
A contribution to the e-Framework - a
specification of a programming exercise

evaluation service

José Paulo Leal
1

, Ricardo Queirós2 and Duarte Ferreira3

1,3CRACS/INESC-Porto & DCC/FCUP, University of Porto, Portugal

zp@dcc.fc.up.pt, c0216010@alunos.dcc.fc.up.pt

 2CRACS/INESC-Porto & DI/ESEIG/IPP, Porto, Portugal
ricardo.queiros@eu.ipp.pt

Technical Report Series: DCC-2010-0

Departamento de Ciˆencia de Computadores
Faculdade de Ciˆencias da Universidade do Porto

Rua do Campo Alegre, 1021/1055,
4169-007 PORTO,

PORTUGAL
Tel: 220 402 900 Fax: 220 402 950

http://www.dcc.fc.up.pt/Pubs/

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Open Repository of the University of Porto

https://core.ac.uk/display/302906719?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

A contribution to the e-Framework - a
specification of a programming exercise

evaluation service

José Paulo Leal
CRACS/INESC-Porto & DCC/FCUP, University of Porto, Portugal

zp@dcc.fc.up.pt

Ricardo Queirós
CRACS/INESC-Porto & DI/ESEIG/IPP, Portugal

ricardo.queiros@eu.ipp.pt

Duarte Ferreira

CRACS/INESC-Porto & DCC/FCUP, University of Porto, Portugal
c0216010@alunos.dcc.fc.up.pt

Abstract

This work is a contribution to the e-Framework, arguably the most
prominent e-learning framework today, and consists of the definition of
a service for the automatic evaluation of programming exercises. This
evaluation domain differs from trivial evaluations modelled by
languages such as the IMS Question & Test Interoperability (QTI)
specification. Complex evaluation domains justify the development of
specialized evaluators that participate in several business processes.
These business processes can combine other type of systems such as
Programming Contest Management Systems, Learning Management
Systems, Integrated Development Environments and Learning Object
Repositories where programming exercises are stored as Learning
Objects. This contribution describes the implementation approaches
used, more precisely, behaviours & requests, use & interactions,
applicable standards, interface definition and usage scenarios.

Keywords: SOA, interoperability, e-learning.

I. INTRODUCTION

In recent years several initiatives brought service orientation to e-learning. These
initiatives, usually called e-learning frameworks, support the creation of flexible e-
learning systems using service oriented approaches, to cope with the heterogeneity of

the software environments found in most educational institutions. Based on a previous
survey [1] we identified the e-Framework as one of the most prominent e-learning
framework initiatives. The e-Framework success results from a strong and active
community of practice contributing with definitions of service genres, expressions
and usage models. Potential submitters are encouraged to use the collaborative tools
provided by the e-Framework to share their contributions and obtain feedback from
the community.

Our goal with this paper is to detail a contribution for the e-Framework consisting
of a definition of a service for automatic evaluation of programming exercises. This
evaluation domain differs significantly from trivial evaluations modelled by
languages such as the IMS Question & Test Interoperability (QTI) specification. QTI
describes a data model for questions and test data and was designed for questions with
a set of pre-defined answers. Complex evaluation domains justify the development of
specialized evaluators. Exposing this type of evaluation as a service will allow
different types of systems to use it in several business processes. Examples of this
type of systems are Programming Contest Management Systems, Learning
Management Systems (LMS), Integrated Development Environments (IDE) and
Learning Object Repository (LOR) where programming exercises are stored as
Learning Objects (LO).

The contribution is a specialization of a non-trivial evaluation service genre as a
service expression. In the service expression we formalize the implementation
approaches, namely, behaviours & requests, use & interactions, applicable standards,
interface definition and usage scenarios. An implementation of the proposed service
type evaluates an attempt to solve a programming exercise and produces a detailed
report. This report includes information to support exercise assessment, grading
and/or ranking by client systems. The report itself is not an assessment, does not
include a grade and does not compare students.

The remainder of this paper is organized as follows: section 2 details the evolution
of e-learning towards the e-learning frameworks. In the following section we present
the e-Framework, more precisely, its technical and contribution model. Then, we
detail our contribution to the e-Framework with a service expression for evaluating
programming exercises. Finally, we conclude with a summary of the major
contributions of this paper and our current work in this project.

II. CURRENT TRENDS IN E-LEARNING

The evolution of e-learning systems in the last two decades was impressive. In
their first generation, e-learning systems were developed for a specific learning
domain and had a monolithic architecture [2]. Gradually, these systems evolved and
became domain-independent, featuring reusable tools that can be effectively used
virtually in any e-learning course. The systems that reach this level of maturity
usually follow a component-oriented architecture in order to facilitate tool integration.
An example of this type of system is the LMS that integrates several types of tools for
delivering content and for recreating a learning context (e.g. Moodle, Sakai).

The present generation values the interchange of learning objects and learners'
information through the adoption of new standards that brought content sharing and
interoperability to e-learning. In this context, several organizations have developed
specifications and standards in the last years. These specifications define, among
many others, standards for e-learning content [3, 4] and interoperability [5]. In spite
of its adoption they have also been target of criticism. These systems based around
pluggable and interchangeable components, led to oversized systems that are difficult
to reconvert to changing roles and new demands such as the integration of
heterogeneous services based on semantic information, the automatic adaptation of
services to users (both learners and teachers), and the lack of a critical mass of
services to supply the demand of e-learning projects. These issues triggered a new
generation of e-learning platforms based on services that can be integrated in different
scenarios. This new approach provides the basis for Service-oriented architecture
(SOA). In the last few years there have been initiatives [6, 7, 8] to adapt SOA to e-
learning. These initiatives, commonly named e-learning frameworks, had the same
goal: to provide flexible learning environments for learners worldwide. Usually they
are characterized by providing a set of open interfaces to numerous reusable services
organized in genres or layers and combined in service usage models. These initiatives
use intensively the standards [3, 4] for e-learning content sharing and interoperability
developed in the last years by several organizations (e.g. ADL, IMS GLC, IEEE).

Based on a previous survey [1], we conclude that e-Framework and Schools
Interoperability Framework (SIF) to be the most promising e-learning frameworks
since they are the most active projects, both with a large number of implementations
worldwide. In the e-Framework we can contribute by proposing new service genres,
service expressions and service usage models. On SIF we cannot make this type of
contribution to the abstract framework. However, we can contribute with new agents,
such as learning objects repositories.

III. THE E-FRAMEWORK

The e-Framework is an e-learning framework aiming to facilitate technical
interoperability within and across higher education and research through improved
strategic planning and implementation processes [9]. The e-Framework is an initiative
that was initially established by the UK's Joint Information Systems Committee
(JISC) and Australia's Department of Education, Employment and Workplace
Relations (DEEWR). In 2007, the two founding partners were joined by the New
Zealand Ministry of Education (NZ MoE) and The Netherlands SURF Foundation
(SURF).

The e-Framework has a knowledge base to support its technical model. A proposal
for a new component must use the internal components of the technical model. This
proposal might emerge from a technical project where many people with different
skills are connected such as vendors, developers, technical people, IT Managers,
institutions, hardware and software specialists. Hence, it’s crucial to the community
have a basic understanding about the e-Framework Technical Model before

contributing. The next subsections details the architecture of the e-Framework, more
precisely, its technical and contribution model.

A. Technical Model

The technical model of the e-Framework aims to facilitate system interoperability
via a service-oriented approach [10]. The model provides a set of technical
components enumerated in Table 1.

A service genre describes a generic or abstract service expressed in terms of
behaviours (e.g. authenticate, harvest, search). A service genre specifies what a
service should do without specifying how it should work. This type of component is
usually described by IT Managers without any technical knowledge.

A service expression is a realisation of a single service genre by specification of
exact interfaces and standards used. Since this component covers various technical
aspects is more suitable for programmers.

A service usage model (SUM) describes a model of the needs, requirements,
workflows, management policies and processes within a domain. Hence, the expected
candidates to formally describe SUMs are those with the domains’ knowledge. A
SUM is composed of either service genres or service expressions, but not a mixture.

Components Description User role
Service
Genre

A collection of related behaviours that
describe an abstract capability.

No technical expert
(e.g. IT Manager)

Service
Expression

A specific way to realise a service genre with
particular interfaces and standards.

Technical expert
(e.g. Developer)

Service Usage
Model

The relationships among technical components
(services) used for software applications.

Domain expert
(e.g. Business Analyst)

Table 1. Technical Model.

Service genres are technology-neutral descriptions of the behaviours of services.
They can be bound to specific technologies by one or more service expressions.
Service genres can also be abstracted from service expressions. Service expressions
can be implemented in more than one way as service implementations, and these
implementations can be deployed in more than one place as service instances.
Standards provide the interoperability of the data and messages used in the services.
Service implementations and instances may be referenced by the e-Framework
through the technical model but are not part of the e-Framework Technical Model.

Fig. 1. Relationship of e-Framework concepts.

Other components such as specifications and standards (e.g. IMS Metadata, LOM)

are used by service expressions but are not also defined by the e-Framework. The
relationship between these e-Framework concepts is represented diagrammatically in
Fig. 1.

B. Contribution Model

To fulfil its vision of service oriented e-learning systems, integrating reusable,
interoperable services, the e-Framework seeks to establish a knowledge base, shared
by international education and research communities. The collaborative development
of that this knowledge base relies on the contributions of a community of practice.

To participate in the e-Framework the contributor must have a precise
understanding of how the contribution process works. This process is formally
described by a contribution model.

Fig. 2. Contribution model in the e-Framework.

The diagram in Fig. 2 shows the submission process for the contribution of

documentation about technical components. The steps involve a series of interactions
between a potential submitter, the community, the e-Framework technical editor and
the e-Framework Integrity Group (eFIG). The eFIG is the panel that handles the final
decisions regarding the contributions to the e-Framework.

Currently, the e-Framework includes a knowledge base with 46 service genres, 6
service expressions and 21 SUMs. However this number will increase as more
components finished the above steps of the contribution model.

IV. THE EVALUATE – PROGRAMMING EXERCISE SERVICE
EXPRESSION

A service expression is a specialization of a service genre specifying the particular
implementation approaches used. In this section we define a new service expression
specializing the Evaluate service genre1, modelling the evaluation of an attempt to
solve an exercise defined as a learning object. Examples of this kind of exercise can
be drawn from different domains; in this service expression we focus on the automatic
evaluation of programming exercises.

The e-Framework model contains 20 distinct elements to describe a service
expression, 9 of which are required elements, and the remaining either recommended
or optional. The Table 2 presents the required elements names and the values assigned
for the Evaluate – Programming Exercise service expression.

1 We completed the definition of this service genre and we expect to publish it shortly.

Required elements Values
Name Evaluate – Programming Exercise
Classification • Maturity: mature

• Development status: production
• State behaviour: stateless
• Transactional behaviour: non-transactional
• Service End Point: Transcoder (both requests

and provides)
• Authorized: yes
• Protocol Bindings: REST, SOAP
• Status: unapproved

Service Genre Non-trivial Evaluate service genre
Version 1.0
Description The service evaluates a student’s attempt to solve a

programming exercise and produces a detailed report on
the evaluation of an attempt.

Functionality • listing of the programming languages supported
by the evaluator;

• evaluating a computer program that attempts to
solve an exercise in a given programming
language;

• reporting on an evaluation.
Behaviours & Requests

Detailed in the following subsections. Use & Interactions
Applicable Standards

Table 2. Required elements of for the Evaluate – Programming Exercise service expression

For the sake of terseness we describe just a subset of the service expression
content based on the templates provided by the e-Framework, more precisely:

• Required elements: Behaviours & Requests, Use & Interactions, Applicable
Standards;

• Recommended elements: Interface Definition;
• Optional elements: Usage Scenarios.

A. Behaviours & Requests

The Behaviours & Requests element details technical information about the
functions and operations of the service expression. The use case diagram on Fig. 3
shows the three types of request handled by this service expression.

Fig. 3. Use Cases diagram.

• ListCapabilities: provides the client systems with the capabilities of a
particular evaluator;

• EvaluateSubmission: allows the request of an evaluation for a specific
programming exercise;

• GetReport: allows a requester to get a report for a specific evaluation using
a ticket.

The ListCapabilities function provides the client systems with the capabilities of

a particular evaluator. Capabilities depend strongly on the evaluation domain. In a
programming exercise the evaluator capabilities are related to the supported
programming language compilers or interpreters. Each capability is described by a set
of features; for a programming language they may be the language name (e.g. Java),
its version (e.g. 1.5) and vendor (e.g. JDK).

The EvaluateSubmission function requests the evaluation of a program. The
request of an evaluation is based on three parameters: a reference for a programming
exercise described as a learning object, an attempt to solve the exercise and a specific
capability to be used in evaluation (e.g. compile and execute as a Java program). The
evaluator returns a report on the evaluation, if it is completed within a predefined time
frame. In any case the response will include a ticket to recover the report on a later
date.

The GetReport function returns a report for a specific evaluation using a ticket.
The report contains detailed information on the evaluation but should not be view as
an assessment, in the sense that does not declare the attempt as acceptable, does not it
include a grade. The report sent to the client can be used as input for other systems
(e.g. classification systems, feedback systems). The report included in this response
may be transformed in the client side based on a XML stylesheet. This way the client
will be able to filter out parts of the report and to calculate a classification based on its
data.

B. Use & Interactions

The Use & Interactions element illustrates how the functions defined in the
Requests & Behaviours section are combined to produce a workflow. An interaction

involving the evaluator and two other service types, using the three main functions of
the evaluator, is depicted schematically in Fig. 4 as an UML sequence diagram.

Fig. 4. Interacting with the evaluator.

The diagram includes three objects representing:
• Learning Management System - to manage the exercises suitable to specific

learner’s profiles;
• Evaluation Engine - to automatically evaluate and grade the students'

attempts to solve the exercises;
• Learning Objects Repository - to store programming exercises and to retrieve

those suited to a particular learner profile.
The workflow presented in Fig. 4 starts with the configuration of an evaluation

activity in an LMS (e.g. Moodle with an evaluation plugin). The configuration
involves the selection of programming exercises and programming languages and will
be carried out by a teacher. To select relevant programming exercises the LMS
forwards the searches to a repository. To select programming language the LMS uses
the ListCapabilities function of the evaluator.

During the evaluation activity itself the LMS iterates on the evaluation of all
submissions. In general each student is able to make several submissions for the same
exercise and an activity may include several exercises. Each evaluation starts with an
EvaluateSubmission request from the LMS to the evaluator, sending a program and
referring an exercise and a programming language. The evaluator retrieves the LO
from the repository to have access to test cases, special correctors and other metadata.

The response to of this function returns a ticket and an evaluation report, if the
evaluation is completed within a certain time frame. The LMS may retrieve the
evaluation report using the GetReport function with the ticket as argument.

C. Applicable Standards

The Applicable Standards element enumerates the names and versions of all the
domain and technical standards, specifications and application profiles needed to
provide the functionality of the service expression. We organize them in content and
communication, the former including e-learning standards and specifications, and the
later including e-learning interoperability and web services standards.

Content standards and specifications

The pertinent e-learning content standards for this service expression are the IMS
Content Packaging (IMS CP) [11] v1.1.4 final specification and the IEEE Learning
Object Metadata (LOM). We introduce also a specification from a previous work [12]
where we defined programming exercises as learning objects based on the IMS CP.

An IMS CP learning object assembles resources and meta-data into a distribution
medium, typically a file archive in zip format, with its content described in a file
named imsmanifest.xml at the root level. The manifest contains four sections: meta-
data, organizations, resources and sub-manifests. The main sections are meta-data,
which includes a description of the package, and resources, containing a list of
references to other files in the archive (resources) and dependency between them.

This standard was defined for LO in general, not specifically for programming
problems. In particular, the IMS CP schemata (including the IEEE LOM) lack
features for describing all the resources required to perform the automatic evaluation
of programming problems. For instance, there is no way to assert the role of specific
resources, such as test cases or solutions. Fortunately, IMS CP was designed to be
straightforward to extend it and thus we were able to use this standard for our purpose
of defining programming problems as learning objects.

Fig. 5. The extension of the IMS CP specification to describe programming exercises.

Meta-data information in the manifest file usually follows the IEEE LOM schema,
although other schemata can be used. Since the meta-data related to the automatic
evaluation cannot be conveniently represented using the IEEE LOM, it is encoded in
elements of a new schema - the EduJudge Meta-data Specification (EJ MD) as shown
in Fig.5.

All these standards as well the message binding of this service expression are
described by schema languages, most often using the XML Schema Definition
language (XSD). This language overcame Document Type Definition (DTD)
limitations and provided several advanced features, such as, the ability to build new
types derived from basic ones, manage relationships between elements (similar to
relational databases) and combine elements from several schemata.

Communication standards

The only e-learning interoperability standard relevant to this service expression is
the IMS DRI specification [5]. It was created by the IMS Global Learning
Consortium (IMS GLC) and provides a functional architecture and reference model
for repository interoperability. The IMS DRI provides recommendations for common
repository functions, namely the submission, search and download of LO. The IMS-
DRI must be used by the evaluator with the LO repository.

There are no e-learning standards for interoperability with evaluators thus we
focus on general communication standards such as those related with web service
communication. There are two main web services flavours: Simple Object Access
Protocol (SOAP) [13] and Representational State Transfer (REST) [14]. We propose
that the service expression supports both flavours.

SOAP web services are usually action oriented, especially when used in Remote
Procedure Call (RPC) mode and implemented by an off-the-shelf SOAP engine such
as Axis [15]. REST web services are object (resource) oriented and implemented
directly over the HTTP protocol, mostly to put and get resources. The reason to
provide two distinct web service flavours is to encourage the use of the evaluator by
developers with different interoperability requirements. A system requiring a formal
an explicit definition of the API in Web Services Description Language (WSDL) [16],
to use automated tools to create stubs, will select the SOAP flavour. A lightweight
system seeking a small memory footprint at the expense of a less formal definition of
the API will select the REST flavour.

D. Interface Definition

The Interface Definition element formalizes the interfaces of the service
expression, namely the syntax of requests and responses of its functions. This
particular service expression exposes its functions as SOAP and REST web services.
The syntax of function requests in both flavours is summarized in Table 3.

Function Web

Service
Syntax

ListCapabilities
SOAP ERL ListCapabilities()

REST GET /evaluate/ > ERL

EvaluateSubmission
SOAP ERL Evaluate (Problem, Attempt ,Capability)

REST POST /evaluate/$CID?id=LOID < PROGRAM > ERL

GetReport
SOAP ERL GetReport(Ticket)

REST GET $Ticket > ERL

Table 3. Service Expression function requests in SOAP and REST.

The remainder of this sub-section describes these functions in detail. All these
functions respond with an XML document complying with the Evaluation Response
Language (ERL) that we describe in the first sub-subsection. The following sub-
subsections describe the use of each function with examples of requests and the
respective responses in ERL.

Evaluation Response Language

The Evaluation Response Language (ERL) is formalised in XML Schema and
covers the definition of the response messages for the three evaluator functions. The
diagram depicted in the Fig. 6 includes two main elements: request and reply. The
former echoes the request function and its parameters as received by the evaluation
service and the later contains the output to that request.

Fig. 6. The ERL schema.

The request element contains a different sub-element according to the function

type. The reply element includes two sub-elements representing the possible responses
of the service as shown in Fig. 7, more precisely, the capabilities and report elements.
The capabilities element is used in a ListCapabilities response. This element has
several capability sub-elements each with several feature elements to describe it. The
ticket attribute holds a ticket to recover a report on a later date.

Fig. 7. The reply element.

 The report element contains a detailed evaluation report. It has a single mandatory
evaluationServer attribute representing the URL of the evaluator. This element also
includes the following sequence of sub-elements:

• capability: a specific evaluator capability used to evaluate this attempt;
• exercise: a reference to the Learning Object and the title of the exercise;
• tests: contains a set of tests for the evaluation of the submitted attempt. Each

test element represents a test case describing resources supplied to evaluate
the submitted program.

Fig. 8. The test element.

As shown in Fig. 8, each test corresponds to a single test case that can be repeated
to create a test set. The submitted program is executed once for each test element,
receiving as input the content of the input element. The resulting output, stored in the
obtainedOutput element, is compared to the expected output contained in the
expectedOutput element. The outputDifferences element describes the differences
between the two previous elements using the syntax of the Unix diff command [17].

The test element contains also data for grading and correcting programs. This
element includes a mark element to assign a mark for a successful execution. The
client may compute a grade for the submission as the sum of the marks of successful
executions. The optional feedback element contains detailed feedback for an
unsuccessful execution. The environment values are a list of property-value pairs that
may be supplied by the execution environment. For instance, if the execution
environment is able to report the memory usage of a program execution then this data
is recorded in this element.

ListCapabilities function

The ListCapabilities function returns the capabilities of a specific evaluator. Using
the REST API this operation is performed by sending a GET HTTP request to the
evaluator, as in the following example.

GET http://eval.domain.org/evaluate > ERL

The following document is an example of the HTTP response complying with the

ERL specification.

<?xml version="1.0" encoding="UTF-8"?>
<message date="2010-12-31T12:00:00">
 <request date="2010-12-31T12:00:00">
 <listCapabilities/>
 </request>
 <reply date="2010-12-31T12:00:00">
 <capabilities>
 <capability id="Java1.5">
 <feature name="Language" value="Java"/>
 <feature name="Language Version" value="1.5"/>
 </capability>
 <capability id="Java1.6">
 <feature name="Language" value="Java" />
 <feature name="Language Version" value="1.6"/>
 </capability>
 </capabilities>
 </reply>
</message>

EvaluateSubmission function

The EvaluateSubmission function evaluates a computer program that attempts to
solve an exercise in a given programming language. Using the REST API this
operation is performed by sending a POST HTTP request to the server, as in the
following example.

POST http://eval.domain.org/evaluate/java1.6?

id=http://lor.domain.org/lo/123 < PROGRAM > ERL

The HTTP parameter id is a reference to a LO with the programming exercise.

The PROGRAM is an attempt to solve it. The ERL is the content of the HTTP
response to the above request. It includes an XML file complying with the ERL
specification and containing a ticket.

<?xml version="1.0" encoding="UTF-8"?>
<message date="2001-12-31T12:00:03" >
 <request date="2001-12-31T12:00:01">
 <evaluateSubmission

capability=”Java1.6” learningObject=”http://lor.domain.org/lo/123”>
 <program><![CDATA[… program code here …]]></program>
 </evaluateSubmission>
 </request>
 <reply

date="2001-12-31T12:00:02" ticket=”https://eval.domain.org/report/123/xpto”/>
 </reply>
</message>

GetReport function

The GetReport function returns a report on an evaluation attempt. Using the REST
API this operation is performed by sending a GET HTTP request to the evaluator, as
in the following example.

GET https://eval.domain.org/report/123/xpto > ERL

The URL is the ticket obtained in the last request. The following is an example of

the HTTP response.

<message date="2001-12-31T12:00:00">
 <request date="2001-12-31T12:00:00">
 <getReport ticket=”https://eval.domain.org/report/123/xpto”/>
 </request>
 <reply date="2001-12-31T12:00:00">
 <report evaluationServer=”https://eval.domain.org/”>
 <capability id="Java1.6"/>
 <exercise href="http://lor.domain.org/lo/123”>
 A very simple Problem</exercise>
 <tests>
 <test executionTime="100" mode="program">
 <input>1,2,3,4</input>
 <expectedOutput>4</expectedOutput>
 <obtainedOutput>4</obtainedOutput>
 <outputDifferances></outputDifferences>
 <mark obtainedValue="1" totalValue="1"/>
 <feedback></feedback>
 <environmentValues>
 <environmentValue name="memory" value="12kb" />
 </environmentValues>
 </test>
 </tests>
 </report>
 </reply>
</message>

E. Usage Scenarios

The Usage Scenarios element characterizes the types of workflows in which the
service expression is used. In our case these workflow types can be classified as
curricular and competitive learning. In this sub-section we detail the requirements of
these different scenarios.

Curricular learning in computer programming requires the evaluation of
exercises in several moments such as practical classes, assignments and examinations.
A programming evaluation service can be used in all three cases. Its usefulness in
practical classes results from the instant feedback it provides to students, identifying
the failed test cases and providing hints to resolve them. In programming assignments
combining automatic and human evaluation both feedback and grading are relevant.
In this scenario the student may submit multiple times, until a number of tests is
passed, and receive automated feedback in the process. In examinations grading is the
most relevant part and different grading policies can be implemented by the client
based on the tests cases that were successfully completed.

Competitive learning relies on the competitiveness of students to increase their
programming skills. This is the common goal of several programming contests where
students at different levels compete such as: the International Olympiad in Informatics
(IOI) [18], for secondary school students; the ACM International Collegiate
Programming Contests (ICPC) [19], for university students; and the IEEExtreme [20],
for IEEE student members. Each programming contest type has its own set of rules.
In some cases students participate individually (as in IOI and IEEExtreme) in other
cases they participate as a team (as in ICPC). Moreover, each contest has its own
policy for grading and ranking submissions. For instance, IO assigns points to tests
and ICPC just accepts a submission if it passes all tests, and gives a penalty for failed
submissions when an exercise is accepted.

An implementation of the proposed service expression meets the evaluation
requirements of this wide range of scenarios, from curricular and competitive
learning. The evaluation report does not compute a grade, points or classification, nor
produces a feedback for any particular scenario. However, all these can be easily
computed by clients using a XSL transformation on the XML formatted report.

V. CONCLUSION AND ONGOING WORK

This paper presents a contribution to the e-Framework consisting of a non-trivial
evaluation service for programming exercises. More precisely, we add a new service
expression specializing an existing service genre refining its behaviours and requests,
and specified implementation approaches such as applicable standards and interface
definitions.

The main contribution of this work is the proposal of a new service expression
itself. A secondary contribution is the description of the e-Framework technical and
contribution models that may prove useful to other persons or organizations
considering a similar contribution.

We are currently developing an evaluation engine based on this service
expression. This implementation is based on Virtual Machines (VM) to execute the
programs on a safe and controlled environment and is divided into five components,
two controlling the evaluation service and other three supporting the execution of the
programs on the VM. The five independent components give the evaluation engine a
higher scalability. The use of VM allows us to manage a high number of capabilities
such as languages and programming environments from different operating systems,
including obsolete versions.

REFERENCES

[1] Leal, J.P. and Queirós, R.: eLearning Frameworks: a survey. Proceedings of International
Technology, Education and Development Conference 2010, Valencia, Spain, (2010)

[2] Dagger, D., O'Connor, A., Lawless, S., Walsh, E., Wade, V.: Service Oriented eLearning
Platforms: From Monolithic Systems to Flexible Services (2007)

[3] IMS CC Specification, Version 1.0 Final Specification,
http://www.imsglobal.org/cc/index.html

[4] SCORM specification, http://www.adlnet.gov/Pages/Default.aspx
[5] IMS DRI - IMS Digital Repositories Interoperability, 2003. Core Functions Information

Model, http://www.imsglobal.org/digitalrepositories
[6] C. Smythe: “IMS Abstract Framework - A review", IMS Global Learning Consortium,

Inc. (2003)
[7] S. Wilson, K. Blinco, D. Rehak: “An e-Learning Framework” - Paper prepared on behalf

of DEST (Australia), JISC-CETIS (UK), and Industry Canada, (2004)
[8] Schools Interoperability Framework, http://www.sifassociation.org
[9] Official website of e-Framework for Education and Reseach, http://www.e-framework.org
[10] e-Framework Technical Walk-through, http://www.e-framework.org/Portals/9/docs/e-

Framework%20technical%20walk-through%20v1.1.pdf
[11] IMS-CP – IMS Content Packaging, Information Model, Best Practice and Implementation

Guide, Version 1.1.4 Final Specification IMS Global Learning Consortium Inc.,
http://www.imsglobal.org/content/packaging/#version1.1.4

[12] Leal, J.P., Queirós, R.: Defining Programming Problems as Learning Objects - ICCEIT
2009 - International Conference on Computer Education and Instructional Technology,
Venice, Italy, (2009)

[13] SOAP (Simple Object Access Protocol), Version 1.2. Part 0: Primer, 2nd edition,
http://www.w3.org/TR/2007/REC-soap12-part0-20070427/ (2007)

[14] Fielding, R.: Architectural Styles and the Design of Network-based Software
Architectures, Phd dissertation, http://www.ics.uci.edu/~fielding, (2000)
/pubs/dissertation/rest_arch_style.htm

[15] Apache Axis, 2006. Project homepage, http://ws.apache.org/axis/
[16] WSDL, 2007. Web Services Description Language (WSDL) Version 2.0 Part 1: Core

Language, http://www.w3.org/TR/wsdl20/
[17] Johnson, M.: Diff, Patch, and Friends. Linux Journal, Volume 1996, Issue 28es, (1996)
[18] IOI Official Web Site, www.ioinformatics.org
[19] ACM International Collegiate Programming Contest (ICPC) Official Web Site,

http://icpc.baylor.edu/
[20] IEEExtreme Official Web Site, http://ieeextreme.org/

