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ABSTRACT 
This work addresses issues on vibration and noise control studying an efficient model to 
simulate the dynamic and vibroacoustic behavior of plates with constraining-layer damping 
patches. The proposed model, gathers the advantages of the layerwise models with the 
number of degrees of freedom of a single-layer theory. In addition, the Rayleigh-Ritz method 
arises as a reliable alternative to the finite element method and offers a very efficient solution 
regarding patches handling. Taking advantage of the resourceful solutions that this model 
offers the efficiency of the damping treatments is analyzed and discussed. 

 
1 -  INTRODUCTION 
1.1 - The Present Model 
Nowadays, the vibrational and acoustic 
properties of high performance structures 
are increasingly considered as key 
constraints in automotive, railway or 
aerospace industries during the design 
process. Beyond the structural integrity of 
these structures, the public realization of 
the importance of noise as a major 
pollution and annoyance source has grown 
as well as the sound quality notion among 
the choice criteria. However, with the 
increasing strong demands of more 
efficient and reliable structures, engineers 
need to develop refined and more accurate 
models of complex multilayer structures 
with damping technologies. 

The major objective of this work is 
implement a theory, firstly developed by 
Guyader and Lesueur (1978) and later 
formulated by Woodcock (2008), to model 
laminate structures. The proposed model, 
gathers the advantages of the layerwise 
models with the number of degrees of 
freedom of a single-layer theory. In 
addition, the use of the Rayleigh-Ritz 
method ensures a much easier viscoelastic 
patches handling, once that it works at an 

energetic level. This methodology is a main 
objective of this work once that the use of 
constrained-layer damping (CLD) 
treatments can be improved by the use of 
partial treatments (Fig. 1), which decrease 
the structural modification in the host 
structure, decrease the added mass and 
enable a selective damping. 

  
a) Classical CLD b) CLD Patch 

Fig. 1 – Total and partial viscoelastic treatments. 

2 - STRUCTURAL MODEL 

2.1 - Multi-Layer of Hybrid Type 
The proposed model uses a piecewise linear 
displacement field across the thickness 
where the displacement continuity is 
satisfied and the shear stresses continuity is 
enforced at each interface. The practical 
result is that the displacement field of each 
layer  [2, , N]   is linked to the 
displacement field of the first layer, leading 
to a five unknown mechanical model where 
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all the unknowns are the unknowns of the 
first layer. 

 
Fig. 2 – Displacement field of a multilayered 

material. 

The displacement field of each layer 
is written as: 
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where [1,..., ]N∈  is the number of the 
layer, w is the transverse displacement, 0u  
and 0v are the in-plane (membrane) 
displacements along x  and y  directions 
and φx

  and φ y
  are the rotations caused by 

shear effects around x  and y directions in 
layer  , respectively. The z  is z -
coordinate of the midplane of the layer   
and connects all the upper layers to the 
first one. The adopted strain field is given 
by: 
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where ,i ju  and ,i jx , respectively, denote 

, ,u v w    and , ,x y z when subscript i , j  
takes values , ,x y z . As in many others plate 

theories, a generalized plane stress 0zzσ =  
is assumed. However, the assumed 
displacement field in Eq. (1) leads to 0l

zzε = , 
which is not compatible with the generalized 
plane stress assumed. Nevertheless, the low 
values of zzε

  compared with other strains 
allows this kind of displacement field. In the 
context of a general modeling for the 
orthotropic properties and considering that 
orthotropic axes coincide with the natural 
axes of the plate, the stresses and the 
deformations are related by: 
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where: 
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Here, xE   and yE   are Young's 
modulus in x  and y  directions, xyG  and 

xzG  are the transverse shear modulus, xyG  
is the shear modulus in the xyO plane, and 

xyν
  and yxν

 are the Poisson's ratios of the 
layer  . This model uses a piecewise linear 
displacement field across the thickness 
where the displacement continuity is 
satisfied and the shear stresses continuity is 
enforced at each interface. These conditions 
link the displacement fields of each layer to 
the base layer, regardless the number of 
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layers. The conditions of displacement at 
each interface are written as: 
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The following equations express the 
shear stress continuity at each interface: 
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which allows to write the displacement 
field of the layer   with the one of the 
first layer, recursively: 



1 11 2Υ = Ω Ω ... Ω Υ = Ω Υ− 

    (7) 

where: 
T

0 0[ , , / , / ,φ ,φ ]x yu v w x w y= ∂ ∂ ∂ ∂Υ        (8) 

and matrix Ω


 is defined in Guyader and 
Leseuer (1978) and is a matrix that allow 
one to write the global motion of a 
multilayered material in terms of the 
displacement of the first layer. 

2.2 - Variational Principle and the 
Rayleigh-Ritz Method 

The equations of motion are derived from 
the Lagrange-d'Alembert variational 
principle and for the present case, 
considering the undamped problem, it 
consists on solving the equation: 
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where ( , )i iq q is the Lagragian operator 
and is given by: 

( , )i iq q T V= −  (10) 

where T  and V  are, respectively, the 
kinetic and deformation energy of the 

plate, iq and iq are the generalized 
displacements and velocities, respectively, 
and ext

iQ are the generalized external forces.  

In this work, the patch handling is 
done solving Eq. (9) for any virtual 
displacement iqδ  and bringing all the 
deformation effects back to the base layer, 
defining a surface energy density. The 
Lagragian term is divided in two parts 
corresponding to the covered and the 
uncovered parts: 
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where iS  is the surface with i u=  for the 
uncovered part and i c=  for the covered 
part, j

te  and j
ve  are, respectively, the 

surface density of kinetic energy and the 
surface density of deformation energy for 
the multilayered material j  , with j s=  for 
the support (base layer) material, and j d=  
for the damped (all the layers) material. 

 
Fig. 3 – Superposition principle in the patch 

handling. 

To make the patch’s handling possible 
at an energetic level, the kinetic and 
deformation energy of the covered part must 
include the contribution of the base layers. 
Therefore, the energy of the common layers 
to covered and uncovered parts is retired 
from the energy of the entire uncovered 
plate. Then the total contribution of the 
covered part is added, as shown in Fig. 3. 

The kinetic energy of each part, 
uncovered and covered, is now easily 
calculated from the surface density of 
kinetic energy of multilayered material as: 
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where , jρ is the density of the layer   of the 

multilayered material j  and , 2| |ju  is the 
square of the velocity field modulus. The 
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surface density of deformation energy of 
each part, required for the calculation of 
the deformation energy V is given by: 

,
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where , j
ikσ
  and , j

ikε
  represent here, 

respectively, the normal and shear stresses 
and strains from the constitutive model 
defined in Eq. (3).  

This methodology is possible due to 
the Rayleigh-Ritz method where the 
domain is explicitly discretized (the 
approximation functions are globally 
defined) in opposition, for example, to the 
finite element method where the domain is 
implicitly discretized. The equations of 
motion are obtained solving Eq. (11) for a 
generalized displacement variation iqδ , 
which takes the form: 

{ } { }0 0, , , ,i
x yq w u v=δ δ δ δ δϕ δϕ  (14) 

Once that Lagrange's equations 
cannot be solved in general for any 
displacement variation, in this study a 
Rayleigh-Ritz method is used. This 
method requires a function basis for the 
expansion of the five different unknowns, 
where the trial functions need to satisfy the 
geometric boundary conditions. In this 
work, a trigonometric basis of functions 
with sine and cosine functions is 
considered. This basis has a maximum 
order m  for the x  direction and a 
maximum order n  for the y  direction. As 
an example, for a simply supported plate 
the transverse displacement takes the form: 
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In the preceding equation, the 
coefficient ( )pqA t is time-dependent and if 
the same methodology is used for the 
remaining generalized displacements the 

coefficients ( )pqA t , ( )pqB t , ( )pqC t , ( )pqD t ,
( )pqE t can be stacked up to build a global 

5 m n× ×  vector ( )tX of unknowns given by: 
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Eq. (11) can now be solved 
introducing the overall coefficient vector 

( )tX  and the external forces work, leading 
to:  
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where { }F  is the generalized discrete 
external force vector. Solving Eq. (17) leads 
to Lagrange's equation for the components 
of the generalized displacements jX : 

d
d j
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Applying the Lagrange's equations to 
each unknown, a linear system of (5 )m n× ×  
differential equations for the forced motion 
in a matrix form is obtained: 

[ ]{ ( )} [ ]{ ( )} { ( )}t t t+ =M X K X F      (19) 

where [ ]M  is the mass matrix, [ ]K  the 
stiffness matrix and { ( )}tF the external force 
vector. For harmonic solicitations of a given 
angular frequencyω , and considering the 
damping properties by means of complex 
material properties as well as the frequency 
dependence of the mass and stiffness 
matrices, the system takes the form: 

  

2( [ ( )] [ ( )]){ } { }− + =M K X Fω ω ω        (20)
  

where the tilde denotes the complex 
variables. In Eq. (20) the frequency 
dependence of the stiffness matrix is 
highlighted. This is a common feature in 
models that are used to simulate structures 
with viscoelastic treatments once that the 
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viscoelastic materials are defined by their 
complex modulus which is frequency 
dependent. However, in Eq. (20) is also 
shown that the mass matrix is frequency 
dependent. This is a particular 
characteristic of this model and at first 
sight is a surprising characteristic once that 
the density of viscoelastic materials isn't 
frequency dependent. Nevertheless, it is 
well know that the mass matrix is a 
function of the integration over the 
thickness of the velocity field which in 
turn is the time derivative of the 
displacement field. As was seen before the 
displacement field of a generic layer   is 
written in function of the unknowns of the 
first layer due to the enforced shear stress 
continuity at each interface which makes 
the displacement field a function of the 
relations between the shear moduli of 
consecutive layers. Therefore, once that 
the viscoelastic materials are defined by 
their complex shear modulus, Eq. (21), the 
mass matrix is also frequency dependent.  

( ) ( ) ( )
[ ( ) j ( )] ( )
G
G G

=
′ ′′= +

τ ω ω γ ω
ω ω γ ω

    (21) 

where ( )G ω  is the complex shear 
modulus, ( )G′ ω  is the storage shear 
modulus and represent the real part of the 
complex modulus and ( )G′′ ω  is the loss 
shear modulus and represents the 
imaginary part of the complex modulus. 
It's not surprising that the velocity field 
varies with frequency once that the 
displacement field of the viscoelastic layer 
depends on its mechanical properties 
experiencing a larger displacement when 
the material is more flexible. To 
understand this frequency dependence, the 
mass matrix cannot be seen exclusively as 
a property of the system but rather as a 
measure of the kinetic energy. 

2.3 - External Force Vector 
Remembering Eq. (17) the virtual work 
done by the external forces is given by:  

2

1

T{ } { }d
t

t
t∫ F Xδ  (22) 

If the generalized force vector is 
related with the displacements vector ( )tX
and its components, then it can be written 
as: 

{ }     { }w x yx y=F F N N M M       (23) 

where F  is the normal loading,  xN  and  yN  
are the generalized in-plane tensions and 
 xM  and  yM  are the generalized bending 
moments. In this work, only the transverse 
load is considered which leads to the 
following generalized force vector: 

    { }

 w 
 
  =  
 
 
  

F
0

F 0
0
0

         (24) 

where the transverse load is given by:  

• Pressure Load: 
      



0 0
{ } ( , ){ ( , )}d d

a b
w P x y x y y x= ∫ ∫ wF  φ       (25) 

• Punctual Excitation: 

 

0 0{ } { ( , )}w f x y= wF  φ            (26) 

where ( , )P x y  is the applied pressure in the 
plate, f  is the point force applied and 

0 0( , )x y  is the point where this force is 

applied. 

VIBROACOUSTIC  MODEL 
2.4 - Plane Wave 
The vibroacoustic model is based on the 
model developed by Loredo et al. (2011), 
which considers the plate separated by two 
semi-infinite fluid media.  
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Fig. 4 – Patched plate submitted to a plane wave. 

The plane wave represented in Fig. 4 
causes forces acting on the plate due to the 
difference of pressure existing in the two 
sides. It is assumed light fluid for the two 
sides of the plate and with this assumption 
the pressure caused by the radiation 
impedance of the fluid mediums can be 
neglected. In Loredo et al. (2011) an 
evaluation of the fluid load importance 
was made. They showed that, for the 
studied case, the fluid-structure coupling 
was weak, neglecting it for all their studies 
even when the thickness and the density of 
the considered plates were different. 

Considering these assumptions, the 
incident pressure field generated by the 
incident plane wave can be written as:  

1 1j( ( )) j( ( ))
2 2

inc inc( , ) 2 x y
a bk x k y

P x y p e e
− − − −

= ×

  (27) 

where incp  is the amplitude and phase of 
the incident plane wave. The variables 1xk  
and 1yk  are the projections of the wave 
vector 1k  and are given by: 

1 1

1 1

sin(θ)cos(φ)
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where 1k  is the wave number, that is a 
relation between the frequency ω  and the 
sound celerity into the exciting fluid 1c , 
given by:  

1
1

k
c
ω

=                       (29) 

Remembering Eq. (25) the generalized 
force vector due to the incident pressure 
field inc ( , )P x y  can be written as:  



inc0 0
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w P x y x y y x= φ∫ ∫ wF   (30) 

The computation of this integral is 
cumbersome once that the pressure field 
generated by the incident plane wave given 
in Eq. (27) has exponential terms that are 
frequency dependents and imaginary. To 
overcome this issue Loredo et al. (2011) 
propose an alternative way to calculate the 
generalized forces vector:  



inc{ } 2 { ( )}w p Ψ= 1F k             (31) 

where the vector { ( )}Ψ 1k  is a m n×   
column vector that may be written as: 
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where 1( )p
x xI k   and 1( )q

y yI k , for the adopted 
basis functions, are given by the following 
integrals:  
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The vector { ( )}Ψ 1k  can be now 
implemented using the following 
recurrence:  
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2.5 - Vibroacoustic Indicators 
 

It is assumed light fluid for the two sides 
of the plate, and with this assumption, the 
sound power can be calculated from the 
far-field (hemisphere with infinite radius) 
sound pressure distribution, in contrast 
with the near-field (field very close to the 
sound source) hypothesis, once that the 
pressure distribution at the surface is not 
needed. With this assumption the acoustic 
pressure in the receiving fluid can be 
calculated at point ( ,θ,φ)r  by the 
simplified Rayleigh's integral as proposed 
by Loredo et al. (2011): 

22
2

2 2 2ˆ( ,θ,φ) ( , )
2

jk r

x y
eP r w k k
r

ω ρ
π

−
= (35) 

 
where 2ρ  is the receiving fluid density and 
the variables 2xk  and 2 yk  are the 
projections of the wave vector 2k  and are 
given by:  

 2 2

2 2

sin(θ)cos(φ)
sin(θ)sin(φ)

x

y

k k
k k

=
=

             (36) 

where 2k  is the wave number, that is a 
relation between the frequency ω  and the 
sound celerity into the receiving fluid 2c , 
given by:  

 2
2

k
c
ω

=                     (37) 

The variable 2 2ˆ ( , )x yw k k  is the 
double Fourier transform of the plate's 
displacement and can be written as: 

2 2( ( )) ( ( ))
2 2

2 2 0 0
ˆ ( , ) ( , ) d dx y

a ba b j k x j k y

x yw k k w x y e e y x
− − − −

= ×∫ ∫ 
(38) 

The transverse displacement ( , )w x y  
in Eq. (38) can be calculated using Eq. 
(15). Moreover, if we look the similarities 
between Eq. (38) and Eq. (27) the double 
Fourier transform of the plate displacement 
can be calculated like the generalized 
forces vector due to a plane wave 
excitation, being defined as:  

 

2 2ˆ ( , ) { }{ ( )}x yw k k Ψ= 2A k           (39) 

where { }A  is the coefficient vector of the 
transverse displacement and { ( )}Ψ 2k  is an 
auxiliary vector like the one defined in Eq. 
(31), but considering the wave number of 
the receiving fluid. The radiated acoustic 
pressure, and according with the far-field 
hypothesis, can be calculated by the 
integration of the radial intensity over a 
hemisphere of infinite radius:  

4 2 22 2
t 2 22 0 0

2

ˆ| ( , ) | sin(θ)dθdφ
8 x yW w k k
c

ππρ ω
π
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(40) 

Considering that the system is excited 
by a plane wave, the preceding equation 
gives the radiated acoustic power for this 
plane wave which allows to define an 
oblique incidence transmission coefficient

(θ,φ)τ , given by:  

 t θ,φ

inc

( )
(θ,φ)

(θ,φ)
W
W

τ
Π

=                 (41) 

where inc (θ,φ)W  is the incident power of 
this plane wave, that may be written as: 

 

 
2

inc
1 1

| | cos(θ)(θ,φ)
2

incp SW
cρ

=
      (42) 

where S  is the plate area. Defined the 
incident acoustic power and the radiated 
acoustic power it is possible to define the 
acoustic transparency of the plate, by the 
relation between these two quantities. This 
relation is known by transmission loss (TL) 
and can be written as: 

 

 inc

t θ,φ

(θ,φ)TL 10log
( )

W
W Π

 
=   

 
        (43) 

The transmission loss is an important 
indicator of the treatment effectiveness once 
that represents the fraction of the incident 
acoustic power that isn't radiated to the 
receiving fluid. In addition to the 
transmission loss, others indicators can be 
defined like the mean square velocity that is 
defined as a space and time average of the 
structure velocity and can be written as: 
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2
2

0 0

1 1 ( , ) d d
2

a b dw x yV y x
S dt

〈 〉 = ∫ ∫
    (44) 

The preceding equation can be 
rewritten, taken into account Eq. (15), as: 

2
2 T *T *

0 0
{ } { ( , )}{ ( , )} d d { }

2
[ ]a b

w wV x y x y y x
S
ω

〈 〉 = φ φ∫ ∫A A 

(45) 

where * represents the complex conjugate 
operation. As was said, the mean square 
velocity represents the space and time 
average of the structure velocity. Taken 
into account its definition, a new 
vibroacoustic indicator can be defined as 
only the time average of the structure 
velocity and can be defined as: 

2
2 T *T *( , ) { } { ( , )}{ ( , )} { }

2 w wV x y x y x y
S
ω

〈 〉 = φ φA A  (46) 

 
The square velocity is an indicator 

that is appropriated to a 2D representation 
of the time average of structure velocity at 
a given frequency. Another indicator that 
gives an idea of the treatment efficiency is 
the radiation efficiency and is defined as a 
non-dimensional ratio between the radiated 
sound power and the mean square velocity 
of the plate: 

 2
2 2

tW
c S V

σ
ρ

=
〈 〉

             (47) 

Considering the above definitions, 
the radiation efficiency expresses the 
portion of vibration energy transformed 
into sound. 

3 - VALIDATION AND EVALUATION  
In order to validate and evaluate the 
mechanical and vibroacoustic model, their 
main characteristics are studied in this 
section. 

3.1 - Basis Dimension and Degrees of 
Freedom 
In the Rayleigh-Ritz method the dimension 
of the trial functions space it’s a matter of 
great importance. As well as the finite 

elements give the representativeness of the 
model in the finite element method, the 
dimension of the basis functions in the 
Rayleigh-Ritz method determines the 
structure discretization. With this model, the 
displacement field is builded with five 
different unknowns which leads to a model 
with (5 )m n× ×  degrees of freedom, where 
m  and n  are the maximum orders of the 
trial functions in x  and y -direction, 
respectively. If we consider the finite 
element method, different calculations are 
needed to estimate the total number of 
degrees of freedom once that it depends on 
the mesh but a comparison with a simply-
supported plate performed in the software 
Actran® was made. For this, the magnitude 
of a frequency response function 
(receptance) of a simply-supported plate 
with the properties shown in Table 1 was 
studied. The frequency response function 
calculated with the software Actran® was 
performed using the element "HEX08" that 
is a solid element with 3 degrees of freedom 
per each node. The use of 1344 elements led 
to a model with 6525 degrees of freedom. 
The excitation is a point force applied at 

0.08x = m and 0.07y = m from the origin. 

Table 1 – Geometric and mechanical plate properties. 
a b h E ρ ν η (m) (m) (mm) (GPa) (Kg/m3) 

0,48 0,42  3,22 66 2680 0,33 0,005 

 

With the present model an 8 8×  order for 
the basis functions is adopted which leads to 
a model with 320  degrees of freedom. 
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Fig. 5 – Comparison between the present model 
with an 8 8×  order and Actran®. 

The comparison between the present 
model and the frequency response function 
obtained with the software Actran® in 
Fig.5 show a good agreement between the 
two models, particularly at low 
frequencies. As the frequency increases the 
model studied in this work is more damped 
and underestimate the natural frequencies 
relatively to Actran®. Considering that the 
present model uses a plate theory that 
considers the effect of the shear stress is 
acceptable that it tends to underestimate 
the natural frequencies. It can be said that 
these results are excellent if we take into 
account that the two models are 
completely different, once that in the 
Actran® a solid finite element is used in 
contrast with the present work, where is 
used a plate theory and the Rayleigh-Ritz 
method. Besides that, the Actran® 
example was performed with 6525 degrees 
of freedom against 320 used with the 
present model, which is an overwhelming 
difference of 6205 degrees of freedom. 

3.2 - Multilayer Behavior 
As was said in the presentation of the 
structural model, a linear displacement 
field across the thickness is used, where 
the displacement continuity is enforced at 
each interface. Here a graphical 
representation of the displacement in x -
direction across the thickness is done to 
show the multilayer behavior despite the 
enforced shear stress continuity. For that, a 
three layer laminate is studied and its 
properties are shown in Table 2. 

Table 2 – Geometric and mechanical laminate 
properties. 

Layer a b h E ρ ν (m) (m) (mm) (GPa) (Kg/m3) 
1 0,48 0,42  3 210 7800 0,3 
2 0,48 0,42 2 66 2680 0,33 
3 0,48 0,42 1 210 7800 0,3 

The displacement was calculated for 
a distributed pressure of 510 Pa and 
considering a simply-supported plate, the 
displacement field across the thickness, in 

the center of the plate ( 0, 24x = mm and 
0, 21y = mm), can be seen in Fig. 6. 

 
Fig. 6 – Displacement in x -direction for a distributed 

pressure of 510 Pa 

It can be seen in Fig. 6 that the 
displacement continuity at each interface 
was ensured as well as the multilayer 
behavior despite the displacement of a 
generic layer   can be written as a function 
of the displacements of the first layer. In 
addition, it can be said that the displacement 
field across the thickness is the expected 
one, once that the slopes (deformation -
d / du x ) of the first and third layers are 
equal and smaller than that of the second 
layer. This reflects the fact that the first and 
third layers are steel layers and the second 
one is an aluminum layer with lower 
Young's modulus. 

3.3 - Vibroacoustic Indicators and 
Patches Handling 
In order to validate the model 
implementation and obtained results in 
terms of vibroacoustic indicators, a 
comparison with the results obtained by 
Loredo et al. (2011) was done. The 
considered plate is immersed in air and 
receiving an acoustic excitation of an 
incident plane wave with unitary amplitude 
and incidence angles of θ 85°= andφ 0°= . 
The geometric and mechanical properties of 
the studied plate can be seen in Table 3. 

Table 3 – Geometric and mechanical Loredo’s (2011) 
plate properties. 

a b h E ρ ν η (m) (m) (mm) (GPa) (Kg/m3) 
0,455 0,376  1 210 7800 0,3 0,01 
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In the work performed by Loredo et 
al. (2011) the properties of the exciting and 
receiving fluid are not given but in this 
work the properties of the air at 25ºC are 
assumed, once that is the temperature 
considered for the properties of the 
viscoelastic layer. The referred properties 
can be seen in Table 4. 

Table 4 – Exciting and receiving fluid properties - 
Air (T=25ºC). 

Fluid Sound Celerity Density 
(m.s-1) (Kg.m-3) 

Exciting/Receiving 346,13 1,1839 

 
The vibroacoustic indicators were 

obtained for three different cases. Firstly, 
for the base plate alone and then a total and 
a partial treatment were applied. In the 
viscoelastic treatments, the constraining 
layer is also considered to be made with 
the same steel of the base layer, and 
thickness is set to 0,5mm. The viscoelastic 
layer has a thickness of 0,25mm and the 
material is the 3M ISD112. A constitutive 
law for the storage modulus and loss factor 
for this material is given in A. Castel et al. 
(2012) and is shown in Eq. (48) and (49), 
however only discrete values for some 
frequencies of these properties are given in 
Loredo et al. (2011) and there is no 
certainty that the constitutive law used for 
all the frequency range is the same. In 
these studies, is considered a Poisson's 
ratio of 0,45 and a density equal to 
1140Kg/m-3 for the viscoelastic material.  

 (0.4884log( ) 5.3848)( ) 10E ωω +′ =            (48) 
3 2( 0,0175log( ) 0,0571log( ) 0,0015log( ) 0,0874)( ) 10 ω ω ωη ω − + + −=

(49) 

The partial treatment applied covered 
40% of the total plate area and was added 
in the central region with the dimensions 
of 288 238× mm. Here, for practical 
reasons, it was used a maximum order of 6 
for the x  and y -directions whereas in the 
work developed by Loredo et al. (2011) 

was used a maximum order of 13 for both 
directions. The frequency range varies only 
between 0 and 700Hz which is a smaller 
frequency range but that changes nothing 
about the targets of this study. The obtained 
mean square velocity is depicted in Fig. 7 
and the result obtained by Loredo et al. 
(2011) can be seen in Appendix. Analyzing 
Fig. 7, it can be seen that, in general and for 
the studied frequency range, a good match is 
obtained with the result available in 
Appendix. Furthermore, it should be noted 
that the properties of the fluid are not given 
in the work developed by Loredo et al. 
(2011) and only discrete values of the 
storage modulus and loss factor of the 
viscoelastic material for some frequencies 
are given. Analyzing the obtained 
vibroacoustic indicator from a more 
particular point of view some important 
aspects should be noted. Firstly, both total 
and partial treatment makes the plate more 
efficient in a vibroacoustic viewpoint once 
that at the resonance frequencies the values 
of the mean square velocity decreased. This 
capability to improve the behavior of the 
structure in the resonance zones is achieved 
either with the total treatment as the partial 
treatment, yet this fact is most remarkable in 
the total treatment. However, this result is 
particularly interesting once that with a 
smaller structural modification and with less 
added mass similar results to those of a total 
treatment can be achieved. 

 

 
Fig. 7 – Mean square velocity for three different 

configurations. 
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4 - ANALYSIS OF CONSTRAINED-LAYER 
DAMPING PATCHES 
It is well known that the use of damping 
patches enables a high damping capability 
with a smaller structural modification but 
the results obtained in the model validation 
raise interesting questions about the 
optimal covered area or the correct 
positioning of the patches, for example. To 
answer these questions is important to 
establish an objective because an optimal 
solution always depends on the proposed 
target. However, the intent of this work is 
to show some vibroacoustic indicators in 
order to analyze the main ideas about the 
changes caused by different treatment's 
configurations establishing a commitment 
between damping capability and added 
mass. 

4.1 - Covered Area 

In Fig. 8 five different covered areas (0, 
20, 40, 60, 80 and 100%) by a rectangular 
central patch with the same relation length 
to width that the base layer are depicted. 
The geometric and mechanical properties 
of the structure are the same as those from 
the validation of the vibroacoustic 
indicators and patches’ handling (see Table 
3 and 5) as well as the fluid properties 
from Table 4 and basis functions. 

Table 5 – Geometric and mechanical of Loredo’s 
(2011) patch treatment. 

Layer h E ρ ν η (mm) (GPa) (Kg/m3) 
2 0,25 Eq. (48) 1140 0,45 Eq. (49) 
3 0,5 210 7800 0,3 0 

It is clear that with the increase in the 
covered area the transmission loss 
increase, proving the treatment's 
efficiency. It is interesting to note that for a 
covered area of 20 and 40% the peaks in 
the transmission loss are shifted to left in 
the frequency axis (influence of the added 
mass) whereas for the covered areas of 80 
and 100% the peaks are shifted to right 
(influence of the added stiffness). 

 
Fig. 8 – Transmission loss for different 

configurations. 

 

It is worth to mention that the 
differences in transmission loss between a 
80% covered area by a central patch and a 
total treatment can be considered almost 
negligible which proves that a high damping 
capability can be achieved with a smaller 
structural modification. Even the central 
patch covering 40% of the total area shows a 
high damping capability, relatively to the 
base plate alone, with half the added mass of 
the central patch covering 80% of the total 
area. 

4.2 - Analysis of Patches Distributions 
Considering the great advantage of this 
model with the patches' handling, different 
distributions of covered area can be tested to 
improve the structure performance. An 
interesting approach could be reduce the 
vibration energy of a given mode, which can 
be achieved placing the viscoelastic patches 
in a strategic area where the shear 
deformation is imposed to the viscoelastic 
layer. In Fig. 9 the mode shape (1,3) and a 
suggested patch treatment to decrease the 
energy of this respective mode in depicted. 

  
a) Mode (1,3) b) Patches 

Fig. 9 – Example of selective damping for mode 
(1,3). 

The two strips in Fig. 9b were defined 
to take advantage of the phase opposition in 
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the mode shape (1,3) forcing shear 
deformation in the viscoelastic layer and 
so improve the damping capability. The 
geometrical properties of the patches that 
define the integration limits for the 
structural matrices generation can be seen 
in Table 6. All the remaining properties are 
the same to those used in the previous 
analyzes and the total covered area is equal 
to 40% of the base plate area. 

Table 6 – Geometrical properties of patches 
distributions. 

Treatment 
Length (m) 

1x  2x  3x  4x  

Strips (1,3) 0,1332 0,2242 0,2309 0,3219 

Treatment 
Width (m) 

1y  2y  3y  4y  

Strips (1,3) 0 0,3760 0 0,3760 

 
Fig. 10 – Radiated Acoustic power for different 

patches configurations. 

 Analyzing Fig. 10, where the 
radiated acoustic power is presented, it can 
be seen that at the frequency of the natural 
mode (1,3) the considered patch treatment 
nullifies that particular resonance. 
However, it is important to remember that 
this result is achieved with corresponding 
higher values for the radiated acoustic 
power at other frequencies in the 
considered range. With the same covered 
area, it seems that the central patch is the 
best commitment considering all the 
frequency range. 

5 - CONCLUSION 
The passive damping by viscoelastic patches 
is an efficient mean for the noise and 
vibration control of structures. The main 
advantage of the presented mechanical 
model is that the number of degrees of 
freedom is independent of the number of 
layers, avoiding very cumbersome models. 
In addition, an efficient patch handling is 
achieved, comparative to the finite element 
method taking advantage of the Rayleigh-
Ritz method and its globally defined basis 
functions. In the analysis of constrained-
layer damping patches it was seen that the 
40% covered area by a central patch seems 
to be a good commitment between damping 
capability and added mass. Then, the 
analysis of patches distributions served to 
show that a selective damping can be 
achieve taking advantage of the phase 
opposition for a given mode, forcing the 
viscoelastic layer to shear deformation. All 
the results show that a structure can be 
efficiently damped by adding appropriate 
patches. However, the difficulty to have the 
better damping consists first to choose the 
appropriate viscoelastic treatment and 
second to determine the better distribution 
while keeping the best ratio 
performance/added mass. 

6 - APPENDIX 

Vibroacoustic Indicators – Loredo et al. 
(2011) 

 
Fig. 11 – Mean square velocity for three different 

configurations – Loredo et al. (2011). 
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