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Abstract

Coarse Grained Reconfigurable Arrays have gained importance in the field of accelerators. Several
types of architectures have been proposed in the literature mainly targeting applications in the
multimedia field. This document aims to contribute to the application of CGRAs in different areas
by targeting low-power architectures for biomedical signal processing. The objective is to design
a low power architecture which may be placed in a small battery-operated portable device. To do
so, a look is taken into the different types of power consumption in a chip giving special attention
to static power consumption.

To produce a chip EDA (Electronic Design Automation) tools are used. These tools impose
a considerable time overhead which delays the project. The purpose of the design flow is to
ease the process of taking a CGRA architecture to tape-out in addition to save a considerable
amount of time spent dealing with the aforementioned tools. The proposed design flow is capable
of transforming a HDL description of a CGRA in a physical design while applying low-power
methodologies such as the insertion of power domains along with power-gating capabilities which
will deal with the static power consumption previously mentioned.

There is also a set of use cases which assess the efficiency of power-gating in a CGRA which is
helpful for a designer who wishes to understand how the grouping of elements in power domains
and how shutting them down impacts the system’s power efficiency.

This strategy is applied to a proposed CGRA architecture which reveals power savings in
the order of 31.6% when powering down 1/3 of the circuit and, if the CGRA is not being used,
shutting it completely off achieves savings in the order of 99.93%.

These results show that this is a promising approach which could enhance the way medical
exams are made and the time it takes for a patient to be diagnosed. In addition, a step towards
having portable devices performing medical exams would grant doctors extra time to deal with
matters of greater importance.
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Chapter 1

Introduction

1.1 Context

Biological signals are of major interest in terms of health monitoring. With today’s technology it

is possible for an individual to carry in or on himself electronic devices capable of harvesting and

even processing signals from body sensors. As detailed in [1] there are many types of bio-signals

that can provide vast information about an individual, from respiration rate to blood pressure and

there is even the possibility of performing electrocardiograms (ECGs) on the fly. This ability to

monitor relevant signals can help doctors act in a timely manner and even prevent many health

issues. However, a big interest in harvesting these data is to do it while the patient is on the move

or at least not in the premises of a hospital, ideally allowing the patient to not even notice that he’s

being monitored.

Monitoring the aforementioned signals often gives rise to the need of local pre-processing,

either to weight the relevance of the collected data or to treat the information before sending it to

a remote processing unit thus possibly decreasing the data payload. This processing may consist

in cleaning the signal (removing noise), calibrating the sensors or even compressing data.

With the aggressive energy consumption to which this processing is subjected and given its re-

strictions while having, at the same time, real-time requirements, there is a rise in the need of care-

fully aiming towards energy-efficiency. One way of addressing energy-efficiency is by designing

application-specific circuits that aim to boost performance while reducing energy consumption.

Nevertheless, the development of these application-specific circuits is in many cases very risky

as there exist economic and time-to-market constraints which can render the whole development

useless.

A possible solution[2] comprises the development of a general-purpose architecture combin-

ing a microcontroller or a microprocessor with a coarse-grained array architecture (CGRA) acting

as an accelerator.

The CGRA is an array of processing elements (PEs) whose function and interconnections are

determined by some configuration data. When carefully designed, it is possible to map all the

needed algorithms for bio-signal processing in this architecture and efficiently diminishing power

1



2 Introduction

consumption.

1.2 Motivation

Reconfigurable architectures are much more energy-efficient than general-purpose CPUs. "It is

shown that reconfigurable computing designs are capable of achieving up to 500 times speedup

and 70% energy savings over microprocessor implementations for specific applications"[3]. [4]

take advantage of a SYSCORE CGRA architecture to run a real-time seizure detecting algorithm

(REACT). For certain features of the REACT algorithm, like for example Fisher Information, the

proposed architecture showed 40% energy savings when compared to a DSP processor.

It is shown in [5] how energy-efficiency can be achieved by applying power-gating techniques

to the CGRA. These techniques consist in switching off parts of the array, i.e. a group of PEs,

when possible. This type of technique must be applied using a Low Power Methodology (LPM)

and must be done by someone who has a deep knowledge of the design flow for Systems-on-Chip

(SoCs).

In order to reduce the overhead of designing a CGRA, this dissertation will set its scope on

having a semi-automated process to generate a physical layout from the description of the PEs

with the insertion of scalable power-gating techniques (detailed in the next sections).

1.3 Objectives

The objective of this dissertation is to have a defined design flow for CGRAs that can be translated

to a set of scripts which can then be used to synthesize a physical layout of a CGRA using standard

cells, thus reducing the overhead of manually executing each stage of the design flow. While doing

this, one major objective is the exploitation of tools and techniques to automatically insert power-

gating in the design in order to reduce power consumption. A complementary objective is the

analysis of the impact of the mentioned techniques in terms of power reduction and the adaptation

of these tools and techniques to different designs.

Please note that throughout the document a webpage will be mentioned. This webpage may

be found here: https://paginas.fe.up.pt/~ee12173.

https://paginas.fe.up.pt/~ee12173


Chapter 2

Literature Review

2.1 Coarse-Grained Reconfigurable Arrays

SoCs (Systems-on-Chip) have been extensively developed during the last years for applications

in several industries, from automotive to consumer electronics or even military applications. Al-

though these chips are suitable for intense applications and have relatively low power consump-

tion, we must take into account the amount of time spent in the design of an application specific

chip. With the constant changes in today’s technology comes the need for a swift response to the

market’s needs, compelling design companies to deliver a product as soon as possible in order to

be competitive. Nowadays, SoC designers face great challenges in terms of time having to deal

with bottlenecks in floor-planning and chip layouts, especialy in advanced CMOS design where

wiring is critical [6].

In order to face this problem, there has been a crescent interest in coarse grained reconfig-

urable fabrics (CGRAs) attached to a general purpose CPU (Central Processing Unit). These

coarse grained reconfigurable fabrics come as a compromise between the application-specific chip

and the fine-grained architectures [7] such as FPGAs (Field-programmable Gate Arrays), giving

the chip manufacturer enough flexibility to reconfigure the CGRA’s internal interconnections and

change the system’s behaviour.

2.1.1 Generic CGRA Architecture

A CGRA is composed of an array of interconnected PEs commonly containing ALUs (Arithmetic

Logic Unit) and other functional blocks such as registers, bit-wise operators, multiplexers, among

others. In it’s simplest version, as seen in figure 2.1, all the elements are equal, making the CGRA

homogeneous (equal PEs for the entire array) with nearest-neighbour connections. In this case we

can see that there are 16 PEs (4 per line and 4 per column) making this, as mentioned before, a

very simplistic view of a CGRA architecture.

Looking at figure 2.1 there are some aspects of the CGRA that can already be seen and

will be detailed during the course of this report. One of these aspects is the homogeneity of the

processing elements which is an important fact to take into account if the designer is aiming at

3
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Figure 2.1: CGRA fabric

area optimality as well as functionality. Another crucial aspect, as mentioned earlier, is the way

the interconnections are made, either if each PE is connected to its nearest neighbours, if it uses

buses, roundabout connections or even if it has run-time reconfigurable interconnections.

2.1.1.1 Processing Element

The PEs are the computational units of a CGRA. Together with a well structured network of inter-

connections the PEs are able to perform and accelerate computations that are usually performed in

a general-purpose CPU. Several types of PEs have been proposed in the literature. MorphoSys[7],

detailed in figure 2.2, has a PE (the authors call it Reconfigurable Cell (RC)) composed of an ALU-

multiplier, a shift unit, two multiplexers for input selection, one output register and other registers

for configuration purposes. Other authors proposed similar architectures, like the CS2112[6] (fig-

Figure 2.2: MorphoSys PE. Source:[7]
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ure 2.3), which comprises an ALU, output registers and routing and shift logic for the input data.

All of these elements are again connected to some kind of configuration data.

Figure 2.3: CS2112 PE. Source:[6]

An example of a complex structure is the XPP-III[8] which has three types of PEs in its core struc-

ture (fig. 2.4). The XPP-III contains ALU-PAEs (Processing Array Elements), RAM-PAEs and

Figure 2.4: XPP-III Core Structure. Source:[8]

FNC-PAEs. The ALU-PAEs contain three ALUs while the RAM-PAEs contain only two ALUs

together with a small RAM (Random Access Memory) and an I/O object. The FNC-PAE contains

a complete VLIW-like sequential processor kernel[8].

Many architectures described in the literature are similar in terms of PEs, containing a standard

ALU and encapsulating some other functionalities the designer finds suitable in order to target a

specific algorithm. Even with very similar PEs there is a vast set of options a designer can choose

from and this comes from the way they’re structured in terms of homogeneity, interconnections,

bit-widths, number of PEs and overall configuration. One example is the number of multipliers

and their ratio to other PEs. Some of the architectures in table 2.3, that are heterogeneous, contain

multiplication PEs. This is summarized in table 2.1.
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Name Multipliers Other PEs Ratio
CS2112 [9] 24 84 1 : 3.5

DAPDNA-2 [10] 56 168 1 : 3.3
FE-GA [11] 8 24 1 : 3

Table 2.1: Number of multiplication PEs. Source:[6]

2.1.1.2 Interconnection network

One of the issues when physically dividing an accelerator into several PEs is the way they ex-

change data. Besides, with an increasing number of computational blocks on a chip, a major

bottleneck may be caused by the communication among these functional blocks [12].

There are several ways of interconnecting PEs. The simplest way is to connect every PE to its

nearest neighbours, considering or not diagonal connections. Although nearest neighbour connec-

tions are easy to understand and to implement, they bring some drawbacks. For example, if you

need to obtain the result of a computation made in a cell that’s a few PEs away from the output,

you will need to use those intermediate PEs simply as pass-through PEs, making them unusable

thus degrading efficiency. Besides this there is also the possibility of causing deadlocks since one

PE may be depending on the results of several other PEs to carry on.

To address this problem other ways of interconnecting PEs have been developed. Bus inter-

connections allow communication between any two PEs but have some disadvantages regarding

the number of PEs that can communicate on the same bus at the same time and the area overhead

needed to implement hardware capable of communicating using a bus-compatible protocol. Some

designers, as seen in [7], even combine these techniques grouping PEs in quadrants and deliver-

ing two different kinds of communication infrastructure, one for intra-quadrant communication

and another for inter-quadrant communication. Besides nearest-neighbour and bus connections

other interconnection methods have been proposed, like torus (many times combined with nearest-

neighbour), roundabout connections[4] (figure 2.5), among others (see table 2.2).

Figure 2.5: Syscore Roundabout Interconnections. Source:[4]
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Name Interconnect
CS2112 [9] Tile base, 2D-bus

DAPDNA-2 [10] Segment base, 2D-bus
FE-GA [11] 2D-mesh direct, Crossbar for memories

Cluster Machine [13] 3-stage switch
DRP-1 [14] Tile base, 2D-bus

Kilocore KC256 [15] Crossbar for row direction
ADRES [16] 2D-mesh direct with extra links
Xpp-64 [17] 2D-bus and direct

D-Fabrix [18] Chess-board like switch connection

Table 2.2: Interconnection types. Source:[6]

It’s not practical to design a CGRA where the PEs have all-to-all interconnections. It is a

question of both area and power. If PEs are connected without a critical way of thinking, this

will probably have a big impact on the final product in terms of area and power consumption.

Increasing the number of connections increases the amount of metal and probably the number of

metal levels, therefore also increasing the number of vias which has an impacting on the design’s

timings. Also, several wires may connect to a particular input, and will have go through a multi-

plexer in order to select which one of them is driving the input. This results in an area overhead

that becomes intolerable when increasing the number of wires driving a single input.

An interesting alternative was published in [19], where the authors propose the use of Omega

Networks. In other words, the authors propose using several switch boxes interconnected that

route the signal reducing the number of wires. An example of these switch boxes can be seen in

figure 2.6.

Figure 2.6: Types of Switches. Source:[19]

These switch boxes can be combined in order to drive 4 inputs (fig. 2.7(a) ) and 8 inputs (2.7(b) ).

It can be shown that it is possible to establish a route between any input/output pair.

2.1.1.3 Reconfiguration

A coarse grained structure by itself does not guarantee the desired performance cost ratio. Mak-

ing use of the fabric’s reconfigurability, i.e. by using a single PE array for multiple tasks, area

efficiency may be enhanced and the semiconductor area can be utilized more efficiently compared

with dedicated hardware logic[6].

This dynamic reconfiguration can be achieved in a few different manners. The simplest way is
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Figure 2.7: Switch interconnections. Source:[19]

by storing the configuration data in one or various on-chip memory modules [6]. These modules

will then be able to deliver the memory contents to the PEs during run-time in order to change

their configurations and thus switching the functionality of the PE.

Another method of dynamic reconfiguration consists in placing memory modules inside each PE

that will store context data. This method allows every PE to be configured at the same time, since

the context controller only feeds the PEs with the context number, allowing all PEs to reconfigure

in a single clock cycle. Although this reconfiguration method is faster, it brings with it an area

increase that can, in some cases, double the area of each PE [16].

In table 2.3, a number of architectures proposed in the literature are classified according to the

properties explored before. The reader may notice that architectures show very different numbers

of PEs. This is mainly a result of the operations that which PE is capable of executing. As a

practical example: if no PE supports multiplication, there may exist the need for various PEs in a

Name Configuration PE array Data bits PEs
CS2112 [9] Multicontext(8) Heterogeneous 16/32 108

DAPDNA-2 [10] Multicontext(4) Heterogeneous 32 376
FE-GA [11] Multicontext(4) Heterogeneous 16 32

Cluster Machine [13] Multicontext Heterogeneous 16 15/c
DRP-1 [14] Multicontext(16) Homogeneous 8 512

Kilocore KC256 [15]
MMulticontext/

/Delivery
Homogeneous 8 256

ADRES [16] Multicontext(32) Homogeneous 16 64
Xpp-64 [17] Delivery Homogeneous 24 64

D-Fabrix [18] Delivery Homogeneous 4 576
S5-engine [20] Delivery Homogeneous 4/8 -

Table 2.3: Features of CGRA architectures. Source:[6]
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pipelined fashion in order to deal with timing requirements, thus increasing the number of needed

PEs. The bit-width, however, is reflected by the target application.

2.1.2 Examples of architectures proposed in the literature

2.1.2.1 MorphoSys

MorphoSys is a reconfigurable computing system that targets applications with inherent data-

parallelism, high regularity and high throughput requirements, like video compression, graphics

and image compression, data encryption and DSP transforms[7].

This architecture (in figure 2.8) is comprised by a reconfigurable processor array with a high

bandwidth data interface both connected to a system bus. Together with these elements the de-

signers also included one RISC processor[21] and an instruction/data cache.

This architecture is designed to operate on 8 or 16-bit data and can be dynamically reconfig-

Figure 2.8: MorphoSys Architecture. Source:[7]

ured by loading context data into inactive parts of Context Memory without interrupting the PE

Array operation. These context data loads are managed by the host processor.

The context memory present in this architecture allows 32 planes of configuration to be stored and

allows configuration-related data to be broadcast either to PE columns or rows.

2.1.2.2 ADRES

The ADRES architecture has two distinct parts. One of the parts contains a VLIW processor

suitable for control and load/store operations while the other part contains a reconfigurable fabric

that serves as an accelerator optimized for data-flow kernels[16]. This architecture makes use of

orthogonal buses and each Functional Unit (FU) is fitted with two configurable ports to facilitate

data input. In terms of data output, it is achieved by means of both vertical and horizontal distri-

bution.

This architecture is provided with a data-width of 32 bits distinguishing it from regular fine

grained architectures which contain mostly bitwise operations. On the VLIW part there can be up
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to eight FUs in a row, communicating via a horizontal data bus. As mentioned before, there is a

reconfigurable fabric attached to this VLIW block, containing several rows of PEs controlled by a

local context memory. In the implementation mentioned in [16], the mentioned context memory

blocks are configured by loading data from an external memory at the boot phase of the device.

These contexts are switched via a central pointer that selects the context for the whole fabric.

Figure 2.9: ADRES Architecture. Source:[16]

2.1.2.3 SYSCORE

SYSCORE is a Coarse Grained Reconfigurable Array for low-power on-chip biosignal process-

ing. This architecture surges from the need for significant savings in the energy consumption of

on-chip biosignal processing and has led to research interest in low power biosignal processor

platforms[22].

In [23], Patel et al. propose an 8x4 SYSCORE architecture. This architecture contains 32

Configurable Function Units (CFUs) and 8 RoundAbout Interconnect (RAI) units. Each CFU has

4 input ports and 3 output ports which feed data to a Computation Unit (CU) that suports MUL-

ADD, MUL-SUB and CMP (compare) on top of the casual functions supported by a conventional

ALU/MAC. This set of additional functions can be useful for systolic algorithms mapping and

feature extraction [23, 24].

In terms of interconnections, this architecture is provided with nearest-neighbour connections

to the East and West and cross interconnections at odd numbered columns. After the second col-

umn of CFUs a RAI is inserted to provide more interconnection options.

This architecture is prepared to operate in three distinct modes: configuration, execution and

flush. The mode of operation is selected using global control signals.

To test the performance of this architecture, Patel et al. implemented an 8x8 SYSCORE array

and used the RaCAMS simulator to obtain performance results[25]. This comes as a very useful

information in the scope of this thesis since it also targets biosignal processing. The hardware was
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implemented in Verilog and the algorithms were mapped using SystemVerilog. A 90nm CMOS

technology library was used and, for comparison purposes, a DSP processor was implemented, as

was a SIMD processor. These performance tests resulted in the values depicted in figure 2.10 and

show that not only SYSCORE is faster but it is also much more energy-efficient.

Figure 2.10: SYSCORE benchmarks. Source:[23]

2.1.2.4 Cool Mega Array

Cool Mega-Array (CMA), proposed in [26], is a reconfigurable accelerator consisting of a PE

array without memory elements. This is made possible by having fully combinational PEs in op-

position to the traditional PEs containing registers and memory elements as seen in many other

architectures [8, 23, 27].

As this architecture targets mainly multi-media processing in battery-driven embedded systems,

the main goal is to increase power efficiency. Speed is not a critical aspect to be improved since

in this kind of processing there is always a certain time window to process data and there is no

practical interest in reducing processing time beyond that window.

In [26] the authors take into account that the energy used is the product of power (P=C ·V 2 · f ,

being C the capacitance of the gate, f the frequency and T the time) and suggest that since power

(P) is related to the square of the supply voltage (V), there is a great interest in reducing the supply

voltage as much as possible. Although this seems like a good way to increase power-efficiency,

the authors also mention that the logic circuit delay increases as V approaches threshold voltage

Vth, since the delay D is given by D = β · C·V
(V−Vth)α where α = 1.6[26].

As mentioned before, CMA’s PE array contains combinational circuits that operate with a sup-

ply voltage ranging from 0.5V to 1.2V. There are 64 PEs (8x8 array) and each PE consists of a

24-bit ALU and two input mutiplexers. This architecture, being mostly combinational, only en-

ables its clock tree before execution, while the configured data are loaded. Also, the configuration

is achieved using a multicast method "RoMultiC" [28].

2.2 Power-efficiency

Power consumption of a VLSI chip can be categorized into two different types:

• Dynamic Power Consumption;



12 Literature Review

• Static Power Consumption.

Dynamic power consumption results from the switching activity of the input signal and is

proportional to its switching frequency and to the capacitance value (CL in figure 2.11) that the

logic gate is driving. In figure 2.11 the arrow represents the current flow which causes dynamic

power consumption. Equation 2.1 represents the calculation of dynamic power (P) using the load

Figure 2.11: Capacitor Charging Current. Source:[29]

capacitor value (CL) and the frequency of the input signal ( f ).

P =CL ·V 2
dd · f (2.1)

Static power consumption, on the other hand, results from leakage currents in the circuit.

Leakage currents may be divided into four main classes (the following classes were taken from

[30]):

• Sub-threshold Leakage (ISUB): current flowing from the drain to the source of a transistor

operating in the weak inversion region.

• Gate Leakage (IGAT E): current flowing from the gate through the oxide to the substrate due

to gate oxide tunneling and hot carrier injection.

• Gate Induced Drain Leakage (IGIDL): current flowing from the drain to the substrate induced

by a high field effect in the MOSFET caused by a high VDG.

• Reverse Bias Junction Leakage (IREV ): caused by minority carrier drift and generation of

electron/hole pairs in the depletion regions.

Although these categories are due to different physical causes, they all depend on the power supply

voltage.

In order to achieve power-efficiency, dynamic power can be reduced by lowering the voltage sup-

ply or the frequency. One commonly used technique in reducing dynamic power consumption is

Voltage and Frequency Scaling, which consists in decreasing the supply voltage when the perfor-

mance requirements are not of major concern and, since this limits the operating frequency, the
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frequency will also be scaled down, lowering the speed of the circuit but saving on energy con-

sumption.

Other well-known technique is clock gating. Clock gating consists in switching off parts of the

clock tree whenever possible. As a practical example, if the input of a register is kept stable during,

for the sake of the example, one million clock cycles, the clock signal can be turned off preventing

the register’s operation thus saving the power that otherwise would be spent saving the exact same

value in the register.

However, as we move towards more advanced technology nodes, static power consumption

becomes a critical issue (see figure 2.12 and table 2.4).

Node 90nm 64nm 45nm
Dynamic Power per cm2 1X 1.4X 2X

Static Power per cm2 1X 2.5X 6.5X
Total Power per cm2 1X 2X 4X

Table 2.4: Technology Node Comparison. Source:[30]

Figure 2.12: Technology Node Comparison. Source:[31]

When moving to a smaller node, the increase of static power consumption derives from the

existence of a decrease of the threshold voltage (Vth) that causes an increase in sub-threshold

leakage current [32].

Facing the problem related to static power consumption there are some common techniques like

body-bias control, dual-threshold domino circuits and input vector control[32]. Another way of

reducing current leakage consist in decreasing the voltage supply value thus also decreasing the

leakage currents, possibly meeting a compromise between supply voltage and operating frequency.

A drastic approach to this method is setting the supply voltage to zero resulting in virtually zero

power consumption. This method is known as power-gating and is one of the subjects on which

the scope of this dissertation is set.

Power gating (see figure 2.13) consists in the ability of switching between two power modes:

an active mode and a low-power mode[30]. The active mode is when the circuit is operating in
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the same way as if there was no power-gating while the low-power mode sets the supply voltage

to zero. This can be accomplished by the pull-up MOSFET seen in figure 2.13 which deals with

driving or not the virtual Vdd line. Although this method reduces power consumption due to

Figure 2.13: Power-Gating. Source:[32]

leakage currents to virtually zero, it shows disadvantages. Switching off a circuit, or parts of it, is

only possible in the time intervals during which the circuit is idle. Another aspect that should be

taken into account is the time spent in transitions between power modes. In some cases, the time

and energy spent during these transitions may greatly diminish power-efficiency.

Power-gating can be implemented in a whole system, e.g. a CPU, and only be capable of

switching off the entire circuit. This is known as coarse-grained power-gating. However, it is

possible and in many occasions more interesting to fine-tune the circuit elements, i.e. applying a

fine-grained power-gating methodology, in order to retain the functionality of main element while

idle areas are power-gated[30].

Several authors have proposed methods for power-gating. For example, in [33] a method is

proposed consisting in power-gating the entire processor when a long idle loop is detected [32].

Other techniques may consist of switching off the power supply from unused blocks. It has been

shown that the correct use of this technique has a big impact on power-consumption [2].

Regardless of the technique there is always the need of support from EDA (Electronic Design

Automation) tools which depend on well-defined design flows to process the design. These design

flows will be explored during the course of this document.



Chapter 3

Problem Characterization and
Proposed Solution

3.1 Biosignal Processing

Harvesting signals from body sensors requires pre-processing before sending the data to a remote

node. This pre-processing may include operations such as noise removal, sensor calibration, event

detection and data compression. To perform these operations there is a fair amount of algorithms

that may prove to be useful such as the FFT computation, FIR filtering, matrix multiplication,

correlation, among others[4, 2, 5].

Although these algorithms have been proven useful, computing them in a general purpose CPU

is not a power-efficient solution and may in some cases not even be time-efficient. Therefore and

taking advantage of the possible parallelization that derives from the nature of these algorithms, a

CGRA can be used as an accelerator since multiple computations can be performed at the same

time thus increasing performance. The decrease in computing time and increase of performance

may lead to a more power-efficient platform.

To acquire knowledge on time requirements in terms of processing, there is an advantage in

knowing the sampling frequency of the signals to be acquired. Table 3.1 shows the sampling

frequency of a set of sensors used in biomedical signal harvesting. After a brief analysis of the

Sensor Sampling Frequency Description
HR 100 Hz Heart Rate

SpO2 0.2 - 0.5 kHz Blood Oxygen
ECG 0.2 - 1.0 kHz Heart Elec. Act.
EEG 0.1 - 1.0 kHz Scalp Elec. Act.
GSR 50 - 100 Hz Skin Conductance
EMG 1 - 2 kHz Muscle Elec. Act
RESP 50 - 100 Hz Respiration

Table 3.1: Sampling Frequencies of Biomedical Sensors. Source:[34]

15



16 Problem Characterization and Proposed Solution

sampling frequencies, it can be concluded that there’s an upper-bound of 2kHz. Using a CGRA

as an accelerator to perform computations on the values acquired by these sensors requires a

computation time which is expected to be immensely smaller than the sampling period. Therefore,

there is no great interest in applying Frequency Scaling since the clock frequency of the CGRA

can be set at a low frequency and thus not profit from a frequency reduction. Also, the supply

voltage may be set to a lower value, not requiring dynamic scaling.

This being the case, power-gating reveals itself as the most promising methodology to be explored

in this scenario.

3.2 Power-Gating

In this dissertation, the use of power-gating techniques will be explored and the aim is to propose

a set of methodologies that automatically insert power-gating cells in a CGRA. The idea is to im-

plement scalable power-gating. By this it is meant that the design tools (together with scripts that

result from the work done during this dissertation) are able to receive an HDL (High Description

Language) description of the PEs and their properties as inputs and generate a physical layout of

a CGRA with power-gating and a number of PEs and interconnections specified as an input of the

process. The way to include and manage power-gating in this approach is by switching off rows

or columns of PEs. By doing this it is possible to obtain several performance modes by changing

the number of active PEs.

This document presents a set of scripts that allow power-gating to be inserted and at the end

of the design there is a chapter about results in which two use cases are presented.

3.3 Algorithms

As previously mentioned, the harvesting of biological signals requires a significant amount of pre-

processing such as filtering. To filter a signal, an algorithm that makes sense is the Finite Impulse

Response (FIR) filter. After having a clean signal there are many algorithms that can be applied to

the gathered data, whether just to pack it and send it to a remote node or treat its information and,

for example, extract features. To achieve this result more complex algorithms have been proposed

and significant part of these algorithms requires, for example, matrix multiplications.

Thus, taking these two cases as an example, while reminding the reader that the objective

is to have a simple architecture to assess the low-power design flow, it is possible to express

the aforementioned algorithms in terms of operations that use basic operands such as addition,

multiplication, difference or division.

In the case of matrix multiplication, it is known that if:

A =

[
a11 a12

a21 a22

]
B =

[
b11 b12

b21 b22

]
(3.1)
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then:

A∗B =

[
a11b11 +a12b21 a11b12 +a12b22

a21b11 +a22b21 a21b12 +a22b22

]
(3.2)

which, if matrix A is of size n ∗m and matrix B is of size m ∗ p the multiplication can be written

as

(AB)i j =
m

∑
k=1

AikBk j (3.3)

which is basically achieved through two operations, multiplication and addition.

Regarding the FIR filters mentioned earlier, these can be expressed as

y[n] =
N−1

∑
k=0

ckx[n− k] (3.4)

in which the N denotes the number of taps of the filter. In this case it can be seen that, once again,

the operations required for the computation of the result are addition and product.

3.3.1 Parallelization

Given these two simple cases, it is noticeable that certain operations may be done concurrently.

This introduces the possibility of paralellization.

To do so there is the need of establishing the order of operations and understanding dependencies

between them.

Figure 3.1: Mapping matrix multiplication

Figure 3.1 shows that the first line of the result matrix (r11,r12) can be calculated in parallel.

In terms of hardware, if these operations were executed with combinational logic, each line would

take one single clock cycle to be calculated. In terms of FIR filter, it can be seen (fig. 3.2) that,

with a larger circuit (one extra addition), it is possible to calculate y[n] if the filter has four taps (as

many taps as the number of multiplications on the first level).

With this in mind it’s possible to realize that each of these operations, or even a group of

operations, can be performed in one single PE. For example, the algorithm depicted in figure 3.1
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Figure 3.2: Mapping FIR filter

could be mapped to a four by two array of PEs and thus calculate the matrix multiplication using

a CGRA which supports multiplication and addition. Keep in mind that if each operation has a

dedicated PE in a four by two array of PEs, there will be two PEs left unused that, even not taking

part in the computation of the final result, consume power. This will be addressed further as it is

inserted in one of the main discussions of this dissertation.

3.4 CGRA Architecture

3.4.1 CGRA Structure

In the case of a homogeneous CGRA with four rows and four columns whose PEs support at

the very least operations like multiplication and addition, besides being able to perform bypass

(i.e. connect its input directly to its output), a FIR filter can easily be mapped using the previous

approach. The advantage in this implementation is the fact that each PE can have a registered

output which will naturally pipeline the algorithm thus allowing the frequency to be increased

resulting in an increase of the throughput of the circuit comparing to the purely combinational

FIR. This mapping can be achieved performing all the multiplications in the first line of the CGRA

and adding all of their values two by two until the bottom of the CGRA is reached, as it can be

seen in figure 3.3.

As previously mentioned there is the need of having at least multiplication and addition in

order to execute the two algorithms explored in the last sections. However, including a larger set

of operations would definitely result in a larger amount of options the final user could take and

therefore a larger number of algorithms could be mapped.

1Image generated on https://paginas.fe.up.pt/~ee12136/cgra-config/

https://paginas.fe.up.pt/~ee12136/cgra-config/
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MUL MUL

ADD

MUL

ADD

ADD

Bypass

MUL

Figure 3.3: CGRA calculating FIR1

3.4.2 CGRA proposal for design flow evaluation

The chosen architecture of each PE consists of a set of six different operations. The chosen op-

erations are ADD (addition), SUB (subtraction), MUL (multiplication), RSH (right-shift), LSH

(left-shift) and BYP (bypass). Besides the operations, the PE has an internal configuration register

which chooses from where the ALU’s inputs come and which operation to perform. Each PE is

able to choose, for both of its inputs independently, which signal to fetch, whether an output from

one of its nearest neighbours or the value it has stored in its register which means that the PE can

connect its output to any of its inputs (fig. 3.4).

Figure 3.4: Processing Element

Each PE is connected to its eight nearest neighbours, with the exception of those that are

placed at the sides that will only have five neighbours or even those that are placed at the corners

that will only have three neighbours.

Since the PE code is the same for all of the elements in the array, the unused connections will be

connected to ground thanks to a command given to the synthesis tool that connects all undriven

1Image generated on https://paginas.fe.up.pt/~ee12136/cgra-config/

https://paginas.fe.up.pt/~ee12136/cgra-config/
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signals to logic zero.

The chosen configuration method for the PEs consists of having internal registers that con-

trol the input multiplexers and choose the operation to be done by the ALU. These registers are

connected in a daisy-chain fashion, having an input configuration port at one end and an output

configuration port at the opposite end, as it can be seen in figure 3.5.

config_in

config_out

Figure 3.5: Configuration chain2

The proposed CGRA (code available in the webpage) consists of an homogeneous 4 by 4 array

of PEs which means that once the verilog code for a PE has been written, the CGRA module only

has to instance it as many times as the product of the number of columns with the number of lines.

The implemented PE has parameterized bitwidth which has a default value of 8, however, may

be changed during synthesis. The array of PEs is defined inside a generate function which creates

ALU instances and is parameterized in terms of number of columns and lines.

3.5 Validation

After establishing the architecture comes the need for validation. This can be achieved mapping

a simple four-tap filter as seen in figure 3.2. In this case, the input data and filter coefficients are

generated with random numbers using Matlab and the results are also calculated and stored in a

text file so that the outputs generated on Matlab may be compared to the ouputs generated on the

functional simulation.

After simulating and checking that the results match the expected values, it is possible to

proceed to synthesis.

A running example of functional simulation is available in the webpage.

2Image generated on https://paginas.fe.up.pt/~ee12136/cgra-config/

https://paginas.fe.up.pt/~ee12136/cgra-config/


Chapter 4

Design Flow for Low-Power CGRAs

This chapter presents a general description and proposal of a low-power design flow which will be

split into two major fields. The first field is related to the front end design aimed at logical synthesis

and the second field is dedicated to back end design which consists of physical synthesis. However,

before tape-out, further analysis must be performed. One example is rail analysis which allows the

designer to observe and study how the power rails behave. This will be interesting once the final

chip is produced to perform the transient analysis of the power rails and of the power switching

cells and may be done using Voltus[35]. This step, however, will not be addressed during the

course of this document since this design is an IP (intellectual property) core that will be placed in

a bigger design which will then be a candidate for rail analysis.

There will also be an effort to express the importance of all the steps and in what way they are

connected and depend on each other.

An ASIC design starts off as a RTL description of the hardware to be implemented, which may

be coded in a Hardware Description Language (HDL) such as Verilog or VHDL. After testing and

validating the RTL, the code is converted to a gate-level netlist. Then, with a gate-level netlist it

is possible to physically organize its elements in a design layout on which signoff analysis will be

performed to evaluate functional, power and timing characteristics.

All of the mentioned steps are explained in detail in the next sections.

4.1 Low-Power Intent

The low-power intent is the specification of the low-power attributes of the design. It is possible

to write a low-power intent file according to IEEE 1801 which defines a TCL-based language

that describes the low-power behaviour of each block, its power sources and connectivity and the

grouping of logic into power domains. Low-power intent is present in several steps of the design

flow although sometimes needs to be tuned to fulfill the tools’ requirements. It is also important

to know that this document addresses IEEE 1801-2009 which is the UPF2.0 Standard. There

is a more recent version, UPF2.1 Standard, which comprises the UPF2.0 Standard, eliminates

the compatibility with UPF1.0 Standard and adds macros and hierarchical support. Since more

21
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information was found about the UPF2.0 Standard and it is compatible with UPF2.1 Standard,

UPF2.0 Standard was chosen.

4.1.1 Power-intent elements

A very simplistic power intent block diagram can be seen in figure 4.1. This design, although it

may be simple, contains relevant aspects like power switches, power domains and isolation cells.

These elements will now be discussed in greater detail.

Figure 4.1: Power intent block diagram

4.1.1.1 Power switches

Power switches control the voltage in the power-gated nets, i.e., turn the nets on and off. There

are two big families of power switches: header cells and footer cells. Header cells are placed as

pull-up cells and connect the supply net to the power-gated supply net while footer cells, used as

pull-down cells, connect the ground net to the power-gated ground net. The choice between both

of these cells is up to the designer, however, [30] makes some suggestions such as choosing one

of the two and never both as it increases IR drop, which is the voltage drop in the power rail due

to high currents crossing a wire with finite resistance. Besides, [30] also suggests the usage of

header cells whenever external power gating will be used as well as if multiple power rails and/or

voltage scaling will be used on the chip so that the common net, which is the ground net, is always

connected to every power domain thus providing the tools with a less error-prone power intent.

One popular method of connecting power-switching cells is called Mother/Daughter connec-

tion and it consists of having smaller switches turned on first until the rail voltage reaches 95% of

its nominal value and then the bigger switches may be turned on, thus reducing IR drop since the
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current spikes are less significant. To clarify, IR drop is a subject that should be addressed spe-

cially when there are peaks of current in the power nets, which would be the case when powering

on a power domain.

Another way to do it is quite similar but makes use of a pin that exists in a special switch cell

that tells when the power-up or power-down sequence for that same cell is stable and is used as an

enable signal on the next switch, in this way gradually turning on the switch cells and reducing IR

drop.

The UPF command to insert a power switch is:

create_power_switch SW1 \

-domain PD1 \

-input_supply_port { VIN1 VDD } \

-output_supply_port { VOUT1 PD1_VDD } \

-control_port { EN1 sleep_pd1[0] } \

-on_state { PD1_ON VIN1 {!EN1} } \

-off_state { PD1_OFF {EN1} }

where:

-domain <domain_name> specifies the power domain that will be power-gated;

-input_supply_port <alias> <port> specifies which port serves as supply input and its alias if

there is the need of referring to this port later on the UPF.

-output_supply_port <alias> <port> follows the exact same logic as the previous command.

-control_port <alias> <net> specifies which net turns the switch on and off and its alias.

-on_state <alias> <input_port_alias> <expression> specifies the expression that leads to an on

state.

-off_state <alias> <expression> specifies the expression that makes the switch turn to the off

state.

Power switches must also be mapped to power switching cells. This is done with the follow-

ing command:

map_power_switch SW1 \

-domain TOP \

-lib_cells { HEADX2 }

where:

-domain <domain_name> specifies the power domain in which the power switch is to be in-

serted.

-lib_cells <cells> specifies the technology’s cells that should be used as power switches.

4.1.1.2 Isolation

Power switches, like other cells, have leakage current. This leakage current may lead to power-

gated nodes that never fully discharge to ground or charge to the supply, reaching an equilibrium

when the leakage current through the switches is balanced by the sub-threshold leakage of the
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switched cells. This may cause the outputs of the powered-down cells to float and drive corrupted

values. If these outputs from powered-down cells are connected to other cells that are switched

on, an even bigger loss in terms of leakage power may be provoked. To prevent this there is the

need of inserting isolation cells with the only purpose of clamping the outputs to a static value,

either a logic zero or a logic one, using an always-on power net to do so. In terms of isolation

strategy, it is possible to isolate inputs, outputs or both. With IEEE1801 it is possible to choose if

the tool should isolate only if the driver and receiver supply sets are different, if the receiver has a

specific supply set or if the driver has a specific supply set. Besides these options there is also the

possibility of specifying in which power domain the isolation cells are to be placed. Isolation may

be inserted with the following commands on the UPF:

set_isolation iso_strategy1 \

-domain PD1 \

-isolation_signal { sleep_pd1[1] } \

-isolation_sense high \

-applies_to outputs \

-clamp_value 0 \

-isolation_supply_set { TOP_SS }

where:

-domain <domain_name> specifies the domain name.

-isolation_signal <signal> specifies which signal activates isolation.

-isolation_sense <high/low/posedge/negedge> specifies the sensitivity towards the isolation sig-

nal.

-applies_to <inputs|outputs|both> tells the tool where to place isolation cells.

-clamp_value <0|1|Z|latch> specifies which value should be clamped in the output. -isolation_supply_set
<supply_set_name> specifies the supply set that powers the isolated values.

To specify the isolation cells for each isolation strategy, the following command is used:

map_isolation_cell iso_strategy1 \

-domain PD1 \

-lib_cells { ISOLANDX2 }

where:

-domain <domain_name> specifies in which domain the isolation cell is to be placed.

-lib_cells <cells> specifies the technology’s cells that should be used for clamping.

4.1.1.3 Retention cells

One disadvantage of powering down a circuit is the fact that the information in every register is

lost or corrupted. If there is an explicit need or advantage in keeping the values of the registers

after powering down the circuit, the designer must include state retention cells that make use of an

always-on power net to retain the stored values even when the main net is off. Retention strategies
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are specified in the following manner:

set_retention ret_strategy1 \

-domain PD1 \

-retention_supply_set TOP_SS \

-restore_signal {{sleep_pd1[2]} negedge} \

-save_signal {{sleep_pd1[2]} posedge}

where:

-domain <domain_name> specifies the domain which will be the target of the retention strategy.

-isolation_signal <signal> specifies the signal which controls the activation of the isolation strat-

egy.

-isolation_sense <high/low/posedge/negedge> specifies whether to activate the control strategy

when the signal is high, low or at any edge.

-isolation_supply_set <supply_set_name> specifies the supply set that will be used by the isola-

tion cell.

And the retention cells are mapped with the command:

map_retention_cell ret_strategy1 -domain PD1 -lib_cells RDFFSRX1

where:

-domain <domain_name> specifies the domain in which to place retention cells.

-lib_cells <cells> specifies the technology’s cells that should be used for retention.

4.1.1.4 Power domains and power nets

The elements mentioned previously require the existence of power domains and power nets. The

power domains specify a set of low-power properties that are common to a certain group of cells.

Each power domain contains the previously mentioned elements plus the supply nets and the sup-

ply sets (which are groups of supply nets). Power nets can be created and associated to power sets

with the following commands:

create_supply_net VDD

create_supply_net VSS

create_supply_set TOP_SS \

-function { power VDD } \

-function { ground VSS }

where:

-function specifies the net and if it’s a power or ground net.

And the power domain may be created with the command:

create_power_domain PD1 \

-elements { {pe_array1/H[0].V[0].ALU.PE}

-supply { primary PD1_SS }

where:
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Power state TOP_SS PD1_SS PD2_SS PD3_SS PD4_SS
PS1 high high high high high
PS2 high high high high off
PS3 high high high off high
PS4 high high high off off
PS5 high high off high high
PS6 high high off high off
PS7 high high off off high
PS8 high high off off off
PS9 high off high high high
PS10 high off high high off
PS11 high off high off high
PS12 high off high off off
PS13 high off off high high
PS14 high off off high off
PS15 high off off off high
PS16 high off off off off

Table 4.1: Power states definition

-elements specifies which elements of the HDL/netlist belong to the power domain.

-supply specifies the supply set of the power domain.

4.1.1.5 Power states

The UPF2.0 Standard requires the definition of power states. Power states define the combination

of possible states of the power supplies. As an example, table 4.1 shows the possible states of the

power supplies of the implemented 4 by 4 CGRA with 4 power domains. In the context of the

document PD stands for Power Domain and SS stands for supply set. This means PD1_SS is the

supply set associated with power domain 1. With these 16 (24) states it is possible to independently

switch on and off every power domain. To define this table in a UPF file one must first specify the

power states that each supply set may take with the following command:

add_power_state PD1_SS -state high { \

-supply_expr { PD1_VDD == ‘{FULL_ON, 1.2} && VSS == ‘{FULL_ON, 0.0} } }

add_power_state PD1_SS -state off { \

-supply_expr { PD1_VDD == ‘{OFF} && VSS == ‘{FULL_ON, 0.0} } \

-simstate CORRUPT}

where:

-supply_expr <expression> specifies the status of each power net that belongs to the power set

and

-state <name> specifies the name of this combination of power net values.

-simstate <state> specifies the state of the values stored in the registers that belong to the power

domain. The possible states are: NORMAL, CORRUPT_ON_CHANGE, CORRUPT_STATE_ON_CHANGE,
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Figure 4.2: Power controller waveforms

CORRUPT_STATE_ON_ACTIVITY, CORRUPT_ON_ACTIVITY, CORRUPT and NOT_NORMAL.

Having defined the power states for each supply set it is then possible to define power states

for the chip itself with the following commands:

add_power_state TOP -state P1 { \

-logic_expr { TOP_SS == high && \

PD1_SS == high && \

PD2_SS == high && \

PD3_SS == high && \

PD4_SS == high } }

add_power_state TOP -state P2 { \

-logic_expr { TOP_SS == high && \

PD1_SS == high && \

PD2_SS == high && \

PD3_SS == high && \

PD4_SS == off } }

where:

-supply_expr <expression> specifies the status of each power set.

-state <state> specifies the name of the power state.

4.1.2 Power controller

When dealing with power domains with isolation and state retention, there is an order of com-

mands that should be kept. As an example, if the values are saved to state retention cells when the

power is already off, the retention cells will store corrupted data.

Waveforms of a robust power controller with state retention and isolation are depicted in figure 4.2.

Figure 4.2 shows that the correct order to isolate and retain values when turning off a power

domain.

1. Assertion of the isolation (ISOEN) signal.

2. After isolation has taken place, the save signal (SAVE) should be asserted and de-asserted
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once the values are stored.

3. Once the retention cells have saved the relevant data, the reset (RESET) signal should be

asserted so that, when the system turns back on, a clean start is achieved.

4. With the isolation and retention strategies activated, it is then possible to de-assert the power

signal (POWERON) so that the power net is finally turned off.

The opposite case (turning on a power domain) is achieved by:

1. Assertion of the power signal (POWERON).

2. De-assertion of the reset (RESET) signal.

3. At this stage the data may be recovered with the RESTORE signal.

4. Finally, with the power domain turned on and the data recovered from the retention cells,

the isolation signal may be de-asserted.

4.1.3 Low-power intent of a CGRA

In a CGRA there are PEs that are not used during certain algorithms. Those PEs can be turned

off in order to save power. However, having power domains that only contain a single PE instance

can lead to an increase in area that overshadows the savings achieved by turning off the PE.

Figure 4.3: Turning off a single PE1

Grouping PEs into power domains, with a priori knowledge of the algorithms to be mapped

on the CGRA, may lead to higher efficiency. In the design proposed in this dissertation, data are

driven from the top of the CGRA and the natural processing flow is vertical downwards, meaning

that turning off one PE instance either increases the data flow in its neighbours or, in the worst

case, renders the whole column useless. This example is depicted in figure 4.3, where the light-

grey square represents a powered-down PE.

For this reason it was decided to create power domains that group every element of every

column, i.e., each columns of the CGRA represents a different power domain. Besides this, when

turning off a whole column, the input to output ratio is kept, which is the ideal situation when
1Image generated on https://paginas.fe.up.pt/~ee12136/cgra-config/

https://paginas.fe.up.pt/~ee12136/cgra-config/
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scaling algorithms. Figure 4.4 shows the CGRA with established power domains. Each colour

corresponds to a different power domain.

Figure 4.4: Power domains of a 4 by 4 CGRA2

4.2 Front end

Front end design is focused on logic functionality and timing constraints. This section describes

the steps involved in front end design with its focus set on low-power.

4.2.1 Front end relevant files

A front end design starts with the design of the architecture and follows with the synthesis process

during which it is possible to evaluate the design and its viability to proceed to the next design

stages. To synthesize a design and produce values and files that are as close to the reality as pos-

sible, the designer must provide the synthesis tool with relevant information. The first and most

obvious input that should be fed to the synthesis tool is the HDL code which, in the case of the

design proposed in the scope of this document, is written in verilog.

In order to generate a netlist, the tool needs to know which cells are available for mapping and

those cells are imported via a liberty (.lib) file that is usually provided by the foundry which con-

tains information about the cells in terms of timing and power and information about the its pins

and functionality.

An UPF file, explained in section 4.1, should also be loaded in order to specify the low-power

intent of the design. Since synthesis tools work on optimizing a given design around a set of given

constraints, it is also important to import these constraints, which come in a Synopsys Design

Constraints[4.4.3] (.sdc) file.

During front end design, three major software tools will be used. To simulate the design’s func-

tionality with a testbench, the chosen tool is Incisive[36]. After having a validated design, the tool

used for synthesis is Genus[37]. Finally, formal verification is achieved using Conformal[38].
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Besides regular design synthesis, Genus[37] also supports PLE (Physical Layout Estimation)

which takes into consideration information about the physical implementation of the design. This

is used when the design has gone through the entire design flow at least once and requires inputs

like a cap table, tech LEF and Standard Cell LEF libraries and/or a QRC tech file (these files will

be explained in section 4.3). PLE is capable of providing the designer with results taken from the

synthesis that show higher correlation to those that can be extracted after place and route.

At the end of front end design it is possible to extract timing, power and utilization reports, to-

gether with a set of files useful to the place and route tool. The latter ones may be exported from

Genus[37] with the command:

write_design $DESIGN -basename ./outputs/$DESIGN/cgra_synthesized -innovus

4.2.2 Standard design flow

A standard design flow starts with reading the libraries which contain the cells to be mapped and

also with reading the HDL to be synthesized. At the end of the flow a netlist file is created which

can then be fed to the next stage, i.e., back end design.

Figure 4.5 shows a proposal of a low power design flow. Everything starts off with reading the

Figure 4.5: Low power design flow. Adapted:[39]

liberty files. Liberty files contain information about the power and timing characteristics of every

cell under several operating conditions (like voltage and temperature) and are used to calculate

2Image generated on https://paginas.fe.up.pt/~ee12136/cgra-config/

https://paginas.fe.up.pt/~ee12136/cgra-config/
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both timing and power of the circuit after synthesis. After reading the liberty files it is possible to

enable clock gating, which consists in reducing dynamic power by not feeding unnecessary clock

cycles to the logic circuits thus reducing activity. This step, however, is not applied to this project

as the main focus is to assess power saving features in the static power domain.

After importing the aforementioned files, the design may be elaborated. The elaboration stage

takes the HDL and maps the design to hardware structures. High-level optimizations also take

place, such as dead code removal, and registers are inferred for the design. At this stage it is also

possible to override the design’s parameters.

After elaboration it is good practice to check the design to search for problems like unresolved

references or undriven ports, among others. After ensuring that the design has no errors, the next

step is to map the HDL to the technology cells that will actually be implemented and are described

in the liberty files. However, before actually doing so, the designer should include timing and de-

sign constraints, like a description of the clock waveform or even of the cells that drive the inputs

of the circuit or that are driven by its outputs. These constraints are specified in a SDC file and its

content is explain in section 4.4.3.

After loading the constraints it is possible to apply optimization and clock-gating directives. Then,

the design may be synthesised and analysed for power and timing values. This is an iterative pro-

cess, meaning that if the design does not fulfill the desired specifications and constraints, the

designer must go back in the design flow in order to either change the constraints and optimization

directives or, as a last resort, change the HDL architecture.

4.2.3 Equivalency

A synthesised design does not always correspond to the HDL description of the same design. This

happens because optimization takes place and some slight changes may occur. The synthesis tool

can add, delete or change several instances if it makes sense regarding the optimization constraints.

So, in order to verify if the design maintains functionality it is possible to use a tool (in this case

Cadence Conformal[38]) that checks the equivalence between the netlist and the HDL and even

between the user-written UPF and the UPF obtained after synthesis.

4.2.4 Post-synthesis simulation

Once the design is synthesized and its equivalence is checked it is unlikely that functionality has

been lost. However, if the designer wishes to make sure that the circuit keeps its functionality by

running the testbench, it is possible to do so. The only difference to functional simulation is the

fact that now the verilog files that will be simulated contain a netlist which contains instances of

cells that are not defined in that same file. Thus, in order to simulate the post-synthesis netlist, there

is the need of including the verilog files of the library so that they are compiled by the simulator

before the netlist.
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Please note that equivalency checking is further explained in the webpage and a script is also

provided.

4.3 Back end

It is possible to import the gate-level netlist to a physical design tool and, together with the relevant

files, produce a physical design of the final chip. In order to do so there is the need of understanding

the back end design flow. The physical design flow can be divided into 6 relevant parts:

· Partitioning

· Floorplanning

· Placement

· Clock Tree Synthesis

· Signal Routing

· Parasitic Extraction

These items will be discussed in the following subsections.

4.3.1 Partitioning

Nowadays designs are extremely big to be handled by a single engineer and/or a single computer.

Partitioning the design helps to reduce data size and allows parallelism in the implementation, both

in hardware and human resources. In sum, a partitioned design and implementing it physically in a

hierarchical fashion allows for better exploitation of resources together with tighter control of the

design blocks since the designs become smaller and with better defined boundaries. The alternative

to an hierarchical partitioned design is the flattened design in which the whole circuit is treated as

a single instance.

4.3.2 Floorplanning

Floorplanning is the step during which the layout begins to be planned. In this stage the designer

may choose to keep elements with frequent communication near each other. In some way this

step resembles the floorplanning of a house in which, for example, the kitchen is kept near the

dining room[41]. In a low-power design flow the process is quite similar to the ordinary one with

the exception of the power domains. If a power-intent is loaded, it is possible to establish the

boundaries and placement of the power domains inside the chip’s core. It is possible to include

physical constraints, like placement or routing blockages or even to define fence spacing. This

will be mentioned further ahead when the power rings of the power domains are inserted.
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Figure 4.6: Typical floorplan flow. Adapted:[40]

4.3.3 Placement

After having a planned design in terms of soft and hard macros the cells may be placed. In this

stage, the tool will place the cells. Optimization will take place with iterative placement of the

cells in order to improve timing and power results.

4.3.4 Clock Tree Synthesis

The clock signal is one of the signals, and in many cases the signal, that has the highest fanout.

A great part of the design, like for example every flip-flop, needs a clock signal. This makes the

clock signal one of the most important signals in the whole design and also a signal that requires

a great amount of power.

Clock Tree Synthesis (CTS) is thus a very important step in a physical design. The clock tree

must be balanced to ensure that the clock signal is delivered to every cell with minimum skew and

jitter. To accomplish this the tool places clock buffers and connects the clock cells in a tree fashion

(hence the name clock tree) with the objective of delivering approximately the same clock signal

to every cell in the design.

4.3.5 Signal Routing

For signal routing the tool makes use of the information available about timing arcs of the cells

and estimates wire delays for every interconnection.
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4.3.6 Parasitic extraction and timing closure

To perform timing analysis on a final layout it is possible to extract information about the intercon-

nections to have a more faithful timing estimate. This extraction is made by reading the resistance

and capacity values of every metal layer and, taking into account the connection’s length and

width, an RC value is then calculated.

Extracting data about parasitics requires a cap table which contains information about capacitance

values of the circuit such as coupling capacitance. To generate a cap table, the following command

is used:

generateCapTbl -ict <ict_path> -output <output_path> -lef <tech_lef> -shrinkFactor <integer>

where:

-ict <ict_path> specifies the ICT files which is either provided by the foundry or obtained from

the Interconnect Technology File (ITF) file which contains information about conductor, dielectric

and via layers.

-output <output_path> specifies the path for the output file.

-lef <tech_lef> specifies the path to the Technology Layout Exchange File (LEF) which contains

physical information of the used technology.

-shrinkFactor <integer> allows the designer to specify a compensation factor if gate length

shrinking has taken place.

After generating the cap table, it is possible to extract parasitics. To do so, the used command

is:

extractRC

This will be helpful when the need of creating a Standard Delay Format (SDF) file surges, as

it will be mentioned further ahead.

4.3.7 Proposal of back end flow for CGRAs

Since a description of the main steps in back end design flow has been given, the proposed back

end design flow will be exposed and explained while making use of running examples of the

application of the flow to a synthesized CGRA that resulted from section 4.2. As previously

mentioned, the design starts as an HDL netlist. The software used for floorplanning during the

scope of this dissertation is Innovus[42] and it is launched from the console by typing the command

innovus. It can be used either with or without a Graphical User Interface (GUI). However, since

this is a physical implementation and for demonstration purposes the GUI will be useful to prove

points and demonstrate concepts. Innovus supports back end design from design import to the

final chip’s routing. With Innovus it is possible to execute the design flows depicted in figures 4.5

and 4.6.

A Tcl script is available at the dissertation’s webpage, however, the steps will be explained in

the course of this document. The script starts off by preparing the layout in terms of initial files
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Figure 4.7: Planning the design

and configurations. The default power and ground nets are established. Liberty and LEF files

should also be imported before the netlist as they contain physical information (LEF) and timing

information (Liberty) about the cells mapped during synthesis.

Having imported the library related files it is time to load the netlist. Once loaded, the design’s

macro blocks are already imported and visible in the layout window.

The next step is to define the core and its boundaries. The objective of this step is to have a core

area capable of housing all of the elements in the design and also to have a boundary reserved for

power rings that should be wide and contour the entire core.

Once the floorplan is well defined and there is enough space to move things around it is pos-

sible to read and commit the power intent file. Once committed, it will be possible to see macro

blocks defining the power domains and these can be manually or automatically placed in the core.

In parallel it is possible to load an IO file or even to manually place the IO pins. (fig. 4.7).

In the case of this particular design, each power domain has its own power net. About those

nets it is possible to choose whether to place them around the core, parallel to the top domain’s

power nets or to place them around each of the power domains. Since this is a four domain design,

that would mean that, for the first option, the core would have a great deal of area overhead just

in terms of power rings. Because of this it was chosen to modify the power domains so they’d

include a reserved space between the placement of the cells and the fence of the macro block in

order to have supply rings around each domain. Together with the power rings, power stripes are
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also be added (fig. 4.8).

Figure 4.8: Power rings and stripes

Having the pins, the pads and the domain boundaries well established it is possible to plan the

design and place all of the standard cells in their power domains.

Together with this placement, the tool already does an estimation of the interconnections so

that the user can already have a perspective of what the final design will look like.

This placement of the design, in the Innovus [42] tool, already performs CTS. Now that the

design is placed and CTS is performed there are still gaps between cells and power nets have not

yet been routed. To fix this issue, filler cells will be placed in every domain. After placing the filler

cells there is the need of specifying all of the connections between nets and pins in order to do

power routing. Header cells are more laborious since each cell has three power pins and the tool

only routes two of them automatically, leaving it up to the designer to route the remaining power

pin as if it were a signal net. After setting up all of these connections it is possible to perform

a special route which will result in a floorplanned design with power connections, missing only

the interconnections between the cells. To end this stage, a command is given to route the cells

which will perform several iterations and can target low-power or fast circuits, making use of both

the timing arcs of the cells and the length and width of the connecting wires. This whole process

results in a placed and routed chip as it can be seen in figure 4.9. The next step towards tape-out is

signoff which will be addressed in the next section. However, some data should be exported from

the Innovus[42] tool and imported to signoff tools for better accuracy of the results. Relevant files:
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• Design Exchange Format (DEF) - these files contain information about the physical place-

ment of the cells.

• Library Exchange Format (LEF) - these files contain physical information about individual

cells and, complemented with DEF, provide a physical representation of the chip.

• Standard Delay Format (SDF) - contain information about the chip’s internal delays com-

bining the cells delays with the interconnect delays.

• Cap Table - specifies capacitance values such as coupling capacitance.

Furthermore, the cap table may be used to perform parasitic extraction which is the annotation of

resistance and capacitance values of the circuit. This is important information when calculating

realistic circuit delays.

4.4 Validation and Signoff

Signoff checks on the CGRA are performed using Innovus[42], Incisive[36], Conformal[38],

Voltus[35] and Tempus[43].

Innovus, the place and route tool, already allows for DRC (Design Rule Check) and LVS (Layout

Vs Schematic) checks.

These two checks include:

LVS:

- Open-circuit

- Short-circuit

- Different number of ports

- Connectivity error

etc.

DRC:

- Mininum spacing error

- Metal loop violation

etc.

4.4.1 Formal verification

Formal verification is achieved by comparing pre and post-route netlists and power intent files on

Conformal[38]. If both netlists and power intent files match it is then possible to run the testbench

with the final netlist and generate a VCD (Value Change Dump) which contains the activity of

the nets. This file may be used to extract power reports for specific algorithms or behaviours. It

is also possible to run the simulation with all extra information about net and cell delay if a SDF

(Standard Delay Format) file is included. This file may be obtained from Innovus. To do so, a
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Figure 4.9: Implementation of a 4 by 4 CGRA
with 4 power domains

cap table, which contains information about coupling, fringe and area capacitance values, must be

created and, after that, RC extraction should take place. Please note that this is further explained

in the webpage.

4.4.2 Post-route simulation

After place and route it is possible to generate a verilog netlist of the final chip which now contains

information about power supplies and also the header cells. With this netlist and the verilog files of

the library cells, the designer may run the testbench in order to verify if functionality is maintained.

Besides these files, there is the possibility of obtaining a more realistic simulation of the circuit if

the cell and net delays are annotated. To do so, a SDF file must be imported to the simulator.

This simulation is achieved with Incisive [36] and a running example may be found in the webpage.

4.4.3 Static timing analysis

Static Timing Analysis (STA) allows the timing of a circuit to be computed without requiring a

simulation of the entire circuit. The STA tool computes the sum of the cell delays and the path

delays in a given path of a circuit and compares the result with the timing characteristics specified

in a Synopsys Design Constraints (SDC) file, which will be explained below.
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One of the first things to specify in a SDC file is the clock signal which is achieved with the

following command:

create_clock -name <clock_name> -period <value> -waveform <edge_list>

where:

-name <clock_name> specifies the name of the clock signal.

-period <value> specifies the clock period.

-waveform <edge_list> List of edge values.

At this stage the clock has an ideal waveform. If the designer wishes to have a better approach

to the real clock signal, the following commands may be used, replacing "<signal>" for "[find /

-clock <clock_name>]":

set_attribute slew_rise <value> <signal>

set_attribute slew_fall <value> <signal>

where:

<value> specifies the slew time.

<signal> specifies the targeted signal.

Another property that can be modelled in a signal is clock uncertainty which can be specified

for both setup and hold with the commands:

set_clock_uncertainty -setup <value> [get_clocks <clock_name>]

set_clock_uncertainty -hold <value> [get_clocks <clock_name>]

where:

<value> specifies the uncertainty time.

<clock_name> specifies the targeted clock signal.

After modelling the clock signal it is possible to model the environment in which the chip is

inserted. It is possible to constraint the data arrival time of a signal relative to the clock signal for

both inputs and outputs of the circuit. The following command specifies the input signal delay:

set_input_delay -clock <name> <delay> <targets>

where:

-clock <name> specifies the clock name.

<delay> specifies the delay value.

<targets> specifies the inputs.

For the output signals, the command is set_output_delay and has the same attributes as set_input_delay.

After specifying constraints for the input and output signals, the SDC file may be comple-

mented with environmental information. One example are the external drivers i.e. the cells that

drive the input pins. These cells can be specified with the command:

set_attribute external_driver [find [find <design> -libcell <cell_name>] -libpin <pin>] <in-

puts>
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where:

[find [find <design> -libcell <cell_name>] -libpin <pin>] locates the pin <pin> of the cell

<cell_name>.

<inputs> specifies which inputs have this driving cell.

Likewise, it is possible to specify output loads with the following commands:

set output_load [get_attribute capacitance [find /libraries/saed90nm_typ/ -libpin INVX4/INP]]

set_attribute external_pin_cap ${output_load} /designs/${DESIGN}/ports_out/*

4.4.4 Multi-Mode Multi-Corner Analysis

Modern designs have typically have more that one clock signal, several supply voltages, timings

constraints and libraries. For example, if a circuit has more than one voltage level, there may be an

interest in decreasing or increasing the clock frequency. This leads to a different set of timing con-

straints. In a single-mode analysis, the chip is analysed for a single set of characteristics. Facing

this limitation, multi-mode multi-corner (MMMC) analysis has been introduced and it gives the

designer the advantage of defining several analysis views for the same chip with each view being

defined as a set of clocks, supply voltages, timing constraints and libraries.

Figure 4.10: MMMC hierarchy. Adapted:[43]
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As depicted in figure 4.10, to create an analysis view there is the need of previously importing

the SDC files (supplying constraint information) and delay corner information. In the latter case

there is also the need of previously defining RC corners and library sets.

4.4.5 Tempus typical flow

The Tempus[43] timing analysis tool supports MMMC analysis and its typical design flow is de-

picted in figure 4.11. There is a running example of the design flow depicted in figure 4.11 in the

webpage.

The most important steps while using Tempus[43] are the ones in which the design and its features

are imported. Some of the features, like SDF files which contain information about parasitics or

even DEF files which contain physical placement information, are not requires for the tool to per-

form timing analysis. However, once these optional files have been imported, the results of the

timing analysis are far more accurate and close to the real values.

4.4.6 Power consumption estimation

Power consumption may be estimated using Voltus[35]. Once the design has been imported to

Voltus, it is possible to perform power analysis by specifying a toggling percentage for each net.

However, if the designer wishes to assess the power consumption of a given algorithm, for exam-

ple, it is possible to generate a VCD file from simulation and import it to Voltus thus annotating

the real net activity.
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Figure 4.11: Tempus typical flow. Adapted:[43]



Chapter 5

Design Flow Scripts

Having a more pragmatic view of the design flow detailed in 4, this chapter explains the content of

the scripts written during the course of this project and how they should be used during the design

stages.

5.1 Frontend

To accomplish frontend design of a CGRA, Genus must be invoked from a console. After invoking

the program, the frontend script should be executed by typing the command source <script_name>.tcl.
The script, which can be found in appendix, starts by setting up the tool for low-power design pro-

cessing and creating a folder in which to save the outputs:

1 s e t e n a b l e _ i e e e _ 1 8 0 1 _ s u p p o r t 1
2 s e t systemTime [ c l o c k s e c o n d s ]
3 s e t cur rT ime [ c l o c k format $systemTime −format %a%d%B%Y_ ] [ c l o c k format \
4 $systemTime −format %H−%M]
5 s e t REPORTS . . / run / r e p o r t s _ $ { cur rT ime }
6 f i l e mkdir ${REPORTS}

After setting up the environment and before importing the HDL there is the need of providing the

tool with the paths where the libraries may be found, which is done using the following commands:

1 c r e a t e _ l i b r a r y _ d o m a i n { saed90nm_typ }
2 s e t _ a t t r l i b r a r y { / home / d iogo / Documents /SAED−EDK90 / \
3 SAED90_EDK / SAED_EDK90nm / D i g i t a l _ S t a n d a r d _ c e l l _ L i b r a r y / \
4 s y n o p sy s / models / s a e d 9 0 n m _ t y p . l i b } saed90nm_typ
5 # Change t h e p a t h s when u s i n g d i f f e r e n t . l i b f i l e s
6

7 s e t _ a t t r l e f _ l i b r a r y { \
8 / home / d iogo / Documents /SAED−EDK90/ SAED90_EDK / SAED_EDK90nm / \
9 D i g i t a l _ S t a n d a r d _ c e l l _ L i b r a r y / l e f / s a e d 9 0 n m _ t e c h . l e f \

10 / home / d iogo / Documents /SAED−EDK90/ SAED90_EDK / SAED_EDK90nm / \
11 D i g i t a l _ S t a n d a r d _ c e l l _ L i b r a r y / l e f / s a e d 9 0 n m . l e f \
12 } # Change t h e p a t h s when u s i n g d i f f e r e n t LEF f i l e s

43
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If the designer wishes to adapt the design flow to other libraries, this is where changes should be

made. The snippet of code above shows how library domains are created, in this case creating the

library saed90nm_typ which is only an alias. However, the path to the ".lib" file should correspond

to the path where the designer placed the libraries to be used. The command check_library should

be invoked in order to check for any errors in the libraries before moving forward. At this stage

it is possible to read the HDL files together with the power intent file and elaborating the design

using as seen below:

1 r e a d _ h d l { . . / s r c / b o t t o m _ a l u . v \
2 . . / s r c / t o p _ a l u . v \
3 . . / s r c / a l u . v \
4 . . / s r c / p e _ a r r a y . v \
5 . . / s r c / c g r a . v \
6 } # Change t h e p a t h s when u s i n g d i f f e r e n t HDL f i l e s
7

8 s e t b i t w i d t h 10
9 s e t rows 4

10 s e t columns 4
11 s e t DESIGN c g r a
12 s e t DESIGN ${DESIGN} _ b i t w i d t h $ { b i t w i d t h } _rows$ { rows } \
13 _columns$ { columns }
14 r e a d _ p o w e r _ i n t e n t . . / s y n t h _ s c r i p t s / p o w e r I n t e n t . u p f \
15 −1801 −module ${DESIGN} −ver s ion 2 . 0
16 e l a b o r a t e c g r a −paramete r s {10 4 4}

The commands seen above specify where the HDL and UPF files may be found and elaborate

the design with specified parameters. Still regarding UPF it is relevant to mention that a UPF-
generating Perl script for CGRAs has been written and may be found in the webpage. Having

the design elaborated, it is possible to load the timing contraints and proceed to the synthesis stage.

This is achieved by the following set of commands:

1 source . . / s y n t h _ s c r i p t s / c o n s t r a i n t s . s d c
2 a p p l y _ p o w e r _ i n t e n t
3 c o m m i t _ p o w e r _ i n t e n t
4

5 c h e c k _ d e s i g n #Check t h e d e s i g n f o r e r r o r s
6

7 s y n _ g e n e r i c # S y n t h e s i s e t o g e n e r i c g a t e s
8 syn_map # S y n t h e s i s e t o l i b r a r y c e l l s
9 s y n _ o p t # O p t i m i s e s t h e s y n t h e s i s e d d e s i g n

After successfully synthesising the design, reports may be generated. To move to the backend flow,

the design must be exported and Genus allows output files relevant to Innovus to be generated. To

do so, the following commands are invoked:

1 r e p o r t _ t i m i n g > ${REPORTS} / t i m i n g . r e p
2 r e p o r t _ g a t e s > ${REPORTS} / c e l l . r e p
3 r e p o r t _ p o w e r > ${REPORTS} / p o w e r . r e p
4 w r i t e _ d e s i g n ${DESIGN} −basename . . / o u t p u t s / i n n o v u s / ${DESIGN} _$ { cur rT ime } / s y n t \
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5 h _c g r a − innovus

Having the outputs of the synthesised design generated, it is possible to run Conformal to perform

formal verification. To do so, start the software and source a script as the one seen here:

1 # C o n f i g u r i n g Conformal low−power
2 s e t lowpower o p t i o n −na t ive_1801
3 s e t lowpower o p t i o n − g o l d e n _ a n a l y s i s _ s t y l e PRE_SYN − r e v i s e d _ a n a l y s i s _ s t y l e
4 POST_SYN
5

6 # I m p o r t i n g l i b r a r i e s and bo th v e r s i o n s o f t h e d e s i g n
7 #To use a d i f f e r e n t l i b r a r y , change t h e p a t h s
8 read l i b r a r y / home / d iogo / Documents /SAED−EDK90 / \
9 SAED90_EDK / SAED_EDK90nm / D i g i t a l _ S t a n d a r d _ c e l l _ L i b r a r y / \

10 s y n o p sy s / models / s a e d 9 0 n m _ t y p . l i b
11

12 #The f o l l o w i n g command s h o u l d be changed t o p o i n t t o
13 # t h e V e r i l o g f i l e s which t h e d e s i g n e r wi she s t o r e a d
14 read d e s i g n { \
15 . . / s r c / b o t t o m _ a l u . v \
16 . . / s r c / t o p _ a l u . v \
17 . . / s r c / a l u . v \
18 . . / s r c / p e _ a r r a y . v \
19 . . / s r c / c g r a . v \
20 } −golden
21 read d e s i g n . . / o u t p u t s / i n n o v u s / ${DESIGN } / ${DESIGN} . v − r e v i s e d
22

23 # I m p o r t i n g bo th v e r s i o n s o f t h e low−power i n t e n t
24 read power i n t e n t . . / s y n t h _ s c r i p t s / p o w e r I n t e n t . u p f −1801 −golden
25 read power i n t e n t . . / o u t p u t s / i n n o v u s / ${DESIGN } / ${DESIGN} . u p f −1801 − r e v i s e d
26

27 # Comparing n e t l i s t s and UPFs
28 compare power i n t e n t
29 r e p o r t compared power i n t e n t
30

31 compare power c o n s i s t e n c y
32 r e p o r t compared c o n s i s t e n c y

If the reports show no anomalies, the designer may proceed to backend design.

5.2 Backend

The backend scripts are more extensive than the scripts shown before thus will be available both

as appendix and from the webpage. In this document only the most important steps are shown.

This stage of the design is achieved using Innovus. After setting up the environment and the

paths for relevant files, the first step is to define the area of the floorplan which, in this case, is

done with the command "floorPlan -site unit -r 1 0.7 30 30 30 30 -dieSizeByIoHeight max"
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where the height to width ratio is specified (1) together with the total utilization percentage of

the core (0.7) and the space between the core and the pins where power rings will exist. It is

important to clarify that the utilization percentage of the core is set to 0.7 so that the tool has

enough space to place every cell and interconnections without causing placement/wiring errors.

After defining the floorplan, the power intent must be imported in order to insert the header cells

which are not explicit in the post-synthesis netlist. However, Innovus does not do a good job while

placing header cells as it occasionally places cells on top of each other or even outside the core’s

boundaries. To solve this issue, the proposed method is the placement of header cells followed by

the deletion of their objects from the design core so that they become known to the tool, however,

are not physically placed (will be placed later together with all the cells of the design that are

unplaced). A snippet of code below clarifies the process:

1 r e a d _ p o w e r _ i n t e n t −1801 ${ p o w e r _ i n t e n t _ f i l e s }
2 c o m m i t _ p o w e r _ i n t e n t
3 # P l a c e t h e power domains
4 p l a n D e s i g n
5 #Add power s w i t c h e s
6 addPowerSwitch − r ing −powerDomain PD1 − topSide 1
7 # ( . . . ) Repea t t h e command above f o r each power domain
8 # Unplace s w i t c h e s
9 d e l e t e A l l F P O b j e c t s

10 # d e l e t e A l l F P O b j e c t s d e l e t e s t h e power i n t e n t i n f o r m a t i o n
11 # t h u s i t must be i n s e r t e d a g a i n
12 r e a d _ p o w e r _ i n t e n t −1801 ${ p o w e r _ i n t e n t _ f i l e s }
13 c o m m i t _ p o w e r _ i n t e n t
14 # Modify t h e p r o p e r t i e s o f t h e power domains i n o r d e r t o have
15 # empty s p a c e a round t h e power domains where t h e power r i n g s
16 # f o r each domain w i l l be p l a c e d
17 modifyPowerDomainAtt r TOP − r sEx ts {4 4 4 4}
18 modifyPowerDomainAtt r PD1 −minGaps {4 4 4 4} − r sEx ts {4 4 4 4}
19 # ( . . . ) Repea t t h e command above f o r each power domain
20 # P l a c e t h e power domains once a g a i n
21 se tP lanDes ignMode −useGuideBoundary f e n c e − e f f o r t h igh \
22 − i n c r e m e n t a l f a l s e −boundaryPlace t r u e − f i xP lacedMacros \
23 f a l s e −noColor ize f a l s e − f enceSpac ing 5
24 p l a n D e s i g n

At this stage the power domains are placed and the designer may move or resize them. After

doing so, power rings and power stripes must be inserted and uses the commands "addRing" and

"addStripe". After having the power nets in place it becomes possible to place the standard cells

in the design by invoking the "placeDesign" command. This is followed by the connection of

power pins to power nets. Below there is an example of all of the power connection s for a single

power domain, which must be repeated for all domains.

1 g l o b a l N e t C o n n e c t VDD −type pgp in −pin VDD −powerDomain \
2 TOP −o v e r r i d e
3 g l o b a l N e t C o n n e c t VSS −type pgp in −pin VSS −al l −o v e r r i d e
4 g l o b a l N e t C o n n e c t PD1_VDD −type pgp in −pin VDD −powerDomain PD1
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5 g l o b a l N e t C o n n e c t PD1_VDD −type pgp in −pin VDDG − i n s t \
6 ∗PD1_1_HEAD∗ −al l −o v e r r i d e
7 g l o b a l N e t C o n n e c t PD1_VDD −type pgp in −pin VDDG − i n s t \
8 ∗PD1_iso∗ −al l −o v e r r i d e
9 g l o b a l N e t C o n n e c t PD1_VDD −type pgp in −pin VDD − i n s t \

10 ∗FILLER_PD1∗ −al l −o v e r r i d e

The next step is to perform the power net routing using the "sroute" command. There are header

cells in the design and Innovus does not recognize the power-gated pin of the header cell present

in this library. Thus, to route the power connection of this pin there is the need of routing it as a

signal, which can be seen in the snippet below:

1 # Route t h e VDDG p i n o f t h e h e a d e r c e l l s
2 s e t P G P i n U s e S i g n a l R o u t e HEADX2:VDDG
3 #HEADX2 s h o u l d be r e p l a c e d wi th t h e name of used c e l l
4 # i n c a s e t h e d e s i g n e r i s u s i n g a d i f f e r e n t t e c h n o l o g y
5 r o u t e P G P i n U s e S i g n a l R o u t e −nets {VDD PD1_VDD PD2_VDD PD3_VDD \
6 PD4_VDD VSS}

With the standard cells placed and the power nets routed it is then possible to route the design

using the "routeDesign" command. After this step the design is almost finished, lacking only

the filler cells placement which, for the power domains, is inserted with the command "addFiller
-cell SHFILL1 -prefix FILLER -doDRC" where "SHFILL1" is the cell’s name and should be

replaced if the designer wishes to use a different library. The top domain’s filler cells, however,

are not inserted by the tool which is yet to be optimized for low-power designs. To overcome

this problem, the proposed solution is using a different script which should be sourced by the tool.

This script, provided in appendix, checks the entire core for gaps where filler cells may be inserted.

With the filler cels placed it is possible to export the design and perform signoff analysis.

5.3 Signoff

To perform signoff analysis two small scripts were written. These scripts allow timing and power

analysis which help the designer understand the impact of the low-power design and how much

does power gating affect timing and power consumption results.

5.3.1 Timing analysis script

The script written for timing analysis is executed using the Tempus tool. After starting the tool, the

script must be sourced. This script deals with importing the design generated after floorplan and

also with importing timing libraries for the typical, best and worst timing results (which depend

on the operating conditions such as supply voltage and temperature). This is achieved with the

following set of commands:

1 # R e s t o r e t h e o u t p u t o b t a i n e d from Innovus
2 r e s t o r e D e s i g n ${SRC_PATH} / c g r a _ b i t w i d t h 1 0 _ r o w s 4 _ c o l u m n s 4
3 #Read t h e w o r s t ( max ) , b e s t ( min ) and t y p i c a l ( t y p ) c a s e l i b r a r i e s
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4 r e a d _ l i b −max ${LIB_PATH } / saed90nm_max . l ib
5 r e a d _ l i b −min ${LIB_PATH } / s a e d 9 0 n m _ m i n . l i b
6 r e a d _ l i b ${LIB_PATH } / s a e d 9 0 n m _ t y p . l i b
7 #Read v e r i l o g n e t l i s t
8 r e a d _ v e r i l o g ${SRC_PATH} / c g r a _ b i t w i d t h 1 0 _ r o w s 4 _ c o l u m n s 4 . v
9 s e t _ t o p _ m o d u l e c g r a _ b i t w i d t h 1 0 _ r o w s 4 _ c o l u m n s 4

The command "restoreDesign" already imports a compiled version of the netlist. However, the

netlist which was simulated with Incisive and generated the VCD file was the Verilog file which

is read in line 9 of the snippet above. This is done so that the tool is capable of finding the activity

values of the nets by reading the VCD file. Besides these file, other optional files may be read

by the tool which will allow it to perform more accurate estimations. One example may be seen

below:

1 r e a d _ s d c ${SRC_PATH} / c o n s t r a i n t s . s d c
2 r e a d _ s p e f ${SRC_PATH} / c g r a _ b i t w i d t h 1 0 _ r o w s 4 _ c o l u m n s 4 . s p e f

At this stage it is only necessary to specify both the power sources and the delay corners (explained

in 4.4.4)

1 s e t _ d c _ s o u r c e s −force −power {VDD PD1_VDD PD2_VDD PD3_VDD PD4_VD \
2 D}
3 s e t _ d c _ s o u r c e s −force −ground {VSS}
4 c r e a t e _ r c _ c o r n e r −name r c c o r n 1 −T {25} −q x _ t e c h _ f i l e {${SRC_PATH \
5 } / t e c h _ f i l e . t c h }
6 c r e a t e _ o p _ c o n d −name op1 − l i b r a r y _ f i l e {${LIB_PATH } / saed90nm_max \
7 . l i b } −P {1 . 0 } −V {0 . 7 } −T {125}
8 c r e a t e _ l i b r a r y _ s e t −name s1 − t iming {${LIB_PATH} saed90nm_max . l ib }
9 c r e a t e _ c o n s t r a i n t _ m o d e −name sdc1 − s d c _ f i l e s {${SRC_PATH} / c o n s t r \

10 a i n t s . s d c }
11 c r e a t e _ d e l a y _ c o r n e r −name de lCorn1 − l i b r a r y _ s e t { s1 } − r c _ c o r n e r \
12 { r c c o r n 1 }
13 c r e a t e _ a n a l y s i s _ v i e w −name a n a l y s i s _ v i e w 1 −d e l a y _ c o r n e r de lCorn1 \
14 −c o n s t r a i n t _ m o d e sdc1

At this stage it is possible to generate a timing report by using the command "report_timing"

which will output the timing of design and show the critical path. An example is shown below:

1 ( . . . )
2 H [ 0 ] . V [ 3 ] . ALU. PE_out_ reg [ 9 ] / D <<< DFFARX1 ( 0 ) +0 2366
3 H [ 0 ] . V [ 3 ] . ALU. PE_out_ reg [ 9 ] / CLK s e t u p 2 +93 2459 R
4 − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − −
5 ( c l o c k c l k ) c a p t u r e 3000 R
6 u n c e r t a i n t y −150 2850 R
7 −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
8 Cost Group : ’ c lk ’ ( p a t h _ g r o u p ’ c lk ’ )
9 Timing s l a c k : 391 ps

10 S t a r t −p o i n t : i n p u t 4 2 [ 1 ]
11 End−p o i n t : H [ 0 ] . V [ 3 ] . ALU. PE_out_reg [ 9 ] / D
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5.3.2 Power analysis script

As previously mentioned, a script to perform power analysis has been written. The purpose of this

script is to assess the power consumption using the activity files obtained from simulation in Inci-

sive. This script is executed using Voltus and starts by importing the design obtained from Innovus

and the libraries necessary for power analysis. This is achieved with the following commands:

1 # R e s t o r e t h e o u t p u t o b t a i n e d from Innovus
2 r e s t o r e D e s i g n ${SRC_PATH} / c g r a _ b i t w i d t h 1 0 _ r o w s 4 _ c o l u m n s 4
3 #Read t h e w o r s t ( max ) , b e s t ( min ) and t y p i c a l ( t y p ) c a s e l i b r a r i e s
4 r e a d _ l i b −max ${LIB_PATH } / saed90nm_max . l ib
5 r e a d _ l i b −min ${LIB_PATH } / s a e d 9 0 n m _ m i n . l i b
6 r e a d _ l i b ${LIB_PATH } / s a e d 9 0 n m _ t y p . l i b
7 #Read v e r i l o g n e t l i s t
8 r e a d _ v e r i l o g ${SRC_PATH} / c g r a _ b i t w i d t h 1 0 _ r o w s 4 _ c o l u m n s 4 . v
9 s e t _ t o p _ m o d u l e c g r a _ b i t w i d t h 1 0 _ r o w s 4 _ c o l u m n s 4

After importing the design, the default activity for nets which are not depicted in the VCD file

is set along with the clock period. Having imported the design, it is then possible to define the

activity file and report the power results, like so:

1 s e t _ d e f a u l t _ s w i t c h i n g _ a c t i v i t y − r e s e t
2 s e t _ d e f a u l t _ s w i t c h i n g _ a c t i v i t y − i n p u t _ a c t i v i t y 0 . 2 −per iod 10 . 0
3 r e a d _ a c t i v i t y _ f i l e −format VCD −scope t b _ a r r a y / u _ a r r a y − s t a r t 0 \
4 −end 150000 ${RES_PATH } / s i m v i s i o n . v c d
5 r e p o r t _ p o w e r − r a i l _ a n a l y s i s _ f o r m a t VS − o u t f i l e . / c g r a _ p o w e r . r p t

This script outputs information about power consumption which allows the designer to have an

accurate estimate of the power consumption of given algorithms which will allow the designer to

explore the capabilities of power-gating. A snippet of a typical output file may be seen below.

1 T o t a l Power
2 −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
3 T o t a l I n t e r n a l Power : 0 .38841375 44 .3194%
4 T o t a l S w i t c h i n g Power : 0 .20892906 23 .8396%
5 T o t a l Leakage Power : 0 .27905313 31 .8410%
6 T o t a l Power : 0 .87639594
7 −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

The snippet above is the result of a power simulation in which the activity of the nets is obtained

from a VCD file. This VCD file is obtained from Incisive and the way to run the program is by

executing the tool with the following set of commands:

1 i r u n − s d f _ f i l e . . / s r c / c g r a _ b i t w i d t h 1 0 _ r o w s 4 _ c o l u m n s 5 . s d f \
2 . . / . . / s r c / v e r i l o g / p a t t e r n _ g e n e r a t o r . v \
3 / home / d iogo / Documents / SAED−EDK90 / SAED90_EDK / SAED_EDK90nm / D i g i t a \
4 l _ S t a n d a r d _ c e l l _ L i b r a r y / v e r i l o g / saed90nm . v \
5 / home / d iogo / Desktop / 1 9 June / cg ra4b5 / c g r a _ b i t w i d t h 1 0 _ r o w s 4 _ c o l u m n s 5 \
6 . v . . / s r c / t b _ c g r a _ s y n t h 5 . sv −SV \
7 −l p s _ 18 0 1 . . / s r c / p o w e r I n t e n t . upf −g u i −a c c e s s +C −64 b i t
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The command above will start Incisive. The VCD may then be exported to a file. Note that, once

again, this is detailed in the webpage.



Chapter 6

Case studies

During this chapter two case studies are presented. The first takes advantage of the parameters

that define the size of the CGRA and its input/output bitwidth to generate several CGRAs with

different number of columns. All of the generated CGRAs will execute the same algorithm so that

power comparisons can be made. The entire design flow is applied to all of the generated CGRAs

and the results are presented to be compared and discussed.

The second case study is the application of the design flow to a RTL of a CGRA which was

developed by a student1 working on his dissertation. The main focus of this case study is to have

cooperation between the author of this dissertation and the author of the RTL so that the design

flow may be assessed in terms of adaptability and functionality and, on the other side, accurate

power and timing results may be obtained to assess the performance of the architecture.

6.1 Use case #1

The RTL used to obtain the results shown in this section is the same that was already mentioned

in earlier sections and was used during the development of the design flow, therefore demanding

no further clarification.

The testbench used to simulate the architecture and generate activity files that can provide a real-

istic estimate of the algorithm’s power consumption maps a FIR filter with 4 taps to the CGRA. It

can be used to simulate CGRAs of different sizes just by changing the configuration routine since

the number of PEs influences not only the number of clocks needed to program the CGRA but

also the data to be sent to the configuration chain. The input data and the filter’s coefficients are

randomly generated, with a maximum magnitude constraint according to the CGRA’s bitwidth,

and the output data are calculated according to those values. This golden module of the FIR filter

may be generated using Matlab.

This section puts six CGRA variants through the frontend design flow. Every CGRA has 4

lines and the columns will range from 4 to 9. The generated reports after synthesising the design

1João Lopes, Configurable coarse-grained array architecture for processing of biological signals
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CGRA Cells Low-power cells Area Clock frequency
4 x 4 6842 352 83795.558 333.333MHz
4 x 5 8532 440 104732.467 333.333MHz
4 x 6 10236 528 125440.819 333.333MHz
4 x 7 11929 616 146175.898 333.333MHz
4 x 8 13634 704 167023.411 333.333MHz
4 x 9 15313 792 187967.693 333.333MHz

Table 6.1: CGRA type vs Number of cells

allow conclusions to be taken about the definition of power domains. During this stage it is pos-

sible to consult the generated reports in order to know the impact on the design’s area. However,

since the gate-level netlist generated during synthesis does not contain power-connections infor-

mation nor power-switch cells, these results do not necessarily match those that will be obtained

after floorplan.

The UPF used for these designs allows every power domain to be switched on/off indepen-

dently and defines isolation rules that clamp the values of every output of the powered-down

domains to 0. Besides this, the UPF also defines a power net for each power domain with its own

power-switch and groups PEs that share the same column in the same power domain.

In terms of area, it can be seen from table 6.1 that for each extra power domain there is an

increase of 88 low-power cells which is the number of isolation cells of each power domain. This

makes sense since the number of outputs of each PE is 22 (10 bits for the data output and 12 bits

for the configuration output) and there are 4 PEs in each domain, which means that 22× 4 = 88

isolation cells should be inserted per power domain.

Power consumption was also estimated using information about synthesis. These results can

be seen in 6.2 and show that the leakage power is a small percentage of the total power. This can

be explained by looking at figure 2.12 which shows that leakage power becomes a subject of major

concern when using technology nodes of 40nm of smaller. However, these results were obtained

using a 90nm library, meaning that the power-savings of this methodology will not be as high as

if the design had been implemented in a smaller technology.

After synthesising the CGRAs, the smallest 3 were taken to floorplan and post-route simulation.

To assess the power consumption the testbench mentioned earlier is executed and comparisons

Rows x Power Leakage Dynamic Total
Columns Domains Power(µW) Power(µW) power(µW)
4 x 4 4 384,0 6874,7 7258,8
4 x 5 5 478,0 7513,5 7991,5
4 x 6 6 571,3 8469,6 9040,9
4 x 7 7 664,9 9234,3 9899,2
4 x 8 8 758,7 9843,1 10601,8

Table 6.2: Post-synthesis power report
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Leakage Power(µW) Total Power(µW)
FIR 279.053 876.396
OFF 0.427 0.636

Table 6.3: Post-route power report 1

are made. In the 4 by 4 array the FIR is executed and a power result is calculated. After this

execution and because no power domain can be shut down while maintaining the functionality of

the circuit, it was decided to assess the power consumption while every power domain is off. This

could be useful in cases where, for example, the data that should be calculated once every second

is actually being calculated with a faster clock in 100ms, meaning that the CGRA could power

down for the remaining 900ms. A comparison between the average power spent calculating a FIR

filter and the average power when powered-down is depicted in table 6.3 and shows that when

powered-down, the circuit consumes a tiny amount of power. About the powered-down CGRA, it

would be expected to have values different than 0 only for the leakage power. However, since this

design has top-level cells that show some activity, like isolation cells and header cells, this is not

verified.

The 2 remaining CGRAs were tested using a different approach which consists of simulating

the same FIR filter with all of the power domains turned on and comparing the power result with

the ones obtained after running the algorithm while switching off the unused power domains.

These results are shown in table 6.4. From these results shown in 6.4 it is possible to assess the

efficiency of power-gating the columns of the CGRA. In the case of the 4 by 5 array, 1 of the 5

PEs is powered off, which means that theoretically a 20% reduction of leakage power is expected.

However, the obtained result is a power reduction of approximately 18.9% which is due to the

leakage power of the power switching cells which are, obviously, not ideal. In the case of the 4 by

6 array, 2 of the 6 columns are powered off, which would have an expected power reduction impact

of approximately 33.3%. However, once again and for the same reasons, the power reduction is

approximately 31.6%.

CGRA Internal Power(µW) Switching Power(µW) Leakage Power(µW) Total Power(µW)
4x5 FIR 397.5 214.2 343.6 955.3
4x5 OFF 397.5 214.2 278.6 890.3
4x6 FIR 390.9 212.4 406.8 1010.2
4x6 OFF 390.3 211.5 278.1 880.0

Table 6.4: Post-route power report 2
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6.2 Use case #2

To test the functionality and adaptability of the proposed design flow, it was tested using a differ-

ent RTL proposed by a colleague as previously mentioned. The CGRA proposed by João Lopes2

presents a 4 by 4 array of PEs with two separate daisy-chained configuration registers. One of

them sets the configuration of the PE and the other stores constant values that can be used for

calculations, like for example the FIR filter’s coefficients. In terms of power domains, each col-

umn will belong to a separate power domain. The infrastructure for the constant values is in a

separate domain. The PE’s configuration infrastructure belongs to the top power domain which is

an always-on domain. This setup allows for configuration of the CGRA to be achieved even when

the power domains are off, since the configuration chain is in the top domain which is always-on.

The UPF file was generated after modifying the UPF-generating script to match the names of the

instances in the Verilog code. For better understanding, refer to the PE’s diagram depicted in figure

6.1.

Figure 6.1: PE of the CGRA 3

The final objective was to provide post-route power results of the architecture for comparison

purposes. This was achieved by passing the design through the entire design-flow resulting in

a post-route netlist which was then simulated by mapping a 4-tap FIR filter using a testbench

designed for such purpose. From the design flow resulted the CGRA physical design depicted in

figure 6.3, which is also shown in figure 6.2 without nets so that the power domains are visible, and

2ee12136@fe.up.pt
3Gently ceded by João Lopes, ee12136@fe.up.pt
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provided power results that can be seen in table 6.5. These reports help estimating the advantage

CGRA Leakage Power(µW) Total Power(µW)
4x4 FIR 1107.198 2847.554
4x4 OFF 124.093 146.575

Table 6.5: Post-route power report

of speeding up the clock in order to benefit from a longer idle time during which the CGRA would

be turned off.

Figure 6.2: Power domains - floorplan



56 Case studies

Figure 6.3: Final design - P&R layout



Chapter 7

Conclusions and future work

In this chapter there is a discussion about the project outcomes and a comparison between the

objectives of the project and the achieved results. Besides this discussion, there is a proposal for

future work which would benefit from this project and take it further.

7.1 Conclusions

The main objective of this project was to establish a design flow for low-power design of CGRAs

that would take an HDL description of a CGRA and from it create a physical design as an IP core.

The project should result in set of scripts that would automate the process as much as possible.

Besides this main objective there was also the objective of making use of the design flow to

assess the impact of power-gating techniques on static power consumption after place and route

both with estimates for network activity as well as with activity data taken from simulation tools

and also test the adaptability of the proposed design flow and the proposed scripts by repeating the

design process for different CGRA architectures.

It is possible to say that the objectives have been achieved as the proposed design flow is

capable of generating a physical design of the proposed CGRA architecture and even adapt to

parameter changing like the number of lines or columns of the array. It has also been shown in

chapter 6 that this adaptability goes even further when a HDL code written by a designer without

deep knowledge of low-power methodologies is physically implemented with a low-power intent

which has 5 power domains that allow different parts of the circuit to be switched off.

Regarding the assessment of power-gating techniques, their impact is shown when 1 columns

in a 5 column CGRA shows 18.9% reduction in terms of power consumption and turning off 2

columns in a 6 column array achieves savings in the order of 31.6%.

In conclusion, this project has shown its potential as a pillar for the design of CGRA archi-

tectures and may effectively reduce the overhead time which is critical when the designer is given

strict time frames to develop the product, leaving margin for architectural improvements and fur-

ther studies before tape-out.
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7.2 Future work

The future work proposals are the following:

Low-power methodologies Having a well defined design flow is a huge step towards the

evaluation of low-power methodologies. This work could be adapted to support other power-

saving features like multi-voltage supply or voltage-frequency scaling which also suggest signifi-

cant gains.

CGRA controller Creating a CGRA controller would allow the generated CGRAs to be

tested with a larger set of algorithms. This would be the ideal situation as it would allow for

power-efficiency comparisons to be made between different algorithms and data.

Power controller It would also be beneficial to implement a power controller as a block

attached to the CGRA controller which, depending on the algorithm and timing constraints, among

other variables, would set different power attributes to maximize efficiency.

Ecosystem Finally, one of the most important tasks proposed as future work consists of

importing an IP core designed using this methodology to a bigger ecosystem where a general-

purpose processor would exist. This would allow the CGRA to act as an accelerator coupled to the

processor. This would also allow rail analysis to take place since the CGRA would no longer be a

single IP but an IP within a complete chip. This proposal would also take the project to a stage in

which it would be possible to create a product which could be fabricated and tested in real-world

scenarios.



Appendix A

Front end script

The following script is used in the Genus tool to execute front end design. The name of the script

is "genus_script.tcl" and has no arguments since the variables are changed in the code.

1 s e t e n a b l e _ i e e e _ 1 8 0 1 _ s u p p o r t 1
2

3 s e t DESIGN c g r a
4 s e t systemTime [ c l o c k s e c o n d s ]
5 s e t cur rT ime [ c l o c k format $systemTime −format %a%d%B%Y_ ] [ c l o c k format \
6 $systemTime −format %H−%M]
7 s e t REPORTS . . / run / r e p o r t s _ $ { cur rT ime }
8 f i l e mkdir ${REPORTS}
9

10 # L i b r a r y
11 c r e a t e _ l i b r a r y _ d o m a i n { saed90nm_typ }
12 s e t _ a t t r l i b r a r y \
13 { / home / d iogo / Documents /SAED−EDK90/ SAED90_EDK / SAED_EDK90nm / D i g i t a l _ S t a n \
14 d a r d _ c e l l _ L i b r a r y / s y n o p s y s / models / s a e d 9 0 n m _ t y p . l i b } \
15 saed90nm_typ
16

17 c r e a t e _ l i b r a r y _ d o m a i n { saed90nm_min }
18 s e t _ a t t r l i b r a r y \
19 { / home / d iogo / Documents /SAED−EDK90/ SAED90_EDK / SAED_EDK90nm / D i g i t a l _ S t a n \
20 d a r d _ c e l l _ L i b r a r y / s y n o p s y s / models / s a e d 9 0 n m _ m i n . l i b } saed90nm_min
21

22 c r e a t e _ l i b r a r y _ d o m a i n { saed90nm_max }
23 s e t _ a t t r l i b r a r y \
24 { / home / d iogo / Documents /SAED−EDK90/ SAED90_EDK / SAED_EDK90nm / D i g i t a l _ S t a n \
25 d a r d _ c e l l _ L i b r a r y / s y n o p s y s / models / saed90nm_max . l ib } saed90nm_max
26

27

28 s e t _ o p e r a t i n g _ c o n d i t i o n s −min BEST −m i n _ l i b r a r y saed90nm_min −max WORST\
29 −max_l ib ra ry saed90nm_max
30 s e t _ o p e r a t i n g _ c o n d i t i o n s BEST − l i b r a r y saed90nm_min
31 s e t _ o p e r a t i n g _ c o n d i t i o n s TYPICAL − l i b r a r y saed90nm_typ
32

59
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33 c h e c k _ l i b r a r y
34

35 s e t _ a t t r l e f _ l i b r a r y { / home / d iogo / Documents /SAED−EDK90/ SAED90_EDK / SA \
36 ED_EDK90nm / D i g i t a l _ S t a n d a r d _ c e l l _ L i b r a r y / l e f / s a e d 9 0 n m _ t e c h . l e f \
37 / home / d iogo / Documents /SAED−EDK90/ SAED90_EDK / SAED_EDK90nm / D i g i t a l _ S t a n \
38 d a r d _ c e l l _ L i b r a r y / l e f / s a e d 9 0 n m . l e f \
39 / home / d iogo / Documents /SAED−EDK90/ SAED90_EDK / SAED_EDK90nm / D i g i t a l _ S t a n \
40 d a r d _ c e l l _ L i b r a r y / l e f / s a e d 9 0 n m _ l v t . l e f \
41 / home / d iogo / Documents /SAED−EDK90/ SAED90_EDK / SAED_EDK90nm / D i g i t a l _ S t a n \
42 d a r d _ c e l l _ L i b r a r y / l e f / s a e d 9 0 n m _ h v t . l e f \
43 }
44

45 r e a d _ h d l { . . / s r c / b o t t o m _ a l u . v \
46 . . / s r c / t o p _ a l u . v \
47 . . / s r c / a l u . v \
48 . . / s r c / p e _ a r r a y . v \
49 . . / s r c / c g r a . v \
50 }
51

52 s e t b i t w i d t h 10
53 s e t rows 4
54 s e t columns 4
55 s e t DESIGN c g r a
56 s e t DESIGN ${DESIGN} _ b i t w i d t h $ { b i t w i d t h } _rows$ { rows } _columns$ { columns }
57

58 s e t _ a t t r h d l i n _ e n a b l e _ h i e r _ n a m i n g t r u e
59

60 r e a d _ p o w e r _ i n t e n t . . / s y n t h _ s c r i p t s / p o w e r I n t e n t B e f o r e S y n t h 3 . u p f −1801 \
61 −module ${DESIGN} −ver s ion 2 . 0
62

63 e l a b o r a t e c g r a −paramete r s {10 4 4 }
64

65 source . . / s y n t h _ s c r i p t s / c o n s t r a i n t s . s d c
66

67 a p p l y _ p o w e r _ i n t e n t
68 s e t _ a t t r l i b r a r y _ d o m a i n saed90nm_typ TOP
69 s e t _ a t t r l i b r a r y _ d o m a i n saed90nm_typ PD1
70 s e t _ a t t r l i b r a r y _ d o m a i n saed90nm_typ PD2
71 s e t _ a t t r l i b r a r y _ d o m a i n saed90nm_typ PD3
72 s e t _ a t t r l i b r a r y _ d o m a i n saed90nm_typ PD4
73 c o m m i t _ p o w e r _ i n t e n t
74

75 c h e c k _ d e s i g n
76

77 s y n _ g e n e r i c
78 syn_map
79 s y n _ o p t
80

81 r e p o r t _ t i m i n g > ${REPORTS} / t i m i n g . r e p
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82 r e p o r t _ g a t e s > ${REPORTS} / c e l l . r e p
83 r e p o r t _ p o w e r > ${REPORTS} / p o w e r . r e p
84

85 w r i t e _ d e s i g n ${DESIGN} −basename . . / o u t p u t s / i n n o v u s / ${DESIGN } \
86 _$ { cur rT ime } / s y n t h _ c g r a − innovus
87

88 e x i t
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Back end script

The following script is used with the Innovus tool and transforms a gate-level netlist to a physical

design. The name of the script is "script_innovus.tcl" and deals with the entire back end flow.

1 s e t i n i t _ g n d _ n e t VSS
2 s e t i n i t _ i o _ f i l e { . . / i p a d s / i o _ p a d s . i o }
3 s e t LEF_PATH / home / d iogo / Documents /SAED−EDK90/ SAED90_EDK / SAED_EDK90nm / \
4 D i g i t a l _ S t a n d a r d _ c e l l _ L i b r a r y / l e f
5 s e t SRC_PATH . . / s r c _ a f t e r S y n t h
6 s e t SCRIPTS_PATH . . / f l o o r p l a n _ s c r i p t s
7 s e t l e f s " ${LEF_PATH } / s a e d 9 0 n m _ t e c h . l e f ${LEF_PATH } / s a e d 9 0 n m . l e f ${LEF_ \
8 PATH} / s a e d 9 0 n m _ h v t . l e f ${LEF_PATH } / s a e d 9 0 n m _ l v t . l e f "
9 s e t i n i t _ l e f _ f i l e $ l e f s

10 s e t i n i t _ p w r _ n e t {VDD PD1_VDD PD2_VDD PD3_VDD PD4_VDD}
11 s e t i n i t _ t o p _ c e l l c g r a _ b i t w i d t h 1 0 _ r o w s 4 _ c o l u m n s 4
12 s e t p o w e r _ i n t e n t _ f i l e s " . . / s r c _ a f t e r S y n t h / s y n t h _ c g r a . u p f "
13 s e t v e r i l o g _ f i l e s " ${SRC_PATH} / s y n t h _ c g r a . v "
14 s e t i n i t _ v e r i l o g ${ v e r i l o g _ f i l e s }
15

16 i n i t _ d e s i g n
17

18 f l o o r P l a n − s i t e u n i t −r 1 0 . 7 30 30 30 30 −d ieS i zeByIoHe igh t max
19

20 r e a d _ p o w e r _ i n t e n t −1801 ${ p o w e r _ i n t e n t _ f i l e s }
21 c o m m i t _ p o w e r _ i n t e n t
22

23 p l a n D e s i g n
24

25 addPowerSwitch − r ing −powerDomain PD1 − topSide 1
26 addPowerSwitch − r ing −powerDomain PD2 − topSide 1
27 addPowerSwitch − r ing −powerDomain PD3 − topSide 1
28 addPowerSwitch − r ing −powerDomain PD4 − topSide 1
29

30 d e l e t e A l l F P O b j e c t s
31

32 r e a d _ p o w e r _ i n t e n t −1801 ${ p o w e r _ i n t e n t _ f i l e s }
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33 c o m m i t _ p o w e r _ i n t e n t
34

35 modifyPowerDomainAtt r TOP − r sEx ts {4 4 4 4}
36 modifyPowerDomainAtt r PD1 −minGaps {4 4 4 4} − r sEx ts {4 4 4 4}
37 modifyPowerDomainAtt r PD2 −minGaps {4 4 4 4} − r sEx ts {4 4 4 4}
38 modifyPowerDomainAtt r PD3 −minGaps {4 4 4 4} − r sEx ts {4 4 4 4}
39 modifyPowerDomainAtt r PD4 −minGaps {4 4 4 4} − r sEx ts {4 4 4 4}
40

41 se tP lanDes ignMode −useGuideBoundary f e n c e − e f f o r t h igh − i n c r e m e n t a l f a l s e \
42 −boundaryPlace t r u e − f i xP lacedMacros f a l s e −noColor ize f a l s e − f enceSpac ing 5
43 p l a n D e s i g n
44

45 s e t f i l e _ t o _ c h e c k " ${SCRIPTS_PATH } / i o s . i o "
46 s e t c h e c k _ v a l u e [ f i l e e x i s t ${ f i l e _ t o _ c h e c k } ]
47

48 i f { $ c h e c k _ v a l u e eq 1 } { \
49 echo " I m p o r t i n g IO f i l e . . . " \
50 l o a d I o F i l e ${ f i l e _ t o _ c h e c k } \
51 } \
52 e l s e { \
53 echo " IO f i l e n o t a v a i l a b l e . . . " \
54 }
55

56 addRing − s k i p _ v i a _ o n _ w i r e _ s h a p e Noshape − s k i p _ v i a _ o n _ p i n S t a n d a r d c e l l −s tacke \
57 d _ v i a _ t o p _ l a y e r M9 −type c o r e _ r i n g s − j o g _ d i s t a n c e 0 . 1 6 − t h r e s h o l d 0 . 1 6 −nets \
58 {VDD VSS} − fol low c o r e − s t a c k e d _ v i a _ b o t t o m _ l a y e r M1 − l aye r { bot tom M1 t o p M1 \
59 r i g h t M2 l e f t M2} −width 10 −spacing 1 −o f f s e t 7
60

61 d e s e l e c t A l l
62 s e l e c t O b j e c t Group PD1
63 addRing − s k i p _ v i a _ o n _ w i r e _ s h a p e Noshape − s k i p _ v i a _ o n _ p i n S t a n d a r d c e l l −s tacke \
64 d _ v i a _ t o p _ l a y e r M9 −around power_domain − j o g _ d i s t a n c e 0 . 1 6 − t h r e s h o l d 0 . 1 6 −t \
65 ype b l o c k _ r i n g s −nets {PD1_VDD VSS} − fol low c o r e − s t a c k e d _ v i a _ b o t t o m _ l a y e r M1\
66 − l aye r { bot tom M1 t o p M1 r i g h t M2 l e f t M2} −width 1 . 5 −spacing 0 . 4 5 −o f f s e t \
67 0 . 4 5
68

69 d e s e l e c t A l l
70 s e l e c t O b j e c t Group PD2
71 addRing − s k i p _ v i a _ o n _ w i r e _ s h a p e Noshape − s k i p _ v i a _ o n _ p i n S t a n d a r d c e l l −s tacke \
72 d _ v i a _ t o p _ l a y e r M9 −around power_domain − j o g _ d i s t a n c e 0 . 1 6 − t h r e s h o l d 0 . 1 6 −t \
73 ype b l o c k _ r i n g s −nets {PD2_VDD VSS} − fol low c o r e − s t a c k e d _ v i a _ b o t t o m _ l a y e r M\
74 1 − l aye r { bot tom M1 t o p M1 r i g h t M2 l e f t M2} −width 1 . 5 −spacing 0 . 4 5 −of f se \
75 t 0 . 4 5
76

77 d e s e l e c t A l l
78 s e l e c t O b j e c t Group PD3
79 addRing − s k i p _ v i a _ o n _ w i r e _ s h a p e Noshape − s k i p _ v i a _ o n _ p i n S t a n d a r d c e l l −s tack \
80 e d _ v i a _ t o p _ l a y e r M9 −around power_domain − j o g _ d i s t a n c e 0 . 1 6 − t h r e s h o l d 0 . 1 6 \
81 −type b l o c k _ r i n g s −nets {PD3_VDD VSS} − fol low c o r e − s t a c k e d _ v i a _ b o t t o m _ l a y e r \



Back end script 65

82 M1 − l aye r { bot tom M1 t o p M1 r i g h t M2 l e f t M2} −width 1 . 5 −spacing 0 . 4 5 −off \
83 s e t 0 . 4 5
84

85 d e s e l e c t A l l
86 s e l e c t O b j e c t Group PD4
87 addRing − s k i p _ v i a _ o n _ w i r e _ s h a p e Noshape − s k i p _ v i a _ o n _ p i n S t a n d a r d c e l l −s tack \
88 e d _ v i a _ t o p _ l a y e r M9 −around power_domain − j o g _ d i s t a n c e 0 . 1 6 − t h r e s h o l d 0 . 1 6 \
89 −type b l o c k _ r i n g s −nets {PD4_VDD VSS} − fol low c o r e − s t a c k e d _ v i a _ b o t t o m _ l a y e r \
90 M1 − l aye r { bot tom M1 t o p M1 r i g h t M2 l e f t M2} −width 1 . 5 −spacing 0 . 4 5 −off \
91 s e t 0 . 4 5
92

93 d e s e l e c t A l l
94 s e l e c t O b j e c t Group PD1
95 a d d S t r i p e − s k i p _ v i a _ o n _ w i r e _ s h a p e Noshape − b l o c k _ r i n g _ t o p _ l a y e r _ l i m i t M1 −max \
96 _ s a m e _ l a y e r _ j o g _ l e n g t h 0 . 9 −over_power_domain 1 −p a d c o r e _ r i n g _ b o t t o m _ l a y e r _ l i \
97 mit M1 −number_of_se t s 6 − s k i p _ v i a _ o n _ p i n S t a n d a r d c e l l − s t a c k e d _ v i a _ t o p _ l a y e r \
98 M9 − p a d c o r e _ r i n g _ t o p _ l a y e r _ l i m i t M1 −spacing 0 . 4 5 −m e r g e _ s t r i p e s _ v a l u e 0 . 1 6 \
99 − l aye r M4 −b l o c k _ r i n g _ b o t t o m _ l a y e r _ l i m i t M1 −width 0 . 4 5 −area {} −nets \

100 {PD1_VDD VSS} − s t a c k e d _ v i a _ b o t t o m _ l a y e r M1
101

102 d e s e l e c t A l l
103 s e l e c t O b j e c t Group PD2
104 a d d S t r i p e − s k i p _ v i a _ o n _ w i r e _ s h a p e Noshape − b l o c k _ r i n g _ t o p _ l a y e r _ l i m i t M1 −max \
105 _ s a m e _ l a y e r _ j o g _ l e n g t h 0 . 9 −over_power_domain 1 −p a d c o r e _ r i n g _ b o t t o m _ l a y e r _ l i \
106 mit M1 −number_of_se t s 6 − s k i p _ v i a _ o n _ p i n S t a n d a r d c e l l − s t a c k e d _ v i a _ t o p _ l a y e r \
107 M9 − p a d c o r e _ r i n g _ t o p _ l a y e r _ l i m i t M1 −spacing 0 . 4 5 −m e r g e _ s t r i p e s _ v a l u e 0 . 1 6 \
108 − l aye r M4 −b l o c k _ r i n g _ b o t t o m _ l a y e r _ l i m i t M1 −width 0 . 4 5 −area {} −nets \
109 {PD2_VDD VSS} − s t a c k e d _ v i a _ b o t t o m _ l a y e r M1
110

111 d e s e l e c t A l l
112 s e l e c t O b j e c t Group PD3
113 a d d S t r i p e − s k i p _ v i a _ o n _ w i r e _ s h a p e Noshape − b l o c k _ r i n g _ t o p _ l a y e r _ l i m i t M1 −max \
114 _ s a m e _ l a y e r _ j o g _ l e n g t h 0 . 9 −over_power_domain 1 −p a d c o r e _ r i n g _ b o t t o m _ l a y e r _ l i \
115 mit M1 −number_of_se t s 6 − s k i p _ v i a _ o n _ p i n S t a n d a r d c e l l − s t a c k e d _ v i a _ t o p _ l a y e r \
116 M9 − p a d c o r e _ r i n g _ t o p _ l a y e r _ l i m i t M1 −spacing 0 . 4 5 −m e r g e _ s t r i p e s _ v a l u e 0 . 1 6 \
117 − l aye r M4 −b l o c k _ r i n g _ b o t t o m _ l a y e r _ l i m i t M1 −width 0 . 4 5 −area {} −nets \
118 {PD3_VDD VSS} − s t a c k e d _ v i a _ b o t t o m _ l a y e r M1
119

120 d e s e l e c t A l l
121 s e l e c t O b j e c t Group PD4
122 a d d S t r i p e − s k i p _ v i a _ o n _ w i r e _ s h a p e Noshape − b l o c k _ r i n g _ t o p _ l a y e r _ l i m i t M1 −max \
123 _ s a m e _ l a y e r _ j o g _ l e n g t h 0 . 9 −over_power_domain 1 −p a d c o r e _ r i n g _ b o t t o m _ l a y e r _ l i \
124 mit M1 −number_of_se t s 6 − s k i p _ v i a _ o n _ p i n S t a n d a r d c e l l − s t a c k e d _ v i a _ t o p _ l a y e r \
125 M9 − p a d c o r e _ r i n g _ t o p _ l a y e r _ l i m i t M1 −spacing 0 . 4 5 −m e r g e _ s t r i p e s _ v a l u e 0 . 1 6 \
126 − l aye r M4 −b l o c k _ r i n g _ b o t t o m _ l a y e r _ l i m i t M1 −width 0 . 4 5 −area {} −nets \
127 {PD4_VDD VSS} − s t a c k e d _ v i a _ b o t t o m _ l a y e r M1
128

129 a d d S t r i p e − s k i p _ v i a _ o n _ w i r e _ s h a p e Noshape − b l o c k _ r i n g _ t o p _ l a y e r _ l i m i t M1 −max \
130 _ s a m e _ l a y e r _ j o g _ l e n g t h 0 . 9 −p a d c o r e _ r i n g _ b o t t o m _ l a y e r _ l i m i t M1 −number_of_se t s \
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131 6 − s k i p _ v i a _ o n _ p i n S t a n d a r d c e l l − s t a c k e d _ v i a _ t o p _ l a y e r M9 −p a d c o r e _ r i n g _ t o p _ \
132 l a y e r _ l i m i t M1 −spacing 0 . 4 5 −m e r g e _ s t r i p e s _ v a l u e 0 . 1 6 − l aye r M6 −b lock_ r ing \
133 _ b o t t o m _ l a y e r _ l i m i t M1 −width 0 . 4 5 −area {} −nets {VDD VSS} − s t a c k e d _ v i a _ b o t \
134 t o m _ l a y e r M1
135

136

137 p l a c e D e s i g n
138

139

140 # I n s i d e each PowerDomain, a s s o c i a t e each c e l l ’ s VDD p i n wi th t h e
141 # d o m a i n− s p e c i f i c power n e t
142 g l o b a l N e t C o n n e c t PD1_VDD −type pgp in −pin VDD −powerDomain PD1
143 g l o b a l N e t C o n n e c t PD2_VDD −type pgp in −pin VDD −powerDomain PD2
144 g l o b a l N e t C o n n e c t PD3_VDD −type pgp in −pin VDD −powerDomain PD3
145 g l o b a l N e t C o n n e c t PD4_VDD −type pgp in −pin VDD −powerDomain PD4
146 # Connect VDD t o t h e VDD p i n of a l l t h e TOP domain c e l l s .
147 # Connect VSS t o e v e r y c e l l i n t h e d e s i g n ( s i n c e on ly h e a d e r s w i t c h e s a r e used )
148 g l o b a l N e t C o n n e c t VDD −type pgp in −pin VDD −powerDomain TOP −o v e r r i d e
149 g l o b a l N e t C o n n e c t VSS −type pgp in −pin VSS −al l
150 # Connect t h e VDDG p i n of t h e h e a d e r c e l l s t o t h e PowerDomains power n e t s
151 g l o b a l N e t C o n n e c t PD1_VDD −type pgp in −pin VDDG − i n s t ∗PD1_1_HEAD∗ −al l −o v e r r i d e
152 g l o b a l N e t C o n n e c t PD2_VDD −type pgp in −pin VDDG − i n s t ∗PD2_1_HEAD∗ −al l −o v e r r i d e
153 g l o b a l N e t C o n n e c t PD3_VDD −type pgp in −pin VDDG − i n s t ∗PD3_1_HEAD∗ −al l −o v e r r i d e
154 g l o b a l N e t C o n n e c t PD4_VDD −type pgp in −pin VDDG − i n s t ∗PD4_1_HEAD∗ −al l −o v e r r i d e
155 # Connect t h e VDDG p i n of t h e i s o l a t i o n c e l l s t o t h e PowerDomains power n e t s
156 g l o b a l N e t C o n n e c t PD1_VDD −type pgp in −pin VDDG − i n s t ∗PD1_iso∗ −al l −o v e r r i d e
157 g l o b a l N e t C o n n e c t PD2_VDD −type pgp in −pin VDDG − i n s t ∗PD2_iso∗ −al l −o v e r r i d e
158 g l o b a l N e t C o n n e c t PD3_VDD −type pgp in −pin VDDG − i n s t ∗PD3_iso∗ −al l −o v e r r i d e
159 g l o b a l N e t C o n n e c t PD4_VDD −type pgp in −pin VDDG − i n s t ∗PD4_iso∗ −al l −o v e r r i d e
160

161

162 s r o u t e −connect { b l o c k P i n padPin padRing c o r e P i n f l o a t i n g S t r i p e } − layerChangeRange \
163 { M1( 1 ) M9( 9 ) } −b l o c k P i n T a r g e t { n e a r e s t T a r g e t } −padPinPor tConnec t { a l l P o r t oneG \
164 eom } −padPinTarge t { n e a r e s t T a r g e t } −c o r e P i n T a r g e t { f i r s t A f t e r R o w E n d } − f l o a t i n g \
165 S t r i p e T a r g e t { b l o c k r i n g p a d r i n g r i n g s t r i p e r i n g p i n b l o c k p i n f o l l o w p i n } −al lowJog \
166 g ing 1 −c rossove rViaLayerRange { M1( 1 ) M9( 9 ) } −nets { PD1_VDD PD2_VDD PD3_VDD PD4_V \
167 DD VDD VSS } −al lowLayerChange 1 −blockPin u se L e f − t a rge tV iaLaye rRange { M1( 1 ) M9( 9 ) }
168

169 s e t P G P i n U s e S i g n a l R o u t e HEADX2:VDDG
170 r o u t e P G P i n U s e S i g n a l R o u t e −nets {VDD PD1_VDD PD2_VDD PD3_VDD PD4_VDD VSS}
171

172 setNanoRouteMode −qu ie t − rou teWi thTimingDr iven 1
173 setNanoRouteMode −qu ie t − routeWithEco 0
174 setNanoRouteMode −qu ie t − r o u t e T d r E f f o r t 3
175 setNanoRouteMode −qu ie t − d r o u t e S t a r t I t e r a t i o n d e f a u l t
176 setNanoRouteMode −qu ie t − rou teTopRout ingLayer d e f a u l t
177 setNanoRouteMode −qu ie t − rou teBo t tomRout ingLaye r d e f a u l t
178 setNanoRouteMode −qu ie t − d r o u t e E n d I t e r a t i o n d e f a u l t
179 setNanoRouteMode −qu ie t − rou teWi thTimingDr iven t r u e
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180 setNanoRouteMode −qu ie t − rou t eWi thS iDr iven f a l s e
181

182 r o u t e D e s i g n −g l o b a l D e t a i l −viaOpt −wireOpt
183

184 a d d F i l l e r −c e l l SHFILL1 −p r e f i x FILLER −doDRC
185 s e t f i l l e r _ c e l l _ s c r i p t " ${SCRIPTS_PATH } / f i l l e r _ c e l l s . t c l "
186 source $ f i l l e r _ c e l l _ s c r i p t > . . / r e p o r t s / f i l l e r s . t x t
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Appendix C

Filler cells script

This script is used during back end design to place filler cells in the top power domain. The name

of this script is "filler_cells.tcl" and serves as a complement to the backend script as it inserts the

remaining filler cells that the tool can’t place.

1 s e t L a y e r P r e f e r e n c e al lM0 − i s V i s i b l e 0
2 s e t L a y e r P r e f e r e n c e al lM1Cont − i s V i s i b l e 0
3 s e t L a y e r P r e f e r e n c e al lM1 − i s V i s i b l e 0
4 s e t L a y e r P r e f e r e n c e al lM2Cont − i s V i s i b l e 0
5 s e t L a y e r P r e f e r e n c e al lM2 − i s V i s i b l e 0
6 s e t L a y e r P r e f e r e n c e al lM3Cont − i s V i s i b l e 0
7 s e t L a y e r P r e f e r e n c e al lM3 − i s V i s i b l e 0
8 s e t L a y e r P r e f e r e n c e al lM4Cont − i s V i s i b l e 0
9 s e t L a y e r P r e f e r e n c e al lM4 − i s V i s i b l e 0

10 s e t L a y e r P r e f e r e n c e al lM5Cont − i s V i s i b l e 0
11 s e t L a y e r P r e f e r e n c e al lM5 − i s V i s i b l e 0
12 s e t L a y e r P r e f e r e n c e al lM6Cont − i s V i s i b l e 0
13 s e t L a y e r P r e f e r e n c e al lM6 − i s V i s i b l e 0
14 s e t L a y e r P r e f e r e n c e al lM7Cont − i s V i s i b l e 0
15 s e t L a y e r P r e f e r e n c e al lM7 − i s V i s i b l e 0
16 s e t L a y e r P r e f e r e n c e al lM8Cont − i s V i s i b l e 0
17 s e t L a y e r P r e f e r e n c e al lM8 − i s V i s i b l e 0
18 s e t L a y e r P r e f e r e n c e al lM9Cont − i s V i s i b l e 0
19 s e t L a y e r P r e f e r e n c e al lM9 − i s V i s i b l e 0
20 s e t L a y e r P r e f e r e n c e r o u t e G u i d e − i s V i s i b l e 0
21 s e t L a y e r P r e f e r e n c e p t n P i n B l k − i s V i s i b l e 0
22 s e t L a y e r P r e f e r e n c e p tnFeed − i s V i s i b l e 0
23 s e t L a y e r P r e f e r e n c e pwrdm − i s V i s i b l e 0
24 s e t L a y e r P r e f e r e n c e n e t R e c t − i s V i s i b l e 0
25 s e t L a y e r P r e f e r e n c e s u b s t r a t e N o i s e − i s V i s i b l e 0
26 s e t L a y e r P r e f e r e n c e powerNet − i s V i s i b l e 0
27 s e t L a y e r P r e f e r e n c e t r a c k O b j − i s V i s i b l e 0
28 s e t L a y e r P r e f e r e n c e nonP re fT rack Ob j − i s V i s i b l e 0
29 s e t L a y e r P r e f e r e n c e n e t − i s V i s i b l e 0
30 s e t L a y e r P r e f e r e n c e power − i s V i s i b l e 0
31 s e t L a y e r P r e f e r e n c e pgPower − i s V i s i b l e 0
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32 s e t L a y e r P r e f e r e n c e pgGround − i s V i s i b l e 0
33 s e t L a y e r P r e f e r e n c e s h i e l d − i s V i s i b l e 0
34 s e t L a y e r P r e f e r e n c e unknowSta te − i s V i s i b l e 0
35 s e t L a y e r P r e f e r e n c e m e t a l F i l l − i s V i s i b l e 0
36 s e t L a y e r P r e f e r e n c e c l o c k − i s V i s i b l e 0
37 s e t L a y e r P r e f e r e n c e w h a t I f S h a p e − i s V i s i b l e 0
38 s e t L a y e r P r e f e r e n c e c e l l − i s V i s i b l e 0
39

40 s e t c o u n t e r 0
41

42 s e t s t a r t x 30 . 0 8
43 s e t s t a r t y 30 . 0 8
44

45 s e t endx [ expr 382 .08−0 .32 ]
46 s e t endy 372 . 8
47

48 s e t x [ expr $ s t a r t x + 0 . 3 2 + 0 . 1 ]
49 s e t y [ expr $ s t a r t y + 0 . 1 6 ]
50

51 s e t t o t a l 0
52

53 s e t L a y e r P r e f e r e n c e i n s t − i s V i s i b l e 1
54

55 whi le {1} {
56 d e s e l e c t A l l
57

58 i f { $x >= $endx } {
59 s e t x [ expr $ s t a r t x + 0 . 3 2 + 0 . 1 ]
60 s e t y [ expr $y + 2 . 8 8 ]
61

62 i f { $y >= $endy } {
63 re turn
64 }
65 }
66

67 zoomBox [ expr $x −2] [ expr $y−2 ] [ expr $x + 2] [ expr $y + 2]
68

69 g u i _ s e l e c t −poin t [ expr $x ] [ expr $y ]
70

71 s e t type [ dbGet s e l e c t e d . o b j T y p e ]
72

73 i f { $ p t r == " 0x0 " } {
74 echo " Found h o l e − " $x $y
75 s e t name " TOP_FILL_ "
76 append name $ c o u n t e r
77 a d d I n s t −c e l l SHFILL1 − i n s t $name −loc $x $y
78

79 s e t t o t a l [ expr $ t o t a l +1]
80
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81 s e t c o u n t e r [ expr $ c o u n t e r + 1]
82 s e t x [ expr $x + 0 . 3 2 ]
83

84 } e l s e {
85 echo " Found c e l l − " $x $y $ p t r
86 s e t x [ expr $x + [ dbGet s e l e c t e d . b o x _ s i z e x ] ]
87 }
88 }
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