXR, numerous studies have characterized endogenous and 

exogenous PXR agonists. Indeed, this nuclear receptor was reported to bind to a wide 

range of structurally distinct chemicals, including anticancer drugs, plant extracts, 

cholesterol-lowering statins and SR12813, the anti-tuberculosis antibiotic rifampicin, HIV 

protease inhibitors, vitamins, carotenoids, endocrine disruptors, pesticides, plasticizers 

and PPAR and other nuclear receptor antagonists (Chen et al. 2012b). In response to the 

aforementioned xenobiotics, PXR activates the transcription of a series of biologically 

crucial phase I and II DMEs, as well as drug transporters (Figure 20) (Maglich et al. 2002; 

Rosenfeld et al. 2003). Among the drug transporters, PXR activation has been reported to 

regulate important efflux transporters such as multidrug resistance-associated proteins 

(MRPs), breast cancer resistance protein (BCRP), and P-gp (Dussault et al. 2001; Geick 

et al. 2001; Kast et al. 2002; Rosenfeld et al. 2003; Synold et al. 2001; Watkins et al. 

2003). 

 

Figure 20. Regulation of phase I and II DMEs and drug transporter genes by nuclear receptors 
PXR and CAR. 
After ligand binding, cytoplasmic fractions of PXR translocates to the nucleus while CAR dissociates from its 
complex, comprised of tetratricopeptide repeat (TTR), cytoplasmic CAR retention protein (CCRP), 90-kDa 
heat shock protein (hsp90) and PPP1R16A, and translocates from the cytoplasm to the nucleus. 
Subsequently, both PXR and CAR form heterodimers with RXR and bind to their respective response 
elements to stimulate transcription of phase I and II DMEs and drug transporters. Taken from (Chen et al. 
2012b). 

 

A direct PXR binding site (DR-4 motif) has been identified in the upstream enhancer 

of the MDR1 gene (Geick et al. 2001; Synold et al. 2001). Indeed, attributed to the -7852 

to -7837 sequence in the hMDR1 promoter (SXR, Figure 12) is this upstream enhancer 

containing a motif related to broad specificity xenobiotic sensitivity, and thus called steroid 
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xenobiotic receptor (SXR) element. This sequence was reported to bind a pregnane 

xenobiotic/retinoid xenobiotic receptor α (PXR/RXRα) heterodimer that activates MDR1 

transcription in response to several PXR ligands, including R-12813, rifampicin, 

clotrimazole, nifedipine, and mifepristone, potently promoting P-gp expression in human 

primary hepatocytes and colon cancer cell lines (Geick et al. 2001; Synold et al. 2001). 

Moreover, it was also reported that LS180 cells that constitutively express active PXR also 

express P-gp in the absence of ligands (Synold et al. 2001). Additionally, Haslam et al. 

reported that, in T84 cells, rifampicin increased MDR1 expression accompanied by 

increased PXR expression, whereas digoxin increased MDR1 expression without changes 

in PXR expression, thus suggesting another type of regulation such as via CAR (Haslam 

et al. 2008b).  

Initially isolated as an orphan nuclear receptor and named MB67, CAR is 

predominantly expressed in the liver and maintains only a limited presence in certain 

extrahepatic tissues in humans (Baes et al. 1994). Wild-type CAR does not require ligand 

binding to become activated. Instead, it readily forms heterodimers with RXR and targets 

retinoic acid response elements in target gene promoters (Chen et al. 2012b). Much like 

PXR, CAR functions as a chemical sensor and regulates a broad range of hepatic and 

intestinal phase I DMEs (CYP3A4, CYP2Bs and CYP2Cs), phase II DMEs (UGTs and 

GSTs), and drug transporters (MDR1, MRPs and OATP2) (Figure 20) (Chen et al. 2012b). 

Indeed, CAR was shown to regulate MDR1 expression through DR-4 motifs (Burk et al. 

2005). CAR also appears to cross-talk with PXR during xenobiotic response and these 

NRs recognize similar response elements and share a significant number of target genes 

(Xie et al. 2000). Nevertheless, because CAR can induce gene expression independently 

of ligand binding, it regulates xenobiotic metabolism in a way that is distinct from that of 

PXR (Chen et al. 2012b). 

NRs such as CAR and PXR are also expressed in cancer cells (Chen et al. 2012b). 

Although PXR is mainly expressed in liver and intestinal tissues, its expression has been 

also detected in breast, prostate, and gastrointestinal cancers, and its expression in tumor 

cells is functional, underscoring its clinical relevance in oncology (Chen et al. 2012b). PXR 

activation in breast and prostate cancer cells was reported to stimulate the expression of 

CYP3A4 and MDR1, thus increasing cancer cell resistance towards chemotherapeutics 

(Chen et al. 2009; Chen et al. 2007) (see I.6.2.2.3). Interestingly, an in silico analysis of 

the correlation between PXR/CAR expression and mRNA levels of selective DMEs and 

transporters in prostate tumor tissues was recently performed (Chen et al. 2012b). 

According to the obtained results, CYP3A4 mRNA expression is strongly correlated with 

the expression of PXR and CAR, and MDR1 mRNA expression is significantly correlated 

with PXR expression in prostate tumor tissues (Chen et al. 2012b). 
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Furthermore, commonly used chemotherapeutic agents can activate human PXR, 

highlighting its relevance in cancer therapy (Huang et al. 2006; Jacobs et al. 2005; Mani et 

al. 2005; Masuyama et al. 2005; Synold et al. 2001). For example, among the 

chemotherapeutics, both hydroxylated and nonhydroxylated tamoxifen activate PXR 

(Jacobs et al. 2005) and the anti-mitotic agent paclitaxel activates PXR and enhances P-

gp mediated drug clearance (Synold et al. 2001). Nevertheless, not all chemotherapeutics 

are subjected to PXR mediated drug metabolism. The semi-synthetic paclitaxel analog, 

docetaxel, is not a potent PXR activator and exhibits significantly longer plasma and 

intercellular half-lives (Mani et al. 2005). 

The expression of functional PXR in cancer cells and activation of PXR by 

chemotherapeutics or other compounds can significantly impact tumor response to 

chemotherapy (Chen et al. 2009; Chen et al. 2007). Enhanced expression of drug 

transporters, resulting from PXR activation, increases the severity of drug resistance 

exhibited by tumor cells. Therapeutic agents that activate PXR may achieve lower clinical 

effectiveness in patients with high tumor PXR expression, since PXR may alter local 

concentrations of these antineoplastic agents. Therefore, untoward activation of PXR in 

tumor cells can lead to altered metabolism and disposition of chemotherapeutics within 

tumor tissues. Decreased concentrations of chemotherapeutics at the tumor site, in turn, 

substantially impact the intended efficacy of chemotherapy, especially in vivo, when the 

bioavailability of active chemotherapeutics is often a limiting factor (Chen et al. 2012b). 

Finally, another implication of untoward PXR activation is the potential drug-drug 

interactions involved in cancer therapeutics, given its role in the regulation of DMEs and 

drug transporters (see I.6.2.2.3). Cancer patients often take other drugs, such as pain 

relievers, anti-depressants, anti-emetics, or alternative medicines including herbal 

supplements, in addition to the drugs that target the cancer. In many of these cases, PXR 

activation by drugs like rifampicin or the St. John’s Wort component hyperforin leads to 

up-regulation of DMEs (Chen et al. 2012b) and, thus, to unexpected pharmacokinetic 

interactions. Additionally, in order to reverse MDR, calcium channel blockers (such as 

verapamil, nifedipine), steroids, immunosuppresive agents (cyclosporine A) and 

calmodulin antagonists (such as phenothiazine) are used and many of these compounds 

are generally metabolized by CYP3A (Bertz and Granneman 1997; Wacher et al. 1995), 

therefore decreasing their concentrations at the target cells.  

Although PXR is most often described as being involved in P-gp transcriptional 

control (Kliewer et al. 2002), two other NRs were considered to be modulators of mdr1 

gene transcription: i) the vitamin D receptor (VDR) and ii) the thyroid hormone receptor 

(TR) (Saeki et al. 2011). Taken together, these results suggest that activation of drug 
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transporters through multiple NRs can alter the efflux, and therefore the pharmacokinetics 

and bioavailability of a variety of compounds, including chemotherapeutic agents. 

In what concerns to down-regulation of P-gp transcription, another type of ligand-

activated NRs - peroxisome proliferator activated receptors (PPARs) - may be involved. 

Activation of PPARγ by its ligand troglitazone reversed P-gp-mediated MDR in SGC7901/ 

VCR cells by down-regulating P-gp at both the mRNA and protein levels (Chen et al. 

2010a). Down-regulation of P-gp expression and activity was also demonstrated in P-gp-

positive L1210 cells after activation of NRs for retinoic acid (RAR) with all-trans retinoic 

acid (Sulova et al. 2008). Like the NRs known to induce P-gp transcription (e.g., PXR, 

CAR, TR and VDR) (Saeki et al. 2011), both PPAR and RAR receptor types are also 

known to be effective after dimerization with RXR (Brtko and Thalhamer 2003; IJpenberg 

et al. 2004). Therefore, PPAR and RAR ligands may provide an advantage by promoting 

their interaction with RXR, thus being a challenge in MDR reversal. RAR and PPAR, 

which are fully activated by their ligands, may consequently crowd out from effective 

dimerization the NRs that actively induce P-gp transcription. Indeed, for RAR receptors 

and all-trans retinoic acid this possibility was already suggested (Breier et al. 2013). 

 

I.6.2.2.3. Co-regulation of P-gp and CYP3A expression  

As previously mentioned, P-gp is expressed in many normal tissues, particularly in 

epithelial cells in tissues with secretory or excretory functions, and in endothelial cells of 

capillaries at blood-tissue barriers. The MDR1 expression in normal hepatic and “barrier” 

tissues fostered examination of its role in drug pharmacokinetics. P-gp increases the 

excretion of drugs from the liver and kidney, in addition to reducing drug penetration into 

sensitive tissues such as the brain and testes (see I.5). Moreover, this role in modifying 

drug disposition is not limited to chemotherapeutic agents since P-gp is also able to 

interact with numerous endobiotics (Suzuki and Sugiyama 2000). The metabolism and 

elimination of xenobiotics also involves enzymatic reactions catalysed by phase I (mainly 

cytochromes P450, CYPs) and by phase II enzymes (Xu et al. 2005). It is generally 

assumed that through these metabolic pathways, a hydrophobic compound is converted 

into a more polar product, which can be readily eliminated, although some notorious 

exceptions exist. CYPs are inducible hemoproteins that belong to a multi-gene family and, 

in the pharmacology field, the CYP3A subfamily is the most important (Nelson et al. 

1996). It has been described that CYP3A is involved in the oxidative metabolism of more 

than 50% of drugs commonly used in humans, including anticancer drugs such as taxol, 

taxotere, vinca alkaloids, and epipodophyllotoxins (Bertz and Granneman 1997; Zhou-Pan 

et al. 1993). 
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A substantial proportion of known P-gp substrates (Table 4) are also subject to 

metabolic transformation by the CYP3A isoform (Kim et al. 1999; Lan et al. 2000; Schuetz 

et al. 1996a; Schuetz et al. 1996b), and this substantial overlap in substrate specificity 

(Kim et al. 1999) also extends to complementary expression patterns (Wacher et al. 

1995). Of particular importance is the co-expression in hepatocytes and in the gut wall. 

This combination of metabolic biotransformation by CYP3A and active efflux via P-gp 

results in the reduced oral availability of numerous pharmacologic agents (Benet and 

Cummins 2001; Kim et al. 1999), and increases the potential for unwanted drug-drug 

interactions (Hennessy et al. 2002; Lan et al. 2000). 

For compounds capable of inducing the expression of both P-gp and CYP3A 

(Callaghan et al. 2008), a co-induction mechanism has been proposed. In fact, it was 

reported that, in human HepG2 cells, both MDR1 and CYP3A4 genes were co-induced by 

dexamethasone, as well as the mdr1b and Cyp3a genes in the liver of NMRI mice (Sérée 

et al. 1998). However, the study of mRNA levels of CYP3A4 and MDR1 genes from a 

human liver bank revealed a large inter-individual variability in the expression of these two 

genes and no correlation between MDR1 and CYP3A4 expression was observed. 

Therefore, these results appear to indicate that CYP3A4 and MDR1 genes are not co-

regulated in human liver, although the possibility of co-induction cannot be ruled out 

(Sérée et al. 1998). Indeed, the human CYP3A4 and MDR1 genes may not be co-

regulated in human liver but could be co-induced by drugs such as dexamethasone, as 

demonstrated in HepG2 cells.  

The members of the entire CYP450 family are subject to induction in an isoform 

specific manner, thus enabling to a tissue to rapidly respond to the presence of high 

substrate concentrations in order to prevent the unwanted build-up of exogenous 

molecules or endogenously derived cellular metabolites. The induction of CYP-isoforms 

occurs also through transcriptional activation and involves a large number of liver enriched 

transcription factors (eg, hepatocyte nuclear factor 1 α [HNF1α], CCAAT/enhancer-binding 

proteins [C/EBP]) and, in particular, several members of the nuclear receptor family 

(Akiyama and Gonzalez 2003). In recent years, the induction of MDR1 in normal tissues, 

particularly in the “barrier tissues”, has been shown to be closely related to the 

mechanisms involved in CYP induction (Callaghan et al. 2008).  

The proposal that NRs coordinate the expression of CYP3A4 and MDR1 was 

supported by the paclitaxel-mediated induction of both proteins in hepatocytes, being the 

induction of MDR1 directly attributed to the specific interaction of paclitaxel with PXR 

(Synold et al. 2001). Further proof of the general mechanism was provided by the 

observation that PXR also induced expression of CYP3A4 and MDR1 in other tissues, 

namely the blood-brain barrier (Bauer et al. 2004; Bauer et al. 2006) and intestinal cell 
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lines (Geick et al. 2001; Greiner et al. 1999). Therefore, these results suggested a 

coordinated expression mechanism for a metabolizing enzyme and a nonspecific 

transporter to ensure drug detoxification and elimination, respectively. However, further 

studies are required to elucidate if there is differentially increased expression of CYP3A4 

and MDR1 in response to PXR activation. For example, it is important to understand if at 

certain concentrations, a given compound may activate expression of CYP3A4 but not 

MDR1, thus altering the balance between drug detoxification and drug export. Moreover, it 

is important to note that MDR1 and CYP3A4 are not the sole proteins involved in drug 

detoxification and induced by PXR activators. The enzymes UDP-glucuronosyltransferase 

(UDPGT), sulphotransferases (SULTS), and glutathione-S-transferases (GST), which 

mediate the conjugation reaction of phase II metabolism, of xeno- and endobiotics, are 

induced by known ligands of the NRs, such as PXR and CAR (Callaghan et al. 2008). 

Also, other members of the ABC superfamily are induced through mechanisms involving 

NRs. Moreover, in contrast to MDR1 whose expression is only induced specifically by the 

PXR-RXR heterodimer, the MRP1, MRP2 and MRP3 isoforms display multiple and 

isoform-dependent transcriptional regulation by NRs. For example, MRP1 is induced by 

PXR, MRP2 is induced by CAR, PXR, and FXR, while the expression of MRP3 is affected 

by PXR and CAR (Callaghan et al. 2008). 

In conclusion, the mechanism underlying a co-regulation between CYP3A and 

MDR1 genes remains to be fully clarified in humans, but the study of such an interaction is 

interesting since: 1) CYP3A and P-gp have common substrates including drugs often 

used to reverse MDR, 2) the two genes are often expressed in the same human tissues 

such as liver, lung, colon, and 3) following analysis of the genomic sequence of these two 

genes, it would appear that common cis-regulating elements are present in their 

promoters (Sérée et al. 1998). Therefore, this overlap suggests that CYP3A and MDR1 

may work together to limit or modify the bioavailability of a large number of drugs and 

xenobiotics, and the development of dual inducers may constitute a new antidotal 

pathway against toxic P-gp substrates that are also detoxified through CYP3A 

metabolization. 

 

I.6.2.2.4. Crosstalk between signalling pathways 

The preceding sections have demonstrated that regardless the source of extra- or 

intracellular stress, there is a commonly induced imbalance in oxidants and antioxidants 

through which signal transduction may be activated and MDR1 up-regulated. However, a 

great deal remains to be understood about how particular stresses induce ROS 

generation and how this is translated into increased MDR1 expression. In addition, greater 
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clarity is required to understand how ROS preferentially activate certain signalling 

pathways, under what conditions this takes place, and why particular cell types appear to 

increase MDR1 expression by signalling through one pathway and not another in 

response to stress. Furthermore, the studies suggest a complex regulation pattern of the 

hMDR1 promoter, probably extending beyond the simple house-keeping TATA-less gene 

concept. Despite the abundance of studies attempting to determine how P-gp expression 

is regulated, little emphasis is placed upon the interconnection and communication 

between the signalling pathways (Figure 21). Perhaps an obvious starting point to look for 

an interconnection is that between the NF-κB and the PKC pathways, as both are known 

to be activated early in response to stress and control anti-apoptotic responses (Hill and 

Treisman 1995). MDR1 expression has been demonstrated to be driven via both 

pathways using a common agonist, namely, the phorbol ester 12-O-tetradecanoyl-13-

acetate (TPA) (Gill et al. 2001; Vertegaal et al. 2000; Yang et al. 2001). Moreover, there is 

direct evidence for TPA-mediated induction of the MDR1 gene in cancer cell lines (Gill et 

al. 2001; Vertegaal et al. 2000). The link between NF-κB and PKC pathways was also 

supported in a study, in which specific PKC inhibitors blocked the drug (eg, calphostin C) 

induced activation of NF-κB (Das and White 1997). Crosstalk has also been demonstrated 

between PI3K pathway and NF-κB. For example, 2-AAF, that activates NF-κB by causing 

IκB degradation, also activates the PI3K pathway, and its downstream effectors Akt, 

Rac1, and NAD(P)H oxidase (Kuo et al. 2002). It was therefore suggested that 2-AAF up-

regulates MDR1 expression through a mechanism mediated by the effectors of the PI3K 

pathway, such as NF-κB (Kuo et al. 2002). 

Moreover, the previous sections highlighted the overlap of several of the binding 

sites for transcription factors in the hMDR1 promoter (Figure 12 and Figure 19), 

suggesting that they may act through competitive or cooperative interactions. However, in 

most cases, it is not yet known whether multiple factors can simultaneously occupy their 

promoter site at the same time, or whether their interaction with the promoter is mutually 

exclusive. Nevertheless, is now clear that overlapping binding elements play functional 

roles in the regulation of gene transcription through competition between several factors 

for DNA binding (Ackerman et al. 1991). However, such competition depends on both 

tissue and cell co-expression of transcription factors and on changes in their relative 

amounts according with physiological and environmental conditions (Ackerman et al. 

1991). Under these circumstances, the -123 to -75 at the hMDR1 promoter (Figure 12), 

which contains, among others, the MDR1 enhancesome, represents an important region 

for the regulation of this gene. 
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Figure 21. Signal transduction pathways and transcription factors that mediate the acquisition of P-
gp-mediated multiple drug resistance in human MDR cancer cells. 
PTEN, phosphatase and tensin homologue; PIP2/3, phosphatidylinositol 4,5-biphosphate/ phosphatidylinositol 3,4,5-
triphosphate; PI3K, phosphatidylinositol 3-kinase; Cdc42, cell division control protein 42 homologue; RhoA, Ras 
homologue gene family, member A; cAMP: cyclic adenosine monophosphate; PKB/Akt, protein kinase B; PKC, 
protein kinase C; TAK, transforming growth factor β activated kinase; ASK, apoptosis signal regulating kinase; 
MEKK, mitogen-activated protein kinase kinase; ROCK, rho-associated, coiled-coil containing protein kinase; PKA: 
protein kinase A; TNF-α, tumor necrosis factor-α; IκB, inhibitor of NF-κB; MEK1/2/3/4/6, mitogen-activated protein 
kinase 1/2/3/4/6; MKK7, mitogen-activated protein kinase kinase 7; NF-κB, nuclear factor κB; ERK, extracellular 
signal-regulated kinase; JNK, c-Jun NH2 terminal kinase. Taken from (Sui et al. 2012). 

 

Also, it is important to keep in mind that most of the studies performed to identify the 

factors that regulate the MDR1 transcription were performed in tissue cultured cells, and 

the relevance of these findings to the in vivo situation, particularly in the clinical setting, 

remains to be determined. 

Additionally, apart from this protein interplay, the accessibility of promoter elements 

to their binding factors is regulated at the level of chromatin assembly. Levels of both 

histone acetylation and DNA methylation are known to regulate gene expression and the 

MDR1 gene is no exception (El-Osta et al. 2002; Kusaba et al. 1999). 

In conclusion, despite the intense research in this area, the relationship between 

signal transduction pathways and P-gp expression is far from being established. It is 

clearly a complex process involving more than a single pathway triggered by a specific 

extracellular stimulus, although it is not yet apparent how the different pathways are 

interconnected. Indeed, the situation may be more complex, combining translational with 

transcriptional effects mediated by signal transduction pathways. Such interconnections 
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reflect the redundancy of signalling pathways for MDR1, and underscore the ubiquity of 

multidrug resistance-induction through expression of this transporter 

 

I.6.3.  P-gp Activation – a new class of compounds that interact with P-gp 

A new class of compounds that interact with P-gp has recently been identified, and 

designated as P-gp activators. This class represents compounds with the ability to 

immediately increase P-gp activity without increasing its expression (Sterz et al. 2009; 

Vilas-Boas et al. 2013b). While a P-gp inducer acts by increasing the protein expression 

from which an associated increase in its activity is expected, a P-gp activator is a 

compound that binds to P-gp and induces a conformational change that stimulates the 

transport of a substrate bound on another binding site (Sterz et al. 2009; Vilas-Boas et al. 

2013b). Therefore, this activation mechanism promotes P-gp transport function without 

interfering with the protein expression levels, making it a more rapid process than P-gp 

induction (Vilas-Boas et al. 2013b). Moreover, this approach is in line with the functional 

P-gp model, which suggests that the efflux pump contains, at least, two distinct sites for 

drug binding and transport, and that these sites interact in a positively cooperative manner 

(Shapiro and Ling 1997c). 

Although this class of compounds has been recently defined, it has long been 

known that there are compounds that bind to P-gp and stimulate the transport of a 

substrate on another binding site (Shapiro et al. 1999; Shapiro and Ling 1997c; Shapiro 

and Ling 1998a). For example, Hoechst-33342 and rhodamine 123 act by this cooperative 

mode of action, as evidenced by the kinetics of transport of both substrates in isolated P-

gp-rich plasma membrane vesicles from Chinese hamster ovary CH'B30 cells, that 

demonstrated that each substrate stimulated P-gp-mediated transport of the other 

(Shapiro and Ling 1997c; Shapiro and Ling 1998a). Also, colchicine and quercetin 

stimulated rhodamine 123 transport and inhibited Hoechst 33342 transport. In contrast, 

anthracyclines such as daunorubicin and doxorubicin stimulated Hoechst 33342 transport 

and inhibited rhodamine 123 transport. Vinblastine, actinomycin D, and etoposide 

inhibited transport of both dyes. These results are consistent with a functional P-gp model 

containing at least two positively cooperative sites (H site and R site, for Hoechst-33342 

and rhodamine 123, respectively) for drug binding and transport (see I.3.1) (Shapiro and 

Ling 1997c). Therefore, one site (R) preferentially recognizes rhodamine 123, doxorubicin 

and daunorubicin and the other site (H) preferentially recognizes Hoechst 33342 and 

colchicine. Vinblastine, actinomycin D, and etoposide interact equally with both sites. 

Binding of drug at the R site stimulates transport of Hoechst 33342 by the H site and 

binding of drug at the H site stimulates transport of Rhodamine 123 by the R site (Shapiro 

and Ling 1997c; Shapiro and Ling 1998a). Moreover, this model is consistent with earlier 
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observations of competitive and non-competitive effects of P-gp substrates and 

chemosensitizers (Shapiro and Ling 1997c). This two-site hypothesis is one of the most 

convenient working models for explaining the mutual stimulation of P-gp-mediated 

transport by several substrates (Sterz et al. 2009). 

Shapiro et al. (1999) later demonstrated that P-gp possesses at least three 

positively cooperating drug binding sites (Shapiro et al. 1999), an H site selective for 

Hoechst 33342 and colchicine, an R site selective for rhodamine 123 and anthracyclines, 

in accordance with its preliminary results (Shapiro and Ling 1997c; Shapiro and Ling 

1998a), and a third binding site for progesterone (a allosteric binding site exhibiting a 

regulatory function) (Shapiro et al. 1999). According to the obtained results, it was again 

demonstrated that drug binding to one site stimulates transport at the other binding site. In 

fact, prazosin and progesterone stimulated the transport of both Hoechst 33342 and 

rhodamine 123. Moreover, rhodamine 123 and prazosin (or progesterone), in 

combination, stimulated Hoechst 33342 transport in an additive manner. In contrast, 

Hoechst 33342 and either prazosin or progesterone interfere with each other, so that the 

stimulatory effect of the combination on rhodamine 123 transport is less than that of each 

individually. Non-P-gp-specific effects of prazosin on membrane fluidity and permeability 

were excluded and the obtained results indicated the existence of a third drug-binding site 

on P-gp with a positive allosteric effect on drug transport by the H and R sites (Shapiro et 

al. 1999), highlighting the existence of a cooperative mechanism of action also for 

prazosin and progesterone. Moreover, this allosteric site appears to be one of the sites of 

photoaffinity labelling of P-gp by [125I]iodoarylazidoprazosin (Safa et al. 1994) and does 

not seem to be involved in drug transport (Shapiro et al. 1999). 

A four-P-gp-binding-sites model was also proposed, which supports the presence of 

three transport sites, at which translocation of drug across the membrane can occur, and 

one regulatory site, which modifies P-gp function. This last site allosterically alters the 

conformation of the transport binding sites for substrates from low to high affinity, thus 

increasing the rate of translocation (Martin et al. 2000). In this study, radioligand-binding 

techniques were used to directly characterize drug interaction sites on P-gp and how 

these multiple sites interact. The drugs used were classified as either 1) substrates, which 

are known to be transported by P-gp (e.g., vinblastine) or 2) modulators, which alter P-gp 

function but are not themselves transported by the protein (e.g., XR9576). Drug 

interactions with P-gp were either competitive, binding at a common site, or non-

competitive, when binding at distinct sites. Intriguingly, some modulators interacted with 

P-gp at a transport site rather than a regulatory site. The pharmacological data also 

demonstrated that both transport and regulatory sites were able to switch between high- 

and low-affinity conformations. The multiple sites on P-gp displayed complex allosteric 
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interactions through which interaction of drug at one site switches other sites between 

high- or low-affinity conformations (Martin et al. 2000). In line with this, it has long been 

suggested that the adaption and survival mechanisms of living beings has allowed the 

binding of several xenobiotics at the same time to P-gp (Safa 1993; Safa 1998), 

increasing the transport of each other, not competing but activating the transport cycle 

(Safa 2004). 

Moreover, current models of P-gp drug binding suggest a large, flexible drug-binding 

region, confirmed by the high-resolution crystal structure (Aller et al. 2009), rather than 

one or a few discrete drug-binding sites (see I.3.1). This region is thought to contain 

multiple hydrophilic electron donor/acceptor groups, charged groups, and aromatic amino 

acids, to create a number of sub-sites where drugs can bind. The flexibility of the binding 

pocket would allow induced fit of multiple drugs via hydrophobic interactions, hydrogen 

bonding, and electrostatic interactions with residues lining the binding pocket. The number 

and strength of these interactions would dictate the affinity of drug binding to the protein. 

In fact, the drug binding pocket of P-gp contains, as previously mentioned, primarily 

hydrophobic and aromatic residues. The substrate-binding cavity contains 73 solvent-

accessible residues, of which 15 are polar and only two are potentially charged. More 

polar and charged residues are located near the bottom of the drug-binding pocket than in 

the upper portion, and it is thought that drug substrates carrying a charge will bind such 

that their charged portions interact with the polar/charged residues in the lower region 

(Aller et al. 2009). 

In a very interesting study, several small molecules, first designed as inhibitors of 

the p53 protein, demonstrated different effects on the cellular accumulation of distinct P-

gp substrates (Kondratov et al. 2001). By screening a chemical library for the compounds 

protecting cells from doxorubicin, a series of small molecules was isolated, which 

interfered with the doxorubicin accumulation in mouse fibroblasts by enhancing efflux of 

the drug. Isolated compounds also stimulated rhodamine 123 efflux. Moreover, stimulation 

of drug efflux was detectable in the cells expressing P-gp, but not in their P-gp-negative 

variants, and was completely reversible by the P-gp inhibitors. A dramatic stimulation of P-

gp-mediated efflux of doxorubicin and rhodamine 123 by the identified compounds was 

accompanied by suppression of P-gp-mediated efflux of other substrates, such as 

paclitaxel or Hoechst 33342, indicating that they act as modulators of P-gp substrate 

specificity. Consistently, these P-gp modulators dramatically altered the pattern of cross-

resistance of P-gp-expressing cells to different P-gp substrates: an increase in resistance 

to doxorubicin, daunorubicin, and etoposide was accompanied by cell sensitization to 

Vinca alkaloids, gramicidin D, and paclitaxel, with no effect on cell sensitivity to colchicine, 

actinomycin D, puromycin, and colcemid, as well as to several non-P-gp substrates. 
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Moreover, the most potent compounds were QB102 and QB11, which stimulated the 

transport of anthracyclines and rhodamine 123, whereas efflux of Vinca alkaloids and 

Hoechst 33342 was inhibited (Kondratov et al. 2001). A particularly interesting aspect of 

that work (Kondratov et al. 2001) was that the effect of these modulators seems to depend 

at least partially on the substrate binding site postulated by Shapiro and Ling (Shapiro and 

Ling 1997c). Moreover, the relative effect of P-gp modulators against different substrates 

varied among the isolated compounds that can be used as fine tools for analysing 

mechanisms of P-gp drug selectivity. These results raised the possibility of a rational 

control over cell sensitivity to drugs and toxins through modulation of P-gp activity by 

small molecules (Kondratov et al. 2001). 

More recently, the P-gp modulating properties of 27 different imidazobenzothiazoles 

and imidazobenzimidazoles compounds structurally related to the previously reported P-

gp activators, QB102 and QB11, were investigated (Sterz et al. 2009). Most of the tested 

compounds were able to stimulate P-gp-mediated efflux of daunorubicin and rhodamine 

123 in a concentration-dependent manner, although some of the compounds also 

displayed weak inhibitory effects. Additionally, P-gp-mediated efflux of vinblastine and 

colchicine was inhibited by several of the tested compounds. Therefore, according to the 

obtained results, these novel compounds seem to bind to the P-gp H site and activate the 

efflux of specific substrates of the R site in a positive cooperative manner, whereas 

binding of H-type substrates is competitively inhibited. This hypothesis was further 

confirmed by the observation that these modulators do not influence hydrolysis of ATP or 

its affinity towards P-gp (Sterz et al. 2009). 

It was also recently demonstrated that a synthetic derivative of rifampicin (a reduced 

derivative, RedRif) that modulated P-gp expression and activity could increase P-gp 

activity even at time points at which no increase in protein content occurred, thus acting 

as a P-gp activator, in a model of the rat blood-brain barrier (RBE4 cells). Interaction of 

RedRif with P-gp drug-binding pocket in silico was consistent with an activation 

mechanism of action, which was confirmed by docking studies (Vilas-Boas et al. 2013b).  

Therefore, P-gp activators that exert various effects on the intracellular accumulation 

of distinct P-gp substrates are useful tools for investigating the interactions between 

multiple drug binding sites of this transport protein (Sterz et al. 2009). 

 
I.7. Polymorphisms of the MDR1 gene: implications in drug therapy and disease 

The MDR1 gene is located on the long arm of chromosome 7 and consists of a core 

promoter region and 29 exons with a total length of 209 kb (Zhou 2008). MDR1 is 

polymorphic and numerous mutations have been documented in various ethnic 
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populations. Indeed, more than 50 polymorphisms, including single nucleotide 

polymorphisms (SNPs) and insertions/deletions, are known in the MDR1 gene (Choudhuri 

and Klaassen 2006; Sharom 2008; Sharom 2011). Some of these polymorphisms appear 

to change the mRNA expression, protein expression and P-gp function (Sharom 2008; 

Sharom 2011). Knowing that changes in P-gp expression and function would be expected 

to alter the absorption, plasma concentration, tissue distribution and excretion of its 

substrates, P-gp polymorphisms may be thus responsible for the variation in drug 

responses observed between different individuals and populations and, consequently may 

influence the outcome of drug treatment (Sharom 2008; Sharom 2011). Therefore, in 

recent years, there has been considerable interest in these polymorphisms. However, 

there have been many conflicting reports in this field, and no clear associations between 

genotype and altered response to drug treatment have emerged so far (Sharom 2008). 

A point mutation that occurs in at least 1% of the population is considered to be an 

SNP (Sharom 2008). Some SNPs result in a change in the amino acid coding sequence of 

the protein (nonsynonymous), whereas others do not (synonymous; silent) (Sharom 

2008). The first polymorphism to be reported in the hMDR1 gene was the G2677T variant, 

which is a non-synonymous SNP resulting in a change in the amino acid sequence, 

Ala893Ser (Ser893 polymorphism). Since then, about 30 SNPs have been discovered by 

sequencing the MDR1 gene in large numbers of individuals of different ethnic origin 

(Fromm 2002; Marzolini et al. 2004; Schwab et al. 2003a). The most common variants 

have probably been identified, although it is possible that some rare polymorphisms still 

remain to be detected. Moreover, considerable differences exist in the frequency of these 

variant alleles in different populations of Caucasian, African and Asian origin (Chelule et 

al. 2003).  

P-gp SNPs have been reported to potentially alter both the expression and the 

function of the transporter. For example, the synonymous C3435T polymorphism (exon 

26, C>T at 3435 position) was reported to be associated with reduced P-gp mRNA 

expression in a few studies, but this was later contradicted by other groups (Leschziner et 

al. 2007). Indeed, a twofold reduction in the duodenal P-gp levels in C3435T individuals 

was initially reported, which was associated with an increased oral absorption and higher 

plasmatic levels of digoxin (Hoffmeyer et al. 2000). However, a meta-analysis has later 

suggested that the C3435T SNP has no effect on the expression of MDR1 mRNA or in the 

pharmacokinetics of digoxin (Chowbay et al. 2005). Furthermore, subsequent studies on 

other P-gp substrates, such as tacrolimus, fexofenadine and cyclosporine A, failed to 

confirm this association (Leschziner et al. 2007), and the overall consensus is that such 

an association is not significant. Several other SNPs have also failed to demonstrate an 

association with the levels of P-gp expression (Leschziner et al. 2007), leading thus to 
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inconclusive results. Another study has demonstrated that the C3435T polymorphism 

results in the expression of a P-gp that has a slightly different tertiary structure and altered 

interaction with drugs and modulators, despite having the same amino acid sequence 

(Kimchi-Sarfaty et al. 2007). These functional differences were reported to arise from 

altered folding kinetics during protein biosynthesis as a result of rare codon usage. 

Furthermore, it was demonstrated that reduced fexofenadine uptake might be associated 

with the non-synonymous SNP G2677T, suggesting that this variant has increased activity 

in vivo (Kim et al. 2001). Also, a more-well documented link has been reported between 

the C3455T polymorphism and the epilepsy that is refractory to treatment with multiple 

drugs (Siddiqui et al. 2003). Moreover, since conflicting data have been reported on the 

effects of other alleles using various drug substrates, the controversy seems likely to 

continue. 

More recent works have been focused on the association of protein expression 

levels with haplotypes (a set of SNPs). Distinct haplotypes exist, with considerable 

heterogeneity found within a single ethnic group, although all ethnic groups appear to 

possess the three most common haplotypes, which were found in >70% of the total 

population (Leschziner et al. 2006). One common haplotype includes the SNPs C1236T 

(exon 12, synonymous), G2677T (exon 21, non-synonymous), and C3435T (exon 26, 

synonymous), and is found in European Americans, whereas C1236T- G2677T- C3435C 

haplotype is common in African Americans (Kim et al. 2001). MDR1 haplotypes, rather 

than individual SNPs, are more likely to affect the pharmacokinetics of MDR1 substrates 

(Sharom 2007). Two common P-gp polymorphisms (G2677T/A and C3435T) may play a 

role in the differential response to the cholesterol-lowering statin drugs (Kajinami et al. 

2004). The C3455T variant was associated with lower response to atorvastatin in female 

patients, and haplotype analyses identified a subgroup of individuals with a remarkable 

response to treatment that was not linked to a single polymorphism (Kajinami et al. 2004). 

Response to treatment with fluvastatin was associated with a haplotype containing the 

G2677T/A allele (Bercovich et al. 2006). However, the association between haplotype and 

P-gp mRNA expression need to be further explored, not forgetting that factors such as 

medications, diet, interindividual differences in drug metabolism and the presence of an 

underlying disease may complicate the interpretation of the obtained results.  

Noteworthy, using mammalian cell lines expressing P-gps carrying SNPs identified 

in human populations, it was demonstrated that many of this variants have little or no 

effect on either P-gp surface expression or transport function (Kimchi-Sarfaty et al. 2007) 

(Morita et al. 2003; Sakurai et al. 2007). Moreover, several non-synonymous 

polymorphisms in mammalian cells displayed modest changes in substrate specificity and 

drug-ATPase activity (Sakurai et al. 2007). However, the non-synonymous mutations of 
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G2677T/A/C, which result in the amino acid changes Ala893Ser, Ala893Thr and 

Ala893Pro, caused changes in both substrate specificity and ATPase kinetic properties, 

as evaluated with 41 different compounds (Sakurai et al. 2007). Also, the extent of those 

functional changes depended on the particular drug tested. Thus, the polymorphisms at 

the amino acid 893, which is located within the second intra-cellular loop in the C-terminal 

half of P-gp, appear to potentially influence the disposition and therapeutic efficacy of 

drugs administered clinically. 

However, the effect of P-gp polymorphisms on the outcome of anticancer drug 

treatment has also been described for several different tumor types and treatment 

regimens (Leschziner et al. 2007) and, although some positive associations have been 

reported, no clear pattern exist. 

Additionally, given the P-gp role in protecting tissues and organs from toxicants, it 

would not be surprising to find that polymorphisms play a role in the susceptibility of 

individuals to various disease states. In fact, MDR1 polymorphisms have been reported to 

alter the susceptibility of certain individuals to various disease states, including colon 

cancer, renal cancer, inflammatory bowel disease and Parkinson’s disease (Sharom 

2008). For example, mdr1 knockout mice demonstrated to spontaneously develop a form 

of colitis that can be prevented by antibiotic treatment (Maggio-Price et al. 2005), 

suggesting that P-gp functions as a defence against bacteria or toxins in the intestine. 

Confirming this idea, inflammatory bowel diseases (Crohn’s disease and ulcerative colitis) 

are linked to the missense variant Ala893Ser/Thr (Brant et al. 2003), and patients with 

ulcerative colitis (but not Crohn’s disease) have a higher frequency of the C3435T 

genotype, which results in lowered P-gp expression in the intestine (Schwab et al. 2003b). 

Additionally, genotyping of 249 ulcerative colitis and 179 Crohn’s disease patients and 

260 healthy controls was conducted and a highly significant association between the 

common haplotypes and ulcerative colitis, but not Crohn’s disease, was observed (Ho et 

al. 2006). Additionally, human patients with the C3435T polymorphism, which is 

associated with lower intestinal expression of P-gp, are over-represented among patients 

with ulcerative colitis (Ho et al. 2006). Therefore, these reports provide compelling 

evidence to support the contribution of the MDR1 gene in determining risk to ulcerative 

colitis but not to Crohn’s disease.  

Furthermore, variant P-gp alleles were reported to also affect cancer susceptibility. 

For example, although the genotypic frequency of the C3435T SNP was not altered in 

colorectal tumor cells from a total patient population as compared to controls (Humeny et 

al. 2003), when an under-50 years old patient population was examined, carriers of the 

3435TT genotype or 3435T allele were at substantially higher risk of developing the 

disease (Kurzawski et al. 2005). Also, there is evidence suggesting that P-gp 



General Introduction______________________________________________________________ 

132 

polymorphisms influence the risk of developing renal epithelial tumours, again with the 

C3435T and C3435TT carriers presenting a higher risk (Siegsmund et al. 2002). 

Since P-gp in the BBB protects the brain by eliminating toxins, the mutation-induced 

P-gp malfunction could contribute to the development of some neurological diseases. 

Indeed, Parkinson’s disease susceptibility has been linked to P-gp polymorphisms in 

Chinese populations, where a MDR1 haplotype containing the SNPs 2677T and 3435T 

was found to protect against the disease (Tan et al. 2005). Also, in another study, the 

3435 TT genotype was highest in the early-onset Parkinson’s disease group, second 

highest in the late-onset group, and lowest in controls (Drozdzik et al. 2003). Another 

report also noted that the C3435T allele occurred with higher frequency when compared 

with wild-type patients with early-onset Parkinson’s disease (Furuno et al. 2002). Since 

the C3435T allele is associated with lower P-gp expression and Parkinson’s disease is 

thought to possibly result, in part, from the gradual accumulation of environmental toxins 

in the brain, it is possible that the MDR1 polymorphism genotype exposes the neurones to 

higher concentration of toxic P-gp substrates due to reduced efflux capability (Furuno et 

al. 2002). 

In conclusion, MDR1 polymorphisms are associated with increased susceptibility to 

ulcerative colitis, cancer, Parkinson’s disease, and possibly other human diseases. This 

knowledge can help health professionals to make early and appropriate interventions to 

reduce the likelihood of a particular illnesses, keeping in mind that other factors, such as 

diet, life style, race, and environment, have also a major impact on the disease 

susceptibility and progress. Therefore, this is a rapidly developing field that will require 

substantial further investigation before firm conclusions can be reached. 
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II. OBJECTIVES 

P-glycoprotein is the most extensively studied ATP-binding cassette transporter due 

to its role in modulating drug pharmacokinetics and in the development of the multidrug 

resistance (MDR) phenomenon. In fact, since its discovery in 1976, many scientific efforts 

led to the development of P-gp inhibitors, including structure- and ligand-based design 

methods. Therefore, this efflux pump has been viewed for decades as an important target 

for inhibition to overcome the well-known problems of MDR. However, P-gp was later 

found to be also present in normal tissues, including the brain, liver, kidney, placenta, 

testis and intestine. Given its cellular polarized expression in many excretory and barrier 

tissues, its broad substrate specificity, and its efflux capacity, this important pump 

constitutes a crucial cellular defence mechanism against its potentially toxic substrates, 

contributing towards the reduction of their intracellular accumulation.  

Therefore, taking into consideration the important physiological role of P-gp in the 

elimination of harmful compounds and in affording protection to susceptible organs, the 

main aim of the present work was the screening and development of specific and 
potent P-gp inducers and/or activators, which could act as potential antidotes in 
toxic P-gp substrates intoxications. For that purpose, the following specific objectives 

were set to accomplish with the main aim of the present work: 

 To validate Caco-2 cells as a suitable model for the screening of new P-gp 
inducers/activators. Doxorubicin was initially used as a model of a known P-gp 

inducer to evaluate the effect on both the expression and activity of P-gp. 
 

 To evaluate the P-gp induction/activation ability of commercially available 
and newly synthesised compounds, including, colchicine, hypericin and newly 

synthetized xanthonic and thioxanthonic derivatives. 
 

 To evaluate whether the potential effects of the tested compounds on both 
P-gp expression and activity could afford an effective protection against 
toxic P-gp substrates. For that purpose, paraquat (PQ) was used as a model of a 

known toxic P-gp substrate, and the protective effects against its cytotoxicity were 

correlated with the corresponding ability of the tested compounds for P-gp 

induction/activation. Moreover, by using different experimental designs of 

incubation with the tested inducers/activators, several issues could be addressed 

including, mechanistic insight (when the inducer was incubated with the cells prior 

to the toxic insult), effectiveness of protection if the potential antidote was present 

in the ingested toxic formulation (when the inducer and the harmful substrate were 
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simultaneously incubated), and effectiveness as antidote following intoxication (by 

incubating the inducer/activator after the toxic insult).  
 

 To elucidate the transport mechanisms involved in PQ intestinal uptake. 

Although PQ is responsible for thousands of deaths due to accidental or intentional 

ingestion, only limited information is available on its gastrointestinal absorption. 

Therefore, knowing that the most effective way to reduce PQ blood concentrations, 

and, consequently, limit its accumulation in the lung is to inhibit its gastrointestinal 

absorption, we also sought to elucidate the transport mechanisms involved in the 

PQ uptake in Caco-2 cells. For that purpose, substrates and inhibitors for choline, 

amino acids and polyamines transporters were used to clarify their involvement in 

the herbicide's uptake and, consequently, in its toxicity. 
 

 Development of in silico strategies for P-gp inducers and activators. Since 

the implication of P-gp in the development of MDR in cancer cells, many in silico 

studies have been conducted to predict P-gp substrates and inhibitors, and 

included structure- and ligand-based design methods. However, the search for P-

gp inducers or activators has been mainly performed by random screening. 

Therefore, based on the in vitro activation/induction results, we aimed to develop a 

pharmacophore model for P-gp activation and P-gp induction, which could be used 

in the future for predicting new P-gp ligands through the rapid screening for new P-

gp inducers and activators, respectively. Furthermore, since the xanthonic 

derivatives are positional isomers, we also sought to create a 2D QSAR model to 

elucidate the descriptor implicated in the P-gp activation ability of these 

compounds. 
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III. EXPERIMENTAL SECTION 

III.1.   Brief considerations on the experimental in vitro model and in the model of 
a toxic P-gp substrate (paraquat) used in the studies, and in the protocol 
used for evaluation of P-gp activity 

III.1.1. Caco-2 Cells - a model of the human intestinal epithelium 

Knowing that many intoxications by P-gp substrates result from accidental or 

intentional ingestion, the P-gp mediated defence mechanism is particularly relevant at the 

intestinal level, by significantly reducing their intestinal absorption and, consequently, their 

access to the target organs. Therefore, human intestinal epithelial Caco-2 cells were used 

in the present studies as an in vitro model of the human intestinal epithelium. Caco-2 

cells, derived from human colorectal adenocarcinoma, are a widely accepted and reliable 

in vitro model for predicting drug intestinal absorption and excretion in humans (Barta et 

al. 2008; Huynh-Delerme et al. 2005; Watanabe et al. 2005; Yamashita et al. 2000; 

Yamashita et al. 2002a; Yamashita et al. 2002b). These cells closely mimic the 

enterocytes of the small intestine (Barta et al. 2008) and exhibit spontaneous 

morphological and biochemical enterocytic differentiation after confluence in culture 

(Huynh-Delerme et al. 2005). Caco-2 cells express P-gp (Hidalgo and Jibin 1996 ; Hunter 

et al. 1993; Shen et al. 2007; Watanabe et al. 2005), as well as other transporters 

involved in drug absorption and excretion (Hirohashi et al. 2000; Taipalensuu et al. 2001). 

Moreover, the P-gp expression levels in these cells are in good agreement with those of 

the normal human jejunum (Taipalensuu et al. 2001) and this efflux protein was already 

characterized as having an apical membrane localization in this intestinal cell line (Hunter 

et al., 1993). 

Previous studies have reported the influence of cell- and culture-related factors on 

Caco-2 cells functional characteristics (Sambuy et al. 2005). Among the cell-related 

factors, the number of passages in culture is one of the major factors reported to influence 

different functions and activities of this cell line (Sambuy et al. 2005). To avoid the impact 

of this factor on the obtained results, the cells used in all the experiments were always 

taken between the 58th and 65th passages. Among the culture-related factors, it has long 

been known that the time of culture and seeding cell densities can influence the evolution 

of a cell culture in what concerns to cell replication, senescence and differentiation 

(Sambuy et al. 2005). Moreover, with respect to P-gp, an age-dependent expression of 

this pump in Caco-2 cell monolayers was already demonstrated (Hosoya et al. 1996). 

Therefore, these culture-related factors were strictly standardized in order to obtain a 
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reproducible experimental model, making possible to establish comparisons between the 

different compounds tested. For that purpose, the cells were always seeded at a density 

of 60,000 cells/cm2 and used always with the same culture age, 4 days after seeding, 

when confluence was reached. 

 

III.1.2. Paraquat – a model of a toxic P-gp substrate 

Paraquat (PQ, 1,1′-dimethyl-4,4′-bipyridinium dichloride) is an extremely toxic 

herbicide, which was already reported to be a P-gp substrate (Dinis-Oliveira et al. 2006c; 

Vilas-Boas et al. 2013a; Vilas-Boas et al. 2013b). Moreover, previous in vivo studies have 

demonstrated that the de novo synthesis of P-gp in the lungs of PQ-intoxicated rats, 

induced by a single dose of dexamethasone (100 mg/kg i.p) 2 h after PQ intoxication (25 

mg/kg i.p.), resulted in a remarkable decrease in PQ accumulation in the lung (by 40%, 

when compared to the group exposed to only PQ), with a significant increase in its fecal 

excretion (Dinis-Oliveira et al. 2006c). Additionally, there was an evident decrease in lung 

damage, with lower lipid peroxidation and carbonyl groups content, and a normalization of 

myeloperoxidase activity, as well as a significant enhancement in survival (Dinis-Oliveira 

et al. 2006a). 

Considering these previously reported results and the exhaustive know-how 

acquired by our research group on PQ toxicity, this herbicide was used in the present 

studies as a model of a toxic P-gp substrate and we aimed to correlate the effects of the 

tested compounds on both P-gp expression and activity with a possible reduction in PQ 

intracellular accumulation and, consequently, with a potential reduction in its toxicity. For 

that purpose, PQ cytotoxicity was evaluated in Caco-2 cells (by the MTT reduction or by 

the neutral red uptake assays), with or without exposure to the tested inducers. Therefore, 

three different experimental designs of incubation were used: 

 Pre-incubation with the tested inducer for 24, 48 or 72 h, followed by PQ 

incubation for 24 h. This experimental design aimed to directly correlate the 

observed effect on PQ-induced toxicity with a possible effect on P-gp expression 

and activity caused by the pre-exposure to the inducer. In fact, since the cells have 

no simultaneous contact with both PQ and inducer, the possible effects, other than 

P-gp induction, caused by the inducer are, therefore, minimized. 
 

 Incubation with the inducer 6 h after the beginning of PQ exposure (total PQ 

incubation time of 24 h), reflecting a real-life intoxication scenario. In fact, in many 

cases, an effective antidote exerts its protective effects well after the intoxicant 

contacts with the target tissues. Moreover, this schedule for inducer incubation (6 
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h after PQ exposure) was chosen taking into account the estimated average arrival 

time of the patient to hospital, after PQ intoxication. 
 

 Simultaneous incubation with the tested inducer and with PQ for 24 h, to mimic the 

presence of the potential antidote in the PQ formulation. This experimental design 

was chosen to evaluate if the inducer could be used as an effective antidote 

against PQ intoxications, acting as the first therapeutic measure employed to limit 

the herbicide absorption. 

In all cases, PQ cytotoxicity was evaluated 24 h after exposure of Caco-2 cells to 

the herbicide. 

The PQ concentrations used in the present studies are within those that could be 

expected to be attained in vivo in a real human intoxication scenario. The reported cases 

of PQ intoxications in humans available in the literature show wide variation in the post-

mortem blood, urine and tissue concentrations of the herbicide (Dinis-Oliveira et al. 2009; 

Moreira et al. 2012). In most of these cases 25-50 mL of the PQ formulation are typically 

ingested (Dinis-Oliveira et al. 2009). Most of the commercially available formulations 

contain 20 g/100 mL of the herbicide that would translate into an orally ingested dose of 

approximately 5-10 g, which is absorbed up to a maximum of 5% (Roberts 2011). Under 

such intoxication scenarios blood concentrations up to 0.1 g/L (0.4 mM) could be easily 

achieved. Additionally, PQ concentrates in the target organs, such as the lung, reaching 

concentrations up to 10 times higher than those found in the blood (Dinis-Oliveira et al. 

2008). Moreover, in the intestine, high concentrations may also be expected, since almost 

all of the ingested dose comes into contact with the enterocytes. Furthermore, the 

concentrations found at autopsy are probably lower than the peak concentrations that are 

expected to occur after intake, especially in the cases where the victims are submitted to 

emergency-care treatments to control the intoxications, such as hemodialysis and 

charcoal hemoperfusion. 
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ABSTRACT  

Colchicine is a P-glycoprotein (P-gp) substrate that induces its expression, thus 

increasing the risk for unexpected pharmacokinetic interactions with this drug. Because 

increased P-gp expression does not always correlate with increased activity of this efflux 

pump, we evaluated the changes in both P-gp expression and activity induced by 

colchicine using an in vitro model. Caco-2 cells were incubated with 0.1–100 µM 

colchicine up to 96h. Cytotoxicity was evaluated by the MTT and LDH leakage assays, P-

gp expression and activity were evaluated by flow cytometry and P-gp ATPase activity 

was measured in MDR1-Sf9 membrane vesicles. Furthermore, colchicine fitting in P-gp 

induction and competitive inhibition pharmacophore hypothesis, and docking studies 

evaluating the interaction between colchicine and P-gp drug binding pocket were tested in 

silico. 

Significant cytotoxicity was noted after 48h. At 24h a significant increase in P-gp 

expression was observed, which was not accompanied by an increase in transport 

activity. Moreover, colchicine significantly increased P-gp ATPase activity, demonstrating 

to be actively transported by the pump. New pharmacophores were constructed to predict 

P-gp modulatory activity. Colchicine fitted both the P-gp induction and competitive 

inhibition models. In silico, colchicine was predicted to bind to the P-gp drug-binding 

pocket suggesting a competitive mechanism of transport. 

These results show that colchicine induced P-gp expression in Caco-2 cells but the 

activity of the protein remained unchanged, highlighting the need to simultaneously 

evaluate P-gp expression and activity. With the newly constructed pharmacophores, new 

drugs can be initially screened in silico to predict such potential pharmacokinetic 

interactions. 

 

KEYWORDS 

P-glycoprotein induction; P-glycoprotein transport activity; colchicine; Caco-2 cells; In 

silico; ATPase activity. 
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ABBREVIATIONS 

COL – Colchicine 
DMEM – Dulbecco’s modified Eagle’s medium  
EDTA – Ethylenediamine tetraacetic acid 
FBS – Fetal bovine serum  
FITC – Fluorescein isothiocyanate 
GeoMean – Geometric mean of fluorescence intensity 
Hb – Hydrogen bond 
IA – Inhibited rhodamine 123 Accumulation 
IAE – Inhibited rhodamine 123 accumulation followed by efflux in the absence of P-gp inhibitor 
IAEI – Inhibited rhodamine 123 accumulation followed by efflux in the presence of P-gp inhibitor 
i.p. – Intraperitoneal 
MTT – (4,5-Dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide  
MDR – Multidrug resistance 
NA – Normal rhodamine 123 accumulation 
NEAA – Non-essential amino acids 
NSAIDs – Nonsteroidal anti-inflammatory drugs 
PBS – Phosphate buffered saline solution 
P-gp – P-glycoprotein 
RHO 123 – Rhodamine 123 
RMS – Root-mean-square 
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1. INTRODUCTION 

Colchicine is an alkaloid derived from the plant of the family Colchicum autumnale 

and plant extracts containing colchicine have been used to treat gout for more than 2000 

years, and pseudogout and familial Mediterranean fever for several decades (Ben-Chetrit 

and Levy 1991; Famaey 1988; Niel and Scherrmann 2006). However, it has a narrow 

therapeutic index, with no clear-cut distinction between nontoxic, toxic, and lethal doses 

(Finkelstein et al. 2010). Moreover, colchicine's toxicity stems from its mechanism of 

action as this alkaloid binds to the intracellular protein tubulin causing a disruption of the 

microtubular network resulting in impaired protein assembly in the Golgi apparatus, 

decreased endocytosis and exocytosis, altered cell shape, depressed cellular motility, and 

arrest of mitosis (Finkelstein et al. 2010). 

Colchicine is also a known P-glycoprotein (P-gp) substrate (Ambudkar et al. 1999; 

Decleves et al. 1998; El Hafny et al. 1997; Niel and Scherrmann 2006). P-gp is an efflux 

pump encoded by the human MDR1 gene being the most extensively studied ATP-binding 

cassette transporter due to its role in modulating drug pharmacokinetics. This important 

efflux pump was initially implicated in the multidrug resistance (MDR) phenomenon 

observed in hamster ovary cultured cells (Juliano and Ling 1976), and was later found to 

be also present in normal tissues including the brain, liver, kidney, placenta, testis and 

intestine (Thiebaut et al. 1987). In fact, in these tissues, it is involved in the absorption, 

distribution and excretion of drugs and other xenobiotics (Lin and Yamazaki 2003a; Lin 

and Yamazaki 2003b) and, consequently, was already implicated in pharmacokinetic 

drug-drug interactions. Therefore, when other P-gp modulators are prescribed in 

combination with colchicine, the changes in P-gp activity may lead to either intracellular 

accumulation of colchicine, and thereby to increased pharmacological or toxic effects, or 

to a reduction in colchicine intracellular levels and decreased effects (Niel and 

Scherrmann 2006). Thus, the interaction due to concomitant use of P-gp inhibitors and 

colchicine was already described and therefore, the concurrent use of these compounds 

with colchicine is contraindicated in patients with hepatic or renal impairment (Finkelstein 

et al. 2010). 

Moreover, colchicine was reported to have P-gp inducing properties, both in vitro 

and in vivo (Decleves et al. 1998; Licht et al. 2000; Vollrath et al. 1994). In fact, colchicine 

was shown to increase the mdr mRNA levels in rat liver in vivo, as early as 3 h after a 

single injection (2 mg per kg, i.p.), peaking after 24 h (Vollrath et al. 1994). Additionally, 

Declèves et. al (1998) also demonstrated that colchicine (25 nM) was able to significantly 

increase P-gp expression in the promyelocytic HL-60 cell line after 24 of exposure 

(Decleves et al. 1998). Therefore, colchicine mediated increase in P-gp expression may 
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result in an increased excretion of the alkaloid, as well as increased excretion of other P-

gp substrates prescribed in combination, resulting in a decreased therapeutic efficacy. 

However, the ability of colchicine in modulating the activity of this important efflux 

transporter was not evaluated in these previous studies. For an optimized evaluation of 

possible pharmacokinetic interactions mediated by P-gp inducers, both P-gp expression 

and activity should be simultaneously evaluated, as P-gp activity may not be necessarily 

correlated with the protein content. In fact, we have previously shown that doxorubicin, a 

potent P-gp inducer, causes remarkable increases in P-gp expression levels that are not 

accompanied by proportional increases in P-gp transport activity (Silva et al. 2011). 

Similarly, using the same experimental model, Takara et. al showed that NSAIDs greatly 

increased P-gp expression without concomitant increase in pump activity (Takara et al. 

2009). 

Thus, the aim of the present work was to evaluate if colchicine is able to 

simultaneously invoke changes in P-gp expression and activity, since protein expression 

may be greatly increased without a corresponding increase in its transport activity (Silva et 

al. 2011; Takara et al. 2009). 

In this study, in vitro studies were performed using the caco-2 cell line. The Caco-2 

cells, derived from human colorectal adenocarcinoma, are widely accepted as an in vitro 

model for predicting drug intestinal absorption and excretion in humans (Balimane et al. 

2006; Barta et al. 2008; Biganzoli et al. 1999; Huynh-Delerme et al. 2005; Watanabe et al. 

2005; Yamashita et al. 2000). These cells express P-gp at levels that are in good 

agreement with those of the normal human jejunum (Taipalensuu et al. 2001) and are 

suitable for the screening of specific P-gp inducers (Silva et al. 2011; Silva et al. 2013). To 

better understand colchicine mode of action and its possible interaction with P-gp, in silico 

studies were also performed. For that purpose, pharmacophore models for P-gp induction 

and inhibition were constructed based on known inducers and inhibitors, and they were 

used as a query for colchicine mapping, and docking studies were performed in order to 

further investigate the potential mechanism of action of this alkaloid.  
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2. EXPERIMENTAL SECTION 

2.1. Materials 

Colchicine, rhodamine 123 (RHO 123), cyclosporine, (4,5-dimethylthiazol-2-yl)-2,5-

diphenyl tetrazolium bromide (MTT), triton X-100, β-nicotinamide adenine dinucleotide 

reduced form (β-NADH), pyruvic acid, adenosine-5′-triphosphate (ATP), d-luciferin sodium 

salt and luciferase were obtained from Sigma (St. Louis, MO, USA). Reagents used in cell 

culture, including Dulbecco’s modified Eagle’s medium (DMEM) with 4.5 g/L glucose and 

GlutaMAXTM, nonessential amino acids (NEAA), heat inactivated fetal bovine serum 

(FBS), 0.25% trypsin/1 mM EDTA, antibiotic (10000 U/mL penicillin, 10000 µg/mL 

streptomycin), fungizone (250 µg/mL amphotericin B) and human transferrin (4 mg/mL) 

were purchased from Gibco Laboratories (Lenexa, KS, USA). AccuGENE® (1x PBS 

buffer) was purchased from Lonza Laboratories (Verviers, Belgium). P-glycoprotein 

monoclonal antibody (clone UIC2) conjugated with fluorescein isothiocyanate (FITC) was 

purchased from Abcam (Cambridge, United Kingdom). IgG2a (negative mAb control to 

UIC2) conjugated with FITC was obtained from ImmunoTools GmbH (Friesoythe, 

Germany). Flow cytometry reagents (BD FacsFlow™ and Facs Clean™) were purchased 

from Becton, Dickinson and Company (San Jose, CA, USA). MDR1 Predeasy ATPase 

assay kit was purchased from Solvo Biotechnology (Szeged, Hungary). All the reagents 

used were of analytical grade or of the highest grade available. 

2.2. Caco-2 cell culture 

Caco-2 cells were routinely cultured in 75 cm2 flasks using DMEM medium 

supplemented with 10% FBS, 1% NEAA, 1% antibiotic, 1% fungizone and 6 µg/mL 

transferrin. Cells were maintained in a 5% CO2–95% air atmosphere at 37ºC and the 

medium was changed every 2 days. Cultures were passaged weekly by trypsinization 

(0.25% trypsin/1 mM EDTA). The cells used for all the experiments were taken between 

the 58th and 62th passages. 

2.3. Colchicine cytotoxicity assays 

Colchicine (0 – 100 µM) cytotoxicity was evaluated at different time points (6, 24, 48, 

72 and 96 h) by the 4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide (MTT) 

reduction assay and by the lactate dehydrogenase (LDH) leakage assay. 

2.3.1.  MTT reduction assay 

Colchicine cytotoxicity was evaluated by the MTT reduction assay, in which 

mitochondrial activity is used to estimate cell viability. For that purpose, the cells were 
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seeded onto 96-well plates, at a density of 60,000 cells/cm2, to obtain confluent 

monolayers at the experimental day. The cells were then exposed to colchicine (0 – 100 

µM) in fresh cell culture medium for 6, 24, 48, 72 and 96 h. At each selected time point, 

the cell culture medium was removed, and new fresh cell culture medium containing 0.5 

mg/mL MTT was added, followed by incubation at 37°C in a humidified, 5% CO2-95% air 

atmosphere for 1 h. After this incubation period, the cell culture medium was removed and 

the formed formazan crystals dissolved in 100% DMSO. The absorbance was measured 

at 550 nm in a multi-well plate reader (PowerWave X, Bio-Tek Instruments, Vermont, 

USA). The percentage cell viability relative to that of the control cells was used as the 

cytotoxicity measure. 

2.3.2.  LDH leakage assay 

This assay is based on the measurement of LDH activity in the extracellular medium 

and was performed as previously described (Pontes et al. 2008). The loss of intracellular 

LDH and its release into the cell culture medium is an indicator of irreversible cell death 

due to cell membrane damage. The cells were seeded onto 48-well plates, at a density of 

60,000 cells/cm2. After reaching confluence, the cells were exposed to colchicine (0 – 100 

µM) in fresh cell culture medium for 6, 24 and 48 h. At each time-point, 50 µL of cell 

culture medium was removed for the extracellular LDH measurement. The LDH activity 

was determined by following the rate of oxidation of NADH, measured at 340 nm and 

results are expressed as percentage of control values.   

2.4. Evaluation of P-glycoprotein expression  

For the in vitro evaluation of P-gp expression, the cells were seeded onto 24-well 

plates, at a density of 60,000 cells/cm2, to obtain confluent monolayers at experimental 

day. On the day of the experiment, the cells were exposed to colchicine (0 – 100 µM) in 

fresh cell culture medium for 24 h (given the cytotoxicity data obtained, P-gp expression 

and transport activity was only evaluated after 24 h of exposure). After the incubation 

period, the cells were washed twice with PBS and harvested by trypsinization (0.25% 

trypsin/1mM EDTA) to obtain a cell suspension. The cells were then centrifuged (300 g for 

10 min) and resuspended in PBS buffer (pH 7.4) containing 10% FBS and P-gp antibody 

[UIC2] conjugated with FITC. The antibody dilution used in this experiment was applied 

according to the manufacturer's instructions for flow cytometry. Mouse IgG2a_FITC was 

used as an isotype-matched negative control to estimate non-specific binding of the FITC-

labelled anti-P-glycoprotein antibody [UIC2]. The conformational epitope that is 

recognized by UIC2 corresponds to a transient conformational state present during 
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catalytic cycle for substrate transport (Mechetner et al. 1997). Depending on the cell type, 

some P-gp substrates have been shown to increase UIC2 reactivity. However, in several 

cell lines, colchicine (tested at concentrations up to 1.25 mM) failed to produce such an 

interaction (Druley et al. 2001; Mechetner et al. 1997). Moreover, the incubation with the 

UIC2 antibody occurs always in the absence of colchicine since the media is removed, 

and the cells are washed twice prior to the trypsinization. Therefore, increases in 

fluorescence intensity should only reflect increased cell surface P-gp expression. The 

cells were incubated with either IgG2a_FITC or UIC2 antibodies for 30 min at 37°C in the 

dark. After this incubation period, the cells were washed twice with PBS buffer (pH 7.4) 

containing 10% FBS, centrifuged (300 g for 10 min), resuspended in ice-cold PBS and 

kept on ice until flow cytometry analysis. Fluorescence measurements of isolated cells 

were performed with a flow cytometer (FACSCalibur, Becton-Dickinson Biosciences). The 

green fluorescence of FITC-UIC2 antibody was measured by a 530 ± 15 nm band-pass 

filter (FL1). Acquisition of data for 10,000 cells was gated to include viable cells on the 

basis of their forward and side light scatters and the propidium iodide (4 µg/mL) 

incorporation (propidium iodide interlaces with a nucleic acid helix with a resultant 

increase in fluorescence intensity emission at 615 nm). Logarithmic fluorescence intensity 

was recorded and displayed as a single parameter histogram. The geometric mean of 

fluorescence intensity (GeoMean) for 10,000 cells was the parameter used for comparison 

(calculated as percentage of control). Non labelled cells (with or without colchicine) were 

analysed  in each experiment by a 530 ± 15 nm band-pass filter (FL1) in order to detect a 

possible contribution from cells autofluorescence to the analysed fluorescence signals. 

2.5. Evaluation of P-glycoprotein transport activity  

The P-gp transport activity was evaluated by flow cytometry using 1 µM RHO 123 as 

a P-gp fluorescent substrate. P-gp transport activity was evaluated through the analysis of 

RHO 123 accumulation and RHO 123 efflux. 

2.5.1.  RHO 123 accumulation assay 

Caco-2 cells were seeded onto 12-well plates, at a density of 60,000 cells/cm2, to 

obtain confluent monolayers at the experimental day. After reaching confluence, the cells 

were exposed to colchicine (0 – 100 µM) in fresh cell culture medium for 24 h. After the 

incubation period, the cells were washed twice with PBS and harvested by trypsinization 

(0.25% trypsin /1mM EDTA) to obtain a cellular suspension. The cells were then 

submitted to a RHO 123 accumulation assay as previously described with minor 
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modifications (Vilas-Boas et al. 2013). Briefly, the cell suspension was divided into 2 

aliquots to be submitted to the following procedures: 

a) Normal rhodamine accumulation (NA): the cells were centrifuged (300 g for 10 

min), resuspended in PBS buffer (pH 7.4) containing 1 µM RHO123, and incubated at 

37ºC for 30 min in the absence of the P-gp inhibitor (cyclosporine A). After the 

incubation period the cells were washed twice with ice-cold PBS with 10% FBS, 

centrifuged (300 g for 10 min) at 4°C and kept on ice until flow cytometry analysis; 

b) Inhibited rhodamine accumulation (IA): the cells were centrifuged (300 g for 10 

min), suspended in PBS buffer (pH 7.4) containing 1 µM RHO 123 and the P-gp 

inhibitor cyclosporine A (10 µM ), and incubated at 37ºC for 30 min. After the 

accumulation of the fluorescent substrate, the cells were washed twice with ice-cold 

PBS with 10% FBS, centrifuged (300 g for 10 min) at 4°C and kept on ice until flow 

cytometry analysis. 

No cytotoxic effects were observed for RHO 123 and cyclosporine at these 

concentrations after 30 min of incubation. Fluorescence measurements of isolated cells 

were performed as described in section 2.4 (Evaluation of P-gp expression). The green 

intracellular fluorescence of RHO 123 was measured by a 530 ± 15 nm band-pass filter 

(FL1). The results were calculated according to the ratio defined in Equation 1 and 

expressed as percentage of control values. A higher ratio results from a smaller GeoMean 

NA which is a consequence of a higher P-gp activity as the dye is being pumped out of 

the cells during the accumulation phase. 

 

 

 

 

Equation 1: Rhodamine 123 accumulation. 

 

Positive control for P-gp inhibition was performed in each independent experiment using 

10 µM cyclosporine A (Figure S2A, supporting information). 

2.5.2.  RHO 123 efflux assay 

Caco-2 cells were seeded onto 12-well plates, at a density of 60,000 cells/cm2, to 

obtain confluent monolayers at the experimental day. The cells were then exposed to 

colchicine (0 – 100 µM) in fresh cell culture medium for 24 h. After the incubation period, 

the cells were washed twice with PBS and harvested by trypsinization (0.25% trypsin 

/1mM EDTA) to obtain a cell suspension. In this assay, the evaluation of P-gp transport 

activity consisted of two phases, (i) an inhibited accumulation phase, in which P-gp activity 

GeoMean inhibited rhodamine accumulation (IA) 

GeoMean  normal rhodamine accumulation (NA) 
RHO 123 accumulation = 
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was inhibited with 10 µM cyclosporine A, in order to accumulate the substrate inside the 

cells (performed as described in section 2.5.1 - RHO 123 accumulation assay), and (ii) an 

efflux phase where the energy-dependent P-gp function was re-established by removing 

the P-gp inhibitor (cyclosporine) and adding an energy source (DMEM supplemented with 

4.5 g/mol glucose). For that purpose, after the inhibited accumulation phase, the cells 

were washed twice with ice-cold PBS with 10% FBS, centrifuged (300 g for 10 min) at 

4°C, and divided into two aliquots. The first aliquot was kept on ice until analysis by flow 

cytometry and corresponds to the cells submitted only to an IA phase. The second aliquot 

was submitted to an efflux phase performed under normal conditions (inhibited rhodamine 

accumulation followed by rhodamine efflux in the absence of P-gp inhibitor –IAE). For the 

efflux phase the cells were suspended in DMEM medium containing 4.5 g/L glucose and 

incubated for 45 min at 37°C. After this efflux period, the cells were washed twice with ice-

cold PBS with 10% FBS and suspended in ice-cold PBS immediately before analysis. The 

fluorescence measurements of isolated cells were performed as described in section 2.4 

(Evaluation of P-gp expression). The green intracellular fluorescence of RHO 123 was 

measured by a 530 ± 15 nm band-pass filter (FL1). The percentage of RHO 123 that was 

pumped out of the cells during the efflux phase was calculated according to Equation 2 

and the results expressed as percentage of control values. When P-gp activity increases, 

the amount of RHO 123 effluxed from the cells will be higher and accompanied by a 

decrease in the fluorescence intensity due to the corresponding decrease in intracellular 

RHO 123 (decrease in GeoMean IAE). 

 

 

 

Equation 2: Percentage of RHO 123 pumped during the efflux phase. 

 

Positive control for P-gp inhibition was performed in each independent experiment using 

10 µM cyclosporine A (Figure S2B, supporting information). 

2.6. Evaluation of P-glycoprotein ATPase activity  

P-gp pumps its substrates out of the cell using ATP hydrolysis as an energy source. 

ATP hydrolysis yields inorganic phosphate (Pi), which may be detected by a simple 

colorimetric reaction. P-gp ATPase activity was evaluated using the MDR1 Predeasy 

ATPase assay kit according to the manufacturer’s instructions. Briefly, MDR1-Sf9 

membrane vesicles (4 μg/well) were incubated in 50 μL ATPase assay buffer with 2 mM 

ATP and colchicine (1, 10 and 100 μM) for 10 min at 37 °C using two distinct protocols: 

GeoMean accumulated RHO 123(IA) – GeoMean remaining RHO 123 (IAE) 

GeoMean accumulated RHO 123 (IA) 
X 100 % pumped RHO 123 = 
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a) Activation study: incubation of colchicine (1, 10 and 100 μM) with or without 1.2 

mM sodium orthovanadate (Na3VO4)  

b) Inhibition study: incubation of colchicine (1, 10 and 100 μM) simultaneously with 40 

μM verapamil (a known P-gp substrate used in this assay as the reference P-gp 

activator) and with or without 1.2 mM Na3VO4 incubation. 

Controls without colchicine and with a control P-gp inhibitor (40 μM cyclosporine A) were 

also performed. The reaction was stopped by adding 100 µL of developer solution to each 

well, followed by 100 µL of blocker solution and an additional 30 min incubation at 37 ºC. 

The absorbance was measured at 630 nm, in a multi-well plate reader (PowerWave X, 

Bio-Tek Instruments), reflecting the amount of inorganic phosphate (Pi) liberated by the 

transporter which is proportional to its ATPase activity. 

The MDR1-Sf9 membrane vesicles contain other ATPases besides P-gp. As P-gp is 

effectively inhibited by Na3VO4, P-gp ATPase activity was measured as the vanadate 

sensitive portion of the total ATPase activity. Thus, ATPase activities were always 

determined as the difference of Pi liberation measured with and without incubation with 

1.2 mM Na3VO4 (i.e., vanadate-sensitive ATPase activity) and expressed as nmol Pi 

liberated/mg protein/min. Results are presented as mean ± SD from three independent 

experiments. 

In the activation test, vanadate-sensitive ATPase activity in the absence of 

colchicine is referred to as the basal vanadate-sensitive ATPase activity. In the inhibition 

test, membrane vesicles exposed only to verapamil are referred to as fully activated 

membranes and the corresponding activity as the maximal vanadate-sensitive ATPase 

activity (ATPase activity of fully activated membranes). Cyclosporine A (40 µM) was used 

in the present test as the positive control for the inhibition studies and the corresponding 

activity referred to as inhibited ATPase activity. 

2.7. Statistical analysis 

All statistical calculations were performed with the GraphPad Prism version 5.00 for 

Windows (GraphPad Software, San Diego California, USA). Normality of the data 

distribution was assessed by three different tests (KS normality test, D'Agostino & 

Pearson omnibus normality test and Shapiro-Wilk normality test). Statistical comparison 

between groups was estimated using the nonparametric method of Kruskal–Wallis [one-

way analysis of variance (ANOVA) on ranks] followed by Dunn’s post hoc test. In all 

cases, p values lower than 0.05 were considered significant. Data obtained from the 

colchicine cytotoxicity and P-gp expression assays are expressed as mean ± SD from 4 

independent experiments (each experiment was performed in triplicate). The results 
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obtained in the P-gp transport activity assays and in the P-gp ATPase assay are 

expressed as mean ± SD from 3 independent experiments (each experiment was 

performed in triplicate). 

2.8. Pharmacophores for P-gp modulation 

2.8.1. Pharmacophore for P-gp inducers  

Thirty-four known P-gp inducers were collected from the literature (Table S1, 

supporting information). These molecules were drawn and subject to energy minimization 

using HyperChem version 8.0. The semi-empirical AM1 (Austin Model 1) method with the 

Polak-Ribière algorithm was employed for molecular minimization. As those compounds 

have distinct and non-overlapping scaffolds, prior to building a pharmacophore for P-gp 

induction, a ligand clustering analysis was performed on the thirty-four known P-gp 

inducers (Scheme 1A). Clustering was based on the root-mean-square (RMS) deviation of 

descriptor properties and Tanimoto distance for fingerprints (Accelrys 2.1, San diego, CA, 

USA). The output clusters composed of more than 2 molecules were used on the 

following pharmacophore construction. Common feature pharmacophore models were 

created from a set of 4 to 8 known P-gp inducers (Table S1, supporting information) used 

as training set. HipHop module of Catalyst (Accelrys 2.1, San Diego, CA, USA) was 

employed to generate common feature pharmacophores among a set of active known P-

gp inducers. A maximum of 250 conformers were saved, within an energy window of 20 

kcal/mol above the global minimum, using the “best” quality generation type. Concerning 

the hypothesis generation methodology, hydrogen bond (Hb)-acceptors and donors, 

hydrophobic groups, positive ionizable groups, and aromatic rings were used. The 

“maximum features” value was set to 10 and the “minimum features” value was set to 1. 

The “minimum interfeature distance” was set to 2.97Å. The “maximum omitted features” 

value was set to 0, and default settings were used for the other options. Validation of the 

pharmacophores was performed by alignment of that pharmacophore with a test set of 4 

known inducers: amprenavir (Huang et al. 2001), nelfinavir (Huang et al. 2001), puromycin 

(Male 2009), and yohimbine (Bhat et al. 1995). Catalyst identified the compounds that 

map to the pharmacophore, and optionally aligns the ligands to the query. “All 

conformations” parameter was set, and the “best” quality generation type was used. 
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Scheme 1. (A) P-gp inducers ligand-based study. A common feature pharmacophore using 34 
already described P-gp inducers (a) was not feasible due to structural diversity. A clustering 
analysis was performed (b) and clusters containing more than 2 molecules (c) were selected for 
pharmacophore construction by superimposition and alignment of ligands. A validation was 
performed using a test set of known inducers (d). Colchicine, that induced P-gp expression in the 
biochemical screening, was fit to the pharmacophores (e). 
(B) P-gp inhibitors ligand-based study. A pharmacophore for P-gp competitive and noncompetitive 
inhibition was developed based on in vitro data previously published by our group (a), followed by 
adequate validation using test sets of known P-gp inhibitors (b). Colchicine was fit only to 
pharmacophore for competitive P-gp inhibitors (c). 

2.8.2. Pharmacophore for competitive and noncompetitive P-gp inhibitors  

Two 3D-pharmacophore models were created using HypoGen module of Catalyst 

program (Kurogi and Guner 2001; Patel et al. 2002) according to the results obtained in 

the ATPase assay for twenty three noncompetitive and for nineteen competitive inhibitors, 

both newly synthetized thioxanthonic derivatives and commercial drugs previously 

described by our group (Scheme 1B) (Palmeira et al. 2011; Palmeira et al. 2012c). For 

each molecule, the number of conformers generated using the ‘best’ functionality for each 
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inhibitor was limited to a maximum number of 255 (with an energy range of 20 kJ/mol). 

Ten hypotheses were generated using these conformers for the twenty three or nineteen 

inhibitors and the % values of luminescence related to ATPase activity. The feature 

groups selected were Hb-donor and -acceptor, hydrophobic, positive and negative 

ionizable, and remaining default parameters. After assessing all ten hypotheses 

generated, the lowest energy-cost hypothesis was considered the best, because it 

possessed features representative of all the hypotheses. The generated HypoGen models 

were evaluated in terms of cost functions and statistical parameters, which were 

calculated by HypoGen module during hypothesis generation. Validation of the best 

pharmacophore for each activity was performed using test set composed of eleven known 

P-gp inhibitors and analyzing the capacity of those compounds to fit the pharmacophores. 

2.8.3. Mapping of pharmacophore onto colchicine 

The mapping of pharmacophores onto colchicine was performed using the “Best Fit” 

method in catalyst. During the flexible fitting process, conformations on colchicine were 

calculated within the 20 kcal/mol energy threshold. Fitting was evaluated by the analysis 

of the fit score. 

2.9.  Docking of colchicine onto P-gp 

Docking simulations between drug binding pocket formed by the transmembrane 

domain interfaces of a P-gp model previously described (Palmeira et al. 2012c) and 

colchicine were performed in AutoDock Vina (Scripps Research Institute, USA). AutoDock 

Vina considered the target conformation as a rigid unit while colchicine was allowed to be 

flexible and adaptable to the target. Vina searched for the lowest binding affinity 

conformations and returned nine different conformations for colchicine. AutoDock Vina 

was run using an exhaustiveness of 8 and a grid box with the dimensions 37.0, 30.0, 40.0, 

engulfing the channel formed by the transmembrane domains. Conformations and 

interactions were visualized using PyMOL version 1.3. 
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3. RESULTS  

3.1. Colchicine cytotoxicity assays 

Colchicine cytotoxicity was evaluated to establish the concentration range and time 

of exposure that would not cause significant cell death. Figure S1 (Supporting information) 

illustrates the cytotoxic effects of 0-100 µM colchicine in Caco-2 cells at different time 

points (6, 24, 48, 72 and 96 h) as evaluated by the MTT reduction assay. Colchicine 

exposure resulted in a concentration-dependent cytotoxicity that was significant after 48 h 

of incubation and increased over time. Up to a period of 24 h of incubation no significant 

effect on mitochondrial function occurred at any of the tested colchicine concentrations. 

The LDH leakage assay, which assesses cell membrane integrity, was also performed 

and provided similar results (data not shown). Therefore, colchicine effect on P-gp 

expression and activity was evaluated 24 h after exposure. 

3.2. P-glycoprotein expression  

The effect of colchicine on P-gp expression in Caco-2 cells was evaluated by flow 

cytometry as previously described, using a P-gp monoclonal antibody [UIC2] conjugated 

with FITC (Silva et al. 2011). Non-specific binding of the FITC-labelled anti-P-glycoprotein 

antibody [UIC2] was not observed, as estimated by the isotype-matched negative control. 

The obtained results are represented in Figure 1 and it is possible to observe that 

colchicine significantly increased P-gp expression in a concentration-dependent manner. 

In fact, at 0.5, 1, 5, 10, 50 and 100 µM colchicine, P-gp expression significantly increased 

by 129, 135, 145, 150, 154 and 183%, respectively. At 0.1 µM colchicine, no significant 

increase was observed in P-gp expression. 

 

 

 

 
 
Figure 1. P-glycoprotein expression 
levels in Caco-2 cells exposed to 
colchicine (COL) (0 – 100 µM) for 24 h. 
Results are presented as mean ± SD from 4 
independent experiments performed in 
triplicate. Statistical comparisons were made 
using the Kruskal-Wallis test followed by the 
Dunn's Multiple Comparison post hoc test 
[**p<0.01; ***p<0.001 concentration vs. 
control (0 µM)].  
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3.3. P-glycoprotein transport activity 

The evaluation of P-gp transport activity was also determined by flow cytometry 

using 1 µM RHO 123 as a P-gp fluorescent substrate. For that purpose, both RHO 123 

accumulation and efflux were quantified. In the RHO 123 accumulation assay, the 

obtained results, calculated using Equation 1, are represented in Figure 2. As observed, 

colchicine did not significantly increase P-gp activity at any of the tested concentrations. 

 

 

 

 

Figure 2. P-glycoprotein activity 
evaluated by the RHO 123 accumulation 
assay in Caco-2 cells exposed to 
colchicine (COL) (0 – 100 µM) for 24 h. 
Results are presented as mean ± SD from 3 
independent experiments performed in 
triplicate. Statistical comparisons were made 
using the Kruskal-Wallis test followed by the 
Dunn's Multiple Comparison post hoc test. 

 

Rhodamine 123 efflux was also tested to evaluate P-gp transport activity. The 

results are represented in Figure 3, in which the percentage of RHO-123 effluxed from the 

cells was calculated using Equation 2 and expressed as percentage over control. The 

obtained results corroborated the results obtained in the RHO 123 accumulation assay, 

since no significant differences were obtained for all the tested colchicine concentrations. 

 

 
 
 
 
 
Figure 3. P-glycoprotein activity 
evaluated by the RHO 123 efflux assay 
in Caco-2 cells exposed to colchicine 
(COL) (0 – 100 µM) for 24 h. Results are 
presented as mean ± SD from 3 independent 
experiments performed in triplicate. Statistical 
comparisons were made using the Kruskal-
Wallis test followed by the Dunn's Multiple 
Comparison post hoc test. 
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3.4. P-glycoprotein ATPase activity 

The P-gp ATPase assay consisted of two different tests, an activation and an 

inhibition test. In the activation test, P-gp substrates may cause the stimulation of baseline 

vanadate sensitive ATPase activity. As observed in Figure 4 - activation study, colchicine, 

at the highest tested concentration (100 µM), significantly increased the amount of Pi 

liberated by the transporter resulting in a stimulation of the baseline vanadate sensitive 

ATPase activity (23 nmol Pi liberated/mg protein/min for 100 µM colchicine, when 

compared to 15 nmol Pi liberated/mg protein/min for basal P-gp vanadate sensitive 

ATPase activity, p<0.001). 

The inhibition test was performed in the presence of verapamil (40 µM), a known P-

gp activator. P-gp inhibitors or slowly transported compounds may inhibit the maximal 

vanadate sensitive ATPase activity. As observed in Figure 4 - inhibition study, no 

significant differences were observed in the vanadate sensitive ATPase activity for all the 

tested colchicine concentrations, when compared to fully activated membrane vesicles. 

 

Figure 4. Vanadate sensitive ATPase activity (nmol Pi/mg protein/min) in MDR1-Sf9 membrane 
vesicles (4 μg/well) exposed to 1, 10, and 100 µM colchicine (COL). In the inhibition study, membrane 
vesicles exposed only to verapamil (40 µM) are referred to as fully activated membranes. Cyclosporine A (40 
µM) was used as the positive control for the inhibition studies and the corresponding membrane vesicles are 
referred to as inhibited membranes. Results are presented as mean ± SD from 3 independent experiments 
(performed in triplicate). Statistical comparisons were made using the Kruskal-Wallis test followed by the 
Dunn's Multiple Comparison post hoc test (**p<0.01; ***p<0.001 concentration vs. basal or fully activated 
membranes). 

3.5. Mapping of colchicine onto P-gp induction and inhibition pharmacophores 

Four pharmacophores for P-gp induction were built based on 34 published P-gp 

inducers (Scheme 1A, Figure 5 A-L). Pharmacophore I had a score of 52.9 and was 

composed of six features: 3 hydrophobic features, and 3 hydrogen bond (Hb)-acceptor 

groups (Figure 5 A-C). This was the pharmacophore with the highest number of features 

found. Pharmacophore II has a score of 64.3 and was composed of 3 features: 2 Hb 

donor groups, and 1 Hb acceptor group (Figure 5 D-F). Pharmacophore III has a score of 
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61.4 and was composed of 5 features: 3 Hb acceptor groups and 2 hydrophobic groups 

(Figure 5 G-I). Pharmacophore IV has a score of 40.9 and was composed of 3 features: 1 

Hb donor group and 2 hydrophobic groups (Figure 5 J-L). In order to validate the P-gp 

induction pharmacophores, a test set formed of 4 know P-gp inducers, amprenavir (Huang 

et al. 2001), nelfinavir (Huang et al. 2001), puromycin (Male 2009), and yohimbine (Bhat 

et al. 1995), was used (Figure 5, right column). Those compounds were detected as P-gp 

inducers when using pharmacophores I-IV as query (validation of pharmacophores on 

supporting information - Table S2). 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 5. The top-ranked chemical feature-based pharmacophore models for P-gp inducers 
developed using the HipHop module in Catalyst. Pharmacophore I, obtained from cluster 2 (A, B), 
and pharmacophore I superimposed with oubain (C). Pharmacophore II, obtained from cluster 4 (D, 
E), and pharmacophore II superimposed with doxorubicin (F). Pharmacophore III, obtained from 
cluster 8 (G, H), and pharmacophore III superimposed with methotrexate (I). Pharmacophore IV, 
obtained from cluster 9 (J, K), and pharmacophore IV superimposed with hyperforin (L). Yellow 
lines represent interfeature distances (distances are given in Angstrom). Blue= hydrophobic, 
green= hydrogen bond acceptor, magenta= hydrogen bond donor. 
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Figure 6. (A) The pharmacophore model I’ for P-gp noncompetitive inhibitors generated by 
Hypogen in which the red sphere represents a positive ion interaction site, the blue spheres 
represent hydrophobic interaction sites and the orange sphere represent an aromatic ring. (B) 
Amoxapine fit to pharmacophore (Palmeira et al. 2011). (C) The pharmacophore model II’ for P-gp 
competitive inhibitors generated by Hypogen in which the blue spheres represent hydrophobic 
interaction sites and the green sphere represent a hydrogen acceptor site. (D) Thioxanthonic 
derivative fit to pharmacophore (Palmeira et al. 2012c). 

 

A pharmacophore for P-gp competitive inhibition (three features, Figure 6 C-D) and 

a pharmacophore for P-gp noncompetitive inhibition (four features, Figure 6 A-B) were 

identified based on 42 previously described inhibitors (Scheme 1B) (Palmeira et al. 2011; 

Palmeira et al. 2012c). The chosen pharmacophore for P-gp noncompetitive inhibition 

(pharmacophore I’, Figure 6A) is characterized by the lowest total cost value (88.12), the 

lowest root-mean-square (RMS) deviation (0.551), and the best correlation coefficient 

(0.686), contains four features, namely, two hydrophobic regions, one aromatic ring and 

one positive ionizable group, which were intercalated with each other. The fixed cost and 

null cost are 75.65 and 116.85 bits, respectively (validation of pharmacophore on 
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supporting information - Table S3). Amoxapine, a previously described P-gp 

noncompetitive inhibitor (Palmeira et al. 2011), was able to superimpose the four-feature 

pharmacophore model (Figure 6B). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 
 

Figure 7. Colchicine alignment to pharmacophore I 
to IV (inducers) and II’ (competitive inhibitors). Blue= 
hydrophobic, green= hydrogen bond acceptor, 
magenta= hydrogen bond donor. 
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The chosen pharmacophore for P-gp competitive inhibition (pharmacophore II’, 

Figure 6C) is characterized by the lowest total cost value (77.19), the lowest RMS 

deviation (0.604), and the best correlation coefficient (0.742), contains three features, 

namely, two hydrophobic regions and one Hb acceptor group which is intercalated with 

the other two features. The fixed cost and null cost are 69.74 and 112.93 bits, 

respectively. A thioxanthonic P-gp competitive inhibitor 1-(5-amino-3,4-dihydroisoquinolin-

2(1H)-yl)-4-propoxy-9H-thioxanthen-9-one (Palmeira et al. 2012c), is fit on the 

pharmacophore as example (Figure 6D). In order to better understand the difference 

between both pharmacophores, an alignment was performed (Figure S3, supporting 

information). 

Colchicine fits the P-gp induction (Figure 7 I-V) and P-gp competitive inhibition 

pharmacophore hypothesis (Figure 7 II’). 

Furthermore, docking studies were performed onto the drug binding pocket formed 

by the transmembrane domain using a P-gp model (Figure 8) and the predicted binding 

affinity of the most stable colchicine-P-gp complex was -7.7 kJ/mol. 

 

Figure 8. (A)Three dimensional structure of a P-gp model (Palmeira et al. 2012c) represented as 
ribbon, and the lowest conformation of colchicine (represented as sticks) docked on P-gp drug-
binding pocket. (B) Residues predicted as being involved in the interaction between P-gp and 
colchicine. Hydrogen interactions are represented as red dashes; other interactions are 
represented as yellow dashes. 
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4. DISCUSSION AND CONCLUSIONS 

Our data show that colchicine, a known P-gp substrate (Ambudkar et al. 1999; 

Decleves et al. 1998; Decleves et al. 2006; El Hafny et al. 1997; Niel and Scherrmann 

2006), increased P-gp expression in Caco-2 cells without a concomitant increase in the 

activity of the protein. In fact, the observed results revealed that this P-gp substrate is able 

to significantly induce P-gp expression in a concentration dependent manner, up to 183% 

for the highest colchicine concentration tested (100 µM). Other studies also reported the 

ability of colchicine to modulate P-gp expression, both in vitro and in vivo (Decleves et al. 

1998; Licht et al. 2000; Vollrath et al. 1994). For instance, Declèves et. al (1998) 

demonstrated that colchicine (25 nM) was able to significantly increase P-gp expression in 

the promyelocytic HL-60 cells after 24 h of exposure, reaching maximal values after 72 h 

of incubation (Decleves et al. 1998). The effect of colchicine on P-gp expression was also 

reported in vivo where it was demonstrated an increase in mdr mRNA levels in rat liver as 

early as 3 h (2 mg per kg, i.p.), peaking after 24 h (Vollrath et al. 1994). However, in these 

reports the ability of colchicine to modulate the activity of this important efflux transporter 

was not evaluated. In the present study, the evaluation of P-gp transport activity was 

performed through the evaluation of both RHO 123 accumulation and RHO 123 efflux. It 

was demonstrated that, in spite of the significant increase in P-gp expression, no 

significant effect was observed in the activity of this efflux pump, at any of the tested 

colchicine concentrations. Therefore, these results suggest that although P-gp is being 

expressed at higher levels and incorporated in the cell membrane (since the monoclonal 

antibody recognizes an external P-gp epitope), this transport efflux pump may not be yet 

fully functional. Importantly, these results emphasize that P-gp activity is not necessarily 

correlated with the corresponding protein content. Other reports agree with our findings, 

suggesting that an increase in P-gp expression may not be reflected in an increase in its 

activity. In fact, Takara and co-workers (2009) noted that P-gp transport function remained 

unchanged in Caco-2 cells exposed to several NSAIDs in spite of the observed increase 

in MDR1 mRNA (Takara et al. 2009). Moreover, Vilas-Boas and co-workers (2011) also 

found that P-gp activity in human lymphocytes did not follow the significant increase in its 

expression during aging (Vilas-Boas et al. 2011). 

To efficiently predict P-gp modulatory activity in silico studies were performed and 

new pharmacophores were developed. Although computational studies for predicting 

substrates or inhibitors of P-glycoprotein are emerging (Chen et al. 2012; Palmeira et al. 

2012b), these do not address P-gp inducers. P-gp inducers have several potential 

mechanisms of action. Multiple pathways may explain the diversity of scaffolds of P-gp 

inducers (Table S1, supporting information). Due to the diversity of targets of P-gp 
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inducers, a pharmacophore study using known P-gp inducers is the best option when the 

structure of the target is not known (Scheme 1). The structural diversity of the described 

P-gp inducers did not allow a superimposition of those molecules. Hence, no common 

feature pharmacophore could be obtained by common feature alignment. A solution to this 

problem was a ligand clustering analysis. This procedure clusters the input molecules into 

subsets (cluster) of molecules so that each molecule in the same cluster has similar 

property or fingerprints. 

Ten clusters were obtained (Table S1, 3rd column; Scheme 1), but clusters 1, 3, and 

7 are not real clusters as they are composed by only 1 molecule. Phenothiazine (cluster 1) 

and cisplatin (cluster 3) are small and low molecular weight molecules with a S-

heterocycle tryciclic system or an inorganic compound, respectively; 1α,25-

dihydroxyvitamin D3 (cluster 7), in spite of being a long molecule, formed by long 

hydrophobic carbonated chain, and by three hydroxyl groups, that may be hydrogen bond 

donors and acceptors, had no similarity with the remaining studied molecules. Therefore, 

these three molecules were excluded from the analysis. Clusters 5 and 6 are formed by 

only 2 molecules; the limited number of molecules in these clusters triggered their 

withdrawal from the following computational studies. Therefore, only clusters 2, 4, 8, and 9 

(Table S1, supporting information) better represent the structural diversity of P-gp 

inducers and, hence, were used to build P-gp induction pharmacophores by common 

feature alignment. 

Catalyst HipHop (Hecker et al. 2002; Kurogi and Guner 2001) generates common 

feature pharmacophore models from a set of active molecules. Four pharmacophoric 

analyses were run and the pharmacophore, with the best ranking score and with higher 

number of features, was selected on each run. Pharmacophores are diverse in terms of 

type and number of pharmacophoric features, and interfeature distances, reflecting 

structural diversity of compounds that increase P-gp expression (Figure 5 A-L). It is 

interesting to notice that pharmacophores I and II allow the alignment with linear 

molecules, composed by aromatic or non-aromatic ring systems with different substituents 

and diverse locations (hydrophobic or polar groups). On the other hand, pharmacophores 

III and IV fit with angular molecules, with alkyl and/or aryl chains, and carbonyl and amine 

groups are frequent. These pharmacophores represent the diversity of scaffolds and 

substituents in P-gp inducers. 

Finally, Catalyst was used to identify if colchicine maps onto pharmacophores I-IV, 

aligning that molecule to the query. The fit value is a measure of how well the small 

molecule fits the pharmacophore. The higher the fit score, the better the match. Figure 7 I-

IV shows colchicine alignment against pharmacophores I to IV. This alignment represents 

a good match of features present in the ligand to the pharmacophore model III (Fit score = 
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4.039/5) and mainly to pharmacophore model IV (Fit score = 2.963/3). The alignment of 

colchicine with pharmacophore model I is possible but with low fitting score (Fit score = 

0.912/6) and to pharmacophore model II missing one of the features (Fit score = 1.978/3) 

(Figure 5). Pharmacophore IV was the colchicine’s best fitting pharmacophore; it has 

three features, and hence, the maximum fit value of any ligand alignment with this model 

would be 3.0 (the fit score obtained is 2.963). The hydrogen bound to nitrogen on the 

amide group align with the Hb donor vector feature, and methoxyl groups fit the 

nondirectional hydrophobic pharmacophoric features (Figure 7 IV). Alignment of 

pharmacophore IV with training set compounds was performed and found to give fit 

scores ranging from 2.685 to 2.999 (data not shown). Fitting score of colchicine is within 

this interval of values, and, therefore, it is probable that colchicine is in fact a P-gp inducer 

by a mechanism similar to that of compounds represented in cluster 9. 

In spite of all the pharmacophore models for P-gp inhibition described in the 

literature (Chen et al. 2012; Palmeira et al. 2012a; Palmeira et al. 2012b), a 

characterization of pharmacophoric groups important for competitive and noncompetitive 

P-gp inhibition has not been done yet. In this work, using in vitro ATPase results obtained 

for thioxanthonic derivatives (Palmeira et al. 2012c) and several commercially available 

drugs (Palmeira et al. 2011) obtained using the same protocol and the same conditions, a 

distinction between pharmacophores for competitive and noncompetitive P-gp inhibitors 

has been achieved. The best pharmacophore models for each activity are represented on 

Figure 6. These pharmacophores are consistent with others described in the literature that 

proposed a general pharmacophore model with hydrophobic, Hb acceptor and positive 

ionizable features (Li et al. 2007; Pajeva and Wiese 2002). Other groups defined 

pharmacophores with hydrophobic and Hb acceptor features (Cianchetta et al. 2005; 

Pajeva and Wiese 2002). However, a clear distinction between pharmacophores for 

competitive and noncompetitive inhibitors has never been accomplished before, being 

described here for the first time.  

Colchicine was mapped onto both pharmacophores I’ and II’. However, colchicine 

was not able to align to pharmacophore I’ (noncompetitive P-gp inhibitors), but it was fit to 

pharmacophore II’, as shown in Figure 7 II’. Benzene ring and methoxyl group fit in the 

hydrophobic features while carbonyl from the amide group acts as Hb acceptor (Figure 7 

II’). 

These data suggests that colchicine is not only a P-gp inducer (demonstrated by 

computational and biochemical results) but it may also be transported by P-gp, acting as a 

competitive P-gp inhibitor. This activity may not be adequately detected experimentally 

due to the simultaneous increase in P-gp expression. Docking studies of colchicine onto 

P-gp drug-binding pocket further emphasized the possibility of that drug being a P-gp 
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competitive inhibitor (Figure 8). In fact, a favourable energy for the most stable colchicine-

P-gp complex (7.7 kJ/mol) was predicted when compared to the scores obtained for 

known substrates or competitive P-gp inhibitors (-4.5 kJ/mol) (Palmeira et al. 2012c). 

Further testing, namely the P-gp ATPase assay, was performed to further clarify 

colchicine’s mechanism of action and it was possible to observe that colchicine, at the 

highest tested concentration (100 µM), significantly increased the basal vanadate 

sensitive ATPase activity of membrane vesicles enriched in human P-gp (Figure 4). Thus, 

according to the present data, colchicine stimulated P-gp ATPase activity, which is 

compatible to the previous computational studies that demonstrated that it may be actively 

transported by P-gp. Therefore, although colchicine causes a remarkable and significant 

increase in P-gp expression in Caco-2 cells, it can inhibit other P-gp substrates efflux by 

interfering with their transport in a competitive mode, at least partially explaining why P-gp 

activity is not proportionally increased. Shapiro and Ling (1997) have proposed a model 

suggesting two different P-gp functional binding sites (H site and R site) that interact in a 

positive cooperative manner and demonstrated that colchicine belongs to the H-type of P-

gp substrates (Shapiro and Ling 1997). Additionally, binding of compounds to the H site of 

P-gp can activate the efflux of specific substrates of the R site in a positive cooperative 

manner, whereas binding of H-type substrates is competitively inhibited (Sterz et al. 

2009). 

Although COL plasmatic concentrations in humans under typical therapeutic dosing 

regimens are usually below 10 ng/mL (approximately 25 nM) (Berkun et al. 2012; Wason 

et al. 2012), higher concentrations were used in the present study. In fact, knowing that 

the approved dosing regimen for acute gout attacks requires a single dose of 1.2 mg to be 

taken immediately on the first signs of an acute flare, followed by a 0.6-mg dose 1 h later 

(Wason et al. 2012), higher concentrations are thus expected at the gut wall. After oral 

administration, COL is absorbed in the jejunum and ileum following a single zero-order 

rate process, with 44% bioavailability (Rochdi et al. 1994). Therefore, in the intestine, 

higher concentrations may be expected since almost all of the ingested dose comes into 

contact with the enterocytes. In accordance, the COL concentrations used in this in vitro 

mechanistic study intended to mimic the higher concentrations expected to be attained at 

the intestinal barrier. 

In conclusion, our data shows a perfect match between computational and in vitro 

studies. These results indicate that the use of such in silico strategies can help predict the 

P-gp modulatory effects of new drugs that can be initially screened through these newly 

developed pharmacophores. Moreover, it was shown that colchicine induced P-gp 

expression in Caco-2 cells without a concomitant increase in the protein activity. 

Therefore, we suggest that although colchicine is a P-gp inducer it also acts as a P-gp 
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competitive inhibitor. Both our computational and biological data emphasize the 

importance of the simultaneous evaluation of P-gp expression and activity in the 

screening of P-gp inducers, since an increase in the first may not be reflected in an 

increase in the second. Therefore, for the screening of possible pharmacokinetic drug-

drug interactions mediated by a P-gp inducer it is of utmost importance to evaluate if the 

inducer is able not only to increase P-gp protein expression, but also if it is able to 

promote the cellular efflux of drugs actively transported by the pump, which will eventually 

lead to decreased therapeutic efficacy. 
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S1. Colchicine cytotoxicity 

 
Figure S1. Colchicine (COL) (0 – 100 µM) cytotoxicity in Caco-2 cells at different time-points. 
Results are presented as mean ± SD from 4 independent experiments performed in triplicate. Statistical 
comparisons were made using the Kruskal-Wallis test followed by the Dunn's Multiple Comparison post hoc 
test [***p<0.001 concentration vs. control (0 µM)].  

 

S2. Positive control for P-gp inhibition in the RHO 123 accumulation and RHO 123 

efflux assays 

Figure S2. Effect of 10 μM cyclosporine A in RHO 123 intracellular content (positive control for P-
gp inhibition). A. Rhodamine 123 accumulation assay in the absence (NA, normal accumulation) 
and in the presence (IA, inhibited accumulation) of 10 μM cyclosporine A. Results are presented as 
mean ± SD from 3 independent experiments performed in triplicate. Statistical comparisons were made using 
the Unpaired Student t test (***p<0.001 vs. NA). In the presence of cyclosporine A, intracellular RHO 123 

increased to 212.72 %, when compared to NA. B. Rhodamine 123 efflux assay in the absence (IAE, 
inhibited accumulation followed by normal efflux) and in the presence (IAEI, inhibited accumulation 
followed by inhibited efflux) of 10 μM cyclosporine A. To allow maximal RHO 123 intracellular 
accumulation, in both cases RHO 123 accumulation was performed under P-gp inhibition. Results 
are presented as mean ± SD from 3 independent experiments performed in triplicate. Statistical comparisons 
were made using the Unpaired Student t test (***p<0.001 vs. IAE). In the presence of cyclosporine A, 
intracellular RHO 123 increased to 205.41 %, when compared to IAE. CYS A – cyclosporine A. 
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S3. Table with the known inducers used to build a pharmacophore for P-gp 

induction 

Table S1. Known P-gp inducers and cluster analysis. 

Inducer Cluster Reference 

Phenothiazine 1 (Tateishi et al. 1999) 

Dexamethasone 2 (Kageyama et al. 2006) 

Ouabain 2 (Lemaire et al. 2007) 

Prednisolone 2 (Allenspach et al. 2006) 

Spironolactone 2 (Rigalli et al. 2011) 

Cisplatin 3 (Demeule et al. 1999) 

Atorvastatin 4 (Haslam et al. 2008) 

Cytarabine 4 (Prenkert et al. 2009) 

Daunorubicin 4 (Nielsen et al. 1998) 

Doxorubicin 4 (Fardel et al. 1997; Silva et al. 2011) 

Etoposide 4 (Vilaboa et al. 2000) 

Rifampicin 4 (Kim et al. 2008) 

Ritonavir 4 (Kageyama et al. 2005) 

Venlafaxine 4 (Ehret et al. 2007) 

Cyclophosphamide 5 (Harmsen et al. 2009) 

Ifosfamide 5 (Harmsen et al. 2009) 

2-Acetylaminofluorene 6 (Tateishi et al. 1999) 

Flutamide 6 (Harmsen et al. 2009) 

1α,25-Dihydroxyvitamin D3 7 (Chow et al. 2011) 

Amiodarone 8 (Cermanova et al. 2009) 

Bromocriptine 8 (Furuya et al. 1997) 

Irinotecan 8 (Haslam et al. 2008) 

Methotrexate 8 (de Graaf et al. 1996) 

Topotecan 8 (Haslam et al. 2008) 

Carbamazepine 9 (Giessmann et al. 2004; Yamada et al. 2009) 

Docetaxel 9 (Harmsen et al. 2009) 

Doxycycline 9 (Mealey et al. 2002) 

Hyperforin 9 (Tian et al. 2005) 

Insulin 9 (Liu et al. 2009) 

Paclitaxel 9 (Harmsen et al. 2009) 

Vincristine 9 (Harmsen et al. 2009) 

Vinblastine 9 (Harmsen et al. 2009) 

Artemisinine 10 (Riganti et al. 2009) 

Diethylhexyl phthalate 10 (Angelini et al. 2011) 
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S4. Validation of pharmacophores for P-gp induction using a test set of known P-gp 

inducers 

Table S2. Pharmacophore validation using test set of known P-gp inducers (Bhat et al. 1995; 

Huang et al. 2001; Male 2009). 

 Fit Value 

Compounds 
Pharmacophore 

I 
Pharmacophore 

II 
Pharmacophore 

III 
Pharmacophore 

IV 

Amprenavir 3.367 2.444 2.945 2.994 

Nelfedipin 3.492 2.546 4.000 3.000 

Puromycin 2.728 2.173 4.534 2.997 

Yohimbine No match 1.986 1.081 2.685 

Molecules from the test set were able to fit all the pharmacophores with different fit values, with the exception 
of yohimbine that was only able to align to pharmacophores II to IV. The higher the fit value, the better is the 
mapping of the molecule to the pharmacophore. 

 

S5. Validation of pharmacophores for P-gp inhibition using a test set of known P-gp 

inhibitors 

Table S3. Pharmacophores validation using test sets of known P-gp inhibitors. 

Fit Value  Fit Value 

Compounds 

(Palmeira et al. 2012c) 

Noncompetitive 
inhibitors 

pharmacophore (I’) 
 

Compounds 

(Palmeira et al. 
2012a) 

Competitive inhibitors 
pharmacophore 

(II’) 

8-Geranyldehydrosilybin 3.537  Cyclosporin A 2.728 

6-Prenyldehydrosilybin 3.504  Valspodar 2.723 

Sylibin 3.500  Biricodar 2.722 

8-Prenyldehydrosilybin 3.498  Dexniguldipine 2.71 

6-Geranyldehydrosilybin 3.496  Erytromycin 2.708 

Dehydrosilybin 3.495  Laniquidar 2.70 

Chrysin 3.156  S9788 2.648 

2’,4’,6’-Trihydroxy-4-
dexyloxychalcone 

3.071  SR33667 2.555 

Flavonoids, described as acting as noncompetitive P-gp inhibitors by directly binding to P-gp ATP-binding site, 
were used as test set to validate P-gp pharmacophore I’ for noncompetitive inhibitors. Competitive inhibitors 
belonging to several generations of P-gp inhibitors were used as test set to validate P-gp pharmacophore II’ for 
competitive inhibitors. Molecules from the test sets were able to fit the respective pharmacophores. The higher 
the fit value, the better is the mapping of the molecule to the pharmacophore. 
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S6. Alignment of pharmacophore for P-gp inhibition  

 
Figure S3. Pharmacophores alignment. There is an almost perfect superimposition between the 
H1 and H2 from the pharmacophore I, and H’1 and H’2 from the pharmacophore II. The major 
discrepancy occurred in the remaining features, PI and AR from pharmacophore I and HAc from 
pharmacophore II that cannot be aligned. These results suggest that the presence of a positive 
ionizable group, such as an amine, for the establishment of ionic interactions, and the presence of 
an aromatic ring, for π-π or hydrophobic interactions, may be important for molecules to bind tightly 
to ATP-binding site or an allosteric region, causing a noncompetitive inhibition of P-gp. In contrast, 
the presence of a hydrogen bond acceptor (e.g. ether group, amine) may be important for the drug 
to bind the substrate site of P-gp, and, therefore, causing competitive inhibition. It is interesting to 
notice that an amine group can be an ionizable group (included on pharmacophore I) or a hydrogen 
bond acceptor (included on pharmacophore II), and can be present in both competitive and 
noncompetitive inhibitors of P-gp. Notwithstanding, the distance between this group and the 
hydrophobic regions is different for competitive and noncompetitive inhibitors.  
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ABSTRACT 

P-glycoprotein (P-gp) is a membrane-bound glycoprotein widely expressed in 

several organs, where it plays a crucial role in limiting the absorption of xenobiotics. 

Hypericin (HYP) is one of the major constituents of the St. John’s wort flower extract and 

its P-gp inducing properties remain controversial. Thus, the aim of the present work was 

to evaluate the P-gp induction profile of HYP (expression and activity) in Caco-2 cells, and 

to correlate it with a possible protective effect against paraquat (PQ)-induced toxicity.  

Hypericin cytotoxicity was evaluated by the NR uptake and LDH leakage assays up 

to 96 h of incubation, and P-gp expression and activity were evaluated by flow cytometry 

up to 72 h of incubation. P-gp ATPase activity was measured using recombinant human 

P-gp-enriched membranes and Caco-2 cells ATP intracellular levels were evaluated 

through a luciferase-based bioluminescent technique. Paraquat cytotoxicity was evaluated 

by the NR uptake assay, with or without exposure to HYP, using different experimental 

designs of HYP incubation: (1) pre-incubation for 24, 48 or 72 h, followed by PQ 

incubation for 24 h; (2) incubation 6 h after PQ exposure; and (3) simultaneous incubation 

with PQ for 24 h. The nuclear expression of the YB-1 transcription factor, a gene 

regulatory protein that can stimulate the transcription of the MDR1 gene, was evaluated 

by Western blotting. 

Exposure of Caco-2 cells to HYP resulted in a significant increase in both P-gp 

expression and activity, according to the concentration and time of exposure tested. The 

observed P-gp induction resulted in a significant protection against PQ-induced 

cytotoxicity, which was completely abolished in the presence of the UIC2 antibody, a 

specific P-gp inhibitor. Noteworthy, HYP afforded protection against PQ-induced 

cytotoxicity even when incubated 6 h after PQ exposure, thus mimicking a real-life 

intoxication scenario. Furthermore, HYP demonstrated to be a P-gp substrate, as 

observed by the significant increase in P-gp ATPase activity. Although HYP significantly 

increased both P-gp transport and ATPase activity, no significant differences were 

observed in the Caco-2 cells ATP intracellular levels. YB-1 nuclear expression was 

significantly reduced upon exposure to HYP for 72 h. 

In conclusion, our data shows that HYP significantly increases both P-gp protein 

expression and activity in this cell model of the human intestinal epithelium, and highlight 

P-gp induction as an intracellular detoxification mechanism against the cytotoxicity of 

harmful xenobiotics, such as PQ.  
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1. INTRODUCTION 

P-glycoprotein (P-gp) is an ATP-dependent efflux pump encoded by the MDR1 gene 

in humans and was first detected over-expressed in Chinese hamster ovary cultured cells 

selected for multidrug resistance (MDR), where it mediated resistance to many 

amphipathic drugs (Juliano and Ling 1976). However, P-gp was later found constitutively 

expressed in normal human epithelial tissues, including the gastrointestinal tract, kidney, 

placenta, testes, and the blood-brain barrier (Thiebaut et al. 1987). This expression profile 

shifted the main attention on this efflux pump towards its impact on the intracellular 

concentrations of drugs and xenobiotics. In fact, P-gp substrates comprise a variety of 

structurally and pharmacologically unrelated hydrophobic compounds, including vinca 

alkaloids, colchicine, antibiotics, anthracyclines, HIV protease inhibitors, cardiac 

glycosides, organic cations, and pesticides (Ambudkar et al. 1999; Cordon-Cardo et al. 

1990; Gottesman et al. 2002). Thus, this broad substrate specificity together with its efflux 

capacity and its cellular polarized expression suggested a role in the intracellular 

protection against xenobiotics-induced toxicity (Dinis-Oliveira et al. 2006; Silva et al. 2011; 

Silva et al. 2013b).  

Hypericin (HYP) is one of the major constituents of St. John’s wort (SJW), one of the 

most commonly used herbal products, which is responsible for severe drug-herbal 

interactions (Pal and Mitra 2006). The reported SJW-drug interactions, characterized by 

lower bioavailability of orally dosed drugs, have been attributed to cytochrome P450 3A 

(CYP3A) and/or P-gp induction (Perloff et al. 2001). SJW contains more than two dozen 

bioactive constituents and, in most of the reported works, the ability of SJW to modulate 

P-gp has been mainly attributed to hyperforin, another major constituent of the herbal 

extract (Tian et al. 2005). Therefore, the present work aimed to elucidate the capacity of 

HYP to induce both P-gp expression and activity in Caco-2 cells, and to correlate those 

effects with a potential protective effect against the toxicity of a known toxic P-gp 

substrate, the herbicide paraquat (PQ). For that purpose, different experimental designs of 

incubation with both xenobiotic and potential inducer were tested, including (1) pre-

incubation with HYP for 24, 48 or 72 h, followed by PQ incubation for 24 h; (2) HYP 

incubation 6 h after the beginning of PQ exposure (total PQ incubation time of 24 h); and 

(3) simultaneous incubation to HYP and PQ for 24 h. With the first experimental design we 

aimed to directly correlate the observed increases in P-gp expression and activity with a 

potential protective effect against PQ-induced toxicity. Using the second experimental 

design we aimed to mimic a real-life intoxication scenario, where the antidote contacts 

with the target cells well after the intoxicant insult. Finally, using the third experimental 

design, and by simultaneously incubating PQ with the tested inducer, we sought to 
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investigate the usefulness of the presence of the potential antidote in the toxic PQ 

formulation. Such strategy of adding the potential antidote to the toxic PQ formulation was 

already reported in several in vivo studies (Baltazar et al. 2013; Wilks et al. 2008).  

Furthermore, studies with Caco-2 cells nuclear proteins separated by a liquid 

chromatography/SDS-PAGE electrophoresis approach and identified by MALDI-TOF/TOF 

analysis, demonstrated that nuclease-sensitive element-binding protein 1 (YB -1) was 

differently expressed after exposure to 10 μM HYP for 72 h relative to control cells 

(unpublished data). YB-1 is gene regulatory protein and a number of studies have linked 

its expression or its nuclear localization with an increase in MDR1 gene expression 

(Bargou et al. 1997; Oda et al. 2003; Ohga et al. 1998; Saji et al. 2003). Therefore, we 

finally sough to evaluate changes in YB-1 nuclear expression using western blot analysis, 

and to correlate HYP-induced P-gp expression with the YB-1 nuclear contents. 
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2. MATERIALS AND METHODS 

2.1. Materials 

All reagents used in this study were of analytical grade or of the highest grade 

available. Reagents used in cell culture, including Dulbecco’s Modified Eagle’s Medium 

(DMEM) with 4.5 g/L glucose and GlutaMAXTM, non-essential amino acids (NEAA), heat 

inactivated fetal bovine serum (FBS), 0.25% trypsin/1 mM EDTA, antibiotic (10000 U/mL 

penicillin, 10000 µg/mL streptomycin), fungizone (250 µg/mL amphotericin B), human 

transferrin (4 mg/mL) and phosphate-buffered saline solution (PBS) were purchased from 

Gibco Laboratories (Lenexa, KS, USA). Paraquat (PQ), bovine serum albumin (BSA), 

neutral red (NR) solution, ethyl alcohol absolute, acetic acid, cyclosporine A, rhodamine 

123 (RHO 123), Triton X-100, β-nicotinamide adenine dinucleotide reduced form (β-

NADH), pyruvic acid, adenosine-5′-triphosphate (ATP), d-luciferin sodium salt, luciferase, 

glycine, Tris-HCl, Tris-base, SDS, glycerol and NP-40 were obtained from Sigma Aldrich 

(St. Louis, MO, USA). Ethylenediamine tetraacetic acid (EDTA), KH2PO4, K2HPO4.3H2O, 

HClO4, NaOH and KHCO3 were obtained from Merck (Darmstadt, Germany). P-

glycoprotein monoclonal antibody (clone UIC2) conjugated with fluorescein isothiocyanate 

(FITC) and rabbit monoclonal anti-YB-1 antibody were purchased from Abcam 

(Cambridge, United Kingdom). IgG2a (negative mAb control to UIC2) conjugated with 

FITC was obtained from ImmunoTools GmbH, (Friesoythe, Germany). Monoclonal anti-

human P-glycoprotein UIC2 antibody (IOTest® CD243) used in the P-gp inhibition studies 

was purchased from Beckman Coulter, Inc. (Fullerton, USA). Flow cytometry reagents 

(BD FacsFlow™ and Facs Clean™) were purchased from Becton, Dickinson and 

Company (San Jose, CA). Bio-Rad DC protein assay kit was purchased from Bio-Rad 

(Hercules, CA). Hypericin was purchased from Cymit Química (Barcelona, Spain). P-gp-

GloTM Assay Kit was purchased from Promega (Germany). Nitrocellulose membranes 

(Hybond ECL), anti-rabbit IgG-peroxidase polyclonal antibody, high-range rainbow 

molecular weight marker and ECL Plus chemiluminescence reagents were purchased 

from Amersham Pharmacia Biotech (Buckinghamshire, United Kingdom). All other 

chemicals were purchased from Sigma-Aldrich. 

Caco-2 cells, derived from human colorectal adenocarcinoma, were obtained from 

the American Type Culture Collection (ATCC; Manassas, VA, USA). 

2.2. Caco-2 cell culture 

Caco-2 cells were routinely cultured in 75 cm2 flasks using DMEM with 4,5 g/L 

glucose and GlutaMAXTM, supplemented with 10% heat inactivated FBS, 100 μM NEAA, 

100 U/mL penicillin, 100 μg/mL streptomycin, 2.5 μg/ml amphotericin B and 6 µg/mL 
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transferrin. Cells were maintained in a 5% CO2–95% air atmosphere, at 37 ºC, and the 

medium was changed every 2 days. Cultures were passaged weekly by trypsinization 

(0.25% trypsin/1 mM EDTA). The cells used in all the experiments were taken between 

the 58th and 63th passages. In all experiments, the cells were seeded at the density of 

60,000 cells/cm2, and used 4 days after seeding, when confluence was reached. 

2.3. Hypericin cytotoxicity assays 

Hypericin (0 - 100 µM) cytotoxicity was evaluated at different time points (6, 24, 48, 

72 and 96 h) by the neutral red (NR) uptake assay and by the lactate dehydrogenase 

(LDH) leakage assay. 

2.3.1.  Neutral red uptake assay 

The NR uptake assay is based on the ability of viable cells to incorporate and bind 

the supravital dye neutral red in the lysosomes. The assay was performed as previously 

described with minor modifications (Vilas-Boas et al. 2013b). Briefly, the cells were 

seeded onto 96-well plates at a density of 60,000 cells/cm2, and exposed, after reaching 

confluence, to HYP (0 - 100 µM) in fresh cell culture medium, for 6, 24, 48, 72 and 96 h. 

At the selected time-points the cells were incubated with NR (50 µg/mL in cell culture 

medium) at 37 °C, in a humidified, 5% CO2-95% air atmosphere, for 90 min. After this 

incubation period, the cell culture medium was removed, the dye absorbed only by viable 

cells extracted (using ethyl alcohol /distilled water (1:1) with 5% acetic acid), and the 

absorbance measured at 540 nm in a multi-well plate reader (PowerWave X, Bio-Tek 

Instruments, Vermont, USA). The percentage of NR uptake relative to that of the control 

cells (0 μM HYP) was used as the cytotoxicity measure. Results are presented as mean ± 

SEM from 6 independent experiments (performed in triplicate).  

2.3.2.  LDH leakage assay 

LDH leakage assay is based on the measurement of the cellular leakage of the 

cytosolic enzyme LDH. The intracellular LDH release into the cell culture medium is an 

indicator of irreversible cell death due to cell membrane damage. LDH activity was 

determined as previously described (Barbosa et al. 2013; Pontes et al. 2008), with minor 

modifications. Briefly, the cells were seeded onto 96-well plates, at a density of 60,000 

cells/cm2 and exposed, after reaching confluence, to HYP (0 - 100 µM) in fresh cell culture 

medium, for 6, 24, 48, 72 and 96 h. At each time-point, 50 µL of cell culture medium from 

each well were transferred to a new 96-well plate (to measure extracellular LDH), in 

duplicate, after which triton X-100 5% (v/v) (final concentration of 0.5%) was added to the 
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cells (to lyse all cells) and the plates were incubated again for 30 min, at 37 ºC, in a 

humidified 5% CO2-95% air atmosphere. After this incubation period, 25 µL of medium 

from each well were transferred again to a new 96-well plate (to measure the LDH after 

the full kill), also in duplicate. LDH activity was determined spectrophotometrically by 

following the rate of oxidation of NADH to nicotinamide adenine dinucleotide oxidized form 

(NAD+), at 340 nm. Thus, in the 96-well plates, the collected medium fractions were mixed 

with 200 µL of reagent solution containing 0.21 mM NADH, dissolved in LDH buffer (33.3 

mM KH2PO4 and 66.7 mM K2HPO4.3H2O, pH 7.4). The reaction was started with 25 µL 

sodium pyruvate (22.7 mM, prepared in LDH buffer) and the kinetic formation of NAD+ 

from NADH was followed for 5 min, at 340 nm, in a 96-well plate reader (PowerWave X, 

Bio-Tek Instruments). To measure LDH after the full kill, 25 µL of LDH buffer were added 

to each well before sodium pyruvate addition to complete the 275 µL final volume of 

reaction. Extracellular LDH, from 6 independent experiments (each experiment performed 

in triplicate), is expressed as percentage of total LDH (Mean ± SEM), considering total 

LDH = extracellular LDH + LDH released from full kill.  

2.4. P-glycoprotein expression 

The in vitro evaluation of P-gp expression was performed as previously described 

(Silva et al. 2011; Silva et al. 2013a; Silva et al. 2013c). Briefly, the cells were seeded 

onto 24-well plates, at a density of 60,000 cells/cm2. After reaching confluence, the cells 

were exposed to HYP (0 - 10 µM), in fresh cell culture medium, for 24, 48, and 72 h. After 

each incubation period, the cells were washed twice with PBS and harvested by 

trypsinization (0.25% trypsin/1mM EDTA) to obtain a cell suspension. The cells were then 

centrifuged (300 g, for 10 min, at 4ºC) and resuspended in PBS buffer (pH 7.4) containing 

10% heat inactivated FBS and P-gp antibody [UIC2] conjugated with FITC. The antibody 

dilution used in this experiment was applied according to the manufacturer's instructions 

for flow cytometry. Mouse IgG2a_FITC was used as an isotype-matched negative control 

to estimate non-specific binding of the FITC-labelled anti-P-glycoprotein antibody [UIC2]. 

The cells were then incubated for 30 min, at 37 °C, in the dark. After this incubation 

period, the cells were washed twice with PBS buffer (pH 7.4) containing 10% heat 

inactivated FBS, centrifuged (300 g, for 10 min, at 4ºC), resuspended in ice-cold PBS and 

kept on ice until flow cytometry analysis. Fluorescence measurements of isolated cells 

were performed with a flow cytometer (FACSCalibur, Becton-Dickinson Biosciences). The 

green fluorescence of FITC-UIC2 antibody was measured by a 530 ± 15 nm band-pass 

filter (FL1). Acquisition of data for 15,000 cells was gated to include viable cells on the 

basis of their forward and side light scatters and the propidium iodide (4 µg/mL) 
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incorporation (propidium iodide interlaces with a nucleic acid helix with a resultant 

increase in fluorescence intensity emission at 615 nm). Logarithmic fluorescence intensity 

was recorded and displayed as a single parameter histogram. The geometric mean of 

fluorescence intensity (GeoMean) for 15,000 cells was the parameter used for comparison 

(calculated as percentage of control). Non labelled cells (with or without hypericin) were 

analysed in each experiment by a 530 ± 15 nm band-pass filter (FL1) in order to detect a 

possible contribution from cells autofluorescence to the analysed fluorescence signals. 

Results are expressed as mean ± SEM from 4 independent experiments (performed in 

triplicate).  

2.5. P-glycoprotein transport activity – RHO 123 efflux assay 

The P-gp transport activity was evaluated by flow cytometry using 1 µM RHO 123 as 

a P-gp fluorescent substrate, as previously described (Silva et al. 2013a). In this assay, 

the evaluation of P-gp transport activity consisted of two phases: (i) an inhibited 

accumulation phase (IA), in which P-gp activity was inhibited with 10 µM cyclosporine A, 

in order to accumulate the fluorescent substrate inside the cells; and (ii) an efflux phase, 

where the energy-dependent P-gp function was re-established by removing the P-gp 

inhibitor (cyclosporine A) and adding an energy source (DMEM supplemented with 4.5 

g/mol glucose). Briefly, Caco-2 cells were seeded onto 12-well plates, at a density of 

60,000 cells/cm2. After reaching confluence, the cells were exposed to HYP (0 - 10 µM), in 

fresh cell culture medium, for 24, 48 and 72 h. At each time point, the cells were washed 

twice with PBS and harvested by trypsinization (0.25% trypsin /1mM EDTA) to obtain a 

cell suspension. The cells were then centrifuged (300 g, for 10 min, at 4ºC), suspended in 

PBS buffer (pH 7.4) containing 10 µM cyclosporine A and 1µM RHO 123, and incubated 

at 37 ºC, for 30 min. After the accumulation of the fluorescent substrate (IA phase), the 

cells were washed twice with ice-cold PBS with 10% heat inactivated FBS, and divided 

into two aliquots. The first aliquot was centrifuged (300 g, for 10 min, at 4ºC) and kept on 

ice until analysis by flow cytometry, and corresponds to the cells submitted only to an IA 

phase. The second aliquot was submitted to an efflux phase performed under normal 

conditions (inhibited RHO 123 accumulation followed by RHO 123 efflux in the absence of 

P-gp inhibitor - IAE). For the efflux phase the cells were centrifuged (300 g, for 10 min, at 

4ºC), resuspended in DMEM medium containing 4.5 g/L glucose and incubated, for 45 

min, at 37°C. After this efflux period, the cells were washed twice with ice-cold PBS with 

10% FBS and suspended in ice-cold PBS immediately before analysis. The fluorescence 

measurements of isolated cells were performed as described in section 2.4 (Evaluation of 

P-gp expression). The green intracellular fluorescence of RHO 123 was measured by a 
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530 ± 15 nm band-pass filter (FL1). The percentage of RHO 123 that was pumped out of 

the cells during the efflux phase was calculated according to Equation 1, and the results 

expressed as percentage of control values (Mean ± SEM). When P-gp activity increases, 

the amount of RHO 123 effluxed from the cells will be higher and accompanied by a 

decrease in the fluorescence intensity due to the corresponding decrease in intracellular 

RHO 123 (decrease in GeoMean IAE). Five independent experiments were performed 

(run in triplicate).  

 
 

 
 

Equation 1: Percentage of RHO 123 pumped during the efflux phase. 

2.6. Evaluation of P-glycoprotein ATPase activity  

P-gp ATPase activity was evaluated using the luminescent ATP detection kit (P-gp-

GloTM Assay Kit, Promega, Germany) according to the manufacturers’ instructions. Briefly, 

HYP (1, 5 and 10 µM), 100 µM sodium vanadate (Na3VO4, selective P-gp inhibitor used as 

positive control for P-gp ATPase activity inhibition) or 200 µM verapamil (P-gp substrate 

that stimulates P-gp ATPase activity used as positive control for stimulation of P-gp 

ATPase activity) in buffer solution were incubated with 25 µg of human P-gp-enriched 

membranes and 5 mM MgATP, at 37 ºC, for exactly 40 min. Untreated control reactions 

(NT) were also performed in the absence of drug. The remaining ATP was detected, as a 

luciferase-generated luminescent signal, 20 minutes after resting at room temperature to 

allow luminescent signal to develop. Accordingly, P-gp-dependent decreases in 

luminescence reflect ATP consumption by the pump, meaning that the greater the 

decrease in signal, the higher is the P-gp ATPase activity. The difference between the 

average relative light units (RLU) from Na3VO4-treated samples (RLU Na3VO4) and 

untreated (NT) samples (RLU NT) were calculated to determine ∆RLU basal, which 

reflects basal P-gp ATPase activity. The difference between the average luminescent 

signals from Na3VO4-treated samples (RLU Na3VO4) and test compound-treated samples 

(RLU TC) were also calculated to determine ∆RLU that reflects P-gp ATPase activity in 

the presence of the tested compounds (HYP and verapamil). Results are presented as 

mean ± SEM from three independent experiments. By comparing basal P-gp ATPase 

activity to the test compound-treated ATPase activities, the compounds can be ranked as 

stimulating, inhibiting or having no effect on basal P-gp ATPase activity. Accordingly, 

compounds that act as P-gp substrates typically stimulate its ATPase activity (Ambudkar 

et al. 1999). 

GeoMean accumulated RHO 123(IA) ‐ GeoMean remaining RHO 123 (IAE) 

GeoMean accumulated RHO 123 (IA) 
X 100 % pumped RHO 123 = 
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2.7. ATP quantification assay  

ATP intracellular levels were determined at two different time-points: immediately 

after exposure to HYP and after submitting the cells to an IAE protocol. Briefly, the cells 

were seeded onto 48-well plates, at a density of 60,000 cells/cm2 and exposed, after 

reaching confluence, to HYP (1, 5 and 10 µM) for 24, 48 and 72 h. At each time-point, the 

cells were washed twice with PBS and harvested by trypsinization (0.25% trypsin /1mM 

EDTA) to obtain a cell suspension. The cells were then divided into two aliquots. The cells 

in the first aliquot were centrifuged (300 g for 10 min, at 4ºC), resuspended in HClO4 5% 

and frozen at -80 ºC until ATP determination. The cells in the second aliquot were also 

centrifuged (300 g for 10 min, at 4ºC), the cell culture medium was removed, and the cells 

were then submitted to an IAE protocol, as described in section 2.5. After the efflux phase, 

the cells were washed with PBS, centrifuged (300 g for 10 min, at 4ºC), resuspended in 

HClO4 5% and frozen at -80 ºC until ATP determination. Cellular ATP levels were 

evaluated through a luciferase-based bioluminescent technique, as previously described 

(Pontes et al. 2008; Vilas-Boas et al. 2013a). Briefly, samples in 5% HClO4 were 

centrifuged (16,000 g for 10 min, at 4 ºC), the supernatant was collected and the cell 

pellet was dissolved in NaOH 0.3 M and used for protein quantification. The supernatant 

was then neutralized with equal volume of KHCO3 0.76 M. After centrifugation (16,000g 

for 2 min, at 4 °C), 100 μL of the neutralized supernatants were transferred to a 96-well 

plate, in duplicate, and 100 μL of luciferin–luciferase assay solution [0.15 mM luciferin, 

300,000 light units of luciferase from Photinus pyralis (American firefly), 50 mM glycine, 10 

mM MgSO4, 1 mM Tris, 0.55 mM EDTA, 1% BSA (pH 7.6)] were added. ATP calibration 

curves were routinely performed (ATP standard stocks in 5% HClO4 were kept at −80 °C 

until the assay). Sample ATP levels are proportional to the intensity of the light emitted by 

luciferine, in a reaction catalyzed by luciferase, which was measured using a 96-well 

Microplate Luminometer (BioTek Instruments, Vermont, USA). ATP intracellular levels 

were normalized to the total protein content and the final results, from 4 independent 

experiments (each experiment was performed in triplicate), are expressed as percentage 

of control (Mean ± SEM).  

2.8. Paraquat cytotoxicity assays 

Paraquat cytotoxicity was evaluated in Caco-2 cells by the NR uptake assay, with or 

without incubation with HYP (1, 5 and 10 μM). For that purpose, and as previously 

mentioned, three different experimental designs of HYP incubation were performed: (1) 

pre-incubation with HYP for 24, 48 or 72 h, followed by PQ incubation for 24 h; (2) HYP 
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incubation 6 h after the beginning of PQ exposure (total PQ incubation time of 24 h); and 

(3) simultaneous incubation to HYP and PQ for 24 h.  

2.8.1.  Pre-exposure to HYP  

The cells were seeded onto 96-well plates and exposed, after reaching confluence, 

to HYP (1, 5 and 10 μM) for 24, 48 and 72 h. This pre-incubation protocol minimizes the 

contribution of effects other than P-gp induction in the observed cytotoxicity, since the 

inducer is removed before PQ incubation. After this incubation period, the cells were 

washed twice with PBS buffer (pH 7.4) and exposed to PQ (0 - 5,000 µM) in fresh cell 

culture medium for 24 h. Cytotoxicity was evaluated by the NR uptake assay, as 

previously described (section 2.3.1). Results are presented as mean ± SEM from at least 

4 independent experiments (performed in triplicate). 

To confirm the involvement of P-gp on the HYP protective effects, for the highest 

pre-incubation period (72 h), these assays were repeated in the presence of a specific P-

gp inhibitor (20 μL of the UIC2 antibody stock solution for 500,000 cells, according to the 

manufacturer instructions, added 30 min before PQ). Results are presented as mean ± 

SEM from at least 3 independent experiments (performed in triplicate). 

2.8.2.  Exposure to HYP 6 h after PQ 

The cells were seeded onto 96-well plates and exposed, after reaching confluence, 

to PQ (0 - 5,000 μM) in fresh cell culture medium. Six hours after the beginning of PQ 

incubation [based on the estimated mean time of arrival at the emergency department of 

intoxicated patients, and on the absorption rate of PQ in humans (Dinis-Oliveira et al. 

2008)], HYP was added to obtain the final concentrations of 0, 1, 5 and 10 μM. 

Cytotoxicity was evaluated 24 h after PQ exposure (corresponding to an 18 h incubation 

period with HYP, and a total 24h incubation period for PQ) by the NR uptake assay, as 

previously described in section 2.3.1. For the highest tested HYP concentration (10 µM), 

these incubations were also repeated in the presence of a specific P-gp inhibitor (UIC2 

antibody), to evaluate P-gp involvement in the HYP protective effects (20 μL of the UIC2 

antibody stock solution for 500,000 cells, according to the manufacturer instructions, 

added 30 min before HYP). Results are presented as mean ± SEM [from 5 independent 

experiments (performed in triplicate) in the studies without the P-gp inhibitor, and from 4 

independent experiments (performed in duplicate) in the studies performed with the UIC2 

antibody].  
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2.8.3.  Simultaneous exposure to HYP and PQ 

The cells were seeded onto 96-well plates and exposed, after reaching confluence, 

to PQ (0 - 5,000 μM), in fresh cell culture medium, with or without simultaneous exposure 

to HYP (1, 5 and 10 μM). This exposure protocol mimics the presence of a potential 

antidote in the toxic formulation. In such cases, it is anticipated that the enterocytes will 

come into contact with both the inducer and PQ simultaneously. Cytotoxicity was 

evaluated 24 h after exposure by the NR uptake assay, as previously described in section 

2.3.1.  As previously, for 10 µM HYP, these incubations were repeated in the presence of 

a specific P-gp inhibitor, the UIC2 antibody (added 30 min before PQ + HYP exposure). 

Results are presented as mean ± SEM [from 3 independent experiments (performed in 

triplicate) in the studies without the P-gp inhibitor, and from 4 independent experiments 

(performed in duplicate) in the studies performed with the UIC2 antibody].  

2.9. Western blotting analysis of YB-1 

To evaluate the nuclear expression of the YB-1 protein, western blot analysis was 

performed in nuclear extracts of Caco-2, with or without previous exposure to 10 µM HYP. 

Briefly, Caco-2 cells were seeded onto 75 cm2 flasks, at a density of 60,000 cells/cm2, and 

exposed, after reaching confluence, to HYP (0 and 10 µM) in fresh cell culture medium for 

72 h. At the end of the experiment, the cells were washed twice with PBS buffer (pH 7.4), 

harvested by trypsinization (0.25% trypsin /1mM EDTA) to obtain a cell suspension and 

then the nuclear proteins were extracted. 

For nuclear proteins extraction, Caco-2 cells were washed twice with PBS and 

centrifuged (300 g for 10 min, at 4 °C). The cell pellet was resuspended in NP-40 buffer 

(0.01 M Tris-HCl, 0.01 M NaCl, 0.003 M MgCl2, 0.03 M sucrose and 0.5% NP-40, pH 7.0) 

and again centrifuged (1500 g for 10 min, at 4ºC). The supernatant was removed and the 

pellet resuspended again in NP-40 buffer. After centrifugation (1500 g for 10 min, at 4 ºC), 

the supernatant was removed and the pellet resuspended in CaCl2 buffer (0.01 M Tris-

HCl, 0.01 M NaCl, 0.003 M MgCl2, 0.03 M sucrose and 0.1 mM CaCl2, pH 7.0). After 

centrifugation (1500 g for 10 min, at 4 ºC) this last step was repeated. Finally, a last 

centrifugation step (1500 g for 10 min, at 4 ºC) was performed, the supernatant removed 

and the pellet containing the nuclear proteins was used for western blot analysis. 

The pellets containing the nuclear proteins were resuspended in CaCl2 buffer and 

the protein concentration determined using the Bio-Rad DC protein assay kit. Samples 

were then diluted to equal protein concentration, and 50 μL were added with 25 μL 

sodium dodecyl sulfate (SDS)-PAGE reducing buffer [4 % SDS (w/v), 87.5 mM Tris base 

(pH 6.8), 22.5 % glycerol (v/v), 1 % bromophenol blue (w/v) and 20 % β-mercaptoethanol 



Manuscript IV____________________________________________________________________ 

218 

(v/v)]. Sixty micrograms of protein were loaded and separated on 12.5 % 

SDS/polyacrylamide gels, at a constant voltage of 150 mV, using a running buffer [25 mM 

Tris Base, 192 mM glycine and 0.1 % SDS (w/v), pH 8.6]. Gels were allowed to equilibrate 

in transfer buffer [20 % methanol (v/v) in 25 mM Tris Base and 192 mM glycine, pH 8.3], 

and then transferred to nitrocellulose membranes (Hybond ECL, Amersham Pharmacia 

Biotech), at a constant current of 200 mA, for 2.5 h, in a Bio-Rad semidry transfer 

apparatus (Bio-Rad Laboratories), according to the manufacturer's protocol. Then, the 

membranes were rinsed in Tris-buffered saline solution (TBS: 20 mM Tris base and 300 

mM NaCl, pH 8.0). To verify an equal amount of sample loading, membranes containing 

the transferred proteins were reversibly stained with Ponceau S. After rinsing the 

membranes with TBS to the complete removal of Ponceau S, non-specific sites were 

blocked, overnight, in blocking buffer [5% nonfat powdered skim milk (w/v) in Tris-buffered 

saline solution with 0.05% Tween 20 (v/v) (TBS-T)], at 4 ºC. Membranes were then 

incubated with primary antibody, rabbit monoclonal anti-YB-1 antibody (1:500), overnight, 

at 4 ºC. After incubation with the primary antibody, membranes were washed 3 times (10 

min each wash) with TBS-T and incubated with the secondary antibody [anti-rabbit IgG-

peroxidase polyclonal antibody (1:2,000)], for 2 h, at room temperature. All antibodies 

were diluted in blocking buffer. Following 3 washes in TBS-T (10 min each wash), the 

immunoblots were incubated with ECL Plus chemiluminescence reagents (Amersham 

Pharmacia Biotech), according to the supplier`s instructions, and exposed between 10 

and 120 s on a Molecular Imager ChemiDocTM XRS+ System (Bio-Rad Laboratories). ECL 

images were taken using the Chemi Hi resolution application of the software Image LabTM 

(Bio-Rad Laboratories) and the YB-1 bands quantified. Final results, from 4 independent 

experiments, are expressed as fold change over control (0 µM HYP) (Mean ± SEM). 

2.10.  Protein quantification 

The protein concentration in the samples used for ATP quantification and for YB-1 

analysis was determined using the Bio-Rad DC protein assay kit, according to the 

manufacturer's instructions. Bovine serum albumin (BSA) was used as protein standard.  

2.11.  Statistical analysis 

All statistical analyses were performed with the GraphPad Prism version 6.00 for 

Windows (GraphPad Software, San Diego, California, USA). Normality of the data 

distribution was assessed by three different tests: Kolmogorov–Smirnov normality test, 

D'Agostino & Pearson omnibus normality test and Shapiro-Wilk normality test. For data 

with a parametric distribution, statistical comparisons were made using the parametric 
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method of One-way ANOVA, followed by the Bonferroni's multiple comparisons post hoc 

test. For data with a nonparametric distribution, statistical comparisons were estimated 

using the nonparametric method of Kruskal–Wallis (one-way ANOVA on ranks), followed 

by Dunn’s post hoc test. In experiments with two variables, statistical comparisons 

between groups were estimated using Two-way ANOVA, followed by the Sidak's multiple 

comparisons post hoc test. In the PQ cytotoxicity assays, the PQ concentration-response 

curves were fitted using the least squares as the fitting method and the comparisons 

between the curves (LOG EC50, TOP, BOTTOM and Hill slope) were made using the extra 

sum-of-squares F test. Optical densities of YB-1 bands were exported from Image Lab™ 

to GraphPad Prism™, expressed as fold change over control and the statistical 

comparison was estimated using the Unpaired Student t test. Details of the performed 

statistical analysis are described in each figure legend. In all cases, p values lower than 

0.05 were considered significant. 
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3. RESULTS  

3.1. Hypericin cytotoxicity assays 

Prior to the evaluation of the HYP effect on P-gp expression and activity, its 

cytotoxicity was determined, at different concentrations (0-100 µM) and times of exposure 

(6 - 96 h), by the NR uptake and LDH leakage assays, to establish the concentration 

range and time of exposure that would not cause significant cell death. 

As shown in Figure S1A (supplementary data), no significant toxicity was observed 

up to 72 h of incubation, for all the tested concentrations. However, 96 h after exposure a 

slight but significant effect on NR uptake was observed for the highest concentrations 

tested (81.1 and 79.9 % for 50 and 100 μM HYP, respectively) As shown in Figure S1B 

(supplementary data), no significant increases in the extracellular LDH were observed up 

to 96 h of incubation. Thus, according to the obtained results, HYP, at the tested 

concentration range (0 - 100 µM), is innocuous to Caco-2 cells up to 72 h of incubation. 

3.2. P-glycoprotein Expression 

HYP (0 - 10 µM) effect on P-gp expression was evaluated, by flow cytometry, 24, 48 

and 72 h after exposure, using a P-gp monoclonal antibody [UIC2] conjugated with FITC. 

Nonspecific binding of the FITC-labeled-anti-P-glycoprotein antibody [UIC2] was not 

observed, as estimated by the fluorescence obtained with the isotype-matched negative 

control (data not shown).  

 

Figure 1. P-glycoprotein expression levels in Caco-2 cells exposed to hypericin (HYP) (0 - 10 µM) 
for 24, 48 and 72 h. Results are presented as mean ± SEM from 4 independent experiments (performed in 
triplicate). Statistical comparisons were made using one-way ANOVA, followed by the Bonferroni's multiple 
comparisons post hoc test [*p<0.05; ****p<0.0001 concentration vs. control (0 µM)]. 

 

As shown in Figure 1, HYP significantly increased P-gp expression according with 

the concentration and time of exposure tested. In fact, 24 h after exposure to 1, 5 and 10 

µM HYP, the protein expression significantly increased to 113.8, 128.3 and 138.3 %, 

respectively, when compared to control (0 µM). Increasing the exposure time to 48 h, the 

observed significant increases in P-gp expression were more accentuated (115.7, 137.9 
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and 146.9 % for 1, 5 and 10 µM HYP, respectively). Finally, for the highest incubation time 

tested (72 h), the highest increase in the protein expression was observed for all the 

tested concentrations (125.4, 142.0 and 151.0 % for 1, 5 and 10 µM HYP, respectively). 

3.3. P-glycoprotein Activity 

P-gp transport activity was studied by flow cytometry, using 1 µM RHO 123 as a P-

gp fluorescent substrate and 10 µM cyclosporine A as a P-gp inhibitor. No cytotoxic 

effects were observed for RHO 123 and cyclosporine A at these concentrations, after 30 

min of incubation (data not shown). As shown in Figure 2, and similar to what occurred 

with P-gp expression, HYP also significantly increased the pump activity according with 

the concentration and time of exposure tested. After 24 h of exposure, P-gp-mediated 

RHO 123 efflux significantly increased to 116.5, 117.9 and 128.6 % for 1, 5 and 10 µM 

HYP, respectively. Increasing HYP exposure time to 48 h, the pump function significantly 

increased to 119.6, 121.8 and 142.3 %, for 1, 5 and 10 µM HYP, respectively. The highest 

increase in the pump activity was observed for the highest exposure time tested (119.0, 

129.4 and 150.5 % after 72 h of exposure to 1, 5 and 10 µM HYP, respectively).  

 

Figure 2. P-glycoprotein activity in Caco-2 cells exposed to hypericin (HYP) (0 - 10 µM) for 24, 48 
and 72 h, evaluated through the RHO 123 efflux assay. Results are presented as mean ± SEM 
from 5 independent experiments (performed in triplicate). Statistical comparisons were made using 
one-way ANOVA, followed by the Bonferroni's multiple comparisons post hoc test [**p<0.01; 
****p<0.0001 concentration vs. control (0 µM)]. 

3.4. P-glycoprotein ATPase Activity 

Using the Pgp-Glo™ assay kit it was observed that HYP significantly increased the 

pump ATPase activity (Figure 3), according to the tested concentration. In fact, the 

difference in luminescent signal between Na3VO4-treated samples and samples treated 

with 5 and 10 µM HYP significantly increased to 2.75x105 and 3.27x105 ∆RLU, 

respectively, when compared to 1.95x105 ∆RLU for basal P-gp ATPase activity. Moreover, 

verapamil (used as positive control for P-gp activation) yielded the highest increase in P-

gp ATPase activity (change in luminescence of 5.45x105 ∆RLU). According to the 

obtained results, HYP is actively transported by the pump, resulting in an increased ATP 
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consumption. However, the ability of HYP to stimulate the P-gp ATPase activity is 

significantly smaller, when compared to verapamil-induced stimulation. 

 

Figure 3. P-gp ATPase activity in 
recombinant human P-gp enriched 
membrane vesicles (25 μg/well) exposed 
to 1, 5, and 10 µM hypericin (HYP). 
Results are expressed as change in relative 
light units (∆RLU ± SEM) between 100 µM 
sodium orthovanadate (Na3VO4)-treated 
membranes and membranes treated with 
HYP. Basal P-gp ATPase activity was defined 
as the ∆RLU between untreated samples (NT) 
and Na3VO4-treated samples. Verapamil (200 
µM) was used as a positive control substrate 
(positive control for drug stimulation of P-gp 
ATPase activity). Three independent 

experiments were performed in duplicate. Statistical comparisons were made using one-way ANOVA, followed 
by the Bonferroni's multiple comparisons post hoc test (*p<0.05; ***p<0.001; ****p<0.0001 vs. basal ATPase 
activity; ####p<0.0001 vs. verapamil). 

3.5.  ATP intracellular levels 

In the present assay, ATP intracellular levels were quantified 24, 48 and 72 h after 

exposure to 1, 5 and 10 µM HYP, to evaluate if the compound could cause any change in 

the ATP content that could compromise the pump activity. In accordance with the 

cytotoxicity assays (Figure S1A and S1B, supplementary data), no significant differences 

were observed in the ATP intracellular levels, for all the tested concentrations and times of 

exposure (Figure S2A, supplementary data). Moreover, ATP intracellular content was also 

evaluated in cells exposed to 1, 5 and 10 µM HYP for 24, 48 and 72 h, which, after 

exposure, were submitted to a RHO 123 efflux assay. In spite of the previously observed 

significant increase in RHO 123 efflux (Figure 2), no significant energy depletion was 

detected, given the lack of significant differences in the intracellular ATP levels, at any of 

the tested concentrations and times of exposure (Figure S2B, supplementary data). 

Therefore, the ATP consumed in RHO 123 efflux was not sufficient to significantly reduce 

the ATP intracellular contents (Figure S2B, supplementary data). 

3.6. Paraquat cytotoxicity assays 

We evaluated the effect of HYP on PQ-induced cytotoxicity and correlated those 

effects with the observed increases in both P-gp expression and activity.  

As shown in Figure 4, pre-exposure of Caco-2 cells to all the tested HYP concentrations 

(1, 5 or 10 µM) for 24 h, caused a significant protective effect against the PQ-induced 

cytotoxicity, as demonstrated by the significant rightwards shift of all the PQ + HYP curves 

relative to the PQ curve, resulting in significant differences in the cell death observed for 
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the higher PQ concentrations (1000 - 5000 μM). For 5 and 10 μM HYP, since the TOP 

values (maximal cell death) of the PQ + HYP curves were significantly different from the 

TOP value of the PQ curve (Table 1), this was the parameter used for comparison 

between the fitted curves. Pre-exposure to 5 and 10 μM HYP resulted in a significant 

decrease in the TOP value to 67.49 and 63.80 %, respectively, when compared to the 

TOP value of the PQ curve (92.46 %; Table 1). For 1 μM HYP, although the fitted curve is 

significantly different from the PQ curve, no significant differences were observed for the 

TOP and EC50 values (Table 1). 

 

Figure 4. Paraquat concentration–response (cell death) curves with (PQ + HYP) or without (PQ) 
pre-exposure of Caco-2 cells to hypericin (HYP 1, 5 or 10 µM) for 24 h, 48 h and 72 h. Results are 
presented as mean ± SEM from 4 independent experiments (performed in triplicate). Concentration-response 
curves were fitted using least squares as the fitting method and the comparisons between the fitted curves 
(LOG EC50, TOP, BOTTOM and Hill slope) were made using the extra sum-of-squares F test. Statistical 
comparisons were made using Two-way ANOVA, followed by the Sidak's multiple comparisons post hoc test 
(*p<0.05; **p<0.01; ***p<0.001; ****p<0.0001 vs. PQ alone). In all cases, p values lower than 0.05 were 
considered significant.  
 

Increasing HYP pre-exposure time to 48 or 72 h, a similar protective effect against 

PQ toxicity was also observed for all the tested HYP concentrations (1, 5 or 10 µM). In 

fact, a significant rightwards shift of the PQ + HYP curves was observed, as a result of a 

significant decrease in the cell death observed for the higher PQ concentrations (500 - 

5000 μM) (Figure 4). For these HYP pre-exposure times no significant differences were 

observed neither in the maximal cell death (TOP), nor in baseline (BOTTOM) of the fitted 

PQ + HYP curves, when compared to the PQ curve (Table 2 and Table 3). Therefore, the 
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EC50 value, which represents the half-maximum-effect concentration of the fitted curve, 

was used for comparison. As shown in Table 2, after 48 h, the observed rightwards shifts 

of the PQ + HYP concentration-response curves were accompanied by significant 

increases in the EC50 values, when compared to the EC50 of the PQ curve (3243, 4490 

and 4493 μM for 1, 5 and 10 μM HYP, respectively, vs. 1692 μM for the PQ curve). 

Increasing HYP pre-exposure time to 72 h, a significant increase in the EC50 value of all 

the PQ + HYP curves was also observed, when compared to the EC50 of the PQ curve 

(3843, 4518 and 4609 μM for 1, 5 and 10 μM  HYP, respectively, vs. 1783 μM for the PQ 

curve) (Table 3). 

 

Table 1. EC50 (half-maximum-effect concentrations), TOP (maximal effect), BOTTOM (baseline) 
and Hill slope values of the PQ concentration-response curves, with (PQ + HYP) or without (PQ) 
pre-exposure to HYP (1, 5 or 10 µM) for 24 h. 

 PQ PQ + HYP 1 PQ + HYP 5 PQ + HYP 10 

EC50 
(µM) 

1656 2161 1599 1642 

TOP 92.46 85.62 67.49 63.80 

BOTTOM 2.523 1.790 2.943 3,048 

Hill slope 1.316 1.425 2.404 2.388 
LOG EC50 p value

(comparison between LOG EC50 
values) 

- 0.5585 0.9132 0.9791 

TOP p value 
(comparison between TOP values) 

- 0.7613 0.0417 0.0255 

BOTTOM p value 
(comparison between BOTTOM 

values) 
- 0.7762 0.8667 0.8309 

Hill slope p value
(comparison between Hill slope 

values) 
- 0.8147 0.0552 0.0634 

Curve p value 
(Comparison between the Fitted 

Curves) 
- 0.0002 < 0.0001 < 0.0001 

Concentration-response curves were fitted using least squares as the fitting method and the comparisons 
between PQ and PQ + HYP curves were made using extra sum-of-squares F test. In all cases, p values 
lower than 0.05 were considered significant. 
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Table 2. EC50 (half-maximum-effect concentrations), TOP (maximal effect), BOTTOM (baseline) 
and Hill slope values of the PQ concentration-response curves, with (PQ + HYP) or without (PQ) 
pre-exposure to HYP (1, 5 or 10 µM) for 48 h. 

 PQ PQ + HYP 1 PQ + HYP 5 PQ + HYP 10 

EC50 

(µM) 
1692 3243 4490 4493 

TOP 83.14 ~ 100.0 ~ 100.0 ~ 100.0 

BOTTOM 0.6605 1.007 1.365 0.004269 

Hill slope 1.360 1.131 1.219 1.287 

LOG EC50 p value 
(comparison between LOG 

EC50 values) 
- 0.0482 0.0042 0.0081 

TOP p value 
(comparison between TOP 

values) 
- 0.2364 0.2839 0.3373 

BOTTOM p value 
(comparison between 

BOTTOM values) 
- 0.8145 0.6034 0.6926 

Hill slope p value 
(comparison between Hill 

slope values) 
- 0.2822 0.4711 0.7611 

Curve p value 
(Comparison between the 

Fitted Curves) 
- < 0.0001 < 0.0001 < 0.0001 

Concentration-response curves were fitted using least squares as the fitting method and the 
comparisons between PQ and PQ + HYP curves were made using extra sum-of-squares F test. In 
all cases, p values lower than 0.05 were considered significant. 

 

 
Table 3. EC50 (half-maximum-effect concentrations), TOP (maximal effect), BOTTOM (baseline) 
and Hill slope values of the PQ concentration-response curves, with (PQ + HYP) or without (PQ) 
pre-exposure to HYP (1, 5 or 10 µM) for 72 h. 

 PQ PQ + HYP 1 PQ + HYP 5 PQ + HYP 10 

EC50 
(µM) 

1783 3843 4518 4609 

TOP 82.05 ~ 100.0 97.60 91.87 

BOTTOM 3.431 2.727 0.7430 0.7944 

Hill slope 1.317 1.226 1.159 1.226 

LOG EC50 p value 
(comparison between LOG 

EC50 values) 
- 0.0490 0.0398 0.0348 

TOP p value 
(comparison between TOP 

values) 
- 0.3211 0.5589 0.7363 

BOTTOM p value 
(comparison between 

BOTTOM values) 
- 0.6048 0.0607 0.0630 

Hill slope p value 
(comparison between Hill 

slope values) 
- 0.6822 0.5904 0.7728 

Curve p value 
(Comparison between the 

Fitted Curves) 
- < 0.0001 < 0.0001 < 0.0001 

Concentration-response curves were fitted using least squares as the fitting method and the 
comparisons between PQ and PQ + HYP curves were made using extra sum-of-squares F test. In 
all cases, p values lower than 0.05 were considered significant. 
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To evaluate if the rightwards shifts and EC50 values increases observed for all HYP 

tested concentrations were due to the previously observed increase in P-gp expression 

and activity, the cells pre-exposed to HYP for 72 h were incubated with PQ in the 

presence of a specific P-gp inhibitor (UIC2 antibody). As shown in Figure 5A, a significant 

increase in the cell death was observed in the presence of the UIC2 antibody, resulting in 

a significant leftwards shift of the PQ + UIC2 curve, when compared to the PQ curve, thus 

confirming the involvement of P-gp on PQ-induced toxicity. Moreover, under P-gp 

inhibition, HYP protective effects were completely abolished, as observed by the lack of 

significant differences in the cell death observed for all the tested PQ concentrations 

(Figure 5B). Consequently, no significant differences were obtained neither in the overall 

comparison of the fitted curves, nor in the comparison of the individual curve parameters 

(LOG EC50, TOP, BOTTOM and Hill slope) (Table 4). 

 

Figure 5. (A) Paraquat concentration–response (cell death) curves in the presence (PQ + UIC2) or 
in the absence (PQ) of a specific p-glycoprotein inhibitor (UIC2 antibody). (B) Paraquat 
concentration–response (cell death) curves, in the presence of a specific p-glycoprotein inhibitor 
(UIC2 antibody), with (PQ + UIC2 + HYP) or without (PQ + UIC2) pre-exposure of Caco-2 cells to 
hypericin (HYP 1, 5 or 10 µM) for 72 h. Results are presented as mean ± SEM from at least 3 
independent experiments (performed in triplicate). Concentration–response curves were fitted using least 
squares as the fitting method and the comparisons between the fitted curves (LOG EC50, TOP, BOTTOM and 
Hill slope) were made using the extra sum-of-squares F test. Statistical comparisons were made using Two-
way ANOVA, followed by the Sidak's multiple comparisons post hoc test (*p<0.05 vs. PQ alone). In all cases, 
p values lower than 0.05 were considered significant. 
 

Additionally, the comparison between all the PQ + HYP curves highlighted 

significant differences in the observed protective effects according to the HYP 

concentration and time of pre-exposure tested (Figure S3, Figure S4, Table S1 and Table 

S2, supplementary data), which is correlated with the observed effect of HYP on both P-

gp expression and activity.  
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Table 4. EC50 (half-maximum-effect concentrations), TOP (maximal effect), BOTTOM (baseline) 
and Hill slope values of the PQ concentration-response curves, in the presence of a specific P-gp 
inhibitor (UIC2 antibody), with (PQ + HYP) or without (PQ) pre-exposure to HYP (1, 5 or 10 µM) for 
72 h. 

 PQ + UIC2 
PQ+ UIC2 + 

HYP 1 
PQ+ UIC2 + 

HYP 5 
PQ+ UIC2 + 

HYP 10 
EC50

(µM) 
1529 1984 1780 1936 

TOP 88.78 96.59 85.58 91.66 

BOTTOM 7.097 6.266 5.800 1.146 

Hill slope 1.072 0.9474 1.282 0.8993 

LOG EC50 p value 
(comparison between LOG EC50 

values) 
- 0.8355 0.8587 0.8391 

TOP p value 
(comparison between TOP 

values) 
- 0.8791 0.9209 0.9500 

BOTTOM p value 
(comparison between BOTTOM 

values) 
- 0.9033 0.8051 0.3447 

Hill slope p value 
(comparison between Hill slope 

values) 
- 0.8763 0.7642 0.8040 

Curve p value 
(Comparison between the Fitted 

Curves) 
- 0.9923 0.2846 0.1462 

Concentration-response curves were fitted using least squares as the fitting method and the comparisons 
between PQ + UIC2 and PQ+ UIC2 + HYP curves were made using extra sum-of-squares F test. In all 
cases, p values lower than 0.05 were considered significant. 

 

Figure 6. Paraquat concentration–response (cell death) curves with (PQ + HYP) or without (PQ) 
incubation of Caco-2 cells with hypericin (HYP 1, 5 or 10 µM) 6 h after the beginning of PQ 
exposure. Results are presented as mean ± SEM from 5 independent experiments (performed in triplicate). 
Concentration–response curves were fitted using least squares as the fitting method and the comparisons 
between the fitted curves (LOG EC50, TOP, BOTTOM and Hill slope) were made using the extra sum-of-
squares F test. Statistical comparisons were made using Two-way ANOVA, followed by the Sidak's multiple 
comparisons post hoc test (*p<0.05; **p<0.01; ****p<0.0001 vs. PQ alone).  

 

Additionally, HYP effect on PQ-induced toxicity was also evaluated with HYP 

incubation 6 h after the beginning of PQ insult. As shown in Figure 6, a significant 

rightwards shift of the PQ + HYP curves was observed for all the HYP concentrations 

tested (1, 5 and 10 μM), when compared to the PQ curve (Figure 6), thus indicating a 

significant protection against PQ-induced toxicity. Additionally, this protective effect was 

significant for the higher PQ concentrations (500 - 5000 μM), as observed by the 
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significant decreases in the cell death observed (Figure 6). Moreover, for 5 and 10 μM 

HYP, it was observed a significant increase in the EC50 value of the fitted curves, when 

compared to the PQ curve (2408 and 2437 μM, respectively, vs. 1268 μM for the PQ 

curve) (Table 5).  

To confirm the involvement of P-gp in the observed HYP protective effects, for the 

highest HYP concentration (10 μM), PQ cytotoxicity was further evaluated in the presence 

of the UIC2 antibody. As shown in Figure 7, a complete abolishment of HYP protective 

effect was observed in the presence of the P-gp inhibitor, since no significant differences 

were detected in the cell death observed for all the PQ concentrations tested. Moreover, 

no significant differences were obtained neither in the overall comparison of the fitted 

curves, nor in the comparison of the individual parameters (LOG EC50, TOP, BOTTOM 

and Hill slope) (Table 6), confirming that the HYP protective effect against PQ-induced 

toxicity is P-gp-mediated. 

 
Table 5. EC50 (half-maximum-effect concentrations), TOP (maximal effect), BOTTOM (baseline) 
and Hill slope values of the PQ concentration-response curves, with (PQ + HYP) or without (PQ) 
exposure to HYP (1, 5 or 10 µM) 6 h after the beginning of PQ exposure. 

 PQ PQ + HYP 1 PQ + HYP 5 PQ + HYP 10 

EC50 
(µM) 

1268 1622 2408 2437 

TOP 96.46 93.11 98.29 92.50 

BOTTOM 2.721 1.678 0.1322 0.4915 

Hill slope 1.259 1.788 1.285 1.549 

LOG EC50 p value
(comparison between LOG EC50 

values) 
- 0.3024 0.0303 0.0158 

TOP p value 
(comparison between TOP 

values) 
- 0.8291 0.9417 0.8803 

BOTTOM p value 
(comparison between BOTTOM 

values) 
- 0.7904 0.4446 0.5405 

Hill slope p value
(comparison between Hill slope 

values) 
- 0.3842 0.9516 0.5741 

Curve p value 
(Comparison between the Fitted 

Curves) 
- 0.0027 < 0.0001 < 0.0001 

Concentration-response curves were fitted using least squares as the fitting method and the 
comparisons between PQ and PQ + HYP curves were made using extra sum-of-squares F test. In all 
cases, p values lower than 0.05 were considered significant. 
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Figure 7. Paraquat concentration-
response (cell death) curves, in the 
presence of a specific p-glycoprotein 
inhibitor (UIC2 antibody), with (PQ + 
UIC2 + HYP 10) or without (PQ + 
UIC2) incubation of Caco-2 cells with 
hypericin (HYP 10 µM) 6 h after the 
beginning of PQ exposure. Results are 
presented as mean ± SEM from 4 
independent experiments (performed in 
duplicate). Concentration–response curves 
were fitted using least squares as the fitting 
method and the comparisons between the 

fitted curves (LOG EC50, TOP, BOTTOM and Hill slope) were made using the extra sum-of-squares F test. 
Statistical comparisons were made using Two-way ANOVA, followed by the Sidak's multiple comparisons post 
hoc test.  

 

Table 6. EC50 (half-maximum-effect concentrations), TOP (maximal effect), BOTTOM (baseline) 
and Hill slope values of the PQ concentration-response curves, with (PQ + UIC2 + HYP) or without 
(PQ + UIC2) incubation with HYP (10 µM) 6 h after the beginning of PQ exposure, and in the 
presence of a specific P-gp inhibitor (UIC2 antibody). 

 PQ + UIC2 PQ + UIC2 + HYP 10 

EC50 
(µM) 

953.4  1288 

TOP 91.85 99.67 

BOTTOM 1.885 1.243 

Hill slope 2.322 1.407 

LOG EC50 p value 
(comparison between LOG EC50 values) 

- 0.3625 

TOP p value 
(comparison between TOP values) 

- 0.6644 

BOTTOM p value 
(comparison between BOTTOM values) 

- 0.9245 

Hill slope p value
(comparison between Hill slope values) 

- 0.3484 

Curve p value
(Comparison between the Fitted Curves) 

- 0.5915 

Concentration-response curves were fitted using least squares as the fitting method and 
the comparisons between PQ + UIC2 and PQ + UIC2 + HYP 10 curves were made using 
extra sum-of-squares F test. In all cases, p values lower than 0.05 were considered 
significant. 

 

To further support the potential use of HYP as an effective antidote against PQ 

intoxications, PQ cytotoxicity was also evaluated after simultaneous exposure to HYP (1, 

5 and 10 µM). As shown in Figure 8, and for all the tested HYP concentrations, a 

significant reduction in the cell death was again observed for the higher PQ 

concentrations (500 - 5000 μM), resulting also in a significant rightwards shift of all the PQ 

+ HYP curves, when compared to the PQ curve. Moreover, for 5 and 10 μM HYP, a 

significant increase in the EC50 values of the fitted curves was observed (2400 and 2469 

μM, for 5 and 10 μM HYP, respectively, vs. 1240 μM for the PQ curve) (Table 7).  
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Figure 8. Paraquat concentration–response (cell death) curves with (PQ + HYP) or without (PQ) 
simultaneous exposure of Caco-2 cells to hypericin (HYP 1, 5 or 10 µM). Results are presented as 
mean ± SEM from 3 independent experiments (performed in triplicate). Concentration–response curves were 
fitted using least squares as the fitting method and the comparisons between the fitted curves (LOG EC50, 
TOP, BOTTOM and Hill slope) were made using the extra sum-of-squares F test. Statistical comparisons were 
made using Two-way ANOVA, followed by the Sidak's multiple comparisons post hoc test (*p<0.05; **p<0.01; 
***p<0.001; ****p<0.0001 vs. PQ alone).  

 

Table 7. EC50 (half-maximum-effect concentrations), TOP (maximal effect), BOTTOM (baseline) 
and Hill slope values of the PQ concentration-response curves, with (PQ + HYP) or without (PQ) 
simultaneous exposure to HYP (1, 5 or 10 µM). 

 PQ PQ + HYP 1 PQ + HYP 5 PQ + HYP 10 

EC50 
(µM) 

1240 1594 2400 2469 

TOP ~ 100.0 97.60 ~ 100.0 99.48 

BOTTOM 3.032 0.02581 1.128 0.2062 

Hill slope 1.395 1.346 1.261 1.442 

LOG EC50 p value 
(comparison between LOG 

EC50 values) 
- 0.2799 0.0003 0.0005 

TOP p value 
(comparison between TOP 

values) 
- 0.8773 0.9991 0.9808 

BOTTOM p value 
(comparison between 

BOTTOM values) 
- 0.3060 0.4737 0.2626 

Hill slope p value 
(comparison between Hill 

slope values) 
- 0.8816 0.4033 0.8057 

Curve p value 
(Comparison between the 

Fitted Curves) 
- 0.0003 < 0.0001 < 0.0001 

Concentration-response curves were fitted using least squares as the fitting method and the 
comparisons between PQ and PQ + HYP curves were made using extra sum-of-squares F test. 
In all cases, p values lower than 0.05 were considered significant. 

 

Furthermore, the simultaneous incubation of PQ and 10 μM HYP in the presence of 

the UIC2 antibody resulted in the complete disappearance of HYP protective effect 

against PQ-induced toxicity, since no significant differences were detected neither in the 

cell death observed for all the PQ tested concentrations (Figure 9), nor in the overall 

comparison of the fitted curves (LOG EC50, TOP, BOTTOM and Hill slope) (Table 8). 

Moreover, as observed in the pre-exposure assays, HYP incubation both simultaneously 

or 6 h after PQ exposure also demonstrated to differ according to the HYP concentration 
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tested, as evaluated by the significant differences in the cell death observed (Figure S5A, 

Figure S5B, Table S3 and Table S4, supplementary data). However, no significant 

differences exist between these two different experimental designs of HYP incubation, 

since no significant differences were observed in the fitted curves for all tested HYP 

concentrations (Figure S6, supplementary data). The slow PQ absorption rate reported in 

humans, which occurs over 1-6 h (Dinis-Oliveira et al. 2008), may explain the similar HYP 

protective effect observed under simultaneous exposure or 6 h after the beginning of PQ 

exposure. 

 

Figure 9. Paraquat concentration–response 
(cell death) curves, in the presence of a 
specific p-glycoprotein inhibitor (UIC2 
antibody), with (PQ + UIC2 + HYP 10) or 
without (PQ + UIC2) simultaneous exposure 
of Caco-2 cells to hypericin (10 µM). Results 
are presented as mean ± SEM from 4 independent 
experiments (performed in duplicate). 
Concentration–response curves were fitted using 
least squares as the fitting method and the 
comparisons between the fitted curves (LOG EC50, 

TOP, BOTTOM and Hill slope) were made using the extra sum-of-squares F test. Statistical comparisons were 
made using Two-way ANOVA, followed by the Sidak's multiple comparisons post hoc test. 
 

Table 8. EC50 (half-maximum-effect concentrations), TOP (maximal effect), BOTTOM (baseline) 
and Hill slope values of the PQ concentration-response curves, with (PQ + UIC2 + HYP) or without 
(PQ + UIC2) simultaneous exposure to HYP (10 µM), and in the presence of a specific P-gp 
inhibitor (UIC2 antibody). 

 PQ + UIC2 PQ + UIC2 + HYP 10 

EC50 
(µM) 

975.5 1168 

TOP 92.77 94.58 

BOTTOM 7.640 5.568 

Hill slope 1.873 1.555 

LOG EC50 p value
(comparison between LOG EC50 

values) 
- 0.2479 

TOP p value
(comparison between TOP values) 

- 0.8202 

BOTTOM p value 
(comparison between BOTTOM 

values) 
- 0.5386 

Hill slope p value
(comparison between Hill slope 

values) 
- 0.4731 

Curve p value
(Comparison between the Fitted 

Curves) 
- 0.1254 

Concentration-response curves were fitted using least squares as the fitting method 
and the comparisons between PQ + UIC2 and PQ+ UIC2 + HYP 10 curves were 
made using extra sum-of-squares F test. In all cases, p values lower than 0.05 
were considered significant. 
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3.7. YB-1 nuclear levels 

Nuclear levels of YB-1 were evaluated after exposure of Caco-2 cells to 10 μM HYP 

to evaluate the possible involvement of this transcription factor in HYP-mediated P-gp 

induction. Although the molecular mass calculated by the YB-1 amino acid sequence is 

about 35.9 kDa, during SDS gel electrophoresis YB-1 migrates as a protein with a mass of 

about 50 kDa (Eliseeva et al. 2011). As observed in Figure 10, a dramatic decrease in YB-

1 nuclear levels was observed upon exposure to the tested compound for 72 h. In fact, 

after exposure to 10 μM HYP the nuclear levels of YB-1 were approximately 0.29 fold of 

control (0 μM HYP). 

 

Figure 10. Hypericin effect on the nuclear YB-1 content. Caco-2 cells were exposed to 10 μM 
hypericin for 72 h and YB-1 nuclear expression was evaluated by western blot. A: Ponceau S 
staining of nuclear proteins showing equal protein loading. B: Representative Western blot from the 
YB-1 band and graphic representation of the effect of hypericin on the nuclear amount of YB-1. 
Results are presented as mean ± SEM from 4 independent experiments. Statistical comparisons were made 
using Unpaired Student t test (****p<0.0001 HYP 0 vs. HYP 10). MWM - Molecular weight marker.  
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4. DISCUSSION 

Our data clearly demonstrate that HYP is a P-gp inducer, which is able to 

significantly increase, in Caco-2 cells, both P-gp protein expression and activity according 

to the concentration and time of exposure tested. Caco-2 cells are a well characterized in 

vitro model that closely mimics the enterocytes of the small intestine (Barta et al. 2008; 

Biganzoli et al. 1999). Derived from human colorectal adenocarcinoma, this cell line is 

widely accepted as an in vitro model for predicting drug intestinal absorption and excretion 

in humans (Balimane et al. 2006; Barta et al. 2008; Biganzoli et al. 1999; Watanabe et al. 

2005; Yamashita et al. 2000; Yamashita et al. 2002). Indeed, these cells express several 

transporters involved in drug transport, including P-gp (Hidalgo and Jibin 1996 ; Hochman 

et al. 2000; Hochman et al. 2001; Hunter et al. 1993; Shen et al. 2007; Shirasaka et al. 

2006; Watanabe et al. 2005; Wu et al. 2000), and the expression levels of this efflux 

transporter are in good agreement with those of the normal human jejunum (Taipalensuu 

et al. 2001). Additionally, our own previous studies have already validated the use of 

Caco-2 cells as a suitable in vitro model for the study and selection of safe, potent, and 

specific P-gp inducers (Silva et al. 2011; Silva et al. 2013b). 

Furthermore, accordingly to the obtained data, HYP elicited similar increases in P-

gp expression and activity. In fact, it has long been known that increases in protein 

expression may not be necessarily correlated with proportional increases in the pump 

activity (Silva et al. 2011; Silva et al. 2013a; Takara et al. 2009; Vilas-Boas et al. 2011). 

Indeed, we have previously shown, using the same in vitro model, that doxorubicin, a 

potent P-gp inducer, caused remarkable increases in P-gp expression levels, which were 

not accompanied by proportional increases in P-gp transport activity (Silva et al. 2011). 

Additionally, colchicine was also able to significantly increase P-gp expression in Caco-2 

cells, without increasing the pump activity (Silva et al. 2013a). Noteworthy, the observed 

HYP-mediated increases in P-gp expression reveal a higher level of expression and 

incorporation in the cell membrane, since the monoclonal UIC2 antibody recognizes an 

external P-gp epitope.  

Hypericin is one of the major components of SJW, a flower extract from Hypericum 

perforatum, used for centuries in holistic medicine to accelerate wound healing and treat 

nerve pain (Perloff et al. 2001). This flower extract is responsible for severe drug-herbal 

interactions (Pal and Mitra 2006) attributed, among other factors, to P-gp induction (Perloff 

et al. 2001). Even though P-gp induction by SJW is mainly associated with hyperforin 

(Tian et al. 2005), our data clearly demonstrates that HYP is also able to induce the pump 

protein expression and activity in Caco-2 cells. Furthermore, although the HYP ability to 

induce P-gp remains controversial, in accordance with our data, other studies have also 



Manuscript IV____________________________________________________________________ 

234 

reported the ability of this compound to act as a P-gp inducer (Perloff et al. 2001). Indeed, 

using another human colon adenocarcinoma cell line, the LS-180 cells, it was 

demonstrated that P-gp expression was strongly induced by HYP (700% at 3 μM), as well 

as by SJW (400% increase at 300 μg/ml), in a dose-dependent manner (Perloff et al. 

2001), as evaluated by western blot 72 h after exposure. Furthermore, an increase in the 

P-gp transport activity was also observed, since cells chronically treated with SJW 

decreased RHO 123 accumulation, which was reversed with verapamil, a P-gp inhibitor. 

Indeed, SJW treatment caused concentration-dependent decreases in RHO 123 cell 

accumulation which correlated with the observed increases in P-gp immunoreactive 

protein. Moreover, these findings were validated by fluorescence microscopy in intact cells 

(Perloff et al. 2001). 

As noted above, conflicting data was also reported showing that SJW (75 μg/ml) 

and hyperforin (1 μM), but not HYP (0.1 μM), increased the P-gp protein expression in LS 

180 cells, in a time- and dose-dependent manner, and the removal of SJW resulted in a 

restoration of P-gp levels within 48 h. Moreover, the hyperforin content in SJW extract was 

high enough to induce P-gp, suggesting that the induction of P-gp by SJW can be almost 

exclusively attributed to hyperforin (Tian et al. 2005). Furthermore, LS 180 cells 

chronically exposed to SJW or hyperforin (for 24 and 48 h) exhibited increased P-gp 

function, as assessed by the evaluation of the digoxin efflux, and the P-gp activities were 

well correlated with P-gp protein level. In accordance with the lack of P-gp induction, no 

increased efflux of digoxin was observed in HYP-treated cells. However, using the same 

in vitro model, it was later reported that MDR1 mRNA expression was induced by both 

HYP and hyperforin, single constituents of SJW, at a concentration of 10 μM (Gutmann et 

al. 2006). To note that, in that case, higher HYP concentrations were tested, and the 

induction was evaluated at the MDR1 mRNA level, whereas in the first study it was 

assessed at the protein level. Therefore, although an increased transcription was 

observed upon HYP exposure, it may not be reflected in increased protein content. 

P-gp ATPase activity assays have been long used to evaluate possible interactions 

with P-gp function, and compounds that act as P-gp substrates typically stimulate its 

ATPase activity (Ambudkar et al., 1999). Accordingly, our results showed an increased 

ATP consumption in P-gp-enriched membranes, which occurs as a result of P-gp-

mediated HYP transport. Therefore, this compound is a P-gp substrate actively 

transported by the pump.  

Since P-gp transport function requires ATP as the energy source, the ATP 

intracellular levers were determined. According to the present data, no ATP depletion, 

which could compromise the pump activity, was observed neither immediately after 

exposure to HYP for 24, 48 and 72 h, nor after submitting the cells to a RHO 123 efflux 
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assay. Therefore, in spite of the significant increase in P-gp-mediated RHO 123 efflux and 

the significant increase in P-gp ATPase activity, no significant decrease in the intracellular 

ATP content was observed. 

Considering the observed effects of HYP on P-gp expression and activity, we further 

sought to evaluate the impact of those effects on the cytotoxicity induced by a toxic P-gp 

substrate, the herbicide paraquat. Indeed, the suitability of this study model using PQ as 

the P-gp toxic substrate was already demonstrated in previous in vitro studies with the P-

gp inducer doxorubicin, in Caco-2 cells (Silva et al. 2011; Silva et al. 2013b), and with a 

reduced rifampicin derivative (RedRif), in RBE4 cells (Vilas-Boas et al. 2013b). 

According to our data, mimicking the presence of the P-gp inducer in the PQ 

formulation, it was possible to observe, in vitro, a significant reduction in PQ-induced 

cytotoxicity towards Caco-2 cells, being this effective protection also observed for the 

other tested experimental designs of HYP incubation. Furthermore, as the protection 

afforded by HYP was completely abolished in the presence of the P-gp inhibitor, the UIC2 

antibody, it is possible to confirm that HYP protects Caco-2 cells from the herbicide's 

cytotoxicity exclusively through a P-gp-mediated mechanism. Additionally, the PQ 

concentrations used in the present study are within what is expected to be observed in 

vivo, in a real intoxication scenario. In fact, in most of the reported cases of human PQ 

intoxication, 25–50 mL of a 20 g/100 mL PQ formulation are typically ingested (Dinis-

Oliveira et al. 2009), which corresponds to an orally ingested dose of approximately 5-10 

g, absorbed up to a maximum of 5 % (Roberts 2011). Therefore, blood concentrations up 

to 0.1 g/L (0.4 mM) could be easily achieved and, in the intestine, high concentrations 

may be expected since almost all the ingested dose comes into contact with the 

enterocytes. 

The YB-1 protein performs its functions both in the cytoplasm and in the cell 

nucleus, and by passing from the cytoplasm to the cell nucleus, this transcription factor 

can influence the transcription of many genes, including genes  involved in cell division, 

apoptosis, immune response, multidrug resistance, stress response, and tumor growth 

(Eliseeva et al. 2011). Furthermore, YB-1 regulates transcription through its direct 

interaction with the specific Y-box-containing regions in gene promoters (Eliseeva et al. 

2011). In fact, in what concerns to the MDR1 gene, it was demonstrated that YB-1 can 

stimulate its transcription and it was suggested that this occurs as a result of YB-1 binding 

to the Y-box sequence in the promoter of this gene (Ohga et al. 1996; Ohga et al. 1998; 

Sengupta et al. 2011; Stein et al. 2001). However, in other studies, YB-1 was not 

identified within DNA/protein complexes assembled in nuclear lysates on double-stranded 

oligonucleotides corresponding to the MDR1 gene promoter regions (Hu et al. 2000; 

Sundseth et al. 1997). This challenge can be explained by different experimental 
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conditions or by different ways of detecting YB-1 within these complexes (the knockdown 

of YB-1 in the first case and the use of antibodies in the second). It has been assumed 

that YB-1 is involved in the activation of MDR1 transcription only under strictly specific 

conditions and interacts with the gene promoter only when in complex with other proteins 

(Eliseeva et al. 2011).  

According to our results, the significant increase in cell surface P-gp expression was 

followed by a significant decrease in the YB-1 nuclear levels, 72 h after exposure to 10 μM 

HYP. As a rule, the major part of YB-1 is within the cytoplasm in association with mRNA 

and, in response to intra- and extracellular signals, a significant portion of YB-1 can move 

to the cell nucleus (Eliseeva et al. 2011). In the cell nucleus, Y-Box binding proteins can 

be located on chromatin both as a result of their interaction with DNA in gene promoters 

and in damaged regions under reparation, or due to their association with newly 

synthesized mRNA (Eliseeva et al. 2011). Furthermore, it was previously suggested that 

YB-1 can move from the nucleus to the cytoplasm complexed with the newly synthesized 

mRNA (Ranjan et al. 1993). Additionally, one of the major functions of this transcription 

factor in the cytoplasm is in the translation regulation (Eliseeva et al. 2011; Soop et al. 

2003). Therefore, since the HYP-induced increase in P-gp expression was detected as 

soon as 24 h after exposure, and the YB-1 nuclear content was evaluated only 72 h 

exposure, the significant decrease upon exposure to HYP may be explained by its 

migration to the cytoplasm along with the newly synthesized mRNA. 

In conclusion, HYP demonstrated to be an effective P-gp inducer, which was able to 

significantly increase both cell surface P-gp expression and activity, resulting in a 

significant protection against PQ-induced cytotoxicity, even when it contacts with the 

affected cells well after the harmful xenobiotic. Furthermore, as the observed protection 

was mediated exclusively through its effects on P-gp, this compound represents an 

excellent candidate for drug design of new potent and specific P-gp inducers. 
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Figure S1. (A) Hypericin (HYP) cytotoxicity in Caco-2 cells, evaluated by the NR uptake assay at 
different time points (6, 24, 48, 72 and 96 h). Results are presented as mean ± SEM from 6 independent 
experiments (performed in triplicate). Statistical comparisons were made using the nonparametric method of 
Kruskal–Wallis (one-way ANOVA on ranks), followed by Dunn’s post hoc test (*p<0.05; **p<0.01; ***p<0.001; 

****p <0.0001 vs. Control). (B) Hypericin (HYP) cytotoxicity in Caco-2 cells, evaluated by the LDH 
leakage assay at different time points (6, 24, 48, 72 and 96 h). Extracellular LDH activity was 
expressed as a percentage of total LDH activity. Results are presented as mean ± SEM from 6 independent 
experiments (performed in triplicate). Statistical comparisons were made using the nonparametric method of 
Kruskal–Wallis (one-way ANOVA on ranks), followed by Dunn’s post hoc test (****p <0.0001 vs. Control). 
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Figure S2 (A) ATP intracellular levels in Caco-2 cells exposed to hypericin (HYP 0, 1, 5and 10 µM) 
for 24, 48 or 72 h. (B) ATP intracellular levels in Caco-2 cells exposed to hypericin (HYP 0, 1, 5 
and 10µM) for 24, 48 or 72 h, and then submitted to a RHO 123 IAE procedure. ATP intracellular 
content was normalized to the total protein content and the final results, from 4 independent experiments 
(performed in triplicate), are expressed as percentage of control (Mean ± SEM). Statistical comparison 
between groups was estimated using the nonparametric method of Kruskal–Wallis (one-way ANOVA on 
ranks) followed by Dunn’s post hoc test. 

 

 

 

 

Figure S3. Paraquat concentration–response (cell death) curves with pre-exposure of Caco-2 cells 
to hypericin (HYP 1, 5 or 10 µM) for 24 h, 48 h and 72 h. Results are presented as mean ± SEM from at 
least 4 independent experiments (performed in triplicate). Concentration–response curves were fitted using 
least squares as the fitting method and the comparisons between the fitted curves (LOG EC50, TOP, BOTTOM 
and Hill slope) were made using the extra sum-of-squares F test. Statistical comparisons were made using 
Two-way ANOVA, followed by the Sidak's multiple comparisons post hoc test (*p<0.05; **p<0.01; ***p<0.001; 
****p<0.0001 PQ + HYP 1 vs. PQ + HYP 5; #p<0.05; ##p<0.01; ###p<0.001; ####p<0.0001 PQ + HYP 1 vs. PQ + 
HYP 10).  
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Figure S4. Paraquat concentration–response (cell death) curves with pre-exposure of Caco-2 cells 
to 1, 5 or 10 µM hypericin for 24 h, 48 h and 72 h. Results are presented as mean ± SEM from at least 4 
independent experiments (performed in triplicate). Concentration–response curves were fitted using least 
squares as the fitting method and the comparisons between the fitted curves (LOG EC50, TOP, BOTTOM and 
Hill slope) were made using the extra sum-of-squares F test. Statistical comparisons were made using Two-
way ANOVA, followed by the Sidak's multiple comparisons post hoc test (**p<0.01; ****p<0.0001 24 h vs. 48 
h; ##p<0.01; ###p<0.001; ####p<0.0001 24 h vs. 72 h; $p<0.05 48 h vs. 72 h).  
 

 

 

Figure S5. (A) Paraquat concentration–response (cell death) curves with incubation of Caco-2 
cells with hypericin (HYP 1, 5 or 10 µM) 6 h after the beginning of PQ exposure. Results are 

presented as mean ± SEM from 5 independent experiments (performed in triplicate). (B) Paraquat 
concentration–response (cell death) curves with simultaneous exposure of Caco-2 cells to 
hypericin (HYP 1, 5 or 10 µM). Results are presented as mean ± SEM from 3 independent experiments 
(performed in triplicate).Concentration–response curves were fitted using least squares as the fitting method 
and the comparisons between the fitted curves (LOG EC50, TOP, BOTTOM and Hill slope) were made using 
the extra sum-of-squares F test. Statistical comparisons were made using Two-way ANOVA, followed by the 
Sidak's multiple comparisons post hoc test (**p<0.01; ***p<0.001 PQ + HYP 1 vs. PQ + HYP 5; #p<0.05; 
###p<0.001 PQ + HYP 1 vs. PQ + HYP 10).  
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Figure S6. Paraquat concentration–response (cell death) curves in the presence of HYP (1, 5 or 
10 µM), both simultaneously and 6 h after PQ incubation. Results are presented as mean ± SEM from 
at least 3 independent experiments (performed in triplicate). Concentration–response curves were fitted using 
least squares as the fitting method and the comparisons between the fitted curves (LOG EC50, TOP, BOTTOM 
and Hill slope) were made using the extra sum-of-squares F test. Statistical comparisons were made using 
Two-way ANOVA, followed by the Sidak's multiple comparisons post hoc test.  
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Supplementary Tables 

Table S1. EC50 (half-maximum-effect concentrations), TOP (maximal effect), BOTTOM (baseline) 
and Hill slope values of the PQ concentration-response curves, with pre-exposure to HYP (1, 5 or 
10 µM) for 24, 48 or 72 h. 

 24 h 48 h 72 h 

 
PQ +  

HYP 1 
PQ +  

HYP 5 
PQ + 

 HYP 10 
PQ +  

HYP 1 
PQ +  

HYP 5 
PQ +  

HYP 10 
PQ +  

HYP 1 
PQ +  

HYP 5 
PQ + 

HYP 10 

EC50 

(µM) 2161 1599 1642 3243 4490 4493 3843 4518 4609 

TOP 85.62 67.49 63.80 ~ 100.0 ~ 100.0 ~ 100.0 ~ 100.0 97.60 91.87 

BOTTOM 1.790 2.943 3,048 1.007 1.365 0.004269 2.727 0.7430 0.7944 

Hill slope 1.425 2.404 2.388 1.131 1.219 1.287 1.226 1.159 1.226 

Curve p value - 0.5369* 
0.2026* 

0.7625# 
- < 0.0001*

< 0.0001*

0.5381# 
- < 0.0001* 

< 0.0001*

0.0449# 

Concentration-response curves were fitted using least squares as the fitting method and the comparisons 
between the PQ + HYP curves were made using extra sum-of-squares F test. In all cases, p values lower than 
0.05 were considered significant. * Comparison vs. PQ + HYP 1; # Comparison vs. PQ + HYP 5, at each time-
point. 

 

 

Table S2. EC50 (half-maximum-effect concentrations), TOP (maximal effect), BOTTOM (baseline) 
and Hill slope values of the PQ concentration-response curves, with pre-exposure to HYP (1, 5 or 
10 µM) for 24, 48 or 72 h. 

 PQ + HYP 1 PQ + HYP 55 PQ + HYP 10 

 24 h 48 h 72 h 24 h 48 h 72 h 24 h 48 h 72 h 

EC50 

(µM) 2161 3243 3843 1599 4490 4518 1642 4493 4609 

TOP 85.62 ~ 100.0 ~ 100.0 67.49 ~ 100.0 97.60 63.80 ~ 100.0 91.87 

BOTTOM 1.790 1.007 2.727 2.943 1.365 0.7430 3,048 0.004269 0.7944 

Hill 
slope 1.425 1.131 1.226 2.404 1.219 1.159 2.388 1.287 1.226 

EC50 p 
value 

- 0.3477* 
0.1961* 

0.4980# 
- 0.0016* 

0.0010*

0.9896# 
- 0.0037* 

0.0014*

0.9640# 

Curve p 
value 

- 0.3433* 
0.0002* 

0.0324# 
- < 0.0001*

< 0.0001*

0.8931# 
- < 0.0001* 

< 0.0001*

0.1879# 

Concentration-response curves were fitted using least squares as the fitting method and the comparisons 
between the PQ + HYP curves were made using extra sum-of-squares F test. In all cases, p values lower than 
0.05 were considered significant. * Comparison vs. 24 h; # Comparison vs. 48 h, at each HYP concentration. 
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Table S3. EC50 (half-maximum-effect concentrations), TOP (maximal effect), BOTTOM (baseline) 
and Hill slope values of the PQ concentration-response curves, with exposure to HYP (1, 5 or 10 
µM) 6 h after the beginning of PQ exposure. 

 PQ + HYP 1 PQ + HYP 5 PQ + HYP 10 

EC50 
(µM) 

1622 2408 2437 

TOP 93.11 98.29 92.50 

BOTTOM 1.678 0.1322  0.4915 

Hill slope 1.788 1.285 1.549 

Curve p value 
(Comparison between the 

Fitted Curves) 

- 0.0036* 
0.0008* 

0.6804# 

Concentration-response curves were fitted using least squares as the fitting 
method and the comparisons between the PQ + HYP curves were made 
using extra sum-of-squares F test. In all cases, p values lower than 0.05 were 
considered significant. * Comparison vs. PQ + HYP 1; # Comparison vs. PQ + 
HYP 5. 

 

 

Table S4. EC50 (half-maximum-effect concentrations), TOP (maximal effect), BOTTOM (baseline) 
and Hill slope values of the paraquat concentration-response curves, with simultaneous exposure 
to hypericin (1, 5 or 10 µM). 

 

 PQ + HYP 1 PQ + HYP 5 PQ + HYP 10 

EC50 
(µM) 

1594 2400 2469 

TOP 97.60 ~ 100.0 99.48 

BOTTOM 0.02581 1.128 0.2062 

Hill slope 1.346 1.261 1.442 

Curve p value 
(Comparison between the 

Fitted Curves) 

- 0.0398* 
0.0024* 

0.7149# 

Concentration-response curves were fitted using least squares as the fitting 
method and the comparisons between the PQ + HYP curves were made 
using extra sum-of-squares F test. In all cases, p values lower than 0.05 were 
considered significant. * Comparison vs. PQ + HYP 1; # Comparison vs. PQ + 
HYP 5. 
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ABSTRACT  

Nearly all poisonings with the extremely toxic herbicide paraquat (1,1’-dimethyl-

4,4’-bipyridylium, PQ) result from accidental or intentional ingestion. Therefore, treatment 

has relied primarily upon limiting intestinal absorption. However, the mechanisms involved 

in its intestinal uptake remain largely unknown. In this study we sought to elucidate these 

transport mechanisms using Caco-2 cells as a model of the human intestinal epithelium. 

With this purpose, the cells were incubated with a range of PQ concentrations (0-5000 

µM) for 24 h with or without simultaneous exposure to choline or hemicolinium-3 (for 

choline carrier-mediated transport system inhibition) and putrescine, trifluoperazine, 

valine, lysine, arginine or N-ethylmalemide (for basic amino acids transport systems 

inhibition). PQ cytotoxicity with or without competitive transport inhibition was evaluated by 

the MTT reduction assay and correlated with PQ intracellular levels quantified by gas 

chromatography-ion trap-mass spectrometry (GC-IT/MS). 

Our results showed a significant reduction in PQ intracellular accumulation and, 

consequently, in PQ cytotoxicity, in the presence of both choline (substrate) and 

hemicolinium-3 (inhibitor) demonstrating that the choline carrier-mediated transport 

system is partially involved in PQ intestinal uptake. Likewise, PQ cytotoxicity and 

intracellular accumulation were significantly attenuated by simultaneous exposure to 

putrescine, trifluoperazine, valine, lysine, arginine and N-ethylmalemide. In fact, the 

obtained results pointed to the involvement of more than one of the basic amino acids 

transport systems, including the y+, b0,+ or y+L systems. 

In conclusion, this study demonstrated that several transport systems mediate PQ 

intestinal absorption and, therefore, their modulation may provide alternative efficient 

pathways for limiting PQ toxicity in intoxication scenarios. 
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ABBREVIATIONS 

ARG - L-Arginine  
BBB - Blood Brain Barrier 
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CHO - Choline  
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NEAA - Non-Essential Amino Acids 
NEM - N-ethylmalemide 
NOR - Norvaline 
PBS - Phosphate Buffered Saline Solution 
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PUT - Putrescine 
SPE - Solid-Phase Extraction  
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VAL - L-Valine 

 
 

 

 

 

 

 

 

 



Manuscript V____________________________________________________________________ 
 

 

254 
 

1. INTRODUCTION 

Paraquat (1,1’-dimethyl-4,4’-bipyridylium, PQ) is the third most extensively used 

herbicide in the world, as a result of its highly effectiveness as desiccant and defoliant in a 

variety of crops. However, it is responsible for thousands of deaths due to accidental or 

intentional ingestion (Dinis-Oliveira et al. 2006a; Dinis-Oliveira et al. 2008; Dinis-Oliveira 

et al. 2006c; Dinis-Oliveira et al. 2007; Heylings et al. 2007) and no effective antidote has 

yet been found for this extremely toxic herbicide. Paraquat intoxication, both in man and in 

animals, results in severe lung damage and renal failure (Dinis-Oliveira et al. 2008; 

Heylings et al. 2007), with these organs showing the highest PQ concentrations, 

regardless of the route of administration (Dinis-Oliveira et al. 2008). In fact, in the lung, PQ 

concentrations can be 6 to 10 times higher than those found in plasma, with a long-lasting 

sustained accumulation after blood levels start to decrease (Dinis-Oliveira et al. 2008). 

Early works have demonstrated, in the lung, that PQ uptake against a concentration 

gradient is an ATP-driven process (Rose et al. 1974), competitively inhibited by a number 

of naturally occurring amines, such as putrescine, cadaverine, spermidine and spermine 

(Smith 1982; Wyatt et al. 1988). It was hypothesized that PQ accumulation in the alveolar 

type I and II cells and in the Clara cells occurs through this active pulmonary polyamine 

uptake system, probably due to the structural similarity with these endogenous 

polyamines substrates (Smith 1982). 

Although most of the experimental studies on PQ poisonings are focused on the 

toxic damage to peripheral tissues, such as the lung, kidney and liver, toxic effects were 

also observed in the brain of patients who died from PQ poisoning (Grant et al. 1980; 

Shimizu et al. 2001). In the brain, numerous clinical and experimental studies 

demonstrated that PQ can induce neural damage, probably due to its structural similarity 

with the known dopaminergic neurotoxin, N-methyl-4-phenylpyridinium cation (MPP+), that 

cannot penetrate into the central nervous system (Shimizu et al. 2001), thus raising 

concern of a possible involvement of PQ in the development of Parkinson’s disease 

(Dinis-Oliveira et al. 2006b). However, contrary to MPP+, PQ is known to penetrate the 

blood-brain barrier (BBB) in a dose-dependent manner (Shimizu et al. 2001). Because 

polyamine transporters are not expressed in the BBB (Shin et al. 1985), it was 

hypothesized that the amino acid transporters, which are highly expressed in the BBB, 

could be involved in the PQ BBB penetration (Shimizu et al. 2001). In fact, it was shown 

that the neutral amino acid transport system was implicated in the PQ brain uptake 

(Shimizu et al. 2001). 

Only limited information is available on the PQ gastrointestinal absorption. 

Absorption occurs mainly in the small intestine (and very poorly in the stomach), over an 
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1–6 h period, and estimated to be approximately 1–5% of the ingested dose in humans 

(Dinis-Oliveira et al. 2008). It has been suggested that PQ may be absorbed to a low 

extent through a specialized mechanism associated with the carrier-mediated transport 

system for choline on the brush-border membrane (Nagao et al. 1993). Additionally, 

studies with the rat small intestine crypt IEC-6 cell line, showed that putrescine 

competitively inhibited PQ uptake and that W-7, a putative calmodulin antagonist, reduced 

PQ uptake in a dose-dependent manner, thus suggesting the involvement of the 

polyamine transport system (Grabie et al. 1993). Moreover, given the similarity in the 

characteristics of polyamines and the y+ basic amino acid transport systems, the 

existence of a common transport site for polyamines and the basic amino acids in rat 

intestinal epithelial cells was already proposed (Sharpe and Seidel 2005). 

Taking these findings in consideration and since the most effective way to reduce 

PQ blood concentrations, and consequently limit its accumulation in the lung, is to inhibit 

its gastrointestinal absorption (Heylings et al. 2007), we sought to further elucidate the 

transport mechanisms involved in its intestinal uptake. For that purpose, substrates and 

inhibitors for choline, amino acids and polyamines transporters were used to clarify their 

involvement in the herbicide uptake and, consequently, in its toxicity. Caco-2 cells, which 

are derived from human colorectal adenocarcinoma, were used, since they are a reliable 

and validated in vitro model widely used for predicting drug intestinal absorption in 

humans (Barta et al. 2008; Huynh-Delerme et al. 2005; Watanabe et al. 2005; Yamashita 

et al. 2000).  
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2. MATERIALS AND METHODS 

2.1. Materials 

Paraquat (PQ), ethyl paraquat (EPQ), sodium borohydride (NaBH4), bovine serum 

albumin (BSA), choline (CHO) chloride, hemicolinium-3 (HC-3), L-arginine (ARG), L-lysine 

(LYS), L-valine (VAL), putrescine (PUT), norvaline (NOR), N-ethylmalemide (NEM), 

trifluoperazine (TFP), N-methyl-N-(trimethylsilyl)trifluoroacetamide (MSTFA) and (4,5-

dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium (MTT) bromide were obtained from Sigma 

(St. Louis, MO, USA). Reagents used in cell culture, including Dulbecco’s Modified 

Eagle’s Medium (DMEM) with 4.5 g/L glucose and GlutaMAXTM, non-essential amino 

acids (NEAA), heat inactivated fetal bovine serum (FBS), 0.25% trypsin/1 mM EDTA, 

antibiotic (10000 U/mL penicillin, 10000 µg/mL streptomycin), fungizone (250 µg/mL 

amphotericin B), human transferrin (4 mg/mL), phosphate-buffered saline solution (PBS) 

and Hanks’ balanced salt solution with Ca2+ and Mg2+ [HBSS (+/+)] were purchased from 

Gibco Laboratories (Lenexa, KS, USA). Bio-Rad DC protein assay kit was purchased from 

Bio-Rad (Hercules, CA, USA). C18 cartridges (Bond Elut® C18) were purchased from 

Agilent (California, USA). All other reagents used were of analytical grade or of the 

highest grade available. 

2.2. Caco-2 cell culture 

Caco-2 cells were routinely cultured in 75 cm2 flasks using DMEM with 4.5 g/L 

glucose and GlutaMAXTM, supplemented with 10% heat inactivated FBS, 1% NEAA, 1% 

antibiotic, 1% fungizone and 6 µg/mL transferrin. Cells were maintained in a 5% CO2–95% 

air atmosphere, at 37 ºC, and the medium was changed every 2 days. Cultures were 

passaged weekly/ by trypsinization (0.25% trypsin/1 mM EDTA). The cells used in all the 

experiments were taken between the 58th and 64th passages. In all experiments, the cells 

were seeded at the density of 60,000 cells/cm2, and used 4 days after seeding, when 

confluence was reached. 

2.3. Cytotoxicity assay 

The cytotoxicity of all compounds used in this study was initially evaluated at 24 h by 

the MTT reduction assay, in which mitochondrial activity is used to estimate cell viability. 

Briefly, the cells were seeded onto 96-well plates and, after reaching confluence, the cell 

culture medium was removed and replaced by fresh cell culture medium supplemented 

with CHO (0 - 500 µM), HC-3 (0 - 500 µM), ARG (500 µM), LYS (500 µM), VAL (500 µM), 

PUT (0 - 250 µM), NEM (0 - 5 µM) and TFP (0 - 20 µM). Twenty-four hours after 

exposure, the cell culture medium was removed, and fresh cell culture medium containing 
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0.5 mg/mL MTT was added, followed by incubation at 37 °C, in a humidified, 5% CO2-95% 

air atmosphere, for 1 h. After this incubation period, the cell culture medium was removed 

and the formed formazan crystals dissolved in 100% DMSO. The absorbance was 

measured at 550 nm in a multi-well plate reader (PowerWave X, Bio-Tek Instruments, 

Vermont, USA). The percentage of MTT reduction relative to that of the control cells was 

used as the cytotoxicity measure. Results are presented as mean ± SEM from 8 

independent experiments (performed in triplicate). 

2.4. Paraquat cytotoxicity - effect of choline and hemicolinium-3 

Paraquat cytotoxicity was evaluated by the MTT reduction assay, with or without 

incubation with CHO or HC-3, following two distinct protocols. Briefly, the cells were 

seeded onto 96-well plates, to obtain confluent monolayers at the day of the experiment. 

In the first protocol the cells were exposed to PQ (0 - 5000 µM) with or without 

simultaneous exposure to 100, 250 or 500 µM CHO or HC-3. In the second protocol, the 

cells were exposed to PQ (0 - 5000 µM) and six hours after CHO or HC-3 (100 µM) were 

added. In both protocols, cytotoxicity was evaluated 24 h after PQ exposure by the MTT 

reduction assay (as described in section 2.3). Results are presented as mean ± SEM from 

at least 4 independent experiments (performed in triplicate). 

2.5. Paraquat cytotoxicity - effect of putrescine 

Paraquat cytotoxicity was evaluated in Caco-2 cells by the MTT reduction assay, 

with or without simultaneous incubation with putrescine (PUT), a potent inhibitor of PQ 

uptake into lung tissue (Shimizu et al. 2001). Briefly, the cells were seeded onto 96-well 

plates to obtain confluent monolayers at the day of the experiment. After reaching 

confluence, the cells were exposed to PQ (0 - 5000 µM) in fresh cell culture medium with 

or without simultaneous exposure to 50, 100 or 250 µM PUT. Cytotoxicity was then 

evaluated 24 h after PQ exposure by the MTT reduction assay (as described in section 

2.3). 

Polyamines transport was reported to be calcium/calmodulin (Ca2+/CaM) sensitive 

(Sharpe and Seidel 2005). Therefore, PQ cytotoxicity was also evaluated with or without 

simultaneous exposure to 5, 10 or 20 µM trifluoperazine (TFP), a potent competitive 

inhibitor of the Ca2+/CaM complex (Alexander et al. 1988). Results are presented as mean 

± SEM from 6 independent experiments (performed in triplicate). 
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2.6. Paraquat cytotoxicity - effect of amino acids 

Paraquat cytotoxicity was evaluated in Caco-2 cells by the MTT assay, with or 

without simultaneous incubation with different amino acids. Briefly, the cells were seeded 

onto 96-well plates to obtain confluent monolayers at the day of the experiment. After 

reaching confluence, the cells were exposed to PQ (0 - 5000 µM) in fresh cell culture 

medium with or without simultaneous exposure to 500 µM ARG, LYS or VAL. PQ 

cytotoxicity was then evaluated 24 h after exposure by the MTT reduction assay (as 

described in section 2.3). Paraquat (0 - 5000 µM) cytotoxicity was further evaluated in the 

presence or absence of NEM (0.5, 1 and 5 µM), an inhibitor of the y+ lysine transport 

system (Sharpe and Seidel 2005). Results are presented as mean ± SEM from 6 

independent experiments (performed in triplicate). 

2.7. Quantification of paraquat intracellular levels 

PQ intracellular levels were measured in Caco-2 cells with or without simultaneous 

exposure to the tested compounds, to correlate the observed cytotoxicity with putative 

effects on PQ uptake. 

2.7.1. Preparation of standard solutions 

A PQ stock solution (5 mM) was prepared in PBS. Working PQ standard solutions 

were prepared through serial dilution of the stock standard solution with PBS (pH 7.4) to 

obtain a 0-100 µM calibration curve. A stock solution of the internal standard 

(ethylparaquat, EPQ) (1 mg/mL) was prepared in PBS. All stock solutions were stored at -

20 °C. 

2.7.2. Sample preparation 

Caco-2 cells were seeded onto 48-well plates, at a density of 60,000 cells/cm2 and 

incubated, after reaching confluence, with PQ (0, 500, 1000, 2500 or 5000 µM) in fresh 

cell culture medium, with or without simultaneous exposure to the tested compounds: 500 

µM CHO, 500 µM HC-3, 500 µM ARG, 500 µM LYS, 500 µM VAL, 250 µM PUT, 5 µM 

NEM and 20 µM TFP. Twenty-four hours after PQ exposure, the cell culture medium was 

removed and the cells washed three times with PBS (pH 7.4). The cells were then killed 

by freezing at -80 ºC with 1000 µL distilled water. After homogenization, the cell lysates 

were centrifuged at 3,000 g, for 10 min, at 4 ºC, and the supernatant used for PQ 

extraction and quantification. The cell pellet was dissolved in 0.3 M NaOH and protein 

content was quantified. 
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2.7.3. Paraquat extraction  

PQ extraction was performed as previously described with slight modifications (Silva 

et al. 2013). Briefly, samples or standards were pipetted into a 5 mL glass tube containing 

1.5 mL of PBS (pH 7.4) and 20 µL of EPQ solution (100 µg/mL). Ten milligrams of sodium 

borohydride (NaBH4) were added to the solution, followed by heating at 60 °C for 10 min, 

to reduce PQ and EPQ to their hydrogenated derivatives, HPQ and HEPQ, respectively. 

The analytes were then extracted by using solid-phase extraction (SPE) C18 cartridges, 

which were previously preconditioned with 2 mL methanol followed by 2 mL PBS (pH 7.4). 

The samples or standards were transferred to the C18 cartridges that were further 

washed with 2 mL of distilled water. HPQ and HEPQ elution was then performed with 2 

mL methanol and the eluate was evaporated at room temperature under a gentle nitrogen 

stream. The residue was dissolved in 100 μL methanol. 

2.7.4. Gas chromatography-ion trap-mass spectrometry (GC-IT/MS) analysis  

GC-IT/MS analyses of HPQ and HEPQ were performed using a Varian CP-3800 

gas chromatograph (USA) equipped with a VARIAN Saturn 4000 mass selective detector 

(USA) and a Saturn GC/MS workstation software version 6.8. A chromatographic column, 

VF-5 ms (30 m×0.25 mm i.d. ×0.25 µm film thickness) from VARIAN, was used. Two 

microliters of each sample or standard were injected using a Combi PAL automatic 

autosampler (Varian, Palo Alto, CA). The injector port was heated to 250 °C and was 

operated in splitless mode. The carrier gas, helium, was delivered at a constant flow rate 

of 1.0 mL/min. The oven temperature was 80 °C (for 1 min), then increased 2 °C/min until 

270 °C and held for 20 min. All mass spectra were acquired by electron impact (EI, 70 eV) 

in full scan mode. Ionization was maintained off during the first 2 min to avoid solvent 

overloading. The ion-trap detector was set as follows: the transfer line, manifold and trap 

temperatures were 280, 50 and 180 °C, respectively. The mass range was 50 to 600 m/z, 

with a scan rate of 6 scan/seconds. The emission current was 50 µA, and the electron 

multiplier was set in relative mode to autotune procedure. The maximum ionization time 

was 25,000 μseconds, with an ionization storage level of 35 m/z. Chromatographic peak 

areas of HPQ and HEPQ were determined by the reconstructed FullScan chromatogram 

(FSC) using specific ions for each compound. The ions selected for quantification were: 

m/z 96, 148, and 192 for HPQ, and m/z 110, 162, and 220 for HEPQ. Results are 

presented as mean ± SEM from 4 independent experiments (performed in duplicate). 
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2.8. Quantification of Lysine intracellular levels 

2.8.1. Preparation of standard solutions 

A stock solution of norvaline (NOR, 0.3 mg/ml), used as internal standard, was 

prepared in absolute ethanol and a stock solution of LYS (10 mM) was prepared in PBS 

(pH 7.4). Working LYS standard solutions were prepared through serial dilution of the 

stock standard solution in absolute ethanol added with 0.3 µg/mL NOR to obtain a 0-400 

µM calibration curve. All stock solutions were stored at -20 °C. 

2.8.2. Sample preparation 

Caco-2 cells were seeded onto 6-well plates, at a density of 60,000 cells/cm2, and 

incubated, after reaching confluence, with 3000 µM LYS in HBSS (+/+) in the presence or 

absence of 3000 µM ARG, 3000 µM VAL, PUT (3000 µM or 5000 µM), 5 µM NEM or 20 

µM TFP, at 37 ºC, for 30 min. Control cells, incubated only with HBSS (+/+), were also 

performed. The LYS uptake was stopped by aspiration of the incubation mixture, and the 

cells were washed three times with HBSS (+/+). After addition of 1000 µL absolute ethanol 

(containing 0.3 µg/mL NOR), cells were incubated for 20 min, at 40 ºC, to allow complete 

LYS extraction. After homogenization, the cell lysates were centrifuged at 3,000 g, for 10 

min, at 4 ºC, and the supernatant used for LYS derivatization and quantification. The cell 

pellet was dissolved in 0.3 M NaOH and protein content was quantified. 

2.8.3. Derivatization 

The samples supernatants and standards were evaporated to dryness at room 

temperature, under a gentle nitrogen stream. Fifty microliters of the derivatizing agent, 

MSTFA, were added to the residue, the vial was capped and vortexed, and heated at 40 

ºC, for 20 min. Finally, 50 µL of ethyl acetate were added to the derivatized 

samples/standards. 

2.8.4. Gas chromatography-ion trap-mass spectrometry analysis 

GC–IT/MS analysis was performed as previously described (Pereira et al. 2012) in a 

Varian CP-3800 gas chromatograph, coupled to a Varian Saturn 4000 mass selective ion 

trap detector (USA) and a Saturn GC/MS workstation software version 6.8. A VF-5 ms (30 

m x 0.25 mm x 0.25 µm) column from Varian was used in the analysis. The 

chromatographic conditions are described below. Two microliters of each sample or 

standard were injected using a CombiPAL automatic autosampler (Varian, Palo Alto, CA). 

The injector port was heated to 250 ºC. Injections were performed in split mode, with a 
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ratio of 1/40. The carrier gas was helium C-60 (Gasin, Portugal), at a constant flow of 1 

mL/min. The oven temperature was set at 100 ºC for 1 min then increasing 20 ºC min-1 to 

250ºC, held for 2 min, 10 ºC/min to 300 ºC and held for 10 min. All mass spectra were 

acquired in electron impact (EI) mode. Ionization was maintained off during the first 4 min 

to avoid solvent overloading. The ion trap detector was set as follows: transfer line, 

manifold and trap temperatures were 280, 50, and 180 ºC, respectively. The mass ranged 

from 50 to 600 m/z, with a scan rate of 6 scan/s. The electron multiplier was set in relative 

mode to auto tune procedure emission, with a current of 50 µA. The maximum ionization 

time was 25,000 µs, with an ionisation storage level of 35 m/z. The analysis was 

performed in full scan mode. Chromatographic peak areas of LYS and NOR were 

determined by the reconstructed FullScan chromatogram (FSC) using specific ions (m/z) 

for each compound. The ions selected for quantification were: m/z 84, 156, and 362 for 

LYS, and m/z 73, 144, and 218 for NOR. The LYS amount present in the cells extracts 

was calculated from the calibration curve of the respective standard. Results are 

presented as mean ± SEM from 4 independent experiments (performed in triplicate). 

2.9. Protein quantification 

The protein concentration was determined using the Bio-Rad DC protein assay kit, 

according to the manufacturer's instructions. Bovine serum albumin was used as protein 

standard.  

2.10. Statistical analysis 

All statistical analyses were performed with the GraphPad Prism version 6.00 for 

Windows (GraphPad Software, San Diego, California, USA). Normality of the data 

distribution was assessed by three different tests: KS normality test, D'Agostino & 

Pearson omnibus normality test and Shapiro-Wilk normality test. 

For the MTT reduction assay, statistical comparisons between groups were made 

using the nonparametric method of Kruskal–Wallis (one-way ANOVA on ranks), followed 

by the Dunn’s post hoc test. 

All concentration-response curves were fitted using least squares as the fitting 

method and the comparisons between curves (LOG EC50, TOP, BOTTOM and Hill slope) 

were made using the extra sum-of-squares F test. Statistical comparisons between 

groups were made using Two-way ANOVA, followed by the Sidak's multiple comparisons 

post hoc test. In all cases, p values lower than 0.05 were considered significant. 

For the quantification of PQ intracellular levels, statistical comparisons were made 

using Two-way ANOVA, followed by the Bonferroni’s multiple comparison post-hoc test. 
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For the quantification of LYS intracellular levels, statistical comparisons were made 

using One-way ANOVA, followed by the Bonferroni's multiple comparisons post hoc test. 

Details of the statistical analysis are described in each figure legend. In all cases, p 

values lower than 0.05 were considered significant. 
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3. RESULTS  

3.1. Test compounds cytotoxicity  

Prior to the evaluation of the possible effect of the selected test compounds on PQ 

cytotoxicity their own cytotoxicity was evaluated by the MTT reduction assay, 24 h after 

exposure, to select non-cytotoxic working concentrations. Overall, for all tested 

concentrations (0 - 500 μM choline and hemicolinium-3; 500 μM arginine, lysine and 

valine; 0 - 250 μM putrescine; 0 - 20.0 μM trifluoperazine; and 0 - 5.0 μM N-

ethylmaleimide) no significant mitochondrial dysfunction was observed in Caco-2 cells 

(Figure S1, Supplementary data). 

3.2. Paraquat cytotoxicity  

3.2.1. Effect of choline and hemicolinium-3 

Previous studies have implicated the carrier-mediated transport system for CHO on 

PQ absorption in the rat brush-border membrane (Nagao et al. 1993). Moreover, other 

studies have demonstrated that doxorubicin significantly decreased PQ accumulation and, 

consequently, its cytotoxicity in Caco-2 cells, partially due to the inhibition of the choline 

transporter (Silva et al. 2013). Thus, to assess the relative contribution of the carrier-

mediated transport system for CHO on PQ uptake, and consequently on its toxicity, we 

evaluated the effect of its natural substrate, CHO (100, 250 or 500 μM), on PQ 

cytotoxicity.  

 

Figure 1. (A) Paraquat concentration–response (cell death) curves with (PQ + CHO) or without 
(PQ) simultaneous exposure to choline (100, 250 or 500 µM). (B) Paraquat concentration-response 
(cell death) curves with (PQ + HC-3) or without (PQ) simultaneous exposure to hemicolinium-3 
(100, 250 or 500 µM).Results are presented as mean ± SEM from 4 independent experiments (performed in 
triplicate). Concentration–response curves were fitted using least squares as the fitting method and the 
comparisons between PQ and PQ + CHO or PQ + HC-3 curves (LOG EC50, TOP, BOTTOM and Hill slope) 
were made using the extra sum-of-squares F test. Statistical comparisons were made using Two-way ANOVA, 
followed by the Sidak's multiple comparisons post hoc test. (A) ****p < 0.0001 PQ + CHO 100 vs. PQ alone; #p 
< 0.05, ##p < 0.01, ####p < 0.0001 PQ + CHO 250 vs. PQ alone; $p < 0.05, $$p < 0.01, $$$$p < 0.0001 PQ + 
CHO 500 vs. PQ alone. (B) ***p < 0.001, ****p < 0.0001 PQ + HC-3 100 vs. PQ alone; #p < 0.05, ####p < 
0.0001 PQ + HC-3 250 vs. PQ alone; $$$p < 0.001, $$$$p < 0.0001 PQ + HC-3 500 vs. PQ alone. 
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Table 1. EC50 (half-maximum-effect concentration), TOP (maximal effect), BOTTOM (baseline) and 
Hill slope values of the paraquat concentration-response curves, with (PQ + CHO) or without (PQ) 
simultaneous exposure to choline (100, 250 and 500 µM).  

 PQ  PQ + CHO 100  PQ + CHO 250  PQ + CHO 500  

EC50 
(half-maximum-effect 
concentration, µM) 

1012 1262 1098 1091 

TOP 
(maximal cell death, % 

control) 
91.05 88.86 79.75 79.49 

BOTTOM 
(baseline, % control) 

2.179 1.170 0.09262 0.6233 

Hill slope 1.801 2.144 2.482 2.516 

LOG EC50 p value 
(comparison between 

LOG EC50 values) 

- 0.0157* 0.3027* 

0.2095$ 

0.3405* 

0.1797$ 

0.9405# 

TOP p value 
(comparison between 

TOP values) 

- 0.6671* 0.0128* 

0.0919$ 

0.0112* 

0.0770$ 

0.9514# 

BOTTOM p value 
(comparison between 

BOTTOM values) 

- 0.5722* 0.2229* 

0.5999$ 

0.3625* 

0.7860$ 

0.7783# 

Hill slope p value 
(comparison between 

Hill slope values) 

- 0.2956* 0.0621* 

0.4820$ 

0.0560* 

0.4413$ 

0.9490# 

Curve p value 
(Comparison between 

the Fitted Curves) 

- < 0.0001* < 0.0001* 

0.3678$ 

< 0.0001* 

0.3787$ 

0.9984# 

Concentration-response curves were fitted using least squares as the fitting method and the comparisons 
between the fitted curves were made using extra sum-of-squares F test. In all cases, p values lower than 
0.05 were considered significant. * Comparison vs. PQ; $ Comparison vs. PQ + CHO 100; # Comparison 
vs. PQ + CHO 250. 

 

As observed in Figure 1A, CHO, at all tested concentrations, caused a significant 

rightwards shift of the PQ concentration-response curves, resulting in significant 

differences in the overall comparison of the fitted curves (PQ + CHO) when compared to 

the PQ curve (Table 1). For 100 μM CHO, no significant differences were observed, 

neither in the maximal cell death (TOP), nor in baseline (BOTTOM) of the fitted PQ + CHO 

100 curve, when compared to the PQ curve (Table 1). Therefore, the EC50 value, which 

represents the half-maximum-effect concentration of the fitted curve, was used for 

comparison. As shown in Table 1, for 100 μM CHO, the observed rightwards shift of the 

PQ concentration-response curve was accompanied by a significant increase in the EC50 

value, when compared to the EC50 of the PQ curve (1262 μM vs. 1012 μM for PQ curve). 

For 250 and 500 μM CHO, significant differences were observed in the maximal cell death 

(TOP) of the fitted curves (Table 1). For this reason, the TOP values were used instead 

for the comparison between the different fitted curves. As observed in Table 1, for the 

higher CHO concentrations tested (250 and 500 μM), a significant decrease was observed 
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in the TOP values of the fitted curves (79.75 and 79.49 %, respectively). However, the 

observed protective effect of CHO on PQ cytotoxicity was not concentration-dependent as 

no significant differences exist in the overall comparison of all the PQ + CHO curves 

(Table 1). 

 
Table 2. EC50 (half-maximum-effect concentration), TOP (maximal effect), BOTTOM (baseline) and 
Hill slope values of the paraquat concentration-response curves, with (PQ + HC-3) or without (PQ) 
simultaneous exposure to hemicolinium-3 (100, 250 and 500 µM). 

 PQ  PQ + HC-3 100  PQ + HC-3 250  PQ + HC-3 500  

EC50 
(half-maximum-effect 
concentration, µM) 

1012 1527 1519 1654 

TOP 
(maximal cell death, 

 % control) 
91.05 94.08 92.07 94.08 

BOTTOM 
(baseline, % control) 

2.179 0.06233 1.248 0.3201 

Hill slope 1.801 1.722 1.852 1.733 

LOG EC50 p value 
(comparison between 

LOG EC50 values) 

- 0.0005* 0.0002* 

0.9773$ 

< 0.0001* 

0.7052$ 

0.8935# 

TOP p value 
(comparison between 

TOP values) 

- 0.6751* 0.8825* 

0.8496$ 

0.7017* 

0.9996$ 

0.9772# 

BOTTOM p value 
(comparison between 

BOTTOM values) 

- 0.2577* 0.6116* 

0.6148$ 

0.3159* 

0.9140$ 

0.8695# 

Hill slope p value 
(comparison between 

Hill slope values) 

- 0.7949* 0.8790* 

0.7542$ 

0.8299* 

0.9773$ 

0.9441# 

Curve p value 
(Comparison between 

the Fitted Curves) 

- < 0.0001* < 0.0001* 

0.9906$ 

< 0.0001* 

0.8902$ 

0.9895# 

Concentration-response curves were fitted using least squares as the fitting method and the comparisons 
between the fitted curves were made using extra sum-of-squares F test. In all cases, p values lower than 0.05 
were considered significant. * Comparison vs. PQ; $ Comparison vs. PQ + HC-3 100; # Comparison vs. PQ + 
HC-3 250. 

 

Hemicolinium-3 is a structural analogue of choline and a known competitive inhibitor 

of both Na+-dependent and Na+-independent choline transporters in many tissues 

(Kamath et al. 2003). For this reason, to further clarify the possible involvement of the 

choline transporter, PQ cytotoxicity was evaluated with or without simultaneous exposure 

to HC-3 (100, 250 or 500 μM) for 24 h. As observed in Figure 1B, the simultaneous 

exposure to HC-3, at all the tested concentrations, resulted in a significant rightwards shift 

of the PQ concentration-response curves (PQ + HC-3), which was accompanied by 

significant increases in the EC50 values (Table 2). In fact, the observed increases in the 

EC50 values for all PQ + HC-3 curves result from the notorious reduction in the cell death, 
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which was significant for the 1000 and 2500 μM PQ concentrations (Figure 1B). However, 

as observed for CHO, the HC-3 observed protective effect was concentration-independent 

with no significant differences neither in the overall comparison of the fitted curves, nor in 

the comparison of the individual parameters (LOG EC50, TOP, BOTTOM and Hill slope) 

(Table 2). 

PQ absorption in humans is estimated to be 1–5% over 1–6 h (Dinis-Oliveira et al. 

2008). Therefore, the protective effect of both CHO (100 μM) and HC-3 (100 μM) was also 

evaluated when adding the compounds 6 h after the beginning of PQ exposure. As no 

significant differences were obtained for the TOP and BOTTOM values of the fitted curves 

(Table 3), the EC50 values were used as comparative measure. As observed in Figure 2, 

both CHO (100 μM) and HC-3 (100 μM) significantly protected against PQ toxicity, as 

observed by the significant rightwards shifts of the PQ + CHO 100 and PQ + HC-3 100 

curves, and confirmed by significant increases in the EC50 values of the fitted curves 

(Table 3). In fact, the simultaneous exposure to 100 μM CHO or 100 μM HC-3 resulted in 

a significant increase in the EC50 value to 1335 and 1511 μM, respectively, when 

compared to the EC50 of the PQ curve (1011 μM) (Table 3). Additionally, for both 

compounds, the observed rightwards shifts of the fitted curves result from the significant 

reduction in cell death, with significant effect for the 500 - 2500 μM PQ concentration 

range (Figure 2). Interestingly, no significant differences exist between the two different 

experimental designs, since no differences were observed between the fitted curves when 

PQ and CHO or HC-3 were incubated simultaneously and when CHO and HC-3 were 

added 6 h after the beginning of PQ exposure (Table S1, Supplementary data). 

 

Figure 2. (A) Paraquat concentration–response (cell death) curves with (PQ + CHO) or without 
(PQ) exposure to choline (100 µM) 6 h after PQ. (B) Paraquat concentration–response (cell death) 
curves with (PQ + HC-3) or without (PQ) exposure to hemicolinium-3 (100 µM) 6 h after PQ. Results 
are presented as mean ± SEM from 5 independent experiments (performed in triplicate). Concentration–
response curves were fitted using least squares as the fitting method and the comparisons between PQ and 
PQ + CHO or PQ + HC-3 curves (LOG EC50, TOP, BOTTOM and Hill slope) were made using the extra sum-
of-squares F test. Statistical comparisons between groups were made using Two-way ANOVA, followed by 
the Sidak's multiple comparisons post hoc test (*p<0.05; **p<0.01; ****p<0.0001 vs. PQ alone). 

 



____________________________________________________________________Manuscript V 
 

  267 
 

Table 3. EC50 (half-maximum-effect concentration), TOP (maximal effect), BOTTOM (baseline) and 
Hill slope values of the paraquat concentration-response curves, with (PQ + CHO and PQ + HC-3) 
or without (PQ) exposure to choline or hemicolinium-3 (100 µM) 6 h after the beginning of PQ 
exposure. 

 PQ  PQ + CHO 100  PQ + HC-3 100  

EC50 
(half-maximum-effect 
concentration, µM) 

1011 1335 1511 

TOP 
(maximal cell death, 

 % control) 
92.74 91.46 91.10 

BOTTOM 
(baseline, % control) 

2.698 1.627 0.2614 

Hill slope 1.727 1.744 2.033 

LOG EC50 p value 
(comparison between 

LOG EC50 values) 
- 0.0076 < 0.0001 

TOP p value 
(comparison between 

TOP values) 
- 0.8432 0.7798 

BOTTOM p value 
(comparison between 

BOTTOM values) 
- 0.5605 0.1912 

Hill slope p value 
(comparison between 

Hill slope values) 
- 0.9561 0.3479 

Curve p value 
(Comparison between 

the Fitted Curves) 
- < 0.0001 < 0.0001 

Concentration-response curves were fitted using least squares as the fitting method 
and the comparisons between PQ and PQ + CHO or PQ + HC-3 curves were made 
using extra sum-of-squares F test. In all cases, p values lower than 0.05 were 
considered significant. 

3.2.2. Effect of putrescine and trifluoperazine 

PQ lung uptake was described to occur through the polyamine uptake system (Rose 

et al. 1976; Rose et al. 1974; Smith 1982). In addition, it appears to be competitively 

inhibited by a number of naturally occurring amines, such as putrescine, cadaverine, 

spermidine and spermine (Smith 1982; Wyatt et al. 1988). Thus, in the present study, the 

effect of putrescine (50, 100 or 250 μM) on PQ cytotoxicity was evaluated in Caco-2 cells. 

As shown in Figure 3A, PUT, at all the tested concentrations, caused a significant 

protective effect against the PQ cytotoxicity, as demonstrated by the rightwards shift of all 

the PQ + PUT curves, resulting in significant differences in the cell death observed mainly 

for the higher PQ concentrations (500 - 5000 μM). For 50 μM PUT, no significant 

differences were observed in both TOP and BOTTOM values of the fitted curves, when 

compared to the PQ curve (Table 4). Therefore, the EC50 value was used as comparative 

measure.  
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Figure 3. (A) Paraquat concentration–response (cell death) curves with (PQ + PUT) or without 
(PQ) simultaneous exposure to putrescine (50, 100 or 250 µM). (B) Paraquat concentration–
response (cell death) curves with (PQ + TFP) or without (PQ) simultaneous exposure to 
trifluoperazine (5, 10 or 20 µM). Results are presented as mean ± SEM from 6 independent experiments 
(performed in triplicate). Concentration–response curves were fitted using least squares as the fitting method 
and the comparisons between the fitted curves (LOG EC50, TOP, BOTTOM and Hill slope) were made using 
the extra sum-of-squares F test. Statistical comparisons between groups were made using Two-way ANOVA, 
followed by the Sidak's multiple comparisons post hoc test. (A) **p < 0.01, ****p < 0.0001 PQ + PUT 50 vs. PQ 
alone; ##p < 0.01, ####p < 0.0001 PQ + PUT 100 vs. PQ alone; $$p < 0.01, $$$$p < 0.0001 PQ + PUT 250 vs. PQ 
alone. (B) ****p < 0.0001 PQ + TFP 5 vs. PQ alone; ####p < 0.0001 PQ + TFP 10 vs. PQ alone; $$$$p < 0.0001 
PQ + TFP 20 vs. PQ alone. 

 

Simultaneous exposure to 50 μM PUT significantly increased the EC50 value of PQ 

cytotoxicity (1786 μM vs. 1088 μM for PQ curve). For 100 and 250 μM PUT, although 

significant differences were observed in the EC50 values (Table 4), since the TOP values 

of the PQ + PUT curves were significantly different from the TOP value of the PQ curve, 

the maximal cell death was the parameter used for comparison between the fitted curves. 

Simultaneous exposure to 100 and 250 μM PUT resulted in a significant decrease in the 

TOP value to 81.13 and 78.69 %, respectively (Table 4). In addition, the PQ + PUT 100 

and PQ + PUT 250 curves were significantly different from the PQ + PUT 50 curve, with a 

significant reduction in PQ-induced toxicity for the 1000-5000 μM PQ concentration range 

(Table 4 and Figure S2A, supplementary data). Although no significant effects were 

observed in the EC50 values of the PQ + PUT curves (Table 4), it was observed a 

significant decrease in the TOP value of the PQ + PUT 250 curve, when compared to the 

PQ + PUT 50 curve. 

Previous studies have demonstrated that the polyamine transport, in cultured 

gastrointestinal epithelial cells, is Ca2+/CaM sensitive (Groblewski et al. 1992; Scemama 

et al. 1993; Sharpe and Seidel 2005). Therefore, PQ cytotoxicity was further evaluated 

with or without simultaneous exposure to trifluoperazine (TFP - 5, 10 or 20 µM), a potent 

competitive inhibitor of the Ca2+/CaM complex. As observed in Figure 3B, simultaneous 

exposure to TFP significantly decreased PQ cytotoxicity (rightwards shift of all the PQ + 

TFP curves, when compared to the PQ curve), shown also by the significant decrease in 

the cell death observed for the higher PQ concentrations (1000 - 5000 μM). Additionally, 
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as shown in Table 5, a significant increase in the EC50 value was observed for all TFP 

concentrations (1827, 1871 and 1964 μM for PQ + TFP 5, 10 and 20 μM, respectively, vs. 

1088 μM for the PQ curve). Furthermore, no significant differences were observed neither 

in the overall comparison of all the PQ + TFP curves, nor in the EC50 and TOP values 

(Table 5). 

 
Table 4. EC50 (half-maximum-effect concentration), TOP (maximal effect), BOTTOM (baseline) and 
Hill slope values of the paraquat concentration-response curves, with (PQ + PUT) or without (PQ) 
simultaneous exposure to putrescine (50, 100 and 250 µM). 

 PQ  PQ + PUT 50  PQ + PUT 100  PQ + PUT 250  

EC50 
(half-maximum-effect 
concentration, µM) 

1088 1786 1840 1863 

TOP 
(maximal cell death, % 

control) 
94.16 96.25 81.13 78.69 

BOTTOM 
(baseline, % control) 

2.301 2.389 1.258 2.024 

Hill slope 2.137 1.799 2.382 2.764 

LOG EC50 p value 
(comparison between 

LOG EC50 values) 

- < 0.0001* < 0.0001* 

0.8529$ 

< 0.0001* 

0.7836$ 

0.9264#

TOP p value 
(comparison between 

TOP values) 

- 0.7486* 0.0488* 

0.1106$ 

0.0093* 

0.0384$ 

0.7507# 

BOTTOM p value 
(comparison between 

BOTTOM values) 

- 0.9505* 0.4487* 

0.5827$ 

0.8372* 

0.8557$ 

0.7200# 

Hill slope p value 
(comparison between 

Hill slope values) 

- 0.1947* 0.4617* 

0.2010$ 

0.0915* 

0.0514$ 

0.5479# 

Curve p value 
(Comparison between 

the Fitted Curves) 

- < 0.0001* < 0.0001* 

0.0001$ 

< 0.0001* 

< 0.0001$ 

0.9653#

Concentration-response curves were fitted using least squares as the fitting method and the comparisons 
between the fitted curves were made using extra sum-of-squares F test. In all cases, p values lower than 
0.05 were considered significant. * Comparison vs. PQ; $ Comparison vs. PQ + PUT 50; # Comparison vs. 
PQ + PUT 100.  
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Table 5. EC50 (half-maximum-effect concentration), TOP (maximal effect), BOTTOM (baseline) and 
Hill slope values of the paraquat concentration-response curves, with (PQ + TFP) or without (PQ) 
simultaneous exposure to trifluoperazine (5, 10 and 20 µM). 

 PQ  PQ + TFP 5 PQ + TFP 10 PQ + TFP 20  

EC50 
(half-maximum-effect 
concentration, µM) 

1088 1827 1871 1964 

TOP 
(maximal cell death, % 

control) 
94.16 ~100.0 96.62 99.30 

BOTTOM 
(baseline, % control) 

2.301 3.671 0.1232 1.037 

Hill slope 2.137 1.388 1.404 1.358 

LOG EC50 p value 
(comparison between 

LOG EC50 values) 

- < 0.0001* < 0.0001* 

0.9176$ 

< 0.0001* 

0.7856$ 
0.8973# 

TOP p value 
(comparison between 

TOP values) 

- 0.4508* 0.8163* 

0.8067$ 

0.6634* 

0.9637$ 

0.8950# 

BOTTOM p value 
(comparison between 

BOTTOM values) 

- 0.3620* 0.1681* 

0.1231$ 

0.4210* 

0.2470$ 

0.7083# 

Hill slope p value 
(comparison between 

Hill slope values) 

- 0.0081* 0.0074* 

0.9559$ 

0.0051* 

0.9190$ 

0.9071# 

Curve p value 
(Comparison between 

the Fitted Curves) 

- < 0.0001* < 0.0001* 

0.0689$ 

< 0.0001* 

0.2271$ 

0.9844# 

Concentration-response curves were fitted using least squares as the fitting method and the comparisons 
between the fitted curves were made using extra sum-of-squares F test. In all cases, p values lower than 
0.05 were considered significant. * Comparison vs. PQ; $ Comparison vs. PQ + TFP 5; # Comparison vs. 
PQ + TFP 10. 

3.2.3. Effect of amino acids and N-ethylmalemide 

Previous studies performed in the IEC-6 small intestinal epithelial cell line, have 

demonstrated that polyamines and basic amino acids seem to be transported by a 

common carrier, the y+ amino acid carrier (Sharpe and Seidel 2005). Thus, the effect of 

two basic amino acids, arginine and lysine, on PQ cytotoxicity was evaluated. The 

obtained results show a significant rightwards shift of the PQ + ARG 500 and PQ + LYS 

500 curves, when compared to the PQ curve (Figure 4A), thus indicating a significant 

protection against PQ toxicity. Additionally, this protective effect was clearly significant for 

the higher PQ concentrations (500 - 5000 μM) (Figure 4A). In the presence of 500 μM 

ARG, a significant increase in the EC50 value of the fitted curve was observed, when 

compared to the PQ curve (2649 μM vs. 1088 μM for the PQ curve), thus confirming the 

significant protective effect of this amino acid against PQ-induced toxicity (Table 6).  
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Figure 4. (A) Paraquat concentration–response (cell death) curves with [(PQ + ARG), (PQ + LYS) 
and (PQ + VAL)] or without (PQ) simultaneous exposure to arginine (500 µM), lysine (500 µM) and 
valine (500 µM). (B) Paraquat concentration–response (cell death) curves with (PQ + NEM) or 
without (PQ) simultaneous exposure to NEM (0.5, 1.0 or 5.0 µM). Results are presented as mean ± 
SEM from 6 independent experiments (performed in triplicate). Concentration–response curves were fitted 
using least squares as the fitting method and the comparisons between the fitted curves (LOG EC50, TOP, 
BOTTOM and Hill slope) were made using the extra sum-of-squares F test. Statistical comparisons were 
made using Two-way ANOVA, followed by the Sidak's multiple comparisons post hoc test. In all cases, p 
values lower than 0.05 were considered significant. (A) ****p < 0.0001 PQ + ARG 500 vs. PQ alone; ##p < 
0.01, ####p < 0.0001 PQ + LYS 500 vs. PQ alone; $$$$p < 0.0001 PQ + VAL 500 vs. PQ alone. (B) ****p < 
0.0001 PQ + NEM 0.5 vs. PQ alone; ####p < 0.0001 PQ + NEM 1.0 vs. PQ alone; $$$$p < 0.0001 PQ + NEM 
5.0 vs. PQ alone. 

 

The simultaneous exposure to LYS (500 μM) resulted in a significant decrease in 

the TOP value of the PQ + LYS 500 curve, being, therefore, this parameter used for 

comparison between the fitted curves (Table 6). In the presence of 500 μM LYS the TOP 

value significantly decreased to 81.87 %, when compared to the PQ curve (94.16 %) 

(Table 6).  

N-ethylmalemide (NEM), a well-known inhibitor of the y+ transport system, is 

described to significantly reduce lysine and arginine uptake in IEC-6 cells (Pan et al. 1995; 

Sharpe and Seidel 2005). Thus, to further clarify the involvement of this transport system, 

the effect of NEM (0.5, 1.0 and 5.0 μM) on PQ toxicity was evaluated after 24 h of 

simultaneous exposure to PQ. As observed in Figure 4B, simultaneous exposure to NEM, 

at all the tested concentrations, significantly protected Caco-2 cells against PQ toxicity, as 

demonstrated by the significant rightwards shift of all the PQ + NEM curves, when 

compared to the PQ curve. Moreover, it was observed that the NEM protective effect was 

clearly significant at the higher PQ concentrations (1000 - 5000 μM). Additionally, the 

observed differences in the fitted PQ + NEM curves were associated with significant 

increases in the EC50 values (1969, 2076 and 1995 μM for PQ + NEM 0.5, 1.0 and 5.0 

µΜ, respectively, vs. 1088 μM for PQ curve) (Table 7). However, no significant differences 

were observed neither in the overall comparison of all the PQ + NEM curves, nor in the 

comparison of the individual parameters (LOG EC50, TOP, BOTTOM and Hill slope), thus 

indicating a NEM concentration independent protective effect on PQ cytotoxicity (Table 7). 
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Table 6. EC50 (half-maximum-effect concentration), TOP (maximal effect), BOTTOM (baseline) and 
Hill slope values of the paraquat concentration-response curves, with [(PQ + ARG), (PQ + LYS) 
and (PQ + VAL)] or without (PQ) simultaneous exposure to Arginine, Lysine and Valine (500 µM), 
respectively. 

 PQ  PQ + ARG 500  PQ + LYS 500  PQ + VAL 500  

EC50 
(half-maximum-effect 
concentration, µM) 

1088 2649 1782 1562 

TOP 
(maximal cell death, % 

control) 
94.16 89.29 81.87 91.64 

BOTTOM 
(baseline, % control) 

2.301 0.7903 0.1060 1.580 

Hill slope 2.137 1.754 2.430 1.564 

LOG EC50 p value 
(comparison between 

LOG EC50 values) 

- < 0.0001* < 0.0001* 

0.1027$ 

0.0019* 

0.0931$ 

0.1844# 

TOP p value 
(comparison between 

TOP values) 

- 0.7783* 0.0449* 

0.6946$ 

0.7731* 

0.9313$ 

0.7161# 

BOTTOM p value 
(comparison between 

BOTTOM values) 

- 0.3176* 0.1144* 

0.7874$ 

0.6774* 

0.8022$ 

0.8786# 

Hill slope p value 
(comparison between 

Hill slope values) 

- 0.3648* 0.3719* 

0.3420$ 

0.0502* 

0.7806$ 

0.3135# 

Curve p value 
(Comparison between 

the Fitted Curves) 

- < 0.0001* < 0.0001* 

0.0067$ 

< 0.0001* 

< 0.0001$ 

< 0.0001# 

Concentration-response curves were fitted using least squares as the fitting method and the comparisons 
between PQ and PQ + ARG, PQ + LYS or PQ + VAL curves were made using extra sum-of-squares F 
test. In all cases, p values lower than 0.05 were considered significant. * Comparison vs. PQ; $ 
Comparison vs. PQ + ARG 500; # Comparison vs. PQ + LYS 500. 

 

Previous findings have also demonstrated that PQ-induced brain toxicity was 

partially dependent on neutral amino acid transporter-mediated PQ uptake (Shimizu et al. 

2001). Therefore, to further elucidate the involvement of this carrier-mediated system on 

PQ intestinal absorption and toxicity, the effect of the neutral amino acid valine on PQ 

cytotoxicity was evaluated 24 h after simultaneous exposure to PQ. As shown in Figure 

4A, a significant rightwards shift of the PQ + VAL 500 curve was observed as a result of 

significant decrease in cell death obtained for the higher PQ concentrations (1000 - 5000 

μM). Moreover, the reduction in the cell death resulted in a significant increase in the EC50 

value of the PQ + VAL 500 curve (1562 μM vs. 1088 μM for PQ curve) (Table 6).  

 

 

 



____________________________________________________________________Manuscript V 
 

  273 
 

Table 7. EC50 (half-maximum-effect concentration), TOP (maximal effect), BOTTOM (baseline) and 
Hill slope values of the paraquat concentration-response curves, with (PQ + NEM) or without (PQ) 
simultaneous exposure to NEM (0.5, 1.0 and 5.0 µM). 

 PQ  PQ + NEM 0.5  PQ + NEM 1.0  PQ + NEM 5.0  

EC50 
(half-maximum-effect 
concentration, µM) 

1088 1969 2076 1995 

TOP 
(maximal cell death, % 

control) 
94.16 98.68 94.94 95.76 

BOTTOM 
(baseline, % control) 

2.301 0.8071 1.165 2.595 

Hill slope 2.137 1.478 1.621 1.677 

LOG EC50 p value 
(comparison between 

LOG EC50 values) 

- < 0.0001* < 0.0001* 

0.8570$ 

< 0.0001* 

0.9645$ 

0.8812# 

TOP p value 
(comparison between 

TOP values) 

- 0.6566* 0.9405* 

0.8389$ 

0.8671* 

0.8683$ 

0.9611# 

BOTTOM p value 
(comparison between 

BOTTOM values) 

- 0.3362* 0.4581* 

0.8821$ 

0.8508* 

0.4605$ 
0.5384# 

Hill slope p value 
(comparison between 

Hill slope values) 

- 0.0184* 0.0928* 

0.7416$ 

0.1517* 

0.6556$ 

0.9028# 

Curve p value 
(Comparison between 

the Fitted Curves) 

- < 0.0001* < 0.0001* 

0.5896$ 

< 0.0001* 

0.9236$ 

0.7337# 

Concentration-response curves were fitted using least squares as the fitting method and the comparisons 
between the fitted curves were made using extra sum-of-squares F test. In all cases, p values lower than 
0.05 were considered significant. * Comparison vs. PQ; $ Comparison vs. PQ + NEM 0.5; # Comparison vs. 
PQ + NEM 1.0. 

3.3. Paraquat intracellular levels  

To evaluate if the observed protective effects against PQ-induced toxicity results 

from a reduced intracellular PQ accumulation, PQ intracellular levels were quantified with 

or without simultaneous exposure to the tested compounds. After exposure to 1000, 2500 

and 5000 µM PQ alone, the intracellular PQ levels were 56.21, 150.07 and 189.98 nmol 

PQ/mg protein, respectively. As shown in Figure 5, all compounds caused a marked 

reduction in PQ intracellular levels, which was significant for the higher PQ concentrations 

(1000 - 5000 µM). Simultaneous exposure to CHO (500 µM) significantly reduced PQ 

intracellular levels to 90.89 and 109.32 nmol PQ/mg protein, for 2500 and 5000 µM PQ + 

CHO, respectively (Figure 5A). For HC-3 (500 µM), the reduction on PQ accumulation 

was significant even at lower PQ exposure concentrations (25.88, 94.50 and 118.86 nmol 

PQ/mg protein, for 1000, 2500 and 5000 µM PQ + HC-3, respectively). No significant 



Manuscript V____________________________________________________________________ 
 

 

274 
 

differences were observed in the PQ intracellular levels between the simultaneous 

exposure to CHO or HC-3. 

 

Figure 5. Paraquat intracellular levels, in Caco-2 cells, with or without simultaneous exposure to 
(A) CHO (500 µM) or HC-3 (500 µM), (B) PUT (250 µM) or TFP (20 µM), (C) ARG (500 µM), LYS 
(500 µM) or NEM (5 µM) and (D) VAL (500 µM), for 24 h. Results are presented as Mean ± SEM from 4 
independent experiments (performed in duplicate). Statistical comparisons were made using Two-way 
analysis of variance followed by the Bonferroni’s Multiple Comparison post hoc test. (A) ****p < 0.0001 PQ + 
CHO vs. PQ alone; #p < 0.05; ####p < 0.0001 PQ + HC-3 vs. PQ alone; (B) **p < 0.01 PQ + PUT vs. PQ alone; 
##p < 0.01 PQ + TFP vs. PQ alone; (C) ***p < 0.001 PQ + ARG vs. PQ alone; ##p < 0.01 PQ + LYS vs. PQ 
alone; $p < 0.05; $$$p < 0.001 PQ + NEM vs. PQ alone; (D) **p < 0.01; ****p < 0.0001 PQ + VAL vs. PQ alone. 

 

Simultaneous exposure to PUT (250 µM) resulted in a significant decrease in PQ 

intracellular levels to 100.16 and 130.94 nmol PQ/mg protein, for 2500 and 5000 µM PQ + 

PUT, respectively (Figure 5B). A similar effect was observed in the presence of the well-

known competitive inhibitor of the Ca2+/CaM complex, TFP (20 µM) (104.15 and 137.82 

nmol PQ/mg protein, for 2500 and 5000 µM PQ + TFP, respectively). Additionally, no 

significant differences were observed in PQ intracellular levels between the simultaneous 

exposure to PUT or TFP. 

As observed in Figure 5C, PQ intracellular accumulation was also significantly 

decreased by the simultaneous exposure to the basic amino acids ARG (500 µM) and 

LYS (500 µM), resulting in a significant decrease in the intracellular PQ content for the two 

higher PQ concentrations (94.85 and 123.02 nmol PQ/mg protein for 2500 and 5000 µM 
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PQ + ARG, respectively; 99.95 and 134.18 nmol PQ/mg protein for 2500 and 5000 µM PQ 

+ LYS, respectively).  

Additionally, a similar effect was observed for the simultaneous exposure to the 

inhibitor of the y+ transport system, NEM (5 µM). However, significant differences were 

observed at lower PQ exposure concentrations (20.53, 99.29 and 116.94 nmol PQ/mg 

protein for 1000, 2500 and 5000 µM PQ + NEM, respectively). Nevertheless, no 

significant differences were observed in PQ intracellular levels among the simultaneous 

exposure to ARG, LYS or NEM.  

Similarly, simultaneous exposure to VAL (500 µM) markedly reduced the 

intracellular PQ accumulation, with significant differences observed for the 2500 and 5000 

µM PQ concentrations (94.80 and 106.55 nmol PQ/mg protein for 2500 and 5000 µM PQ 

+ VAL, respectively) (Figure 5D). 

3.4. Lysine uptake 

Previous studies performed in IEC-6 cells demonstrated that polyamines (PUT) and 

basic amino acids (ARG and LYS) seem to be actively transported by a common carrier, 

the y+ transport system. To further clarify if polyamines and basic amino acids could be 

sharing a common transport site in Caco-2 cells, LYS intracellular levels were evaluated 

after 30 min of incubation with LYS (3000 µM), with or without simultaneous incubation 

with PUT (3000 µM and 5000 µM). Basal LYS intracellular concentrations measured in the 

control incubations were of 14.67 nmol LYS/mg protein. After incubation with 3000 µM 

LYS the intracellular levels of the amino acid raised to 82.88 nmol LYS/mg protein. As 

observed in Figure 6A, PUT significantly inhibited LYS uptake, at both tested 

concentrations (40.64 and 42.00 nmol LYS/mg protein, for 3000 and 5000 µM PUT + LYS, 

respectively), thus confirming that, in this cell model, both compounds are transported by 

a common transport system. Moreover, as the y+ transport system is Ca2+/CaM sensitive 

(Sharpe and Seidel 2005), we further tested the effect of TFP (20 µM) on LYS uptake. As 

shown in Figure 6A, TFP significantly reduced LYS uptake to 31.79 nmol LYS/mg protein. 

By using the y+ transport system inhibitor, NEM (5 µM), similar results were found, 

as observed by the significant reduction in the intracellular LYS content to 40.41 nmol 

LYS/mg protein, thus demonstrating that LYS uptake into Caco-2 cells is, at least partially, 

mediated by this transport system (Figure 6B). Also, the same inhibitory effect on LYS 

uptake was observed in the presence of ARG (3000 µM), a basic amino acid analogous to 

LYS, which may be competing for the same transport system, that reduced intracellular 

LYS to (41.82 nmol LYS/mg protein (Figure 6B). 
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Figure 6. Effect of the tested compounds on lysine uptake in Caco-2 cells. Uptake of lysine (3000 
µM) was measured after 30 min of incubation, in the presence or absence of (A) PUT(3000 µM or 
5000 µM) or TFP (20 µM) or (B) ARG (3000 µM), NEM (5 µM) or VAL (3000 µM). Lysine 
intracellular levels of Caco-2 cells exposed only HBSS were also determined (CONT). Results are 
presented as mean ± SEM from 4 independent experiments (performed in triplicates). Statistical comparisons 
were made using One-way analysis of variance followed by the Bonferroni’s Multiple Comparison post hoc 
test (***p < 0.001, ****p < 0.0001  vs. LYS). 

 

Additionally, the neutral amino acid, VAL, also significantly reduced LYS intracellular 

levels to 44.63 nmol LYS/mg protein (Figure 6B). Thus, the obtained results, suggest the 

presence of an additional LYS transport system in our experimental model, since the y+ 

transport system was already reported to present a very weak interaction with neutral 

amino acids (Deves and Boyd 1998; Pan et al. 1995). 
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4. DISCUSSION 

Our data indicates the existence of more than one transport system contributing for 

PQ uptake into Caco-2 cells, since a significant reduction in PQ uptake and cytotoxicity in 

this model of the human intestinal epithelium was elicited by all the compounds involved in 

the screened transport systems. 

PQ is an extremely toxic herbicide responsible for thousands of deaths due to 

accidental or intentional ingestion. While the lung is the target organ for PQ toxicity, 

almost 70 % of PQ poisonings result from oral ingestion of the compound. Consequently, 

the absorption across the gastrointestinal epithelium limits its toxicity (Dinis-Oliveira et al. 

2008; Grabie et al. 1993). Although the first step in the treatment of human PQ 

intoxications should aim primarily the reduction of the herbicide gastrointestinal 

absorption, little is known about PQ intestinal uptake, namely the transporters specifically 

involved. PQ absorption seems to occur primarily in the small intestine (and only poorly 

from the stomach) (Dinis-Oliveira et al. 2008; Heylings 1991), and is estimated to be 1–

5% of the ingested dose in humans over 1–6 h (Dinis-Oliveira et al. 2008). In the present 

study, Caco-2 cells, derived from human colorectal adenocarcinoma, were used to 

investigate the intestinal absorption of the herbicide, since these cells mimic the 

enterocytes of the small intestine (Barta et al. 2008) and are widely accepted as a reliable 

in vitro model for predicting drug intestinal absorption in humans (Barta et al. 2008; 

Huynh-Delerme et al. 2005; Watanabe et al. 2005; Yamashita et al. 2000). 

The range of PQ concentrations tested in the present study is within what is 

expected to be attained in vivo in a real human intoxication scenario. In fact, in most of the 

reported cases of human PQ intoxication, 25–50 mL of the PQ formulations are typically 

ingested (Dinis-Oliveira et al. 2009). Most of the commercially available formulations 

contain 20 g/100 mL of PQ, which would translate into an orally ingested dose of 

approximately 5-10 g that is absorbed up to a maximum of 5% of the ingested dose 

(Roberts 2011). Thus, under such intoxication scenarios, blood concentrations up to 0.1 

g/L (0.4 mM) could be easily achieved. Moreover, PQ concentrations in the target organs, 

such as the lung, can be 6 to 10 times higher than those in the blood (Dinis-Oliveira et al. 

2008), and in the intestine, high concentrations may also be expected since almost all of 

the ingested dose comes into contact with the enterocytes. Additionally, PQ 

concentrations found at autopsy are probably lower than the peak concentrations that are 

expected to occur after intake, as a consequence of the emergency-care treatments used 

to control the intoxications, such as hemodialysis and charcoal hemoperfusion. 

PQ absorption from the gastrointestinal tract was previously associated with the 

carrier-mediated transport system for choline on the rat brush-border membrane (Nagao 
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et al. 1993). This transport system is expressed in Caco-2 cells and was already 

characterized as being saturable, pH-, Ca2+- and temperature-dependent and independent 

of the inwardly directed Na+ gradient (Crowe et al. 2002; Kamath et al. 2003). Additionally, 

it is significantly inhibited by excess of choline and by HC-3, a structural analog of choline, 

which is a known competitive inhibitor of both Na+-dependent and Na+-independent 

choline transporters in many tissues (Kamath et al. 2003). In accordance, our results 

clearly demonstrated that this transport system is involved on PQ uptake in Caco-2 cells, 

since the simultaneous exposure to PQ and CHO or HC-3 resulted in a significant 

reduction on PQ intracellular accumulation and, consequently, in a significant reduction in 

cell death after PQ exposure. Moreover, the concentration-independent protective effect 

of CHO and HC-3 on PQ cytotoxicity may be explained by the saturable activity of this 

transport system (Kamath et al. 2003). Additionally, the similar protective effect observed 

for CHO and HC-3 both under simultaneous exposure to the herbicide and 6 h after the 

beginning of PQ exposure may be due to a slow PQ uptake by these cells, given the slow 

absorption rate of PQ reported in humans (Dinis-Oliveira et al. 2008). In accordance with 

our results, the choline uptake system was also reported to be involved in PQ uptake in 

RBE4 cells, an in vitro model of the rat’s BBB (Vilas-Boas et al. 2013). Indeed, PQ’s 

cytotoxic profile was assessed in the presence of HC-3, and a significant increase in cell 

viability was observed (significant increase in PQ’s EC50 value), being this effect 

accompanied by a significant decrease in PQ intracellular levels observed in the presence 

of the competitive inhibitor of the choline-uptake system (Vilas-Boas et al. 2013). 

The polyamine uptake system was the first transporter implicated in paraquat 

absorption, being responsible for the high accumulation rate of the herbicide in the lung 

(Rose et al. 1974; Smith 1982; Wyatt et al. 1988). All mammalian cells are equipped with 

an efficient polyamine uptake system (Milovic et al. 2001). Furthermore, this system was 

already implicated in PQ uptake into the IEC-6 rat small intestine epithelial cell line 

(Grabie et al. 1993). In these cells, the polyamine uptake system was characterized as 

being energy-dependent, saturable, and modulated by a Ca2+/CaM complex-dependent 

mechanism (Grabie et al. 1993; Groblewski et al. 1992). Moreover, PQ absorption was 

greatly inhibited by PUT and the herbicide acted as a competitive inhibitor of PUT uptake 

(Grabie et al. 1993). However, PQ uptake was slower than that of PUT indicating a lower 

affinity for the transporter (Grabie et al. 1993). In accordance, our results also 

demonstrated that PUT and PQ enter into Caco-2 cells through a common transporter, 

since the simultaneous exposure to the polyamine significantly decreased PQ intracellular 

levels and therefore, its cytotoxic effects. Additionally our data showed that, in Caco-2 

cells, PQ uptake was also regulated by a Ca2+/CaM complex-dependent mechanism, as 

observed by the significant reduction in the herbicide intracellular content and, 
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consequently, in its toxicity, after simultaneous exposure to the potent calmodulin 

antagonist, TFP. However, mechanisms other than polyamine uptake system may also 

contribute to the marked effect of PUT on PQ uptake into Caco-2 cells. In fact, studies 

performed in IEC-6 cells have demonstrated that polyamines and basic amino acids, such 

as LYS and ARG (both are positively charged at neutral pH), are absorbed through a 

common carrier, the y+ transport system, given the structural similarity between the 

compounds (Sharpe and Seidel 2005). Additionally, in that cellular model, PUT inhibited 

approximately 75 % of LYS transport, thus confirming that a significant fraction of the 

lysine transport is polyamine sensitive (Sharpe and Seidel 2005). In accordance, our 

results clearly demonstrated that LYS uptake was also significantly inhibited by PUT, 

indicating the presence of a common transporter in Caco-2 cells, which seems to be the 

y+ transport system, given that it was sensitive to NEM, an accepted inhibitor of the y+ 

transport system (Pan et al. 1995; Sharpe and Seidel 2005). Also, and as observed by 

Sharpe and Seidel (2005) with the IEC-6 cells, LYS uptake into Caco-2 cells was 

Ca2+/CaM sensitive, resulting in the observed significant reduction in LYS uptake in the 

presence of TFP. Thus, the protective effect against PQ induced toxicity observed under 

simultaneous exposure of Caco-2 cells to PUT, ARG, LYS, NEM and TFP is a 

consequence of a decreased PQ uptake, which seems to be partially mediated by the y+ 

transport system. 

Amino acid transport systems are usually classified according to the substrate 

specificity and the sodium dependency of the rate of transport (Deves and Boyd 1998). 

Four transport systems for cationic amino acids have already been characterized namely, 

the y+, b0,+, y+L, and B0,+ systems (Deves and Boyd 1998). Among these, the y+ system is 

selective for cationic amino acids (interacting weakly with neutral amino acids), whereas 

the other three systems accept a wider range of substrates, including both cationic and 

neutral amino acids (Deves and Boyd 1998). However, these systems differ in their 

interactions with inorganic monovalent ions (Deves and Boyd 1998). According to the 

sodium dependency, the systems y+ and b0,+ are Na+-independent, while the system  B0,+ 

is Na+-dependent (Deves and Boyd 1998). On the other hand, the system y+L exhibits a 

more complex pattern in its cation interaction, being the transport of basic amino acids, 

such as LYS, unaffected by Na+ replacement, whereas its affinity toward neutral amino 

acids is dramatically decreased if Na+ in the medium is replaced by K+ (Deves and Boyd 

1998). Our results indicate that uptake systems other than the y+ transport system seem 

to be involved in PQ and LYS uptake, since a significant reduction on both PQ and LYS 

accumulation was observed in the presence VAL, a neutral amino acid.  

Previous studies performed in Caco-2 cells have already characterized the 

transporters involved in the LYS uptake (Ferruzza et al. 1995; Thwaites et al. 1996). In 
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fact, studies performed by Ferruzza et al. (1995) investigated the transepithelial transport 

of LYS across monolayers of differentiated Caco-2 cells and showed that the uptake into 

the cells occurs via one or more sodium-independent carriers, which were able to 

transport cationic amino acids but also shared by large neutral amino acids (Ferruzza et 

al. 1995). Moreover, Thwaites et al. (1996) evaluating the fluxes of 10 µM LYS across the 

apical membrane of Caco-2 cells demonstrated that bo,+, y+ and a nonsaturable 

component represented 47%, 27%, and 26%, respectively, of the total apical LYS uptake 

(Thwaites et al. 1996).The uptake of arginine, another basic amino acid, in the apical 

membranes of Caco-2 cells was also evaluated and equally characterized as mediated 

predominantly by sodium-independent mechanisms (Pan et al. 1995; Pan et al. 2002). 

Moreover, the major pathways involved were y+ (70%) and y+L or b0,+ (30%) systems (Pan 

et al. 2002). Thus, given the significant reduction in LYS uptake caused by VAL, the 

significant reduction observed on PQ toxicity in the presence of this neutral amino acid 

suggests that PQ, LYS (or ARG) and VAL may be sharing a common carrier, namely the 

y+L or b0,+ systems. Furthermore, significant differences were observed between the 

curves fitted in the presence of the different amino acids tested (Figure S2B, 

Supplementary data). From the obtained results, VAL was the compound that afforded a 

smaller protection. Therefore, the higher protection observed under simultaneous 

exposure to ARG and LYS may be explained by the involvement of more than one 

cationic amino acid transport system, whereas VAL protection does not involves, at least, 

the y+ transport system, which, as demonstrated by NEM protective effects, has an 

important role in PQ intestinal uptake.  

Contrarily to our results, in the RBE4 cells, PQ demonstrated to unlikely access 

these cells through the basic amino acid and through the neutral amino acid transport 

systems, since no significant differences were observed in PQ’s cytotoxic profile in the 

presence of 500 μM ARG and VAL, respectively (Vilas-Boas et al. 2013). Also, and as 

expected since the polyamine transporters are not expressed in the BBB structure (Shin 

et al. 1985), the polyamine uptake system was also not involved in PQ uptake, given the 

lack of significant differences in PQ cytotoxicity observed in the presence of 500 μM PUT 

(Vilas-Boas et al. 2013). 

In conclusion, to the best of our knowledge, this is the first study investigating 

different mechanisms involved in the PQ absorption through the human intestinal 

epithelium. PQ uptake into intestinal epithelial cells, namely in Caco-2 cells, seems to be a 

Ca2+/CaM and NEM sensitive process and more than one transport system appear to be 

involved. Knowing that limiting PQ intestinal absorption should be the first approach to 

reduce its toxic effects, the development of specific and potent inhibitors of these 

transporters may constitute a potential new source of antidotes against PQ intoxications. 
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SUPPLEMENTARY DATA 

Supplementary Figures 

 

Figure S1. Compounds cytotoxicity in Caco-2 cells 24 h after exposure, evaluated by the MTT 
reduction assay: (A) Choline (0 – 500 µM); (B) Hemicolinium-3 (0 – 500 µM); (C) Putrescine (0 – 
250 µM); (D) Trifluoperazine (0 – 20 µM); (E) Arginine (500 µM), Lysine (500 µM) and Valine (500 
µM) and (F) NEM (0 – 5 µM). Results are presented as mean ± SEM from 8 independent experiments 
(performed in triplicate). Statistical comparisons were made using the nonparametric method of Kruskal–
Wallis (one-way ANOVA on ranks), followed by Dunn’s post hoc test (*p<0.05; **p<0.01; ****p<0.0001 vs. 
control). For putrescine, a minor, though significant, effect on MTT reduction was observed for the higher 
concentrations tested (96.5 % and 96.6% for PUT 100 and 250 μM, respectively, as compared to control). 
Similar results were observed for 1.0 and 5.0 μM NEM (98.1 and 96.1 % of MTT reduction, respectively). 
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Figure S2. (A) Paraquat concentration–response (cell death) curves with (PQ + PUT) 
simultaneous exposure to putrescine (50, 100 or 250 µM). (B) Paraquat concentration–response 
(cell death) curves with (PQ + ARG) simultaneous exposure to 500 µM arginine (PQ + ARG 500), 
500 µM lysine (PQ + LYS 500) or 500 µM valine (PQ + VAL 500). Results are presented as mean ± 
SEM from 6 independent experiments (performed in triplicate). Concentration–response curves were fitted 
using least squares as the fitting method and the comparisons between the fitted curves (LOG EC50, TOP, 
BOTTOM and Hill slope) were made using the extra sum-of-squares F test. Statistical comparisons between 
groups were made using Two-way ANOVA, followed by the Sidak's multiple comparisons post hoc test. (A) 
*p<0.05, **p<0.01 PQ + PUT 100 vs. PQ + PUT 50; #p<0.05; ###p<0.001 PQ + PUT 250 vs. PQ + PUT 50. (B) 
*p<0.05, ***p<0.001, ****p<0.0001 PQ + ARG 500 vs. PQ + VAL 500; ###p<0.001 PQ + LYS 500 vs. PQ + VAL 
500; $$p<0.01 PQ + ARG 500 vs. PQ + LYS 500. 
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Supplementary Tables 

Table S1.  EC50 (half-maximum-effect concentration), TOP (maximal effect), BOTTOM (baseline) 
and Hill slope values of the paraquat concentration-response curves, in the presence of choline 
(100 µM) or hemicolinium-3 (100 µM), under simultaneous exposure or 6 h after the beginning of 
PQ exposure. 

 PQ + CHO 100 PQ + HC-3  100 

 
simultaneous 

exposure 
6 h after PQ 

exposure 
simultaneous 

exposure 
6 h after PQ 

exposure 

EC50 
(half-maximum-effect 
concentration, µM) 

1262 1335 1527 1511 

TOP 
(maximal cell death, % 

control) 
88.86 91.46 94.08 91.10 

BOTTOM 
(baseline, % control) 

1.170 1.627 0.06233 0.2614 

Hill slope 2.144 1.744 1.722 2.033 

LOG EC50 p value 
(comparison between 

LOG EC50 values) 
- 0.6808* - 0.9505# 

TOP p value 
(comparison between 

TOP values) 
- 0.7153* - 0.7430# 

BOTTOM p value 
(comparison between 

BOTTOM values) 
- 0.8275* - 0.9292# 

Hill slope p value 
(comparison between 

Hill slope values) 
- 0.3072* - 0.4374# 

Curve p value 
(Comparison between 

the Fitted Curves) 
- 0.6635* - 0.8507# 

Concentration-response curves were fitted using least squares as the fitting method and the comparisons 
between the fitted curves were made using extra sum-of-squares F test. In all cases, p values <0.05 were 
considered significant (*p values for the comparison between the PQ + CHO 100 curves; #p values for the 
comparison between the PQ + HC3-3 100 curves). 
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ABSTRACT  

The induction of P-glycoprotein (P-gp), an ATP-dependent efflux pump, has been 

proposed as a strategy against the toxicity induced by P-gp substrates such as the 

herbicide paraquat. The aim of this study was to screen five newly synthetized 

thioxanthonic derivatives, a group known to interact with P-gp, as potential inducers of the 

pump´s expression and/or activity, and to evaluate whether they would afford protection 

against paraquat-induced toxicity in Caco-2 cells. 

All five thioxanthones (20 µM) caused a significant increase in both P-gp expression 

and activity as evaluated by flow cytometry using the UIC2 antibody and rhodamine 123, 

respectively. Additionally, it was demonstrated that the tested compounds, when present 

only during the efflux of rhodamine 123, rapidly induced an activation of P-gp. The tested 

compounds also increased P-gp ATPase activity in MDR1-Sf9 membrane vesicles, 

indicating that all derivatives acted as P-gp substrates. Paraquat cytotoxicity was 

significantly reduced in the presence of four thioxanthone derivatives and this protective 

effect was reversed upon incubation with a specific P-gp inhibitor. 

In silico studies showed that all the tested thioxanthones fitted onto a previously 

described three-feature P-gp induction pharmacophore. Moreover, in silico interactions 

between thioxanthones and P-gp in the presence of paraquat suggested that a co-

transport mechanism may be operating. Based on the in vitro activation results, a 

pharmacophore model for P-gp activation was built, which will be of further use in the 

screening for new P-gp activators. 

In conclusion, the study demonstrated the potential of the tested thioxanthonic 

compounds in protecting against toxic effects induced by P-gp substrates through P-gp 

induction and activation. 
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i.p. – Intraperitoneal 
MFI - Mean fluorescence intensity 
MTT - (4,5-Dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide   
MDR - Multi drug resistance  
NR - Neutral red 
NEAA - Nonessential amino acids 
PBS - Phosphate buffered saline solution 
P-gp - P-glycoprotein  
RHO 123 - Rhodamine 123 
TM - transmembrane 
TXs - Thioxanthones 
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1. INTRODUCTION 

P-glycoprotein (P-gp), an important member of the ATP-binding cassette 

superfamily of transporters (Ambudkar et al. 1999; Chang 2003; Gottesman et al. 2002; 

Silverman 1999), was the first identified efflux protein that was associated with the multi-

drug-resistant (MDR) phenomenon in cancer chemotherapy (Juliano and Ling 1976). 

Although P-pg is highly expressed in MDR tumor cells, it is also present in non-neoplasic 

cells, with the highest expression levels in excretory and barrier tissues, showing a 

polarized expression and broad substrate specificity (Thiebaut et al. 1987). In fact, P-gp 

can export a large number of structurally and pharmacologically unrelated hydrophobic 

drugs, including anticancer drugs, cardiac glycosides, calcium channel blockers and 

immunosuppressants (Cordon-Cardo et al. 1990; Gottesman et al. 2002). 

Since its discovery in 1976, many scientific approaches have been conducted for 

the development of P-gp inhibitors and included structure and ligand based design 

methods (Palmeira et al. 2012a).  However, the search for P-gp activators or inducers has 

been mainly performed by random screening. P-gp is inducible by many drugs, including 

dexamethasone, rifampicin, the herbal antidepressant St John’s wort (hyperforin and 

hypericin) and several antineoplasic drugs (doxorubicin, daunorubicin and vinblastine) 

(Zhou 2008). It has been previously hypothesised that an increase in the efflux capacity of 

P-gp could be used as an effective intracellular protection mechanism to limit the toxicity 

of its substrates, namely of the widely used paraquat (PQ) herbicide. In fact, in vitro 

studies have demonstrated that doxorubicin, a potent P-gp inducer, was able to strongly 

increase both P-gp expression and activity in Caco-2 cells, resulting in a significant 

decrease in the herbicide toxicity as a result of a decreased PQ intracellular accumulation 

(Silva et al. 2011; Silva et al. 2013b). There is also in vivo evidence for such a protective 

mechanism since the administration of dexamethasone (100 mg/kg i.p.) 2 h after the rats 

being exposed to a lethal PQ dose (25 mg/kg i.p.), significantly increased the expression 

of P-gp in the lungs of these animals, increasing their survival rate by 50% (Dinis-Oliveira 

et al. 2006). 

Thioxanthones (TXs), S-heterocycles with a dibenzo-γ-thiopyrone scaffold, 

constitute an interesting class of molecules with proved biological properties, namely 

antitumor activity and P-gp modulation (Paiva et al. 2013). In fact, previous studies have 

already reported the ability of aminated thioxanthones to act as inhibitors of P-gp  with 

improved efficacy in sensitizing a resistant P-gp overexpressing cell line (K562Dox) to 

doxorubicin (Palmeira et al. 2012b). In those studies, some of the tested thioxanthones 

caused a significant decrease in the rhodamine 123 (RHO 123) accumulation ratio, an 
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effect compatible with a possible P-gp activation (Palmeira et al. 2012b), although no 

further studies were conducted to better clarify their mode of action.  

Thus, the aim of the present work was the screening of five newly synthetized 

thioxanthonic derivatives (Figure 1) as possible inducers of P-gp expression and/or 

activity. Additionally, we sought to elucidate whether these compounds could protect 

Caco-2 cells against the toxicity induced by PQ, in an attempt to develop new antidotes 

using this efficient antidotal pathway. There is currently no specific treatment for PQ 

intoxications and the mortality rates are extremely high, causing thousands of deaths 

every year (Dinis-Oliveira et al. 2008). 

Computational methods, in particular ligand-protein docking programs, have 

become essential in any drug discovery program, including in the search for new P-gp 

modulators (Klepsch et al. 2011; Kothandan et al. 2011; Palmeira et al. 2012b). 

Estimating binding affinities of ligands within a receptor allows the identification of the 

energetically most favourable poses, based on its complementarity to the target in terms 

of shape and properties (Meng et al. 2011; Mohan et al. 2005). Therefore, using a 

previously published P-gp model (Palmeira et al. 2012b), we aimed to explore the 

possible binding modes of the thioxanthonic activators in silico and to build a common 

pharmacophore for P-gp activators, which can be used to predict new ligands, as it has 

been previously performed for P-gp inhibitors and substrates (Cianchetta et al. 2005; Jain 

et al. 2009; Li et al. 2007; Pajeva and Wiese 2002; Palmeira et al. 2011), but not yet for P-

gp activators. 

 

Figure 1. Thioxanthones (TXs 1-5) investigated in this study: 1-[(3-hydroxypropyl)amino]-
4-propoxy-9H-thioxanthen-9-one (TX 1), 1-chloro-4-hydroxy-9H-thioxanthen-9-one (TX 2), 
1-{[2-(1,3-benzodioxol-5-yl)ethyl]amino}-4-propoxy-9H-thioxanthen-9-one (TX 3), 1-[(2-
methylpropyl)amino]-4-propoxy-9H-thioxanthen-9-one (TX 4), 1-(propan-2-ylamino)-4-
propoxy-9H-thioxanthen-9-one (TX 5). 
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2. MATERIALS AND METHODS 

2.1. Materials 

Rhodamine 123 (RHO 123), cyclosporine A, (4,5-dimethylthiazol-2-yl)-2,5-diphenyl 

tetrazolium (MTT) bromide and neutral red (NR) solution were obtained from Sigma (St. 

Louis, MO, USA). Reagents used in cell culture, including Dulbecco’s modified Eagle’s 

medium (DMEM) with 4.5 g/L glucose  and GlutaMAXTM, nonessential amino acids 

(NEAA), heat inactivated fetal bovine serum (FBS), 0.25% trypsin/1 mM EDTA, antibiotic 

(10000 U/mL penicillin, 10000 µg/mL streptomycin), fungizone (250 µg/mL amphotericin 

B), human transferrin (4 mg/mL), phosphate-buffered saline solution (PBS) and Hank’s 

balanced salt solution (HBSS) were purchased from Gibco Laboratories (Lenexa, KS). P-

glycoprotein monoclonal antibody (clone UIC2), conjugated with fluorescein 

isothiocyanate (FITC), was purchased from Abcam (Cambridge, United Kingdom). IgG2a 

(negative mAb control to UIC2), conjugated with FITC, was obtained from ImmunoTools 

GmbH (Friesoythe, Germany). Flow cytometry reagents (BD FacsFlow™ and Facs 

Clean™) were purchased from Becton, Dickinson and Company (San Jose, CA, USA). 

MDR1 Predeasy ATPase assay kit was purchased from Solvo Biotechnology (Szeged, 

Hungary). GF120918 [9,10-dihydro-5-methoxy-9-oxo-N-[4-[2-(1,2,3,4-tetrahydro-6,7-

dimethoxy-2-isoquinolinyl)ethyl]phenyl]-4-acridinecarboxamide] was a generous gift from 

GlaxoSmithKline (Hertfordshire, United Kingdom). All the reagents used were of analytical 

grade or of the highest grade available. 

The synthesis of thioxanthones 1-5 was performed according to the described 

procedure (Palmeira et al. 2012b). 

2.2. Caco-2 cell culture 

Caco-2 cells were routinely cultured in 75 cm2 flasks using DMEM medium 

supplemented with 10% heat inactivated FBS, 1% NEAA, 1% antibiotic, 1% fungizone and 

6 µg/mL transferrin. Cells were maintained in a 5% CO2-95% air atmosphere, at 37ºC, and 

the medium was changed every 2 days. Cultures were passaged weekly by trypsinization 

(0.25% trypsin/1 mM EDTA). The cells used for all the experiments were taken between 

the 59th and 65th passages. In all experiments, the cells were seeded at a density of 

60,000 cells/cm2, and used 4 days after seeding, when confluence was reached. 

2.3. Compounds cytotoxicity assays 

Thioxanthones (0 – 100.0 µM) cytotoxicity was evaluated 24 h after exposure by the 

MTT reduction and by the neutral red (NR) uptake assays. 
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2.3.1.  MTT reduction assay 

Thioxanthones cytotoxicity was evaluated by the MTT reduction assay, in which 

mitochondrial activity is used to estimate cell viability. For that purpose, the cells were 

seeded onto 96-well plates and exposed, after reaching confluence, to the five tested TXs 

(0 – 100.0 µM) in fresh cell culture medium for 24 h. At the selected time point, the cell 

culture medium was removed, followed by the addition of fresh cell culture medium 

containing 0.5 mg/mL MTT and incubation at 37 °C in a humidified, 5% CO2-95% air 

atmosphere for 1 h. After this incubation period, the cell culture medium was removed and 

the formed formazan crystals dissolved in 100% DMSO. The absorbance was measured 

at 550 nm in a multi-well plate reader (PowerWave X, Bio-Tek Instruments, Vermont, 

USA). The percentage of MTT reduction relative to that of the control cells was used as 

the cytotoxicity measure. Results are presented as mean ± SEM from 5 independent 

experiments (performed in triplicate).  

2.3.2.  Neutral red uptake assay 

The NR uptake assay is based on the ability of viable cells to incorporate and bind 

the supravital dye neutral red in the lysosomes, thus providing a quantitative estimation of 

the number of viable cells in a culture. The cells were seeded onto 96-well plates at a 

density of 60,000 cells/cm2, and exposed, after reaching confluence, to the five tested TXs 

(0 – 100.0 µM) in fresh cell culture medium. Twenty-four hours after exposure, the cells 

were incubated with neutral red (50 µg/mL in cell culture medium) at 37 °C, in a 

humidified, 5% CO2-95% air atmosphere, for 90 min. After this incubation period, the cell 

culture medium was removed, the dye absorbed only by viable cells extracted (with 

absolute ethyl alcohol /distilled water (1:1) containing 5% acetic acid), and the absorbance 

measured at 540 nm in a multi-well plate reader (PowerWave X, Bio-Tek Instruments). 

The percentage of NR uptake relative to that of the control cells was used as the 

cytotoxicity measure. Results are presented as mean ± SEM from 5 independent 

experiments (performed in triplicate).  

2.4. Evaluation of P-glycoprotein expression  

For the in vitro evaluation of P-gp expression, the cells were seeded onto 48-well 

plates, at a density of 60,000 cells/cm2 and exposed, four days after seeding, to the five 

tested TXs (20.0 µM) in fresh cell culture medium for 24 h. After the incubation period, the 

cells were washed twice with HBSS and harvested by trypsinization (0.25% trypsin /1mM 

EDTA) to obtain a cellular suspension. The cells were then centrifuged (300 g, for 10 min, 

at 4 ºC) and suspended in PBS buffer (pH 7.4) containing 10% FBS and P-gp antibody 
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[UIC2] conjugated with FITC. The antibody dilution used in this experiment was applied 

according to the manufacturer's instructions for flow cytometry. Mouse IgG2a_FITC was 

used as an isotype-matched negative control to estimate non-specific binding of the FITC-

labelled anti-P-glycoprotein antibody [UIC2]. The cells were then incubated for 30 min at 

37°C in the dark. After this incubation period, the cells were washed twice with PBS buffer 

(pH 7.4) containing 10% heat inactivated FBS, centrifuged (300 g for 10 min), suspended 

in ice-cold PBS and kept on ice until analysis. Fluorescence measurements of isolated 

cells were performed with a flow cytometer (FACSCalibur, Becton-Dickinson Biosciences). 

The green fluorescence of FITC-UIC2 antibody was measured by a 530 ± 15 nm band-

pass filter (FL1). Acquisition of data for 15,000 cells was gated to include viable cells on 

the basis of their forward and side light scatters and the propidium iodide (4 µg/mL) 

incorporation (propidium iodide interlaces with a nucleic acid helix with a resultant 

increase in fluorescence intensity emission at 615 nm). Logarithmic fluorescence was 

recorded and displayed as a single parameter histogram. The geometric mean of 

fluorescence intensity (GeoMean) for 15,000 cells was the parameter used for comparison 

(calculated as percentage of control). Non labelled cells (with or without TXs) were also 

analysed in each experiment by a 530 ± 15 nm band-pass filter (FL1) in order to detect a 

possible contribution from cells autofluorescence to the analysed fluorescence signals. 

Results are presented as mean ± SEM from at least 3 independent experiments 

(performed in triplicate).  

2.5. Evaluation of P-glycoprotein transport activity  

The P-gp transport activity was evaluated by flow cytometry using 1 µM RHO 123 as 

a P-gp fluorescent substrate. For that purpose, two different protocols were used: RHO 

123 efflux in the presence of TXs and RHO 123 efflux in cells pre-exposed to TXs for 24 

h.  

2.6. RHO 123 efflux assay in the presence of thioxanthones 

Caco-2 cells were seeded onto 75 cm2 flasks and, after reaching confluence, 

washed twice with HBSS and harvested by trypsinization (0.25% trypsin /1mM EDTA) to 

obtain a cellular suspension. This cell suspension was then divided into aliquots of 

500,000 cells/mL. The cells were centrifuged (300 g, for 10 min, at 4 ºC), suspended in 

PBS buffer (pH 7.4) containing 10% heat inactivated FBS, 1 µM RHO 123 and the P-gp 

inhibitor cyclosporine A (10.0 µM), and incubated at 37 ºC for 30 min to allow maximum 

RHO 123 accumulation. After the accumulation of the fluorescent substrate, the cells were 

submitted to an efflux phase, where the energy-dependent P-gp function was re-
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established by removing the P-gp inhibitor (cyclosporine A), and by adding an energy 

source (DMEM supplemented with 4.5 g/L glucose). For that purpose, after the inhibited 

accumulation (IA) phase, the cells were washed twice with ice-cold PBS with 10% heat 

inactivated FBS, centrifuged (300 g for 10 min, at 4 °C) and resuspended in DMEM 

medium containing 4.5 g/L glucose, with or without the tested TXs (20.0 µM), and 

incubated for 45 min at 37 °C. After this efflux period, the cells were washed twice with 

ice-cold PBS with 10% heat inactivated FBS, and resuspended in ice-cold PBS 

immediately before analysis. The fluorescence measurements of isolated cells were 

performed as described in section 2.4. The green intracellular fluorescence of RHO 123 

was measured by a 530 ± 15 nm band-pass filter (FL1). When P-gp activity increases, the 

amount of RHO 123 effluxed from the cells is higher and accompanied by a decrease in 

the fluorescence intensity due to the corresponding decrease in the intracellular RHO 123 

content. As P-gp activity is inversely proportional to the intracellular fluorescence intensity, 

the inverse of mean fluorescence intensity (1/MFI) was the parameter used for 

comparison and the results expressed as percentage of control. Results are presented as 

mean ± SEM from 6 independent experiments (performed in triplicate).  

2.6.1.  RHO 123 efflux assay in Caco-2 cells  pre-expose to  thioxanthones for 

24 h 

Caco-2 cells were seeded onto 24-well plates, at a density of 60,000 cells/cm2, to 

obtain confluent monolayers at the day of the experiment. Four days after seeding, the 

cells were exposed to TXs (20.0 µM), in fresh cell culture medium, for 24 h. After this 

incubation period the cells were washed twice with HBSS and harvested by trypsinization 

(0.25% trypsin /1mM EDTA) to obtain a cellular suspension. The cells were then 

submitted to an inhibited accumulation (IA) phase as described in section 2.5.1. After the 

IA phase, the cells were washed twice with ice-cold PBS with 10% heat inactivated FBS, 

centrifuged (300 g for 10 min, at 4°C) and divided into two aliquots. The first aliquot was 

submitted to an efflux phase performed under inhibited conditions (inhibited RHO 123 

accumulation followed by inhibited RHO 123 efflux in the presence of the P-gp inhibitor, 

cyclosporine A– IAIE). The second aliquot was submitted to an efflux phase performed 

under normal conditions (inhibited RHO 123 accumulation followed by RHO 123 efflux in 

the absence of P-gp inhibitor – IAE). For the efflux phase the cells were suspended in 

DMEM medium containing 4.5 g/L glucose, with or without 10.0 µM cyclosporine A, and 

incubated for 45 min at 37 °C. After this efflux period, the cells were washed twice with 

ice-cold PBS with 10% heat inactivated FBS, and resuspended in ice-cold PBS 

immediately before analysis. The fluorescence measurements of isolated cells were 
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performed as described in section 2.4. The green intracellular fluorescence of RHO 123 

was measured by a 530 ± 15 nm band-pass filter (FL1). The ratio between MFI of IAIE 

and MFI of IAE was the parameter used for comparison, and the results expressed as 

percentage of control. Results are presented as mean ± SEM from 5 independent 

experiments (performed in triplicate).  

2.7. Evaluation of P-glycoprotein ATPase activity  

P-gp ATPase activity was evaluated using the MDR1 Predeasy ATPase assay kit 

according to the manufacturer’s instructions. Briefly, MDR1-Sf9 membrane vesicles (4 

μg/well) were incubated in 50 μL ATPase assay buffer with 2 mM ATP and TXs (20.0 μM) 

for 10 min at 37 °C, with or without simultaneous incubation with 1.2 mM sodium 

orthovanadate (Na3VO4). The reaction was stopped by adding 100 µL of developer 

solution to each well, followed by 100 µL of blocker solution and an additional 30 min 

incubation at 37 ºC. The absorbance was measured at 590 nm, in a multi-well plate 

reader (BioTek Instruments, Vermont, US), reflecting the amount of inorganic phosphate 

(Pi) liberated by the transporter which is proportional to its activity.  

In the present assay, MDR1-Sf9 membrane vesicles were used which, apart from P-

gp, contain other ATPases. As P-gp is effectively inhibited by Na3VO4, P-gp ATPase 

activity was measured as the vanadate sensitive portion of the total ATPase activity. Thus, 

ATPase activities were determined as the difference of Pi liberation measured with and 

without 1.2 mM sodium orthovanadate (vanadate-sensitive ATPase activity) and 

expressed as nmol Pi liberated/mg protein/min. Results are presented as mean ± SEM 

from 4 independent experiments (performed in duplicate). Controls conducted in the 

absence of TXs were also tested and the corresponding vanadate-sensitive ATPase 

activity referred to as baseline vanadate-sensitive ATPase activity.  

2.8. Paraquat cytotoxicity assays 

Paraquat (PQ) cytotoxicity was evaluated in Caco-2 cells by the NR uptake assay, 

with and without simultaneous incubation with the tested TXs (20.0 μM). Briefly, the cells 

were seeded onto 96-well plates to obtain confluent monolayers at the day of the 

experiment. After reaching confluence, the cells were exposed to PQ (0–7500 μM) in fresh 

cell culture medium in the presence or absence of the studied TXs. Cytotoxicity was 

evaluated 24 h after exposure by the NR uptake assay as previously described in section 

2.3.2. Results are presented as mean ± SEM from 6 independent experiments (performed 

in triplicate).  
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To confirm the involvement of P-gp in the TXs protective effects, these incubations 

were repeated in the presence of a well-known and potent P-gp inhibitor, GF120918 

(Dorner et al. 2009; Kanaan et al. 2009), at two noncytotoxic concentrations as evaluated 

by the NR uptake assay, performed as described above (10.0 µM for TX 1-5 and 20.0 µM 

for TX 5). Results are presented as mean ± SEM from at least 4 independent experiments 

(performed in triplicate).  

2.9. Statistical analysis 

All statistical calculations were performed with the GraphPad Prism version 6.00 for 

Windows (GraphPad Software, San Diego California, USA). Normality of the data 

distribution was assessed by three different tests: KS normality test, D'Agostino & 

Pearson omnibus normality test and Shapiro-Wilk normality test. For data with parametric 

distribution, statistical comparisons were made using the parametric method of One-way 

ANOVA, followed by the Bonferroni's multiple comparisons post hoc test. For data with 

nonparametric distribution, statistical comparisons were estimated using the 

nonparametric method of Kruskal–Wallis (one-way ANOVA on ranks), followed by the 

Dunn’s post hoc test. In experiments with two variables, statistical comparisons between 

groups were made using Two-way ANOVA, followed by the Sidak's multiple comparisons 

post hoc test. 

In the PQ cytotoxicity assays, concentration-response curves were fitted using least 

squares as the fitting method and the comparisons between curves (LOG EC50, TOP, 

BOTTOM, and Hill Slope) were made using the extra sum-of-squares F test. Details of the 

performed statistical analysis are described in each Figure legend. In all cases, p values 

lower than 0.05 were considered significant. 

2.10. Docking of thioxanthones on P-gp model 

The 3D structures of the small molecules TX 1-5 were drawn using HyperChem 7.5 

(Froimowitz 1993), being minimized by the semi-empirical Polak-Ribiere conjugate 

gradient method (RMS<0.1 kcal.Å-1. mol-1) (Zhang et al. 2006). 

Docking simulations between the P-gp model built based on Sav1866 [successfully 

used in the discovery of P-gp modulators in (Palmeira et al. 2012b)] and TXs 1-5, as well 

as other known P-gp activators (Palmeira et al. 2011; Palmeira et al. 2012b; Sousa et al. 

2013; Sterz et al. 2009) (Table 5), or PQ, and pairs of small molecules (PQ together with a 

TX) were undertaken in AutoDock Vina (Scripps Research Institute, USA) (Seeliger and 

de Groot 2010; Trott and Olson 2009). AutoDock Vina considered the target conformation 

as a rigid unit while the ligands were allowed to be flexible and adaptable to the target. 
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Vina searched for the lowest binding affinity conformations and returned nine different 

conformations for each ligand. AutoDock Vina was run using an exhaustiveness of 8 and 

a grid box with the dimensions 37.0, 30.0, 40.0, engulfing the channel formed by the 

transmembrane domains. Conformations and interactions were visualized using PyMOL 

version 1.3 (Lill and Danielson 2010). 

2.11. Pharmacophore for P-gp activation 

The thioxanthonic derivatives were subjected to energy minimization using 

HyperChem version 8.0. The semi-empirical AM1 (Austin Model 1) (Froimowitz 1993) 

method with the Polak-Ribière algorithm was employed for molecular minimization (Zhang 

et al. 2006). Common feature pharmacophore models (Chen and Foloppe 2008; Guner et 

al. 2004) were created from a set of 19 known P-gp activators (Table 5) (Palmeira et al. 

2011; Palmeira et al. 2012b; Sousa et al. 2013; Sterz et al. 2009). HipHop module of 

Catalyst (Accelrys 2.1, San diego, CA, USA) (Patel et al. 2002) was employed to generate 

common feature pharmacophores among a set of active ligands. Minimum features were 

set to one and maximum features were set to 10. Minimum interfeature distance of 2.97 

angstroms was applied. Conformation generation was set to “BEST” and 255 different 

conformations were generated per molecule and the “Maximum Omitted Features” value 

was set to 0. 

Validation of the pharmacophore was performed by alignment of that 

pharmacophore with a test set of 8 known P-gp activators with a benzimidazol scaffold 

(Sterz et al. 2009) (Table 6). Catalyst identified the compounds that mapped to the 

pharmacophore, and optionally aligned the ligands in the query-selection. “All 

conformations” parameter was set, and the “best” quality generation type was used. 

2.12. Mapping of thioxanthonic derivatives onto pharmacophores for P-gp 

induction  

The mapping of thioxanthonic derivatives onto previously described 

pharmacophores for P-gp induction (Silva et al. 2013a) was performed using the “Best Fit” 

method in Catalyst. During the flexible fitting process, conformations of TXs were 

calculated within the 20 kcal/mol energy threshold. Maximum omitted features were set to 

zero. Fitting was evaluated by the analysis of the fit score. 
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3. RESULTS  

3.1. Thioxanthones cytotoxicity assays 

Thioxanthones cytotoxicity was evaluated by the MTT reduction and the NR uptake 

assays, in order to select a noncytotoxic working concentration. After 24 h of incubation 

no cytotoxicity was observed for any of the eight tested concentrations (0 - 100.0 μM) of 

all five TXs (Figure 2). For the subsequent experiments, the TXs were tested at 20 μM, a 

noncytotoxic concentration that was already known to interfere with RHO 123 efflux 

(Palmeira et al. 2012b). 

Figure 2. A) TXs 1-5 (0 – 100.0 µM) cytotoxicity in Caco-2 cells 24 h after exposure, evaluated by 
the MTT reduction assay. Results are presented as mean ± SEM from 5 independent experiments 
(performed in triplicate). Statistical comparisons were made using the parametric method of One-way ANOVA, 
followed by the Bonferroni's multiple comparisons post hoc test. B) TXs 1-5 (0 – 100.0 µM) cytotoxicity in 
Caco-2 cells 24 h after exposure, evaluated by the NR uptake assay. Results are presented as mean ± SEM 
from 5 independent experiments (performed in triplicate). Statistical comparisons were made using the 
parametric method of One-way ANOVA, followed by the Bonferroni's multiple comparisons post hoc test [****p 
< 0.0001 vs. (0 µM)]. 
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3.2. P-glycoprotein expression  

The ability of the tested TXs to induce P-gp expression in Caco-2 cells was 

evaluated by flow cytometry, using a P-gp monoclonal antibody [UIC2] conjugated with 

FITC. Nonspecific binding of the UIC2 antibody was not observed as estimated by the 

fluorescence obtained with the isotype-matched negative control (data not shown). As 

shown in Figure 3, all the tested TXs (20.0 µM) significantly increased P-gp expression to 

155, 133, 125, 120 and 208%, for TX 1, TX 2, TX 3, TX 4, and TX 5, respectively. Thus, 

from the obtained results, TX 5 is the most potent P-gp inducer among the tested 

compounds. 
 

 

 

Figure 3. P-glycoprotein expression 
levels in Caco-2 cells exposed to TXs 1-
5 (20.0 µM) for 24 h. Results are presented 
as mean ± SEM from at least 3 independent 
experiments (performed in triplicate). 
Statistical comparisons were made using the 
parametric method of One-way ANOVA, 
followed by the Bonferroni's multiple 
comparisons post hoc test (*p < 0.05; **p < 
0.01; ****p < 0.0001 vs. control). 
 

3.3. P-glycoprotein transport activity 

RHO 123 is a P-gp fluorescent substrate widely used for the evaluation of P-gp 

activity (Palmeira et al. 2011; Silva et al. 2011; Silva et al. 2013b; Vilas-Boas et al. 2011). 

In the present study, two different approaches for the evaluation of transport activity were 

performed. In the first approach, RHO 123 efflux was evaluated in the presence of the 

tested TXs (20.0 µM) during the efflux phase that lasted 45 min, in order to evaluate 

immediate effects on P-gp activity as a result of a direct activation of the pump. As 

observed in Figure 4, all the compounds evoked a significant increase in RHO 123 efflux, 

when compared to control cells. From the tested TXs, TX 1 and TX 5 were the most 

efficient P-gp activators, as revealed by the increased RHO 123 efflux (193 and 198%, 

respectively). The derivatives TX 2, TX 3, and TX 4, although to a lower extent, also 

increased RHO 123 efflux to 125, 130, and 141%, respectively, thus also indicating P-gp 

activation. 

Using a second approach, RHO 123 efflux was evaluated in Caco-2 cells pre-

exposed to the tested TXs (20.0 µM) for 24h. Before the RHO 123 accumulation phase 

the cell culture media containing the tested TXs was removed prior to trypsinization. With 

this second protocol it is possible to evaluate whether the increases in P-gp activity are 
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due to the increased P-gp expression induced by the TXs, given that an increased protein 

expression does not necessarily translate into an increased transport activity (Silva et al. 

2013a; Takara et al. 2009). The obtained results (Figure 5) demonstrated a significant 

increase in RHO 123 efflux for all the tested compounds. In fact, RHO 123 efflux 

increased to 121, 112, 126, 122, and 156% for TX 1, TX 2, TX 3, TX 4, and TX 5, 

respectively. It can also be observed that, in the presence of the tested compounds, P-gp 

expression and activity increased in a similar magnitude, with TX 5 being the compound 

that induces the highest increase in both protein expression and activity, 24 h after 

exposure. 

 
 
 
Figure 4. P-glycoprotein activity evaluated 
through the RHO 123 efflux in the presence 
of TXs 1-5 (20.0 µM) during the RHO123 
efflux phase. Results are presented as mean ± 
SEM from 6 independent experiments 
(performed in triplicate). Statistical comparisons 
were estimated using the nonparametric method 
of Kruskal–Wallis (one-way ANOVA on ranks), 
followed by Dunn’s post hoc test (*p < 0.05; **p 
< 0.01; ****p < 0.0001 vs. control). 
 

 

 
 
Figure 5. P-glycoprotein activity evaluated 
through the RHO 123 efflux in Caco-2 cells 
exposed to TXs 1-5 (20.0 µM) for 24 h. 
Results are presented as mean ± SEM from 5 
independent experiments (performed in 
triplicate). Statistical comparisons were made 
using the parametric method of One-way 
ANOVA, followed by the Bonferroni's multiple 
comparisons post hoc test (**p < 0.01; ****p < 
0.0001 vs. control). 
 

3.4. P-glycoprotein ATPase activity 

In the P-gp ATPase assay, the stimulation of baseline vanadate sensitive ATPase 

activity by P-gp substrates is evaluated by the amount of Pi released, as a result of 

increased ATP consumption and reflecting an increased P-gp activity. 

As observed in Figure 6, all the tested TXs (20.0 µM), except TX 3, significantly 

increased the amount of Pi released by the transporter. In fact, in comparison to the basal 

P-gp vanadate sensitive ATPase activity (11.4 nmol Pi liberated/mg protein/min), TX 1, TX 

2, TX 4, and TX 5 significantly increased P-gp vanadate sensitive ATPase activity to 22.2, 
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18.9, 16.7, and 18.7 nmol Pi liberated/mg protein/min, respectively. On the other hand, for 

TX 3, though a slight increase in P-gp vanadate sensitive ATPase activity was observed 

(14.1 nmol Pi liberated/mg protein/min), it did not reach statistical significance. From the 

obtained data, it was observed that TX 1 was the compound that caused the highest 

increase in ATP consumption and, consequently, in vanadate sensitive ATPase activity. 

 

 
 
Figure 6. Vanadate sensitive ATPase activity 
(nmol Pi/mg protein/min) in MDR1-Sf9 
membrane vesicles (4 μg/well) exposed to 
TXs 1-5 (20.0 µM).Results are presented as 
mean ± SEM from 4 independent experiments 
(performed in duplicate). Statistical comparisons 
were made using the parametric method of One-
way ANOVA, followed by the Bonferroni’s multiple 
comparisons post hoc test (**p < 0.01; ***p < 
0.001; ****p < 0.0001 vs. basal vanadate sensitive 
ATPase activity). 
 

3.5. Thioxanthones protective effects against paraquat induced cytotoxicity 

To verify if the observed increases in both P-gp expression and activity could result 

in an effective protection of Caco-2 cells against PQ-induced toxicity, the herbicide 

cytotoxicity (0–7,500 µM) was evaluated with or without simultaneous exposure to the 

tested TXs derivatives (20.0 µM). Paraquat cytotoxicity was evaluated by the NR uptake 

assay, 24 h after exposure. Figure 7 shows the concentration-response curves obtained 

with only paraquat (PQ) and with simultaneous TXs incubation (PQ + TXs). For all the 

tested TXs, except for TX 1, significant differences were observed in the PQ-induced cell 

death for the 500 – 5000 µM PQ concentration range, resulting in significant rightwards 

shifts of the PQ concentration-response curves (Figure 7). For all the fitted curves, no 

significant differences in the maximal cell death (TOP) and in the baseline (BOTTOM) 

were observed (Table 1). For that reason, the EC50 values, which represent the half-

maximum-effect concentrations from the fitted curves, were used for statistical 

comparison. As shown in Table 1, for TX 2, TX 3, TX 4, and TX 5, significant differences 

were observed for the EC50 values of the fitted curves, when compared to the EC50 of the 

PQ curve. In fact, for TX 2, TX 3, TX 4, and TX 5, the EC50 value significantly increased to 

1517, 1359, 1378, and 1749 µM, respectively, when compared to the EC50 of the PQ 

curve (1204 µM). However, for TX1 no significant differences exist between the PQ and 

PQ + TX1 curves.  
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Figure 7. Paraquat concentration–response (cell death) curves in the absence (PQ) or in the 

presence of 20.0 µM TXs 1-5 (PQ + TXs). Results are presented as mean ± SEM from 6 independent 

experiments (performed in triplicate). Concentration-response curves were fitted using least squares as the 

fitting method and the comparisons between PQ and PQ + TXs curves (LOG EC50, TOP, BOTTOM, and Hill 

Slope) were made using the extra sum-of-squares F test. Statistical comparisons were made using Two-way 

ANOVA, followed by the Sidak's multiple comparisons post hoc test (**p < 0.01; ***p < 0.001; ****p < 0.0001 

PQ + TXs vs. PQ). In all cases, p values < 0.05 were considered significant. 

 
Table 1. EC50 (half-maximum-effect concentration), TOP (maximal effect), BOTTOM (baseline) and 
Hill Slope values of the PQ concentration-response curves, with (PQ + TXs) or without (PQ) 
simultaneous exposure to TXs 1-5 (20.0 µM). 

 PQ PQ + TX1 PQ + TX2 PQ + TX3 PQ + TX4 PQ + TX5 

EC50 
(half-maximum-effect 
concentration, µM) 

1204 1262 1517 1359 1378 1749 

TOP 
(maximal cell death, 

% control) 
91.29 91.88 93.63 87.54 86.90 86.85 

BOTTOM 
(baseline, % control) 

1.469 2.123 0.006 0.081 0.717 0.029 

Hill Slope 1.559 1.609 1.559 2.156 1.878 1.959 

LOG EC50 p value 
(comparison between 

LOG EC50 values) 
- 0.4948 0.0009 0.0321 0.0379 < 0.0001 

TOP p value 
(comparison between 

TOP values) 
- 0.8437 0.5023 0.1305 0.1520 0.1704 

BOTTOM p value 
(comparison between 

BOTTOM values) 
- 0.5467 0.1740 0.2500 0.5435 0.1929 

Hill Slope p value 
(comparison between 

Hill slope values) 
- 0.7481 0.9983 0.0008 0.0792 0.0231 

Curve p value 
(Comparison between 

the Fitted Curves) 
- 0.8554 < 0.0001 < 0.0001 < 0.0001 < 0.0001 

Concentration-response curves were fitted using least squares as the fitting method and the comparisons 
between PQ and PQ + TXs curves were made using extra sum-of-squares F test. In all cases, p values < 0.05 
were considered significant. 
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To evaluate if these protective effects are related to the observed increases in both 

P-gp expression and activity, this study was repeated in the presence of a specific and 

potent P-gp inhibitor, GF120918. The GF120918 inhibitor did not cause toxicity as 

evaluated by the NR uptake assay, 24 h after exposure at the 10.0 and 20.0 µM tested 

concentrations (data not shown). The obtained data shows that when PQ is 

simultaneously incubated with GF120918 (10.0 and 20.0 µM), a leftwards shift of the PQ 

concentration-response curves occurs, with significant differences observed for the 100-

7,500 µM PQ concentrations (Figure 8). Also, the observed leftwards shifts of the fitted 

curves were accompanied by significant and concentration-dependent decreases in the 

EC50 values, when compared to the PQ curve (Table 2). In the presence of 10.0 and 20.0 

µM GF120918, the EC50 values of the fitted curves significantly decreased to 985.1 and 

764.7 µM, respectively, when compared to the PQ curve (1204 µM). These findings 

proved that P-gp modulation has an important impact on PQ toxicity and that GF120918 is 

a suitable inhibitor that can be used to elucidate if the observed TXs protective effects are 

mediated by P-gp. 

 
Figure 8. Paraquat concentration–response 
(cell death) curves in the absence (PQ) or in 
the presence (PQ + GF 10 and PQ + GF 
20) of the potent P-gp inhibitor GF120918, 
confirming the P-gp involvement in PQ 
toxicity. Results are presented as mean ± SEM 
from at least 4 independent experiments 
(performed in triplicate). Concentration–response 
curves were fitted using least squares as the 
fitting method and the comparisons between PQ, 
PQ + GF 10 and PQ + GF 20 curves (LOG EC50, 
TOP, BOTTOM, and Hill Slope) were made 
using the extra sum-of-squares F test. Statistical 

comparisons were made using Two-way ANOVA, followed by the Sidak's multiple comparisons post hoc test 
(**p < 0.01, ****p < 0.0001 PQ + GF 10 vs. PQ; #p < 0.01, ####p < 0.0001 PQ + GF 20 vs. PQ; $$p < 0.01, $$$p < 
0.001, $$$$p < 0.0001 PQ + GF 10 vs. PQ + GF 20). In all cases, p values < 0.05 were considered significant. 

 

Under P-gp inhibition with 10 µM GF120918, and for TX 2, TX 3, and TX 4, it was 

possible to verify a complete abolishment of the previously observed protective effects 

(Figure 9). In fact, as shown in Table 3, no significant differences exist for the overall 

comparison of the fitted curves (LOG EC50, TOP, BOTTOM, and Hill Slope). Moreover, for 

TX 1, and as observed in the assays performed without P-gp inhibition, no significant 

differences exist between the PQ + GF 10 and PQ + GF 10 + TX1 curves. However, for 

TX 5, in the presence of 10.0 µM GF120918, a small but significant rightwards shift of the 

PQ + GF 10 + TX5 concentration-response curve can still be observed (Figure 9), 

showing that in spite of not being able to fully reverse the protective effects, P-gp inhibition 

can partially reduce the previously observed protection. As shown in Table 3, the 
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observed rightwards shift was accompanied by a minor, though significant, increase in the 

corresponding EC50 value (1279 µM for PQ + GF 10 + TX5 curve when compared to 

985.1 µM for PQ + GF 10 curve). 

 
Table 2. EC50 (half-maximum-effect concentration), TOP (maximal effect), BOTTOM (baseline) and 
Hill Slope values of the PQ concentration-response curves, with (PQ + GF 10 and PQ + GF 20) or 
without (PQ) simultaneous exposure to 10.0 or 20.0 µM of the P-gp inhibitor, GF120918. 

 PQ PQ + GF 10 PQ + GF 20 

EC50 
(half-maximum-effect concentration, µM) 

1204 985.1 764.7 

TOP 
(maximal cell death, % control) 

91.29 94.06 96.02 

BOTTOM 
(baseline, % control) 

1.469 3.355 4.588 

Hill Slope 1.559 1.602 1.615 

LOG EC50 p value  
(comparison between LOG EC50 values) 

- < 0,0001 < 0,0001 

TOP p value  
(comparison between TOP values) 

- 0.1167 0.0612 

BOTTOM p value  
(comparison between BOTTOM values) 

- 0.0226 0.0756 

Hill Slope p value 
(comparison between Hill slope values) 

- 0.6855 0.7878 

Curve p value  
(Comparison between the Fitted Curves) 

- < 0.0001 < 0.0001 

Concentration-response curves were fitted using least squares as the fitting method and the 
comparisons between PQ and PQ + GF curves were made using extra sum-of-squares F test. In all 
cases, p values < 0.05 were considered significant. 

 

Figure 9. Paraquat concentration–response (cell death) curves in the presence of the potent P-gp 
inhibitor GF120918 (10 µM) with (PQ + GF10 + TXs) or without (PQ + GF10) simultaneous 
exposure to TXs 1-5 (20.0 µM). Results are presented as mean ± SEM from 5 independent experiments 
(performed in triplicate). Concentration–response curves were fitted using least squares as the fitting method 
and the comparisons between PQ + GF 10 and PQ + GF 10 + TXs curves (LOG EC50, TOP, BOTTOM, and 
Hill Slope) were made using the extra sum-of-squares F test. Statistical comparisons were made using Two-
way ANOVA, followed by the Sidak's multiple comparisons post hoc test (*p < 0.05 PQ + GF 10 + TXs vs. PQ 
+ GF 10). In all cases, p values < 0.05 were considered significant. 
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As TX 5 was responsible for the highest observed P-gp induction (Figure 3), the 

incomplete reversion of the protective effect observed for this TX derivative, in the 

presence of 10 µM GF120918, could be due to an incomplete inhibition of the pump. 

Therefore, for TX 5, PQ cytotoxicity was further evaluated by inhibiting P-gp with 20.0 µM 

GF120918. As shown in Figure 10, similarly to 10.0 µM GF120918 mediated P-gp 

inhibition, in the presence of 20.0 µM GF120918, a small protective effect of TX 5 could 

still be noted for the higher PQ concentrations tested (2,500 - 7,500 µM), as observed by 

the corresponding rightwards shift of the PQ + GF 20 + TX5 curve at those PQ 

concentrations. Moreover, the small rightwards shift at the top of the PQ + GF 20 + TX5 

curve was accompanied by a minor, although significant, increase in the EC50 value 

(909.4 µM, when compared to 764.7 µM for the PQ + GF 20 curve) (Table 4). However, 

since the significant and outstanding rightwards shift of the PQ + TX5 curve was almost 

completely abolished under P-gp inhibition, it was concluded that P-gp is mainly involved 

on the protective effects mediated by TX 5 in PQ cytotoxicity, as with TX 2, TX 3, and TX 

4. 

 
Table 3. EC50 (half-maximum-effect concentration), TOP (maximal effect), BOTTOM (baseline) and 
Hill Slope values of the PQ concentration-response curves, in the presence of the P-gp inhibitor 
GF120918 (10.0 µM), with (PQ + GF 10 + TXs) or without (PQ + GF 10) simultaneous exposure to 
TXs 1-5 (20.0 µM). 

 PQ + GF 10 
PQ + GF 
10 + TX1 

PQ + GF 
10 + TX2 

PQ + GF 
10 + TX3 

PQ + GF 
10 + TX4 

PQ + GF 
10 + TX5 

EC50 
(half-maximum-effect 
concentration, µM) 

985.1 1124 968.0 1047 1126 1279 

TOP 
(maximal cell death, 

% control) 
94.06 98.88 98.73 95.57 95.51 98.37 

BOTTOM 
(baseline, % control) 

3.355 4.043 0.5108 3.491 5.949 4.071 

Hill Slope 1.602 1.367 1.336 1.611 1.566 1.355 

LOG EC50 p value  
(comparison between 

LOG EC50 values) 
- 0.1152 0.8300 0.3950 0.0745 0.0035 

TOP p value  
(comparison between 

TOP values) 
- 0.1866 0.1702 0,6280 0.6556 0.3183 

BOTTOM p value  
(comparison between 

BOTTOM values) 
- 0.6739 0.0797 0,9282 0.0845 0.6571 

Hill Slope p value 
(comparison between 

Hill slope values) 
- 0.2079 0.1437 0.9649 0.8518 0.1958 

Curve p value  
(Comparison between 

the Fitted Curves) 
- 0.4491 0.2713 0.8844 0.1916 0.0024 

Concentration-response curves were fitted using least squares as the fitting method and the comparisons 
between PQ + GF 10 and PQ + GF 10 + TXs curves were made using extra sum-of-squares F test. In all 
cases, p values < 0.05 were considered significant. 
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Figure 10. Paraquat concentration–
response (cell death) curves in the 
presence of the potent P-gp inhibitor 
GF120918 (20.0 µM), with (PQ + GF 20 + 
TX5) or without (PQ + GF 20) 
simultaneous exposure to TX 5 (20.0 µM).  
Results are presented as mean ± SEM from 4 
independent experiments (performed in 
triplicate). Concentration–response curves 
were fitted using least squares as the fitting 
method and the comparisons between PQ + 
GF 20 and PQ + GF 20 + TX5 curves (LOG 

EC50, TOP, BOTTOM, and Hill Slope) were made using the extra sum-of-squares F test. Statistical 
comparisons were made using Two-way ANOVA, followed by the Sidak's multiple comparisons post hoc test. 
In all cases, p values < 0.05 were considered significant. 

 

Table 4. EC50 (half-maximum-effect concentration), TOP (maximal effect), BOTTOM (baseline) and 
Hill Slope values of the PQ concentration-response curves, in the presence of the P-gp inhibitor 
GF120918 (20.0 µM), with (PQ + GF 20 + TX5) or without (PQ + GF 20) simultaneous exposure to 
20.0 µM TX 5. 

 PQ + GF 20 PQ + GF 20 + TX5 

EC50 
(half-maximum-effect concentration, µM) 

764.7 909.4 

TOP 
(maximal cell death, % control) 

96.02 98.26 

BOTTOM
(baseline, % control) 

4.588 5.480 

Hill Slope 1.615 1.386 

LOG EC50 p value 
(comparison between LOG EC50 values) 

- 0.0213 

TOP p value  
(comparison between TOP values) 

- 0.4712 

BOTTOM p value  
(comparison between BOTTOM values) 

- 0.6030 

Hill Slope p value
(comparison between Hill slope values) 

- 0.2431 

Curve p value 
(Comparison between the Fitted Curves) 

- 0.0359 

Concentration-response curves were fitted using least squares as the fitting method and 
the comparisons between PQ + GF 20 and PQ + GF 20 + TX5 curves were made using 
extra sum-of-squares F test. In all cases, p values < 0.05 were considered significant. 

3.6. In silico predictions 

As P-gp activators showed to stimulate its ATPase activity, TXs 1-5 were 

hypothesized to bind in the drug-binding pocket formed by the transmembrane (TM) 

domain interface, and docking simulations were performed in this binding pocket of P-gp. 

Scores of known P-gp activators are shown in Table 5. As TX 1 and TX 5 were the most 

active P-gp activators in the in vitro studies, a visual inspection of these molecules in the 

transmembrane domain interface of P-gp was performed (Figure 11). Both TX 1 and TX 5 

have two preferential binding sites, engulfed by TM 4, 5, 8-10 and 12, or by TM 1-3, 6, 7, 

and 11 (Figure 11). TX 5 forms a stable complex with P-gp with a negative energy of -6.7 
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kJ/mol. TX 5 has shape, size, and stereoelectronic complementarity to P-gp binding 

pocket, establishing hydrogen interactions with Ala-80, and stacking interactions with Phe-

201, described as being part of P-glycoprotein binding pocket (Loo et al. 2009). TX 1 has 

a docking score of -6.5 kJ/mol, and it established hydrogen interactions with Gly346, 

known as being evolved in inter-domain communication, causing an helical movement 

required to ATP hydrolysis and multidrug transport (Storm et al. 2007); and Ser228, also 

described as being important residue in P-gp drug binding pocket (Loo and Clarke 1999); 

and stacking interactions with Phe-201. 

 
Table 5. P-gp activators described by the RHO 123 accumulation assay and respective docking 
scores (kJ.mol-1) on transmembrane domains.  

Ligand 
Binding affinity 

(kJ.mol 
-1

) 
Reference 

2-(4-Methylphenyl)-5,6,7,8-tetrahydroimidazo[2,1-
b][1,3]benzothiazole  

-7.2  (Sterz et al. 2009) 

2-Phenyl-9-(prop-2-en-1-yl)-5,7,8,9-tetrahydro-6H-
imidazo[1,2-a]benzimidazole  

-7.6  (Sterz et al. 2009) 

Blebbistatin  -8.1  (Palmeira et al. 2011) 

Coelenteramide  -7.2  (Palmeira et al. 2011) 

Indirubin  -6.5  (Palmeira et al. 2011) 

1,2-Dihydroxy-9H-xanthen-9-one -7 (Sousa et al. 2013) 

3,4-Dihydroxy-9H-xanthen-9-one  -6.3  (Sousa et al. 2013) 

1-Chloro-9-oxo-9H-thioxanthen-4-yl acetate  -8.4  (Palmeira et al. 2012b) 

1-{[4- (Aminomethyl)benzyl]amino}-4-propoxy-9H-
thioxanthen-9- one  

-7.8  (Palmeira et al. 2012b) 

1-{[2- (Phenylamino)ethyl]amino}-4-propoxy-9H-
thioxanthen-9-one  

-7.5  (Palmeira et al. 2012b) 

1-[(3,4- Dimethoxybenzyl)amino]- 4-propoxy-9H-
thioxanthen-9-one  

-7.4  (Palmeira et al. 2012b) 

1-{[(2S)-1- Hydroxy-3- methylbutan-2-yl]amino}-4-
propoxy-9H-thioxanthen-9-one  

-7.2  (Palmeira et al. 2012b) 

4-Hydroxy-9H-thioxanthen-9-one  -7.1  (Palmeira et al. 2012b) 

1-[(2S,3R,4S,5R,6R)-2-(4-Aminophenoxy)-6-
(hydroxymethyl)tetrahydro-2H-pyran-3,4,5-triol]-4-
propoxy-9H-thioxanthen-9-one 

-6.2 (Palmeira et al. 2012b) 

1-[(3- Hydroxypropyl)amino]-4-propoxy-9H-thioxanthen-
9-one (TX 1) 

-6.5   

1-Chloro-4-hydroxy-9H-thioxanthen-9-one (TX 2) -6.8   

1-{[2-(1,3- Benzodioxol-5-yl)ethyl]amino}-4-propoxy-9H-
thioxanthen-9-one (TX 3) 

-8.1   

1-[(2- Methylpropyl)amino]-4-propoxy-9H-thioxanthen-9-
one (TX 4) 

-7.5   

1-(Propan-2-ylamino)-4-propoxy-9H-thioxanthen-9- one 
(TX 5) 

-6.7   
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Figure 11. (color) TX 1 (green sticks), TX 5 (blue sticks) and PQ (yellow sticks) docked on two 
different binding sites in P-gp (only the best scoring poses on each site are represented). Side (A) 
and top (B) views.  

 

The top rank PQ docking pose presented a score of -5.6 kJ/mol. Paraquat has two 

preferential binding pockets in P-gp (Figure 11), similarly to the TXs. Therefore, TXs and 

PQ may bind simultaneously in P-gp in two different binding sites. Moreover, TXs and PQ 

may establish stacking interactions; this noncovalent complex binds to P-gp with higher 

affinity than TXs and PQ individually (Figure 12): -10 kJ/mol for both TX 5:PQ:P-gp, and 

TX 1:PQ:P-gp. The two-ligand complex establish polar interactions with P-gp residues, 

such as Asn839 and Val345, and stacking interactions with P-gp residues, such as 

Phe201, Phe239, and Phe777 (Figure 12). 

A pharmacophore for P-gp activation activity was built based on TXs with in vitro 

activity, as well as other molecules previously described as P-gp activators. The best 

ranked pharmacophore found (score of 110.3 kcal/mol) is composed of three features: 

one hydrophobic feature, one aromatic ring, and one hydrogen bond acceptor group 

(Figure 13).  

Our group has previously described four pharmacophores for P-gp induction (Silva 

et al. 2013a). As the TXs described in the present work demonstrated the ability to 

increase, in vitro, P-gp expression, they were mapped and aligned to the four 

pharmacophores for P-gp induction. TX 3 was able to fit three of the four 

pharmacophores. The five screened TXs were able to fit a three-feature P-gp induction 
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pharmacophore consisting of one hydrogen-bond donor and two hydrophobic groups 

(previously described as pharmacophore IV).  

 

 

Figure 12. TX 1 (green sticks) and PQ (yellow sticks), and TX 5 (blue sticks) and PQ (yellow) 
docked simultaneously on P-gp (top view). 
 
 
 

 

Figure 13. A) The top-ranked chemical feature-based pharmacophore model for P-gp activators 
developed using the HipHop module in Catalyst. The pharmacophore includes one hydrophobic group, 
one hydrogen bond acceptor feature, and one aromatic ring. Interfeature distances are depicted with green 

lines. B) TX 5 aligned with the pharmacophore (as an example). Distances are given in Angstrom. Blue 
= hydrophobic, orange = aromatic, green = hydrogen bond acceptor. 
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Table 6. Pharmacophore validation using a test set of known P-gp activators (Sterz et al. 2009).  

P-gp activators Fit value 

4-(5,6,7,8-Tetrahydroimidazo[2,1-b][1,3]benzothiazol-2-yl)benzonitrile 2.985 

2-(4-Nitrophenyl)-5,6,7,8-tetrahydroimidazo[2,1-b][1,3]benzothiazole 2.991 

4-(9-Methyl-5,7,8,9-tetrahydro-6H-imidazo[1,2-a]benzimidazol-2-yl)benzonitrile 2.846 

9-Methyl-2-(4-nitrophenyl)-5,7,8,9-tetrahydro-6H-imidazo[1,2-a]benzimidazole 2.846 

9-Methyl-2-(3-nitrophenyl)-5,7,8,9-tetrahydro-6H-imidazo[1,2-a]benzimidazole 2.856 

2-(4-Chlorophenyl)-9-methyl-5,7,8,9-tetrahydro-6H-imidazo[1,2-
a]benzimidazole 

2.898 

3-(9-Methyl-5,7,8,9-tetrahydro-6H-imidazo[1,2-a]benzimidazol-2-yl)aniline 2.987 

4-(4-((6-Chloro-4H-benzo[d][1,3]dioxin-8-yl)methyl)-5,6,7,8-tetrahydro-4H-
benzo[d]imidazo[1,2-a]imidazol-2-yl)benzonitrile 

2.976 
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4. DISCUSSION 

The present data clearly demonstrate that four of the tested thioxanthones (TX 2-5), 

by inducing both P-gp expression and activity, significantly protected Caco-2 cells against 

PQ-induced toxicity.  

Caco-2 cells are a widely accepted in vitro model for predicting drug intestinal 

absorption and excretion in humans (Balimane et al. 2006; Barta et al. 2008; Biganzoli et 

al. 1999; Huynh-Delerme et al. 2005; Watanabe et al. 2005; Yamashita et al. 2000) and 

express P-gp at levels similar to those found in normal human jejunum (Taipalensuu et al. 

2001). Moreover, they were already validated as a suitable in vitro model for the screening 

of P-gp inducers (Silva et al. 2011; Silva et al. 2013b).  

Growing interests in the synthesis and potential applications of TXs, dibenzo- γ -

thiopyrones, has been noted since the beginning of the 20th century (Paiva et al. 2013). 

However, in what concerns to their ability to modulate P-gp expression and activity little is 

known. In fact, only a few studies reported their ability to inhibit this important efflux pump 

(Palmeira et al. 2012b), suggesting a potential use in reducing multidrug resistance. 

Recently, Palmeira and co-workers have demonstrated that several aminated TXs were 

highly effective at inhibiting P-gp in a chronic myelogenous leukemia cell line, K562 cells 

(Palmeira et al. 2012b). Furthermore, twelve of the tested derivatives, caused a significant 

decrease in the RHO 123 accumulation ratio (Palmeira et al. 2012b), an effect compatible 

with increased P-gp activity. However, no further studies were conducted to clarify their 

mode of action. To the best of our knowledge, this is the first report on the ability of TXs to 

act as P-gp inducers, demonstrating also that they can effectively increase the pump 

activity. Additionally, for all the tested compounds, a good correlation between the 

observed increases in P-gp expression and activity was demonstrated. In fact, it is known 

that increases in protein expression may not necessarily result in proportional increases in 

pump activity (Silva et al. 2011; Silva et al. 2013a; Takara et al. 2009; Vilas-Boas et al. 

2011). Using the same in vitro model, we have previously shown that the remarkable 

increase in P-gp expression caused by doxorubicin, a potent P-gp inducer, was not 

accompanied by a proportional increase in P-gp transport activity (Silva et al. 2011). 

However, as can be seen in Figures 3 and 5, all tested TXs 1-5 simultaneously increased 

P-gp expression and activity, being TX 5 the thioxanthonic derivative that caused the 

highest increase in the protein expression and in the pump activity. It is noteworthy that 

the observed increases in P-gp expression reveal a higher level of expression and 

incorporation in the cell membrane, since the monoclonal UIC2 antibody recognizes an 

external P-gp epitope (Vilas-Boas et al. 2011). Curiously, TX 4 and 5 are homologues 

varying by a single methylene unit and yet display rather large differences in P-gp 
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induction; this effect could be related to a steric influence of the substituent in position 1 of 

the thioxanthone scaffold. Additionally, all the tested TXs 1-5 fitted on a previously 

validated pharmacophore for P-gp induction (Silva et al. 2013a) and, therefore, it can be 

hypothesized that thioxanthones are P-gp inducers by a mechanism similar to that of 

compounds (such as carbamazepine) used to build the represented pharmacophore. In 

fact, all the tested compounds fitted the three-feature P-gp induction pharmacophore in 

silico and significantly increased the protein expression in vitro, demonstrating a good 

match between in vitro and in silico studies, and validating the use of such 

pharmacophores in the screening of new P-gp inducers.  

P-gp ATPase activity assays have been long used to evaluate possible interactions 

with P-gp function. Compounds that act as P-gp substrates typically stimulate its ATPase 

activity (Ambudkar et al. 1999). Accordingly, our results showed that the tested 

compounds caused a notable increase in P-gp vanadate-sensitive ATPase activity 

(although not significant for TX 3), demonstrating that these TXs derivatives are actively 

transported by the pump.  

Another important aspect to note among the obtained data was the ability of all the 

tested compounds (TX 1-5) to rapidly and significantly increase the pump activity, as 

assessed by the RHO 123 efflux assay performed in the presence of the TXs during a 

short 45 min efflux phase (Figure 4). The RHO 123 efflux evaluated using this protocol 

does not reflect a possible contribution of increased P-gp expression in the increased 

activity due to the short duration of the contact between the TXs and the cells during the 

RHO 123 efflux phase. Nevertheless, compound TX 1, which presented the highest 

increase in ATP consumption in the ATPase activity assay, showed an efflux ratio of RHO 

123 similar to TX 5. This difference in the results obtained from both assays could be 

related to the different permeability of the TXs (logP TX1=3.1 vs. logP TX 5=4.1), since 

the ATPase assay uses membrane fractions, and, therefore, is not influenced by drug 

permeability in contrast with the cell-based RHO123 efflux assay (Eytan et al. 1996). 

Considering the observed effects of the tested compounds on P-gp expression and 

activity, we further evaluated the impact of those effects on the toxicity induced by a toxic 

P-gp substrate, the herbicide paraquat. For four of the tested compounds (TX 2-5), the 

observed inducing effects on both P-gp expression and activity resulted in a significant 

protection against PQ toxicity (with significant increases in the EC50 values of the PQ + 

TXs curves versus PQ only; Figure 7), meaning that they could have protective effects 

against PQ intoxications, by favouring its P-gp-induced efflux. In agreement, the observed 

reduction on the PQ-induced cell death was completely abolished in the presence of the 

potent P-gp inhibitor, GF120918 for TX 2, TX 3, and TX 4. However, for TX 5, in spite of 

the observed significant reduction of its protective effects in the presence GF120918, this 
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effect was incomplete, thus indicating that, for TX 5, mechanisms other than P-gp 

induction may be involved in its protective effects against PQ toxicity. 

Considering the typical PQ intoxication scenarios, the herbicide concentrations used 

in this study are within what is expected to be attained in vivo. PQ commercially available 

formulations generally contain 20 g herbicide/100 mL (Dinis-Oliveira et al. 2009). In most 

of the reported cases of human PQ intoxication, 25–50 mL of the PQ formulation are 

usually ingested (Dinis-Oliveira et al. 2009), suggesting an approximate intake of 5 to 10 g 

of PQ. Since only up to 5% of the ingested dose is absorbed at the intestinal level 

(Roberts 2011), under this intoxication scenarios, blood concentrations of PQ may easily 

reach a concentration of 0.1 g/L (0.4 mM). Additionally, post-mortem analysis have found 

PQ concentrations in the target organs, such as the lungs, up to 10 times higher than in 

the blood (Dinis-Oliveira et al. 2008). Moreover, the PQ concentrations that are found at 

autopsy are probably lower than the peak concentrations that may be reached after intake 

since, after intoxication, emergency-care treatments are administered, including 

hemodialysis, thus reducing the herbicide concentration in the organism. 

Noteworthy, four of the assayed TXs were able to simultaneously increase RHO 123 

efflux, ATP consumption, and PQ EC50 values in Caco-2 cells, indicating the existence of 

a mechanism involving P-gp activation. The ability of certain compounds to immediately 

increase P-gp activity without the need to increase its expression led to the recently used 

definition of P-gp activator (Sterz et al. 2009). In fact, it has long been known that there 

are compounds that bind to P-gp and stimulate the transport of a substrate on another 

binding site. For example, Hoechst-33342 and RHO 123 act by this cooperative mode of 

action (Shapiro and Ling 1998). This functional model of P-gp suggested that the efflux 

pump contained at least two positively cooperative sites (H site and R site, for Hoechst-

33342 and RHO 123, respectively) for drug binding and transport (Shapiro and Ling 

1997). This cooperative mechanism of action has also been suggested for prazosin and 

progesterone (Shapiro et al. 1999). Additionally, a four-P-gp-binding-sites model supports 

the presence of three transport sites and one regulatory site. This last site allosterically 

alters the conformation of the transport binding sites for substrates from low to high 

affinity, thus increasing the rate of translocation (Martin et al. 2000). It has been 

suggested that the adaption and survival mechanisms of living beings has allowed the 

binding of several xenobiotics at the same time to P-glycoprotein (Safa 1993; Safa 1998), 

increasing the transport of each other, not competing but activating the transportation 

cycle (Safa 2004). Hence, binding modes of TXs were further explored by docking 

studies. Thioxanthonic derivatives and PQ docked on two different binding sites in the 

cleft formed by the transmembrane alpha-helices of a P-gp model, based on homologous 

S.aureus ABC transporter, Sav1866 (Palmeira et al. 2012b). Furthermore, a simultaneous 
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docking of PQ and TX 1 or TX 5 revealed that a more stable complex with P-gp model 

was formed (lower free energy) than when those molecules were docked individually, 

suggesting that a co-transport may occur. The two mechanisms of activation by co-

transport suggested by docking studies are: a) TXs dock on a different site than PQ, thus 

activating the efflux of the herbicide, and b) TXs and PQ bind to the same drug pocket, 

establishing stacking interactions between the dibenzo-γ-thiopyrone and the biphenyl 

group, and facilitate the transport to the extracellular medium. Additionally, from the tested 

TXs, TX 1 behaves as a strict competitive substrate, suggesting that this TX overlaps with 

PQ on the same site of P-gp. Therefore, in spite of the slight increases in P-gp 

expression, RHO 123 efflux, and P-gp ATPase activity, TX 1 apparently does not protect 

against PQ-induced toxicity. As docking scores reveal, TX 1 binds more tightly to the P-gp 

binding site than PQ (-6.5 versus -5.6 kJ/mol). 

In conclusion, TX 5 was the thioxanthone derivative that demonstrated the highest 

potential in inducing P-gp, since, as a result of the highest P-gp expression and activation 

capacity, it elicited the highest protection against PQ-induced toxicity. Gathering all these 

in vitro data concerning P-gp activation, a pharmacophore was built, which can be used 

as a query to screen for new P-gp activators. Further in vivo demonstration of the 

protective effects of these TXs will confirm their potential use as effective antidotes 

against PQ intoxications. 
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ABSTRACT  

Xanthones are a family of compounds with several known biological activities and 

therapeutic potential for which information on their interaction with membrane transporters 

is lacking. Knowing that P-glycoprotein (P-gp) acts as a cellular defence mechanism by 

effluxing its toxic substrates, the aim of this study was to investigate the potential of five 

dihydroxylated xanthones as inducers of P-gp expression and/or activity, and to evaluate 

whether they could protect Caco-2 cells against the cytotoxicity induced by the toxic P-gp 

substrate paraquat. 

After 24 h of incubation, all tested xanthones caused a significant increase in both 

P-gp expression and activity, as evaluated by flow cytometry using the UIC2 antibody and 

rhodamine 123, respectively. Additionally, after a short 45 min incubation all the tested 

xanthones induced a rapid increase in P-gp activity indicating direct pump activation 

without increased P-gp protein expression. The tested compounds also increased P-gp 

ATPase activity in MDR1-Sf9 membrane vesicles, demonstrating to be P-gp substrates. 

Moreover, when simultaneously incubated with paraquat, all xanthones significantly 

reduced the cytotoxicity of the herbicide, and these protective effects were completely 

reversed upon incubation with a specific P-gp inhibitor. 

In silico studies evaluating the interactions between xanthones and P-gp in the 

presence of paraquat suggested that a co-transport mechanism may be operating. A 

QSAR model was developed and validated, and the maximal partial charge for an oxygen 

atom was the descriptor predicted as being implicated in P-gp activation by the 

dihydroxylated xanthones. These results disclose new perspectives in preventing 

paraquat and other P-gp substrates-induced poisonings. 
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IAIE - Inhibited rhodamine 123 accumulation followed by efflux in the presence of P-gp inhibitor  
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NEAA - Nonessential amino acids 
PBS - Phosphate buffered saline solution 
P-gp - P-glycoprotein  
RHO 123 - Rhodamine 123 
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1. INTRODUCTION 

P-glycoprotein (P-gp) is a 170 kDa ATP-dependent efflux pump, which promotes the 

outward transport of a wide spectrum of structurally unrelated compounds (Hennessy and 

Spiers 2007; Kim 2002; Seelig 1998; Sharom 2011; Ueda et al. 1997; Varma et al. 2003; 

Zhou 2008). In fact, this broad substrate specificity allied to its cellular polarized 

expression in many excretory and barrier tissues, and to its efflux capacity attribute to P-

gp a crucial defense role against its toxic substrates (Dinis-Oliveira et al. 2006a; Huynh-

Delerme et al. 2005; Silva et al. 2011; Silva et al. 2013c; Silva et al. 2013d; Vilas-Boas et 

al. 2013c; Watanabe et al. 2005). Therefore, strategies to increase P-gp expression 

and/or activity may be viewed as potential antidotal pathways to prevent the toxicity 

mediated by P-gp toxic substrates by decreasing their intracellular accumulation. 

P-gp is inducible by many drugs, including dexamethasone, rifampicin, the herbal 

antidepressant St John’s wort (hyperforin and hypericin) and several antineoplasic drugs 

(doxorubicin, daunorubicin and vinblastine) that increase the expression of the transporter 

(Chaudhary and Roninson 1993; Chin et al. 1990; Fardel et al. 1997; Harmsen et al. 2009; 

Hu et al. 1999; Kageyama et al. 2006; Kim et al. 2008; Nielsen et al. 1998; Tian et al. 

2005; Zhou 2008). Also, P-gp activity can be directly increased by compounds that bind to 

P-gp and promote a conformational alteration that stimulates the transport of a substrate 

bound on another binding site (Sterz et al. 2009; Vilas-Boas et al. 2013c), suggesting that 

the efflux pump contains at least two positively cooperative sites for drug binding and 

transport (Shapiro and Ling 1997). For example, Hoechst-33342 and rhodamine 123 

(RHO 123) have been shown to act by this cooperative mode of action (Shapiro and Ling 

1997). This activation mechanism increases P-gp transport function without interfering 

with the protein expression levels, which makes it a more rapid process than P-gp 

induction. 

Xanthones, dibenzo-γ-pyrones, are a family of compounds appealing to medicinal 

chemists due to their pronounced biological activity within a notably broad spectrum of 

disease states, resulting from their interaction with a correspondingly diverse range of 

target biomolecules (Masters and Bräse 2012). This has led to the description of 

xanthones as “privileged structures” (Pinto et al. 2005). Although several studies have 

addressed the biological activities of xanthone derivatives, information regarding their 

interaction with drug transporters is sparse. Some prenylated xanthones have shown 

affinity to bind to P-gp recombinant domain (Tchamo et al. 2000) and more recently, 

simple oxygenated xanthones were identified as selective killers of cancer cells 

overexpressing the MRP1 ABC transporter (Genoux-Bastide et al. 2011). Also, in P-gp 

overexpressing leukemia cells (K562Dox) a prenylated and a lignoid xanthone derivatives 
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inhibited P-gp activity, whereas two simple oxygenated xanthones increased the 

transporter activity (Sousa et al. 2013). 

To better understand the impact of simple oxygenated xanthones on P-gp 

modulation and to establish a structure-activity relationship, in the present study, we 

aimed to evaluate the effect of a series of dihydroxylated xanthones (1-5, Figure 1) on the 

pump's expression and activity, and their potential to protect Caco-2 cells against the 

cytotoxicity of the herbicide paraquat (PQ), a known and highly toxic P-gp substrate 

(Dinis-Oliveira et al. 2006b; Silva et al. 2011; Silva et al. 2013c; Vilas-Boas et al. 2013c). 

Additionally, a simple QSAR model was established and the binding modes of the tested 

xanthones to the P-gp transporter were predicted by docking studies. 

 

Figure 1. Xanthones 1-5 investigated in this study. 
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2. MATERIALS AND METHODS 

2.1. Materials 

Rhodamine 123 (RHO 123), cyclosporine A, (4,5-dimethylthiazol-2-yl)-2,5-diphenyl 

tetrazolium (MTT) bromide and neutral red (NR) solution were obtained from Sigma (St. 

Louis, MO, USA). Reagents used in cell culture, including Dulbecco’s modified Eagle’s 

medium (DMEM) with 4.5 g/L glucose  and GlutaMAXTM, nonessential amino acids 

(NEAA), heat inactivated fetal bovine serum (FBS), 0.25% trypsin/1 mM EDTA, antibiotic 

(10000 U/mL penicillin, 10000 µg/mL streptomycin), fungizone (250 µg/mL amphotericin 

B), human transferrin (4 mg/mL), phosphate-buffered saline solution (PBS) and Hank’s 

balanced salt solution (HBSS) were purchased from Gibco Laboratories (Lenexa, KS). P-

glycoprotein monoclonal antibody (clone UIC2), conjugated with fluorescein 

isothiocyanate (FITC), was purchased from Abcam (Cambridge, United Kingdom). IgG2a 

(negative mAb control to UIC2), conjugated with FITC, was obtained from ImmunoTools 

GmbH (Friesoythe, Germany). Flow cytometry reagents (BD FacsFlow™ and Facs 

Clean™) were purchased from Becton, Dickinson and Company (San Jose, CA, USA). 

MDR1 Predeasy ATPase assay kit was purchased from Solvo Biotechnology (Szeged, 

Hungary). GF120918 [9,10-dihydro - 5 - methoxy - 9 – oxo - N - [4 - [2 - (1,2,3,4 - 

tetrahydro - 6,7 - dimethoxy - 2-isoquinolinyl)ethyl]phenyl] - 4 - acridinecarboxamide] was 

a generous gift from GlaxoSmithKline (Hertfordshire, United Kingdom). All the reagents 

used were of analytical grade or of the highest grade available. 

2.2. Synthesis of xanthones 

Dihydroxylated xanthones 1-5 were synthesized by classical methods via 

benzophenone or a biphenyl ether intermediates and Grover, Shah, and Shah reaction 

and their syntheses are described elsewhere (Castanheiro et al. 2007; Costa et al. 2010; 

Pedro et al. 2002). 3,4-Dihydroxy-9H-xanthen-9-one (X1) and  3,6-dihydroxy-9H-xanthen-

9-one (X5) were obtained by the cyclization of 2,2’-dioxygenated benzophenones through 

a nucleophilic substitution for X1 (in 70% yield) (Pedro et al. 2002) or a dehydrative 

process for X5 (in 90% yield) (Costa et al. 2010). 1,2-Dihydroxy-9H-xanthen-9-one (X2) 

and 2,3-dihydroxy-9H-xanthen-9-one (X4) were obtained via diaryl ether 2-(3’,4’-

dimethoxy)-phenoxybenzoic acid with the ring formation in lithium diisopropylamide for X2 

(in 50% yield) or acetyl chloride for X4 (in 85% yield). 1,3-Dihydroxy-9H-xanthen-9-one 

(X3) was synthesized by condensation between an condensation of salicylic acid and 

phloroglucinol, in phosphorous oxychloride and zinc chloride (in 40% yield) (Castanheiro 

et al. 2007). Xanthones 1-5 were characterized by spectroscopic methods and HRMS 

according to described procedures (Castanheiro et al. 2007; Costa et al. 2010; Pedro et 
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al. 2002). The purity of each compound was determined by HPLC-DAD and all tested 

xanthones possessed a purity of at least 95%. Briefly, the HPLC analysis was performed 

in a Finnigan Surveyor -Autosampler Plus and LC Pump Plus (Thermo Electron 

Corporation, Waltham, MA, USA), equipped with a diode array detector TSP UV6000LP, 

and using a C-18 column (5 μm, 250 mm × 4.6 mm I.D.), from Macherey-Nagel (Deuren, 

Germany). Xcalibur2.0 SUR 1 software (Thermo Electron Corporation, Waltham, MA, 

USA) managed chromatographic data. Methanol was of HPLC grade from Merck. HPLC 

ultrapure water was generated by a Milli-Q system (Millipore, Bedford, MA, USA). The 

mobile phases were degassed for 15 min in an ultrasonic bath before use. It was used an 

isocratic elution of MeOH:H2O acidified with CH3COOH (1%), at a constant flow rate of 1.0 

mL.min-1 (several proportions). 

2.3. Caco-2 cell culture 

Caco-2 cells were routinely cultured in 75 cm2 flasks using DMEM medium 

supplemented with 10% heat inactivated FBS, 1% NEAA, 1% antibiotic, 1% fungizone and 

6 µg/mL transferrin. Cells were maintained in a 5% CO2-95% air atmosphere, at 37 ºC, 

and the medium was changed every 2 days. Cultures were passaged weekly by 

trypsinization (0.25% trypsin/1 mM EDTA). The cells used for all the experiments were 

taken between the 59th and 65th passages. In all experiments, the cells were seeded at a 

density of 60,000 cells/cm2, and used 4 days after seeding, when confluence was 

reached. 

2.4. Compounds cytotoxicity assays 

Xanthones 1-5 (0 – 50.0 µM) cytotoxicity was evaluated 24 h after exposure by the 

MTT reduction and NR uptake assays. 

2.4.1.  MTT reduction assay 

Xanthones 1-5 cytotoxicity was evaluated by the MTT assay as previously described 

(Silva et al. 2013a). Briefly, the cells were seeded onto 96-well plates and exposed, after 

reaching confluence, to the tested compounds X1-5 (0 - 50.0 µM) in fresh cell culture 

medium. Twenty-four hours after exposure, the cell culture medium was removed, 

followed by the addition of fresh cell culture medium containing 0.5 mg/mL MTT and 

incubation at 37 °C in a humidified, 5% CO2-95% air atmosphere for 1 h. After this 

incubation period, the cell culture medium was removed and the formed formazan crystals 

dissolved in 100% DMSO. The absorbance was measured at 550 nm in a multi-well plate 

reader (PowerWave X, Bio-Tek Instruments, Vermont, US). The percentage of MTT 
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reduction relative to that of the control cells was used as the cytotoxicity measure. Results 

are presented as mean ± SEM from 5 independent experiments (run in triplicate). 

2.4.2.  Neutral red uptake assay 

The neutral red (NR) uptake assay is based on the ability of viable cells to 

incorporate and bind the supravital dye neutral red in the lysosomes, thus providing a 

quantitative estimation of the number of viable cells in a culture. The assay was performed 

as previously described (Vilas-Boas et al. 2013b). The cells were seeded onto 96-well 

plates at a density of 60,000 cells/cm2, and exposed, after reaching confluence, to the 

tested X1-5 (0 - 50.0 µM) in fresh cell culture medium for 24 h. The cells were then 

incubated with NR (50 µg/ml in cell culture medium) at 37 °C in a humidified, 5% CO2-

95% air atmosphere for 90 min. After this incubation period, the cell culture medium was 

removed, the dye absorbed only by viable cells extracted [ethyl alcohol absolute/distilled 

water (1:1) with 5% acetic acid] and the absorbance measured at 540 nm in a multi-well 

plate reader (PowerWave X, Bio-Tek Instruments, Vermont, US). The percentage of NR 

uptake relative to that of the control cells was used as the cytotoxicity measure. Results 

are presented as mean ± SEM from 5 independent experiments (run in triplicate). 

2.5. Evaluation of P-glycoprotein expression  

The effect of the tested X1-5 on P-gp expression was evaluated by flow cytometry 

as previously described (Palmeira et al. 2011; Silva et al. 2011; Silva et al. 2013b; Vilas-

Boas et al. 2011; Vilas-Boas et al. 2013a; Vilas-Boas et al. 2013b). The cells were seeded 

onto 48-well plates, at a density of 60,000 cells/cm2 and exposed, 4 days after seeding, to 

a non-cytotoxic (20.0 µM) concentration of the tested X1-5 in fresh cell culture medium. 

Twenty-four hours after exposure, the cells were washed twice with PBS and harvested 

by trypsinization (0.25% trypsin /1mM EDTA) to obtain a cell suspension. The cells were 

then centrifuged (300 g for 10 min) and suspended in PBS buffer (pH 7.4) containing 10% 

FBS and P-gp antibody [UIC2] conjugated with FITC. The antibody dilution used in this 

experiment was applied according to the manufacturer's instructions for flow cytometry. 

Mouse IgG2a_FITC was used as an isotype-matched negative control to estimate non-

specific binding of the FITC-labelled anti-P-glycoprotein antibody [UIC2]. The cells were 

then incubated for 30 min, at 37 °C, in the dark. After this incubation period, the cells were 

washed twice with PBS buffer (pH 7.4) containing 10% heat inactivated FBS, centrifuged 

(300 g for 10 min), suspended in ice-cold PBS, and kept on ice until analysis. 

Fluorescence measurements of isolated cells were performed with a flow cytometer 

(FACSCalibur, Becton-Dickinson Biosciences). The green fluorescence of FITC-UIC2 
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antibody was measured by a 530 ± 15 nm band-pass filter (FL1). Acquisition of data for 

15,000 cells was gated to include viable cells on the basis of their forward and side light 

scatters and the propidium iodide (4 µg/mL) incorporation (propidium iodide interlaces with 

a nucleic acid helix with a resultant increase in fluorescence intensity emission at 615 

nm). Logarithmic fluorescence was recorded and displayed as a single parameter 

histogram. The geometric mean of fluorescence intensity (GeoMean) for 15,000 cells was 

the parameter used for comparison (calculated as percentage of control). Non labelled 

cells (with or without the tested xanthones) were also analysed  in each experiment by a 

530 ± 15 nm band-pass filter (FL1) in order to detect a possible contribution from cells 

autofluorescence to the analysed fluorescence signals. Results are presented as mean ± 

SEM from 3 independent experiments (run in triplicate). 

2.6. Evaluation of P-glycoprotein transport activity  

P-gp transport activity was evaluated by flow cytometry, with 1.0 µM RHO 123 as a 

P-gp fluorescent substrate using two different protocols. In the first protocol, RHO 123 

efflux was measured in cells pre-exposed to X1-5 for 24 h. In this protocol the xanthones 

are removed from the incubation medium prior to the cell trypsinization. Therefore the 

measured RHO 123 fluorescence reflects the P-gp activity due to increased expression. In 

the second protocol, the xanthones are only added immediately prior to the 45 min-RHO 

123 efflux phase. In this case, the measured RHO 123 fluorescence reflects a direct 

activation of the P-gp pump, without the contribution of protein expression increases. 

2.6.1.  RHO 123 efflux assay in Caco-2 cells pre-exposed to xanthones for 24 h 

Caco-2 cells were seeded onto 24-well plates, at a density of 60,000 cells/cm2, to 

obtain confluent monolayers at the day of the experiment. After reaching confluence, 

the cells were exposed to the tested X1-5 (20.0 µM) in fresh cell culture medium for 24 

h. After the incubation period, the cells were washed twice with PBS and harvested by 

trypsinization (0.25% trypsin /1mM EDTA) to obtain a cell suspension. The cells were 

then centrifuged (300 g for 10 min), suspended in PBS buffer (pH 7.4) containing 1.0 

µM RHO 123 and a known P-gp inhibitor (10.0 µM cyclosporine A), and incubated at 

37ºC for 30 min in order to allow maximum RHO 123 accumulation [inhibited 

accumulation (IA) phase]. After this incubation period, the cells were washed twice 

with ice-cold PBS with 10% FBS, centrifuged (300 g for 10 min) at 4°C, and divided 

into two aliquots. The first aliquot was submitted to an efflux phase performed under 

inhibited conditions (inhibited rhodamine accumulation followed by inhibited rhodamine 

efflux in the presence of P-gp inhibitor – IAIE) and the second aliquot was submitted to 
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an efflux phase performed under normal conditions (inhibited rhodamine accumulation 

followed by non-inhibited rhodamine efflux in the absence of P-gp inhibitor – IAE). For 

the efflux phase the cells were suspended in DMEM medium containing 4.5 g/L 

glucose, with or without 10.0 µM cyclosporine A, and incubated for 45 min at 37°C. 

After this efflux period, the cells were washed twice with ice-cold PBS with 10% FBS 

and suspended in ice-cold PBS immediately before analysis. The fluorescence 

measurements of isolated cells were performed as described in section 2.4. The green 

intracellular fluorescence of RHO 123 was measured by a 530 ± 15 nm band-pass 

filter (FL1). The ratio between the mean fluorescence intensity (MFI) after inhibited 

RHO 123 efflux (IAIE) and the MFI of non-inhibited RHO 123 efflux (IAE) was the 

parameter used for comparison and the results expressed as percentage of control. 

Results are presented as mean ± SEM from 4 independent experiments (run in 

triplicate).  

2.6.2.  RHO 123 efflux assay in the presence of xanthones 

Caco-2 cells were seeded onto 75 cm2 flasks and, after reaching confluence, 

washed twice with PBS and harvested by trypsinization (0.25% trypsin /1mM EDTA) to 

obtain a cellular suspension. This cell suspension was then divided into aliquots of 

500,000 cells/mL. The cells were then centrifuged (300 g for 10 min) and submitted to an 

IA phase as described in section 2.5.1. After the RHO 123 accumulation, the cells were 

submitted to an efflux phase where the energy-dependent P-gp function was re-

established by removing the P-gp inhibitor (cyclosporine A) and adding an energy source 

(DMEM supplemented with 4.5 g/mol glucose). Therefore, after the IA phase, the cells 

were washed twice with ice-cold PBS with 10% FBS, centrifuged (300 g for 10 min) at 

4°C, and suspended in DMEM medium containing 4.5 g/L glucose, with or without the X1-

5 (20.0 µM), and incubated for 45 min at 37 °C. After this efflux period, the cells were 

washed twice with ice-cold PBS with 10% FBS and suspended in ice-cold PBS 

immediately before analysis. The fluorescence measurements of isolated cells were 

performed as described in section 2.4. The green intracellular fluorescence of RHO 123 

was measured by a 530 ± 15 nm band-pass filter (FL1). When P-gp activity increases, the 

amount of RHO 123 effluxed from the cells is higher and accompanied by a decrease in 

the fluorescence intensity due to the corresponding decrease in intracellular RHO 123. As 

P-gp activity is inversely proportional to the intracellular fluorescence intensity, the inverse 

of mean fluorescence intensity (1/MFI) was the parameter used for comparison and the 

results expressed as percentage of control. Results are presented as mean ± SEM from 5 

independent experiments (run in triplicate).  
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2.7. Evaluation of P-glycoprotein ATPase activity  

P-gp ATPase activity was evaluated using the MDR1 Predeasy ATPase assay kit 

according to the manufacturer’s instructions. Briefly, MDR1-Sf9 membrane vesicles (4 

μg/well) were incubated in 50 μL ATPase assay buffer with 2 mM ATP and X1-5 (20.0 μM) 

for 10 min at 37 °C, with or without simultaneous incubation with 1.2 mM sodium 

orthovanadate (Na3VO4).  

The reaction was stopped by adding 100 µL of developer solution to each well, 

followed by 100 µL of blocker solution and an additional 30 min incubation at 37 ºC. The 

absorbance was measured at 590 nm, in a multi-well plate reader (BioTek Instruments, 

Vermont, USA), reflecting the amount of inorganic phosphate (Pi) liberated by the 

transporter, which is proportional to its activity. The MDR1-Sf9 membrane vesicles used, 

apart from P-gp, contain other ATPases. As P-gp is effectively inhibited by Na3VO4, P-gp 

ATPase activity was measured as the vanadate sensitive portion of the total ATPase 

activity. Thus, ATPase activities were determined as the difference of Pi liberation 

measured with and without 1.2 mM sodium orthovanadate (vanadate-sensitive ATPase 

activity) and expressed as nmol Pi liberated/mg protein/min. Results are presented as 

mean ± SEM from 3 independent experiments (run in duplicate). Control incubations were 

also performed in the absence of xanthones and the corresponding vanadate-sensitive 

ATPase activity referred to as basal vanadate-sensitive ATPase activity.  

2.8. Paraquat cytotoxicity assays 

Paraquat cytotoxicity was evaluated in Caco-2 cells by the NR uptake assay, with 

and without simultaneous incubation with the tested xanthones. Briefly, the cells were 

seeded onto 96 well plates to obtain confluent monolayers at the day of the experiment. 

After reaching confluence, the cells were exposed to PQ (0–7500 μM) for 24 h in the 

presence or absence of X1-5 (20.0 μM) and cytotoxicity was evaluated as previously 

described in section 2.4.2. Results are presented as mean ± SEM from 6 independent 

experiments (run in triplicate). 

To confirm P-gp involvement in the X1-5 protective effects, these incubations were 

repeated in the presence of a well-known and potent P-gp inhibitor, GF120918 (10.0 µM) 

(Dorner et al. 2009; Kanaan et al. 2009; Silva et al. 2013d; Vilas-Boas et al. 2013c). 

Results are presented as mean ± SEM from 4 independent experiments (run in triplicate). 

2.9. Statistical analysis 

All statistical calculations were performed with the GraphPad Prism version 6.00 for 

Windows (GraphPad Software, San Diego California, USA). Normality of the data 
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distribution was assessed by three different tests, KS normality test, D'Agostino & 

Pearson omnibus normality test and Shapiro-Wilk normality test.  For data with a 

parametric distribution, statistical comparisons were made using the parametric method of 

One-way ANOVA on ranks followed by the Bonferroni's multiple comparisons post hoc 

test. For data with a nonparametric distribution, statistical comparisons were estimated 

using the nonparametric method of Kruskal-Wallis [one-way analysis of variance (ANOVA) 

on ranks] followed by Dunn’s post hoc test. In experiments with two variables, statistical 

comparisons between groups were made using Two-way ANOVA, followed by the Sidak's 

multiple comparisons post hoc test. 

In the PQ cytotoxicity assays, concentration-response curves were fitted using least 

squares as the fitting method and the comparisons between curves (EC50, TOP, BOTTOM 

and Hill slope) were made using the extra sum-of-squares F test.  

Details of the performed statistical analysis are described in each figure legend. In 

all cases, p values lower than 0.05 were considered significant. 

2.10. Quantitative structure activity relationships (QSAR) model 

CODESSA (version 2.7.10, Semichem, University of Florida) software was used to 

calculate the molecular descriptors for each compound (Coi et al. 2006; Katritzky et al. 

2001). The CODESSA software calculates more than 500 constitutional, topological, 

geometrical, electrostatic, quantum-chemical and thermodynamical molecular descriptors 

and performs the statistical analyses linear regression such as the heuristic method (Lü et 

al. 2008). Following the calculation of the molecular descriptors, the heuristic method was 

used in CODESSA to correlate the EC50 values of xanthonic compounds 1-5 (Table 1) 

with those descriptors. This method can also provide a good estimation concerning the 

quality of correlation to be expected from the data, or to derive several best regression 

models. The squared correlation coefficient (R2), the Fisher criteria (F), and the standard 

error (s) were used as criteria for stability and robustness of the models (Kubinyi 2008). 

The final model was further tested with an external validation method using two 

thioxanthones previously described as P-gp activators (Palmeira et al. 2012; Silva et al. 

2013d), and assayed using the same in vitro method (paraquat cytotoxicity assay), in the 

same conditions, as the compounds described in the present paper (Supplementary data, 

Figure S4).  

2.11. Docking of xanthones on a P-gp model 

The 3D structures of the small molecules were drawn using HyperChem 7.5 

(Froimowitz 1993) being minimized by the semi-empirical Polak-Ribiere conjugate 
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gradient method (RMS<0.1 kcal.Å-1. mol-1) (Zhang et al. 2006). Docking simulations 

between the P-gp model built based on Sav1866 [previously described in (Palmeira et al. 

2012)] and the five dihydroxylated xanthones 1-5, PQ, and pairs of small molecules (PQ 

together with a xanthone) were undertaken in AutoDock Vina (Scripps Research Institute, 

USA) (Seeliger and de Groot 2010; Trott and Olson 2009). AutoDock Vina considered the 

target conformation as a rigid unit while the ligands were allowed to be flexible and 

adaptable to the target. Vina searched for the lowest binding affinity conformations and 

returned nine different conformations for each ligand. AutoDock Vina was run using an 

exhaustiveness of 8 and a grid box with the dimensions 37.0, 30.0, 40.0, engulfing the 

channel formed by the transmembrane domains. Conformations and interactions were 

visualized using PyMOL version 1.3 (Lill and Danielson 2010). 
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3. RESULTS  

3.1.  Xanthones cytotoxicity assays 

Xanthones 1-5 cytotoxicity was evaluated by the MTT reduction and by the NR 

uptake assays to select non-cytotoxic working concentrations (Supplementary data, 

Figures S1 and S2, respectively). No significant cytotoxicity was observed within the 

tested concentration range (0 - 50.0 μM) after 24 h of incubation.  

3.2.  P-glycoprotein expression  

The effect of the tested X1-5 on P-gp expression was evaluated by flow cytometry, 

using a P-gp monoclonal antibody [UIC2] conjugated with FITC. Nonspecific binding of the 

FITC-labelled-anti-P-glycoprotein antibody [UIC2] was not observed as estimated by the 

fluorescence obtained with the isotype-matched negative control (data not shown). As 

shown in Figure 2, a significant increase in P-gp expression was observed for all the 

tested xanthones (20.0 µM). In fact, X1-5 significantly increased the protein expression to 

134.30, 144.25, 133.05, 141.90, and 142.74 %, respectively, when compared to control 

cells. However, no significant differences were found between the tested compounds. 

 

 
 
Figure 2. P-glycoprotein expression levels in 
Caco-2 cells exposed to X1-5 (20 µM) for 24 
h. Results are presented as mean ± SEM from 3 
independent experiments performed in triplicate. 
Statistical comparisons were made using the 
parametric method of One-way ANOVA, followed 
by the Bonferroni's multiple comparisons post hoc 
test (****p<0.0001 vs. control). 
 

3.3.  P-glycoprotein transport activity 

RHO 123 is widely used as a P-gp fluorescent substrate in the evaluation of P-gp 

function in many cell types. RHO 123 efflux was evaluated in cells pre-exposed to the 

tested X1-5 (20.0 µM) for 24 h, to evaluate if P-gp activity reflected the observed 

increases in its expression, since P-gp activity is not always correlated with its protein 

content (Silva et al. 2013b; Takara et al. 2009; Vilas-Boas et al. 2011). As shown in Figure 

3A, for all the tested xanthones, a significant increase in RHO 123 efflux was observed, 

demonstrating increased pump activity (123.71, 128.24, 114.88, 122.11 and 127.04 % for 

X1-5, respectively, when compared to control cells).  
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RHO 123 efflux was also evaluated using a different experimental design. As sown 

in Figure 3B, the presence of the tested X1-5 during only the 45 min RHO 123 efflux 

phase resulted in a significant increase in the efflux of the dye, when compared to control 

cells. In fact, X1-5 significantly increased RHO 123 efflux to 124.09, 112.25, 113.46, 

114.06, and 124.02, respectively, indicating a slight, though significant, ability to directly 

activate the pump. Among the tested compounds, X1 and X5 were the most effective as 

P-gp activators. 

 

Figure 3. (A) P-glycoprotein activity evaluated through the RHO 123 efflux in Caco-2 cells pre-
incubated with X1-5 (20 µM) for 24 h. Results are presented as mean ± SEM from 4 independent 
experiments performed in triplicate. Statistical comparisons were made using the parametric 
method of One-way ANOVA, followed by the Bonferroni's multiple comparisons post hoc test 
(****p<0.0001 vs. control; ($p<0.05, $$$p<0.001; $$$$p<0.0001vs. X3). (B) P-glycoprotein activity 
evaluated through the RHO 123 efflux in the presence of X1-5 (20 µM) during the 45 min RHO 123 
efflux phase. Results are presented as mean ± SEM from 5 independent experiments performed in 
triplicate. Statistical comparisons were estimated using the nonparametric method of Kruskal–
Wallis (one-way ANOVA on ranks), followed by the Dunn’s post hoc test (**p<0.01; ****p<0.0001 
vs. control). 

3.4. P-glycoprotein ATPase activity 

As shown in Figure 4, all the tested xanthones (20.0 µM) significantly increased the 

amount of Pi released by the transporter, thus reflecting an increased P-gp activity. In 

comparison to the basal P-gp vanadate sensitive ATPase activity (11.37 nmol Pi 

liberated/mg protein/min) X1-5 significantly increased P-gp vanadate sensitive ATPase 

activity to 15.81, 20.76, 19.39, 19.76, and 20.44 nmol Pi liberated/mg protein/min, 

respectively. The observed increases in vanadate sensitive ATPase activity suggested 

that the tested X1-5 are P-gp substrates, being actively transported by the pump, thus 

resulting in an increased ATP consumption. 
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Figure 4. Vanadate sensitive ATPase activity 
(nmol Pi/mg protein/min) in MDR1-Sf9 
membrane vesicles (4 μg/well) incubated with 
X1-5 (20 µM). Results are presented as mean ± 
SEM from 3 independent experiments (performed 
in duplicate). Statistical comparisons were made 
using the parametric method of One-way ANOVA, 
followed by the Bonferroni’s multiple comparisons 
post hoc test (*p<0.05; ****p<0.0001 vs. control). 
 

3.5.  Xanthones effect on PQ-induced cytotoxicity 

Paraquat is a known P-gp substrate (Dinis-Oliveira et al. 2006b; Silva et al. 2011; 

Silva et al. 2013c; Vilas-Boas et al. 2013c). Therefore, the modulation of the pump may 

result in significant differences in the efflux and, consequently, in the cytotoxicity of the 

herbicide. To evaluate if the observed increases in both P-gp expression and activity 

could result in an effective protection against PQ-induced toxicity, the herbicide 

cytotoxicity (0 - 7,500 µM) was evaluated with and without simultaneous exposure to the 

tested X1-5 (20.0 µM). The corresponding concentration–response curves obtained with 

only paraquat (PQ) and with simultaneous exposure with xanthones (PQ + Xs) are 

presented in Figure 5. In fact, a significant reduction in the cell death was observed for the 

500 - 5000 µM PQ concentration range, resulting in significant rightwards shifts of all the 

PQ + Xs curves, when compared to the PQ curve. No significant differences were 

observed neither in the maximal cell death (TOP), nor in baseline (BOTTOM) of the fitted 

curves obtained for all the tested compounds (Table 1). Therefore, the EC50 values, which 

represent the half-maximum-effect concentrations from the fitted curves, were used for 

comparison. As shown in Table 1, a significant increase in the EC50 value of the fitted 

curves was observed for all the tested compounds, except for xanthone X2. In fact, for 

compounds X1, X3, X4, and X5 the EC50 value significantly increased from 1260 µM for 

the PQ curve to 1620, 1509, 1520, and 1714 µM, respectively. 
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Figure 5. Paraquat concentration-response (cell death) curves in the absence (PQ) or in the 
presence of 20 µM of X1-5 (PQ + Xs). Results are presented as mean ± SEM from 6 independent 
experiments (performed in triplicate). Concentration–response curves were fitted using least squares as the 
fitting method and the comparisons between PQ and PQ + Xs curves (LOG EC50, TOP, BOTTOM and Hill 
slope) were made using the extra sum-of-squares F test. Statistical comparisons were made using Two-way 
ANOVA, followed by the Sidak's multiple comparisons post hoc test (*p<0.05; **p<0.01; ***p<0.001; 
****p<0.0001 vs. PQ alone). 

 

Table 1. EC50 (half-maximum-effect concentration), TOP (maximal effect), BOTTOM (baseline) and 
Hill slope values of the paraquat concentration-response curves, with (PQ + Xs) or without (PQ) 
simultaneous exposure to X1-5 (20 µM). 

 PQ  PQ + X1 PQ + X2 PQ + X3 PQ + X4 PQ + X5 

EC50 
(half-maximum-effect 
concentration, µM) 

1260 1620 1392 1509 1520 1714 

TOP 
(maximal cell death, 

% control) 
94.00 90.32 89.49 94.51 92.52 94.46 

BOTTOM 
(baseline, % control) 

2.137 1.819 0.7618 0.3466 0.2038 0.1541 

Hill slope 1.330 1.534 1.491 1.412 1.460 1.416 

LOG EC50 p value  
(comparison between 

LOG EC50 values) 
- 0.0022 0.2474 0.0385 0.0248 0.0007 

TOP p value  
(comparison between 

TOP values) 
- 0.3831 0.2861 0.9059 0.7174 0.9247 

BOTTOM p value 
(comparison between 

BOTTOM values) 
- 0.7936 0.3003 0.1667 0.1086 0.1253 

Hill slope p value
(comparison between 

Hill slope values) 
- 0.1856 0.3263 0.5840 0.3657 0.5772 

Curve p value 
(Comparison between 

the Fitted Curves) 
- < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 

Concentration-response curves were fitted using least squares as the fitting method and the comparisons 
between PQ and PQ + Xs curves were made using extra sum-of-squares F test. In all cases, p values <0.05 
were considered significant. 
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To evaluate if the observed protective effects against PQ-induced toxicity were 

mediated by P-gp, the herbicide toxicity was further evaluated in the presence of a 

specific P-gp inhibitor, GF120918 (10 µM). The PQ cytotoxicity significantly increased in 

the presence of GF120918, resulting in a significant leftwards shift of the PQ + GF curve, 

when compared to the PQ curve (Supplementary data, Figure S3). Consequently, a 

significant decrease in the EC50 value of the PQ + GF curve was observed (906.0 µM vs. 

1260 µM for the PQ curve), demonstrating the significant impact of P-gp inhibition on PQ 

toxicity (Supplementary data, Table S1). Moreover, under P-gp inhibition, a complete 

abolishment of X1-5 protective effect against PQ-induced toxicity was observed (Figure 

6). In fact, for X1, X2, X4 and X5 a leftwards shift of the PQ + GF + Xs curves was 

observed, when compared to the PQ + GF curve, resulting in significant differences in the 

overall comparison of the fitted curves (Table 2). Additionally, for compounds X1 and X2, 

a significant increase in the cell death was observed with P-gp inhibition (PQ + GF + 

X1/X2) for the 500 - 1,000 µM PQ concentration range when compared to P-gp inhibition 

alone (PQ + GF) (Figure 6). However, no significant differences were obtained in the 

corresponding EC50 values (Table 2). For compound X3, no significant differences were 

observed neither in the overall comparison of the fitted curves, nor in the comparison of 

individual parameters (EC50, TOP, BOTTOM and Hill slope).  
 

Figure 6. Paraquat concentration–response (cell death) curves in the presence of a potent P-gp 
inhibitor (10 µM GF120918), with (PQ + GF + Xs) and without (PQ + GF) exposure to X1-5 (20 
µM). Results are presented as mean ± SEM from 4 independent experiments (performed in triplicate). 
Concentration–response curves were fitted using least squares as the fitting method and the comparisons 
between PQ and PQ + Xs curves (LOG EC50, TOP, BOTTOM and Hill slope) were made using the extra sum-
of-squares F test. Statistical comparisons were made using Two-way ANOVA, followed by the Sidak's multiple 
comparisons post hoc test (***p<0.001; ****p<0.0001 vs. PQ + GF curve). 
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Table 2. EC50 (half-maximum-effect concentration), TOP (maximal effect), BOTTOM (baseline) and 
Hill slope values of the paraquat concentration-response curves, in the presence of a P-gp inhibitor 
(10 µM GF120918), with (PQ + GF + Xs) or without (PQ + GF) simultaneous exposure to X1-5 (20 
µM). 

 PQ + GF 
PQ + GF + 

X1 
PQ + GF 

+ X2 
PQ + GF + 

X3 
PQ + GF + 

X4 
PQ + GF + 

X5 

EC50 
(half-maximum-effect 
concentration, µM) 

906.0 805.9 726.9 890.3 876.7 877.5 

TOP 
(maximal cell death, 

% control) 
92.58 94.63 91.97 94.32 98.08 93.65 

BOTTOM 
(baseline, % control) 

3.118 1.530 3.884 4.067 1.113 5.198 

Hill Slope 1.629 1.188 1.578 1.516 1.281 1.578 
LOG EC50 p value  

(comparison between 
LOG EC50 values) 

- 0.1506 0.0002 0.7741 0.6533 0.6036 

TOP p value  
(comparison between 

TOP values) 
- 0.4846 0.7676 0.4780 0.0551 0,6554 

BOTTOM p value 
(comparison between 

BOTTOM values) 
- 0.2899 0.5356 0.4798 0.1767 0.1078 

Hill Slope p value 
(comparison between 

Hill slope values) 
- 0.0024 0.7378 0.5058 0.0264 0.5559 

Curve p value 
(Comparison between 

the Fitted Curves) 
- < 0.0001 < 0.0001 0.2493 0.0232 0.0243 

Concentration-response curves were fitted using least squares as the fitting method and the comparisons 
between PQ + GF and PQ + GF + Xs curves were made using extra sum-of-squares F test. In all cases, p 
values <0.05 were considered significant. 

3.6.  In silico studies 

In this work, one 2D QSAR model was elaborated at the beginning with 

Comprehensive Descriptors for Structural and Statistical Analysis (CODESSA) software 

package [CODESSA software version 2.7.2, University of Florida, USA]. A large number 

of molecular descriptors divided into five categories (constitutional, topological, 

geometrical, electrostatic, and quantum-chemical) were generated. Only some of them 

were significantly correlated with the effect of activating the P-gp transporter. The used 

heuristic method is a very useful tool for searching the best pool of descriptors. It is a 

quick method and presents no restrictions on the size of the data set (Dunn and Hopfinger 

2002). The best regression model with the optimum values of statistical criteria (the 

square correlation R2, the F-test and the standard error s values) was determined 

(Walczac et al. 2010). The final model was validated using previously described P-gp 

activators (Supplementary data, Figure S4) (Palmeira et al. 2012; Silva et al. 2013d). A 

major concern in developing QSAR models is the number of descriptors used to elaborate 

the equation. Laws of QSAR establish that it should be one descriptor for each five 
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molecules (Kubinyi 2008), precisely the number of compounds assayed in the present 

work. 

The multilinear regression analysis using Heuristic method for X1-5 in the one-

parameter model is given in Figure 7. The best training morel had a quality (R2) of 0.7100, 

Fisher value of 7.34, and s of 75.7, which demonstrate that the proposed model has 

satisfactory statistical stability and validity in spite of the small group of molecules used to 

build the model. The F-test reflects the ratio of the variance explained by the model and 

the variance due to the error in the regression; a high value of the F-test indicates that the 

model is significant. The QSAR model is significant at 95% level as shown by their Fischer 

ratio values which exceed the tabulated values (6.61) as desired for a meaningful 

correlation. The squared correlation coefficient R2 is a relative measure of quality of fit by 

regression equation; correspondingly, it represents more than 70% of the total variance 

(R2=0.710) in the P-gp activation effect exhibited by xanthone derivatives 1-5; its value is 

close to 1.0 which represents the better fit to the regression line. Standard deviation s 

expresses the variation of the residuals or the variation about the regression line, being an 

absolute measure of quality of fit and should have a low value for the regression to be 

significant. 

The maximal partial charge for an oxygen atom (Zefirov) was the descriptor predicted 

as being implicated in the P-gp activation ability of all dihydroxylated xanthones (Figure 7). 

This electrostatic parameter is associated with the electronegativity of the oxygen that is 

higher than the electronegativity of carbon, causing electrons to spend more time around 

the oxygen atom, giving it a partially negative charge while the carbon will become 

partially positive. This parameter indicates the importance of the presence of the O atom 

in specific positions in the molecule.  

As P-gp activators bind in the drug-binding pocket formed by the transmembrane 

domain interface, docking simulations were performed in this binding pocket of P-

glycoprotein. As dihydroxylated xanthones 1-5 revealed an effect compatible with P-gp 

activation in the in vitro studies, a visual inspection of these molecules in the 

transmembrane domain interface of P-gp was performed (Figure 8). Dihydroxylated 

xanthones 1-5 bind in one particular binding site, engulfed by TM 4, 5, 8-10, and 12 

(Figure 8). Stable complexes between X1-5 and P-gp binding-pocket are formed, with 

docking scores as low as -7.2 kJ/mol for X5 (Table 3A). All the xanthones in study bind in 

a similar and almost superimposable conformation (Figure 8). Dihydroxylated xanthones 

have shape, size, and stereoelectronic complementarity to P-gp binding pocket, 

establishing hydrogen interactions with Ile-235, Arg-832, and Glu-875 (Loo and Clarke 

2002; Wang et al. 2007), described as being important members of the drug-binding 

pocket, contributing also to the correct folding of the transporter; and stacking interactions 
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with Phe-77, described as being part of P-glycoprotein binding pocket and important to P-

gp biosynthesis (Loo and Clarke 1993). 

 

Figure 7. QSAR model obtained with the heuristic method for X1-5 with the CODESSA software 
(R2 = 0.7100, F = 7.34, and s = 75.74). X, ∆X, and t-test are the regression coefficient of the linear 
model, standard errors of the regression coefficient, and the t significance coefficient of the 
determination, respectively. 

 

 

 
Figure 8. Docking of the dihydroxylated X1-5 (grey) and paraquat (pink) individually to the P-gp 
model. Side (A) and top (B) view. Polar interactions are represented with the yellow broken line. 
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The top rank PQ docking pose presented a score of -5.6 kJ/mol (Table 3A), in a 

binding pocket distant from the place where X1-5 were predicted to dock (Figure 8); other 

less stable PQ conformations are found in the xanthone binding site (data not shown). A 

simultaneous and cooperative transport may be hypothesized, as the binding of a 

xanthone at one binding site may stimulate the transport of PQ trough another binding site 

(Litman et al. 1997). Therefore, xanthone derivatives and PQ may bind simultaneously in 

P-gp in two different binding sites. Moreover, xanthones and PQ may establish stacking 

interactions while being co-transported; this noncovalent complex binds to P-gp with 

higher affinity than xanthone derivative and PQ individually (Figure 9, Table 3B). The two-

ligand complex establishes polar interactions with P-gp residues, such as Gln347 and 

Val345, and stacking interactions with P-gp residues, such as Phe343 and Trp232 (Figure 

9). 

 
Table 3. Docking scores of X1-5 alone (A) and X1-5 + PQ (B) into the P-gp docking pocket. 

(A) Docking scores (kJ/mol) (B) Docking scores (kJ/mol) 

X1 -7.1 X1 + PQ -9.9 

X2 -6.7 X2 + PQ -9.6 

X3 -6.8 X3 + PQ -9.8 

X4 -7.0 X4 + PQ -9.8 

X5 -7.2 X5 + PQ -10.0 

PQ -5.6 - - 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 9. Docking of X5: paraquat complex into P-gp model. Polar interactions are represented 
with the yellow broken line. 
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4. DISCUSSION 

The present data clearly demonstrate that all the tested dihydroxylated xanthones 

(X1-5, Figure 1) significantly increased both P-gp expression and activity, resulting in a 

significant protection of Caco-2 cells against PQ-induced toxicity.  

Xanthones, dibenzo-γ-pyrones, comprise an important class of oxygenated 

heterocycles, with both natural and synthetic origin, and growing interest in this class of 

compounds has been associated with the pharmacological properties demonstrated by 

these derivatives (Pinto et al. 2005). The biological activities of this class of compounds 

are associated with their tricyclic scaffold, but vary depending on the nature and/or 

position of the different substituents (Pinto et al. 2005). Several xanthonic derivatives were 

already reported to modulate diverse enzymatic systems, as well as other cellular systems 

such as calcium channels, 5-HT 2A receptors, and β-adrenergic receptors [for review see 

(Pinto et al. 2005)]. However, in what concerns to modulation of drug transporters the 

available information is scarce. In fact, some prenylated xanthones have shown binding 

affinity to the P-gp recombinant domain (Tchamo et al. 2000). Moreover, in a study 

performed with P-gp overexpressing leukemia cells (K562Dox cells), a prenylated and a 

lignoid xanthonic derivative acted as noncompetitive P-gp inhibitors, blocking P-gp 

ATPase activity (Sousa et al. 2013). However, in the same study, two other simple 

oxygenated xanthone derivatives significantly decreased the intracellular accumulation of 

RHO 123, an effect compatible with increased P-gp activity, but no further studies were 

conducted to clarify their mode of action. To the best of our knowledge, this is the first 

report on the ability of xanthonic derivatives to act as P-gp inducers, demonstrating that 

they significantly increase the pump expression (Figure 2). The observed in vitro P-gp 

induction effect was not dependent on the position of the hydroxyl substituents at the 

xanthonic scaffold, since no significant differences were observed among the tested 

compounds. Moreover, the significant increase in the pump expression resulted in 

significant increases in its activity (Figure 3A). It is well known that increases in protein 

expression may not necessarily result in proportional increases in pump activity (Silva et 

al. 2011; Silva et al. 2013b; Takara et al. 2009; Vilas-Boas et al. 2011), since the 

increased expression does not mean that the protein is yet fully functional. However, as 

can be seen in Figures 2 and 3A, all tested dihydroxylated xanthones 1-5 simultaneously 

increased P-gp expression and activity, and the observed increases in the protein 

expression reveal a higher incorporation in the cell membrane, since the monoclonal UIC2 

antibody recognizes an external P-gp epitope (Vilas-Boas et al. 2011). Noteworthy, a 

direct activation of the pump was observed when the compounds were in contact with the 

cells during a short 45 min RHO 123 efflux phase (Figure 3B), suggesting an increased P-
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gp activity that does not reflect increased protein expression, given the short incubation 

period with the tested xanthones. Therefore, these compounds acted as P-gp activators, 

compounds with the ability to immediately increase P-gp activity without the need to 

increase its expression (Sterz et al. 2009; Vilas-Boas et al. 2013c). From the obtained 

results, X1 and X5 were the most effective P-gp activators. 

P-gp ATPase activity assays have been widely used to evaluate possible 

interactions with P-gp function and compounds that act as P-gp substrates typically 

stimulate its ATPase activity (Ambudkar et al. 1999). Accordingly, our results showed that 

all the tested xanthones caused a significant increase in P-gp vanadate-sensitive ATPase 

activity, demonstrating to be actively transported by the pump (Figure 4).  

To evaluate whether the observed effects of the tested X1-5 on P-gp expression and 

activity could afford protection of Caco-2 cells against the toxicity of P-gp substrates, PQ 

was used as a model of a toxic substrate and its toxicity was evaluated in the presence or 

absence of the tested compounds. The suitability of this study model using PQ as the P-

gp toxic substrate was already demonstrated with previous studies on the P-gp inducer 

doxorubicin in Caco-2 cells (Silva et al. 2011; Silva et al. 2013c) and a reduced rifampicin 

derivative (RedRif) in RBE4 cells (Vilas-Boas et al. 2013c). Upon simultaneous incubation 

with the five tested xanthonic derivatives, PQ cytotoxicity was significantly decreased, with 

significant increases in the EC50 values of the PQ + Xs curves, being X1 and X5 the most 

protecting derivatives (Figure 5; Table 1), the same compounds that demonstrated the 

highest effectiveness in activating the pump (Figure 3B). Moreover, when in presence of 

the potent P-gp inhibitor, GF120918, the observed protective effects were completely 

abolished (Figure 6), demonstrating that the tested X1-5 can effectively reduce PQ-

induced cell death through a P-gp-mediated mechanism.  

Noteworthy, as all the five tested X1-5 were able to simultaneously increase RHO 

123 efflux, ATP consumption, and PQ EC50 values in Caco-2 cells, confirming an effective 

protection against PQ-induced toxicity, the existence of a mechanism involving P-gp 

activation was proposed. P-glycoprotein activators have been recently defined as 

compounds with the ability to immediately increase P-gp activity without increasing its 

expression (Sterz et al. 2009; Vilas-Boas et al. 2013c) although it has long been known 

that there are compounds that bind to P-gp and stimulate the transport of a substrate on 

another binding site. For example, Hoechst-33342 and RHO 123 act through this 

cooperative mode of action (Shapiro and Ling 1998). This functional model of P-gp 

suggested that the efflux pump contained at least two positively cooperative sites (H site 

and R site, for Hoechst-33342 and RHO 123, respectively) for drug binding and transport 

(Shapiro and Ling 1997). This cooperative mechanism of action has also been suggested 

for prazosin and progesterone (Shapiro and Ling 1998). A four-P-gp-binding-sites model 
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supports the presence of three transport sites and one regulatory site. This last site 

allostericaly alters the conformation of the transport binding sites from low to high affinity 

for substrates, increasing the rate of translocation (Martin et al. 2000). In fact, the adaption 

and survival mechanisms of living beings has allowed the binding of several xenobiotics at 

the same time to P-gp (Safa 1993; Safa 1998), increasing the transport of each other, not 

competing but activating the transportation cycle (Safa 2004). Hence, binding modes of 

xanthonic derivatives 1-5 and paraquat were further explored by a docking study. 

Xanthonic derivatives 1-5 and PQ docked on two different binding sites in the cleft formed 

by the transmembrane α-helices of a P-gp model based on homologous S.aureus ABC 

transporter, Sav1866 (Palmeira et al. 2012). Furthermore, a simultaneous docking of PQ 

and X1-5 revealed that a more stable complex with P-gp model was formed (with lower 

free energy) than when those molecules were docked individually, suggesting that a co-

transport may be occurring for PQ and the tested xanthonic derivatives. The docking 

studies suggest that two mechanisms of activation by co-transport may be occurring: a) 

xanthones dock on a different site than PQ, thus activating the efflux of the herbicide; b) 

xanthonic derivative and PQ bind to the same drug pocket, establishing stacking 

interactions between the xanthone scaffold and the biphenyl group, and facilitating the 

transport to the extracellular medium. In the future, mutation studies could be performed in 

order to determine whether PQ and xanthones bind to the same or to different binding 

sites on P-gp.  

Maximal partial charge for oxygen atoms (Supplementary data, Figure S5), an 

electrostatic parameter associated with electronegativity of oxygen, and consequently, 

with the strength of the intermolecular polar interactions such as hydrogen interactions, 

was predicted as being related with the P-gp activation ability of dihydroxylated xanthonic 

derivatives 1-5.  

Both docking studies and QSAR model are in accordance with the biological data 

presented, with 3,6-dihydroxyxanthone (X5) being the most active and the 1,2-

dihydroxyxanthone (X2) the least active xanthone in activating P-gp transport activity. 

Overall, position 3 of the xanthonic scaffold seems to be the most favourable for a 

hydroxyl substituent in P-gp activation, in contrast to position 1. Nevertheless, in the 

future, other simple oxygenated xanthonic derivatives will be investigated in order to 

improve the significance and predictability of the QSAR model, and to discover other 

descriptors involved in the P-gp activation capacity of xanthones. 

In conclusion, adding to their known pharmacological actions, dihydroxylated 

xanthonic derivatives were shown to efficiently induce and activate P-gp, affording 

protection against its toxic substrates. These data disclose new perspectives in preventing 

paraquat and other P-gp substrates-induced poisonings. 
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SUPPLEMENTARY DATA 

Supplementary Figures 

 

Figure S1. Xanthones 1-5 (0 - 50 µM) cytotoxicity in Caco-2 cells 24 h after incubation, evaluated 
by the MTT reduction assay. Results are presented as mean ± SEM from 5 independent experiments 
performed in triplicate. Statistical comparisons were made using the parametric method of One-way ANOVA, 
followed by the Bonferroni's multiple comparisons post hoc test (*p<0.05; ***p<0.001; ****p<0.0001 vs. 
control). 

 

 

 

Figure S2. Xanthones 1-5 (0 - 50 µM) cytotoxicity in Caco-2 cells 24 h after incubation, evaluated 
by the NR uptake assay. Results are presented as mean ± SEM from 5 independent experiments 
performed in triplicate. Statistical comparisons were made using the parametric method of One-way ANOVA, 
followed by the Bonferroni's multiple comparisons post hoc test (**p<0.01; ****p<0.0001 vs. control). 
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Figure S3. Paraquat concentration–response 
(cell death) curves in the absence (PQ) or in 
the presence (PQ + GF) of the P-gp inhibitor 
GF120918, confirming the P-gp involvement 
in PQ toxicity. Results are presented as mean ± 
SEM from at least 4 independent experiments 
(performed in triplicate). Concentration–response 
curves were fitted using least squares as the fitting 
method and the comparisons between the fitted 
curves (LOG EC50, TOP, BOTTOM and Hill slope) 
were made using the extra sum-of-squares F test. 
Statistical comparisons were made using Two-way 
ANOVA, followed by the Sidak's multiple 

comparisons post hoc test (**p<0.01; ***p<0.001; ****p<0.0001 vs. PQ alone). In all cases, p values <0.05 
were considered significant. 
 

 

Figure S4. External validation results of QSAR model using two thioxanthones described as P-gp 
activators (Palmeira et al. 2012; Silva et al. 2013d). 
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Figure S5. Partial charges of X5 (A, B) and X2 (C,D). B and D represent partial charges colour 
gradient (from negative – red – to positive – blue) mapped onto the X5 and X2 molecular surfaces, 
respectively. 
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Supplementary Tables 

Table S1. EC50 (half-maximum-effect concentration), TOP (maximal effect), BOTTOM (baseline) 
and Hill slope values of the paraquat concentration-response fitted curves, with (PQ + GF) or 
without (PQ) simultaneous exposure to a P-gp inhibitor, GF120918 (10 µM). 

 PQ + GF PQ 

EC50 
(half-maximum-effect concentration, µM) 

906.0 1260 

TOP 
(maximal cell death, % control) 

92.58 94.00 

BOTTOM 
(baseline, % control) 

3.118 2.137 

Hill Slope 1.629 1.330 

LOG EC50 p value  
(comparison between LOG EC50 values) 

- < 0.0001 

TOP p value  
(comparison between TOP values) 

- 0.4712 

BOTTOM p value  
(comparison between BOTTOM values) 

- 0.2466 

Hill Slope p value 
(comparison between Hill slope values) 

- 0.0033 

Curve p value  
(Comparison between the Fitted Curves) 

- < 0.0001 

Concentration-response curves were fitted using least squares as the fitting 
method and the comparisons between PQ and PQ + GF curves were made using 
extra sum-of-squares F test. In all cases, p values <0.05 were considered 
significant. 
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IV. INTEGRATED DISCUSSION  

IV.1. Validation of Caco-2 cells as a suitable in vitro model for the study of P-gp 
induction 

The first aim of the present work was the validation of Caco-2 cells as a suitable in 

vitro model to be used in the screening and selection of potent, safe and specific P-gp 

inducers. These human intestinal epithelial cells were chosen to evaluate changes in 

intestinal P-gp, since most of the intoxications by P-gp substrates result from accidental or 

intentional ingestion, thus resulting in their absorption at the intestinal level. Moreover, 

these cells are widely used for predicting drug intestinal absorption and excretion in 

humans (Barta et al. 2008; Huynh-Delerme et al. 2005; Watanabe et al. 2005; Yamashita 

et al. 2000; Yamashita et al. 2002a; Yamashita et al. 2002b). For this purpose, 

doxorubicin was initially used as a reference compound, in order to validate our 

experimental procedure (Manuscript I), given its known ability to activate the transcription 

of the MDR1 gene and, therefore, increase P-gp levels (Boháčová et al. 2006; Chaudhary 

and Roninson 1993; Chin et al. 1990a; Fardel et al. 1997; Hu et al. 1995; Kohno et al. 

1989; Liu et al. 2002b; Wongwanakul et al. 2013). According to the obtained results, a 

significant increase in P-gp expression in Caco-2 cells was observed as soon as 6 h after 

exposure to doxorubicin concentrations higher than 5 µM (147%, 186%, 312% and 365% 

for 5, 10, 50 and 100 µM doxorubicin, as compared to control, respectively). Moreover, 

doxorubicin-induced increase in P-gp expression was accompanied by significant 

increases in the pump activity, and both parameters were time- and concentration-

dependent (Manuscript I). Noteworthy, the observed increases in P-gp protein expression 

revealed a higher incorporation in the cell membrane, since the used monoclonal UIC2 

antibody recognizes an external P-gp epitope (Vilas-Boas et al. 2011). 

This rapid activation of MDR1 expression by chemotherapics has been 

demonstrated both in vitro and in vivo. In fact, several studies have shown that the MDR1 

gene can be transiently and rapidly induced in cultured cells following exposure to 

chemotherapeutic agents, such as doxorubicin (Asakuno et al. 1994; Boháčová et al. 

2006; Brugger et al. 2002; Chaudhary and Roninson 1993; Chin et al. 1990a; Fardel et al. 

1997; Gekeler et al. 1988; Hu et al. 1995; Kohno et al. 1989; Liu et al. 2002b; Ohga et al. 

1996; Schuetz et al. 1996a; Wongwanakul et al. 2013). In a very recent study performed 

by Wongwanakul et al., using the same monoclonal antibody and the same in vitro model, 

it was observed, also by flow cytometry, a significant increase in cell surface P-gp after 

exposure of Caco-2 cells to doxorubicin for 24 h (2.15 fold over control for 3 μM 

doxorubicin). Moreover, the effect on P-gp expression was even more pronounced 7 days 
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after exposure to this anticancer drug (3.76 fold over control for 3 μM doxorubicin) 

(Wongwanakul et al. 2013), demonstrating also a time-dependent P-gp induction. 

Additionally, in accordance with our results, a concentration-dependent increase in the 

protein expression was also observed (Wongwanakul et al. 2013). 

Noteworthy, similar rapid induction of MDR1 gene expression was observed, in vivo, 

in tumours of patients during the course of chemotherapy with doxorubicin (Abolhoda et 

al. 1999). Metastatic sarcoma tumours isolated from patients undergoing chemotherapy 

with doxorubicin exhibited a very rapid induction of MDR1 expression, with no induction 

observed in adjacent (lung) tissue. Indeed, in four out of five patients, a 3-15-fold (median, 

6.8) increase in MDR1 RNA levels was detected in tumours, at 50 min after administration 

of doxorubicin (Abolhoda et al. 1999). The rapidity of this response excludes gene 

rearrangement or mutations and supports transcriptional activation as the underlying 

mechanism. These results suggest a greater and heretofore unconsidered role of MDR1 

in the induction of solid tumour drug resistance. Moreover, these findings demonstrated 

that MDR1 gene expression can be rapidly activated in human tumours after transient in 

vivo exposure to cytotoxic chemotherapy, as occurs with doxorubicin. 

A rapid increase in MDR1 gene expression was also reported for other drugs using 

the same in vitro model, the Caco-2 cells. For example, venlafaxine significantly increased 

the expression of MDR1 and MRP genes in these cells during an acute treatment period 

(1.5, 3, and 6 h), as detected by RT-PCR (Ehret et al. 2007). However, the effects of the 

tested compound on P-gp activity and on P-gp protein levels were not evaluated. Anderle 

et al. also reported that verapamil, celiprolol, and vinblastine significantly induced P-gp 

protein expression, as evaluated by flow cytometry, although their effects on P-gp activity 

were not evaluated (Anderle et al. 1998). To note that in this study increased cell surface 

P-gp expression was detected, since the antibody used, MRK 16, also recognizes an 

external epitope of human P-gp. 

It was also demonstrated that digoxin up-regulates MDR1 mRNA in Caco-2 cells, as 

evaluated by RT-PCR (Takara et al. 2003a). Indeed, MDR1 mRNA expression was 

increased after exposure to 1 μM digoxin for 24 h, in a concentration-dependent manner, 

although the effects on P-gp protein level and transport activity were not evaluated. 

However, in a previous study performed by the same authors, it was demonstrated that, 

besides the increase in MDR1 mRNA levels, pre-treatment with 1 μM digoxin for 48 h 

significantly reduced the uptake of RHO 123 by Caco-2 cells, as well as significantly 

increased its efflux, an effect compatible with increased P-gp activity. Furthermore, 

according to the obtained results, the effect of digoxin on MDR1 mRNA was 

concentration-dependent. In fact, the expression of MDR1 mRNA was not significantly 

affected by treatment with 1 nM digoxin, but a significant increase of about 4-fold was 
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observed in Caco-2 cells, when digoxin concentration was increased to 1 μM. In 

accordance, at 1 nM digoxin, no significant differences were observed neither in RHO 123 

intracellular accumulation nor in the efflux of the dye (Takara et al. 2002). Therefore, 

although digoxin effect on P-gp expression was not evaluated at the protein level, the 

similar results obtained in MDR1 mRNA levels and P-gp activity suggest increased protein 

expression. Furthermore, as a result of digoxin-mediated up-regulation of MDR1 in Caco-

2 cells, the sensitivity of these cells to paclitaxel, an MDR1 substrate, was lower than that 

in the absence of digoxin (Takara et al. 2002). In accordance, in a recent study performed 

by Naruhashi et al., although P-gp protein content was not evaluated, a good correlation 

was also obtained between MDR1 mRNA levels and P-gp transport function upon 

exposure to digoxin (Naruhashi et al. 2011). Indeed, 24 h after exposure to 1 μM digoxin 

significantly increased to ~150% the MDR1 mRNA levels in Caco-2 cells, as well as 

significantly increased the efflux of RHO 123 (130%) (Naruhashi et al. 2011).  

In another study performed in Caco-2 cells, the authors aimed to develop a highly 

sensitive assay system for P-gp-mediated drug transport by combining induction of P-gp 

with a short-term culture of Caco-2 cells (Shirasaka et al. 2006). To induce P-gp, the cells 

were cultured in vinblastine-containing medium (10 nM) and the MDR1 mRNA level was 

approximately 7-fold higher than in control cells. In accordance, P-gp protein levels were 

also increased, as demonstrated by western blot analysis. Furthermore, the polarized 

transport of P-gp substrates was higher in P-gp induced cells than in control cells, thus 

demonstrating an increased P-gp activity (Shirasaka et al. 2006). 

Interestingly, a stereoselective regulation of MDR1 expression was demonstrated in 

Caco-2 cells by cetirizine enantiomers (Shen et al. 2007). R-Cetirizine (100 μM) 

significantly increased MDR1 mRNA and P-gp levels, as compared to control cells, 

whereas these parameters were significantly decreased by S-cetirizine (100 μM). In 

accordance, RHO 123 and doxorubicin efflux was significantly enhanced after pre-

treatment of Caco-2 monolayers with R-cetirizine, but was reduced by S-cetirizine. Also, 

the sensitivity of these cells to paclitaxel significantly decreased after cells pre-treatment 

with R-cetirizine and increased upon treatment with S-cetirizine. Therefore, in this study, a 

complete evaluation of the effect of the tested compounds on P-gp was performed (MDR1 

mRNA, protein and activity levels), suggesting that cetirizine enantiomers can regulate 

MDR1 expression in Caco-2 cells, and that these regulatory effects were opposite 

according to the enantiomer tested (R-cetirizine up-regulates, while S-cetirizine down-

regulates MDR1 expression) (Shen et al. 2007). 

The expression of MDR1 mRNA in Caco-2 cells was demonstrated to be also 

significantly increased by treatment with some NSAIDs, although P-gp transport function 

remained unchanged (Takara et al. 2009). In that study, the effect of the tested 
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compounds was not evaluated at the protein level, and the lack of correlation between 

MDR1 mRNA levels and P-gp transport function may be due to a lack of increased 

translation (see IV.2).  

In addition, several inhaled corticosteroids, such as fluticasone propionate, 

beclomethasone dipropionate, ciclesonide and budesonide, were also able to induce P-gp 

expression in Caco-2 cells, 72 h after exposure, while methylprednisolone was the only 

systemic corticosteroid able to increase the pump expression (Crowe and Tan 2012). 

Although this study demonstrated an increased protein expression, as determined by 

western blot, the effect was only evaluated 72 h after exposure. Thus, the rapid 

responsiveness of Caco-2 cells to these compounds could not be assessed. Furthermore, 

since the total amount of P-gp protein was evaluated, the observed effect does not 

discriminate the amount of protein already incorporated in the cell membrane. Although in 

this study the P-gp-mediated efflux of the tested corticosteroids across Caco-2 cells 

monolayers was evaluated, the effect of the observed increase in P-gp expression on the 

efflux of other P-gp substrates was not performed. Therefore, their effect on P-gp activity 

was not further explored. 

In conclusion, in several studies performed in Caco-2 cells, the P-gp induction effect 

of several compounds was evaluated only at the MDR1 mRNA level, and many of them 

did not evaluate the effects on the pump activity. As will be further discussed in the 

following section, increased levels of MDR1 mRNA levels are not always associated with 

increased protein expression and, consequently, with an increased P-gp activity. In the 

scope of this dissertation, the P-gp induction effects of the tested compounds were always 

evaluated at the level of cell surface protein expression (using the UIC2 antibody) and 

transport activity (using RHO 123 as a P-gp fluorescent substrate). Noteworthy, our 

results clearly demonstrated that doxorubicin is highly effective in increasing both P-gp 

protein expression and activity, in a time- and concentration-dependent manner, and the 

significant increases obtained as soon as 6 h indicate that Caco-2 cells are highly 

responsive to an exogenous stimulus, thus representing a good in vitro model to 

accomplish the aims of the present work. 

IV.2. P-gp expression and activity may not be proportionally increased  

The analysis of the effect of DOX on P-gp expression and activity (Manuscript I) 

highlights that increases in P-gp protein levels are not always directly correlated with 

corresponding increases in pump functionality. Indeed, it was possible to verify that the 

observed remarkable increases in P-gp expression levels upon exposure to doxorubicin 

were not accompanied by proportional increases in RHO 123 efflux, and, consequently, in 
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P-gp transport activity. For example, the exposure of Caco-2 cells to 50 µM doxorubicin 

for 6 h significantly increased P-gp expression levels to approximately 312 % of control 

values, although P-gp transport activity increased only by 126 % (Manuscript I). This 

suggests that, although P-gp was highly expressed and incorporated in the cell membrane 

(since, as mentioned, the monoclonal antibody recognizes an external P-gp epitope), this 

transport efflux pump may not be yet fully functional. In accordance with these results, in 

the previously referred study reported by Wongwanakul et al., although treatment of Caco-

2 cells with 3 μM doxorubicin for 1 and 7 days significantly increased P-gp expression up 

to 2.15 and 3.76 fold over control, respectively, the P-gp activity of these cells did not 

increase correspondingly (Wongwanakul et al. 2013). No significant differences were 

observed in P-gp activity at any tested doxorubicin concentration and up to 7 days of 

incubation, as evaluated by the calcein-AM uptake assay (Wongwanakul et al. 2013). In 

accordance, Vilas-Boas et al. also found that P-gp activity in human lymphocytes did not 

follow the significant increase observed in its expression during aging (Vilas-Boas et al. 

2011). P-gp activity and expression were evaluated in lymphocytes isolated from whole 

blood samples of 65 healthy caucasian male donors, divided into two groups according to 

age (group 1: under 30-years old; group 2: above 60-years old). A significant age-

dependent increase in P-gp expression was observed, which was not reflected in the 

transporter's activity, thus reinforcing the need for P-gp activity assessment, rather than P-

gp expression determination alone, when starting new therapeutic regimens with P-gp 

substrates, especially in individuals over 60 years of age (Vilas-Boas et al. 2011). 

Similarly, and as previously mentioned, Takara et al. also reported that P-gp 

transport function remained unchanged in Caco-2 cells exposed to several NSAIDs, in 

spite of the observed increases in MDR1 mRNA levels (Takara et al. 2009). In fact, the 

expression of MDR1 mRNA in these cells was significantly increased by diclofenac, 

fenbufen, indomethacin, and nimesulide. However, pre-treatment for 48 h with diclofenac, 

indomethacin, or nimesulide, but not fenbufen, resulted in a significant increase in cellular 

RHO 123 accumulation, an apparently contradictory effect with the observed increase in 

MDR1 mRNA expression (Takara et al. 2009). Furthermore, the NSAIDs-elicited 

increases in the MDR1 mRNA expression were not accompanied by changes in P-gp 

function given that no significant changes in RHO 123 efflux occurred (Takara et al. 2009).  

Therefore, since the observed increase in RHO 123 accumulation was inconsistent with 

the upregulation of MDR1 mRNA expression, it was proposed that some carriers 

participating in the incorporation of the fluorescent substrate may be activated by pre-

treatment with the NSAIDs. Thus, it was proposed that the increased MDR1 mRNA was 

not translated into increased P-gp expression. In accordance, Giessmann et al. also 

reported that carbamazepine significantly increased the expression of MDR1 mRNA in the 
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lower duodenum of healthy humans (biopsy of tissue specimens), but did not affect the 

level of MDR1 protein (Giessmann et al. 2004). This later study suggested that 

carbamazepine affected: 1) the translation from MDR1 mRNA to MDR1 protein, 2) the 

post-translational protein synthesis, or 3) the movement to the cell-membrane surface of 

the MDR1 protein (Giessmann et al. 2004). Therefore, it was proposed that similar 

phenomena might occur in the case of NSAIDs (Takara et al. 2009). However, from the 

analysis of our data on the effect of DOX on P-gp expression and activity  (Manuscript I), 

this explanation is not applicable, as the protein is indeed in the cell surface, and this poor 

correlation between the extent of P-gp expression and its activity was probably related to 

the lack of function of the newly expressed P-gp on the surface of the Caco-2 cells. 

According to a previous report on this in vitro model, although P-gp appears to be 

continuously expressed in Caco-2 monolayers, it may not be fully functional at an early 

stage in culture (Hosoya et al. 1996).  

Another compound tested, in the scope of the present thesis, for its ability to 

increase P-gp expression and/or activity was colchicine (Manuscript III), an alkaloid with a 

narrow therapeutic index used to treat gout, pseudogout and familial Mediterranean fever 

(Ben-Chetrit and Levy 1991; Famaey 1988; Niel and Scherrmann 2006). This compound 

is a known P-gp substrate (Ambudkar et al. 1999; Decleves et al. 1998; El Hafny et al. 

1997a; Niel and Scherrmann 2006) and was also previously reported to have P-gp 

inducing properties, both in vitro and in vivo (Decleves et al., 1998; Licht et al., 2000; 

Vollrath et al., 1994). In fact, colchicine was shown to increase the mdr mRNA levels in rat 

liver in vivo, as early as 3 h after a single injection (2 mg/kg, i.p.), peaking after 24 h 

(Vollrath et al. 1994). Additionally, Declèves et al. (1998) also demonstrated that 

colchicine (25 nM) was able to significantly increase P-gp expression in the promyelocytic 

HL-60 cell line after 24 h of exposure (Decleves et al. 1998). However, the ability of 

colchicine to modulate the activity of this important efflux transporter was not evaluated in 

these previous studies. According to our results, colchicine was able to significantly 

induce P-gp expression, in a concentration-dependent manner, up to 183%, as compared 

to control, for the highest colchicine concentration tested (100 μM) and for an incubation 

period of 24 h (at 0.5, 1, 5, 10, 50 and 100 µM colchicine, P-gp expression significantly 

increased by 129, 135, 145, 150, 154 and 183%, respectively, as compared to control 

cells) (Manuscript III). However, in what concerns to the pump´s activity, no significant 

differences were observed neither in the RHO 123 accumulation nor in the efflux of the 

dye, for all the tested colchicine concentrations and 24 h after exposure. Therefore, these 

results suggest that, although P-gp is being expressed at higher levels and incorporated in 

the cell membrane, the pump may not be yet fully functional. Periods longer than 24 h 

were not tested for this compound, given its significant toxicity towards Caco-2 cells. 
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Indeed, colchicine exposure resulted in a concentration-dependent cytotoxicity that was 

significant after 48 h of incubation and increased over time. Furthermore, since colchicine 

is a known P-gp substrate, which was also confirmed by the significant increase observed 

in P-gp ATPase activity (23 nmol Pi liberated/mg protein/min for 100 µM colchicine, when 

compared to 15 nmol Pi liberated/mg protein/min for basal P-gp vanadate-sensitive 

ATPase activity), it was proposed that this compound may compete with RHO 123 for P-

gp-mediated transport. To better understand the colchicine mode of action, 

pharmacophores for competitive and noncompetitive P-gp inhibitors were created, based 

on previously reported data obtained from the ATPase assay for twenty three 

noncompetitive and for nineteen competitive inhibitors, including newly synthetized 

thioxanthonic derivatives and commercial drugs (Palmeira et al. 2011; Palmeira et al. 

2012c) (Manuscript III). In spite of all the pharmacophore models for P-gp inhibition 

described in the literature (Chen et al. 2012a; Palmeira et al. 2012a; Palmeira et al. 

2012b), a clear distinction between pharmacophores for competitive and noncompetitive 

inhibitors has never been accomplished before, being described herein for the first time 

(Manuscript III). In accordance with the in vitro results, colchicine was fit onto the 

pharmacophore for competitive P-gp inhibitors, but was not able to align to the 

noncompetitive P-gp inhibitors pharmacophore. Therefore, these data suggest that 

colchicine is not only a P-gp inducer (demonstrated by computational and biochemical 

results), but it may also be transported by P-gp, acting as a competitive P-gp inhibitor. 

However, the present results are in disagreement with the model proposed by Shapiro et 

al., which suggested two different P-gp functional binding sites (H site and R site) that 

interact in a positive cooperative manner. Being colchicine part of the H-type of P-gp 

substrates, according to the proposed model, it should activate the efflux of specific 

substrates of the R site, such as RHO 123 (Shapiro and Ling 1997c). Indeed, and in 

disagreement with our findings, it was demonstrated that colchicine stimulated RHO 123 

transport and inhibited the transport of Hoechst 33342, an H-type substrate, in plasma 

membrane vesicles prepared from CH(R)B30 cells (Shapiro and Ling 1997c), but a 

different in vitro model was used in this study. 

Finally, another compound tested for its induction ability was hypericin (HYP), one of 

the major components of St. John's wort, a flower extract that was reported to be 

responsible for several pharmacokinetic interactions, partially mediated by its effects on P-

gp expression (Perloff et al. 2001b). However, its ability to modulate the pump's 

expression has been mainly attributed to hyperforin (Tian et al. 2005). Our results 

demonstrated that HYP significantly increased both P-gp expression and activity, 

according to the concentration and time of exposure tested (Manuscript IV). Moreover, a 

good correlation was observed between the HYP-elicited increases in P-gp expression 



Integrated Discussion_____________________________________________________________ 

370 

and activity. For example, exposure of Caco-2 cells to 10 μM HYP for 48 h significantly 

increased P-gp expression and activity by 147% and 142 %, respectively. In comparison, 

48 h after exposure to 10 μM doxorubicin, P-gp expression and activity increased by 

513% and 136 %, respectively. Additionally, newly synthetized (thio)xanthonic derivatives 

were also tested for their effects on both P-gp expression and activity, showing a good 

correlation between both effects, which will be further discussed in section IV.5.  

In conclusion, our data demonstrated three different scenarios of P-gp induction: 1) 

increased cell surface P-gp expression followed by increases in pump activity, but to a 

different magnitude (as shown with doxorubicin); 2) increased P-gp protein expression 

with no changes in its activity (colchicine); and 3) proportional increases in both P-gp 

expression and activity [HYP and (thio)xanthonic derivatives]. Therefore, these results 

emphasize the importance of the simultaneous evaluation of both P-gp expression and 

activity in the screening of P-gp inducers, since an increase in the former may not be 

reflected in an increase in the later. Consequently, for the evaluation of potential 

protective effects mediated by P-gp inducers, it is of utmost importance to evaluate if the 

inducer is able not only to increase P-gp protein expression, but specially if it is able to 

promote the cellular efflux of toxic xenobiotics actively transported by the pump, which will 

eventually lead to decreased intracellular accumulation and, consequently, decreased 

toxicity. Also, it is important to note that, as previously mentioned, the evaluation of P-gp 

expression should be performed at the protein level, since an increase in MDR1 RNA may 

not necessarily be translated into increased protein expression. 

IV.3. P-gp induction as a potential therapeutic pathway in real life intoxication 
scenarios 

Considering the observed effects of the tested compounds on both P-gp expression 

and activity, we further aimed to validate the mechanistic approach of P-gp induction as 

an effective way to reduce the intracellular accumulation of harmful compounds actively 

transported by this efflux pump and, consequently, to significantly reduce their cytotoxicity, 

using paraquat (PQ) as a model substrate. Indeed, this antidotal pathway has already 

been proposed, in vivo, as a new therapeutic approach for PQ poisonings, due to the 

decreased intestinal absorption and, consequently, increased intestinal excretion of the 

herbicide as a result of dexamethasone-mediated induction of de novo synthesis of P-gp 

(Dinis-Oliveira et al. 2006a; Dinis-Oliveira et al. 2006c). However, in these in vivo studies, 

mechanisms other that P-gp induction, such as dexamethasone anti-inflammatory effects, 

may also be involved in the observed protection of intoxicated rats (dexamethasone 

increased the survival rate by 50%). Therefore, to specifically address the contribution of 
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P-gp induction, PQ cytotoxicity was initially evaluated in vitro with and without pre-

incubation with the tested inducer for 24, 48 or 72 h. In these studies, cells do not 

simultaneously contact with both PQ and the inducer in the incubation medium, and the 

observed effects can be more accurately correlated with the observed P-gp induction. The 

results showed that pre-exposure of Caco-2 cells to doxorubicin (DOX) for 24 h resulted in 

a significant decrease in PQ cytotoxicity, as shown by the PQ + DOX concentration-

response curves shift to the right, and by the corresponding significant increases in EC50 

values of the fitted curves (1825, 1899, 1853, and 1806 µM when the cells were pre-

exposed to 5, 10, 50 and 100 µM DOX, respectively, when compared to 1047 µM for the 

PQ curve) (Manuscript I). However, the increases in the EC50 values were not 

concentration-dependent, which can be explained by the small differences observed in P-

gp transport activity, in spite of the significant differences observed in P-gp expression 

levels at these DOX concentrations. Therefore, although the P-gp expression levels 

increased in a concentration-dependent manner upon exposure to DOX, the P-gp activity 

did not increase proportionally and, thus, the magnitude of the expected protective effect 

against PQ did not increase in a similar trend.  

In what concerns to HYP, pre-exposure of Caco-2 cells to this inducer (1, 5 and 10 

μM) for 24 h also significantly reduced PQ cytotoxicity, resulting in significant differences 

in the cell death observed for the higher PQ concentrations (1000 - 5000 μM) (Manuscript 

IV). Moreover, it was also possible to observe a significant rightwards shift of all the PQ + 

HYP curves, when compared to the PQ curve, as previously observed for all the PQ+DOX 

curves. However, for the 5 and 10 μM HYP concentration, a significant reduction in the 

maximal cell death (TOP value) was observed and, consequently, the EC50 value of the 

fitted curves could not be used for comparison. Indeed, pre-exposure to 5 and 10 μM HYP 

for 24 h resulted in a significant decrease in the TOP value by 67.49 and 63.80 %, 

respectively, when compared to the TOP value of the PQ curve (92.46 %). Additionally, 

given the technical interference of HYP in the MTT reduction assay (similar blue color to 

the formed formazan crystals) that was used for the DOX studies, the evaluation of PQ's 

cytotoxicity profile was performed by using the neutral red uptake assay. Therefore, two 

different methods were used for the estimation of cell viability and, consequently, the 

comparison between the protective effects of these inducers is limited. 

As observed for DOX, the HYP protective effect after 24 h of pre-exposure was not 

concentration-dependent, as no significant differences were observed between the PQ + 

HYP curves. Once again, this result is in accordance with the small differences in P-gp 

activity observed 24 h after exposure to HYP (116, 118 and 129 % for 1, 5 and 10 μM 

HYP, respectively). The HYP protective effects against PQ-induced cytotoxicity were also 

evaluated with higher pre-exposure HYP incubation times, namely 48 and 72 h 
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(Manuscript IV). For both these pre-exposure incubation times, a significant protection 

against PQ cytotoxicity was also observed, resulting in significant rightwards shift of all the 

PQ + HYP curves, when compared to the PQ curve. Moreover, 48 and 72 h after pre-

exposure to HYP no significant differences were observed neither in the TOP value, nor in 

the in baseline (BOTTOM) of the fitted curves and, therefore, the EC50 values were used 

for comparison. Pre-exposure of Caco-2 cells to HYP for 48 h resulted in significant 

increases in the EC50 values of all PQ + HYP curves (3243, 4490 and 4493 μM for 1, 5 

and 10 μM HYP, respectively, vs. 1692 μM for the PQ curve), and significant differences 

were observed between the PQ + HYP 1 curve and the PQ + HYP 5 or 10 curves 

(Manuscript IV). When increasing HYP pre-exposure time to 72 h, the EC50 value of all the 

PQ + HYP curves significantly increased to 3843, 4518 and 4609 μM for 1, 5 and 10 μM 

HYP, respectively, when compared to 1783 μM for the PQ curve. Moreover, significant 

differences between all the fitted PQ + HYP curves were observed for this last pre-

exposure incubation time. Additionally, the overall comparison of all the PQ + HYP curves 

obtained for all the pre-exposure times (24, 48 and 72 h) highlighted significant 

differences in the observed decreases in cell death, according to the HYP concentration 

and time of pre-exposure, which is correlated with the observed effects of HYP on both P-

gp expression and activity. However, the main differences were found between 1 μM HYP 

and 5 or 10 μM HYP, and between 24 h and 48 or 72 h of pre-exposure. For example, by 

comparing HYP pre-exposure incubation times, at each tested HYP concentration, only 

small differences were detected in the protective effects observed with pre-exposure to 

HYP for 48 and 72 h. In accordance with these results, small differences were also 

observed in P-gp transport activity after exposure of Caco-2 cells to HYP for these 

incubation times (120, 122 and 142 % after 48 h of exposure to 1, 5 and 10 μM HYP, 

respectively, when compared to 119, 129 and 150 % after of 72 h exposure to 1, 5 and 10 

μM HYP, respectively). Therefore, these results highlight that the inducer protective 

effects against PQ cytotoxicity are highly dependent on its effects on P-gp activity. 

Furthermore, to clarify if the observed protective effects on the toxicity of the 

herbicide are only dependent on the P-gp induction effects, PQ cytotoxicity was also 

evaluated in the presence of a specific P-gp inhibitor, the UIC2 antibody. In all cases, the 

previously observed protective effects afforded by both DOX and HYP (in the pre-

exposure experimental design) were completely abolished under P-gp inhibition, 

demonstrating that the observed protective effects are exclusively mediated by P-gp 

(Manuscript I and Manuscript IV). 

For the validation of P-gp induction as an effective way to significantly reduce the 

toxicity of P-gp substrates other experimental designs were also tested. Therefore, we 

further aimed to reflect a real-life intoxication scenario, in which the potential antidote 
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exerts its protective effects well after the intoxicant contacts with the target tissues. 

Consequently, PQ exposure of Caco-2 cells was evaluated with and without incubation 

with DOX or HYP 6 h after the beginning of PQ exposure, taking into account, thus, the 

estimated average arrival time of the patient to the hospital after PQ intoxication (Dinis-

Oliveira et al. 2008). 

Exposure of Caco-2 cells to DOX (5, 10, 50 and 100 µM) 6 h after the beginning of 

PQ incubation also resulted in significant rightwards shifts of all PQ+DOX curves, when 

compared to the PQ curve, thus reflecting a protective effect against the herbicide 

cytotoxicity (Manuscript II). However, surprisingly, it was demonstrated that exposure of 

these cells to DOX only 6 h after PQ, over a 24 h period of incubation (with a total 

incubation time of 18 h for DOX), resulted in a more pronounced protection against PQ 

cytotoxicity, when compared to the results obtained with the pre-exposure to DOX for 24 h 

before PQ incubation. Indeed, this higher protection can be observed by the astonishing 

decreases in the observed maximal cell death (TOP value) and by the more pronounced 

rightwards shifts of all the PQ+DOX curves obtained with this experimental design 

developed to mimic a real-life intoxication scenario. Moreover, the observed decreases in 

the TOP values of the fitted curves were concentration-dependent, down to 88.1, 81.5, 

48.4 and 38.9% maximal cell death, for 5, 10, 50 and 100 DOX, respectively, when 

compared to 93.7 % for the PQ curve. However, contrarily to what was observed in the 

pre-exposure assay, under P-gp inhibition, the protective effects of DOX, when incubated 

6 h after the PQ insult, were not completely prevented by the UIC2 antibody. The 

comparison between the PQ + DOX and PQ + DOX + UIC2 curves demonstrated that the 

DOX protective effects were partially due to P-gp, given the leftwards shift and increased 

maximal cell observed in the presence of UIC2. However, the comparison between the 

PQ + UIC2 and the PQ + DOX + UIC2 curves demonstrated that, even under P-gp 

inhibition, DOX was still able to protect Caco-2 cells against PQ-induced toxicity. Thus, 

these results suggest that mechanisms other than P-gp induction were involved in DOX 

protective effects. Furthermore, these results were supported by the PQ intracellular 

levels that were significantly reduced by DOX (for the PQ exposure concentrations of 

2500 and 5000 µM, intracellular levels were reduced to 35.03 and 46.25 nmol PQ/mg 

protein for PQ+DOX 50, compared  to 51.81 and 97.71 nmol PQ/mg protein for PQ only, 

respectively), even in the presence of the UIC2 antibody (49.19 and 73.13 nmol PQ/mg 

protein for PQ+DOX 50+UIC2 vs. 78.41 and 106.59 nmol PQ/mg protein for PQ+UIC2) 

(Manuscript II). Knowing that the carrier-mediated transport system for choline is involved 

in PQ intestinal absorption (Nagao et al. 1993) (see IV.4) and that, in Caco-2 cells, this 

transport system is inhibited by P-gp substrates, such as daunomycin and verapamil, it 

was hypothesized that the DOX protective effects observed when the inducer was added 
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6 h after PQ could also be a result of the inhibition of this transport system. According to 

our results, and as expected given its structural similarity with daunomycin, DOX 

significantly inhibited choline intracellular accumulation in Caco-2 cells (incubation with 5, 

10, 50 and 100 µM DOX, significantly reduced intracellular 3H-choline to 42.9, 31.3, 19.9 

and 16.9% of the control value, respectively). Consequently, its protective effects against 

PQ cytotoxicity result from a concerted action via two distinct mechanisms, the choline 

transport inhibition and the increased P-gp expression/activity in Caco-2 cells, which result 

in decreased intracellular PQ accumulation and, thereby, decreased toxicity. 

In what concerns to HYP, the incubation of this inducer 6 h after the beginning of PQ 

insult also resulted in a significant protection of Caco-2 cells against the herbicide 

cytotoxicity, as observed by the significant increases in the EC50 values of the PQ + HYP 

curves, when compared to the PQ curve (2408 and 2437 μM for PQ + HYP 5 and PQ + 

HYP 10, respectively, vs. 1268 μM for the PQ curve) (Manuscript IV). However, the 

astonishing protection observed for DOX was not observed with HYP. The observed 

protection was dependent on HYP concentration, with significant differences between the 

PQ + HYP 1 curve and the PQ + HYP 5 or 10 curves. Additionally, contrarily to DOX, the 

observed protective effects were completely abolished under P-gp inhibition, 

demonstrating that P-gp induction is the major mechanism involved in HYP-mediated 

protection. Moreover, the huge differences in DOX protective effects observed according 

to the adopted experimental design of inducer incubation were not evident in the case of 

HYP. 

Using a third experimental design, HYP protective effects were also evaluated after 

simultaneous incubation of Caco-2 cells with PQ for 24 h to mimic the presence of the 

potential antidote in the PQ formulation to prevent the intoxication upon ingestion. It is 

noteworthy that the incorporation of an inducer in the PQ formulation will overcome the 

disadvantage of the critical time between intoxication and treatment, with an expected 

increase in survival rate and decrease in morbidity. Indeed, such strategy of adding the 

antidote to the toxic formulation was already tested in vivo (Baltazar et al. 2013; Wilks et 

al. 2008). For example, in 2004, a new PQ formulation designed to reduce its toxicity was 

introduced by Syngenta in Sri Lanka, under the trade name Inteon® (Wilks et al. 2008). 

This new formulation included three components designed to reduce PQ absorption: (i) an 

alginate to thicken the formulation in the acidic environment of the stomach; (ii) an 

increase in the amount of emetic to induce vomiting more quickly; (ii) a purgative to speed 

its elimination from the small intestine, which is the main site of PQ absorption (Wilks et al. 

2008). This study has shown that Inteon® reduces the mortality of patients following PQ 

ingestion and increases survival time. Additionally, in a very recent study, other authors 

aimed to develop a safe PQ formulation with the incorporation of lysine acetylsalicylate 
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(LAS) and to evaluate, in vivo, its potential applicability as an effective antidote (Baltazar 

et al. 2013). Indeed, it had been previously demonstrated by the same research group 

that sodium salicylate (NaSAL) has a great potential to be used as an antidote against 

PQ-induced lung toxicity, through an effective inhibition of pro-inflammatory factors such 

as NF-κB, scavenging of ROS, inhibition of myeloperoxidase activity, inhibition of platelet 

aggregation and by preventing death of pulmonary cells through apoptotic pathways 

(Dinis-Oliveira et al. 2007a; Dinis-Oliveira et al. 2007b). Importantly, this treatment was 

associated with full survival of PQ-intoxicated rats (Dinis-Oliveira et al. 2007a; Dinis-

Oliveira et al. 2007b). Subsequently, since LAS releases salicylate in vivo and is available 

in hospitals for parenteral administration, in that previously mentioned study, the rats were 

intoxicated with a mix of the commercial PQ formulation (Gramoxone®) with increasing 

concentrations of LAS. This new formulation was administered to Wistar rats by gavage at 

125 mg kg−1 body weight of PQ and 79, 158 or 316 mg kg−1 body weight of LAS, and the 

survival rate was observed for 30 days (Baltazar et al. 2013). According to the reported 

data, the survival rate of the PQ group was only 40%, while LAS provided and effective 

protection, with full survival observed in the groups that received 125 mg kg−1 of PQ and 

316 mg kg−1 of LAS (Baltazar et al. 2013).  

According to our results, simultaneous incubation of Caco-2 cells with both PQ and 

HYP also resulted in a significant protection against PQ-induced cytotoxicity, as observed 

by the significant reduction in the cell death for the higher PQ concentrations (500 - 5000 

μM), resulting in a significant rightwards shift of all the PQ + HYP curves, when compared 

to the PQ curve (Manuscript IV). Moreover, for 5 and 10 μM HYP, a significant increase in 

the EC50 values of the fitted curves was observed (2400 and 2469 μM, for 5 and 10 μM 

HYP, respectively, vs. 1240 μM for the PQ curve). Again, significant differences were 

observed between the PQ + HYP 1 curve and the PQ + HYP 5 or PQ + HYP 10 curves, 

demonstrating that HYP protective effects depend on its concentration. Additionally, and 

as observed for the other experimental designs of HYP incubation, the protective effects 

were completely abolished under P-gp inhibition with the UIC2 antibody. However, no 

significant differences in the observed protection against PQ-induced cytotoxicity exist 

between these last two different experimental designs of HYP incubation (simultaneous 

exposure and exposure 6 h after PQ insult), which could be explained by the slow PQ 

absorption rate reported in humans, which occurs over 1-6 h (Dinis-Oliveira et al. 2008). In 

the case of rapidly absorbed P-gp toxic substrates, the presence of the potential inducer 

in the toxic formulation could be faced as the first therapeutic measure employed to limit 

their absorption, but may not prove as efficient in slowly absorbed substrates. Additionally, 

since HYP protective effects against PQ cytotoxicity, observed under the several 

experimental designs used, were completely prevented by UIC2-mediated P-gp inhibition, 
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this compound is an excellent candidate for drug design of new, potent and specific P-gp 

inducers, and for the study of potential protective effects against toxic P-gp substrates 

mediated only by P-gp induction. 

Furthermore, the comparison between the PQ and PQ + UIC2 curves obtained in 

each experiment demonstrated a significant increase in PQ cytotoxicity under P-gp 

inhibition, further supporting that P-gp modulation has an important impact on the 

herbicide cytotoxicity. In accordance, GF120918, another P-gp inhibitor, significantly 

enhanced PQ-induced cytotoxicity in a cellular model of the rat blood-brain barrier (BBB), 

the RBE4 cells, as a result of increased intracellular accumulation of the herbicide 48 h 

after simultaneous exposure to both inhibitor and herbicide (Vilas-Boas et al. 2013a). 

Therefore, these observations reinforce the fact that PQ is a substrate for P-gp also at the 

BBB, which may limit its access to the brain and, therefore, reduce its neurotoxic effects 

that have been recently a matter of debate and ultimately led to the withdrawal of the 

herbicide from the EU market (Dinis-Oliveira et al. 2006b). 

In the case of colchicine, given the lack of significant increases in P-gp transport 

activity, the effects of this compound on PQ cytotoxicity were not further evaluated. 

In accordance with our results, other in vitro studies have demonstrated that P-gp 

induction represents an interesting antidotal pathway against PQ toxicity. It was reported 

that metilprednisolone significantly reduced PQ cytotoxicity in the alveolar A549 cell line, 

an effect attributed to the P-gp induction caused by this synthetic corticosteroid (Zerin et 

al. 2012). Indeed, metilprednisolone (200 μg/mL) significantly increased both MDR1 

mRNA and P-gp protein levels as soon as 3 h after incubation, which was accompanied 

by a significant decrease in the calcein fluorescence, thus reflecting increased pump 

activity (Zerin et al. 2012). Therefore, these results suggest that metilprednisolone 

activates P-gp expression, which leads to increased levels in the efflux pump activity and, 

consequently, to detoxification in the PQ-treated A549 cells. However, no further studies 

were performed to elucidate if mechanisms other than P-gp induction could also 

contribute to the observed results, since the metilprednisolone protective effects were not 

evaluated under P-gp inhibition. In fact, although P-gp expression level increased upon 

exposure to metilprednisolone, the magnitude of the expected protective effect against 

PQ-induced cytotoxicity did not increase to a similar extent. Therefore, it is highly probable 

that the anti-inflammatory effect of the corticosteroid might also contribute to lowering the 

PQ deleterious effects on lung toxicity. 

Recently, a reduced rifampicin derivative, RedRif, was also able to significantly 

protect RBE4 cells against PQ-induced cytotoxicity, by significantly increasing both P-gp 

expression and activity (Vilas-Boas et al. 2013b). In fact, in that study, the protective 

effects were observed with pre-treatment of RBE4 cells with 10 µM RedRif for 24 or 72 h 
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before a 48h-PQ exposure (0.5-50 mM). Protection also occured after simultaneous 

exposure to 10 µM RedRif and PQ (0.5-50 mM) for 48 h, and these protective effects were 

completely reverted in the presence of GF120918 (Vilas-Boas et al. 2013b). Therefore, 

these results demonstrate that, for this rifampicin derivative, mechanisms other than P-gp 

induction are not likely to be involved in the observed protective effects. 

In conclusion, our in vitro data validate the strategy of P-gp induction as an effective 

antidotal pathway against the cytotoxicity of P-gp substrates, such as PQ, by significantly 

increasing their cellular efflux, thus reducing their intracellular accumulation and, 

consequently, their toxicity. More importantly, in the case of PQ, systemic access of the 

herbicide to the target organs of toxicity, namely the lung, kidney, and brain, can be 

significantly limited. Additionally, these results highlight that this mechanistic approach 

could be efficiently used in real-life intoxication scenarios, demonstrating that it is possible 

to significantly reduce the toxicity of these toxic substrates even when the P-gp inducer 

contacts with the cells well after the toxic xenobiotic. Moreover, compounds that have the 

ability of both inhibiting the xenobiotics entrance and increasing their excretion, such as 

DOX in the specific case of PQ, are promising new sources of antidotal pathways to be 

explored. The inclusion of a P-gp inducer in the toxic substrate formulation may also 

greatly contribute to limiting toxicity, especially if the substrates are readily absorbed at 

the gastrointestinal tract. 

IV.4. Paraquat uptake into Caco-2 cells - Involvement of multiple transport 
systems 

The previously reported effect of DOX on the choline uptake shifted our attention 

towards better understanding the mechanisms involved in the PQ intestinal absorption. 

Noteworthy, although PQ is responsible for thousands of deaths due to accidental or 

intentional ingestion, little is known on the mechanisms of its intestinal uptake, namely 

about the transporters specifically involved. Therefore, we further aimed to clarify the 

herbicide uptake in Caco-2 cells, based on previous results on PQ uptake in other organs, 

such as the lung and the brain, where specifically the polyamines and the neutral amino 

acid transport systems, respectively, were implicated (Rose et al. 1974; Shimizu et al. 

2001; Smith 1982; Wyatt et al. 1988). 

Based on the observed DOX effect on choline uptake, the first transport system 

investigated was the choline uptake system (Manuscript V). Indeed, this transport system 

was, as previously mentioned, already implicated in the intestinal transport of PQ, using 

rat’s brush-border membrane vesicles as the in vitro model (Nagao et al. 1993). In that 

study, PQ (0.5 mM) uptake was significantly reduced in the presence of choline (10 mM), 
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a structurally-related organic cation (Nagao et al. 1993). However, a single PQ 

concentration, that was much lower than the choline concentration, was tested. 

According to our results, a significant reduction of PQ toxicity was observed in the 

presence of both choline and hemicolinium-3 (HC-3), a natural substrate and a 

competitive inhibitor for this transport system, respectively (Manuscript V). Moreover, two 

different experimental designs were performed, namely simultaneous exposure and 

exposure to choline or HC-3 6 h after PQ insult. As previously observed for HYP, no 

significant differences were found in the observed protection against PQ cytotoxicity 

between both experimental designs, which may also be explained by a slow PQ uptake in 

these cells. Additionally, the observed protective effects of both choline and HC-3 on PQ 

cytotoxicity were not concentration-dependent, which may occur due to the saturable 

activity of this transport system in Caco-2 cells (Kamath et al. 2003). Furthermore, in 

accordance with the significant reduction in cell death observed in the presence of both 

choline and HC-3, a significant decrease in PQ intracellular levels was observed (after 

exposure to 1000, 2500 and 5000 µM PQ alone, the intracellular PQ levels were 56.21, 

150.07 and 189.98 nmol PQ/mg protein, respectively; with simultaneous exposure to 500 

µM choline and PQ for 24 h, PQ intracellular levels were significantly reduced to 90.89 

and 109.32 nmol PQ/mg protein, for 2500 and 5000 µM PQ + CHO, respectively; with 

simultaneous exposure to 500 µM HC-3 and PQ for 24 h, PQ intracellular levels were 

significantly reduced to 25.88, 94.50 and 118.86 nmol PQ/mg protein, for 1000, 2500 and 

5000 µM PQ + HC-3, respectively) (Manuscript V). Therefore, the choline transport 

system is clearly involved on PQ uptake in Caco-2 cells, and choline or HC-3, by 

competing with PQ for the transport, significantly reduced the intracellular levels of the 

herbicide and, consequently, its cytotoxicity. 

In accordance with our results in Caco-2 cells, it was reported that the choline 

uptake system is also involved in PQ uptake in RBE4 cells (Vilas-Boas et al. 2013a). 

Indeed, PQ’s cytotoxic profile was assessed in the presence of HC-3, and a significant 

increase in cell viability was observed (significant increase in PQ’s EC50 value), and such 

an effect was accompanied by a significant decrease in PQ intracellular levels observed in 

the presence of the competitive inhibitor of the choline-uptake system (Vilas-Boas et al. 

2013a). Therefore, these results suggest that the choline uptake system seems to be also 

involved in the PQ uptake at the BBB and may potentially modulate the neurotoxic effects 

of this herbicide. 

The mechanisms of PQ uptake were also studied by assessing the influence of 

other transporters previously described as uptake pathways for PQ, such as the large 

neutral amino acid transport system [using L-Valine (VAL) as substrate], the basic amino 

acid transport system [using arginine (ARG) and lysine (LYS) as substrates, and N-
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ethylmalemide (NEM) as inhibitor], and the polyamine uptake system [using putrescine 

(PUT) as substrate, and trifluoperazine (TFP) as inhibitor] (Manuscript V). 

The polyamine uptake system was the first transporter implicated in PQ uptake, and 

has long been considered responsible for its high accumulation rate in its main target 

organ, the lung (Rose et al. 1974; Smith 1982; Wyatt et al. 1988). According to our results, 

the polyamine uptake system may also be involved in PQ accumulation in Caco-2 cells, 

since the simultaneous exposure to PQ and PUT (substrate) for 24 h caused a significant 

reduction in PQ intracellular levels (100.16 and 130.94 nmol PQ/mg protein for 2500 and 

5000 µM PQ + PUT 250, respectively, when compared to 150.07 and 189.98 nmol PQ/mg 

protein for PQ alone), resulting in a significant reduction in its cytotoxicity (Manuscript V). 

In accordance with our results, in the IEC-6 rat small intestine epithelial cell line, this 

transport system was also implicated in PQ uptake (Grabie et al. 1993). Indeed, PQ 

absorption was greatly inhibited by PUT and the herbicide acted as a competitive inhibitor 

of PUT uptake (Grabie et al. 1993). However, the slower rate of PQ uptake, when 

compared to the rate of PUT uptake, suggested that PQ has a lower affinity for the 

transporter (Grabie et al. 1993). Furthermore, in IEC-6 cells, this polyamine uptake system 

was characterized as being energy-dependent, saturable, and modulated by a 

calcium/calmodulin (Ca2+/CaM) complex-dependent mechanism (Grabie et al. 1993; 

Groblewski et al. 1992). In accordance, our results also suggest that, in Caco-2 cells, PQ 

uptake is also regulated by a Ca2+/CaM complex-dependent mechanism, as observed by 

the significant reduction in the herbicide intracellular content and, consequently, in its 

toxicity, after simultaneous exposure to the potent competitive inhibitor of the Ca2+/CaM 

complex, TFP (Manuscript V). Additionally, other studies had also reported this Ca2+/CaM 

sensitiveness of the polyamine transport in cultured gastrointestinal epithelial cells 

(Groblewski et al. 1992; Scemama et al. 1993; Sharpe and Seidel 2005). Moreover, our 

results highlight that only small differences exist in PQ cytotoxicity in the presence of the 

different PUT concentrations tested (PQ EC50 value of 1786, 1840 and 1863 μM obtained 

in the presence of 50, 100 and 250 μM PUT, respectively, vs. 1088 μM for PQ alone), 

which can be explained by the previously referred saturable activity of this transporter 

(Grabie et al. 1993). 

Additionally, since in IEC-6 cells polyamines and basic amino acids, such as LYS 

and ARG (both positively charged at neutral pH) are, given their structural similarity, 

absorbed through a common carrier, the y+ amino acid transport system (Sharpe and 

Seidel 2005), we hypothesized that mechanisms other than the polyamine uptake system 

may also contribute to the marked effect of PUT on PQ uptake into Caco-2 cells. Indeed, 

we verified that both LYS and ARG significantly reduced PQ accumulation in Caco-2 cells, 

resulting in a significant reduction in the herbicide toxicity. Moreover, in accordance with 
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the results in IEC-6 cells, where PUT inhibited approximately 75 % of LYS transport 

(Sharpe and Seidel 2005), our results also clearly demonstrated that LYS uptake, in 

Caco-2 cells, was significantly inhibited by PUT, thus also confirming that a significant 

fraction of the LYS transport is polyamine sensitive (Manuscript V). Therefore, these 

results indicate the presence of a common transporter in Caco-2 cells for polyamines and 

basic amino acids, as observed in the IEC-6 cells, which seems to be the y+ amino acid 

transport system, since LYS uptake in Caco-2 cells was sensitive to NEM, an inhibitor of 

this transport system (Pan et al. 1995; Sharpe and Seidel 2005). Accordingly, NEM was 

also previously reported to significantly reduce LYS and ARG uptake in IEC-6 cells (Pan 

et al. 1995; Sharpe and Seidel 2005). Moreover, in our study, PQ cytotoxicity in Caco-2 

cells was also significantly reduced in the presence of NEM, as a result of a significant 

decrease in its intracellular accumulation, further supporting the involvement of the y+ 

amino acid transport system in PQ uptake in Caco-2 cells. Additionally, and as observed 

by Sharpe and Seidel using the IEC-6 cells (Sharpe and Seidel 2005), in our study, LYS 

uptake into Caco-2 cells was also Ca2+/CaM sensitive, resulting in the observed significant 

reduction in LYS uptake in the presence of TFP. Thus, the protective effect against PQ 

induced toxicity observed under simultaneous exposure of Caco-2 cells to PUT, ARG, 

LYS, NEM or TFP, which is a consequence of a decreased PQ uptake, seems to be 

partially mediated by the y+ transport system. Furthermore, knowing that the y+ system is 

selective for cationic amino acids (interacting weakly with neutral amino acids) (Deves and 

Boyd 1998), our results indicate that basic amino acids uptake systems other than the y+ 

transport system seem to be also involved in PQ and LYS uptake, since a significant 

reduction on both PQ and LYS accumulation was observed in the presence VAL, a neutral 

amino acid. Moreover, the observed reduction in PQ intracellular accumulation in the 

presence of VAL also resulted in a significant decrease in PQ-mediated cytotoxicity.  

Three other transport systems for cationic amino acids have already been 

characterized namely, the b0,+, y+L, and B0,+ systems, which, contrarily to the y+ system, 

accept a wider range of substrates, including both cationic and neutral amino acids 

(Deves and Boyd 1998). Moreover, the cationic amino acids transport systems differ in 

their interactions with inorganic monovalent ions (Deves and Boyd 1998). According to the 

Na+ dependency, the y+ and b0,+ systems are Na+-independent, while the B0,+ system is 

Na+-dependent (Deves and Boyd 1998). On the other hand, the y+L system exhibits a 

more complex pattern in its cation interaction, being the transport of basic amino acids, 

such as LYS, unaffected by Na+ replacement, whereas its affinity towards neutral amino 

acids is dramatically decreased if Na+ in the medium is replaced by K+ (Deves and Boyd 

1998). 
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In Caco-2 cells, the transporters involved in the LYS uptake were already 

characterized (Ferruzza et al. 1995; Thwaites et al. 1996). It was demonstrated that the 

uptake of LYS across monolayers of differentiated Caco-2 cells occurs via one or more 

Na+-independent carriers, which were able to transport cationic amino acids but also 

shared by large neutral amino acids (Ferruzza et al. 1995). Moreover, it was also 

demonstrated that, in these cells, the bo,+, y+ and a nonsaturable component represented 

47%, 27%, and 26%, respectively, of the total apical LYS uptake (Thwaites et al. 1996). 

The uptake of ARG, another basic amino acid, in the apical membranes of Caco-2 cells 

was also evaluated and equally characterized as mediated predominantly by Na+-

independent mechanisms (Pan et al. 1995; Pan et al. 2002). Moreover, the major 

pathways involved were y+ (70%) and y+L or b0,+ (30%) systems (Pan et al. 2002). In 

accordance, given the significant reduction in LYS and PQ uptake caused by VAL, and 

the significant reduction observed on PQ toxicity in the presence of this neutral amino 

acid, our results suggest that PQ, LYS (and ARG) and VAL may be sharing a common 

carrier, namely the y+L or b0,+ systems. 

However, contrarily to what was demonstrated in our studies performed in Caco-2 

cells, at the BBB, the basic amino acid transporter was not involved in PQ uptake 

(Shimizu et al. 2001). According to the study reported by Shimizu et al., using the brain 

microdialysis technique with HPLC/UV detection, it was clearly demonstrated that PQ 

penetrates the BBB in a dose-dependent manner (Shimizu et al. 2001). Indeed, the 

obtained data indicated that the penetration of PQ into the brain would be mediated by a 

specific carrier process, not resulting from the destruction of BBB function by PQ itself or 

by a PQ radical. Moreover, although lung damage induced by PQ was initially suggested 

to be initiated, at least in part, by an energy-dependent accumulation through an uptake 

system shared by polyamines (Smith 1982), the polyamine transporters are not expressed 

in the BBB structure, since the BBB penetration of the polyamines is restricted (Shin et al. 

1985). Therefore, from the chemical structure of PQ, it was assumed that the possible 

carrier involved in the BBB penetration would be one of the amino acid transporters, which 

are highly expressed in the BBB (Shimizu et al. 2001). In fact, the BBB penetration of PQ 

was significantly inhibited in rats pre-treated with VAL, but not with LYS, which are high 

affinity substrates for neutral and basic amino acid transporters, respectively (Shimizu et 

al. 2001). Moreover, the evidence that the ratio of brain extracellular to blood 

concentrations of PQ in VAL-treated rats was lower, also strongly supported the 

conclusion that both substances shared the same transport system. Although VAL is a 

high affinity substrate for both neutral and basic amino acid transporter, since LYS had no 

effect in PQ BBB penetration, this finding indicated that PQ was possibly taken up into the 
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brain by the neutral amino acid transport system expressed in the brain capillaries 

(Shimizu et al. 2001). 

In the previous reported study using RBE4 cells (Vilas-Boas et al. 2013a), contrarily 

to what was previously suggested in vivo by Shimizu et al., it was demonstrated that it is 

unlikely that PQ accesses these cells through the basic amino acid and through the 

neutral amino acid transport systems. Indeed, no significant differences were observed in 

PQ’s cytotoxic profile in the presence of 500 μM ARG or 500 μM VAL. Moreover, it was 

claimed that, in the presence of such high-affinity substrates, a decrease in PQ’s 

cytotoxicity would be expected if both compounds were substrates for the same 

transporter, in spite of the difference in each compounds’ concentrations (Vilas-Boas et al. 

2013a). In these cells, the polyamine uptake system was also not involved in PQ uptake, 

given the lack of significant differences in PQ cytotoxicity observed in the presence of 500 

μM PUT (Vilas-Boas et al. 2013a). Furthermore, these last results are in accordance with 

the previous reported absence of the polyamine uptake system at the BBB, resulting in 

limited access of polyamines to the brain (Shin et al. 1985). Therefore, the basic and the 

neutral amino acid transporters, as well as the polyamine-uptake system do not seem to 

mediate PQ’s uptake in this cellular model of the rat BBB, which possibly contributes to 

the observed outstanding cell resistance to PQ-induced toxicity. 

In conclusion, to the best of our knowledge, this was the first study investigating, in 

vitro, different mechanisms involved in the PQ absorption through the human intestinal 

epithelium. PQ uptake into intestinal epithelial Caco-2 cells is Ca2+/CaM and NEM 

sensitive, and several transport systems seem to be involved. Therefore, the development 

of potent inhibitors of these transporters should be the first approach to reduce PQ toxic 

effects, since they will limit its intestinal absorption and, consequently, its access to the 

target tissues, such as the lung. These inhibitors may, thus, constitute a promising new 

source of antidotes against PQ intoxications. 

IV.5. Screening of newly synthetized xanthone and thioxanthone derivatives – 
new potential therapeutic agents against Paraquat-induced intoxications  

Xanthones (dibenzo-γ-pyrones, Xs) and thioxanthones (dibenzo-γ-thiopyrones, TXs) 

are promising compounds in the field of medicinal chemistry. Xanthones were reported to 

have pronounced biological activity within a notably broad spectrum of disease states, 

resulting from their interaction with a corresponding diverse range of target biomolecules 

(Masters and Bräse 2012), which led to their description as “privileged structures” (Pinto 

et al. 2005). In what concerns to TXs, these compounds were proven to have interesting 

biological properties, namely antitumor activity and P-gp modulation (Paiva et al. 2013; 
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Palmeira et al. 2012c). However, although several studies have addressed the biological 

activities of xanthonic and thioxanthonic derivatives, information regarding their interaction 

with drug transporters is sparse. 

In what concerns to TXs, previous studies have reported the ability of aminated 

thioxanthones to act as dual inhibitors of both P-gp and tumour cell growth in the K562 

chronic myelogenous leukemia cell line (Palmeira et al. 2012c). However, in those 

studies, some of the tested TXs demonstrated an opposite effect in P-gp activity, causing 

a significant decrease in the RHO 123 accumulation ratio, an effect compatible with an 

increased P-gp function (Palmeira et al. 2012c). In what concerns to Xs, some prenylated 

xanthones have shown affinity to bind to the P-gp recombinant domain (Tchamo et al. 

2000) and more recently, simple oxygenated xanthones were identified as selective killers 

of cancer cells overexpressing the MRP1 ABC transporter (Genoux-Bastide et al. 2011). 

Also, in P-gp overexpressing leukemia cells (K562Dox) a prenylated and a lignoid 

xanthone derivatives inhibited P-gp activity, whereas two simple oxygenated xanthones 

increased the transporter activity (Sousa et al. 2013). However, no further studies were 

conducted to better clarify the mode of action of these xanthonic and thioxanthonic 

derivatives, specifically in what concerns to how they increase P-gp activity. Therefore, 

accordingly to the previously reported studies we aimed to: 

 Screen five newly synthetized thioxanthonic derivatives as possible inducers of P-

gp expression and/or activity, given the previously reported ability of certain TXs to 

increase P-gp activity (Palmeira et al. 2012c) (Manuscript VI). 

 Understand the impact of simple oxygenated xanthones on P-gp 

activity/expression, given the previously reported ability of simple oxygenated 

xanthones to increase the pump’s function (Sousa et al. 2013). Therefore, by 

evaluating the effect of a series of dihydroxylated xanthones on the pump's 

expression and activity, and knowing that the tested Xs only differ in the position of 

the hydroxyl substituents at the xanthonic scaffold, we also sought to establish a 

structure-activity relationship (Manuscript VII).  

According to our results, all the tested Xs and TXs significantly increased both P-gp 

expression and activity in Caco-2 cells, being this the first report on the ability of such 

compounds to act as P-gp inducers. Moreover, although it is known that increases in 

protein expression may not necessarily result in proportional increases in pump activity 

(see IV.2), for these compounds, the detected increases in the cell surface P-gp 

expression were accompanied by similar increases in its transport activity. Among the 

tested TXs, TX5 [1-(Propan-2-ylamino)-4-propoxy-9H-thioxanthen-9-one] was the 

thioxanthonic derivative that caused the highest increase in the protein expression and in 



Integrated Discussion_____________________________________________________________ 

384 

the pump’s activity (208% and 198% for P-gp expression and activity, respectively, as 

compared to control cells). In the case of the tested Xs, which are positional isomers, the 

observed P-gp induction was not dependent on the position of the hydroxyl substituents at 

the xanthonic scaffold, since no significant differences were observed among the tested 

compounds, in what concerns to cell surface P-gp expression levels (134, 144, 133, 142, 

and 143 % for Xs 1-5, respectively, when compared to control cells).  

An important aspect to note among the obtained data was the ability of all the tested 

xanthonic and thioxanthonic compounds to rapidly and significantly increase P-gp activity, 

as assessed by the RHO 123 efflux assay performed in Caco-2 cells in the presence of 

such compounds during a short 45 min RHO 123 efflux phase. Moreover, this 

experimental design of RHO 123 efflux evaluation does not reflect a possible contribution 

of increased P-gp expression in the observed increased activity, given the short duration 

of contact between the tested compounds and the cells during the RHO 123 efflux phase. 

This experimental design for the evaluation of P-gp activity was only performed for these 

compounds, and not for the other compounds previously tested during this work, such as 

DOX, HYP and colchicine. Indeed, this experimental protocol of RHO 123 efflux was only 

adopted later, since it was based on the recently emerging concept of a new class of 

compounds, known as P-gp activators, which represent compounds that interact with P-gp 

increasing its transport activity without increasing its protein expression (Sterz et al. 2009; 

Vilas-Boas et al. 2013b). From the obtained results, X1 and X5 were the most effective P-

gp activators among the tested Xs, whereas TX1 and TX5 were, among the tested TXs, 

the most effective P-gp activators. 

Considering the previously described effects of the tested xanthonic and 

thioxanthonic derivatives on P-gp expression and activity, we further sough to elucidate if 

they could afford protection of Caco-2 cells against the toxicity of P-gp substrates, using 

again PQ as a model of a toxic substrate. The herbicide cytotoxicity was, thus, evaluated, 

by the neutral red uptake assay, with and without simultaneous exposure to the herbicide 

and the tested compounds for 24 h. The suitability of this study model, using PQ as the P-

gp toxic substrate, was already demonstrated with the previously described studies on the 

P-gp inducers DOX and HYP in Caco-2 cells (see IV.3), as well as with the studies 

reported for the reduced rifampicin derivative, RedRif, in RBE4 cells (Vilas-Boas et al. 

2013b). Except for TX1 and X2, the simultaneous incubation with the tested 

(thio)xanthonic derivatives resulted in a significant reduction in PQ cytotoxicity, which was 

demonstrated by the significant rightwards shifts of all the fitted curves, and by the 

significant increases in the PQ's EC50 values obtained in the presence of these derivatives 

(Manuscript VI and Manuscript VII). For X2, although no significant differences were 

obtained in the EC50 value, a significant rightwards shift of the fitted curve was observed 
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as a consequence of a significant reduction in cell death detected for some of the tested 

PQ concentrations (Manuscript VII). For TX1 no significant differences were observed in 

the overall comparison of the fitted curves (TOP, BOTTOM and EC50 value) (Manuscript 

VI). From the tested Xs, X1 and X5 derivatives afforded the highest protection (for X1, X3, 

X4, and X5 the EC50 value significantly increased from 1260 µM for the PQ curve to 1620, 

1509, 1520, and 1714 µM, respectively), the same compounds that demonstrated the 

highest effectiveness in activating the pump (Manuscript VII). From the tested TXs, TX5 

was the most effective compound in protecting Caco-2 cells against PQ-induced 

cytotoxicity (for TX2, TX3, TX4, and TX5, the EC50 value significantly increased to 1517, 

1359, 1378, and 1749 µM, respectively, when compared to the 1204 µM EC50 value of the 

PQ curve), being this derivative the one that increased both P-gp expression and activity 

to the highest extent (Manuscript VI).  

To evaluate if the observed protective effects against PQ-induced cell death were 

mediated by P-gp, the herbicide cytotoxicity was further evaluated in the presence of the 

specific P-gp inhibitor, GF120918. For all the tested Xs, the previously described 

protective effects were completely abolished under P-gp inhibition, demonstrating that 

these compounds can effectively reduce PQ-induced cell death through a P-gp-mediated 

mechanism. For the tested TXs, except for TX5, in the presence of GF120918, a complete 

abolishment of the observed TXs protective effects was also demonstrated, suggesting, 

again, a P-gp-mediated protection against PQ cytotoxicity. However, for TX5, even with 

an increased inhibitor concentration (since this derivative was, as previously mentioned, 

responsible for the highest observed P-gp induction), a small rightwards shift at the top of 

the fitted curve was still observed, and accompanied by a minor, although significant, 

increase in the EC50 value of the fitted curve. Nonetheless, since the TX5 protection was 

almost completely abolished under P-gp inhibition, it may be concluded that P-gp was 

mainly involved on the protective effects mediated by TX5 in PQ cytotoxicity. Furthermore, 

as observed after P-gp inhibition with the UIC2 antibody, using GF120918, it was again 

demonstrated that P-gp modulation has an important impact on PQ toxicity. This inhibitor 

proved to be also suitable for elucidating if the protective effects of the studied compounds 

are mediated by P-gp, and is a less expensive alternative when compared to the UIC2 

antibody. 

In accordance with these results, it was recently reported that a synthetic derivative 

of rifampicin, RedRif, which modulated P-gp expression and activity, could increase P-gp 

activity even at time points at which no increase in protein expression occurred, thus also 

acting as a P-gp activator in RBE4 cells (Vilas-Boas et al. 2013b). Indeed, RedRif (10 μM) 

was able to significantly increase P-gp expression 48 h after exposure, although the 

pump’s activity increased as soon as 24 h after exposure. Moreover, and as mentioned, 
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this increased P-gp activity significantly protected RBE4 cell against PQ-induced 

cytotoxicity, since pre-exposing cells to the derivative for 24 h significantly increased the 

herbicide EC50 value. Furthermore, RedRif protection against PQ cytotoxicity was much 

more significant when simultaneous exposure to both derivative and PQ was performed, 

when compared to the pre-exposure assay, suggesting that P-gp activation by RedRif 

may be a more efficient way to prevent P-gp substrates’ toxicity (Vilas-Boas et al. 2013b). 

Additionally, although the definition of P-gp activators has been recently created 

(Sterz et al. 2009; Vilas-Boas et al. 2013b), it has long been known that there are 

compounds that bind to P-gp and stimulate the transport of a substrate on another binding 

site. As previously mentioned, according to the model proposed by Shapiro et al., P-gp 

possesses at least three positively cooperating drug binding sites, an H site selective for 

Hoechst 33342 and colchicine, an R site selective for RHO 123 and anthracyclines, and a 

third binding site for progesterone (an allosteric binding site exhibiting a regulatory 

function) (Shapiro et al. 1999). Moreover, it was demonstrated that drug binding to one 

site stimulates transport by the other binding site (Shapiro et al. 1999) (see I.3.1 and 

I.6.3). A four P-gp-binding sites’ model was also proposed, which supports the presence 

of three transport sites and one regulatory site. This last site allostericaly alters the 

conformation of the transport binding sites from low to high affinity for substrates, 

increasing the rate of translocation (Martin et al. 2000). Furthermore, accordingly with the 

recently reported high-resolution X-ray crystal structure of mouse P-gp, rather than one or 

a few discrete drug-binding sites, a large, flexible drug-binding region exists, which 

permits the creation of numerous sub-sites where drugs can bind, thus allowing the 

accommodation of at least two substrate molecules simultaneously (Aller et al. 2009) (see 

I.3.1 and I.6.3).  

In accordance with our data, other compounds were also reported to increase P-gp 

activity, without changing its protein expression. For example, some of the NSAIDs 

reported by Takara et al. demonstrated no remarkable effect on the expression of MDR1 

mRNA, although significantly altered the intracellular accumulation of RHO 123 (Takara et 

al. 2009). Indeed, the exposure of Caco-2 cells to mefenamic acid, sulindac, naproxen, 

and meloxicam, significantly reduced the amount of RHO 123 accumulated inside the 

cells, without changing the MDR1 mRNA levels (Takara et al. 2009). However, no further 

studies were performed to explain the obtained results.  

Furthermore, several substances, such as flavonoids and some hydrophobic 

peptides, have also been described to activate substrate transport by P-gp (Sharom et al. 

1996; Wang et al. 2002). Indeed, some catechins were reported to facilitate the P-gp-

mediated transport of LDS, a fluorescent P-gp marker substrate, without affecting 

daunorubicin or RHO 123 transport. Moreover, (-)epicatechin, in spite of being an inhibitor 
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of RHO 123 transport, significantly enhanced the active net transport of LDS. This result 

indicates that (-)epicatechin may bind to P-gp and activate an allosteric site that enhances 

P-gp overall function or efficiency (Wang et al. 2002). Additionally, Kondratov et al. 

identified several small molecules, first designed as p53 inhibitors, with different effects on 

the cellular accumulation of distinct P-gp substrates (Kondratov et al. 2001). The most 

potent compounds, QB102 and QB11, stimulated the transport of anthracyclines and RHO 

123, whereas the efflux of Vinca alkaloids and Hoechst 33342 was inhibited, being the 

effect of these modulators dependent, at least partially, on the substrate-binding site 

postulated by Shapiro et al. (Kondratov et al. 2001). A series of 27 imidazobenzimidazoles 

and imidazobenzothiazoles structurally related to QB102 and QB11 were later 

synthesized, and their influence on the cellular accumulation of RHO 123 and 

daunorubicin was investigated (Sterz et al. 2009). These novel derivatives showed a 

similar effect to that of the substances described by Kondratov et al., and the most potent 

compounds yielded half-maximal P-gp activation in a high nanomolar concentration range. 

Most of the tested compounds were able to stimulate P-gp-mediated efflux of 

daunorubicin and RHO 123 in a concentration-dependent manner, and the P-gp-mediated 

efflux of vinblastine and colchicine was inhibited by several of the tested compounds. 

Therefore, it was proposed that these novel compounds bind to the P-gp H site and 

activate the efflux of specific substrates of the R site in a positive cooperative manner, 

whereas binding of H-type substrates is inhibited competitively. This hypothesis was 

further confirmed by the observation that these modulators do not influence hydrolysis of 

ATP or its affinity towards P-gp (Sterz et al. 2009). 

Therefore, all these compounds seem to act as P-gp activators, having the ability to 

immediately increase P-gp activity without the need to increase its expression. Such 

compounds act by binding to a specific ligand-binding site, inducing a conformational 

change in P-gp that stimulates the efflux of a substrate bound on another ligand-binding 

site (Vilas-Boas et al. 2013b). In fact, adaption and survival mechanisms of living beings 

has allowed the binding of several xenobiotics at the same time to P-gp (Safa 1993; Safa 

1998), increasing the transport of each other, not competing, but activating the 

transportation cycle (Safa 2004). Hence, as P-gp activators bind in the drug-binding 

pocket formed by the TMD interface, binding modes of the tested xanthonic and 

thioxanthonic derivatives, alone or with PQ, as well as of PQ alone, were further explored 

by a docking study, using a model built based on Sav1866, an ABC transporter from S. 

aureus (Palmeira et al. 2012c). Docking simulations between the P-gp drug-binding 

pocket and other known P-gp activators (Palmeira et al. 2012c; Sousa et al. 2013; Sterz et 

al. 2009) were also performed. Dihydroxylated xanthones bound in one particular P-gp 

binding site, engulfed by TMH 4, 5, 8-10, and 12, forming stable complexes between Xs 
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and the P-gp binding pocket. Furthermore, all the tested Xs bound in a similar and almost 

superimposable conformation, and all these compounds have shape, size, and 

stereoelectronic complementarity to the P-gp binding pocket, establishing hydrogen 

interactions with Ile235, Arg832, and Glu875 (Loo and Clarke 2002; Wang et al. 2007), 

described as being important members of the drug-binding pocket, contributing also to the 

correct folding of the transporter; and stacking interactions with Phe77, described as being 

part of P-gp binding pocket and important to P-gp biosynthesis (Loo and Clarke 1993). 

In what concerns to the thioxanthonic derivatives, as TX1 and TX5 were the most 

active P-gp activators in the in vitro studies, a visual inspection of these molecules in the 

TMD interface of P-gp was performed, using the previously mentioned model built based 

on Sav1866. Both TX1 and TX5, contrarily to the tested Xs, have two preferential binding 

sites, engulfed by TMH 4, 5, 8-10 and 12, or by TMH 1-3, 6, 7, and 11. TX5 forms a stable 

complex with P-gp, and has also shape, size, and stereoelectronic complementarity to the 

P-gp binding pocket, establishing hydrogen interactions with Ala80, and stacking 

interactions with Phe201, described as being part of P-gp binding pocket (Loo et al. 2009). 

TX1 established hydrogen interactions with Gly346, known as being involved in inter-

domain communication, causing an helical movement required to ATP hydrolysis and 

multidrug transport (Storm et al. 2007); as well as with Ser228, also described as being an 

important residue in the P-gp drug binding pocket (Loo and Clarke 1999a); and stacking 

interactions with Phe201. 

According to our data, PQ, similarly to the TXs, has two preferential binding sites in 

P-gp. Moreover, TXs and PQ may establish stacking interactions, and this noncovalent 

complex binds to P-gp with higher affinity than TXs and PQ individually. The two-ligand 

complex established polar interactions with P-gp residues, such as Asn839 and Val345, 

and stacking interactions with P-gp residues, such as Phe201, Phe239, and Phe777. On 

the other hand, the top rank PQ docking pose occurred in a binding site distant from the 

place where Xs were predicted to dock, although other less stable PQ conformations are 

found in the Xs binding site. Therefore, Xs and PQ may bind simultaneously in P-gp in two 

different binding sites. Consequently, a simultaneous and cooperative transport may be 

hypothesized for PQ and Xs, since the binding of a xanthone at one binding site may 

stimulate the transport of PQ through another binding site (Litman et al. 1997a). Moreover, 

Xs and PQ may also establish stacking interactions while being co-transported and, as for 

TXs, this noncovalent complex binds to P-gp with higher affinity than the xanthone 

derivative and PQ individually. In this case, the two-ligand complex established polar 

interactions with P-gp residues, such as Gln347 and Val345, and stacking interactions 

with P-gp residues, such as Phe343 and Trp232. 
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Therefore, the hypothesis of an activation mechanism of action for (thio)xanthonic 

derivatives was supported by this docking study, being these compounds and PQ docked 

on two different binding sites in the cleft formed by the P-gp transmembrane α-helices. 

Furthermore, a simultaneous docking of PQ and (thio)xanthones revealed, as mentioned, 

that a more stable complex with P-gp model was formed (with lower free energy) than 

when those molecules were docked individually, suggesting that a co-transport may be 

occurring. Furthermore, the docking studies suggested two alternative mechanisms of 

activation by co-transport: a) (thio)xanthones dock on a different site than PQ, thus 

activating the efflux of the herbicide; b) (thio)xanthonic derivative and PQ bind to the same 

drug pocket, establishing stacking interactions between the (thio)xanthone scaffold and 

the biphenyl group, thus facilitating the transport to the extracellular medium. In the future, 

mutation studies could be performed in order to determine whether PQ and 

(thio)xanthones bind to the same or to different binding sites on P-gp. Additionally, from 

the tested TXs, TX1 was not able to afford protection against PQ-induced cytotoxicity in 

Caco-2 cells, in spite of the significant increases in both P-gp expression and activity. This 

indicates that this derivative acts as a strict competitive substrate, suggesting that this TX 

overlaps with PQ on the same site of P-gp. Furthermore, as docking scores revealed, TX1 

binds more tightly to the P-gp binding site than PQ. 

In accordance with these docking studies, the previously referred rifampicin 

derivative, RedRif, which acted as P-gp activator in RBE4 cells, demonstrated to also 

have shape, size and stereoelectronic complementarity to P-gp drug-binding pocket, using 

the same P-gp Sav1866 model (Vilas-Boas et al. 2013b). Furthermore, this activator 

formed a more stable complex with P-gp than other known P-gp activators (Palmeira et al. 

2011; Palmeira et al. 2012c; Sterz et al. 2009), also docked in this study, thus suggesting 

that RedRif may have higher affinity to the P-gp binding site than these compounds. 

Moreover, as RedRif established hydrogen interactions with Ser349 and Gln990, and this 

last residue has already been described as being part of the translocation pathway and 

being involved in the transport cycle (Loo et al. 2009), it was suggested that this 

compound has a high probability of interacting with the P-gp translocation channel, which 

supports the obtained experimental data (Vilas-Boas et al. 2013b). 

In conclusion, (thio)xanthonic derivatives are a promising new source of antidotes 

against the cytotoxicity of harmful P-gp substrates, such as PQ, which act by 

simultaneously increasing both P-gp expression and activity. The proposed protection 

mechanisms of these derivatives, as well as of doxorubicin and hypericin, are illustrated in 

Figure 22. Furthermore, given their ability to immediately activate the pump function, even 

more pronounced protection can be potentially afforded for substrates that are rapidly 

absorbed upon ingestion.  



 

 

 
 

 

Figure 22. Proposed protection mechanism against PQ-induced cytotoxicity afforded by the tested compounds. 
A. Untreated cells; B. Doxorubicin – exposure of Caco-2 cells to DOX results in a significant reduction in PQ intracellular accumulation, and consequently, in a significant 

reduction in its cytotoxicity, as a result of a double and unique feature in what concerns PQ poisonings: inhibition of PQ uptake (through the inhibition of choline uptake 

system, CHO), and increased PQ excretion (through increased P-gp expression and activity). C. Hypericin, and xanthonic and thioxanthonic derivatives – through the 

significant increase in both P-gp expression and activity, these compounds afforded a significant protection of Caco-2 cells against PQ-induced cytotoxicity, by increasing 

the herbicide's efflux, thus reducing its intracellular levels. 
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IV.6. In silico studies for P-gp inducers and activators – a new strategy   

Knowing that the experimental in vitro assays used to assess the interactions and 

transport of new chemical entities with P-gp are expensive, laborious and time-

consuming, several in silico models, that provide rapid and inexpensive screening 

platforms, have been developed for identifying P-gp substrates or inhibitors, and have 

been recognized to be valuable tools for these purposes (Ekins et al. 2007; Hou and Xu 

2004). Indeed, numerous computational models, based on QSAR analyses (2D-QSAR 

and 3D-QSAR), pharmacophore modelling and molecular docking techniques, have been 

developed to predict P-gp substrates, as well as inhibitors (Chen et al. 2012a). However, 

in what concerns to P-gp inducers and activators, the search for new compounds with 

these properties has been mainly performed by random screening. 

In an attempt to address this gap and based on 34 P-gp inducers reported in the 

scientific literature, we further aimed to build pharmacophores for P-gp induction 

(Manuscript III). Given the distinct and non-overlapping scaffolds of those compounds, 

prior to building a pharmacophore for P-gp induction, a ligand clustering analysis was 

performed, and the output clusters composed of more than 2 molecules were used on the 

pharmacophore construction. Accordingly, four different pharmacophores were built: 

 Pharmacophore I, with a score of 52.9, and composed of six features: 3 

hydrophobic features, and 3 hydrogen bond (Hb)-acceptor groups, having this 

pharmacophore the highest number of features found. 

 Pharmacophore II, with a score of 64.3, and composed of 3 features: 2 Hb 

donor groups, and 1 Hb acceptor group.  

 Pharmacophore III, with a score of 61.4, and composed of 5 features: 3 Hb 

acceptor groups and 2 hydrophobic groups.  

 Pharmacophore IV, with a score of 40.9, and composed of 3 features: 1 Hb 

donor group and 2 hydrophobic groups.  

Furthermore, these pharmacophores for predicting P-gp induction were validated 

using a test set formed by 4 known P-gp inducers, amprenavir (Huang et al. 2001), 

nelfinavir (Huang et al. 2001), puromycin (Male 2009), and yohimbine (Bhat et al. 1995), 

being these compounds detected as P-gp inducers when using pharmacophores I-IV as 

query. These pharmacophores were then used to map and align the thioxanthonic 

derivatives tested in our study, given the demonstrated ability of such compounds to 

increase, in vitro, the P-gp expression in Caco-2 cells (Manuscript VI). TX3 was able to fit 

three of the four pharmacophores (pharmacophores I, III and IV). The other four screened 

TXs were able to fit a three-feature P-gp induction pharmacophore consisting of one 
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hydrogen-bond donor and two hydrophobic groups (pharmacophore IV). Pharmacophore 

IV was also the best fitting pharmacophore for colchicine (Manuscript III). Therefore, the 

fitting of these thioxanthonic derivatives onto these pharmacophores further reinforces 

their usefulness in the efficient prediction of new ligands (Manuscript VI). 

The creation of such pharmacophores for P-gp induction can seem reductionist or 

even conflicting with the reported existence of various signalling pathways regulating P-gp 

expression, each involving different molecular targets and transcription factors (Figure 12 

and Figure 21, section I.6.2.2). However, we aim in the future to greatly improve those 

pharmacophores, by firstly increasing the number of reported P-gp substrates used in the 

pharmacophore construction, including, for example, the compounds present in Table 7 (> 

150 different compounds), thus increasing the representativeness of such 

pharmacophores. Consequently, more pharmacophores will be certainly created, and if, 

among the compounds mapped and aligned in a particular pharmacophore, common 

transcription activation pathways are identified, according to the data reported in the 

literature, it will be possible to predict how a new ligand mapped in that pharmacophore 

will regulate P-gp expression. Even when more than one pathway is involved in the P-gp 

induction effect mediated by the compounds used for the construction of that 

pharmacophore, it will help to guide the research on the new ligand towards a more 

restricted group of pathways, rather than the huge amount of pathways described to be 

involved in P-gp induction (see Figure 12 and Figure 21, section I.6.2.2). For example, 

one of the possible pathways involved in the transcriptional activation of MDR1 expression 

is mediated by the activation of PXR (Maglich et al. 2002; Rosenfeld et al. 2003), a 

nuclear receptor with a wide range of reported ligands (Chen et al. 2012b). Among these 

ligands are anticancer compounds, plant extracts, cholesterol-lowering statins, rifampicin 

and HIV protease inhibitors (Chen et al. 2012b). If a new compound is mapped in the 

rifampicin's pharmacophore, a high probability exists for its ability to increase P-gp 

expression through a PXR-mediated mechanism. 

In addition, based on the TXs in vitro P-gp activation ability, as well as on a set of 

known P-gp activators previously described in the literature (Palmeira et al. 2011; 

Palmeira et al. 2012c; Sousa et al. 2013; Sterz et al. 2009), common feature 

pharmacophore models for P-gp activation were created. The best ranked 

pharmacophore found (score of 110.3 kcal/mol) is composed of three features: one 

hydrophobic feature, one aromatic ring, and one hydrogen bond acceptor group 

(Manuscript VI). Moreover, this pharmacophore was validated by its alignment with a test 

set of 8 known P-gp activators with a benzimidazol scaffold, which were reported by Sterz 

et al. (Sterz et al. 2009). As with the new pharmacophores for P-gp induction, this 
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pharmacophore for P-gp activators can be faced as a very useful tool in the future, as it 

can be used to efficient and rapidly predict new ligands with the ability to activate P-gp. 

Additionally, based on the obtained results for the xanthonic derivatives in what 

concerns to their ability for P-gp activation and, consequently, for protection against PQ-

induced cytotoxicity, a 2D QSAR model was created (Manuscript VII). The developed 

model was in agreement with the laws of QSAR, which establish that one descriptor 

should be used for each five molecules (Kubinyi 2008), precisely the number of xanthonic 

compounds assayed. Moreover, the final model was validated using previously described 

P-gp activators, 1-chloro-4-hydroxy-9H-thioxanthen-9-one (TX2) and 1-(Propan-2-

ylamino)-4-propoxy-9H-thioxanthen-9-one (TX5). The maximal partial charge for an 

oxygen atom was the descriptor predicted as being implicated in the P-gp activation ability 

of all dihydroxylated xanthones. This electrostatic parameter is associated with the 

electronegativity of the oxygen that is higher than the electronegativity of carbon, causing 

electrons to spend more time around the oxygen atom, giving it a partially negative 

charge, while the carbon will become partially positive. Therefore, this parameter 

highlights the importance of the presence of the oxygen atom in specific positions in the 

molecule. Noteworthy, for the tested xanthonic derivatives, both docking studies 

previously described (see IV.5) and the QSAR model are in accordance with the biological 

data presented, with 3,6-dihydroxyxanthone (X5) being the most active, and the 1,2-

dihydroxyxanthone (X2) the least active xanthone derivative in activating P-gp transport 

activity. Overall, position 3 of the xanthonic scaffold seems to be the most favourable for a 

hydroxyl substituent in P-gp activation, in contrast to position 1. Nevertheless, in the 

future, other simple oxygenated xanthonic derivatives will be investigated in order to 

improve the significance and predictability of the developed QSAR model, and to discover 

other descriptors involved in the P-gp activation ability of xanthones. 

In conclusion, to the best of our knowledge, this was the first time that 

pharmacophores were developed for P-gp inducers and activators, which can be of 

utmost importance, in the future, for predicting and disclosing new ligands. Furthermore, a 

2D QSAR model was created, for the first time, for P-gp activators, which revealed that 

the maximal partial charge for oxygen atoms is related with the P-gp activation ability of 

dihydroxylated xanthones, thus opening a new window of opportunities in the drug design 

of more specific and potent P-gp activators. 
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V. GENERAL CONCLUSIONS 

Since numerous intoxications with P-gp substrates result from accidental or 

intentional ingestion, limiting their intestinal absorption should constitute the first 

therapeutic measure to be adopted, thus significantly reducing their access to the target 

organs. In line with this, the overall conclusion of the present work is that effective 

antidotal pathways can be achieved by efficiently promoting the P-gp-mediated efflux of 

deleterious xenobiotics, such as the herbicide paraquat, resulting in a significant reduction 

in the intracellular levels of such compounds and, consequently, in a significant reduction 

in their toxicity. As such, appropriate in vitro models addressing P-gp induction that enable 

the selection of specific, safe and potent P-gp inducers, are needed. The studies 

described in this thesis contributed to a better understanding of the molecular basis of the 

regulation of P-gp expression and activity, and to the discovery of new compounds acting 

as P-gp inducers and activators. Thus, from these studies, the following major conclusions 

may be drawn (Figure 23): 

 Caco-2 cells, representing the human intestinal epithelium, are a suitable in vitro 

model to study and select safe, potent, and specific P-gp inducers to be used as a 

cell protection tool against toxic P-gp substrates. Indeed, significant increases in P-

gp expression were observed as soon as 6 h after exposure to the inducing agent 

(doxorubicin), demonstrating the rapid responsiveness of these cells. Furthermore, 

this in vitro model is also suitable for the study of P-gp induction as an antidotal 

pathway against substrates of this transporter system. 
 

 Doxorubicin significantly increased both P-gp expression and activity in Caco-2 

cells, in a time- and concentration-dependent manner, with significant increases 

observed as soon as 6 h after incubation. However, the observed remarkable 

increases in P-gp expression levels were not accompanied by proportional 

increases in P-gp transport activity. The observed DOX-mediated P-gp induction 

resulted in a significant reduction in PQ cytotoxicity, which was more pronounced 

when DOX was added 6 h after the beginning of PQ exposure. Under this 

experimental design, DOX demonstrated a double and unique feature in what 

concerns to PQ poisonings, having the ability of both inhibiting PQ entrance 

(through the inhibition of choline uptake system), and increasing its excretion 

(through increased P-gp expression and activity), thus resulting in a significant 

reduction in its intracellular accumulation and, consequently, in its toxicity. The 

study and development of compounds combining these two features are promising 

new sources of antidotal pathways to be explored. 
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 Hypericin, by significantly increasing both P-gp expression and activity, afforded a 

proportional and significant protection of Caco-2 cells against PQ-induced 

cytotoxicity. Furthermore, HYP protective effects against PQ cytotoxicity, observed 

under the several experimental designs used, were completely prevented under P-

gp inhibition. Therefore, this compound is an excellent candidate for drug design of 

new potent and specific P-gp inducers, and for the study of potential protective 

effects against toxic P-gp substrates mediated only through P-gp induction. 
 

 Colchicine significantly induced P-gp expression in Caco-2 cells without a 

concomitant increase in the protein activity. Therefore, although colchicine is a P-

gp inducer it also acts as a P-gp competitive inhibitor, which could contribute to a 

great unpredictability of potential drug-drug interactions with other P-gp substrates.  
 

 Both computational and biological data obtained for colchicine, HYP and DOX 

emphasize the importance of the simultaneous evaluation of P-gp expression and 

activity in the screening of P-gp inducers, since these parameters may be 

differently regulated. For a P-gp inducer to afford cellular protection against 

harmful xenobiotics, it is of utmost importance that it is especially able to increase 

the pump’s function, and thus decrease the intracellular accumulation of toxic P-gp 

substrates. In fact, the protective effects of both DOX and HYP against PQ 

cytotoxicity were highly dependent on their effects on P-gp transport function. 
 

 Different uptake mechanisms are involved in the PQ absorption through the human 

intestinal epithelium. PQ uptake into Caco-2 cells is a Ca2+/CaM- and NEM-

sensitive process and more than one transport system appear to be involved, such 

as the choline uptake and the basic amino acid y+ transport systems. Knowing that 

limiting PQ intestinal absorption should be the first approach to reduce its toxic 

effects, the development of potent inhibitors of these transporters may constitute a 

potential new source of antidotes to be used in PQ intoxications. As noted with PQ, 

several uptake/efflux systems may determine the intracellular concentrations 

achieved by any given xenobiotic. Therefore, the multiplicity and redundance of 

transport systems must always be addressed. 
 

 (Thio)xanthonic derivatives were, for the first time, reported to significantly 

increase P-gp expression, thus acting as P-gp inducers. The observed increases 

in the protein expression were accompanied by similar increases in its transport 

function. Furthermore, they demonstrated the ability to immediately increase P-gp 

activity after a short incubation period, an effect compatible with P-gp activation. 

The possibility of a co-transport mechanism between (thio)xanthones and PQ was 

further supported by docking studies. In addition, the observed effects on both P-
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gp expression and activity resulted in a significant protection of Caco-2 cells 

against PQ cytotoxicity, thus representing a promising new source of antidotes 

against intoxications by harmful P-gp substrates, such as PQ. Thus, these data 

disclose new perspectives in preventing PQ and other P-gp substrates-induced 

poisonings. 
 

 TX5 was the thioxanthonic derivative that demonstrated the highest potential in 

inducing P-gp and, as a result of the highest P-gp expression and activation 

capacity, it elicited the highest protection against PQ-induced toxicity in Caco-2 

cells. 
 

 X1 and X5 were, among the tested xanthonic derivatives, the most effective in 

activating P-gp transport activity, which was demonstrated by both in vitro and in 

silico studies. As a consequence, these compounds afforded the highest protection 

of Caco-2 cells against PQ cytotoxicity. 
 

 For the first time, pharmacophores for P-gp inducers and activators were 

developed, which can be of utmost importance, in the future, in predicting new 

ligands. Furthermore, a perfect match between in silico and in vitro studies was 

observed. These results indicate that the use of such in silico strategies can help 

to predict the P-gp modulatory effects of new drugs that can be initially screened 

through these newly developed pharmacophores. Furthermore, also for the first 

time, a 2D QSAR model was created for P-gp activators, demonstrating that the 

maximal partial charge for oxygen atoms is related with the P-gp activation ability 

of dihydroxylated xanthones. 

 

 

 

 

 

 

 



 

 

    Figure 23. Graphical conclusions. 
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