-

View metadata, citation and similar papers at core.ac.uk brought to you byff CORE

provided by Open Repository of the University of Porto

A contribution to the e-Framework - a
specification of a programming exercise
evaluation service

7z 1 - .7 5
José Paulo LealRicardo Queirdsand Duarte Ferreita

L3CRACS/INESC-Porto & DCC/FCUP, University of Porto, Poglg
zp@dcc.fc.up.ptc0216010@alunos.dcc.fc.up.pt

2CRACS/INESC-Porto & DI/ESEIG/IPP, Porto, Portugal
ricardo.queiros@eu.ipp.pt

Technical Report Series: DCC-2010-0

[PORTO

‘F FACULDADE DE CIENCIAS
UNIVERSIDADE DO PORTO

Departamento de Ci"encia de Computadores
Faculdade de Ci"encias da Universidade do Porto
Rua do Campo Alegre, 1021/1055,
4169-007 PORTO,
PORTUGAL
Tel: 220 402 900 Fax: 220 402 950
http://www.dcc.fc.up.pt/Pubs/

https://core.ac.uk/display/302906719?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

A contribution to the e-Framework - a
specification of a programming exercise
evaluation service

José Paulo Leal
CRACS/INESC-Porto & DCC/FCUP, University of PorRyrtugal
zp@dcc.fc.up.pt

Ricardo Queirés
CRACS/INESC-Porto & DI/ESEIG/IPP, Portugal
ricardo.queiros@eu.ipp.pt

Duarte Ferreira
CRACS/INESC-Porto & DCC/FCUP, University of PorRyrtugal
c0216010@alunos.dcc.fc.up.pt

Abstract

This work is a contribution to the e-Framework, uaigly the most
prominent e-learning framework today, and congi$the definition of
a service for the automatic evaluation of prograngrexercises. This
evaluation domain differs from trivial evaluationsiodelled by
languages such as the IMS Question & Test Inteedgility (QTI)
specification. Complex evaluation domains justife tdevelopment of
specialized evaluators that participate in sevérainess processes.
These business processes can combine other typgst@ms such as
Programming Contest Management Systems, Learningalyament
Systems, Integrated Development Environments aratnimg Object
Repositories where programming exercises are stased.earning
Objects. This contribution describes the implemioa approaches
used, more precisely, behaviours & requests, usent&ractions,
applicable standards, interface definition and essmgenarias

Keywords: SOA, interoperability, e-learning.

I. INTRODUCTION

In recent years several initiatives brought sengdentation to e-learning. These
initiatives, usually called e-learning frameworksipport the creation of flexible e-
learning systems using service oriented approatbespe with the heterogeneity of

the software environments found in most educatiorstitutions. Based on a previous
survey [1] we identified the e-Framework as onehaf most prominent e-learning

framework initiatives. The e-Framework success Itesfiom a strong and active

community of practice contributing with definitioraf service genres, expressions
and usage models. Potential submitters are encedirmguse the collaborative tools
provided by the e-Framework to share their contiilms and obtain feedback from

the community.

Our goal with this paper is to detail a contribatifor the e-Framework consisting
of a definition of a service for automatic evaloatiof programming exercises. This
evaluation domain differs significantly from triviaevaluations modelled by
languages such as the IMS Question & Test Inteedgility (QTI) specification. QTI
describes a data model for questions and testadatavas designed for questions with
a set of pre-defined answers. Complex evaluationaiias justify the development of
specialized evaluators. Exposing this type of eatidin as a service will allow
different types of systems to use it in severalinmss processes. Examples of this
type of systems are Programming Contest Managen®ydtems, Learning
Management Systems (LMS), Integrated Developmentir&mments (IDE) and
Learning Object Repository (LOR) where programmiexgrcises are stored as
Learning Objects (LO).

The contribution is a specialization of a non-tlvévaluation service genre as a
service expression. In the service expression wendtize the implementation
approaches, namely, behaviours & requests, usdegaictions, applicable standards,
interface definition and usage scenariés implementation of the proposed service
type evaluates an attempt to solve a programmirgcese and produces a detailed
report. This report includes information to supperercise assessment, grading
and/or ranking by client systems. The report itselhot an assessment, does not
include a grade and does not compare students.

The remainder of this paper is organized as follaestion 2 details the evolution
of e-learning towards the e-learning frameworksthie following section we present
the e-Framework, more precisely, its technical aodtribution model. Then, we
detail our contribution to the e-Framework withexvice expression for evaluating
programming exercises. Finally, we conclude withsammary of the major
contributions of this paper and our current worlkhiis project.

. CURRENT TRENDS IN E-LEARNING

The evolution of e-learning systems in the last werades was impressive. In
their first generation, e-learning systems wereettgped for a specific learning
domain and had a monolithic architecture [2]. Gedlgu these systems evolved and
became domain-independent, featuring reusable tihals can be effectively used
virtually in any e-learning course. The systemst tteach this level of maturity
usually follow a component-oriented architecturetider to facilitate tool integration.
An example of this type of system is the LMS tmiegrates several types of tools for
delivering content and for recreating a learningteat (e.g. Moodle, Sakai).

The present generation values the interchange ashileg objects and learners'
information through the adoption of new standaldg brought content sharing and
interoperability to e-learning. In this contextyveeal organizations have developed
specifications and standards in the last yearssé tapecifications define, among
many others, standards for e-learning content J&ndl interoperability [5]. In spite
of its adoption they have also been target ofaisith. These systems based around
pluggable and interchangeable components, led@ostzed systems that are difficult
to reconvert to changing roles and new demands saghthe integration of
heterogeneous services based on semantic informatie automatic adaptation of
services to users (both learners and teachers)ttendack of a critical mass of
services to supply the demand of e-learning prejeEhese issues triggered a new
generation of e-learning platforms based on seswicat can be integrated in different
scenarios. This new approach provides the basisSéwvice-oriented architecture
(SOA). In the last few years there have been tnita [6, 7, 8] to adapt SOA to e-
learning. These initiatives, commonly named e-legyrframeworks, had the same
goal: to provide flexible learning environments fearners worldwide. Usually they
are characterized by providing a set of open iata&r$ to numerous reusable services
organized in genres or layers and combined in cenwsage models. These initiatives
use intensively the standards [3, 4] for e-learrdagtent sharing and interoperability
developed in the last years by several organizatijerg. ADL, IMS GLC, IEEE).

Based on a previous survey [1], we conclude th&rasrework and Schools
Interoperability Framework (SIF) to be the mostpising e-learning frameworks
since they are the most active projects, both witarge number of implementations
worldwide. In the e-Framework we can contributepogposing new service genres,
service expressions and service usage models. Prv&Iicannot make this type of
contribution to the abstract framework. However,ca@ contribute with new agents,
such as learning objects repositories.

lll. THE E-FRAMEWORK

The e-Framework is an e-learning framework aiming facilitate technical
interoperability within and across higher educatad research through improved
strategic planning and implementation processesT}9 e-Framework is an initiative
that was initially established by the UK's Joinfohmation Systems Committee
(JISC) and Australia's Department of Education, Byment and Workplace
Relations (DEEWR). In 2007, the two founding partnevere joined by the New
Zealand Ministry of Education (NZ MoE) and The Namthnds SURF Foundation
(SURF).

The e-Framework has a knowledge base to suppaetcitsmical model. A proposal
for a new component must use the internal compsnefthe technical model. This
proposal might emerge from a technical project whexany people with different
skills are connected such as vendors, developectnical people, IT Managers,
institutions, hardware and software specialistsndée it's crucial to the community
have a basic understanding about the e-Frameworhnieal Model before

contributing. The next subsections details the itecture of the e-Framework, more
precisely, its technical and contribution model.

A. Technical Model

The technical model of the e-Framework aims tolifaté system interoperability
via a service-oriented approach [10]. The modelviges a set of technical
components enumerated in Table 1.

A service genredescribes a generic or abstract service expressddrins of
behaviours (e.g. authenticate, harvest, searchkevice genre specifies what a
service should do without specifying how it shouldrk. This type of component is
usually described by IT Managers without any techinknowledge.

A service expressions a realisation of a single service genre by dpeation of
exact interfaces and standards used. Since thipaoent covers various technical
aspects is more suitable for programmers.

A service usage model (SUMylescribes a model of the needs, requirements,
workflows, management policies and processes wihdomain. Hence, the expected
candidates to formally describe SUMs are those with domains’ knowledge. A
SUM is composed of either service genres or seexpeessions, but not a mixture.

Components Description User role

Service A collection of related behaviours thatNo technical expert
Genre describe an abstract capability. (e.g. IT Manager)
Service A specific way to realise a service genre with Technical expert
Expression particular interfaces and standards. (e.g. Developer)
Service Usage The relationships among technical components Domain expert
Model (services) used for software applications. (e.g. Business Analyst)

Table1l. Technical Model.

Service genres are technology-neutral descriptadnthe behaviours of services.
They can be bound to specific technologies by onenore service expressions.
Service genres can also be abstracted from seexjpressions. Service expressions
can be implemented in more than one way as seimipdementations, and these
implementations can be deployed in more than ore&eplas service instances.
Standards provide the interoperability of the datd messages used in the services.
Service implementations and instances may be mfetk by the e-Framework
through the technical model but are not part ofeff@amework Technical Model.

E-Framework Technical Components

Service Service
Implementation Implementation
Service Service
Instance Instance

Referenced by and linked from the E-Framework

Service Service Service
Expression Expression Expression

Fig. 1. Relationship of e-Framework concepts.

Other components such as specifications and stdsdeug. IMS Metadata, LOM)
are used by service expressions but are not alseedeby the e-Framework. The
relationship between these e-Framework concepepi®sented diagrammatically in
Fig. 1.

B. Contribution Model

To fulfil its vision of service oriented e-learnirgystems, integrating reusable,
interoperable services, the e-Framework seekstablesh a knowledge base, shared
by international education and research communifies collaborative development
of that this knowledge base relies on the contidimstof a community of practice.

To participate in the e-Framework the contributousin have a precise
understanding of how the contribution process workkis process is formally
described by a contribution model.

 am1 N sz N s N sesa)

Step 1 Step 2 Step 3 Step 4
Development Submission Review Publication
0] [

e Y e

Potential / Submitter / Submitter

Submitter Develop iteratively / Make formal / Wait for editor’s Acknowledge receipt

onwiki / submission f publish on website

[= #| check submission is complete
Discussions prior | Clarifications

| tosubmission | Final approval Submission published on website

\ | pecision from eFiG

|
|cattzboration and
| Feedback

0y LT N

0 N o
N g | ~f !
Community Editor » Editor - Editor /
Final approval | | Forward Final
decision | | submission toeFIG
9o 0y

AN 'T 'T 7

eFlg

Fig. 2. Contribution model in the e-Framework.

The diagram in Fig. 2 shows the submission prodessthe contribution of
documentation about technical components. The $tepéve a series of interactions
between a potential submitter, the community, tlegamework technical editor and
the e-Framework Integrity Group (eFIG). The eFIGhis panel that handles the final
decisions regarding the contributions to the e-fenaark.

Currently, the e-Framework includes a knowledgesbaith 46 service genres, 6
service expressions and 21 SUMs. However this numbk increase as more
components finished the above steps of the cotimibumodel.

IV. THE EVALUATE — PROGRAMMING EXERCISE SERVICE
EXPRESSION

A service expression is a specialization of a sergenre specifying the particular
implementation approaches used. In this sectiomefme a new service expression
specializing the Evaluate service génmaodelling the evaluation of an attempt to
solve an exercise defined as a learning objectmiples of this kind of exercise can
be drawn from different domains; in this servicpmrssion we focus on the automatic
evaluation of programming exercises.

The e-Framework model contains 20 distinct elemedotdescribe a service
expression, 9 of which are required elements, haddmaining either recommended
or optional. The Table 2 presents the required efégsmnames and the values assigned
for the Evaluate — Programming Exercise serviceeasgion.

1 We completed the definition of this service germd ae expect to publish it shortly

Required elements Values
Name Evaluate — Programming Exercise
Classification e Maturity: mature
« Development status: production
¢ State behaviour: stateless
¢ Transactional behaviour: non-transactional
¢ Service End Point: Transcoder (both requests
and provides)
¢ Authorized: yes
¢ Protocol Bindings: REST, SOAP
e Status: unapproved

Service Genre Non-trivial Evaluate service genre
Version 1.0
Description The service evaluates a student’'s aitetn solve a

programming exercise and produces a detailed report
the evaluation of an attempt.
Functionality « listing of the programming languages supported
by the evaluator;

e evaluating a computer program that attempts to
solve an exercise in a given programming
language;

« reporting on an evaluation.

Behaviours & Requests
Use & Interactions Detailed in the following subsections.
Applicable Standards

Table2. Required elements of for the Evaluate — Programgriixercise service expression

For the sake of terseness we describe just a sulisite service expression
content based on the templates provided by themé&work, more precisely:
* Required elements: Behaviours & Requests, Use &rdistions, Applicable
Standards;
* Recommended elements: Interface Definition;
» Optional elements: Usage Scenarios.

A. Behaviours & Reguests
The Behaviours & Requests elementdetails technical information about the

functions and operations of the service expressitve. use case diagram on Fig. 3
shows the three types of request handled by thvéceeexpression.

ListCapabilities

EvaluateSubmission

GetReport

» ListCapabilities: provides the client systems with the capabilit@fsa
particular evaluator;

e EvaluateSubmission: allows the request of an evaluation for a specific
programming exercise;

» GetReport: allows a requester to get a report for a speeif@uation using
a ticket.

Client

Fig. 3. Use Cases diagram.

The ListCapabilities function provides the client systems with the capabilités
a particular evaluator. Capabilities depend strpragi the evaluation domain. In a
programming exercise the evaluator capabilities eskted to the supported
programming language compilers or interpretershiEapability is described by a set
of features; for a programming language they maghledanguage name (e.g. Java),
its version (e.g. 1.5) and vendor (e.g. JDK).

The EvaluateSubmission function requests the evaluation of a program. The
request of an evaluation is based on three parasneteeference for a programming
exercise described as a learning object, an atttorgailve the exercise and a specific
capability to be used in evaluation (e.g. compild axecute as a Java program). The
evaluator returns a report on the evaluation, i dompleted within a predefined time
frame. In any case the response will include aeti¢k recover the report on a later
date.

The GetReport function returns a report for a specific evaluation usinticket.
The report contains detailed information on thel@atton but should not be view as
an assessment, in the sense that does not ddwaagtémpt as acceptable, does not it
include a grade. The report sent to the clientlmamsed as input for other systems
(e.g. classification systems, feedback systemsg. rEport included in this response
may be transformed in the client side based on & XMlesheet. This way the client
will be able to filter out parts of the report atladcalculate a classification based on its
data.

B. Use& Interactions

The Use & Interactions element illustrates how fhactions defined in the
Requests & Behaviours section are combined to m@duworkflow. An interaction

involving the evaluator and two other service typesng the three main functions of
the evaluator, is depicted schematically in Figsdan UML sequence diagram.

Learning:LMS Repository:LOR Evaluator:EE
.

search(XQuery guery) : XML

List of LO'=s URLs and meta-data

|
|
|
|
LO |
|
.

loop J I

evaluﬁtaSubmissiun(URll loid, String attempt, ID capability) : ERL

Getasset{URL loid, String asset) : Asset

Asset file

| GetReport(String ticket) : ERL

| ticket and report

L] [
Fig. 4. Interacting with the evaluator.

The diagram includes three objects representing:

* Learning Management System - to manage the exsrsigéable to specific
learner’s profiles;

e Evaluation Engine - to automatically evaluate andédg the students'
attempts to solve the exercises;

e Learning Objects Repository - to store programnaRregrcises and to retrieve
those suited to a particular learner profile.

The workflow presented in Fig. 4 starts with thenfaguration of an evaluation
activity in an LMS (e.g. Moodle with an evaluatigniugin). The configuration
involves the selection of programming exercises @ogramming languages and will
be carried out by a teacher. To select relevangraraming exercises the LMS
forwards the searches to a repository. To selerpmming language the LMS uses
the ListCapabilities function of the evaluator.

During the evaluation activity itself the LMS itéea on the evaluation of all
submissions. In general each student is able termakeral submissions for the same
exercise and an activity may include several egesciEach evaluation starts with an
EvaluateSubmission request from the LMS to theuatal, sending a program and
referring an exercise and a programming language. dvaluator retrieves the LO
from the repository to have access to test capesja correctors and other metadata.

The response to of this function returns a ticked @an evaluation report, if the
evaluation is completed within a certain time fraridhe LMS may retrieve the
evaluation report using the GetReport function wlith ticket as argument.

C. Applicable Standards

The Applicable Standards element enumerates thesxamd versions of all the
domain and technical standards, specifications apyulication profiles needed to
provide the functionality of the service expressidfe organize them in content and
communication, the former including e-learning sli@amis and specifications, and the
later including e-learning interoperability and wadyvices standards.

Content standards and specifications

The pertinent e-learning content standards forghbirsice expression are the IMS
Content Packaging (IMS CP) [11] v1.1.4 final speeifion and the IEEE Learning
Object Metadata (LOM). We introduce also a speaifomn from a previous work [12]
where we defined programming exercises as leawidjects based on the IMS CP.

An IMS CP learning object assembles resources agtd-ata into a distribution
medium, typically a file archive in zip format, Witits content described in a file
namedimsmanifest.xmlat the root level. The manifest contains four isest meta-
data, organizations, resources and sub-manifesis. Main sections are meta-data,
which includes a description of the package, argburces, containing a list of
references to other files in the archive (resoyraed dependency between them.

This standard was defined for LO in general, nactrally for programming
problems. In particular, the IMS CP schemata (iditlg the IEEE LOM) lack
features for describing all the resources requicederform the automatic evaluation
of programming problems. For instance, there isvag to assert the role of specific
resources, such as test cases or solutions. FetyniMS CP was designed to be
straightforward to extend it and thus we were ablese this standard for our purpose
of defining programming problems as learning olgect

LOM
metadata

Eduwudge

Lom
metadata

extension metadata

FES0Urces

IMS CP package
(extended with El MD)

rEs0Urces

IMS CP package

Fig. 5. The extension of the IMS CP specificationléscribe programming exercises.

Meta-data information in the manifest file usudthlows the IEEE LOM schema,
although other schemata can be used. Since thedattarelated to the automatic
evaluation cannot be conveniently represented usiadEEE LOM, it is encoded in
elements of a new schema - the EduJudge Meta-geatEfigation (EJ MD) as shown
in Fig.5.

All these standards as well the message bindinthisf service expression are
described by schema languages, most often usingXMe Schema Definition
language (XSD). This language overcame Documente Tefinition (DTD)
limitations and provided several advanced featwsash as, the ability to build new
types derived from basic ones, manage relationshgigieen elements (similar to
relational databases) and combine elements froerakeschemata.

Communication standards

The only e-learning interoperability standard relavto this service expression is
the IMS DRI specification [5]. It was created byetHMS Global Learning
Consortium (IMS GLC) and provides a functional aetture and reference model
for repository interoperability. The IMS DRI proed recommendations for common
repository functions, namely the submission, searath download of LO. The IMS-
DRI must be used by the evaluator with the LO répos

There are no e-learning standards for interopetabilith evaluators thus we
focus on general communication standards such @sethelated with web service
communication. There are two main web servicesoflas: Simple Object Access
Protocol (SOAP) [13] and Representational Statendfex (REST) [14]. We propose
that the service expression supports both flavours.

SOAP web services are usually action oriented, asle when used in Remote
Procedure Call (RPC) mode and implemented by atthefshelf SOAP engine such
as Axis [15]. REST web services are object (resunriented and implemented
directly over the HTTP protocol, mostly to put agdt resources. The reason to
provide two distinct web service flavours is to em@ge the use of the evaluator by
developers with different interoperability requiremts. A system requiring a formal
an explicit definition of the API in Web Serviceg$&xription Language (WSDL) [16],
to use automated tools to create stubs, will seleetSOAP flavour. A lightweight
system seeking a small memory footprint at the egpef a less formal definition of
the API will select the REST flavour.

D. I nterface Definition

The Interface Definition element formalizes the eiflces of the service
expression, namely the syntax of requests and msggoof its functions. This
particular service expression exposes its functamSOAP and REST web services.
The syntax of function requests in both flavoursusmimarized in Table 3.

Function Web Syntax
Service
SOAP ERL ListCapabilities()

ListCapabilities oo+ GET fevaluate/ > ERL

SOAP ERL Evaluate (Problem, Attempt ,Capability)

REST POST /evaluate/$CID?id=LOID < PROGRAM > ERL
SOAP ERL GetReport(Ticket)

REST GET $Ticket > ERL

EvaluateSubmission

GetReport

Table 3. Service Expression function requests in SOAPRIEET.

The remainder of this sub-section describes thasetibns in detail. All these
functions respond with an XML document complyinghwihe Evaluation Response
Language (ERL) that we describe in the first subssation. The following sub-
subsections describe the use of each function witdimples of requests and the
respective responses in ERL.

Evaluation Response Language

The Evaluation Response Language (ERL) is formélise XML Schema and
covers the definition of the response messagethéthree evaluator functions. The
diagram depicted in the Fig. 6 includes two maiamednts:request and replyThe
former echoes the request function and its parasei® received by the evaluation
service and the later contains the output to thqhiest.

MessageType RephyType
& date dateTime & date dateTime
[] reply ReplyType ticket anyURI
1| (€] request RequestType _[2] capabiliies _ CapabilitiesType
;+ i [#] report ReportType
RequestType (listCapabilitiesType)
@ date dateTime
[€] listCapabilities (listCapabilitiesType) (evaluateSubmissionType)
(&) evalusteSubmission (evelusteSubmissionType) learningObject anyURI
N [¢] getReport (getReportType) capability D
- [e] program string

(getReportType)

Fig. 6. The ERL schema.

The requestelement contains a different sub-element accordinghe function
type. Thereply element includes two sub-elements representingabsible responses
of the service as shown in Fig. 7, more precisthg capabilitiesandreport elements.
The capabilities element is used in a ListCapabilities responsds Hhement has
severalcapability sub-elements each with sevet@dtureelements to describe it. The
ticket attribute holds a ticket to recover a report dater date.

ReplyType [CapabilitiesType |
g date dateTime | [€] capability [1.%] CapabilityType |
ticket anyURI

- [€] capabilities ~ CapabilitiesType ReportType CapabilityType

o1 - [€] report ReportType evaluationServer anyURI id jin}
[e] capability CapabilityType e [g] feature [0.7] FeatureType
[e] exercise ExerciseType
[€] tests TestsType ExerciseType

href anyURD

TestsType

e [e] test [0.%] TestType

Fig. 7. The reply element.

Thereportelement contains a detailed evaluation repohast a single mandatory
evaluationServer attribute representing the URIthef evaluator. This element also
includes the following sequence of sub-elements:

e capability a specific evaluator capability used to evaldhte attempt;

» exercise a reference to the Learning Object and the ditlthe exercise;

» tests contains a set of tests for the evaluation ofghiemitted attempt. Each

testelement represents a test case describing resosugplied to evaluate
the submitted program.

Type TestType (B imodeTyps))
(= [etest 0.1 TestType mode (modeType)

executionTime int MarkType
[e] input string ® totalValue string
[€] expectedOutput string obtainedValue string
[€] obtainedOutput string

- [€] outputDifferences string [EnvironmentValuesType |
[&] mark MarkType ‘ 5] Value ValueType |
[€] feedback [0.1] string
@& Value: ValuesType

Fig. 8. The test element.

As shown in Fig. 8, each test corresponds to destegt case that can be repeated
to create a test set. The submitted program isutedconce for eactest element,
receiving as input the content of tinput element. The resulting output, stored in the
obtainedOutput element, is compared to the expected output auedaiin the
expectedOutputelement. TheoutputDifferences element describes the differences
between the two previous elements using the syaftthe Unix diff command [17].

The test element contains also data for grading and canggtrograms. This
element includes aark element to assign a mark for a successful exatufibe
client may compute a grade for the submission astim of the marks of successful
executions. The optionafeedback element contains detailed feedback for an
unsuccessful execution. The environment values dist of property-value pairs that
may be supplied by the execution environment. Fwstance, if the execution
environment is able to report the memory usagembgram execution then this data
is recorded in this element.

ListCapabilities function

The ListCapabilitiegunction returns the capabilities of a specificlaator. Using
the REST API this operation is performed by sendinGET HTTP request to the
evaluator, as in the following example.

GET http://eval.domain.org/evaluate > ERL

The following document is an example of the HTTBpanse complying with the
ERL specification.

<?xml version="1.0" encoding="UTF-8"?>
<message date="2010-12-31T712:00:00">
<request date="2010-12-31T12:00:00">
<listCapabilities/>
</request>
<reply date="2010-12-31T12:00:00">
<capabilities>
<capability id="Javal.5">
<feature name="Language" value="Java"/>
<feature name="Language Version" value="1.5"/>
</capability>
<capability id="Javal.6">
<feature name="Language" value="Java" />
<feature name="Language Version" value="1.6"/>
</capability>
</capabilities>
</reply>
</message>

EvaluateSubmission function

The EvaluateSubmissidunction evaluates a computer program that atterapts
solve an exercise in a given programming languddgng the REST API this
operation is performed by sending a POST HTTP r>e the server, as in the
following example.

POST http://eval.domain.org/evaluate/javal.6?
id=http://lor.domain.org/lo/123 < PROGRAM > ERL

The HTTP parameter id is a reference to a LO whit programming exercise.
The PROGRAM is an attempt to solve it. The ERL lie tontent of the HTTP
response to the above request. It includes an XN& domplying with the ERL
specification and containing a ticket.

<?xml version="1.0" encoding="UTF-8"?>
<message date="2001-12-31T712:00:03" >
<request date="2001-12-31T12:00:01">
<evaluateSubmission
capability="Javal.6” learningObject="http://lor.dain.org/lo/123">
<program><![CDATA[... program code here ...]]prdgram>
</evaluateSubmission>
</request>
<reply
date="2001-12-31T12:00:02" ticket="https://eval.dmmorg/report/123/xpto”/>
</reply>
</message>

GetReport function

The GetReporunction returns a report on an evaluation attetdping the REST
API this operation is performed by sending a GETTRTrequest to the evaluator, as
in the following example.

GET https://eval.domain.org/report/123/xpto > ERL

The URL is the ticket obtained in the last requ&se following is an example of
the HTTP response.

<message date="2001-12-31T712:00:00">
<request date="2001-12-31T12:00:00">
<getReport ticket="https://eval.domain.org/rept8/xpto”/>
</request>
<reply date="2001-12-31T12:00:00">
<report evaluationServer="https://eval.domain/trg
<capability id="Javal.6"/>
<exercise href="http://lor.domain.org/lo/123">
A very simple Problem</exercise>
<tests>
<test executionTime="100" mode="program">
<input>1,2,3,4</input>
<expectedOutput>4</expectedOutput>
<obtainedOutput>4</obtainedOutput>
<outputDifferances></outputDifferences>
<mark obtainedValue="1" totalValue="1"/>
<feedback></feedback>
<environmentValues>
<environmentValue name="memory" value="12kb"
</environmentValues>
</test>
</tests>
</report>
<[reply>
</message>

E. Usage Scenarios

The Usage Scenarios element characterizes the ofpesrkflows in which the
service expression is used. In our case these lworkfypes can be classified as
curricular and competitive learning. In this suloctgm we detail the requirements of
these different scenarios.

Curricular learning in computer programming requires the evaluation of
exercises in several moments such as practicaedaassignments and examinations.
A programming evaluation service can be used irthalte cases. Its usefulness in
practical classes results from the instant feedlitapkovides to students, identifying
the failed test cases and providing hints to restitem. In programming assignments
combining automatic and human evaluation both faekitand grading are relevant.
In this scenario the student may submit multipfees, until a number of tests is
passed, and receive automated feedback in thegmdceexaminations grading is the
most relevant part and different grading policies de implemented by the client
based on the tests cases that were successfullyleimah.

Competitive learning relies on the competitiveness of students to aseetheir
programming skills. This is the common goal of sal/programming contests where
students at different levels compete such as:rtegriational Olympiad in Informatics
(I0l) [18], for secondary school students; the ACMternational Collegiate
Programming Contests (ICPC) [19], for universitydgints; and the IEEExtreme [20],
for IEEE student members. Each programming conypst has its own set of rules.
In some cases students participate individuallyirfakOl and IEEExtreme) in other
cases they participate as a team (as in ICPC). dWere each contest has its own
policy for grading and ranking submissions. Fotanse, 10 assigns points to tests
and ICPC just accepts a submission if it passeestd, and gives a penalty for failed
submissions when an exercise is accepted.

An implementation of the proposed service expresgieceets the evaluation
requirements of this wide range of scenarios, froumricular and competitive
learning. The evaluation report does not compugeade, points or classification, nor
produces a feedback for any particular scenariovdver, all these can be easily
computed by clients using a XSL transformationfm XML formatted report.

V. CONCLUSION AND ONGOING WORK

This paper presents a contribution to the e-Framlewonsisting of a non-trivial
evaluation service for programming exercises. Mmexisely, we add a new service
expression specializing an existing service geefiaing its behaviours and requests,
and specified implementation approaches such acable standards and interface
definitions.

The main contribution of this work is the proposéla new service expression
itself. A secondary contribution is the descriptiminthe e-Framework technical and
contribution models that may prove useful to othmarsons or organizations
considering a similar contribution.

We are currently developing an evaluation enginesetiaon this service
expression. This implementation is based on Virtddathines (VM) to execute the
programs on a safe and controlled environment artivided into five components,
two controlling the evaluation service and othee¢hsupporting the execution of the
programs on the VM. The five independent compongivs the evaluation engine a
higher scalability. The use of VM allows us to mgaa high number of capabilities
such as languages and programming environments ditierent operating systems,
including obsolete versions.

REFERENCES

[1] Leal, J.P. and Queirés, R.: eLearning Frameworlsiraey. Proceedings of International
Technology, Education and Development Conferenc®,204lencia, Spain, (2010)

[2] Dagger, D., O'Connor, A., Lawless, S., Walsh, E.d&/a/.: Service Oriented eLearning
Platforms: From Monolithic Systems to Flexible Seeg (2007)

[38] IMS CcC Specification, Version 1.0 Final Specification
http://www.imsglobal.org/cc/index.html

[4] SCORM specification, http://www.adlnet.gov/Pages/D#faspx

[5] IMS DRI - IMS Digital Repositories Interoperabilit2003. Core Functions Information
Model, http://www.imsglobal.org/digitalrepositories

[6] C. Smythe: “IMS Abstract Framework - A review", IMSlobal Learning Consortium,
Inc. (2003)

[7] S. Wilson, K. Blinco, D. Rehak: “An e-Learning FramaW’ - Paper prepared on behalf
of DEST (Australia), JISC-CETIS (UK), and Industryr@da, (2004)

[8] Schools Interoperability Framework, http://www.sgaciation.org

[9] Official website of e-Framework for Education andsBa&ch, http://www.e-framework.org

[10] e-Framework Technical Walk-through, http://www.affrework.org/Portals/9/docs/e-
Framework%20technical%20walk-through%20v1.1.pdf

[11] IMS-CP - IMS Content Packaging, Information ModelsBRractice and Implementation
Guide, Version 1.1.4 Final Specification IMS Glohehrning Consortium Inc.,
http://www.imsglobal.org/content/packaging/#verdidn4

[12] Leal, J.P., Queirds, R.: Defining Programming Protdeas Learning Objects - ICCEIT
2009 - International Conference on Computer Edugatind Instructional Technology,
Venice, Italy, (2009)

[13] SOAP (Simple Object Access Protocol), Version 1Part 0: Primer, ¥ edition,
http://www.w3.0rg/TR/2007/REC-soap12-part0-2007042007)

[14] Fielding, R.: Architectural Styles and the Design bfetwork-based Software
ArchitecturesPhd dissertationhttp://www.ics.uci.edu/~fielding, (2000)
/pubs/dissertation/rest_arch_style.htm

[15] Apache Axis, 2006. Project homepage, http://ws apacg/axis/

[16] WSDL, 2007. Web Services Description Language (WgBSWBErsion 2.0 Part 1. Core
Language, http://www.w3.0org/TR/wsdI20/

[17] Johnson, M.: Diff, Patch, and Friends. Linux Jourkalume 1996, Issue 28es, (1996)

[18] 101 Official Web Site, www.ioinformatics.org

[19] ACM International Collegiate Programming Contest (IGgPOfficial Web Site,
http://icpc.baylor.edu/

[20] IEEExtreme Official Web Site, http://ieeextreme/org

