
Multicore Scheduling of Real-Time Irregular
Parallel Algorithms in Linux

JOÃO PEDRO ALMEIDA BERNARDO FERREIRA
Outubro de 2015

Multicore Scheduling of Real-Time
Irregular Parallel Algorithms in Linux

João Pedro Almeida Bernardo Ferreira

Dissertação para a obtenção do Grau de Mestre em
Engenharia Informática

Área de especialização em Sistemas, Arquitecturas e Redes

Orientador
Doutor Luı́s Miguel Pinho Nogueira

Júri
Presidente: Doutor x1,

Professor Coordenador no Departamento de Engenharia Informática
do Instituto Superior de Engenharia do Porto

Vogais: Doutor x2,
Professor Coordenador no Departamento de Engenharia Informática

do Instituto Superior de Engenharia do Porto
Doutor Luı́s Miguel Pinho Nogueira,

Professor Adjunto no Departamento de Engenharia Informática
do Instituto Superior de Engenharia do Porto

Porto, Outubro de 2015

Resumo Alargado

Face à estagnação da tecnologia uniprocessador registada na passada década, aos principais fab-

ricantes de microprocessadores encontraram na tecnologia multi-core a resposta às crescentes

necessidades de processamento do mercado. Durante anos, os desenvolvedores de software vi-

ram as suas aplicações acompanhar os ganhos de performance conferidos por cada nova geração

de processadores sequenciais, mas à medida que a capacidade de processamento escala em função

do número de processadores, a computação sequencial tem de ser decomposta em várias partes

concorrentes que possam executar em paralelo, para que possam utilizar as unidades de processa-

mento adicionais e completar mais rapidamente.

A programação paralela implica um paradigma completamente distinto da programação se-

quencial. Ao contrário dos computadores sequenciais tipificados no modelo de Von Neumann, a

heterogeneidade de arquiteturas paralelas requer modelos de programação paralela que abstraiam

os programadores dos detalhes da arquitectura e simplifiquem o desenvolvimento de aplicações

concorrentes. Os modelos de programação paralela mais populares incitam os programadores a

identificar instruções concorrentes na sua lógica de programação, e a especificá-las sob a forma

de tarefas que possam ser atribuı́das a processadores distintos para executarem em simultâneo.

Estas tarefas são tipicamente lançadas durante a execução, e atribuı́das aos processadores pelo

motor de execução subjacente. Como os requisitos de processamento costumam ser variáveis, e

não são conhecidos a priori, o mapeamento de tarefas para processadores tem de ser determinado

dinamicamente, em resposta a alterações imprevisı́veis dos requisitos de execução.

À medida que o volume da computação cresce, torna-se cada vez menos viável garantir as

suas restrições temporais em plataformas uniprocessador. Enquanto os sistemas de tempo real se

começam a adaptar ao paradigma de computação paralela, há uma crescente aposta em integrar

execuções de tempo real com aplicações interativas no mesmo hardware, num mundo em que

a tecnologia se torna cada vez mais pequena, leve, ubı́qua, e portável. Esta integração requer

soluções de escalonamento que simultaneamente garantam os requisitos temporais das tarefas de

tempo real e mantenham um nı́vel aceitável de QoS para as restantes execuções. Para tal, torna-se

imperativo que as aplicações de tempo real paralelizem, de forma a minimizar os seus tempos

de resposta e maximizar a utilização dos recursos de processamento. Isto introduz uma nova

dimensão ao problema do escalonamento, que tem de responder de forma correcta a novos req-

uisitos de execução imprevisı́veis e rapidamente conjeturar o mapeamento de tarefas que melhor

beneficie os critérios de performance do sistema.

A técnica de escalonamento baseado em servidores permite reservar uma fração da capacidade

iii

de processamento para a execução de tarefas de tempo real, e assegurar que os efeitos de latência

na sua execução não afectam as reservas estipuladas para outras execuções. No caso de tarefas

escalonadas pelo tempo de execução máximo, ou tarefas com tempos de execução variáveis,

torna-se provável que a largura de banda estipulada não seja consumida por completo. Para

melhorar a utilização do sistema, os algoritmos de partilha de largura de banda (capacity-sharing)

doam a capacidade não utilizada para a execução de outras tarefas, mantendo as garantias de

isolamento entre servidores.

Com eficiência comprovada em termos de espaço, tempo, e comunicação, o mecanismo de

work-stealing tem vindo a ganhar popularidade como metodologia para o escalonamento de tare-

fas com paralelismo dinâmico e irregular. O algoritmo p-CSWS combina escalonamento baseado

em servidores com capacity-sharing e work-stealing para cobrir as necessidades de escalona-

mento dos sistemas abertos de tempo real. Enquanto o escalonamento em servidores permite

partilhar os recursos de processamento sem interferências a nı́vel dos atrasos, uma nova polı́tica

de work-stealing que opera sobre o mecanismo de capacity-sharing aplica uma exploração de

paralelismo que melhora os tempos de resposta das aplicações e melhora a utilização do sistema.

Esta tese propõe uma implementação do algoritmo p-CSWS para o Linux. Em concordância

com a estrutura modular do escalonador do Linux, é definida uma nova classe de escalonamento

que visa avaliar a aplicabilidade da heurı́stica p-CSWS em circunstâncias reais. Ultrapassados

os obstáculos intrı́nsecos à programação da kernel do Linux, os extensos testes experimentais

provam que o p-CSWS é mais do que um conceito teórico atrativo, e que a exploração heurı́stica

de paralelismo proposta pelo algoritmo beneficia os tempos de resposta das aplicações de tempo

real, bem como a performance e eficiência da plataforma multiprocessador.

Palavras-chave: Escalonamento de tempo real, sistemas abertos de tempo real, computação par-

alela, task-parallelism, capacity-sharing, work-stealing, Linux

iv

Abstract

With sequential machines approaching their physical bounds, parallel computers are rapidly be-

coming pervasive in most areas of modern technology.

To realize the full potential of parallel platforms, applications must split onto concurrent parts

that can be assigned to different processors and execute in parallel. Parallel programming models

abstract the myriad of parallel computer specifications to simplify the development of concurrent

applications, allowing programmers to decompose their code onto concurrent tasks, and leaving

it to the runtime system to schedule these tasks for parallel execution. The resulting parallelism

is often input-dependent and irregular, requiring that the mapping of tasks to processors be per-

formed at runtime in response to dynamic changes of the workload.

Motivated by the promises of performance scalability and cost effectiveness, real-time re-

searchers are now beginning to exploit the benefits of parallel processing, with ground-breaking

scheduling heuristics to improve the efficiency of time-sensitive concurrent applications. Real-

time developments are switching to open scenarios, where real-time tasks of variable and unpre-

dictable size share the available processing resources with other applications, making it essential

to utilize as much of the available processing capacity as possible.

The p-CSWS algorithm employs bandwidth isolation, capacity-sharing and work-stealing to

exploit the intra-task parallelism of hard and soft real-time executions on parallel platforms. This

thesis proposes an implementation of the p-CSWS scheduler for the Linux kernel, to evaluate its

applicability to real scenarios and bring Linux one step closer to becoming a viable open real-time

platform.

To the best of our knowledge we are the first to employ scheduling heuristics to exploit dy-

namic parallelism of real-time tasks on the Linux kernel.

Through extensive tests, we show that....

Keywords: Open real-time scheduling, parallel computing, task-parallelism, work-stealing, Linux

v

vi

Acknowledgements

bla bla

vii

viii

Contents

Resumo Alargado iii

Abstract v

Acronyms xvii

1 Introduction 1
1.1 Motivation . 1

1.2 Contributions . 2

1.3 Institutional Support . 2

1.4 Outline . 3

2 Parallel Computing 5
2.1 Parallel Computer Architectures . 6

2.1.1 Flynn’s Taxonomy . 7

2.1.2 Parallel Memory Architectures . 7

2.2 Towards Parallelism . 10

2.2.1 Concurrency as the Key Towards Parallelism 11

2.2.2 Finding and Expressing Concurrency 11

2.2.3 Granularity and its Effect on Performance 14

2.3 Parallel Programming Models . 15

2.3.1 Shared memory models . 15

2.3.2 Message-Passing Models . 16

2.3.3 Other models . 17

2.4 Dynamic Scheduling and Load-Balancing . 17

2.4.1 Work-Sharing . 18

2.4.2 Work-Stealing . 19

2.5 Summary . 21

3 Real-Time Systems 23
3.1 Task Model and Terminology . 24

3.1.1 Taxonomy of Real-Time Tasks . 24

3.1.2 Task Terminology . 26

ix

3.2 Open Real-Time Systems . 27

3.3 Real-Time Scheduling Theory . 28

3.3.1 Uniprocessor Scheduling . 30

3.3.2 Sequential Multiprocessor Scheduling 33

3.3.3 Parallel Real-Time Scheduling . 38

3.4 Summary . 44

4 Linux Scheduling and Real-Time Support 45
4.1 A Birdseye View of the Linux Kernel . 46

4.1.1 System Calls and the User API . 46

4.1.2 Kernel Subsystems . 47

4.1.3 Architecture Specifics and Device Drivers 49

4.2 The Process Scheduler . 50

4.2.1 Linux Tasks . 50

4.2.2 Runqueues . 52

4.2.3 Generic Data Types Relevant to Scheduling 53

4.2.4 Scheduling Classes and Policies . 55

4.2.5 The Core Scheduler . 59

4.2.6 SMP Support and Load-Balancing . 61

4.3 Real-Time Extensions and Related Work . 64

4.3.1 RTLinux . 65

4.3.2 RTAI . 65

4.3.3 ADEOS, and Xenomai . 66

4.3.4 OCERA and AQuoSA . 66

4.3.5 PREEMPT RT . 67

4.3.6 LITMUSRT . 67

4.3.7 SCHED DEADLINE . 68

4.3.8 SCHED RTWS . 71

4.4 Plenty of Room for Improvement . 72

4.5 Summary . 73

5 The SCHED PCSWS Scheduler 75
5.1 System Model . 75

5.2 Design Choices and Data Structures . 76

5.2.1 Base System and Source Files . 77

5.2.2 p-CSWS Scheduling Class and Policy 77

5.2.3 Schedulable Units . 79

5.2.4 Runqueues . 84

5.2.5 Global Scheduling Data . 88

5.3 Implementation . 89

5.3.1 Launching Tasks and Threads . 89

x

5.3.2 Activating and Deactivating Tasks . 90

5.3.3 Mapping Tasks and Deques to CPUs . 93

5.3.4 Boosting Tasks . 94

5.3.5 Load-balancing . 94

5.3.6 Selecting the Next Task . 98

5.3.7 Releasing the Next Job . 99

5.3.8 Sharing Residual Capacities . 101

5.3.9 Work-Stealing . 104

5.3.10 Accounting Execution Time . 106

5.3.11 Task Termination and Parent Throttling 108

5.4 Summary . 109

6 Experimental Evaluation 111
6.1 Scenario . 111

6.1.1 SCHED SCBS . 112

6.1.2 Conducted Tests . 112

6.2 Response-Times . 113

6.3 Overheads . 114

6.3.1 Scalability . 116

7 Conclusion 119
7.1 General Conclusions . 119

7.2 Summary of the Main Contributions . 120

7.3 Future Work . 120

xi

xii

List of Figures

2.1 Shared memory computer. 8

2.2 Distributed memory computer. 8

2.3 Work-stealing scheduling on a 4-processor system 20

3.1 Global scheduling . 34

3.2 Partitioned scheduling . 34

3.3 Clustered scheduling with task migration . 36

4.1 Overview of a Linux system . 47

4.2 Linux task states and transitions . 51

4.3 Doubly linked list example . 53

4.4 Red-black tree example . 54

4.5 Hierarchy of scheduling classes and policies . 56

5.1 Integrating pcsws sched class onto the scheduling class hierarchy 78

5.2 Overview of the SCHED PCSWS runqueue design 86

5.3 Control flow diagram for enqueue task pcsws() 90

5.4 Control flow diagram for enqueue local pcsws() 91

5.5 Control flow diagram for dequeue task pcsws() 92

5.6 Control flow diagram for dequeue local pcsws() 92

5.7 Control flow diagram for select task rq pcsws() 93

5.8 Control flow diagram for pull deque pcsws() 95

5.9 Control flow diagram for move pcsws group() 96

5.10 Control flow diagram for push deque pcsws() 97

5.11 Control flow diagram for pick next task pcsws() 99

5.12 Control flow diagram for the sched wait interval() system call 100

5.13 Control flow diagram for release rcs() . 101

5.14 Control flow diagram for update idling() 103

5.15 Control flow diagram for account idling() 103

5.16 Control flow diagram for steal work pcsws() 105

5.17 Control flow diagram for update curr pcsws() 107

5.18 Control flow diagram for task overrun pcsws() 108

xiii

6.1 Average response-time ratio of each test . 114

6.2 Total migrations and steals on 8 cores . 115

6.3 Total context switches on 8 cores . 116

xiv

List of Tables

3.1 Task notation summary. 27

3.2 Job notation summary. 27

4.1 A list of relevant task struct attributes. 50

6.1 Composition of each test . 113

6.2 Scale up ratios on the number of migrations . 116

6.3 Scale up ratios on the number of context switches 117

xv

xvi

Acronyms

Adeos Adaptative Domain Environment for Operating

Systems

API Application Programming Interface

BF Best-Fit

CASH Capacity-Sharing

CBS Constant Bandwidth Server

CFS Completely Fair Scheduler

CGroup Kernel Control Group

CISTER Research Centre in Real-Time Computing and

Embedded Computing Systems

CPU Central Processing Unit

CUDA Compute Unified Device Architecure

DAG Directed Acyclic Graph

DM Dealine-Monotonic

DS p-CSWS Dedicated Server

EDF Earliest Deadline First

FF First-Fit

FIFO First-In First-Out

FP Fixed-Priority

G-EDF Global Earliest Deadline First

GPGPU General Purpose computation on Graphics Pro-

cessing Units

GPL GNU General Public License

GPOS General-Purpose Operating System

GPU Graphics Processing Unit

xvii

HPC High-Performance Computing

HPP Heterogeneous Parallel Programming

HRT Hard Real-Time

IPC Inter-Processor Communication

ISR Interrupt Service Routine

JLFP Job-Level Fixed-Priority

LIFO Last-In First-Out

MIMD Multiple Instruction, Multiple Data

MISD Multiple Instruction, Single Data

MMU Memory Management Unit

MPI Message Passing Interface

NUMA Non-Uniform Memory Access

OpenCL Open Computing Language

OpenMP Open Multi-Processing

ORT Open Real-Time

OS Operating System

p-CSWS Parallel Capacity Sharing by Work-Stealing

PAS Priority-Aware Stealing

PGAS Partitioned Global Address Space

PI Priority Inheritance

QoS Quality of Service

RCS p-CSWS Residual Capacity Server

RM Rate-Monotonic

RR Round-Robin

RTAI Real-Time Application Interface

RTLinux Real-Time Linux

RTOS Real-Time Operating System

RTS Real-Time System

RTWS Real-Time Work-Stealing

SCI System Call Interface

SIMD Single Instruction, Multiple Data

xviii

SISD Single Instruction, Single Data

SMP Symmetric Multiprocessing

SPMD Single Program, Multiple Data

SRT Soft Real-Time

UMA Uniform Memory Access

VFS Virtual File System

WCET Worst-Case Execution Time

WS Work-Stealing

xix

xx

Chapter 1

Introduction

“There is nothing more dangerous than not taking a risk.”

— Pep Guardiola

1.1 Motivation

The undeniable benefits of multiprocessor platforms are currently instigating a paradigm change

in several areas of computer science, including real-time research. Leading the recent outbreak in

ubiquitous computing and mobile devices, multi-core machines are quickly becoming prominent

as the industry tries to keep up with the performance and power consumption demands of modern

applications.

To exploit the advantages of multiprocessor technology, a multitude of parallel programming

frameworks now allow developers to slice their programming logic into execution threads that

may run in parallel across the available processing units. Although flexible and easily expressed,

parallelism of this nature is often irregular, and relies on the underlying process scheduler dynam-

ically look for parallel execution.

With the ever-increasing interest in time-sensitive user-end applications, such as continuous

media streaming, research is now focusing on bringing real-time support to the mainstream, to

provide General Purpose Operating Systems with feasible scheduling solutions for real-time tasks

competing for processor time with traditional desktop applications. Open Real-Time (ORT) sys-

tems of this kind should achieve a correct allocation of the available resources so that (i) the

requirements of real-time computations are met, and (ii) the overall performance for other appli-

cations is kept at a satisfactory level.

Deterministic real-time environments focus on Worst-Case Execution Time (WCET) analy-

sis to guarantee the execution requirements of critical hard real-time tasks. Precise estimation

of the WCET is usually difficult to obtain, and a pessimistic outlook on the real execution re-

quirements of a given task, ultimately leading to inefficient use of the available resources. Time-

sensitive computations are no longer restricted to control routines or safety-critical computations,

1

CHAPTER 1. INTRODUCTION

and WCET scheduling is inadequate for ORT scenarios, where execution times are expected to

be particularly variable. However, in order to achieve better utilization of the available processing

bandwidth, it is possible to schedule non-critical soft real-time tasks by their mean execution val-

ues, as long as an acceptable degree of Quality of Service (QoS) is maintained. Bandwidth reser-

vation mechanisms allow soft real-time tasks to occasionally overlook their timing constraints, by

providing temporal isolation, and preventing overrun effects to compromise the schedulability of

other tasks.

Contrarily to early dedicated systems, ORT environments should be prepared to deal with

unpredictable amounts of work, and as the volume of the computation grows, scalability calls for

multiprocessor architectures. With SCHED DEADLINE recently making it into the mainline ker-

nel, Linux is now able to manage irregular real-time applications using the Constant Bandwidth

Server (CBS) abstraction, but even though multi-core scheduling is contemplated, it is still un-

able to deal with intra-task parallelism. While other remarkable approaches such as tackled Linux

support for intra-task parallelism, they are designed exclusively for hard real-time computations

scheduled by the WCET, and do not address the problem of irregular workloads.

The Parallel Capacity Sharing by Work-Stealing (p-CSWS) scheduler combines bandwidth

reservation with Capacity-Sharing (CASH) and Work-Stealing (WS), to efficiently schedule par-

allel real-time tasks of unpredictable and variable workloads. This thesis proposes a new schedul-

ing module for the Linux kernel based on the p-CSWS algorithm. To the best of our knowledge,

we are the first to take on dynamic multi-core scheduling of irregular parallel real-time tasks in

the Linux kernel, and provide a scheduling solution that meets the basic requirements of a multi-

processor ORT system.

1.2 Contributions

This project breaks new ground as it is the first to explore the practicality of scheduling both hard

and soft parallel real-time tasks in the Linux kernel. Based on the theoretical proposal of the

p-CSWS scheduler, we introduce a new scheduling class capable of:

• Dynamically performing multi-core scheduling of real-time computations

• Handling unexpected load changes in irregular and aperiodic tasks

• Exploiting intra-task parallelism in real-time executions

With this document, our main goal is to prove the effectiveness of our implementation through

the analysis of extensive experimental results.

The work described in this document has been published in [Ferreira and Nogueira, 2013]. A

journal version is under submission.

1.3 Institutional Support

This research work was developed in the context of the RECOMP European project, from the

ARTAMIS program, held at CISTER (Research Centre in Embedded Real-Time Computing Sys-

2

1.4. OUTLINE

tems). CISTER is a top-ranked research unit associated with the INESC-TEC, from the School of

Engineering (ISEP) of the Polytechnic Institute of Porto (IPP), Portugal, focusing on the analy-

sis, design and implementation of real-time and embedded computing systems. Back in the 2004

evaluation process, CISTER was the only research unit in Portugal, in the areas of computer and

electrical engineering and computer science, to be awarded the top-level rank of Excellent. This

outstanding ranking was confirmed in the last evaluation on process (2007). CISTER has grown

to become one of the leading European research units in the area, contributing with seminal re-

search works in numerous subjects. Since mid-2011, CISTER is an autonomous research unit

associated to INESC-TEC.

1.4 Outline

This document is structured as follows:

• Chapter 2 presents a study of parallel computer architectures, programming models, and

dynamic scheduling of parallel tasks.

• Chapter 3 provides an in-depth study of real-time systems, defining the concept of real-

time applications and surveying real-time scheduling techniques including the p-CSWS

scheduler serving as the theoretical foundation of this thesis.

• Chapter 3 studies the Linux kernel, with special emphasis to the internals of the process

scheduler, and lists related work on Linux real-time support.

• Chapter 5 provides a detailed description of the SCHED PCSWS scheduler and its imple-

mentation.

• Chapter 6 assesses the efficiency and correctness of the SCHED PCSWS scheduler.

• Chapter 7 concludes and suggests future extensions to our work.

3

CHAPTER 1. INTRODUCTION

4

Chapter 2

Parallel Computing

“[. . .] a folk definition of insanity is to do the same thing over and
over again and to expect the results to be different. By this definition,
we in fact require that programmers of multithreaded systems be in-
sane. Were they sane, they could not understand their programs.”

— Edward A. Lee

The past decade marked a turning point with regard to the adoption of parallel processing plat-

forms in the general market. For many years, the industry tried to attend the performance needs

of user-end sequential programs by improving clock speed and efficiency with each new genera-

tion of single-core processors [Diaz et al., 2012]. As the inherent limitations of the architecture

became evident and single-core evolution became stagnant, it was realized that performance scal-

ability could be achieved more efficiently through the combination of several processing units, or

cores, in the same chip. The multi-core paradigm proved beneficial for both ends of the market, as

manufacturers were able to design increasingly powerful solutions at a reduced cost, and signifi-

cantly decrease clock speed and energy consumption to improve cost-efficiency for the customer.

Despite the recent outbreak in the domestic and small-business markets, parallel computing

has long had an important role in diverse areas of computer science, from large industrial ap-

plications to the vast domain of small embedded devices. Since there is no upper bound on the

number of microprocessors that can be interconnected, parallel architectures offer the theoretical

promise of limitless processing capacity [Dongarra et al., 2003]. This is the idea behind most

developments in the High-Performance Computing (HPC) niche, where multiple loosely-coupled

processors are combined to handle unusually large workloads.

However, in contrast to uniprocessor machines unified by the Von Neumann model, there

exist many ways to couple individual Central Processing Units (CPUs) in a single computing

system. As a result, the structural design and modus operandi of parallel computers can be rather

heterogeneous. On the other hand, while parallel computers are able to provide a virtually infinite

amount of computing power, they are unquestionably harder to program and use [Dongarra et al.,

2003, mei Hwu et al., 2008].

We begin this chapter with a broad survey on distinct types of parallel computers and archi-

5

CHAPTER 2. PARALLEL COMPUTING

tectures. We will then move on to parallel software, referencing the particularities of parallel

programs as opposed to sequential algorithms, as well as addressing different models of parallel

programming. We conclude with a quick view on dynamic scheduling of task-parallel applica-

tions.

2.1 Parallel Computer Architectures

In the general case, it is simply not practical to study or operate computers at the machine level.

To make productive and convenient use of computers, technologists rely on archetypal models of

computation, which reduce their structural and functional complexity to a small set of abstract

components and their relations [Kumar, 2002, Navarro et al., 2014]. A model of computation is

a conceptual machine that outlines the essential properties of a certain class of computers sharing

a set of common characteristics. Through a comprehensive characterization, it unifies several

configurations into a single abstract platform, and provides a means of evaluating the theoretical

performance of algorithms on the same platform. [Hambrusch, 1996, Kessler and Keller, 2007,

Maggs et al., 1995, Skillicorn and Talia, 1998]

Models of computation can be divided into two interdependent parts. The programming model

describes the basic operations supported by a computer, defining a set of programming abstrac-

tions that can be used to derive machine-independent programming languages. This allows easy

formulation and understanding of portable algorithms, as it enables developers to program the

abstract platform rather than a specific computer. The architectural model1 appears at a lower

level of abstraction, to establish the bridge between the programming model and the hardware

platform. It specifies the execution engine, characterizing each operation in terms of the abstract

components involved, their interactions, and the respective cost. Such description of the opera-

tional costs makes it possible to infer the combined cost of entire algorithms and analyze their

performance on the computing platform. [Hambrusch, 1996, Kessler and Keller, 2007, Maggs

et al., 1995, Skillicorn and Talia, 1998]

Parallel computing alludes to the simultaneous and cooperative use of multiple processing

units to solve a computational problem [Foster, 1995]. The maturity reached by sequential com-

puters over the years is partly owed to the simplicity and robustness of the conceptual Von Neu-

mann machine [Goldstein and von Neumann, 1961], widely accepted as the standard model of

computation for serial computers [Foster, 1995, Kessler and Keller, 2007, Navarro et al., 2014].

Such maturity is yet to be attained in the parallel computing domain where, due to the heterogene-

ity of computer designs, several models of parallel computation have been proposed in literature.

Parallel computer classifications are based upon varied differentiation criteria. In the remain-

der of this Section, we study the leading architectural models of parallel computation. Parallel

programming models will be presented in Section 2.3.

1Also called machine model, cost model, performance model, or hardware model.

6

2.1. PARALLEL COMPUTER ARCHITECTURES

2.1.1 Flynn’s Taxonomy

According to Flynn [1972], instructions and data make up the two types of information that flow

into a processor. A succession of related instructions is referred to as an instruction stream, while

a data stream is a sequence of data elements affected by an instruction stream.

The popular classification of Flynn is based upon the plurality of instruction and data streams

in effect simultaneously. The combination of scenarios yields 4 distinct architectures.

• Single Instruction, Single Data (SISD) - A uniprocessor architecture executing a single

instruction upon a single data element, at each clock cycle. The SISD abstraction di-

rectly translates into the Von Neumann architecture. [El-Rewini and Abd-El-Barr, 2005,

Kshemkalyani and Singhal, 2008, Navarro et al., 2014].

• Single Instruction, Multiple Data (SIMD) - A type of parallel computer in which several

processing units synchronously execute the same instruction on different sets of data (data

parallelism). It is typical of systems performing recurrent computation, such as graphics

processing, or as a redundancy mechanism in fault-tolerant platforms.

• Multiple Instruction, Single Data (MISD) - Another parallel architecture, whose processing

units execute different instruction streams on a single data element. MISD is not considered

very practical, though it may be useful for complex problem-solving algorithms.

• Multiple Instruction, Multiple Data (MIMD) - Models the majority of parallel computers

available today. In a MIMD computer, each processing unit is asynchronously controlled

by distinct instruction streams operating on different elements of data.

The highly abstract models of Flynn sort computers by behavioral paradigm, but do not pro-

vide a thorough description of their architectural design and execution engine.

Parallel computers are broadly described as an arrangement of 3 components: (i) a processing

module comprised of several CPUs, (ii) the main memory, and (iii) the interconnection network

[Kumar, 2002, Skillicorn and Talia, 1998]. The physical organization of these components, par-

ticularly the spacial relationship between processors and memory, is the central differentiating

factor among parallel computer architectures, and one that has a direct impact on their operation

and performance.

Owing to their prevalence in the consumer market, in Section 2.1.2 we focus on MIMD com-

puters, their memory architectures, and communication models.

2.1.2 Parallel Memory Architectures

If several processors are to work cooperatively in the resolution of a problem, they must commu-

nicate either by direct manipulation of a shared memory space or by message exchanging through

the interconnection network. MIMD machines can be further classified by the adopted commu-

nication model supported by the underlying hardware design. [Dongarra et al., 2003, El-Rewini

and Abd-El-Barr, 2005]

7

CHAPTER 2. PARALLEL COMPUTING

Memory BUS

Shared Memory

P4P3P2P1

Figure 2.1: Shared memory computer.

Network

P4P3P2P1

Local
Memory

Local
Memory

Local
Memory

Local
Memory

Figure 2.2: Distributed memory computer.

2.1.2.1 Shared Memory Architectures

A shared memory architecture (Figure 2.1) is a collection of tightly-coupled processing units,

linked to a single memory resource by way of a common interconnection network2. Inter-Process

Communication (IPC) is achieved through concurrent and coordinated access to a common set

of data in the global memory space. Each processor manipulates the shared data independently,

and each change is effective and visible to all processors. [Dongarra et al., 2003, El-Rewini and

Abd-El-Barr, 2005]. In literature, shared memory computing resources are commonly referred to

as multiprocessors [Kshemkalyani and Singhal, 2008, Quinn, 2004]. As a collection of several

processing units sharing a single memory space, a commodity multi-core configuration falls into

this category.

At the hardware level, cache coherency is the most problematic aspect of this model. A cache

coherent system is one which guarantees equality between cache and memory values, across

processors, at all times. Under this perspective, it must be assured that programs execute as

if they were accessing the memory directly, usually through additional hardware mechanisms3

specifically designed for this purpose. [Dongarra et al., 2003]

With respect to cache coherency and memory access times, shared memory models can be

further separated into two main categories, namely Uniform Memory Access (UMA) and Non-

Uniform Memory Access (NUMA).

In UMA machines, all processors access the memory uniformly at the same speed. In modern

implementations, processors, cache, and main memory, are directly interconnected to guarantee

cache coherency and equal access times to memory by all processors. However, UMA systems

lack in scalability, due to the exponential growth of the interconnection network and the bottle-

neck inherent to memory contention on a single bus [Dongarra et al., 2003, Navarro et al., 2014,

Nitzberg and Lo, 1991].

Conversely, NUMA architectures exhibit variable access times, depending on the location

of processors in relation to the memory. A NUMA configuration consists of several tightly-

coupled multiprocessors, each with a dedicated memory space, and connected through a scalable

network4 [El-Rewini and Abd-El-Barr, 2005, Wilson, 1987]. Communication is achieved by

memory address mapping, so that each individual processor can directly access and manipulate
2Typically a bus.
3Known as cache-coherency protocols [Dongarra et al., 2003].
4Such as a tree, or a hierarchical bus.

8

2.1. PARALLEL COMPUTER ARCHITECTURES

the memory dedicated to another processor. Even though a NUMA system can scale to much

higher numbers of processors and capacity than a UMA model, memory access between links is

generally slower [Kshemkalyani and Singhal, 2008].

The combination of multi-core processors with many-core Graphics Processing Units (GPUs)

eligible for general-purpose computation (General Purpose computation on Graphics Processing

Units (GPGPU)), defines yet another type of multiprocessor configuration where highly parallel

applications can achieve great speedup. While this type of architecture falls into the NUMA

category, AMD recently began to tackle a solution where the main memory is shared equally

among the CPU and GPU, in an attempt to minimize communication latency, and bring the CPU

and GPU together as a single unit in a programming platform [Kyriazis, 2013].

2.1.2.2 Distributed Memory Architectures

Distributed memory architectures (Figure 2.2), usually consist of multiple independent computers,

called nodes, connected though a network, and using this medium to exchange messages when

communication across nodes is desired [Dongarra et al., 2003, El-Rewini and Abd-El-Barr, 2005].

As collections of multiple sequential or parallel computers, distributed memory configurations

are also known as multicomputers [Kessler and Keller, 2007, Kshemkalyani and Singhal, 2008,

Quinn, 2004].

In distributed memory architectures, there is no notion of a global address space. The existing

memory is privately owned by each computer, isolated from the network, and kept inaccessible

to programs executing in other nodes, so that any memory manipulations are performed locally.

Seeing that each machine has exclusive access to its own memory space, the data consistency and

cache coherency setbacks of shared memory architectures do not hold [El-Rewini and Abd-El-

Barr, 2005].

Arguably the greatest advantage of distributed memory computers, lies in that they can theo-

retically scale to infinite numbers. Since memory space can increase proportionally to the number

of processors, scalability is only limited by the topology of the network. For this reason, large

computer clusters and grids are typical examples of distributed memory implementations [Don-

garra et al., 2003].

However, distributed memory programming through message-passing introduces a number of

facets that must be addressed by the developer. Because the data is spread across independent

machines, locality awareness is crucial for the communication procedure, as each program must

know exactly where other programs, along with the respective data, are located within the system

[Jordan, 1991, Kumar, 2002].

Programmers must also acknowledge the communication overhead associated with message-

passing, i.e. the costs of constructing, interpreting, and transmitting each message through the in-

terconnection network [Jordan, 1991]. These costs, along with the communication bottleneck im-

posed by the interconnection network, suggest that parallel programs requiring a minimal amount

communication are the better suited for the distributed memory paradigm. As such, it is advisable

that the workload be partitioned and distributed in such a manner that data locality is maximized

9

CHAPTER 2. PARALLEL COMPUTING

and communication is reduced to a minimum.

2.1.2.3 Hybrid Distributed-Shared Memory Architectures

Advancements in the area of HPC promote alternative archetypes, which combines shared and

distributed memory into hybrid architectures. Ingeniously conceived distributed-shared memory

configurations sustain the largest and fastest supercomputers of today [Diaz et al., 2012]. Hybrid

architectures are prominent in many cutting-edge fields of modern computing technology, such

as cloud computing or social networking.

The obvious, but challenging goal of distributed-shared memory is to join the advantages

of both architectures, especially the scalable potential of distributed memory, and the superior

efficiency and simplicity of the shared memory communication model.

Hybrid architectures introduce the concept of virtual shared memory, with a simulated global

address space that abstracts the distributed-memory configuration and guarantees transparent ac-

cess to the data, regardless of its location. At a large scale, the costs of storage and communica-

tion, as well as many performance aspects, are influenced by the adopted data distribution scheme,

for which two main techniques are used: data migration and data replication. Data migration of-

fers an efficient storage solution, at the expense of increased volumes of communication. Data

replication looks to reduce communication and improve performance, through a model of redun-

dant data distribution that often degrades consistency. [Dongarra et al., 2003, Nitzberg and Lo,

1991, Protic et al., 1997]

Data distribution is merely one of numerous dilemmas in the discipline that tackles the design

and implementation of distributed computing platforms, where the tradeoff between consistency,

availability, and partition tolerance, as described by Brewer’s CAP Theorem [Brewer, 2000], plays

a dominant role. As interesting as it is to examine the plethora of challenges and state-of-the-art

developments in this area, we believe that they extend far beyond the scope of our work.

2.2 Towards Parallelism

Augmenting the number of processors raises the level of processing power and the ability to han-

dle increasingly larger workloads, but does not directly translate into performance enhancement.

Think of two independent sequential programs, requesting processor time in a uniprocessor ar-

chitecture. If the uniprocessor was to be replaced by two microprocessors of the same capacity,

doubling the amount of processing units would allow for both programs to run simultaneously and

improve the overall response-time of the system, but the performance of each individual program

would not increase accordingly.

To better utilize the available processing capacity and scale application efficiency, computa-

tions must parallelize. Programs must be parceled out into smaller execution chunks that can be

distributed, and coordinately migrated between processors, to execute in parallel. Ultimately, as

long as there exists work awaiting completion, all processing units should be kept busy at every

clock cycle to exploit the maximum amount of conjoint processing power.

10

2.2. TOWARDS PARALLELISM

2.2.1 Concurrency as the Key Towards Parallelism

In simple terms, speedup measures the performance gain achieved by solving a computational

problem in parallel, rather than sequentially. As expressed by Equation 2.1, the speedup of a

program is given by the ratio of sequential execution time T (1) on a single processor, to parallel

execution time T (n) on a parallel platform of n identical processors.

Speedup(n) =
T (1)

T (n)
. (2.1)

Amdahl’s Law, deducted from the observations of Gene Amdahl in Amdahl [1967], uses

this definition to show how the the growth in performance of a program, as it switches from

a single processor to a parallel configuration, is constrained by its sequential portion 5. From

another perspective, the attainable theoretical speedup hinges upon the amount of work that can

be executed in parallel, i.e. the concurrent portion of the program.

Because the concepts concurrency and parallelism can be deceptive, we subscribe to the def-

inition of concurrency as a property that enables distinct parts of an algorithm to execute simul-

taneously, and parallelism as the actual event where two or more sections of a program execute

simultaneously. In this sense, parallelism is said to be a subclass of concurrency [Navarro et al.,

2014] . Throughout this document, we may use the terms concurrent and parallel interchange-

ably, in reference to concurrent programs eligible for parallel execution.

Amdahl assumes that the concurrent portion of a program is perfectly parallel6 and remains

constant throughout execution, but such assumptions fall far from practical truth [Hill and Marty,

2008]. For instance, if concurrent sections of a program contend for the same memory resource,

synchronization mechanisms must serialize the access to ensure data consistency. Resource con-

tention is only one of several sources of serialization overhead that threaten the amount of achiev-

able parallelism, and the performance of parallel executions is influenced by a multitude of aspects

that are not taken into account by Amdahl’s observations. For these reasons, although a fine the-

oretical remark, Amdahl’s law is not directly applicable to real settings [Hill and Marty, 2008,

Kumar, 2002, Roth et al., 2012].

Nevertheless, seeing concurrency as the key prerequisite for optimizing the performance of

individual applications and the efficiency of parallel systems, there is an emphasis on improv-

ing the exploitable concurrency of algorithms, in an attempt to offer the best opportunities for

parallelism.

2.2.2 Finding and Expressing Concurrency

Unfortunately, the vast majority of computer software available today follows a sequential in-

struction flow unsuitable for parallel execution. To harness the maximum amount of processing

capacity, developers are now focusing on the design and development of parallel applications ei-

ther by adjusting existing algorithms, or creating entire parallel programs. In fact, these are the

5In parallel computing literature, this limitation is referred to as serial bottleneck
6Concurrent parts of the same program never serialize throughout execution.

11

CHAPTER 2. PARALLEL COMPUTING

two primary methods of producing concurrent algorithms: automatic parallelization and parallel

programming. [Diaz et al., 2012, Dongarra et al., 2003]

Automatic parallelization refers to the use of specialized tools that take sequential computing

logic and automatically recognize opportunities for parallelism, resulting in what is called implicit

parallelism [Dongarra et al., 2003, Kumar, 2002, Navarro et al., 2014]. The serial program is

often decomposed by a compiler or interpreter, able to identify well-known patterns and split the

logic and data into concurrent parts. Though a simple solution to adapt existing sequential code,

automated code analysis is complex, rudimentary, and unlikely to produce powerful and efficient

parallel algorithms in the general case [Diaz et al., 2012, Dongarra et al., 2003].

Highly efficient parallel applications can be built through explicit parallel programming prac-

tices, relying on the expertise of the software developer to formulate concurrency. Explicit par-

allelism [Dongarra et al., 2003, Kumar, 2002] of this kind requires the programmer to decom-

pose the computation into concurrent units of control and manage their interactions. Expressing

parallelism through explicit programming can be an intricate and laborious process, with many

engaging facets that remain widely debated across software engineering. [Dongarra et al., 2003,

Kumar, 2002]

2.2.2.1 Problem Decomposition

The key to parallel programming lies in identifying and exposing the exploitable concurrency

within the computational problem. While the ordinary challenges of sequential programming

persist, developers are faced with the supplementary effort of partitioning the problem into con-

current pieces and managing the dependencies among them. This process, called problem decom-

position, or problem partitioning, is classified by the renowed methodological approach of Foster

[1995] as the primary stage of parallel algorithm design.

In the decomposition strategy known as task decomposition, or functional decomposition,

the initial focus is upon the computation, as concurrent instruction sequences are identified and

apportioned into individual tasks. A task is a unit of control, with its own data space, that can be

allocated to the processor by a scheduler. [Breshears, 2009, Dongarra et al., 2003, Foster, 1995,

Rauber and Rünger, 2010]

Once the computation has been broken into tasks, partitioning of the data operated by each

task follows. Unfortunately, a decomposition into purely independent tasks is very unlikely. If

a computation requires data bound to another task, then both tasks need interact coordinately,

through the underlying communication subsystem, to exchange such data. Task dependencies,

as such, must also be determined, and either resolved or removed, at the decomposition stage

[Breshears, 2009, Dongarra et al., 2003, Rauber and Rünger, 2010].

In other cases, an initial decomposition of the data may be more suitable. Problems of this

type typically compute data iteratively, as in adding the values in each row of a two-dimensional

array, word counting in a stream of input text, et cetera. With data decomposition, or domain

decomposition, the computational problem is divided into a series of smaller ones. The data are

partitioned into smaller fragments, and the operations affecting each of these pieces are decom-

12

2.2. TOWARDS PARALLELISM

posed from the serial computation and organized into individual tasks, which are computed in

parallel and synchronize at the end. As with task parallelism, data requirements among the orig-

inated tasks may not be thoroughly disjoint. In the event that operations demand data from other

partitions, the communication subsystem must be put into service to make such data available to

the requesting task. [Breshears, 2009, Dongarra et al., 2003, Foster, 1995, Kumar, 2002, Rauber

and Rünger, 2010]

When applied to the class of problems exemplified above, a data decomposition approach

usually yields identical tasks, set to operate equal-sized data segments of the same structure7.

As these tasks are distributed across processing units, all processors execute the same program,

in parallel, but upon different streams of data. As explained in Section 2.2.2.2 this has been

formalized into the prominent Single Program, Multiple Data (SPMD) execution pattern.

2.2.2.2 Parallel Programming Patterns

With task decomposition, programmers merely point out concurrent sections of code, leaving it

to the underlying runtime environment to decide whether to launch concurrent tasks in parallel or

not. To provide the best flexibility, they are allured to expose as much concurrency as possible,

in a type of dynamic parallelism that is often input-dependent, variable, and unpredictable. Since

many execution details are not known a priori, the problem of mapping tasks to processors must

be tackled dynamically, at runtime, to maintain an even distribution of work across the parallel

platform [Belikov et al., 2013, Kumar, 2002]. Parallel computing literature refers to this execution

paradigm, in which compiled programs dynamically generate tasks at runtime, as task parallelism

or intra-task parallelism [Belikov et al., 2013, Dongarra et al., 2003, Kumar, 2002, Navarro et al.,

2014].

Thread-based parallelism, or multithreading, is the most common type of task parallelism.

In this context, a thread is a lightweight stream of control that performs a fraction of the work

contained in a program [Kumar, 2002], and the smallest unit recognizable by a scheduler. Threads

are generated within the control flow of a master task, which can be an independent process or

another thread. In addition to the local data, they inherit and share resources allocated to the

master task, and use the shared memory region to communicate via asynchronous load and store

operations [Diaz et al., 2012]. [Belikov et al., 2013, Breshears, 2009, Diaz et al., 2012, Dongarra

et al., 2003, Kumar, 2002, Navarro et al., 2014]

Execution in the fork/join style begins with a sequential region, as the master task correspond-

ing to the main parallel program is attributed to the CPU. The master task can enter a parallel

region at any time, as it spawns concurrent child threads using a fork statement. Throughout

the parallel region, threads and the master task compete against each other8 for CPU time. A join

statement instructs the master task to wait for the completion of all child threads. As the last pend-

ing thread completes, the master task resumes executing the sequential portion of the program.

[Kessler and Keller, 2007, Mattson et al., 2004, Quinn, 2004, Rauber and Rünger, 2010]

7For instance, if a two-dimensional array is partitioned into rows, then an equal number of identical tasks can be
assigned to sum the elements of each row in parallel.

8And possibly other tasks in the system.

13

CHAPTER 2. PARALLEL COMPUTING

Alternatively, if the data are decomposed into independent parts distributed evenly among

processors we allude to data parallelism, typified by the Single Program, Multiple Data (SPMD)

execution pattern [Dongarra et al., 2003, Rauber and Rünger, 2010]. With SPMD, each processor

performs the same task upon its own subset of the data. Data and task mapping are performed at

configuration time and remain constant until completion, making for a runtime behavior that is

substantially more deterministic than that of task parallelism. Here, the keys to a good distribution

are load balance and data locality [Kumar, 2002], to avoid the two major sources of inefficiency

in this model, namely processor idling and communication overhead. Since parallelism remains

unchanged throughout execution, although the quest for these goals can be complex, task interac-

tions can be determined beforehand and taken into account in the design of an efficient distribu-

tion scheme. [Belikov et al., 2013, Dongarra et al., 2003, Kessler and Keller, 2007, Kumar, 2002,

Mattson et al., 2004, Navarro et al., 2014, Rauber and Rünger, 2010]

Throughout this document we will direct our attention to the task-parallel fork/join model

and its derivatives, overwhelmingly popular in shared memory architectures typical of commod-

ity computers [Diaz et al., 2012, Quinn, 2004]. Alternative styles found across literature, such

as master/worker, client/server, loop parallelism, pipelining, task pools, et cetera [Rauber and

Rünger, 2010], are mostly applicable to particular cases that are of little interest to us. For a

comprehensive study of parallel execution and programming patterns, we refer the reader to the

specialized book of Mattson et al. [2004] and the annexed bibliography [Diaz et al., 2012, Quinn,

2004, Rauber and Rünger, 2010].

2.2.3 Granularity and its Effect on Performance

So far, we have discussed the importance of identifying and revealing the intrinsic concurrency

within a computational problem, as it is set to be solved on a parallel platform. Achieving maxi-

mum throughput in a parallel system is primarily a matter of compromise between load-imbalance

and parallel overhead [Kshemkalyani and Singhal, 2008], directly influenced by the relationsh-

iop between the underlying architecture, and the number and size of parallel tasks involved in

the computation, i.e., the granularity of the parallel program. [Kshemkalyani and Singhal, 2008,

Kumar, 2002, Navarro et al., 2014]

Parallel algorithms alternate between periods of computation and periods of synchronization.

The volume and frequency of interactions is bound to grow as the volume of concurrent tasks

increases and their size diminishes. Thus, by measuring the decomposition in terms of the number

of tasks and their length, granularity also quantifies the ratio of computation to communication

within the program. [Breshears, 2009, Kshemkalyani and Singhal, 2008, Rauber and Rünger,

2010]

Fine-grained programs, parceled into large numbers of small tasks, offer the best promise

of speedup, load balance, and scalability, but are also susceptible to runtime overhead. With

too fine a level of granularity, the predictably large communication overhead, together with the

costs of bringing parallel tasks to execution and maintaining a balanced distribution of work,

may compromise or even supersede the gains of parallel execution and the time expended in

14

2.3. PARALLEL PROGRAMMING MODELS

the execution of the program [Breshears, 2009, Kshemkalyani and Singhal, 2008, Rauber and

Rünger, 2010]. In these cases, the level of granularity can be adjusted with task agglomeration,

by grouping concurrent tasks into larger serial segments to reduce operational costs [Foster, 1995,

Navarro et al., 2014, Quinn, 2004].

The scenario delineated above is consistent with the description of task-parallel environments

presented in Section 2.2.2.2. As communication-intensive algorithms, fine-grained programs

are better suited for tightly-coupled architectures, optimized for IPC through a shared memory

medium. [El-Rewini and Abd-El-Barr, 2005, Kshemkalyani and Singhal, 2008]

In turn, coarse-grained algorithms are partitioned into fewer and larger tasks, which are

less prone to interact. Computation-intensive programs as such are expected to outperform fine-

grained applications in loosely-coupled machines, where communication across nodes is signif-

icantly more expensive. On the other hand, load-balancing flexibility is hampered by the con-

siderable size of sequential computations. [Breshears, 2009, El-Rewini and Abd-El-Barr, 2005,

Kshemkalyani and Singhal, 2008, Rauber and Rünger, 2010]

2.3 Parallel Programming Models

As one switches from a unified model of sequential computers to a variety of parallel archi-

tectures, a radical shift in perspective is imposed, and the design and development of efficient

machine-independent applications becomes markedly more challenging. To alleviate the pro-

grammer from architecture specifics, parallel programming models look to offer an efficient cross-

platform abstraction for parallel computers, through an assortment of components to design and

develop parallel algorithms. Though not tied to a specific platform, and expected to provide com-

patibility with any computer, parallel programming models are commonly in tune with a particular

parallel architecture and the respective communication model. [Diaz et al., 2012, Dongarra et al.,

2003]

2.3.1 Shared memory models

The task-parallel pattern is facilitated in shared memory architectures, where part of the commu-

nication is implicitly specified by concurrent and direct manipulation of a global memory space

[Diaz et al., 2012]. In light of their proximity to sequential computers, shared memory machines

are considered the simplest to program, as they rely on normal variable assignments, rather than

explicit communication operations, to transmit data between tasks. However, they are not exempt

of idiosyncratic issues demanding special knowledge and attention to detail.

Asynchronous manipulations upon a shared memory resource raise data consistency issues

that may jeopardize algorithm correctness. On this account, shared memory models provide

specialized control and synchronization features9 to resolve non-deterministic access conflicts and

coordinate race conditions between concurrent tasks. While explicit control of concurrency can be

notoriously cumbersome and problematic, it is also a source of unpredictable runtime overhead.

9Such as mutexes, locks, critical section directives, condition variables, semaphores, barriers, et cetera.

15

CHAPTER 2. PARALLEL COMPUTING

Another issue lies with the potential for deadlocks, originated when two or more concurrent tasks

are each waiting for locks held by the other to be released. [Belikov et al., 2013, Diaz et al., 2012,

Dongarra et al., 2003]

POSIX Standard Thread Library (Pthreads) is a popular C programming library, providing a

set of low-level specifications to create, destroy, and coordinate parallel threads under the fork/join

style. As a very explicit model, it is primarily used by experienced developers, well versed in

parallel programming and execution problematics, to build efficient parallel applications at the

cost of extensive expertise and development effort. [Diaz et al., 2012, Dongarra et al., 2003]

Open Multi-Processing (OpenMP) [ARB] is the de-facto standard for shared memory paral-

lel programming under C, C++ and FORTRAN. Though based on the Pthreads model [Navarro

et al., 2014], it offers a portable and cross-platform combination of library routines and compiler

directives, to write well structured high-performance parallel applications at a higher level of ab-

straction [Diaz et al., 2012, Dongarra et al., 2003]. Involving both the programmer and compiler

in the decomposition phase, OpenMP is regarded as a partially-implicit model [Navarro et al.,

2014]. Synchronization and concurrency control are greatly simplified with application-oriented

clauses that complement data and algorithm definition [Dongarra et al., 2003].

2.3.2 Message-Passing Models

Message-passing is a widely accepted view of parallelism for distributed memory architectures,

in which tasks own a private memory space and interact via message exchanging through the

underlying interconnection network. Here, the data consistency complications of shared memory

do not hold, and task synchronization is implicit to each message-passing operation. On the

other hand, while programmers need not enforce mutual exclusion, they must explicitly transmit

the data with matching send and receive commands on both ends of the interaction. Although

message-passing applications can run efficiently on shared-memory configurations, they naturally

match multicomputers, data parallel applications, and the SPMD execution pattern. [Dongarra

et al., 2003, El-Rewini and Abd-El-Barr, 2005, Foster, 1995, Kshemkalyani and Singhal, 2008,

Kumar, 2002, Quinn, 2004, Rauber and Rünger, 2010]

The standard Message Passing Interface (MPI), defines a rich set of portable library routines

to write large applications under the cooperative10 message-passing model. MPI is paired with a

wide variety of programming languages through language bindings providing language-oriented

syntax [Dongarra et al., 2003, Kumar, 2002]. Despite the variety of routines specified by MPI, as

little as 6 are needed to address a multitude of problems [Dongarra et al., 2003, Kumar, 2002].

With the advent of distributed memory clusters of multiprocessor nodes, later versions of MPI

were adapted to handle both distributed and shared memory architectures seamlessly, although the

inherent paradigm and semantics still lean towards distributed memory. [Diaz et al., 2012]

10Also called point-to-point. A send operation in a process must be met with a receive operation in another process.

16

2.4. DYNAMIC SCHEDULING AND LOAD-BALANCING

2.3.3 Other models

As discussed in Section 2.1.2.3, high-performance computers do not strictly follow the dis-

tributed memory approach. To exploit the advantages of both the shared and distributed mem-

ory paradigms, modern supercomputers are made of numerous multi-core machines connected

through a scalable network. [Diaz et al., 2012]

Although parallel programming models are architecture-independent, programmers usually

prefer to blend multithreading techniques with message-passing directives, in a process that often

involves a combination of programming models [Diaz et al., 2012].

Another option is to use the virtual shared memory abstraction to simulate a global address

space over a distributed memory configuration. A solution in vogue is the Partitioned Global

Address Space (PGAS), which introduces a locality-aware memory management layer with a

clear distinction between local and remote data [Diaz et al., 2012]. Whereas local memory can

be accessed with standard sequential mechanisms, remote one-sided access is accomplished via

specific PGAS constructs. With a correct distribution of data, applications can be optimized to

operate local memory with reduced communication overhead. [Belikov et al., 2013, Diaz et al.,

2012, Dongarra et al., 2003]

In the design and development of highly parallel algorithms for GPGPU computation, spe-

cialized Heterogeneous Parallel Programming (HPP) models are used. In this field, NVIDIA’s

Compute Unified Device Architecure (CUDA) and the more compatible Open Computing Lan-

guage (OpenCL) are the most prominent choices. While OpenCL natively supports CPU and GPU

programming, CUDA is frequently combined with multithreading models to write heterogeneous

applications with a high degree of parallelism. [Belikov et al., 2013, Diaz et al., 2012]

2.4 Dynamic Scheduling and Load-Balancing

Once computations and data have been partitioned into concurrent tasks, a correct assignment of

these tasks to the available processing resources is necessary, to make efficient use of the parallel

hardware and maximize the performance of the concurrent program by executing it in parallel.

[Belikov et al., 2013, Foster, 1995, Kessler and Keller, 2007, Quinn, 2004]

Scheduling is the process by which tasks are mapped to physical processing units. The per-

formance of parallel configurations is a function of two conflicting sources of inefficiency: (i)

inter-processor communication, and (ii) processor idling caused by load-imbalance. The trade-

off between both is dictated by the allotment of tasks to processors and the order in which tasks

are selected for execution, i.e. the schedule. [Blumofe and Leiserson, 1993, Foster, 1995, Kessler

and Keller, 2007, Narlikar and Blelloch, 1998, Quinn, 2004, Rauber and Rünger, 2010]

A parallel program can be modeled as a task dependency Directed Acyclic Graph (DAG),

defined as G = (V,E), where V is a set of nodes representing parallel tasks, and E is a set of di-

rected edges denoting dependencies between tasks [Blumofe and Leiserson, 1993, El-Rewini and

Abd-El-Barr, 2005, Kessler and Keller, 2007, Kumar, 2002, Kwok and Ahmad, 1999, Narlikar

and Blelloch, 1998]. Task dependencies impose ordering constraints upon the schedule and in-

17

CHAPTER 2. PARALLEL COMPUTING

troduce communication and synchronization overhead [Belikov et al., 2013, Kessler and Keller,

2007, Rauber and Rünger, 2010]. If a set of interdependent tasks are scheduled to execute in paral-

lel, they are bound to interact through the communication subsystem to exchange data or synchro-

nize. Contrariwise, if the same interdependent tasks execute sequentially, on the same processor,

communication and synchronization overhead are reduced, but so is the ability to maintain an

even distribution of work.

The key to maximum resource utilization lies in maintaining a uniform allocation of tasks to

processors and ultimately keeping all units busy throughout execution. Unfortunately, determin-

ing an optimal allocation is a bin-packing problem known to be NP-hard [Garey and Johnson,

1979]. Practical solutions rely on polynomial-time heuristics that can schedule computations to

satisfy pre-established performance metrics. [Belikov et al., 2013, Brucker, 2007, Kwok and

Ahmad, 1999, Quinn, 2004, Rauber and Rünger, 2010]

A static assignment, at configuration time, is best suited for loosely-coupled configurations

dealing with computation-intensive applications, where the degree of parallelism rarely changes at

runtime and the execution behavior is accurately known. Our work focuses on the more complex

case of multithreaded algorithms, appropriate for tightly-coupled architectures such as multi-

core processors. The use of parallel programming artifacts inside control blocks, like condi-

tional branches and loop iterations, results in a type of input-dependent and non-deterministic

parallelism characterized by irregular execution [El-Rewini and Abd-El-Barr, 2005]. The unpre-

dictable nature of this model requires that scheduling and load-balancing decisions be performed

at runtime, in reaction to dynamic changes in the workload. rauber11, quinn04, belikov13, fos-

ter95

The quality of a dynamic scheduler is measured both in terms of the produced schedule and the

overhead of producing it. In addition to the time and space expended in computing the schedule,

special thought must be given to the costs and unpredictable effects of migrating tasks between

processors as part of a dynamic load-balancing scheme [Belikov et al., 2013, Quinn, 2004]. Mi-

grations also contribute to sources of inefficiency contingent on good locality of data, such as IPC

and cache invalidation.

In section 2.2.3, we have also discussed how fine-grained algorithms can incur overly large

operational and memory costs, if the inherent concurrency is exploited to the fullest. Extremely

fine granularity in task-parallel applications can be efficiently handled using dynamic scheduling

techniques that adjust the volume of parallelism to the characteristics of the parallel configura-

tion and avoid excessive active parallelism [Blumofe and Leiserson, 1993, Narlikar and Blelloch,

1998].

2.4.1 Work-Sharing

Relevant work in dynamic scheduling of task-parallel applications has been proposed in Rudolph

et al. [1991], with two techniques later termed work-sharing.

The simplest form of work-sharing uses a global workpile11, from which tasks are assigned

11A queue of tasks.

18

2.4. DYNAMIC SCHEDULING AND LOAD-BALANCING

to idle processors in First-In First-Out (FIFO) order. This makes for an optimal12 and transparent

load-balancing stategy, which is conceptually easy to implement, but does not preserve locality

of data. As a purely centralized aproach, it also tends to scale poorly with an increasing number

of processors as the global workpile becomes a bottleneck.

In an attempt to improve data locality and scalability, the decentralized variant organizes

executable tasks in local workpiles that are privately owned and operated by each processor, and

follows the principle of continuously moving tasks between workpiles to maintain a equitable

distribution of work. Newly created tasks are inserted onto the local workpile and remain there

until completion, unless they are forced to migrate by cause of the frequent redistribution of

work. The load-balancing routine is initiated regularly13, by busy processors, as they exchange

tasks with another unit chosen arbitrarily to even the size of both workpiles.

Aside from resolving the scalability bottleneck, this scheme has been shown to improve data

locality and produce a distribution of work that closely matches that of the centralized approach.

However, the initiative and overheads of redistributing the workload fall exclusively upon busy

processors, which would otherwise execute pending work. Because idle units cannot actively

pull tasks from neighboring workpiles, they are bound to stay inactive for uncertain periods of

time, before work is assigned by busy processors. Without a full view of the entire mapping, an

arbitrary selection of load-balancing pairs only exacerbates the problem, since it cannot single

out and appoint idle units as preferential recipients of work. As a result, busy processors often

exchange tasks with one another, while other units remain inactive. Furthermore, and particularly

in the case of dynamic and irregular parallelism, determining the size of a workpile may not be

trivial.

Another fundamental flaw of this strategy lies in continuously migrating tasks so that all units

attend a similar quota of the overall computation. In practice, resource utilization is not dictated

by the discrepancy in size between workpiles, but rather in the amount of work that is actually

performed by each processor. As a result, tasks are often migrate unnecessarily, and possibly

several times, before having a chance to execute.

2.4.2 Work-Stealing

Work-Stealing (WS) is a practical and prevalent technique to schedule dynamic, fine-grained, and

fully-strict14 parallel applications. Proposed by Blumofe and Leiserson [1999], the WS sched-

uler is a proven efficient scheduling algorithm with bounded time, space, and communication.

With a greedy approach on load-balancing, idle units take the initiative to fetch work from busy

processors, in a strategy that offers better efficiency and performance metrics than work-sharing.

The WS scheduler uses one worker thread, or worker, per core, to organize ready tasks in

a local double-ended queue, or deque. The worker manages its deque like a stack, pushing and

popping threads from the bottom in a Last-In First-Out (LIFO) manner.

Execution begins with all deques empty. As a master task becomes ready for execution, it is

12In the sense that the workload is distributed across processors as evenly as possible.
13An interval that is inversely proportional to the size of the local workpile.
14In the task dependency DAG, all data dependency edges from a thread point to its parent.

19

CHAPTER 2. PARALLEL COMPUTING

assigned to a worker which, upon finding its local deque empty, directly assigns the master task

to its local processor. From the moment it begins execution, the master task can enter a parallel

region at any time. As a new thread is spawned, the master task is pushed to the bottom of the

deque, and the new thread is given processor time straight away. Thus, since threads usually share

some data with their parents, it is very likely that a part of the shared is still in cache [Acar et al.,

2000].

When a thread completes, the worker looks for executable tasks at the bottom of its deque. If

the deque has pending work, the bottom-most thread is popped and selected for execution. In the

likely case that the bottom-most thread is a parent or sibling of the previous one, this maneuver

also promotes data locality.

So far, all operations performed by the workers are completely independent, as threads remain

local to increase scheduling granularity, exploit data locality, and provide low scheduling con-

tention [Narlikar, 1999]. Synchronization between workers occurs when a local deque is found

empty. Upon failing to fetch local work, the idle worker, or thief, launches the load-balancing

procedure to make an attempt at stealing threads from another randomly chosen worker, termed

victim. If the victim has pending work, the top-most thread of its deque is popped, migrated, and

assigned to the thief. Otherwise, the WS procedure runs again, in search for eligible victims with

pending work.

In the example of Figure 2.3, Task1 was attributed to P1 and entered a parallel region as

it spawned Thread1,1. The newly spawned Thread1,1 took the processor, and Task1 was en-

queued at the bottom of the local deque. Upon finding its local deque empty, P2 stole Task1 from

the top of Deque A. Task2 was assigned to P3 and remained on a sequential region. P4 stayed

idle, waiting for work to be assigned or for a WS opportunity.

Figure 2.3: Work-stealing scheduling on a 4-processor system

Under WS, load-balancing costs are imposed upon the idle worker which would otherwise

waste usable processing cycles. Locality is favored once again by stealing in a FIFO order, since

top threads are the most likely to (i) generate future parallelism [Frigo et al., 1998], and (ii) have

had their cache data replaced15 by the time they are stolen. In a WS deque, all manipulations run

in constant O(1) time regardless of the number of threads. Since thieves and victims operate on

15Because top-most threads have been waiting the longest for processor time.

20

2.5. SUMMARY

opposite ends of a deque, non-blocking deques can be implemented to minimize synchronization

costs [Arora et al., 1998, Chase and Lev, 2005, Hendler et al., 2006].

If T∞ denotes the minimum execution time of a fully-strict computation on an infinite number

of processors, T1 its minimum serial execution time, and scheduling overhead is ignored, Blumofe

and Leiserson [1993] proves that the expected time Tp to execute the computation onm processors

is given by Equation 2.2.

Tp ≤
T1
m

+ T∞. (2.2)

This time appears asymptotically optimal in the case of very parallel applications where T∞ ≤
T1. Moreover, Blumofe and Leiserson [1993] proved that the necessary space Sp for the execution

satisfies Equation 2.3, whereas the expected total communication of the algorithm is at most

T∞SmaxP , being Smax the largest activation record of any thread.

Sp ≤
S1
m
, (2.3)

One approach to schedule parallel applications using WS, is to include the calls to a user-

space runtime library that manages the threads explicitly in the application. This technique affects

productivity, since it requires that the programmer be fully aware of the runtime library and the

details of scheduler. Hence, WS schedulers generally resort to an alternative approach, where the

parallelism is expressed at a higher-level of abstraction using parallel constructs in a program-

ming language. This code is then transformed, by the compiler, into an equivalent version of the

program with appropriate calls to WS runtime library.

Existing user-level WS schedulers are not effective, suffering from both system throughput

and fairness problems, in the increasingly common setting where multiple applications share a

single multi-core machine. To switch from the current support of user-space runtime mechanisms

and benefit from native Operating System (OS) support, WS schedulers can also be implemented

at the kernel level, as long as the OS provides basic threading and concurrency control features.

[Ding et al., 2012]

2.5 Summary

21

CHAPTER 2. PARALLEL COMPUTING

22

Chapter 3

Real-Time Systems

“Fast is fine, but accuracy is everything.”

— Xenophon

Real-time computing refers to a particular area of computer science where executions are

subject to specific constraints on their response-times [Burns and Wellings, 2009, Cottet et al.,

2002, Kopetz, 2011, Laplante and Ovaska, 2011, Mall, 2009, Stankovic, 1988].

Examples of time-sensitive applications can be found across many domains of modern tech-

nology. While the monitoring and control functions of an artificial pacemaker must run at precise

instants to ensure the well-being of the patient, an automotive airbag system must be deployed

within milliseconds after collision, a multimedia decoder is set to process frames at a constant

rate, and so on. All of these applications have one thing in common, in that their correctness

does not solely depend on the programming logic, but also on their ability to produce results in

a timely manner [Baruah and Goossens, 2003, Burns and Wellings, 2009, Laplante and Ovaska,

2011, Stankovic, 1988]. With human lives at stake, the first two examples are of highly criti-

cal scenarios where any delays can have catastrophic consequences and timing correctness must

be guaranteed beforehand. When a single real-time task monopolizes the entire system1 this is

primarily a matter of ensuring that its execution demands can be fulfilled with the available re-

sources. In multitasking environments, where multiple activities compete for execution, tasks

must be scheduled in such way that each receive the minimum quota of processing bandwidth

needed to respond in time. To provide a priori timeliness guarantees it is imperative that such

schedule be deterministic [Stankovic, 1988].

Traditionally prominent in industrial applications, real-time support is becoming ever relevant

in the realm of personal technology, as time-sensitive applications become ubiquitous, larger,

and complex [Burns and Wellings, 2009, Mall, 2009]. Historically, great emphasis has been put

on the simplicity of Real-Time Systems (RTSs), in an attempt to improve accuracy and reduce

unpredictability to a minimum. As hardware and software specifications evolve, so does the

difficulty to achieve predictable performance, and real-time research remains an intriguing area

1Either executing alone or at the highest priority level (before any other concurrent task).

23

CHAPTER 3. REAL-TIME SYSTEMS

of computer science with many open issues to be addressed.

From this point on, we will leave the diversity of multiprocessor architectures presented in

Chapter 2 and limit our study to the problem of scheduling real-time applications on Symmetric

Multiprocessing (SMP) multi-core chips, comprised of m tightly-coupled unit-capacity proces-

sors. We will start by defining real-time applications and analyzing their main characteristics.

After a brief mention of Open Real-Time (ORT) systems, we conclude with an extensive study of

real-time scheduling algorithms and techniques related to our work.

3.1 Task Model and Terminology

A real-time scheduler acts upon a group of real-time tasks concurrently requesting processor

time, entitled taskset. We formalize the term real-time task as a schedulable unit of control that

is subject to specific restrictions, called deadlines2, on the amount of time it takes to produce

results. A real-time task is a collection of successive instances of execution, or jobs, triggered by

repetitive processing requests raised in their environment, and set to respond within a time frame

bounded by the deadline. [Cottet et al., 2002, Laplante and Ovaska, 2011, Mall, 2009]

The foremost goal of a real-time scheduler is response-time determinism. Real-time sched-

ulers must assess the a priori schedulability of the system to ensure that the timing demands

of all concurrent applications are met. This is known as schedulability analysis [Baruah and

Goossens, 2003, Cottet et al., 2002, Laplante and Ovaska, 2011]. On a given platform, tasks are

said to be schedulabe if their real-time demands are guaranteed by the process scheduler, and

feasible if there exists a solution to schedule the taskset in the same platform3 [Nelissen, 2013].

Straightforwardly, a taskset is schedulabe or feasible if all of its tasks are schedulable or feasible,

respectively. [Burns and Wellings, 2009, Cottet et al., 2002, Kopetz, 2011, Laplante and Ovaska,

2011]

The richness of the information known in advance has a direct impact on the complexity and

quality of scheduling decisions [Cottet et al., 2002]. For instance, all of the real-time schedulers

studied herein employ schedulability analysis techniques based on task utilization. The a priori

utilization of a task is easily determinable if the system is provided with enough detail on its

execution needs. However, tasks may exhibit irregular or unknown execution behavior that cannot

be characterized beforehand. Section 3.1.1 delves deeper into this subject, as we classify real-time

tasks by their periodicity and criticality.

3.1.1 Taxonomy of Real-Time Tasks

In real-time theory, tasks that attend processing requests at equally distant instants are called

periodic real-time tasks. Periodic tasks are common in sensor-actuator environments perform-

ing critical monitoring and control operations, but serve a wide variety of other purposes. With

2Other constraints may be considered Mall [2009], but we restrict our study to the more common model in which
tasks are subject to response-time deadlines.

3Note that if a taskset is schedulable on a given platform, then it is also feasible in that same platform. However,
the opposite does not necessarily hold.

24

3.1. TASK MODEL AND TERMINOLOGY

precise knowledge of their execution needs, a priori schedulability guarantees for periodic tasks

are straightforward. [Burns and Wellings, 2009, Cottet et al., 2002, Kopetz, 2011, Laplante and

Ovaska, 2011, Mall, 2009]

Sporadic tasks refer to executions that do not follow a strict periodic behavior, but for which

a minimum inter-arrival time between jobs can be provided. This value can be used to derive

the worst-case utilization of the task and guarantee its real-time needs in a schedulability test

[Mok, 1983]. However, by reserving an excessive4 amount of processing bandwidth for sporadic

tasks, this approach tends to yield significant under-utilization of processing capacity. Advanced

techniques presented in Section 3.3 are able to overcome this issue. [Burns and Wellings, 2009,

Cottet et al., 2002, Kopetz, 2011, Laplante and Ovaska, 2011]

On the other hand, aperiodic real-time tasks handle events that do not follow a known con-

sistent cadency. Lacking information about the incidence of aperiodic tasks, no scheduler can

provide a priori deadline guarantees for this type of applications. Nevertheless, they can still

benefit from real-time support. [Burns and Wellings, 2009, Cottet et al., 2002, Kopetz, 2011,

Laplante and Ovaska, 2011]

3.1.1.1 Hard vs Soft Real-Time

Response-time determinism is a measure of how accurately deadlines are respected, and the most

important criterion in a RTS. Determinism and efficiency are contradicting terms, as fully pre-

dictable systems use pessimistic techniques that tend to waste a great amount of the available

resources. However, not all real-time computations need the same degree of determinism, and

systems may occasionally overlook deadline correctness as a means of improving resource uti-

lization.

Hard Real-Time (HRT) tasks are those in which delays are simply not acceptable. They are a

specific type of critical executions, obliged to meet all their deadlines under penalty of complete

system failure [Burns and Wellings, 2009, Cottet et al., 2002, Laplante and Ovaska, 2011, Liu and

Layland, 1973]. In other words, HRT tasks are not feasible if the fulfillment of their deadlines

cannot be guaranteed. To provide such guarantees for a certain task, the system must be informed

of the minimum inter-arrival time between consecutive jobs, and provided an upper bound on the

execution time of all jobs. This value is referred to as the Worst-Case Execution Time (WCET)

of the task.

However, by referring to the execution time of the most prolonged job, the WCET offers

a pessimistic view on the amount of time that jobs usually take to complete. Once a task is

deemed schedulable, a fraction of the available processing capacity is reserved to guarantee that

all jobs meet their timing constraints, and the bandwidth left available for other tasks decreases

by the same amount. Scheduling a task by its WCET implies reserving an excessive amount of

processing capacity, which is secluded from other executions and never fully consumed by the

task [Pellizzoni and Caccamo, 2008]. This is particularly problematic in tasks of variable length,

where the WCET case is rare and the average execution time is substantially lower.

4In comparison with the real execution requirements.

25

CHAPTER 3. REAL-TIME SYSTEMS

The wasteful impact of the WCET also depends on the accuracy of the estimation. Even

in strictly controlled HRT environments, an accurate estimation of the WCET often not trivial.

Unless the system is simple enough to derive the value through code and hardware analysis, it is

usually determined through statistic response-time tests [Kopetz, 2011, Lee et al., 2007]. In short,

WCET scheduling is prone to wasting processing bandwidth if (i) the estimation is not precise, or

(ii) real execution times are considerably variant.

Variable workload is common in time-sensitive applications such as an MPEG decoder, which

is likely to process key frames much faster than predicted frames. Predicted frames are also

expected to take variable amounts of time to be decoded, and the processing time of a particularly

intricate frame can have a huge impact on the WCET, which should be much larger than the

mean execution time and quite unlikely to occur. Although it behaves much like a periodic real-

time task, rhythmically spawning jobs in response to frame decoding requests, modeling such

process as a HRT task would be far from ideal due to the wasteful nature of a WCET scheduling

strategy. However, the Quality of Service (QoS) of an MPEG decoder is measured by its ability

to generate frames at a constant rate, and a slight QoS degradation is generally admissible as long

as a tolerable output stream is maintained. Though this type of applications can benefit from

real-time support, they clearly do not require the same degree of determinism as HRT tasks.

To deal with this scenario, real-time literature defines Soft Real-Time (SRT) tasks as non-

critical time-sensitive executions that may occasionally overlook their timing constraints [Burns

and Wellings, 2009, Cottet et al., 2002, Laplante and Ovaska, 2011]. SRT tasks are allowed to

overrun, potentially degrading the quality of the system (to a bounded amount), as long as any

tardiness effects are isolated from other tasks5. To improve hardware utilization and eliminate the

need for knowledge of the WCET, SRT tasks are scheduled by their mean execution times, and

their feasibility is not determined by total deadline correctness, but by the desired level of QoS.

The peculiarities of HRT and SRT scheduling will be addressed in more detail in Section 3.3.

3.1.2 Task Terminology

Each real-time task τi generates a pontentially infinite number n of jobs, {ji,1, ji,2, ..., ji,n}. If a

minimum inter-arrival time between consecutive jobs can be provided, this value is referred to as

the period Ti of the task. The relative deadline Di sets a bound on the amount of time available

for each job to respond. Ci denotes the execution time per job. Finally, Oi sets the offset for the

release of the first job. A concise summary of this notation can be found in table 3.1.

Depending on the known execution details, some of these criteria may not be available for a

certain task. The deadline is a mandatory attribute for our model of real-time tasks, and literature

categorizes deadlines into three distinct types [Baruah and Goossens, 2003]:

• Constrained - The deadline of a task τi cannot be greater than the period (Di ≤ Ti).

• Implicit - The deadline a task τi is equal to the period (Di = Ti).

• Arbitrary - The deadline may take an arbitrary value.
5To assure the schedulabiliy of concurrent tasks cohabiting in the system.

26

3.2. OPEN REAL-TIME SYSTEMS

The period, however, is only observable for tasks with a constant or minimum inter-arrival

time between consecutive jobs6. Any HRT task τh must either be periodic or sporadic, and Ch
must refer to the WCET in order to assure that no job jh,j executes for more than Ch units of

time in each period Th. Following such guarantee, the utilization of τh is given by Uh = Ch
Th

, as a

measure for the ratio of processing bandwidth assigned to τh. On the other hand, SRT tasks may

be periodic, sporadic or aperiodic, and for a SRT task τs, Cs represents the mean job execution

time. Since some jobs of τs are expected to take more than Cs units of time to execute, the a

priori worst-case utilization value cannot be directly determined as Cs
Ts

. One way to work out the

utilization of a SRT task, is to impose and enforce a limit upon its execution demands. This case

will be detailed in Section 3.3.

Each job ji,j of a task τi appears in the system at release time ri,j , has a real execution time

of ei,j , a relative deadline di,j , and completes at response-time fi,j . For quick reference, this

notation is resumed in table 3.2.

A graphical representation for the execution of two jobs ji,j and ji,j+1 of a generic periodic

task τi, is also presented in Figure

The relative deadline di,j of a job ji,j can be derived from the absolute deadline Di as di,j =

ri,j +Di. It sets an instant of time before which ji,j is expected to respond. Since a HRT task τh
is obliged to meet all deadlines, then fh,k ≤ dh,k∀k ∈ {1, ..,∞} immediately follows.

A SRT job js,j is allowed to execute past the deadline ds,j , and the term tardiness refers

to the amount of time by which the deadline is missed. In this case, at any time instant t, if

ds,j < t ≤ fs,j , then js,j is said to be tardy, or in overrun, and the tardiness is given by t− ds,j .

Notation Interpretation Constraint / Definition
τi Task i
Ci Execution time of τi Ci > 0
Ti Period of τi Pi > Ci

Di Relative deadline of τi Di ≥ Ci

Oi Offset of τi Oi ≥ 0
Ui Utilization of τi
ji Arbitrary job of τi
ji,j Job i, j of τi j ≥ 1

Table 3.1: Task notation summary.

Notation Interpretation Constraint / Definition
ji,j Job j of τi
ri,j Release time of ji,j ri,j ≥ ri,j−1 + Ti
di,j Absolute deadline of ji,j di,j = ri,j +Di

fi,j Response time of ji,j fi,j ≥ ri,j

Table 3.2: Job notation summary.

3.2 Open Real-Time Systems

Unlike classical closed systems, where every single real-time parameter is known beforehand, the

composition and configuration of Open Real-Time (ORT) systems is flexible and dynamic. In an
6Periodic or sporadic tasks.

27

CHAPTER 3. REAL-TIME SYSTEMS

ORT system, HRT, SRT, and non real-time applications, concurrently contend for execution in a

shared processor, and are allowed to enter or leave the system at any time. [Deng and Liu, 1997]

ORT systems are of extreme economic and technological importance in the modern market.

In avionics, for example, where the size, weight, power, and cost of each hardware component

are important, the ability to integrate different independently-developed applications in a single

machine is immensely beneficial. Also, as an increasing number of users run both real-time and

traditional desktop applications in the same computer, the need to provide real-time support in

General-Purpose Operating Systems (GPOSs) gains a whole new relevance.

Our vision of an ORT environment is one which takes a two-level scheduling approach to

handle real-time and non real-time tasks separately. Real-time tasks are prioritized over general-

purpose applications, and scheduled through an algorithm able to satisfy their timing require-

ments, while other applications are scheduled in the background. As GPOSs supply powerful so-

lutions for non real-time executions, we direct our attention towards dynamic real-time scheduling

and the overall problematic of satisfying real-time demands in GPOSs.

A full schedulability analysis in an ORT environment can be complex, and notoriously in-

tricate in the case of dynamic multithreaded applications, executions of variable length, or due

to sources of unpredictable overhead [Deng and Liu, 1997]. Despite the lack of predictability,

the system must employ means to simultaneously guarantee temporal correctness and reasonable

throughput. Fulfilling these goals in a general and open environment is not straightforward, and

continues to pose great challenges to the scientific community.

Promising approaches, presented in Section 3.3, have arisen to provide the needed scheduling

support for ORT systems. Achieving predictable performance typically entails the use of temporal

isolation and admission control techniques. Temporal isolation is employed to ensure that the

temporal correctness of task depends only on its own consumption of processing resources, and

that erroneous tasks do not jeopardize the correctness of the entire system. Admission control

imposes restrictions upon the acceptance of dynamic real-time requests, to accurately assure that

the arrival of a new task does not overload the available processing capacity and disrupt the timing

correctness of other concurrent applications.

3.3 Real-Time Scheduling Theory

In multitasking systems, many performance indexes depend on how the finite resource of Central

Processing Unit (CPU) time is apportioned among concurrent executions. Computing science

refers to the problem of distributing processing time among tasks as CPU scheduling, or schedul-

ing. In a computing platform, the subsystem accountable for ordering the use of the CPU is known

as process scheduler, henceforth simply called scheduler. [Bovet and Cesati, 2005, El-Rewini and

Abd-El-Barr, 2005, Laplante and Ovaska, 2011, Love, 2010]

The set of rules implemented by a scheduler, defining the logic by which tasks are selected

for execution, is called a scheduling policy [Bovet and Cesati, 2005, Love, 2010]. Schedulers are

evaluated by their complexity and by the quality of the produced schedule, thus they must decide

quickly and towards the optimization of specific performance criteria such as fairness, throughput,

28

3.3. REAL-TIME SCHEDULING THEORY

predictability, et cetera [El-Rewini and Abd-El-Barr, 2005]. As some of these indexes may be

conflicting, they must be in tune with the overall goals of the system. For instance, while GPOSs

seem to favor interactivity and resource utilization through a fair distribution of processor shares,

RTSs require a completely distinct strategy to guarantee that tasks execute and respond in a timely

manner, even if the CPU is not utilized to the fullest.

Scheduling theory has long been a theme of great debate among the real-time community.

Over the years, many developments have relied on simple, predictable, and well characterized

applications, to establish highly efficient schedules at configuration time. While such model

has some obvious strong points, it is also very limiting. We study the more intricate case of

tasks with unpredictable or variable execution requirements that can enter or leave the system

at random, calling for dynamic scheduling mechanisms capable of reacting to load changes at

runtime. Unfortunately, these methodologies are prone to inconsistent runtime costs7, which

threaten the deterministic guarantees expected from a RTS. [Burns, 1991, Kopetz, 2011, Laplante

and Ovaska, 2011, Lee et al., 2007]

A common classification of real-time schedulers is based upon whether or not task priorities

remain constant throughout execution. Static-priority, or Fixed-Priority (FP) schedulers, con-

sider that the priority of each task is inherited by all of its jobs and remains constant throughout

execution. Dynamic-priority, or Job-Level Fixed-Priority (JLFP), scheduling approaches abide

by a more flexible strategy, in which different jobs of the same task are assigned different priori-

ties at runtime. In most dynamic-priority schedulers, including the ones studied in this thesis, the

priority of a job is defined by its absolute deadline. [Baruah and Goossens, 2003, Cottet et al.,

2002, Kopetz, 2011, Laplante and Ovaska, 2011, Lee et al., 2007, Mall, 2009]

From another perspective, multitasking real-time schedulers can be further classified as pre-

emptive, non-preemptive, or cooperative [Burns and Wellings, 2009, Cottet et al., 2002, Kopetz,

2011], according to the following definitions:

• Preemptive - Executing jobs can be swapped for higher priority jobs at any time instant.

• Cooperative - Specific preemptable sections exist within the execution of a job.8

• Non-preemptive - Preemptions are not allowed and jobs execute to completion.

To guarantee real-time demands, schedulers implicitly assign a fraction of the available pro-

cessing bandwidth to each task. Conventionally, a uniprocessor platform has a total bandwidth of

1. The bandwidth of an SMP chip comprised of m identical processors is given by the sum of the

bandwidth in each individual unit, and thus equal tom. Evaluating the a priori schedulability of a

taskset, is a matter of analyzing whether its total utilization fits within the schedulable utilization

of the algorithm on a given platform. In real-time literature, this is known as a schedulability test.

Following the same principle, tests that assess the viability of dynamic changes in the schedule

at runtime, are more commonly referred to as admission tests or acceptance tests. [Burns and

Wellings, 2009, Cottet et al., 2002, Kopetz, 2011, Lee et al., 2007, Mall, 2009]

7Caused by factors such as resource contention, context switching, task migration, among others.
8For example, a scheduler that preempts tasks at a constant rate.

29

CHAPTER 3. REAL-TIME SYSTEMS

A real-time scheduler is said to be optimal, with respect to a given platform and task model,

if it can guarantee the schedulability of every taskset that is generated according to the model and

feasible in the same platform. In other words, an optimal scheduling algorithm can always find

a feasible schedule whenever it exists. [Carpenter et al., 2004, Cottet et al., 2002, Kopetz, 2011,

Mall, 2009]

Theoretical proposals idealize simplistic hardware and software models to prove mathemati-

cal correctness and efficiency, often assuming that: [Laplante and Ovaska, 2011]

• Tasks are independent and do not share resources (other than the processor).

• The timing behavior is deterministic and events occur exactly when they are supposed to.

• Executions do not block except in between jobs. At any time, they are either executing or

awaiting execution.

• There is no runtime overhead inherent to scheduling decisions, such as task migration and

context switching.

Although necessary to legitimate a proposal and devise mathematical schedulability tests,

these assumptions can be problematic in the practical case. Many algorithms are yet to be tested

in real settings, where many sources of unpredictability and overhead tamper with the optimistic

theoretical observations. From experience, when attempting to implement a scheduling algorithm

it is crucial to make correct structural choices, and employ the right programming practices, to

mitigate the effects of unavoidable overheads disregarded in the proposal.

3.3.1 Uniprocessor Scheduling

Foundational real-time scheduling research dates back to the late 1960’s, in the ambit of the first

manned mission to the moon. [Liu, 1969]

The highly influential work of Liu and Layland [1973] formalizes two preemptive FP schedul-

ing algorithms for the periodic implicit-deadline (Ti = Di) HRT task model: Rate-Monotonic

(RM) and Earliest Deadline First (EDF). The RM scheduler assigns the higher priority to tasks

with lower period Ti. At each time, the active task with the lowest value of Ti is scheduled for

execution.

Figure depicts a RM scheduling scheme for a set of two tasks ...

As proved by Liu and Layland [1973], a taskset of n tasks, with total utilization of Usum(τ) =∑n
i Ui, can be scheduled by RM if the sufficient test in Equation 3.1 holds.

Usum(τ) ≤ n(2
1
n − 1) (3.1)

This shows that RM is not optimal, since it cannot exploit full processing capacity with all

tasksets. In fact, and besides the total utilizaition of the taskset, the schedulability test depends

on the number n of tasks competing for processor time, and as the number of concurrent tasks

approaches infinity, it follows that limn→∞

(
n(2

1
n − 1)

)
= ln(2) ≈ 0, 693. Therefore, as a

30

3.3. REAL-TIME SCHEDULING THEORY

sufficient condition, the RM schedulability of any taskset can be guaranteed a priori if its total

utilization does not exceed approximately 69, 3% of the available bandwidth.

Derived from RM, the preemptive Dealine-Monotonic (DM) scheduler was proposed by Le-

ung and Whitehead [1982], to schedule tasks with constrained deadlines (Di ≤ Ti) more effi-

ciently. DM schedules HRT tasks by their relative deadline Di, assigning higher priority to tasks

with lower value of Di. Figure exemplifies the scheduling scheme for two tasks under DM.

Under an implicit-deadline model, DM scheduling is analogous to RM, thus efficiency im-

provements are only observable for cases where Di ≤ Ti.

3.3.1.1 Earliest Deadline First (EDF)

Also introduced by Liu and Layland [1973], EDF is the most studied dynamic-priority scheduling

algorithm. It follows the simple idea of scheduling tasks by their urgency. In other words, the

closer a task is to its relative deadline, the higher its priority, and the sooner it will be scheduled

for execution.

EDF is a proven optimal scheduling algorithm for HRT and SRT computations in uniprocessor

systems. The test in Equation 3.2 shows that EDF can exploit full capacity for HRT tasksets τ

with a total utilization of Usum(τ). On the other hand, if Usum(τ) < 1, the resulting unused

capacity 1−Usum(τ) can be used to schedule SRT executions with bounded tardiness. However,

if jobs of a SRT task τi take more than Ci units to execute, the overused capacity can be taken

from other computations, and compromise the bandwidth guarantees for critical HRT tasks.

Usum(τ) =
n∑
i

Ui ≤ 1 (3.2)

Equation 3.2 shows a major improvement in comparison with RM 3.1, but towards an efficient

implementation of EDF, a number of complications need to be addressed and resolved. For

instance, Operating Systems (OSs) make use of priority queues, arrays, or bitmaps, to perform

quick scheduling decisions. Maintaining the organization of such structures requires frequent and

costly computations, which introduce runtime overhead. [Short, 2010]

Many argumentative statements claim that RM offers significant advantages over EDF. RM is

said to be easier to analyze, less prone to runtime overhead, more predictable, and more efficient

under transient overload. These allegations were discredited with a sufficient level of confidence

in Buttazzo [2005]. Though they may be valid in some cases, and should not be neglected, such

affirmations offer no reason for why EDF scheduling in Real-Time Operating Systems (RTOSs)

should be disregarded.

3.3.1.2 Constant Bandwidth Server (CBS)

Using average execution times to schedule SRT tasks may have undesirable consequences when

jobs take more than requested value to execute, and for these cases, the system must be able to

isolate any overrun effects from other concurrent executions. Reservation-based methodologies

31

CHAPTER 3. REAL-TIME SYSTEMS

introduce the possibility to assign a fraction of the available bandwidth to executions, and ensure

that eventual tardiness effects do not propagate to other tasks

In their proposal of the Constant Bandwidth Server (CBS) scheduler, Abeni and Buttazzo

[1998] improved the technique presented by Mercer et al. [1994] for the RM policy, to handle SRT

requests with a variable or unknown execution behavior through EDF. To avoid unpredictable

delays in HRT tasks, SRT tasks execute in the context of a bandwidth server that reserves a

fraction of the available processing capacity and ensures that SRT tasks never demand more than

the reserved bandwidth. Although not mandatory, to ease discussion we consider a one-to-one9

relationship between bandwidth servers and SRT tasks.

A bandwidth server Si is characterized by a couple (Qi, Ti) indicating that a SRT task can

execute for, at most, Qi units of time in each period Ti. The jth job of a SRT task τi, served

by Si, is released at time ri,j , with a budget ci,k = Qi, and a deadline di,k = ri,j + Ti. As

long as τi is executing, the budget ci,k is decremented at each instant by the same amount. If the

budget is exhausted (ci,k = 0) at time t < fi,j , then a new server instance k + 1 is created, as

ci,k+1 is recharged to Qi and the deadline is postponed by Ti, as di,k+1 = di,k + Ti. Postponing

the deadline also decreases the priority10 of τi, forcing it to yield the processor to higher priority

tasks. As a result, (i) the reserved bandwidth is not exceeded, and (ii) tardiness effects are isolated

from the system and only affect the served task.

Unfortunately, if a job ji,j completes early with ci,k > 0, the remainder of ci,k cannot be used

by other tasks. Unless a subsequent job ji,j+1 is released at time ri,j+1 < di,k to consume ci,k, the

leftover capacity is wasted and left unused. Therefore, the performance of CBS highly depends

on a precise allocation of processor shares to avoid underusing computational bandwidth.

A given server Si has a bandwidth (or utilization) of U (s)
i = Qi

Ti
, and the total utilization for

soft real-time tasks is given by the sum of the bandwidth reserved by all n servers, as shown in

Equation 3.3.

U (s)
sum =

n∑
i

U
(s)
i (3.3)

Therefore, and since it is guaranteed that SRT tasks do not consume more than U (s)
sum, the

remaining bandwidth can be used to guarantee the feasibility of HRT tasks, as if they were exe-

cuting alone in a processor of capacity equal to 1−U (s)
sum. Being U (h)

sum the conjoint utilization of

all HRT tasks, the admission test for a taskset τ under the CBS scheduler is presented in Equation

3.4.

Usum(τ) = U (s)
sum + U (h)

sum ≤ 1 (3.4)

9Each server manages exactly one task, and each task is bound to exactly one server
10The priority of a task, under EDF, is inversely proportional to the value of its relative deadline.

32

3.3. REAL-TIME SCHEDULING THEORY

3.3.1.3 Capacity-Sharing (CASH)

To overcome the wasteful reservation strategy of CBS, several bandwidth reservation schemes

allow other tasks to reuse the residual capacity originated by early completion of served jobs.

[Caccamo et al., 2000, 2005, Lin and Brandt, 2005, Lipari and Baruah, 2000, Marzario et al.,

2004]

In the Capacity-Sharing (CASH) scheduler [Caccamo et al., 2000], each task τi (hard or soft)

is bound to a dedicated server Si = (Qi, Ti) scheduled by EDF. HRT tasks are scheduled by their

WCET, and SRT tasks by their mean expected execution time and period. A server Si is said

to be active if there are pending jobs of τi to be served, and idle otherwise. At each instant, the

remaining execution capacity 0 ≤ ci,k ≤ Qi, and the relative deadline di,k, are associated to Si.

If a new job ji,j is created at time ri,j and the server is idle, a new server deadline is generated

as di,k = max(ri,j , di,k−1)+Ti, and ci,k is recharged to Qi. If the server is active at time ri,j , the

new job is enqueued in a work queue of Si and awaits execution with the current deadline di,k.

CASH considers a system-wide queue of residual capacities, so that when a server Si becomes

idle at time t with ci,k > 0, a new residual capacity is inserted in the CASH queue with a capacity

cq = ci,k and deadline dq = di,k. For the sake of correctness, as the capacity of Si is being

donated, ci,k is set to 0.

When a job ji,j is scheduled for execution, if there is a residual capacity q in the CASH

queue, such that dq ≤ di,k, the residual capacity is removed from the queue, and ji,j executes

with di,j = dq, consuming cq instead of its dedicated capacity ci,k. If the CASH queue is found

empty, or if no residual capacity meets the requirement dq ≤ di,k, then ji,j executes normally

with dedicated capacity ci,k and deadline di,k. At each time t, any residual capacity q that has

been exhausted or expired (cq = 0 ∨ dq ≤ t), is removed from the CASH queue.

Whenever the capacity ci,k of an active server Si is exhausted (ci,k = 0) a new instance of

Si begins, as the budget ci is recharged to Qi and di is postponed (ci,k+1 = Qi and di,k+1 =

di,k + Ti).

Straightforwardly, the total utilization is given by the sum of all n individual reserves assigned

to each dedicated server, and the admission test for the CASH scheduler is given by Equation 3.5.

Usum(τ) =

n∑
i

Ui ≤ 1 (3.5)

In Caccamo et al. [2000] CASH was proven correct and more efficient than CBS to schedule

tasks of large execution variance, with a vestigial increase in runtime overhead. Its adaptation to

the multiprocessor paradigm, presented in 3.3.2.4, is particularly relevant to our work.

3.3.2 Sequential Multiprocessor Scheduling

As observed by Liu [1969], uniprocessor real-time scheduling theory is not directly applicable

to multiprocessors. With several processing units, the scheduling problem becomes a multi-

dimensional one, as the scheduler must decide not only when, but also where to execute each

task. Multiprocessor real-time schedulers need acknowledge multiple processors, eligible to ex-

33

CHAPTER 3. REAL-TIME SYSTEMS

ecute a set of tasks, and devise a correct allocation of tasks to processors in terms of timing

correctness and throughput.

Unfortunately, real-time scheduling upon multiprocessors is still a rather complex and imma-

ture area of computer science, where many problems prevail. Sahni [1977] shows that, unlike the

class of algorithms studied so far, for serial computers, no JLFP scheduler can utilize full pro-

cessing capacity in a multiprocessor platform. More recently, Fisher et al. [2010] proved that it is

impossible to design an optimal online multiprocessor scheduler for the sporadic task model11.

As noted in Chapter 2, the multiprocessor paradigm also brings about many sources of la-

tency and unpredictability12 that require careful analysis and trade-offs in real-time scheduling

[Carpenter et al., 2004].

Furthermore, multiprocessors are subject to well-known anomalies, in which changes that

appear beneficial to the system13 can make a previously schedulable taskset become unfeasible

[Andersson and Jonsson, 2002, Graham, 1976].

3.3.2.1 Global, Partitioned, and Semi-Partitioned Scheduling

Real-time schedulers are often classified in literature as global, partitioned, or semi-partitioned.

Figure 3.1: Global scheduling Figure 3.2: Partitioned scheduling

In global scheduling, tasks are selected for execution from a single system-wide priority

queue. With a full view of the entire system, load-balancing is immediate and scheduling de-

cisions are optimal, as the scheduler (Figure 3.1) need only look at the global priority scheme to

keep the highest priority tasks executing on the available processing units at all times.

Global schedulers are known to offer better throughput than partitioned schedulers for implicit-

deadline tasks [Kleinrock, 1976]. In fact, the class of rate-based14 Proportionate Fair (Pfair)

schedulers [Baruah et al., 1996] provide the only known optimal methodology to schedule peri-

odic HRT tasks on multiprocessors [Carpenter et al., 2004].

11As well as more general models
12Migration overheads, cache invalidation, resource contention, among others intrinsic to multiprocessors.
13Such as reducing the utilization of a task, adding a processor, et cetera.
14Schedulers that operate at steady pre-computed instants of time.

34

3.3. REAL-TIME SCHEDULING THEORY

Global schedulers are work-conserving, i.e. they migrate tasks between processors to avoid

processor idling and maximize resource utilization. However, a number of factors ignored in

global scheduling theory, from non-deterministic resource contention, to implementation com-

plexity, poor scalability, and cache invalidation, often render implementations impractical [Baker,

2005a]. Dhall [1977] also noticed how a global RM or EDF scheme operating on a multiprocessor

host may cause deadline misses, even with tasksets requesting less than the available capacity.

These observations had a negative influence upon the real-time community for many years.

Global schedulers only regained popularity when it was realized that the Dhall effect is not exactly

a problem of global scheduling, but rather of sequential tasks with high utilization [Phillips et al.,

1997]. Regardless, their practicality remains controversial [Baker, 2005a].

Partitioned schedulers (Figure 3.2) perform a static and permanent allocation of tasks to pri-

vate processor queues at configuration time. Here, the online scheduling problem is transformed

into a series of uniprocessor ones [Carpenter et al., 2004], as each processor is scheduled individ-

ually according to a certain policy15.

A number of advantages over global approaches can be appointed for partitioned schemes,

as they allow for a thorough schedulability analysis, improve data locality, isolate overrun effects

across processors, and eliminate the scalability bottleneck of concurrent access to a shared queue.

Nevertheless, as an optimal a priori distribution of work is attempted, the NP-hard bin-packing

problem arises [Garey and Johnson, 1979], requiring additional heuristics to achieve a quick and,

at best, satisfying allocation. The most common techniques are First-Fit (FF) and Best-Fit (BF).

FF selects the first non-empty queue with enough resources remaining, while BF looks for the

queue with the least amount of resources after allocations.

Unable to migrate tasks between processors, partitioned schedulers may leave some units

overloaded while others remain idle (non-work-conserving). For the same reason, there may

exist tasksets that are feasible on a multiprocessor platform, but not schedulable under a fully

partitioned scheme on the same platform.

Semi-partitioned or hybrid schedulers either keep tasks on private queues shared by several

processors (clustered scheduling), migrate tasks between per-processor queues throughout exe-

cution, or both. While semi-partitioned schemes look to take out the best of both approaches,

they raise other sources of inefficiency when compared with pure global or partitioned schemes.

Semi-partitioned schedulers can be finely tuned to suit a particular purpose. For instance, in or-

der to to simultaneously eliminate the contention problem of a global scheme and maintain good

resource utilization, tasks may be kept in processor-specific queues but migrated frequently to

achieve some degree of load balance. However, at the same time as contention for a single pri-

ority queue disappears, concurrency on all queues must be managed explicitly, and the system

incurs migration overhead, which is especially problematic in RTSs as a source of unpredictabil-

ity. To enhance determinism, for example, one might cut down migrations by allowing tasks to

move only at job boundaries, which would imply a less efficient load-balancing strategy.

Partitioned schedulers naturally match closed HRT environments, where determinism is cru-

cial, most details of execution are known, and a static allocation is viable. Global schedulers are
15Different algorithms may be configured for each processing unit.

35

CHAPTER 3. REAL-TIME SYSTEMS

Figure 3.3: Clustered scheduling with task migration

comprehensibly better suited for open environments handling dynamic and unpredictable work-

loads, as considered in this thesis. [Lelli et al., 2011]

3.3.2.2 Global EDF (G-EDF)

Global Earliest Deadline First (G-EDF) is the homologous to EDF for multiprocessor platforms

under a global scheduling approach. It foresees the existence of a single shared queue, from which

the highest priority tasks are selected for execution on the m available processing units.

In the HRT case, G-EDF is vulnerable to severe capacity loss due to the Dhall effect, resulting

in a total utilization bounded by Equation 3.6 for periodic task sets [Andersson et al., 2001], which

is in effect for all multiprocessor JLFP schedulers.

m+ 1

2
(3.6)

G-EDF guarantees bounded tardiness for any sporadic SRT taskset τ with utilizationUsum(τ) ≤
m [Devi and Anderson, 2008], but as its predecessor EDF, lacks bandwidth enforcement and iso-

lation features to control the effects of SRT overruns.

Although the theoretical worst-case performance of G-EDF, in a sequential HRT context,

cannot be higher than that of Equation 3.6, a number of schedulability tests guarantee a greater

bound in low-utilization16 cases. The first was introduced by Goossens et al. [2003], showing

that a periodic implicit-deadline taskset τ , with total utilization Usum(τ) =
∑n

i ui is schedulable

by G-EDF on m processors if the tight bound in Equation 3.7 is met. Umax = max1≤i≤n(ui)

represents the highest utilization among all tasks of τ .

Usum(τ) ≤ m− (m− 1)Umax (3.7)

Several improvements of the G-EDF algorithm, and respective worst-case analysis, were de-

veloped with the same principle in mind. Srinivasan and Baruah [2002] proposed EDF-US[ζ], an

algorithm that assigns the highest (fixed) priority to tasks of utilization greater than a threshold ζ,
16When Umax is considerably less than one.

36

3.3. REAL-TIME SCHEDULING THEORY

and schedules the remaining tasks according to the standard EDF policy. By setting ζ to m
2m−1 ,

the schedulability test is given by Equation 3.8.

Usum(τ) ≤
m2

2m− 1
(3.8)

[Goossens et al., 2003] also propose an algorithm that assigns highest priority to the k tasks

with highest utilization. This approach, named EDF(k), sets the sufficient schedulability condition

presented in Equation 3.9, where Uk represents the lowest utilization in the set of k tasks with the

highest utilization.

(k − 1) +

⌈
Usum(τ)− Uk

1− Uk

⌉
< m (3.9)

EDF-US[ζ] and EDF(k) were examined by Baker [2005b], showing that the optimal thresh-

old ζ for EDF-US[ζ] is 1/2, since it results into the maximum possible bound for this class of

scheduling algorithms (see Equation 3.6):

Usum(τ) ≤
m+ 1

2
(3.10)

With regard to EDF(k), Baker [2005b] shows that there exists a minimum value of k, rep-

resented as kmin, for which the worst-case schedulable utilization in Equation 3.10 also holds.

Nevertheless, EDF(kmin) outperforms EDF-US[1/2], concerning the number of schedulable task

sets.

Baruah [2004] later proposed fpEDF, which assigns highest priority to the m − 1 heavier17

tasks with utilization greater than 1/2. fpEDF guarantees the schedulability of any taskset satis-

fying Equation 3.11.

Usum(τ) ≤ max
(
m− (m− 1)Umax(τ),

m

2
+ Umax(τ)

)
(3.11)

3.3.2.3 M-CBS

The bandwidth server abstraction was extended to the multiprocessor scenario in Baruah et al.

[2002], as a part of the M-CBS scheduler, to provide bandwidth reservation and isolation for SRT

executions. Designed over G-EDF, it guarantees the schedulability of a set of n servers, on m

identical processors, as long as their total utilization Usum(τ) =
∑n

i Ui satisfies Equation 3.12.

Usum(τ) ≤
m+ 1

2
(3.12)

Though asymptotically optimal for JLFP executions, M-CBS can severely underuse process-

ing bandwidth, like its uniprocessor equivalent, when SRT executions exhibit large variance.

17Tasks with greater utilization.

37

CHAPTER 3. REAL-TIME SYSTEMS

3.3.2.4 M-CASH

Succeeding the proposal of Baruah et al. [2002], the CASH mechanism was adjusted to multipro-

cessor platforms in the description of the M-CASH scheduler [Pellizzoni and Caccamo, 2008].

With the understanding that CASH rules are not directly applicable to multiprocessors, Pelliz-

zoni and Caccamo [2008] successfully adapted the CASH proposal to a G-EDF scheme, and even

improved some of its original limitations. As such, M-CASH considers two types of servers:

bandwidth-sharing servers (BS-servers) for aperiodic tasks, and capacity-sharing servers (CS-

servers) for periodic and sporadic tasks.

A CS-server Sc follows original CASH rules. When Sc becomes idle with cc,k > 0, a new

residual capacity (cq, dq), set as cq = cc,k and dq = dc,k, is inserted in the system-wide CASH

queue, and cc,k is forced to 0. In CASH, only one server is allowed to take the residual capacity,

but due to multiprocessor anomalies, imposing the same rule in the multiprocessor paradigm

would result in a less efficient strategy. Instead, at each time instant, an M-CASH residual capacity

q is shared evenly by all eligible servers18.

BS-servers, on the other hand, do not share residual capacities. By the original CASH rules,

once a server Si generates a residual capacity, its budget ci,k is set to 0, and the arrival of a new job

forces a deadline postponement. As a result of successive early completions, the deadline of Si
may be set to an exaggeratedly distant value19, significantly decreasing the priority of the served

task. This is even more likely in aperiodic SRT tasks with variable execution behavior, causing

future jobs to be scheduled in the background and becoming overly tardy. Instead, when a job

served by a BS-server Sb completes with cb,k > 0, its deadline db,k is decremented by cb,k
Ub

. The

idea is to maintain the unused capacity of a BS-server Sb, to attend any job requests that might

appear before db,k. Thus, instead of donating the resulting unused capacity, the time consumed by

a completing aperiodic job is subtracted from the current deadline db,k, and the leftover capacity

cb,k remains available for future jobs appearing before db,k.

Since all tasks are assigned to a bandwidth server, which is modeled as a periodic unit sched-

uled by G-EDF, the utilization bound of M-CASH meets that of Goossens et al. [2003], shown in

Equation 3.7.

Pellizzoni and Caccamo [2008] further propose two extensions to the core M-CASH algo-

rithm: M-CASH-AGING, and M-CASH-fp. M-CASH-AGING effectively reduces the deadline

aging problem, by allowing an executing server Si to execute freely (i.e. without decreasing its

own capacity ci,k) at time t, as long as ci,k < (di,k − t)Ui, and there exist active servers in the

ready queue waiting for execution. M-CASH-fp considers the use of dedicated processing units

to execute servers with large utilization Ui > 1/2, based on the idea of fpEDF.

3.3.3 Parallel Real-Time Scheduling

All of the proposals discussed in Section 3.3.2 take on real-time scheduling in multiprocessors,

but completely disregard intra-task parallel execution.

18Active servers with deadlines greater than dq
19An effect referred to as deadline aging [Pellizzoni and Caccamo, 2008].

38

3.3. REAL-TIME SCHEDULING THEORY

The Dhall effect (Section 3.3.2.1) is fundamentally a problem of load-imbalance, caused by

sequential tasks that cannot be divided into smaller execution chunks and executed in parallel. To

the attentive reader, this goes in accordance with the observations of Amdahl presented in Section

2.2.1, which shows how the performance of the system is restrained by the sequential portion of

the computation.

Multi-core architectures are currently instigating a change in programming habits. Frame-

works such as OpenMP [ARB], Cilk [Frigo et al., 1998], Intel’s PBB [Intel Corporation], Java

Fork-join Framework [Lea, 2000], Microsoft’s Task Parallel Library [Microsoft Corporation],

StackThreads/MP [Taura et al., 1999], among others, now provide high-level abstraction mod-

els that allow software developers to easily parcel out their programming logic into schedulable

threads, which can be executed separately across the available processing units.

With the idea that highly parallel applications offer the best opportunities for parallel exe-

cution and performance enhancement, programmers are allured to specify as much parallelism

as possible. The resulting applications merely point out potentially parallel regions within their

logic, thus user-code expressiveness alone does not guarantee parallel execution. Since many de-

tails of execution 20 are often not known in advance, much of the actual work of assigning threads

to processing units must be performed dynamically by the underlying process scheduler.

On the other hand, automatic parallelization tools are known to break down programming

logic into a particularly large number of short-lived threads. This kind of irregular and fine-

grained parallelism may raise overwhelming scheduling costs that suppress the gains of parallel

execution, and must be attended by simple and fast scheduling mechanisms able to keep the

overhead low. [Diaz et al., 2012, Dongarra et al., 2003]

Most prior work in parallel real-time scheduling [Collette et al., 2008, Kato and Ishikawa,

2009, Kwon and Chwa, 1995, Lee and Lee, 2006, Manimaran et al., 1998] assumes that the

parallelism degree of jobs is known beforehand.

For instance, Jansen [2004], Lee and Lee [2006] and Collette et al. [2008] focus on mal-

leable tasks, where tasks can efficiently execute on any number of processors and change it at

runtime. On the other hand, Manimaran et al. [1998] and Kato and Ishikawa [2009] investigate

the scheduling of moldable tasks, where the number of processors allotted to a task is defined be-

fore execution. The latter work, in its Gang EDF algorithm, also restricts the number of parallel

threads within a task to its associated number of processors, while the former work considers non-

preemptive EDF scheduling but does not allow the number of processors simultaneously used by

a task to be posteriorly changed.

In practice, this information is not easily discernible, and in some cases can be inherently

misleading. In the proposal of Lakshmanan et al. [2010], all parallel regions within a task have

the same number of threads, which cannot exceed the number of processor cores, and all threads

are equal in length. In Saifullah et al. [2011], the number of threads can and vary between regions,

as well as exceed the number of cores, but still requires all threads of a region have the same size.

With remarkable publications and projects, the research team at Research Centre in Real-

Time Computing and Embedded Computing Systems (CISTER) have recently been addressing
20Such as the number of iterations in a loop, or the number of threads in a parallel region.

39

CHAPTER 3. REAL-TIME SYSTEMS

the problem of exploiting intra-task parallelism in real-time applications. The Real-Time Work-

Stealing (RTWS) algorithm, presented next, shows how Work-Stealing (WS) logic can be com-

bined with G-EDF to scale the performance of HRT tasksets in multiprocessors. The Parallel

Capacity Sharing by Work-Stealing (p-CSWS) scheduler, which serves as the theoretical foun-

dation of our work, uses bandwidth reservation, capacity-sharing, and WS, to schedule dynamic

and irregular parallel real-time applications in an open environment. A thorough description of

the p-CSWS scheduler is presented in Section 3.3.3.2.

3.3.3.1 The RTWS Scheduler

The Real-Time Work-Stealing (RTWS) scheduler, proposed by Fonseca [2012], combines G-

EDF with a priority-aware Work-Stealing (WS) strategy to schedule parallel HRT tasks on SMP

platforms.

RTWS considers a HRT fork/join parallel task model. Ready tasks are scheduled by their

WCETs, and organized in a global queue ordered by non-decreasing absolute deadlines, from

which the first m tasks are selected for execution in m processing units. Dynamically gener-

ated threads are kept in a local processor-specific priority queue of WS deques, sorted by non-

decreasing order of the deadlines assigned to their current jobs21. This scheme is depicted in

Figure .

Each processor core looks for work in its local queue, selecting the bottom-most thread in

the highest priority deque for execution. If the local queue is found empty, it tries to pull a

task from the global queue. In case the global queue has no pending work, a priority-aware WS

operation is attempted, as the local processor looks for the highest priority deque in the system

and steals the topmost thread, which is then inserted in the local processor queue and selected for

execution. Contrarily to non-stolen dynamically generated threads, stolen threads preempted by

higher priority tasks do not return to the local processor queue. Instead, they are placed in the

global queue.

The schedulability condition for RTWS, presented in Equation 3.13, follows the observations

of Goossens et al. [2003] for G-EDF scheduling of periodic HRT tasks on a platform of m unit-

capacity processors.

Usum(τ) ≤ m− (m− 1)Umax(τ) (3.13)

As in the original WS proposal [Blumofe and Leiserson, 1999], the choice to keep newly

created threads in the processor they are originated, greatly favors data locality. In RTWS, par-

allelism is only exploited when a processor becomes idle, effectively reducing runtime overhead.

Additionally, it is up to the the idle processor to take the initiative of stealing threads, as well as

any overhead inherent to the operation.

The algorithm in Blumofe and Leiserson [1999] does not consider task priorities, and idle

workers attempt stealing operations in randomly chosen processors until an overloaded worker

is found. Such an approach is suitable for the original scenario, but not in a HRT system where

21At any given time, each deque stores threads of a single job.

40

3.3. REAL-TIME SCHEDULING THEORY

determinism is primordial. As work gets scarce, an idle processor may spend an unpredictable

amount of time trying to find an overloaded worker, and though the overhead of doing so is taken

by an idle unit, processing time is still lost.

Instead, RTWS introduces a Priority-Aware Stealing (PAS) mechanism, which steals threads

from the highest priority deque in the system. Precise knowledge of the workload, in each individ-

ual processing unit, demands more space and additional maintenance, but offers bounded runtime

overhead, which is also effectively reduced in the long term. In a sense, the WS mechanism in

Fonseca [2012] tries to exploit parallelism only when it is to benefit the overall response-time of

the system, prioritizing tasks with shorter absolute deadlines.

RTWS is a provably efficient scheduling algorithm for parallel HRT applications, also able to

schedule SRT tasks with bounded tardiness like any G-EDF-based scheduler [Devi and Ander-

son, 2008]. However, while WCET estimations can be overly pessimistic and severely underuse

processing capacity, scheduling SRT tasks by their mean execution times calls for overrun control

methods to isolate tardiness effects that may otherwise hamper the schedulability of HRT tasks.

An implementation of RTWS for the Linux kernel, also proposed in Fonseca [2012], will be

detailed further ahead in Section 4.3.8.

3.3.3.2 The p-CSWS Scheduler

To undertake the challenge of scheduling both HRT and SRT parallel real-time applications,

Nogueira and Pinho [2012] recently proposed the Parallel Capacity Sharing by Work-Stealing

(p-CSWS) scheduler, which complements M-CBS with a new capacity reclaiming mechanism

able to exploit intra-task parallelism through WS. To the extent of our knowledge, p-CSWS is the

first real-time scheduler to provide bandwidth isolation, residual capacity sharing, and support for

intra-task parallelism, in a powerful and sophisticated algorithm for multi-core ORT systems.

p-CSWS extends the fork/join parallel real-time task model contemplated by RTWS to aperi-

odic and SRT tasks. Each task τi is assigned to a p-CSWS Dedicated Server (DS) Si characterized

by a budget Ci and a period Ti. For HRT tasks, Ci is set to the WCET, while for SRT tasks, the

mean expected values for Ci and Ti are used. The bandwidth assigned to Si is given by Ui = Qi

Ti
,

and denotes the fraction of the capacity of one processor reserved by the server.

A set of n p-CSWS servers with total utilization Usum =
∑n

i Ui, can be scheduled through

G-EDF on an identical multiprocessor platform comprised of m unit-capacity processors, if the

conditions in 3.14 are met22.

Umax ≤ 1

Usum ≤ m− (m− 1)Umax
(3.14)

At each instant, the following values are associated with a DS Si: (i) its currently assigned

deadline di,k, and (ii) its remaining execution capacity 0 ≤ ci,k ≤ Qi. Each time a new job of τi
arrives, it is enqueued in a First-In First-Out (FIFO) job queue of Si. As in CBS, a server is said

22Umax = max1≤i≤n(Ui) denotes the maximum server bandwidth.

41

CHAPTER 3. REAL-TIME SYSTEMS

to be active if it has pending work in its job queue, and idle otherwise. At any time instant t, the

m active servers with earliest deadline are scheduled for execution in the m available processors,

and referred to as busy servers.

When a job ji,j served by Si is released at time t, causing the server to transition from idle to

active, the test in Equation 3.15 is evaluated.

ci,k < (di,k − t)Ui (3.15)

If 3.15 holds, the newly arriving job is served with the current budget ci,k and deadline di,k
of Si. Otherwise, a new instance k+ 1 of Si is created, as ci,k+1 is recharged to Qi, and di,k+1 is

set as di,k+1 = t+ Ti.

A busy server selects the job at the top of its queue for execution with a deadline equal to di,k.

The budget ci,k of a busy DS Si is decremented at each instant by the same amount. At time t,

the reserved capacity in a p-CSWS server Si is said to be exhausted if ci,k = 0, and expired if

di,k < t. When the capacity of a DS Si is exhausted or expired, and there is pending work in Si,

a new server instance is established with ci,k+1 = Qi and di,k+1 = di,k + Ti.

Dynamically generated threads are maintained in a local WS deque of the server where the job

is currently being executed. Each server operates at the bottom of its deque, pushing and popping

threads in a synchronization-free manner. Threads are successively dequeued from the bottom and

assigned to the processor, until the deque is empty. At time t, if a DS Si finishes the execution

of its current job without exhausting the reserved capacity (ci,k > 0), has no pending work in its

job queue, and ci,k is greater than a lower bound Qmin, a new p-CSWS Residual Capacity Server

(RCS) Srj of capacity crj = min(ci,k, di,k − t) and deadline drj = di,k is dynamically generated.

A RCS is a p-CSWS server that applies a priority-based WS policy whenever its local deque

is empty. When a RCS Srj is enqueued in the global queue, it competes for processor time like

any regular active server with deadline drj , and its capacity crj can be used to execute any eligible

thread through WS. Whenever a RCS Srj is selected for execution, it steals the topmost thread

in the deque of earliest deadline active DS Ss in the system, with deadline di,k ≥ drj . A stolen

thread executing in Srj consumes the remaining residual capacity crj instead of that in its DS. A

RCS is allowed to execute until its capacity is exhausted crj = 0, and only prior to its deadline drj .

In other words, once a residual capacity has been exhausted or expired, it is is not replenished.

When the residual capacity of a busy RCS Srj is exhausted or expired, Srj remains active, but

unable to execute, until all stolen threads in its local deque are reclaimed back by their respective

DSs. To reclaim back stolen work, each DS maintains a list of stolen threads. If a busy DS finds

its local deque empty, it looks at this list for stolen dedicated work, with the intent of reclaiming

it back and selecting it for execution. Once an exhausted or expired RCS becomes idle23, it is

removed from the system.

p-CSWS Rules: The p-CSWS algorithm is compactly described with a set of rules defined in

Nogueira and Pinho [2012], which we reproduce for quick reference:
23An idle server is one which has no pending work in its local deque. In this case, a RCS becomes idle once all

stolen threads have completed, or been reclaimed back by their DSs.

42

3.3. REAL-TIME SCHEDULING THEORY

Rule A: Whenever a server Si changes its state from idle to active at some time t, a test is exe-

cuted. If ci,k < (di,k − t)Ui, no update of deadline and budget is necessary. Otherwise,

ci,k+1 is recharged to Qi and the a new deadline is assigned di,k+1 = t+ Ti.

Rule B: Whenever a server Si is selected for execution, it picks the bottom-most thread in its

deque. While executing it, the budget ci,k is decreased by the same amount. If the

server’s capacity is either expired or exhausted, it is recharged to Qi and its deadline

di,k+1 is incremented by Ti.

Rule C: Whenever a server Si finds its local deque empty, it verifies its thief list. If not empty,

Si follows the first pointer in the list, iteratively removing and executing those parallel

threads until the list becomes empty.

Rule D: Whenever a server Si completes its kth job at time t < di,k, after having consumed

ei,j < Qi time units, and it has no pending work, a new residual capacity with capacity

min(ci,k, di,k − t) and deadline di,k is generated. Si becomes idle and its remaining

reserved capacity ci,k is set to 0.

Rule E: A new residual capacity less than a lower bound Qmin is assigned to the processor in

which it was generated. The next active server with a later deadline, that executes on

that processor, consumes the earliest deadline residual capacity prior to consuming its

own dedicated capacity. When consuming a residual capacity, the server runs with the

deadline of the residual capacity. If the processor idles beforehand, or if the capacity

expires or is exhausted, it is disposed of.

Rule F: A new residual capacity consisting of at leastQmin is released to the global ready queue

as a new RCS Srj with an execution capacity of min(ci,k, di,k − t) and deadline di,k.

Whenever a RCS Srj is enqueued, it immediately competes for processing time as if it

were a regular server with deadline drj .

Rule G: If a RCS is selected for execution, it may only execute until time drj , and the processor

time crj it receives is used to steal and execute the earliest deadline eligible thread with

a current deadline at least drj . Whenever a steal occurs, a pointer to the stolen task is

added to the thief list of the stolen server.

Rule H: Whenever a thread is executed by a RCS Srj , it is scheduled using the residual capacity

crj and deadline drj . As such, the execution capacity ci,k of its DS Si remains unchanged.

If the execution capacity of the RCS is either expired or exhausted, it is not recharged.

If there is pending work, the RCS remains active. Otherwise, it is removed from the

system.

Rule I: If a processor ever idles and there is any RCS in the global queue, then it dequeues the

earliest deadline RCS and executes it without donating the resulting execution to any

thread. The processor continues to execute the residual capacity server, as long as it

would otherwise be idle, or the capacity of the RCS is neither exhausted nor expired.

43

CHAPTER 3. REAL-TIME SYSTEMS

p-CSWS has been tested with promising simulation results that show an effective decrease in

the average tardiness of SRT tasks, when compared to M-CBS and M-CASH. Such results are

primarily an effect of the powerful capacity-sharing and work-steling mechanism, able to boost

execution times through an efficient exploitation of intra-task parallelism.

The clever design choice of achieving parallel execution, through WS, only when residual

capacities are available, benefits system efficiency in two ways. WS controls the amount of active

parallelism to avoid overly large scheduling, execution, and space overhead. By employing WS

over residual capacities, it is expected that larger amount of concurrent servers generates more

parallelism. In a sense, the bigger the system load, the more parallelism is exploited to help tasks

respond faster.

In our opinion, p-CSWS is the first scheduling algorithm to meet the real-time requirements

of a parallel ORT system, due to its ability to schedule both HRT and SRT computations, and

efficiently harness processing power through parallel processing. To prove its practical feasibil-

ity, we decided to propose an implementation of the p-CSWS scheduler for the Linux kernel as

detailed in Chapter , and analyze its performance through extensive tests described in Chapter .

3.4 Summary

44

Chapter 4

Linux Scheduling and Real-Time
Support

“Making Linux GPL’d was definitely the best thing I ever did.”

— Linus Torvalds

Linux, or GNU/Linux for the sake of neutrality1, is a UNIX-like General-Purpose Operating

System (GPOS) developed by Linus Torvalds, in 1991, for the Intel 80386 microprocessor. It

quickly proved popular among eager kernel developers who, over the years, took the effort of

improving what would become one of the most prominent Operating Systems (OSs) of today.

Released under the GNU General Public License (GPL), its source code is made fully avail-

able for anyone to use, study, modify and distribute. Today, the Linux kernel is maintained by

an extensive team of programmers around the world, whose developments are still overseen by

Linus Torvalds. Through years of cooperative progress, Linux has become the most compatible

OS in the market2, and steadily made its way into the most diverse areas of modern technology,

from tiny embedded systems (such as smartphones and wristwatches), to televisions, personal

computers, network servers, or massively-parallel supercomputers, to name a few.

Full access to such a complete, stable, flexible, and efficient OS, has also provided the aca-

demic and research communities with a powerful foundation for a large variety of projects. Al-

though Linux is not a Real-Time Operating System (RTOS), it continues to serve the real-time

community, not only as a testing platform, but also as the backbone for definitive implementa-

tions.

We begin this chapter with an architectural overview of the Linux kernel, and then take a

technical look on Linux process scheduling internals. A presentation of the most notable projects

tackling real-time support in the Linux kernel follows. Finally, we contextualize our work with

respect to the opportunities for improvement in the area.

1The denomination has long been a source of controversy among members of the free and open-source software
community.

2Supporting over 20 different processor architectures.

45

CHAPTER 4. LINUX SCHEDULING AND REAL-TIME SUPPORT

Unless otherwise stated, the content of this chapter refers to Linux v3.8.13, the version used

for our implementation.

4.1 A Birdseye View of the Linux Kernel

An OS kernel is, in essence, a computer program which offers the basic abstraction between

the hardware and user applications. Kernels usually abide by one of two major design patterns.

Monolithic kernels are those implemented as a single process running in a single address space,

and thus offering great simplicity, performance, and in-kernel communication. Microkernels, in

turn, implement only the most elementary functions. Other features are delegated to several in-

dependent processes called servers3, which run in distinct address spaces, and perform private

functions which cannot be remotely invoked. Instead, servers communicate by exchanging4 ser-

vice requests via an internal Inter-Process Communication (IPC) message-passing mechanism

[Love, 2010, Mauerer, 2008] (Section 4.1.2).

Linux falls closer to a monolithic kernel, but also adopts some microkernel characteristics.

Contrarily to a pure monolithic kernel, it is divided into several schedulable and preemptible

threads. Also, thanks to dynamically loadable kernel modules, secondary features, such as device

drivers, can be activated or deactivated on-the-fly, and need not be included into the compiled

kernel image [Love, 2010, Mauerer, 2008].

Like most modern OSs, the Linux kernel runs in a privileged level of execution called kernel-

space (or kernel-mode), which involves a protected memory space and full access to hardware.

User-level applications reside in user-space (or user-mode), where they cannot access kernel data

structures or programs, nor directly interact with hardware devices.

4.1.1 System Calls and the User API

The kernel itself is not a process, but rather a process manager offering a set of well-defined

kernel services that can be requested by way of system calls. User applications interact with

the kernel via the System Call Interface (SCI) which, together with the GNU C Library (glibc),

forms the user-space Application Programming Interface (API) used by developers to build Linux

applications. Although system calls can be issued directly by the programmer, most interactions

with the SCI are unwittingly carried out by higher-level glibc constructs. For example, after

formatting and buffering the output data, printf() invokes the write() system call to request

data be written to the console. When a system call is issued, the calling process momentarily

switches to kernel-space, as the kernel enters process context to execute the service on its behalf.

Upon completion, the kernel leaves process context, and the calling process returns to user-space.

3Not to be confused with the Constant Bandwidth Server (CBS) abstraction in real-time scheduling (Section 3.3.1.2)
4Between themselves and the microkernel.

46

4.1. A BIRDSEYE VIEW OF THE LINUX KERNEL

4.1.2 Kernel Subsystems

The Linux kernel layer can be conceptually divided into 5 interdependent components, as depicted

by Figure 4.1.

Figure 4.1: Overview of a Linux system

4.1.2.1 Process Scheduler

The Process Scheduler manages processes and their use of the available Central Processing Units

(CPUs). The majority of its source code is kept in the kernel/sched directory of the kernel

source tree. A more detailed overview of the process scheduler is presented in Section 4.2.

4.1.2.2 Memory Manager

The Memory Management Subsystem abstracts platform-specific details into one common mem-

ory interface, the virtual memory, which establishes the bridge between applications and the hard-

ware Memory Management Unit (MMU). Among its main purposes and advantages, we point out

the following:

• Fair Memory Allocation - Each process is given a fair share of the available physical mem-

ory.

• Large Address Space - Virtual memory can be much larger than the available physical

memory, making it possible to run processes with very large memory requirements.

47

CHAPTER 4. LINUX SCHEDULING AND REAL-TIME SUPPORT

• Memory Isolation and Protection - Each process has its own virtual space, which cannot be

overwritten by other applications.

• Shared Virtual Memory - Although memory is isolated across processes, they are allowed

to explicitly share some portion of their memory.

• Portability - Programmers need not deal with physical memory organization, and can easily

write machine-independent code.

The bulk of the Linux memory manager can be found in the mm directory of the source tree.

[Bovet and Cesati, 2005, Kerrisk, 2010]

4.1.2.3 Virtual File System

The Virtual File System (VFS) provides a common abstraction for filesystems. It has the complex

burden of defining a uniform interface to manipulate files, directories, and other objects, in the

plethora of filesystems supported by Linux5. At the top layer, the VFS formalizes a set of common

filesystem functions6 such as open(), close(), read(), or write(). At a lower level, a

group of plugins, in the fs directory of the source tree implement the aforementioned functions

for each filesystem. [Kerrisk, 2010, Love, 2010, Mauerer, 2008]

4.1.2.4 Network Subsystem

The Network Subsystem abstracts both the devices and protocols used by Linux for inter-process

communication over a network. Networking functionalities are exported to the user and other

subsystems by way of the socket interface, invoked through the SCI. Sockets offer a standardized

way to manage connections and transmit data across nodes, regardless of the underlying network

and transport protocols. Lower level interaction between the subsystem and hardware device is

made through the unified interface provided by the associated device driver. Networking sources

are located in the net directory of the source tree. [Kerrisk, 2010, Mauerer, 2008]

4.1.2.5 Inter-Process Communication Subsystem

The IPC Subsystem provides the mechanisms by which concurrent Linux processes interact with

each other7. The list below presents the most noteworthy.

• Shared Memory - The ability for processes to communicate by sharing a common physical

memory space.

• Locking Mechanisms - Those used for concurrency control, such as spinlocks, semaphores,

atomic operations, or reader/writer locks.

• Message Queues - A connection-less way to exchange messages of a specific data type.

5Linux supports over 40 filesystems, some of which can be rather unique and heterogeneous [Mauerer, 2008].
6By way of system calls in the SCI.
7Namely share resources, share or exchange data, and synchronize.

48

4.1. A BIRDSEYE VIEW OF THE LINUX KERNEL

• Signals - A set of well-defined messages that can be asynchronously sent between pro-

cesses.

Most of the IPC subsystem is implemented in the ipc directory of the kernel source tree. For

more information on this topic, please refer to the annexed bibliography. [Bovet and Cesati, 2005,

Kerrisk, 2010, Mauerer, 2008]

4.1.3 Architecture Specifics and Device Drivers

Linux kernel developers lay a great deal of emphasis on portability. While most kernel code

is architecture-independent, a number of low-level elements8 trade portability for optimal code

specifically tuned for each architecture. The arch directory of the source tree contains most

of the architecture-dependent code in Linux, categorized into 29 sub-directories9. [Love, 2010,

Mauerer, 2008]

With the exception of the CPU, memory, and a few other elements, all device control oper-

ations are performed via a device driver. Linux device drivers are commonly implemented as

individual kernel modules, containing specific code to coordinate the affected physical device.

The goal is to provide a unified interface between the kernel and a certain type of device. Overall,

the device driver manages both sides of the data transfer mechanism of a certain device. It (1)

effectively operates the associated device, in accordance to high-level commands originated in the

kernel, and (2) handles and translates raw data sent by the device to the OS. [Bovet and Cesati,

2005, Love, 2010, Mauerer, 2008, Venkateswaran, 2008]

Linux classifies devices (and device drivers) into 3 distinct types: [Love, 2010, Venkateswaran,

2008]

• Character Devices, char devices, or cdev, are those accessed sequentially by the OS, i.e.

data is typically transferred as a stream of characters (byte-by-byte). A wide range of

devices fall into this category, from keyboards to printers, sound cards, or any device con-

nected to a serial or parallel port.

• Block Devices, or blkdev, are addressable in device-specified blocks, and support random

access of data. These are media storage devices capable of hosting a filesystem, such as

hard drives, floppy drives, or USB memory sticks.

• Network Devices, or Ethernet Devices, refer to physical adapters that connect the system

to a network. Network device drivers differ from char and block drivers in that they are

accessed via the socket interface, rather than represented and operated as regular files at the

filesystem level.

Comprehensibly, device drivers play a crucial role in some of the subsystems presented in

Section 4.1.2, particularly in the VFS and network subsystems, where they provide the basic

hardware abstraction to implement the unified interfaces exported to user-space.

8The process scheduler, for example, uses architecture-dependent code to perform context switching.
9One for each platform supported by Linux

49

CHAPTER 4. LINUX SCHEDULING AND REAL-TIME SUPPORT

The source code for the set of device drivers distributed with the Linux kernel can be found

in the drivers directory of the source tree.

4.2 The Process Scheduler

In Linux, the process scheduler is the subsystem responsible for coordinating the allocation of

processor time. The scheduler implements a set of rules, referred to as scheduling policy, to

decide upon when, and how, processes are selected for execution. The Linux scheduler foresees

the existence of several active processes simultaneously contending for processor time. As a

multitasking OSs, it gives the illusion of simultaneous processing through a dynamic time-sharing

scheduling policy that switches between executions at very short intervals, in an attempt maximize

resource utilization and share CPU time as evenly as possible among running processes.

The current Linux scheduler was designed by Ingo Molnar, and introduced in Linux v2.6.23 to

replace the original O(1) scheduler. In general, it consists of an extensible collection of scheduler

modules called scheduling classes, coordinated by the core scheduler.

Linux makes no major distinction between processes and threads10, in the sense that they are

both internally represented by the same data structure. Henceforth, we refer to both processes and

threads as tasks.

4.2.1 Linux Tasks

Each task in the Linux kernel is represented by an instance of the extensive task struct data

structure declared in include/linux/sched.h, also known as the process descriptor. A

task struct object maintains the necessary data to manage and perform scheduling decisions

upon a task. All tasks, or more precisely their process descriptors, are kept in a system-wide

circular doubly linked list called the task list. Among the task struct attributes relevant to

the scheduler, we will pay special attention to those listed and described in Table 4.1.

Attribute Description
pid Process ID specific to each task
tgid Group ID shared by all child threads created by the same task
state The current state of a task
flags Additional information about special characteristics of the task at a given moment
prio/normal prio Dynamically computed priorities
static priority Relative priority assigned at configuration time
rt priority Static priority for a SCHED RR or SCHED FIFO task (Section 4.2.4)
sched class The currently associated scheduling class
policy The currently associated scheduling policy
on cpu Binary attribute to indicate whether the task is executing or not
on rq Binary attribute to indicate whether the task is on the list of ready tasks or not
nr cpus allowed Number of CPUs that can execute the task.
cpus allowed Bit mask representing the CPUs where the task can execute

Table 4.1: A list of relevant task struct attributes.

Each task is bound to exactly one scheduling class and policy at any given time, but allowed

to transition to another class or policy via the sched setscheduler() system call, passing
10A process is an instance of a computer program, while a thread is a smaller unit of control that is part of a process.

50

4.2. THE PROCESS SCHEDULER

the new policy identifier as a parameter. Scheduling classes and policies are presented in Section

4.2.4.

Linux scheduling is not restricted to individual tasks, but rather scheduling entities. A schedul-

ing entity represents either a single task or a group of tasks recognized by the scheduler as a single

entity. Scheduling classes define their own scheduling entity data structures, with the needed at-

tributes to perform class-specific scheduling operations. These structures typically encompass

statistical elements, group scheduling attributes, or current and historical task details11. To sched-

ule tasks individually, the process descriptor contains an instance of the scheduling entity data

structure defined by each scheduling class. We will refer back to this aspect in Section 4.2.4.

Restricting our study to task scheduling, we address task and entity scheduling interchange-

ably.

4.2.1.1 Task States and Transitions

To describe what is currently happening to each task, a total of 9 task states for the state

attribute of the process descriptor are defined in include/linux/sched.h. We emphasize

5 major states depicted by Figure 4.2.

Figure 4.2: Linux task states and transitions

Throughout the startup process, a task exhibits the TASK WAKING state, only transition-

ing to TASK RUNNING when it becomes runnable, i.e. fully configured and ready to execute.

Any runnable task, either executing or waiting for execution, remains in the TASK RUNNING

state until it blocks12. A long as a task is blocked, holding the TASK INTERRUPTIBLE or

TASK UNINTERRUPTIBLE state, it cannot be scheduled for execution. When a task is set to

wake up from a blocked state, it switches to TASK WAKING. Upon completion of the wake up

process, it returns to TASK RUNNING and is ready to execute. Once a task finishes execution, its

state is set to TASK DEAD before being removed from the system.

Section 4.2.5.3 explains how state transitions are handled and effectuated by the Linux sched-

uler.

11Such as the total elapsed execution time, a time stamp for the start of execution, and other data specific to the
scheduling class

12Due to an I/O request, voluntarily via call to a specific kernel function, to wait for an interrupt, et cetera.

51

CHAPTER 4. LINUX SCHEDULING AND REAL-TIME SUPPORT

4.2.1.2 Task Affinity

In multiprocessor systems, cpus allowed is used to set the affinity of a task. The system call

sched setaffinity() allows the user to specify a subset of CPUs eligible to execute a task.

To perform a particular operation, the kernel may also temporarily bind a task to a specific CPU.

It does so by forcefully setting a single bit on the CPU mask, which is later restored back to the

previous value once the operation finishes. At any given time, nr cpus allowed reflects the

number of eligible CPUs set in cpus allowed.

4.2.2 Runqueues

Runnable tasks are kept in CPU-specific queues, called runqueues. The runqueue is a primordial

element of the scheduler, defined in kernel/sched/sched.h by the rq data structure.

The Linux scheduler abides by a semi-partitioned architecture. Each CPU maintains an in-

dependent runqueue of local ready tasks, such that a task is not allowed to exist in more that

one runqueue or CPU at a given time. Load balancing is achieved through an exchange of tasks

between runqueues, which immediately implies migration across processors.

The pivotal attributes of the rq structure are listed next:

• lock defines a spinlock to control concurrent access to the runqueue.

• nr running maintains a counter for the number of ready tasks in the runqueue.

• cpu stores the ID of the CPU assigned to the runqueue.

• curr points to the process descriptor of the task that is currently executing in the local

CPU.

• clock keeps track of the local CPU time.

• sd points to the associated scheduling domain (Section 4.2.6.1).

To ensure data consistency, runqueues are protected by a spinlock. All runqueue manipula-

tions must acquire the spinlock lock beforehand. In special situations, when multiple runqueue

locks are required, one must follow the rule established by the development team to avoid po-

tential deadlocks. It states that runqueue locks are to be acquired in order of increasing memory

address of the rq object. double lock balance() and double unlock balance()

provide a means to lock and unlock a second runqueue13 straightforwardly. However, to respect

the locking rule double lock balance()may drop the held lock14, requiring special caution

on the part of the programmer.

Following the modular design of the scheduler, tasks are not directly stored in the rq data

structure, but in specific data structures defined for each scheduling class and instantiated in rq.

These data structures will be addressed in Section 4.2.4.
13We refer to the scenario where one wants to acquire a runqueue lock while holding another.
14If the second runqueue has a lower memory address, the held lock must be dropped and acquired again after the

second runqueue is locked.

52

4.2. THE PROCESS SCHEDULER

4.2.3 Generic Data Types Relevant to Scheduling

For the sake of code simplicity and reuse, the Linux kernel source provides its own APIs to

maintain structured data elements.

Scheduling classes15 use either doubly linked lists or red-black trees to store and organize

runnable tasks, according to their priorities, in class-specific runqueues. Every data structure has

operation costs, and the structural design of a runqueue has a tremendous impact on schedul-

ing efficiency. The data structure of choice must be in tune with the intervening algorithm (the

scheduling policy), so as to enable quick scheduling decisions at a low maintenance effort.

4.2.3.1 Doubly Linked Lists

Figure 4.3: Doubly linked list example

Traditional linked lists are defined through a custom-built data structure containing the data

to be linked as well as pointers to adjacent nodes of the same data structure. Linux offers a

more general interface, in which nodes are set up by a list head object embedded into another

data structure, as shown by Figure 4.3. The list head data structure (Listing 4.1) declared in

include/linux/types.h simply defines two pointers to the previous and next element of

the list (also of type list head).

1 s t r u c t l i s t h e a d {
s t r u c t l i s t h e a d ∗ next , ∗ p rev ;

3 } ;

Listing 4.1: The list head data structure.

include/linux/list.h provides a set of routines to manage linked lists, namely to

initialize, add, remove, and traverse chains of list head elements. Seeing that list head

15The default scheduling classes in Linux v3.8.13.

53

CHAPTER 4. LINUX SCHEDULING AND REAL-TIME SUPPORT

nodes are nested inside the structure that contains the data, accessing the enveloping data struc-

ture requires an additional step that can be carried out with the list entry(ptr, type,

member) macro, where ptr is a pointer to the list head element, type is the type of the

enveloping data structure, and member is the name of the list head variable within the data

structure.

1 # d e f i n e l i s t e n t r y (p t r , type , member) \
c o n t a i n e r o f (p t r , type , member)

Listing 4.2: The list entry macro.

As seen in Listing 4.2, list entry simply abstracts the container of macro, which re-

trieves the address of the enclosing type object containing ptr, based on the offset of member.

On a list of n unsorted nodes, insertions and deletions are performed in constant O(1) time,

but search operations are subject to O(n) complexity. On sorted linked lists, insertions are also

performed in linear O(n) time. [Love, 2010, Mauerer, 2008]

4.2.3.2 Red-Black Trees

Figure 4.4: Red-black tree example

A red-black tree is a type of self-balanced binary search tree, whose nodes are sorted by non-

decreasing order of a predefined key. The peculiarities and complex management of red-black

trees are abstracted by the generic API coded in include/linux/rbtree.h.

A red-black tree can be declared with an instance of the rb root object provided by the

API. Similarly to linked lists, a rb node object can be declared within a data structure to specify

a red-black tree node. rb entry(ptr, type, member) (Listing 4.3) is the list entry

equivalent for red-black trees, to access the containing data structure of a red-black tree node.

d e f i n e r b e n t r y (p t r , type , member) \
2 c o n t a i n e r o f (p t r , type , member)

Listing 4.3: The rb entry macro.

The leftmost node of a red-black tree is always the one with the lowest key value, and accessi-

ble in constantO(1) time when cached16. Though complex, red-black trees offer good worst-case

16When a reference to the leftmost node is maintained

54

4.2. THE PROCESS SCHEDULER

performance. In a tree of n nodes, manipulations17 are guaranteed in logarithmicO(log(n)) time.

[Love, 2010, Mauerer, 2008]

4.2.4 Scheduling Classes and Policies

In practice, each scheduling class is an instance of the generic sched class data structure

defined in include/linux/sched.h. The sched class structure provides a set of hooks,

or function pointers, for well-defined scheduling operations invoked by the core scheduler. All

4 scheduling classes in the kernel are organized hierarchically by way of a pointer (the next

attribute of sched class) referring to the next class in the hierarchy.

Creating a new scheduling class, is therefore a matter of instantiating a new sched class

structure, integrating it in the hierarchy, and defining the set of functions required to perform

scheduling decisions. Next, we present a list of the most pertinent hooks of sched class,

along with a short description of their purpose and semantics:

• enqueue task inserts a task onto the runqueue.

• dequeue task removes a task from the runqueue.

• yield task is invoked when the current task voluntarily yields the CPU.

• check preempt curr checks if the current task should be preempted by another task.

• pick next task selects and returns the next task18 to be executed.

• put prev task is invoked before a context switch, to manage the task leaving the CPU.

• set curr task is mostly invoked when the policy or priority of a task changes.

• task tick is invoked periodically by the core scheduler, according to the frequency de-

fined by the HZ macro.

• task fork is invoked when an executing task spawns another task (thread).

• switched from and switched to are invoked with different parameters, when a task

changes from a scheduling class to another.

• prio changed is invoked when the priority of a task changes.

• select task rq selects and returns the CPU where the task shall be scheduled for exe-

cution. Invoked whenever a task wakes up.

• pre schedule is invoked by the core scheduler before any scheduling decision.

• pre schedule is invoked by the core scheduler after a scheduling decision.

• task waking is invoked when a task is set to wake up.
17Insertions, arbitrary searches, and deletions.
18The highest priority task in the class.

55

CHAPTER 4. LINUX SCHEDULING AND REAL-TIME SUPPORT

• task woken is invoked at the end of the wake up routine.

• set cpus allowed is invoked when the affinity19 of a task changes.

The last 6 functions in the list, from select task rq to set cpus allowed, are spe-

cific of multiprocessor configurations and only defined when the kernel is compiled with Sym-

metric Multiprocessing (SMP) support.

Each scheduling class encloses specific logic to implement one or more scheduling policies.

Each task in the system is bound to exactly one class and policy via the sched class pointer

and policy attribute of the process descriptor (Section 4.2.1).

Figure 4.5: Hierarchy of scheduling classes and policies

Linux20 specifies a total of 5 scheduling policies identified by a set of macros defined in

include/uapi/linux/sched.h and reproduced in Listing 4.4. These policies are defined

by two classes of the scheduling class hierarchy depicted in Figure 4.5.

/∗
2 ∗ S c h e d u l i n g p o l i c i e s
∗ /

4 # d e f i n e SCHED NORMAL 0
d e f i n e SCHED FIFO 1

6 # d e f i n e SCHED RR 2
d e f i n e SCHED BATCH 3

8 /∗ SCHED ISO : r e s e r v e d b u t n o t implemented y e t ∗ /
d e f i n e SCHED IDLE 5

Listing 4.4: Scheduling policy identifiers.

4.2.4.1 The Stop Class (stop sched class)

The stop sched class is a special scheduling class, outlined in kernel/sched/stop_

task.c to manage the per-CPU stop task. The stop task is the highest priority task in the kernel,

as it can preempt anything and not be preempted. It is used to force critical operations on a given

CPU, usually related to load balancing and CPU hotplugging. For example, when an executing

task changes its CPU affinity, if the current CPU (associated to the task) is disallowed in its

cpus allowed bit mask, the stop task ensures it is migrated to another CPU.

19The set of CPUs eligible to execute a task.
20As of Linux v3.8.13.

56

4.2. THE PROCESS SCHEDULER

4.2.4.2 The RT Class (rt sched class)

The rt sched class is defined in kernel/sched/rt.c to implement two soft real-time

policies:

• SCHED FIFO entities are scheduled in a First-In First-Out (FIFO) manner, and each entity

is allowed to execute as long as it voluntarily decides to relinquish the processor.

• SCHED RR implements a preemptible Round-Robin (RR) policy, where each entity is as-

signed a time slice and allowed to execute until its time slice is exhausted. Once an entity

exhausts its time slice, it is preempted by the highest priority entity awaiting execution.

SCHED RR entities are also preempted by any SCHED FIFO entity in the system.

According to the descriptions in Sections 4.2.1 and 4.2.2, the RT class extends rq and

task struct with its own runqueue and scheduling entity designs, respectively.

Each RT runqueue is an instance of the rt rq structure in coded in kernel/sched/

sched.h. The list of ready entities is specified by an object of type rt prio array within

the rt rq structure. rt prio array sets up a queue where each node is a list of entities with

the same priority, along with a related bitmap for optimized access to the queue.

The rt sched entity, stated in include/linux/sched.h, extends task struct

with support for RT scheduling entities. It defines the essential attributes for each SCHED FIFO

and SCHED RR entity, such as the time slice, a list head element to place it in the RT run-

queue, or a pointer to the currently associated runqueue.

Note that the concept of soft real-time presented here differs from definition considered in this

thesis and the real-time task model formalized in Chapter 3 (Section 3.1). rt sched class

does not foresee the existence of specific timing constraints on the release and response times of

scheduling entities. Instead, each entity is assigned a numeric priority (ranging from 0 to 99),

which defines its urgency over other executions, but does not offer the response-time determinism

of a deadline-based model. Although the schedule provided by rt sched class prioritizes

SCHED FIFO and SCHED RR entities over other tasks in the system, it cannot provide any precise

timing guarantees nor schedule tasks by their specific timing parameters, as it would be expected

from a real-time scheduler.

4.2.4.3 The Completely Fair Scheduler (fair sched class)

fair sched class implements the Completely Fair Scheduler (CFS) in kernel/sched/

fair.c, by way of 3 scheduling policies:

• SCHED NORMAL is the default scheduling policy for general-purpose interactive programs,

following the idea of an equal distribution of processor time among ready scheduling enti-

ties.

• SCHED BATCH is the policy defined by the CFS to schedule CPU-intensive batch processes

in the background. SCHED BATCH entities are scheduled much like SCHED NORMAL, but

57

CHAPTER 4. LINUX SCHEDULING AND REAL-TIME SUPPORT

in order to prevent them from affecting the execution of interactive processes, they are not

allowed to preempt SCHED NORMAL entities.

• SCHED IDLE schedules entities of minimal importance, only allowed to run when a CPU

would otherwise be idle.

fair sched class scheduling entities are defined by the sched entity data struc-

ture in include/linux/sched.h. SCHED NORMAL entities are scheduled by their vir-

tual runtime. The virtual runtime of each entity is supported by the vruntime attribute of

sched entity, and computed as function of its elapsed execution time and priority. CFS pri-

orities range from 100 (highest) to 139 (lowest), and do not define the order by which entities

are scheduled, but rather the preference of an entity over the remainder. The higher the priority

of an entity, the slower its virtual runtime grows. Therefore, since CFS entities are scheduled by

vruntime, higher priority entities receive larger shares of processing time.

Another crucial element of the CFS is the cfs rq data structure, declared in kernel/

sched/sched.h to extend the rq structure with special CFS attributes. tasks timeline

defines the per-cpu red-black tree of ready CFS entities, ordered by non-decreasing vruntime.

The majority of scheduling decisions are based upon the currently executing entity and the one

with the lowest vruntime. To access the entity with the lowest vruntime in constant time,

rb leftmost keeps a reference to the leftmost node of the red-black tree21.

The virtual runtime of an executing entity is updated at every scheduler tick. Towards a fair

distribution of work, as soon as the executing entity no longer has the lowest vruntime value it

relinquishes the processor to an entity of higher priority. In practice, due to scheduling overhead

and granularity constraints, no schedule obtained by the CFS is perfectly fair. To reduce the total

amount of scheduling overhead and provide a reasonably fair distribution of processor time, it

defines a scheduling latency value and a minum granularity value, used in combination to enforce

a lower execution bound22.

4.2.4.4 The Idle Class (idle sched class)

The idle sched class is a special scheduling class, declared in kernel/sched/idle_

task.c to manage the kernel idle task (also known as the swapper task). The per-CPU idle task

is scheduled for execution when no other ready tasks exist locally. The idle task is the lowest

priority task in the system, and its sole purpose is to keep a processor busy when it runs out of

work.

Even though their designations may be misleading, SCHED IDLE and idle sched class

are not one and the same thing. As stated in Section 4.2.4.3, SCHED IDLE is a CFS policy to

schedule low priority executions.

21Since the tree is sorted in non-decreasing order of vruntime, the leftmost node holds the entity with lowest
vruntime.

22Before which, entities cannot be preempted

58

4.2. THE PROCESS SCHEDULER

4.2.5 The Core Scheduler

So far we have seen how scheduling policies are implemented within a scheduling class. However,

since scheduling classes merely establish how scheduling operations are to be performed in the

context of a particular policy, it falls upon the core scheduler to carry out the most elementary

scheduling operations and effectively assign tasks to the CPU.

As stated in Section 4.2.4, the Linux scheduler formalizes a set of conventional operations,

as a collection of function pointers in the sched class data structure. Scheduling classes

instantiate the sched class structure and define the set of scheduling class hooks, by assigning

each function pointer a routine that implements the respective operation. Under this general but

well-defined structural model, the internals of each scheduling function vary between classes, but

the semantics remains the same. While this structural design provides a common and transparent

interface between the core scheduler and scheduling modules, it also allows the configuration of

new scheduling classes without the need to completely reformulate the scheduler.

The core scheduler is outlined by a vast number of routines defined in kernel/sched/

core.c. In the remainder of this section, we direct our attention to the most important.

4.2.5.1 The Periodic Scheduler - scheduler tick()

The periodic scheduler is implemented by the scheduler tick() function, which is called

periodically by the internal kernel timer at a frequency stipulated by the HZ macro. In SMP

configurations, scheduler tick() is called independently on each active CPU.

scheduler tick() updates the local runqueue clock, before invoking the task tick

hook of the scheduling class associated to the currently executing task. fair sched class,

for example, takes this opportunity to verify if the current task should be preempted by another

task. If so, it internally23 sets the TIF NEED RESCHED flag in the process descriptor of the

current task, to indicate that it should leave the processor. Of course, this example refers to the

internal implementation of task tick for a specific scheduling class (fair sched class),

and is not to be taken as mandatory for all classes.

4.2.5.2 The Main Scheduler - schedule()

The main scheduler, specified by the schedule() function, can easily be described as the

heart of the Linux scheduler. Like scheduler tick() it is called locally (on each CPU), by

way of its wrapper schedule(), to replace the currently executing task by another one, i.e.

pick the highest priority local task and assign it to the CPU.

As described ahead, the modular design of the scheduler is put to good use in schedule(),

as it defers most of its work to the configured scheduling classes.

schedule() is invoked by kernel routines exhibiting the sched prefix, and as a con-

sequence of 3 special events [Seeker, 2013]: (i) when the currently executing task blocks, (ii)

23Inside the task tick hook of fair sched class.

59

CHAPTER 4. LINUX SCHEDULING AND REAL-TIME SUPPORT

when a blocked task wakes up, or (iii) when the TIF NEED RESCHED flag is set on the currently

executing task.

To ensure atomic execution, schedule() starts by disabling preemptions. Then, it fetches

the local CPU ID, runqueue, and sets the prev pointer to the currently executing task that is

set to yield the CPU. To handle possible races, if prev is in the TASK INTERRUPTIBLE

state, and has a pending signal, its state is set back to TASK RUNNING24. Otherwise, a call to

deactivate task() removes the task from the runqueue. activate task() and deactivate task()

are the two major functions used by the core scheduler to add and remove tasks from the runqueue,

using the enqueue task and dequeue task hooks of the associated scheduling class.

Before the next task is selected for execution, the pre schedule and put prev task

hooks in the scheduling class of prev are invoked. Scheduling classes may take this opportunity

to keep statistics up to date, or perform specific operations25 before the next task is picked.

The scheduler then selects the next task for execution. It queries each scheduling class, by

their order in the hierarchy, invoking the pick next task hook until a process descriptor is

returned. Therefore, tasks assigned to lower priority scheduling classes do not execute unless

higher priority classes run out of work. The logic by which tasks are selected for execution

is inherent to the internal implementation of the pick next task hook in each scheduling

class. Once the pick next task method of a queried class returns, the next pointer (in

schedule()) is set to reference the returned process descriptor. If no task has been returned

by the time the idle sched class is queried, then the swapper task is picked for execution26.

At this point, and after clearing the TIF NEED RESCHED flag of prev, if prev and next

point to distinct tasks, a context switch is performed. A call to context switch() effectively

replaces prev by next in the local CPU.

If the post schedule variable of the local rq structure is set, schedule() completes

with a call to the post schedule hook of the scheduling class associated with next. As

described in Section 4.2.6.4, post schedule is used by the rt sched class, in SMP con-

figurations, as part of its load-balancing mechanism [Seeker, 2013].

4.2.5.3 Task Blocking, Waking, and Termination

In Linux, a blocked task waiting for a certain condition or event is kept in a waitqueue associated

with that condition or event. A task blocks voluntarily by way of a specific system call that sets its

state to TASK INTERRUPTIBLE or TASK UNINTERRUPTIBLE, and invokes schedule()

to deactivate it and take it off the CPU. Once a condition or event occurs, the scheduler wakes up

every task of the associated waitqueue.

Task activation is performed by the wake up family of functions wake up new task(),

try to wake up(), and try to wake up local(), of kernel/sched/core.c. First,

24 schedule() may be called in a deferred fashion. As such, a task that is set to block may receive a signal
before it is actually taken off the CPU. Recall that only tasks in the TASK INTERRUPTIBLE state can be woken up
by a signal (Section 4.2.1).

25For example, rt sched class uses pre schedule as a part of its load-balancing scheme, to pull a high
priority task from another runqueue [Seeker, 2013].

26idle sched class is the last class in the hierarchy. It always returns the idle, or swapper, task.

60

4.2. THE PROCESS SCHEDULER

they switch the task state to TASK WAKING invoke the task waking method of the associated

scheduling class. A subsequent call to the select task rq hook returns the CPU ID where

the task is to be placed. Then, a call to ttwu queue() triggers activate task() to insert

the task onto the runqueue of the associated CPU, switch the task state to TASK RUNNING, and

call the task woken method of the scheduling class. From this moment on, the task can be

selected for execution by the the associated policy.

Whether a task dies involuntarily, or by direct invocation of the exit() system call, the

termination event is handled by the do exit() routine of kernel/exit.c. do exit()

sets the PF EXITING flag on the flags attribute of the process descriptor and, after freeing the

resources allotted to the task, invokes the main scheduler to switch the task off the CPU.

For detailed information on the topics addressed in this section, we refer the reader to Aas

[2005], Bovet and Cesati [2005], Love [2010], Mauerer [2008], Seeker [2013]

4.2.6 SMP Support and Load-Balancing

As discussed in Chapter 2, the efficiency of a multiprocessor scheduler is directly tied with its

ability to keep the workload balanced across CPUs. Dynamic scheduler achieve load-balancing

through task migration on-the-fly, but migrations have inherent costs that may overpower the

benefits of maintaining an even distribution of work.

Linux supports a wide range of heterogeneous processor architectures, from uniprocessor

platforms, to hyperthreading cores27, multi-core chips, or large and complex Non-Uniform Mem-

ory Access (NUMA) configurations. While hyperthreading units share the same memory and

cache, each core in a SMP machine has its own cache space. On NUMA machines, memory

modules are typically distributed across nodes, and memory access speeds vary depending on the

proximity of the CPUs to the memory.

The effects of task migration on each of these architectures can be quite distinct and un-

predictable. For instance, even on SMP systems cache misses may cause a greater decrease in

performance than scheduling tasks on busy CPUs. On NUMA platforms, moving tasks across

distant nodes is expectedly more expensive than across tightly-coupled units on a local node, and

tasks should not be pushed off a NUMA node while local units28 remain idle.

4.2.6.1 Scheduling Domains

To cope with the plethora of supported multiprocessor topologies efficiently, the kernel organizes

adjacent CPUs into logical scheduling domains, structured hierarchically in consonance with the

physical architecture. Scheduling domains may envelop other domains, as well as scheduling

groups which either represent individual processing units or clusters of CPUs treated as one within

the domain. [Ker, c, Aas, 2005, Bovet and Cesati, 2005, Mauerer, 2008, Seeker, 2013]

Small multi-core schemes, as considered in this work, typically entail a single scheduling

domain with one scheduling group per core. Hyperthreaded cores originate an additional pair

27Each hyperthreading unit is treated by the Linux kernel as distinct CPU.
28Other CPUs on that node.

61

CHAPTER 4. LINUX SCHEDULING AND REAL-TIME SUPPORT

of scheduling groups, one for each logical hyperthreading unit. Each node of a NUMA config-

urations is represented by a scheduling domain containing all nested domains and groups. The

top-level domain encloses the complete hierarchy of configured domains and groups.

Through this hierarchy of scheduling domains, the scheduler can be tuned to balance the load

more frequently on higher level domains, across neighboring units, and thereby have a greater

control over global overheads. A balancing policy, together with a set of policy flags, defined

for each domain, specify a series of balancing criteria such as the frequency of load-balancing

attempts, the imbalance threshold that triggers a load-balancing operation on the domain, a bound

on how far up the domain hierarchy tasks of the domain are allowed to migrate, what to do when

one of the associated CPUs becomes idle, et cetera. [Seeker, 2013]

Scheduling domains and groups are defined in include/linux/sched.h and automati-

cally configured by the kernel at startup time. Scheduling domains are instances of the sched domain

descriptor. Scheduling groups are represented by the sched group data structure instantiated

in sched domain. By way of a pointer to the next element, sched group sets up a circular

linked list to connect all groups of the domain. Each runqueue is bound to exactly one scheduling

domain via the sd pointer of the rq structure.

4.2.6.2 Cpusets and Root Domains

In Section 4.2.1 we have mentioned that Linux can schedule groups of tasks internally represented

as scheduling entities. Kernel Control Groups (CGroups) allow users to agglomerate tasks into

hierarchical groups and assign them specific shares of the available resources, in what is known

as group scheduling. In a nutshell, when a quota of the processing bandwidth is allocated to a

CGroup, the scheduler distributes this share among all scheduling entities on the CGroup (nested

tasks or CGroups) [Ker, a, Mauerer, 2008].

Besides processing time, users can define subsets of the available CPUs and memory, called

cpusets, and appoint them for the execution of certain tasks or CGroups. Multi-level cpuset hier-

archies can be established, and unrelated cpusets are said to overlap if they share common CPUs

or memory nodes. Disjoint cpusets, which do not overlap with other cpusets in the system29, can

be marked as exclusive cpusets to monopolize the allotted CPUs and memory Ker [b].

As explained in Section 4.2.6.4 the rt sched class uses global information to perform

load-balancing decisions. With an increasing number of CPUs, contention on these global re-

sources is bound to degrade the performance of the system, imposing a scalability bottleneck.

To limit the span of global RT decisions, once an exclusive cpuset is created an isolated domain,

called root domain, is defined and attached to that cpuset30. A root domain is an instance of the

root domain data structure formalized in kernel/sched/sched.h. It contains a bitmap

of overloaded RT runqueues31, as well as a priority bit array to track the priority of each CPU32

executing RT tasks. By default, a single root domain instance maintains system-wide data about

29Except with the ascendants or descendants on their hierarchy.
30The scope of any scheduling decision on an exclusive cpuset is restricted to the subset of associated CPU.
31Runqueues holding more than one RT entity.
32At each instant, the priority of a CPU is equal to that of its highest priority task.

62

4.2. THE PROCESS SCHEDULER

all CPUs available in the system. [Seeker, 2013]

4.2.6.3 CFS Load-Balancing

In fair sched class a three-stage load-balancing mechanism is in effect.

The active, or periodic, mechanism is implemented in run rebalance domains(), trig-

gered by scheduler tick()33. run rebalance domains() goes up the scheduling do-

main hierarchy, starting with the domain of the current CPU, and checking if each domain should

be balanced34. If so, a call to load balance() finds the busiest scheduling group (if any)

on the domain, then the busiest runqueue (if any) on the busiest group. After finding the busiest

runqueue, move tasks() pulls a predetermined number of tasks35 to the local CPU. Once the

desired volume of work is pulled, the mechanism completes. [Aas, 2005, Mauerer, 2008, Seeker,

2013]

The idle balancing stage is defined in idle balance(), and invoked by schedule()

whenever the current CPU is about to become idle. The work performed by idle balance()

is similar to that of run rebalance domains(), as it iterates through the hierarchy of schedul-

ing domains trying to pull tasks from overloaded runqueues. [Bovet and Cesati, 2005, Seeker,

2013]

The third stage is outlined in the select task rqmethod of fair sched class, specif-

ically select task rq fair(), which defines the placement of an awakening task. Here,

unless the task is pinned to its previous CPU, the hierarchy of scheduling domains is traversed36

in search of a domain that is set to be balanced37. A search for least loaded group on the domain

follows, and the idlest (an idle or the least loaded) CPU of that group is returned. [Seeker, 2013]

4.2.6.4 RT load-balancing

Rather than interactivity and resource utilization, rt sched class strives to satisfy the order

of execution by keeping the highest priority tasks executing on the configured CPUs as much as

possible. To achieve this, each CPU proactively reacts to load and priority changes through push

and pull operations, which continuously redistribute waiting tasks to other CPUs where they can

execute straight away. [Seeker, 2013]

Push operations are attempted by the push rt tasks() routine of kernel/sched/rt.

c, which calls push rt task() to push the highest priority waiting task off the local run-

queue [Seeker, 2013]. The recipient runqueue is found via find lock lowest rq(), which

uses the priority bit array of the root domain (Section 4.2.6.2) to either locate an idle CPU

or identify the lowest priority CPU38 in the system. Once the destination CPU is determined,

pick next pushable task() selects the task that is finally migrated.

33trigger load balance(), called by scheduler tick(), sets a software interrupt handled by
run rebalance domains().

34If the SD LOAD BALANCE flag is set for the domain and the balancing interval has expired.
35Calculated according to the imbalance
36Starting at the domain of the task’s CPU and iterating up the hierarchy.
37One that has the SD LOAD BALANCE set.
38Out of all busy CPUs, the one that is executing the lower priority task.

63

CHAPTER 4. LINUX SCHEDULING AND REAL-TIME SUPPORT

pull rt task() tries to move a task to the local runqueue [Seeker, 2013]. It performs a

linear search, through the set of overloaded runqueues referenced by the bitmap of root domain

(Section 4.2.6.2), until it finds a source runqueue to push a task from, i.e. when that runqueue

contains a waiting task of higher priority than those on the local runqueue. If said task is found,

it is dequeued from the source runqueue, migrated to the local CPU, and enqueued onto the local

runqueue. Note that pull operations are not as precise as push operations, because the source

runqueue is not guaranteed to hold the highest priority task out of all waiting tasks in the system.

Regardless of the operation, tasks are only migrated if they are to become the highest pri-

ority task on the target CPU. These routines are performed repetitively, on each CPU, with the

expectancy of maintaining the system-wide highest priority tasks distributed among the available

processors.

Most of the work is done by the pre schedule and post schedule hooks (Section

4.2.4.) of the RT class before and after scheduling decisions. Prior to selecting the next task

for execution on a given CPU, pre schedule rt() calls pull rt task() to pull a task

that can become the highest priority one on the local runqueue. After a context switch, because

waiting tasks are unlikely to run on the local CPU in the near future39, post schedule rt()

calls push rt tasks() to test if the highest priority waiting task can execute on another CPU.

Another trigger point for pull rt task() is the prio changed hook of the RT class.

Whenever the priority of the executing task decreases, prio changed rt() must check if a

remote task can now become the highest priority task on the local runqueue. Recently awaken

tasks may also cause load balancing if the awoken task overloads the runqueue. In this case, the

task woken hook of rt sched class calls push rt tasks() to try to push a task away.

Naturally, the initial assignment of RT tasks to CPUs is performed by the select task rq

hook of rt sched class [Seeker, 2013]. On a given CPU, if an awakening task is not to

become the highest priority one, select task rq rt() tries to find an idle or lower priority

CPU for it. If no such unit is found, the task stays on the current CPU and is set to be moved at

the nearest opportunity.

4.3 Real-Time Extensions and Related Work

As a GPOS, Linux performs very well with interactive general-purpose applications, but lacks

essential features to handle time-sensitive applications correctly and efficiently. In fact, it does

not provide a formal means of imposing timing restrictions upon tasks, and is completely alien to

the concept of real-time constraints. While the existing scheduling classes and policies in mainline

Linux are inadequate for real-time scheduling (as considered in this thesis) other paramount issues

such as unbounded execution latency or coarse-grained timing resolution, also hinder system

determinism.

Linux was not originally thought as a real-time platform, but its highly customizable nature

has always been enticing to the real-time community. Over the years, several companies have

39At least not until the next pick round.

64

4.3. REAL-TIME EXTENSIONS AND RELATED WORK

developed modified versions of Linux with improved real-time support. Unfortunately, these are

often proprietary and restricted to a limited team of collaborators.

Thanks to the remarkable contributions of research teams, scholars, and independent develop-

ers, a number of open-source alternatives have also been proposed. While some have experienced

great success, and even made it into the kernel mainline, others failed to gain momentum and

eventually became obsolete. The following sections briefly describe the most noteworthy efforts.

4.3.1 RTLinux

Real-Time Linux (RTLinux) [RTLinux, Yodaiken, Mar. 1999] is a small and fast RTOS, distributed

as patch applicable to the Linux source, that provides Hard Real-Time (HRT) features to the

standard Linux kernel.

In practice, the RTLinux kernel makes the guest OS (the standard Linux kernel) fully pre-

emptible by running it as the lowest priority task in the system, while real-time applications

execute at a higher priority level without interferences from the guest OS or its process scheduler.

The Interrupt Abstraction mechanism of RTLinux offers low-latency interrupt handling ca-

pabilities, for real-time applications, in bounded time. It sets up a virtual layer between the guest

OS and physical hardware to prevent the guest OS from interfering with the RTLinux kernel and

hampering determinism. While hardware interrupts bound to real-time applications are handled

immediately by the RTLinux kernel, standard Linux interrupts40 are dispatched and handled by

the guest OS when the RTLinux kernel runs out of work and becomes inactive.

RTLinux employs a Fixed-Priority (FP) scheduling policy (Section 3.3), which schedules the

highest priority ready tasks to run first. Although Rate-Monotonic (RM) or Earliest Deadline First

(EDF) scheduling can also be activated via loadable kernel modules, real-time scheduling support

in RTLinux remains quite elementary.

RTLinux tasks are implemented as loadable modules. These modules run at the highest priv-

ilege level, i.e. in kernel-space, seriously violating the protected memory space of the kernel.

Hence, any errors raised by real-time applications can potentially crash the entire system. Under

this approach, real-time applications also cannot use services41 made available by the guest OS.

They are restricted to a minimal set of services provided by RTLinux.

4.3.2 RTAI

Several spin-offs of the RTLinux project have emerged to tackle some of its issues. Real-Time

Application Interface (RTAI) [Mantegazza et al., 2000, RTAI] provides a complete API for real-

time tasks, called Linux-RT (LXRT), to overcome the defective framework of RTLinux. RTAI

tasks are normal Linux processes running in user-space, but individually bound to a kernel-space

real-time agent which allows them to transition to hard real-time mode. The real-time agent,

activated at runtime via system call, has the responsibility of disabling interrupts and assigning

40Those associated with non-real-time applications running in the guest OS.
41Such as linux device drivers, networking services, et cetera.

65

CHAPTER 4. LINUX SCHEDULING AND REAL-TIME SUPPORT

the task to the RTAI system, moving it from the Linux runqueue to the RTAI scheduler queue.

RTAI supports FP and EDF real-time scheduling.

4.3.3 ADEOS, and Xenomai

Adaptative Domain Environment for Operating Systems (Adeos) [Adeos, Yaghmour] consists of

a resource virtualization layer between the hardware and the kernel, with the intent of sharing the

hardware among several OSs. In Adeos, each OS is represented, and referred to, as a domain.

Domains are assigned a priority, ordered as such, and set to be notified of specific events42. Adeos

uses a pipeline of events to propagate them across the configured domains. Events are inserted

into the head of the pipeline and travel down to its tail, being either accepted (and handled),

stalled, or discarded, by each domain as they progress down.

Xenomai [Gerum, 2002, Xenomai] uses the domain-based interrupt virtualization mechanism

of Adeos to execute real-time tasks both in user-space, to avail of the profusion of services offered

by standard Linux, and kernel-space, to benefit from HRT execution guarantees. The Xenomai

kernel, called RT-Nucleus, resides in the primary domain, over the secondary domain controlled

by the Linux scheduler. Tasks start in the primary domain and execute there until they invoke

a function belonging to the Linux API, which forces them to migrate to the secondary domain.

Once in the secondary domain, a task is handled by the RT class of the Linux scheduler (Section

4.2.4.2) where it can experience some delay or latency43. When the function completes, the task

returns to the primary domain. Like RTAI and Adeos, Xenomai scheduling is restricted to FP and

EDF.

All of the solutions presented in this Section focus on bringing HRT determinism to Linux

systems which, although necessary in critical developments, incurs into aggravated execution

latency, and tends to underuse the available resources as the criticality of real-time loses signifi-

cance. Real-time scheduling is rudimentary and primarily directed towards uniprocessor models,

performing poorly in the prevalent multi-core platforms of today.

4.3.4 OCERA and AQuoSA

Open Components for Embedded Real-Time Applications (OCERA) [OCERA Project] is an open-

source project, started in April 2002, and aiming at a POSIX-compliant execution environment

for embedded applications. OCERA researchers undertook the development of various real-time

features for Linux v2.4 and RTLinux, including a set of real-time schedulers, supporting band-

width reservation44 and reclamation, and designed as loadable kernel modules45. Prior to module

integration, a small patch must be applied to adjust the core scheduler and provide a set of func-

tion pointers used by OCERA modules to handle relevant scheduling events. Though simple and

flexible, this approach lacked in portability to newer versions of the kernel.

42Such as interrupts, system call invocations, task completions, et cetera.
43Xenomai employs several methods to overcome this. For example, it uses a special domain, the interrupt shield

to prevent the secondary domain from being interrupted while it is executing a real-time task.
44Using the CBS abstraction.
45Not to be confused with scheduling modules or classes as presented in Section 4.2.4.

66

4.3. REAL-TIME EXTENSIONS AND RELATED WORK

Members of the team then moved onto Adaptive Quality of Service Architecture (AQuoSA)

[AQuoSA Project], an open-source project based on the achievements of OCERA. With the goal

of providing Quality of Service (QoS) management capabilities to Soft Real-Time (SRT) appli-

cations in Linux, it features a bandwidth reservation and reclamation scheduler following the

modular strategy originally designed for OCERA. In essence, AQuoSA ports the main features of

OCERA to Linux v2.6, and introduces a few additional components such as a user-space library

for feedback-based scheduling.

Though presenting a flexible view of how loadable real-time features can be incorporated into

the Linux kernel, none of these solutions are compatible with up-to-date versions of the Linux

kernel (and scheduler), nor do they directly support and exploit intra-task parallelism.

4.3.5 PREEMPT RT

Concisely, the CONFIG PREEMPT RT patch-set [PREEMPT RT], originally developed by Ingo

Molnar, greatly reduces many sources of latency and unpredictability in the Linux kernel in to

make it more determistic.

Hardware interrupts are generated at unpredictable instants, causing a context switch to the

respective Interrupt Service Routine (ISR) on a given CPU. PREEMPT RT, converts ISRs into

schedulable and preemptibe kernel threads executing in process context46, as they would other-

wise run in non-preemptible interrupt context.

In multiprocessor platforms, concurrent kernel threads must serialize to access shared data.

To achieve an almost fully preemptible kernel, PREEMPT RT replaces most in-kernel locking

primitives (such as spinlocks) with sleeping RT mutexes supporting Priority Inheritance (PI).

Taking on the work carried out by Thomas Gleixner on kernel timers, PREEMPT RT also

introduces high-resolution timers (hrtimers) with nanosecond resolution.

PREEMPT RT elements such as hrtimers have progressively been incorporated into the main-

line, but as many of its features augment determinism at the expense of system overhead and lower

throughput, they contradict the main goals of a GPOS. For special purposes, however, it seems to

be widely accepted among Linux experts, including Linus Torvalds himself.

Despite the remarkable effort, PREEMPT RT does not turn Linux into a RTOS47. However,

valuing enhanced determinism over responsiveness and interactivity, we developed our work in a

modified version of the Linux kernel equipped with PREEMPT RT.

4.3.6 LITMUSRT

LITMUSRT is a plugin-based multiprocessor scheduling extension for the Linux kernel48. Since

2006, it has been actively maintained to keep up with recent versions of the kernel49.

LITMUSRT implements a wide range of scheduling policies for the sporadic SRT task model:

from Partitioned, Global, and Clustered EDF, to Partitioned FP, and PD2. It intends to serve as
46Unless explicitly required.
47A fully-fledged deterministic OS.
48LITMUSRT stands for Linux Testbed for Multiprocessor Scheduling in Real-Time Systems.
49At the time of this writing, the current version LITMUSRT 2014.2 is designed for Linux v3.10.41.

67

CHAPTER 4. LINUX SCHEDULING AND REAL-TIME SUPPORT

a useful experimental platform for real-time research, as well as a proof of concept for real-time

scheduling theory applied to current hardware. Aspects such as stability, POSIX-compliance, and

coding standards, are slightly overlooked, as LITMUSRT does not aspire to become a commercial

project, or even merged into the kernel mainline.

Unfortunately, the current LITMUSRT version is restricted to Intel x86-32 and ARM archi-

tectures, and neither of the provided scheduling policies enforce bandwidth isolation, nor exploit

parallelism in real-time applications.

4.3.7 SCHED DEADLINE

The Deadline Scheduling Class, or SCHED DEADLINE, is a scheduling class for the Linux ker-

nel which implements the M-CBS real-time scheduling policy [Faggioli et al., 2009].

The SCHED DEADLINE team have experienced great success in November 2013, with its

long-awaited inclusion into the mainline kernel v3.1450.

SCHED DEADLINE implements a semi-partitioned form of M-CBS, in the sense that tasks

are kept in local CPU runqueues, instead of a system-wide queue. By way of CPU affinities, tasks

can be assigned to specific CPUs in order to simulate a partitioned approach. Global scheduling

is abstracted with an active load-balancing strategy based on push and pull operations between

CPUs, much like in the RT class (Section 4.2.4.2).

Each task in the system is bound to exactly one CBS server at all times. Following CBS

stipulations (Sections 3.3), each server is characterized by a budget Ci and period Ti, and each

task is allowed to execute for (at most) Ci units of time in each period Ti. With this bandwidth

reservation technique, SCHED DEADLINE is able to simultaneously handle periodic, sporadic,

and aperiodic tasks, ensuring that they do not interfere with each other in the case of eventual

overruns.

SCHED DEADLINE is outlined in kernel/sched/deadline.c51, with its instance

dl sched class of the sched class data structure. It takes the second place in the schedul-

ing class hierarchy, preceded by stop sched class and followed by rt sched class, as

shown by Figure .

4.3.7.1 Task Management

SCHED DEADLINE scheduling entities are defined with the sched dl entity structure of

include/linux/sched.h, which extends the process descriptor task struct. It con-

tains the necessary attributes to schedule individual entities such as the absolute and relative

deadlines, period, actual and maximum budget52, or a rb node element to place it in the run-

queue.

50Linux kernel v3.14 was released halfway through the development of our project. Although we believe that most
of our code can be ported to the most recent kernel versions without the need for major adjustments, we have stuck to
Linux v3.8.13 until completion.

51From Linux v3.14 onwards.
52By actual budget we refer to the amount left to be consumed at a given time, and by maximum budget the value

assigned to the CBS server at configuration time

68

4.3. REAL-TIME EXTENSIONS AND RELATED WORK

dl rq extends the rq data structure with a specific runqueue design for SCHED DEADLINE.

Tasks are maintained in a red-black tree sorted by absolute deadlines, and set up by the rb root

attribute of dl rq. Entities are inserted and removed from the runqueue with the enqueue task

and dequeue task hooks of the scheduling class. The field rb leftmost of dl rq holds

a reference to the leftmost element of the red-black tree, which in this case refers to the highest

priority task.

4.3.7.2 Load-Balancing and the cpudl Data Structure

Much like in rt sched class, in SCHED DEADLINE most of the load-balancing work is

performed by the pre schedule and post schedule hooks of the scheduling class, which

continuously reassign tasks to CPUs using a pull and push strategy.

Load-balancing efficiency depends on how quickly the pair of CPUs involved in a push or

pull operation is determined. Lacking centralized information about the workload on each CPU,

the linear cost of traversing all units in the system can be significant, and imposes a serious

scalability bottleneck as the number of CPUs grows. Furthermore, as the system load increases

and idle processors become scarce, finding a suitable CPU for a push operation gets ever more

difficult53.

To track the priority of each CPU and identify load-balancing candidates in constant O(1)

time, SCHED DEADLINE uses a binary max-heap, implemented as a two-dimensional bitmap

of fixed size, specified by the cpudl data structure.

1 s t r u c t a r r a y i t e m {
u64 d l ;

3 i n t cpu ;
} ;

5

s t r u c t c p u d l {
7 r a w s p i n l o c k t l o c k ;

i n t s i z e ;
9 i n t c p u t o i d x [NR CPUS] ;

s t r u c t a r r a y i t e m e l e m e n t s [NR CPUS] ;
11 c p u m a s k v a r t f r e e c p u s ;
} ;

Listing 4.5: The cpudl data structure.

The binary max-heap, declared as elements, is an array of array item objects sorted

by deadline value of each instance (the key). size counts the number of CPUs currently

referenced by elements, while cpu to idx caches the position of each CPU on the array.

A bitmap defined as free cpu maintains a mask of CPUs that are currently not referenced by

elements.

The structure of elements conforms to a set of properties which specify the relationships

between nodes and enable quick selection of the nodes with highest and lowest key values. We

highlight the following:
53Tasks are pushed either to an idle CPU, or to the lowest priority CPU in the system.

69

CHAPTER 4. LINUX SCHEDULING AND REAL-TIME SUPPORT

• elements[0] holds the root of the binary tree, corresponding to the element with the

greatest deadline value.

• elements[2*i] holds the left child node of elements[i], as long as it exists (2*i ≤
size).

• elements[2*i+1] holds the right child node of elements[i], as long as it exists

(2*i ≤ size).

• elements[i/2] holds the parent node of elements[i], as long as it exists (i > 0).

• elements[size-1] holds the element with the lowest deadline value.

A single instance of cpudl is declared in root domain, and protected by a spinlock against

concurrent changes, performed by each CPU whenever its priority is updated54. While this in-

evitably introduces runtime overhead, it does not compromise the gains in load-balancing effi-

ciency nor the advantages of a semi-partitioned design, as lock contention on this cpudl instance

is still considerably lower than on a global runqueue of tasks.

push dl tasks(), called from post schedule dl(), invokes push dl task() to

try to push a waiting task55 off the local runqueue. The target CPU for a pushable task56 is de-

termined via call to cpudl find(), coded in kernel/sched/cpudl.c. cpudl find()

first looks at the free cpusmask of cpudl to test (via bitwise intersection) if any idle CPU can

receive the task. Alternatively, it checks if the lowest priority CPU, referenced by elements[0]

of cpudl, has a later deadline than that of the pushable task. Queries on cpudl via cpudl find()

are lock-free. Unfortunately, due to the lack of synchronization between CPUs the system may

experience load changes during load-balancing decisions. Hence, these decisions may not be

optimal.

pull dl task(), called from pre schedule dl(), takes a simpler approach. It iter-

ates through the set of overloaded CPUs, referenced by the bit mask dlo mask of root domain,

to find an earlier deadline pullable task57 that can become the highest priority task on the local

runqueue. Once such task is found it is pulled to the local runqueue and the pulling operation

completes. Note that this mechanism does not deliberately select the highest priority task out of

all pullable tasks in the system. Therefore, it is likely to incur priority inversion.

The cpudl structure is defined and implemented in kernel/sched/cpudl.h and kernel/

sched/cpudl.c58. For more information on the internals and methods of the cpudl structure,

we refer the reader to the annexed bibliography [Lelli et al., 2011].

54When the leftmost element of its local runqueue changes.
55All but the leftmost task.
56A lower priority task on the local runqueue that is set to be pushed to another CPU.
57The second highest priority task on the source CPU.
58Replaced by kernel/sched/cpudeadline.h and kernel/sched/cpudeadline.c from Linux v3.14

onwards.

70

4.3. REAL-TIME EXTENSIONS AND RELATED WORK

4.3.8 SCHED RTWS

To prove their algorithm in real settings, Fonseca [2012] also proposed an implementation of the

Real-Time Work-Stealing (RTWS) scheduler (Section 3.3.3.1) as a new scheduling class for the

Linux kernel v2.6.36, under the definition of rtws sched class.

To the extent of our knowledge, and until the publication of this thesis, rtws sched class

is the first and only attempt at combining Global Earliest Deadline First (G-EDF) scheduling with

a Work-Stealing (WS) mechanism to exploit intra-task parallelism in real-time applications 59.

Even more remarkably, they were the first to tackle intra-task parallelism and real-time scheduling

in Linux with great results. SCHED RTWS outperformed SCHED DEADLINE in almost every

experimental test, undoubtedly proving the benefits of a WS strategy to appropriately exploit

parallelism in real-time applications, thus improving the use of multiprocessing capacity.

As a new scheduling module, rtws sched class is an instance of the sched class

data structure, defined in its own source file kernel/sched/sched_rtws.c.

4.3.8.1 Task Management

RTWS entities are represented by the sched rtws entity structure in include/linux/

sched.h, instantiated inside the task struct.

Runnable RTWS entities, or tasks60, are kept either in a global runqueue, or local per-CPU

runqueues, in a semi-partitioned form of G-EDF.

The global runqueue is implemented as a red-black tree sorted by non-decreasing order of

absolute dealines, outlined by the global rq data structure of kernel/sched/sched.h.

A single instance of global rq is contended by all CPUs in the system, to insert, remove, and

select runnable RTWS tasks for execution.

rtws rq extends the default runqueue of the Linux scheduler with an elaborate implemen-

tation of the priority queue of WS deques, described in Section 3.3.3.1. It is based upon two red-

black trees sorted by increasing absolute deadlines, namely pjobs and stealable pjobs.

pjobs ties are broken by Last-In First-Out (LIFO), and its leftmost node stores the bottom-most

task of the highest priority deque in the local runqueue, i.e. the next task to be selected for exe-

cution by the pick next task hook. On the other hand, stealable pjobs ties are broken

by FIFO, and its leftmost node holds the topmost thread in the highest priority deque, i.e. the next

thread eligible for WS.

4.3.8.2 Task Placement

The periodic behavior of each RTWS task relies on a high-resolution timer triggered rhythmically

to handle its activations. At each release instant, the hrtimer callback timer rtws() invokes

the dispatching agent coded in dispatch rtws() to select an appropriate runqueue for the

respective task.

59See Sections 3.3.2.2 and 2.4.2 for more information on G-EDF and WS, respectively.
60Group scheduling is disregarded in rtws sched class.

71

CHAPTER 4. LINUX SCHEDULING AND REAL-TIME SUPPORT

dispatch rtws() tries to find an idle or lower priority61 runqueue for the task. If it

doesn’t succeed, the task is pushed to the global runqueue.

Unlike other tasks, dynamically generated threads do not initially go through the dispatching

agent. A newly spawned task inherits the deadline of its parent, and is enqueued directly in

the local runqueue of the CPU where it is originated, according to the logic programmed in

enqueue task rtws() (the enqueue task hook of the scheduling class). All tasks are

inserted in the pjobs tree, from where they are selected for execution in the local CPU. If the

task being enqueued is not currently executing, and there are two or more tasks in pjobs62, it

is also enqueued in the stealable pjobs tree to become eligible for WS. Obviously, stolen

threads are not enqueued into stealable pjobs.

put prev task rtws() implements the put prev task hook of rtws sched class.

It is invoked by schedule(), before pick next task (Section 4.2.5.2), to sort out the

placement of the task that is potentially leaving the processor. If the task has already been re-

moved from the runqueue then put prev task rtws() knows it has finished execution, and

takes no further action. Otherwise, the task is likely being preempted and must be placed in the

correct runqueue. In case of a thread dynamically generated in the local CPU, it is enqueued

in the stealable pjobs tree to become eligible for WS. Otherwise, it is dequeued from the

local runqueue (the pjobs tree), and enqueued in the global runqueue to contend for one of the

available CPUs through G-EDF.

4.3.8.3 Picking the Next Task and Stealing Work

pick next task rtws() implements the pick next task hook of the scheduling class,

and selects the next task for execution on a given CPU. First, it looks for work in the local run-

queue, and returns the leftmost task in the red-black tree pjobs. If the local runqueue has no

pending work, a call to pull task rtws() tries to pull a task from the global runqueue. In

case the global runqueue is found empty, a stealing operation is attempted.

SCHED RTWS adapts the cpudl structure of SCHED DEADLINE (Section 4.3.7.2 to eas-

ily find the highest priority stealable task in the system, which is then migrated to the local run-

queue and selected for execution. This modified version of the original WS algorithm (Section

2.4.2) is designated by Fonseca [2012] as Priority-Aware Stealing (PAS).

4.4 Plenty of Room for Improvement

The diversity of projects presented in Section 4.3 validate the applicability of Linux as a real-time

platform. Projects such as PREEMPT RT (Section 4.3.5) look to bring basic real-time capabilities

to the Linux kernel. Others (Sections 4.3.1, 4.3.2, 4.3.3, and 4.3.4), are able to guarantee HRT

determinism, but at the expense of invasive and overbearing techniques.

61One in which the leftmost task of pjobs has a later absolute deadline than the task being enqueued.
62Note that it does not make sense to perform WS unless the runqueue is overloaded. This step is taken after the

task has already been inserted into pjobs. In other words, the task being enqueued may itself overload the runqueue.

72

4.5. SUMMARY

The modular architecture of the Linux scheduler allows easy incorporation of independently

developed scheduling classes with new CPU management policies. Nevertheless, state-of-the-art

solutions offering elementary real-time support are only now making their way into the main-

stream. The recent promotion of SCHED DEADLINE to the mainline kernel is an indication of

how real-time support for GPOSs is becoming increasingly relevant, and proves that Linux can

perform very well as an Open Real-Time (ORT) system to serve interactive applications and SRT

programs with sustainable volumes of throughput and QoS. While other experimental projects

such as SCHED RTWS start focusing on performance, finally exploring the potential of parallel

processing of real-time tasks on multi-core chips, we strongly believe that most of the work in

this area is yet to be undertaken.

Even though SCHED DEADLINE can take advantage of SMP configurations, it does not

handle intra-task parallelism efficiently. Scheduling of sporadic and aperiodic tasks, with variable

execution requirements, is assured by the CBS abstraction, which assigns a fraction of the avail-

able processing bandwidth to each real-time application, but cannot use processing capacity left

over by early completion of SRT executions (Section 3.3). Our implementation is set to take on

and resolve both issues.

SCHED RTWS showed how WS can be used, in conjunction with a G-EDF scheduling pol-

icy, to improve the throughput of real-time tasksets with an astute take on intra-task parallelism.

Unfortunately, it is restricted to Worst-Case Execution Time (WCET) scheduling of the periodic

task model. Through bandwidth isolation and capacity-sharing, our scheduling class handles both

periodic, sporadic, and aperiodic executions seamlessly.

Generally speaking, we join the best features of SCHED DEADLINE and SCHED RTWS

and introduce a few of our own. The work in SCHED DEADLINE and SCHED RTWS has

proved invaluable throughout the course of this thesis, providing a rich set of solutions for specific

hurdles encountered along the way. As described in Chapter , our implementation of the M-

CBS scheduler is inspired by SCHED DEADLINE, but due to several structural differences, we

have found it more beneficial to develop our project from scratch, rather than over an altered

version of SCHED DEADLINE. Our WS logic, although similar to that of RTWS, is a part of the

novel capacity-sharing strategy proposed by Nogueira and Pinho [2012]. As such, the resulting

implementation is also unprecedented.

4.5 Summary

73

CHAPTER 4. LINUX SCHEDULING AND REAL-TIME SUPPORT

74

Chapter 5

The SCHED PCSWS Scheduler

“If you can’t explain it simply, you don’t understand it well enough.”

— Albert Einstein

The introductory notes of Chapter 1 outlined the motivation and main contributions of this

project. An overview of parallel computing architectures, programming models, and scheduling

strategies, followed in Chapter 2. After a thorough review of real-time systems and scheduling al-

gorithms, Chapter 3 described the algorithmic foundation of our implementation, i.e. the Parallel

Capacity Sharing by Work-Stealing (p-CSWS) scheduler (Section 3.3.3.2). Chapter 4 studied the

internals of the Linux kernel related to scheduling, and surveyed related work on Linux real-time

support.

This chapter brings all the pieces together, as we extend the real-time features of the Linux

kernel with a new scheduling class for dynamic and irregular parallel real-time applications, based

on the original proposal of the p-CSWS scheduler [Nogueira and Pinho, 2012]. We follow the

success of the SCHED DEADLINE project, now regarded a viable solution for Soft Real-Time

(SRT) scheduling in open environments, and strive to prove that the heuristic exploitation of paral-

lelism proposed by p-CSWS can be applied to practical scenarios and outperform multiprocessor

Constant Bandwidth Server (CBS) scheduling in the presence of dynamic parallel applications.

We begin with a description of the system model in Section 5.1. Section 5.2 presents the main

design choices and data structures. The implementation is detailed in Section 5.3.

5.1 System Model

Throughout the remainder of this document, we address the scheduling of irregular and dy-

namic fork/join parallel SRT tasks, on parallel platforms comprised of m identical processors

p1, p2, . . . , pm.

Each task τi can generate a virtually infinite number of multithreaded jobs. A multithreaded

job ji,j of a task τi alternates between sequential and parallel regions, beginning with a sequential

region, and entering a parallel region at any given time, when it splits into an arbitrary number of

75

CHAPTER 5. THE SCHED PCSWS SCHEDULER

concurrent threads. Each thread wki,j , 1 ≤ k ≤ ni,j , where ni,j denotes the number of threads in

ji,j , is generated dynamically, with arbitrary length, at any time during the execution of ji,j . All

threads of a parallel region synchronize at the end, as the job resumes sequential execution. Other

parallel regions can originate from a sequential region at any time.

The number of parallel regions, the number of parallel threads within each region, along

with their lengths, are not known beforehand and can vary between jobs of the same task. The

Worst-Case Execution Time (WCET) of a job ji,j is given by the total WCET of its threads

WCET =
∑ni,j

k=1WCET (wki,j), i.e. the maximum amount of time it takes to execute all threads

sequentially on the same Central Processing Unit (CPU).

Each task τi is associated with a p-CSWS Dedicated Server (DS) Si characterized by a budget

Ci, a period Ti, and a relative deadline Di. The jth job ji,j of task τi appears at release time

ri,j and competes for processor time with deadline di,k, derived from Si under p-CSWS rules

(Section 3.3.3.2). When a DS Si becomes idle without depleting the reserved capacity the unused

bandwidth is donated to a new p-CSWS Residual Capacity Server (RCS) Srj , which competes for

execution with other bandwidth servers in the system to steal threads from the earliest deadline

eligible DS Ss. Each thread wki,j is always executing in context of a bandwidth server, either its

DS or a RCS, decreasing its budget as processing time is consumed.

Schedulability conditions for a set of n DS, with a total utilization of U∏ =
∑n

i Ui and a

maximum server utilization of u∏ = max1≤i≤n(Ui), on a parallel platform
∏

comprised of m

unit-capacity CPUs, are given by Equation 5.1.

u∏ ≤ 1

U∏ ≤ m− (m− 1)u∏ (5.1)

5.2 Design Choices and Data Structures

The p-CSWS algorithm [Nogueira and Pinho, 2012] (Section 3.3.3.2) provides a provably cor-

rect and efficient method of scheduling concurrent Hard Real-Time (HRT) and SRT tasks, onto

the same shared resources, without tardiness interferences. Unfortunately, like most research in

real-time scheduling, it is based upon a simplistic system model which disregards a number of

real-world problematics. In Section 3.3 we have already addressed the impracticability of these

models, devised to validate algorithm usefulness, and some of the complications that arise as we

move on to real settings.

Furthermore, as stated in Section 4.4, mainline Linux features are subject to unpredictable

latencies that make it virtually unfeasible to achieve HRT determinism on any running event or

activity. Programming the Linux kernel is intrinsically complex, laborious, and time-consuming.

To benefit the overall performance of the system, respect the internal structure and coding con-

ventions of the Linux scheduler, and assure the theoretical correctness of the algorithm, we were

compelled to adapt some aspects of the proposed design. These changes are duly justified in the

following sections.

76

5.2. DESIGN CHOICES AND DATA STRUCTURES

5.2.1 Base System and Source Files

SCHED PCSWS was implemented upon Linux v3.8.13, with the PREEMPT RT-rt12 (Section

4.3.5) patch applied. To enable or disable SCHED PCSWS at compilation time, a new entry has

been added to Kconfig.

The bulk of our policy is implemented in two new source files. kernel/sched/pcsws.c

(abbreviated to pcsws.c) defines the new scheduling class, along with its methods and auxil-

iary functions. kernel/sched/pcsws.h (pcsws.h) specifies the headers for the functions

exported by pcsws.c.

Our extension of the generic per-processor runqueue was defined in kernel/sched/sched.

h (sched/sched.h). p-CSWS schedulable entities were coded in include/linux/sched.

h (linux/sched.h). Integration with the core scheduler was performed in kernel/sched/

core.c (core.c).

The cpudl data structure of SCHED DEADLINE and its methods were adapted to our

needs in kernel/sched/cpudl.c (cpudl.c) and exported in kernel/sched/cpudl.

h (cpudl.h).

5.2.2 p-CSWS Scheduling Class and Policy

At the heart of SCHED PCSWS is the pcsws sched class scheduling class (Listing 5.1),

defined along with all scheduling methods in pcsws.c.

c o n s t s t r u c t s c h e d c l a s s p c s w s s c h e d c l a s s = {
2 . n e x t = &r t s c h e d c l a s s ,

. e n q u e u e t a s k = e n q u e u e t a s k p c s w s ,
4 . d e q u e u e t a s k = d e q u e u e t a s k p c s w s ,

6 . c h e c k p r e e m p t c u r r = c h e c k p r e e m p t c u r r p c s w s ,

8 . p i c k n e x t t a s k = p i c k n e x t t a s k p c s w s ,
. p u t p r e v t a s k = p u t p r e v t a s k p c s w s ,

10

i f d e f CONFIG SMP
12 . s e l e c t t a s k r q = s e l e c t t a s k r q p c s w s ,

. m i g r a t e t a s k r q = m i g r a t e t a s k r q p c s w s ,
14

. p r e s c h e d u l e = p r e s c h e d u l e p c s w s ,
16 . p o s t s c h e d u l e = p o s t s c h e d u l e p c s w s ,

. t a s k w a k i n g = t a s k w a k i n g p c s w s ,
18 # e n d i f

20 . s e t c u r r t a s k = s e t c u r r t a s k p c s w s ,
. t a s k t i c k = t a s k t i c k p c s w s ,

22 . t a s k f o r k = t a s k f o r k p c s w s ,

24 . t a s k d y i n g = t a s k d y i n g p c s w s ,
. t a s k d e a d = t a s k d e a d p c s w s ,

26

77

CHAPTER 5. THE SCHED PCSWS SCHEDULER

. s w i t c h e d f r o m = s w i t c h e d f r o m p c s w s ,
28 . s w i t c h e d t o = s w i t c h e d t o p c s w s ,
} ;

Listing 5.1: The p-CSWS Scheduling Class pcsws sched class.

sched pcsws class was configured as the second scheduling class on the hierarchy, as

depicted by Figure 5.1. Consequently, p-CSWS tasks can only be preempted by the per-CPU

stopper task (Section 4.2.4.1), as is essential for the correct functioning of the system.

Figure 5.1: Integrating pcsws sched class onto the scheduling class hierarchy

Linux tasks are tied to a given scheduling class policy through the policy attribute of

task struct (Sections 4.2.1 and 4.2.4). Listing 5.2 shows how we have extended the set

of policy identifiers (Section 4.2.4) with a new macro, defined as SCHED PCSWS, to identify

p-CSWS tasks.

1 [. . .]
d e f i n e SCHED IDLE 5

3 # i f d e f CONFIG SCHED PCSWS POLICY
d e f i n e SCHED PCSWS 6

5 # e n d i f

Listing 5.2: SCHED PCSWS policy identifier.

5.2.2.1 Additional Scheduling Methods

To handle task termination events, a pair of scheduling methods were added to the generic sched class

structure of linux/sched.h (Section 4.2.4), as shown by Listing 5.3.

1 s t r u c t s c h e d c l a s s {
[. . .]

3 vo id (∗ t a s k d y i n g) (s t r u c t t a s k s t r u c t ∗p) ;
vo id (∗ t a s k d e a d) (s t r u c t rq ∗ rq , s t r u c t t a s k s t r u c t ∗p) ;

5 [. . .]

Listing 5.3: Extending the sched class data structure.

• task dying is invoked at the beginning of do exit() in kernel/exit.c (Section

4.2.5.3), right after a task enters the dying process.

• task dead hooks the context switch that takes a task off the CPU for the last time before

it dies. It is called from finish task switch() in kernel/sched/core.c.

78

5.2. DESIGN CHOICES AND DATA STRUCTURES

5.2.3 Schedulable Units

To ease discussion, we refer to a parallel p-CSWS task, from which parallel threads are dynami-

cally generated, as a master task or parent task. p-CSWS threads created by the master task are

referred to as child tasks or threads.

Because it is considerably simpler to understand, implement, and use, a relationship of one-

to-one between DSs and p-CSWS master tasks is in effect. By default, the master task and all of

its child threads are served by a specific DS, but they may temporarily be scheduled by a RCS as

a result of a Work-Stealing (WS) operation. We define 3 distinct execution contexts for runnable

p-CSWS tasks:

• DS-bound tasks are non-stolen tasks executing in the context of the a DS. The set of DS-

bound tasks served by the same DS is called a p-CSWS group, or simply group. All tasks

of a p-CSWS group are affined to the same CPU, called the group CPU. DS-bound tasks

are scheduled by the timing constraints of their DS and consume its budget directly.

• RCS-bound tasks are stolen tasks executing in the context of a RCS. Executing RCS-bound

tasks consume the budget of the associated RCS.

• An unbound task is a non-stolen task that is temporarily separated from its group, executing

on another unit other than its group CPU. Unbound tasks are scheduled by the deadline of

their DS, but do not consume its budget directly. The execution time is stored and subtracted

from the budget of the DS once the task rejoins its group.

5.2.3.1 p-CSWS Tasks

As mentioned in Section 4.2.1 Linux processes and threads are instances of the process descriptor,

i.e. the task struct data structure.

We disregard group scheduling (Section 4.2.6.2) and represent each p-CSWS task as an in-

stance of a p-CSWS scheduling entity, defined in linux/sched.h as the sched pcsws entity

data structure.

1 s t r u c t s c h e d p c s w s e n t i t y {
/∗ P a r e n t s c h e d p c s w s e n t i t y . (= s e l f f o r p a r e n t t a s k s) ∗ /

3 s t r u c t s c h e d p c s w s e n t i t y ∗ p a r e n t ;

5 s t r u c t p c s w s r c s ∗ t h i e f ; /∗ T h i e f RCS . (NULL when t a s k i s n ’ t s t o l e n) ∗ /

7 s t r u c t pcsws ds d e d i c a t e d ; /∗ pCSWS D e d i c a t e d S e r v e r ∗ /
s t r u c t p c s w s r c s r e s i d u a l ; /∗ pCSWS R e s i d u a l C a p a c i t y S e r v e r ∗ /

9

s t r u c t r b n o d e b o o s t e d n o d e ; /∗ Boos ted r b t r e e node ∗ /
11 s t r u c t l i s t h e a d d e b o o s t e d n o d e ; /∗ Deboos ted l i s t node ∗ /

s t r u c t l i s t h e a d r e a d y d e q u e n o d e ; /∗ Deque node (f o r pCSWS t h r e a d s) ∗ /
13 s t r u c t l i s t h e a d s t o l e n n o d e ; /∗ Deque s t o l e n node (f o r pCSWS t h r e a d s) ∗ /

15 u64 o v e r r u n a m o u n t ;

79

CHAPTER 5. THE SCHED PCSWS SCHEDULER

17 i n t t h r o t t l e d ;
} ;

Listing 5.4: The sched pcsws entity data structure.

This structure is initialized differently for master tasks and child threads. In entities represent-

ing child threads, the pointer parent is initialized to reference the parent task. By convention,

master tasks reference themselves, as the pointer is set to the enveloping sched pcsws entity

instance.

Stolen tasks are identifiable by the attribute thief, which points to the associated RCS.

Given the one-to-one correspondence between servers and parallel tasks, each DS serves a

single master task and its dynamically generated child threads. The attribute dedicated is

initialized exclusively for instances of sched pcsws entity that represent master tasks, and

left unused for instances representing child threads. Instead, threads are associated with the DS

set up by the master task, accessible through the parent pointer of sched pcsws entity.

residual represents a RCS and is also initialized exclusively for master tasks, as explained

in Section 5.3.8

5.2.3.2 Dedicated Servers

DSs are instances of the pcsws ds data structure defined in linux/sched.h.

s t r u c t pcsws ds {
2 u64 p e r i o d ; /∗ S e r v e r p e r i o d ∗ /

u64 b ud ge t ; /∗ Rese rved c a p a c i t y ∗ /
4

s t r u c t ws deque deque ; /∗ Work−s t e a l i n g deque ∗ /
6

u n s i g n e d long n r t h r e a d s ; /∗ Number o f c h i l d t h r e a d s c u r r e n t l y r u n n i n g ∗ /
8

u n s i g n e d long n r s t o l e n ; /∗ Number o f s t o l e n t h r e a d s ∗ /
10 s t r u c t l i s t h e a d s t o l e n b o t t o m ; /∗ S t o l e n t a s k s . ∗ /

12 s t r u c t s c h e d s t a t s p c s w s s t a t s ; /∗ Group s t a t i s t i c s ∗ /
} ;

Listing 5.5: The pcsws ds data structure.

pcsws ds holds the timing parameters needed to characterize a DS, specifically the period

and reserved budget.

All runnable DS-bound tasks served by the DS are kept in a WS deque (Section 5.2.3.4)

declared as deque. nr threads is a counter for the number of active child threads generated

by the master task.

stolen bottom sets up the list of stolen tasks described in 3.3.3.2, henceforth referred to

as the stolen list. p-CSWS tasks are classified as stolen as long as they exist on the stolen list of

80

5.2. DESIGN CHOICES AND DATA STRUCTURES

their DS, and non-stolen otherwise1. nr stolen counts the number of stolen tasks on the stolen

list.

5.2.3.3 Residual Capacity Servers

Choosing how to represent and manage RCSs proved to be one of the most delicate dilemmas

encountered in the course of this project.

To represent RCSs a new data structure was defined, as pcsws rcs, in linux/sched.h.

1 s t r u c t p c s w s r c s {
s t r u c t r b n o d e node ; /∗ Loca l RCS rq node ∗ /

3

s t r u c t rq ∗ rq ; /∗ C u r r e n t l y a s s i g n e d rq ∗ /
5

s t r u c t t a s k s t r u c t ∗ s t o l e n t h r e a d ; /∗ C u r r e n t l y s t o l e n t h r e a d ∗ /
7 s t r u c t ws deque deque ; /∗ work−s t e a l i n g deque ∗ /

9 i n t l o c a l ; /∗ Bi na ry f l a g . 1 i f deque−>bu dg e t <= QRES MIN ∗ /
} ;

Listing 5.6: The pcsws rcs data structure.

As explained in Section 5.3.8, node allows enqueueing the RCS onto the per-processor red-

black tree of RCSs described in Section 5.2.4, while rq points to the currently associated run-

queue. deque is deque of stolen tasks, which also defines the timing parameters of the RCS

(Section 5.2.3.4). local is a binary flag which defines whether the RCS can execute on any

CPU to steal tasks (0), or must be donated to the local CPU (1) as stipulated by Rule F of the

p-CSWS scheduler.

To manage RCS 3 different design choices were contemplated:

1. Dynamic memory allocation - Several attempts were made to create pcsws rcs in-

stances dynamically, at job completion. Unfortunately, we have found it extremely trouble-

some to manage kmalloc() and kfree() calls from scheduler code, and after much

cogitation the idea was abandoned.

2. Preallocate RCSs - We would allocate a static buffer of pcsws rcs instances at config-

uration time, and reuse these instances when needed. Although simple and easily imple-

mentable, this alternative was not flexible, as it forced an upper bound on the number of

active RCSs and subsequently on the achievable parallelism. For this reason, it was also

abandoned.

3. Create a pcsws rcs instance per DS or master task - Seeing as each task can only

generate a new RCS per job (at response time)2, we would establish a relationship of one-
1Although the notions of stolen and RCS-bound task (Section 5.2.3) may be similar, they are not interchangeable.

RCS-bound tasks must be on the deque of their thief RCS, while stolen tasks may already have been taken of the thief
deque but still exist on the stolen list of their DS. Section 5.3.2 shows when a returning task is dequeued from the
stolen list

2We assume that no two jobs ji,a, ji,b of a p-CSWS task τi overlap in time. ∀a, b ∈ {1, ..,∞}, a < b, fi,a ≤ ri,b.

81

CHAPTER 5. THE SCHED PCSWS SCHEDULER

to-one between DSs and RCSs, by assigning a pcsws rcs instance to every DS or master

task3, and simply enqueue that instance onto a queue of active RCSs to mark it as active.

Unfortunately, under the considered task model it is possible that a task τi generate overlap-

ping RCS, if a job ji,j+1 finishes before the deadline of the preceding job ji,j . In which case,

there may exist an active RCS Srj , generated by ji,j , with deadline drj = di,k at time t = fi,j+1,

when a new RCS Srj+1 is being generated by ji,j+1. If neither Srj or Srj+1 deplete their capacities,

they coexist in the system until drj , when Srj expires and is removed from the system.

According to Rules D and F of the p-CSWS algorithm, a new RCS is generated whenever a DS

is becoming idle. Under our model, since each DS is allotted to a single parallel task, and p-CSWS

jobs do not interrupt execution voluntarily, a DS becomes idle when the current served job ji,j
completes, at response time t = fi,j . Thus, a RCS Srj is dynamically generated by the kth instance

of a DS Si, at response time fi,j , with deadline drj = di,k and budget crj = min(ci,k, di,k − t).
For an aperiodic task τi no restrictions are made regarding the release time between consecu-

tive jobs. Therefore, it is possible that the DS Si serving τ generate multiple RCSs Srj , S
r
j+1, . . . , S

r
n

that overlap in time, if fi,j+1, fi,j+2, . . . , fi,n ≤ drj . This scenario is depicted in Figure .

This cannot be fulfilled using a single pcsws rcs instance per master task, as outlined by

design choice 3. We have realized that, in order to comply with this requirement, each DS had

to create independent pcsws rcs instances dynamically, as in design choice 1, so that various

RCSs generated by the same DS could coexist and overlap in time. Although no solid docu-

mentation to support legitimate our claim has been found, we have encountered issues invoking

kmalloc()4 and kfree() from atomic context under PREEMPT RT5. Dynamic memory allo-

cation increased the complexity of our implementation dramatically, and raised runtime overhead

and unpredictability, always undesirable on a real-time environment. After expending a great

amount of time trying to identify and resolve implementation flaws, we eventually gave up this

design choice. Seeing as only aperiodic tasks can create overlapping RCSs, in very specific con-

ditions, we decided to pursue design choice 3 and improve this feature at a later date.

A pcsws rcs instance, named residual, was embedded into sched pcsws entity.

The variable is initialized only for entities representing master tasks, and left unused for dynam-

ically generated threads. In doing so, we consider that each master task owns both a DS and a

RCS and, upon job completion, the pcsws rcs instance owned by the master task can be en-

queued onto a queue of active RCS, from which it can be selected for execution and steal work

until its capacity is exhausted or expired. To respect bandwidth reservations and cope with the

impossibility of creating overlapping RCSs, when a DS becomes active, at job arrival, and finds

its associated RCS active but unused, we deactivate the RCS and donate its capacity back to the

DS owned by its master task. If the RCS is currently executing a stolen thread it remains active,

retaining its capacity, and a new DS instance is created to execute the new job. Once a job finishes,

3Recall that master tasks and DSs exist in a relationship of one-to-one, therefore it is irrelevant to associate each
the RCS with a DS or with the corresponding master task.

4Even with the GFP ATOMIC flag set.
5The scheduler runs almost entirely in atomic context, with preemption disabled.

82

5.2. DESIGN CHOICES AND DATA STRUCTURES

the DS checks if its sibling6 RCS is active. If so, it is deactivated and reactivated, with new timing

parameters, as a new RCS instance. A more detailed explanation of how RCSs are managed by

SCHED PCSWS is presented in Section 5.3.8.

By forcing the deactivation of a RCSs that might have a chance to steal tasks in the future,

the measures presented above may cause a slight decrease on the overall parallelism. However, if

the an RCS Srj generated by Si remains unused at arrival of the next job served by Si, it means

that either (i) no task is eligible to be stolen by Srj , or (ii) the deadline drj is too far to bring Srj
to execution. In which case, unless an eligible task appears in the system before deadline drj , S

r
j

will remain unused and waste its capacity.

5.2.3.4 Work-Stealing Deques

WS deques are instances of the ws deque data structure presented in Listing 5.7.

/∗
2 ∗ Updates must ho ld c p u r q (ws deque . cpu)−>l o c k
∗ /

4 s t r u c t ws deque {
i n t cpu ; /∗ C u r r e n t l y a s s i g n e d cpu ∗ /

6

i n t d e d i c a t e d ; /∗ 1 f o r DS deque , 0 f o r RCS deque ∗ /
8

u n s i g n e d long n r r u n n i n g ; /∗ Number o f non−s t o l e n t h r e a d s i n t h e deque ∗ /
10 u n s i g n e d long n r r e a d y ; /∗ Number o f non−s t o l e n t h r e a d s i n t h e deque ∗ /

12 s t r u c t l i s t h e a d r e a d y b o t t o m ; /∗ Work−s t e a l i n g deque r e a d y t a s k s ∗ /
s t r u c t l i s t h e a d e x i t i n g b o t t o m ; /∗ Work−s t e a l i n g deque r e a d y t a s k s ∗ /

14

s t r u c t r b n o d e l o c a l n o d e ; /∗ Loca l rq node . ∗ /
16

s64 bu dge t ; /∗ C u r r e n t b ud ge t ∗ /
18 u64 d e a d l i n e ; /∗ A b s o l u t e d e a d l i n e ∗ /

20 i n t h e l p f i r s t ; /∗ Chosen work−s t e a l i n g p o l i c y . 1 f o r he lp−f i r s t , 0 f o r work
− f i r s t ∗ /

} ;

Listing 5.7: The ws deque data structure.

Each deque is always associated to a certain CPU, specified by the cpu variable of ws deque

and termed group CPU. Since most task manipulations and scheduling operations must be per-

formed with the local runqueue lock held, we avoid complex locking rules and protect each deque

with the lock of the runqueue where it currently resides.

Seeing as all tasks on a deque share the same timing constraints, the ws deque element itself

holds the current budget and absolute deadline (defined as budget and deadline) inherited by

all served tasks. Each p-CSWS task is scheduled according to the timing constraints of its current

6The RCS represented by the pcsws rcs belonging to the encapsulating sched pcsws entity.

83

CHAPTER 5. THE SCHED PCSWS SCHEDULER

deque. The current deque of a RCS-bound task is the deque of its thief RCS, whereas the current

deque for other tasks is the deque of their DS7.

The binary flag dedicated denotes whether the encapsulating data structure is of type

pcsws ds (1) or pcsws rcs (0). The first case is referred to as a dedicated deque, while the

latter is termed residual capacity deque.

ready bottom defines the actual deque of runnable tasks served by the encapsulating

server.

Two WS sub-policies have been proposed and studied in literature [Guo et al., 2009]. In

work-first, as considered by Nogueira and Pinho [2012], the newly created thread is immediately

attributed to the CPU after a fork operation, leaving the master task as the only task eligible for

WS and providing a greater control on the generated parallelism8. In help-first, the master task

keeps executing after each fork statement, and spawning threads that will become available for

WS9. Seeing as tasks are traditionally selected for execution on the local CPU from the bottom of

a deque, the difference between a help-first and work-first strategy depends on whether the master

task is always enqueued at the bottom of the deque or not. As explained in Section 5.3.2 we have

decided to implement both sub-policies, as that only requires a slight adaptation of the enqueue

mechanism.

5.2.4 Runqueues

In Section 3.3.2.1 we have seen how the efficiency and correctness of multiprocessor real-time

schedulers are contingent upon fundamental design choices, such as the organization of tasks

under a global, partitioned, or semi-partitioned scheme. The description in Nogueira and Pinho

[2012] suggests a semi-partitioned configuration, where a global queue of active bandwidth servers

is shared among processors, and local processor queues are used to store runnable tasks executing

in the context of busy p-CSWS servers.

Unfortunately, due to lock contention on the global queue, this approach is not scalable as

the overall performance of the system is bound to degrade with an increasing number of CPUs.

In conformity with the structural design of the Linux Scheduler, we replace the global queue of

active servers with a more scalable semi-partitioned design, paired with an active load-balancing

scheme that seeks to preserve priority correctness and maximize resource utilization across the

multiprocessor platform.

At a first stage we schedule deques onto processors, rather than individual tasks. The rq struc-

ture is extended with our own specification of a per-processor runqueue for pcsws sched class,

the pcsws rq data structure declared in sched/sched.h.

1 s t r u c t p c s w s r q {
u n s i g n e d long n r r u n n i n g ; /∗ deques . ∗ /

7task curr deque() returns the current deque of a p-CSWS task passed as a parameter. Although unbound
tasks do not execute in the context of their DS, they share the same absolute deadline as their group.

8Under work-first, parallelism is generated when strictly necessary, i.e. the master task can only generate multiple
parallel threads if another CPU succeeds at stealing it.

9In this explanation we consider a basic fork/join model without nested parallelism.

84

5.2. DESIGN CHOICES AND DATA STRUCTURES

3 s t r u c t r b r o o t deques ; /∗ Loca l t r e e o f a c t i v e deques , s o r t e d by (abs)
d e a d l i n e ∗ /

5 s t r u c t r b n o d e ∗ l e f t m o s t ; /∗ L e f t m o s t deque on t h e rb−t r e e . ∗ /
u64 e a r l i e s t d l ; /∗ E a r l i e s t d e a d l i n e o u t o f a l l deques on t h e rq . ∗ /

7

s t r u c t r b n o d e ∗ p u s h a b l e ; /∗ E a r l i s t p u s h a b l e deque . ∗ /
9 u64 e a r l i e s t p u s h a b l e d l ; /∗ E a r l i s t p u s h a b l e deque (abs) d e a d l i n e . ∗ /

11 s t r u c t ws deque ∗ s t e a l a b l e ; /∗ S t e a l a b l e deque . ∗ /

13 s t r u c t p c s w s r c s r q r e s i d u a l ; /∗ RCSs c u r r e n t l y a s s i g n e d t o t h e rq . ∗ /

15 s t r u c t p c s w s b o o s t e d b o o s t e d ; /∗ Boos ted t a s k s . ∗ /

17 /∗ S t a t s ∗ /
u n s i g n e d long t o t m i g r a t i o n s ;

19 u n s i g n e d long t o t s w i t c h e s ;
u n s i g n e d long t o t s t e a l s ;

21 } ;

Listing 5.8: The pcsws rq data structure.

At the heart of pcsws rq is a red-black tree of ws deque instances, defined as deques,

with size nr running. At a given point in time, deques stores all non-empty deques assigned

to the local CPU, sorted by increasing order of absolute deadlines.

A reference to the leftmost node of the tree is kept in leftmost, while the absolute deadline

of the corresponding deque, called leftmost deque, is cached in earliest dl. As the earliest

deadline out of all deques on the local runqueue, earliest dl defines the priority of the local

CPU.

For load-balancing purposes, pushable and earliest pushable dl keep references

to the pushable deque, i.e. the second highest priority deque on the runqueue, and its absolute

deadline. The role of these attributes will be detailed in Section 5.3.5.

stealable points to the leftmost deque of the tree when it is eligible for WS, i.e. when the

leftmost deque is a dedicated deque holding two or more runnable tasks. In this case we refer to

the leftmost deque as stealable deque.

tot migrations, tot switches, and tot steals, are statistic counters to the num-

ber of migrations, context switches, and WS operations, involving p-CSWS tasks on the local

CPU.

5.2.4.1 The RCS Runqueue

The theoretical proposal states that active RCSs are released to the global queue of active servers,

to compete for CPU time with other bandwidth servers in the system. However, a RCS can only

be selected for execution if its deque is not empty, i.e. if it succeeds at stealing a thread from a

DS eligible for WS.

85

CHAPTER 5. THE SCHED PCSWS SCHEDULER

Figure 5.2: Overview of the SCHED PCSWS runqueue design

If active DSs and RCSs compete for execution on the same priority queue, then this queue

may hold empty RCS which complicate scheduling decisions. For instance, to select the high-

est priority non-empty server for execution, we either waste computational cycles traversing the

queue, or employ additional programming logic to cache its position on the tree.

Instead, we organize active RCS separately, onto per-CPU extensions of the p-CSWS ruqueue

called RCS runqueues. RCS runqueues are instances of the pcsws rcs rq structure defined

in sched/sched.h. Each p-CSWS runqueue pcsws rq is extended with an instance of

pcsws rcs rq, named residual, to set up a per-CPU RCS runqueue.

1 s t r u c t p c s w s r c s r q {
u n s i g n e d long n r r u n n i n g ; /∗ P u s h a b l e RCS c o u n t e r ∗ /

3 s t r u c t r b r o o t r c s r o o t ; /∗ P u s h a b l e RCS t r e e ∗ /
s t r u c t r b n o d e ∗ l e f t m o s t ; /∗ P u s h a b l e RCS l e f t m o s t ∗ /

5 u64 e a r l i e s t d l ; /∗ P u s h a b l e RCS e a r l i e s t d e a d l i n e ∗ /

7 u n s i g n e d long l o c a l n r r u n n i n g ; /∗ Loca l RCS c o u n t e r ∗ /
s t r u c t r b r o o t l o c a l r c s r o o t ; /∗ Loca l RCS t r e e ∗ /

9 s t r u c t r b n o d e ∗ l o c a l l e f t m o s t ; /∗ Loca l RCS l e f t m o s t ∗ /
u64 l o c a l e a r l i e s t d l ; /∗ Loca l RCS e a r l i e s t d e a d l i n e ∗ /

11

s t r u c t p c s w s r c s ∗ i d l i n g r c s ; /∗ I d l i n g RCS ∗ /
13 u64 i d l i n g s t a r t ; /∗ I d l i n g t imes t amp ∗ /

s t r u c t h r t i m e r i d l i n g t i m e r ; /∗ I d l i n g t i m e r ∗ /
15 } ;

Listing 5.9: The pcsws rcs rq data structure.

86

5.2. DESIGN CHOICES AND DATA STRUCTURES

Two red-black trees, and auxiliary variables, are specified in pcsws rcs rq. To materialize

Rule E of the p-CSWS scheduler, we have decided to organize RCSs with a capacity lower than

a pre-established value Q MIN10 on a red-black tree of their own, defined as local rcs root.

These pcsws rcs instances, which we designate local RCSs are donated to next task executing

on the local CPU, and cannot steal work.

RCSs with a capacity greater than Q MIN are stored in rcs root. These servers, henceforth

referred to as pushable RCSs, can move between CPU to steal work and compete for execution

with other bandwidth servers in the system.

The auxiliary attributes for rcs root and local rcs root are self-explanatory.

According to Rule I of the p-CSWS algorithm, when the local runqueue becomes idle the ear-

liest deadline waiting pushable RCS is assigned to the local CPU via the idling rcs pointer,

and its capacity is decreased as if it were executing a p-CSWS task. idling start is a times-

tamp for the last budget update. idling timer is a hrtimer set to fire at RCS exhaustion or

expiration time.

Section 5.3.8 provides an in-depth explanation of how RCSs and RCS runqueues are managed.

Section 5.3.9 describes the implemented WS mechanism.

5.2.4.2 The Boosted Runqueue

Our distributed approach relies on a dynamic load-balancing strategy that continuously redis-

tributes active tasks to CPUs. For several reasons the kernel often changes the affinity of a task,

binding it to its current CPU and forbidding it to migrate. If not properly handled, this interfer-

ence can seriously compromise our ability to maintain the highest priority task executing on the

available CPUs.

Consider the following example of 2 tasks executing on a parallel system of 2 CPUs. During

a fork operation the kernel pins the master task τa to CPU 1 until the fork operation completes

and newly created thread is ready to execute. During this process, a higher priority p-CSWS

task τb, which is also pinned to CPU 1, wakes up, preempts τa, and starts executing straight

away. In the meanwhile, CPU 2 remains idle, and τa stays pinned to CPU 1 until it can execute

again and complete the fork. This is a severe case of priority inversion which can also lead to an

unpredictable and dramatic decrease in resource utilization.

To resolve this, we occasionally boost the execution of a p-CSWS task, allowing it to overtake

the CPU and quickly resolve an impediment that may be binding it to the current CPU. Boosted

tasks preempt other local p-CSWS entities, and execute at the highest priority for a minimum

amount of time. Even though we may be forcing priority inversion on the local CPU for very

short periods of time, task boosting is used purely as a last resort measure, in cases where it

allows us to avoid larger and uncertain periods of real-time incorrectness.

A task enters the boosted state when it is enqueued onto the local runqueue of boosted tasks.

This runqueue is an instance of the the pcsws boosted structure, defined as boosted in

pcsws rq.

10Q MIN is defined as a macro in pcsws.c.

87

CHAPTER 5. THE SCHED PCSWS SCHEDULER

1 s t r u c t p c s w s b o o s t e d {
u n s i g n e d long n r r u n n i n g ; /∗ Boos ted t a s k s c o u n t e r ∗ /

3 s t r u c t r b r o o t t a s k s ; /∗ Boos ted t a s k s ∗ /

5 s t r u c t r b n o d e ∗ l e f t m o s t ; /∗ L e f t m o s t t a s k on t h e b o o s t e d t r e e ∗ /

7 u n s i g n e d long n r d e b o o s t e d ; /∗ Deboos ted t a s k s c o u n t e r . ∗ /
s t r u c t l i s t h e a d d e b o o s t e d ; /∗ Deboos ted t a s k s . ∗ /

9 } ;

Listing 5.10: The pcsws boosted data structure.

pcsws boosted holds a red-black tree (tasks) of individual tasks sorted by increasing ab-

solute deadlines. At the first scheduler tick, a boosted task running on the local CPU is dequeued

from task and enqueued onto the Last-In First-Out (LIFO) list deboosted, from which it is

dispatched to the correct CPU.

A thorough description of the task boosting mechanism will be presented in Section 5.3.4.

5.2.5 Global Scheduling Data

p-CSWS rules impose that, at any given point in time, the n highest priority tasks be allotted

to the m available CPUs (n ≤ m), in Global Earliest Deadline First (G-EDF) fashion. While

this requirement is met straightforwardly using a single task queue, as we switch to a decentral-

ized assignment of schedulable elements to CPUs a fast and complete view of these mappings is

essential to make quick and accurate global scheduling decisions.

The cpudl data structure implemented by SCHED DEADLINE, and described in Section

4.3.7.2, provides a centralized way of tracking load dynamics on each CPU at a low algorithmic

and contention overhead. To support load-balancing and WS decisions across the domain, we

have decided to extend the root domain data structure (Section 4.2.6.2) with 4 instances of

cpudl as follows:

• pcswsc cpudl tracks the priority of each busy11 CPU.

• pcswso cpudl tracks CPUs with pushable deques on their local runqueues and the pri-

orities of these pushable deques.

• pcswsr cpudl tracks the highest priority pushable RCS on each CPU.

• pcswss cpudl tracks CPUs with stealable deques, i.e. when the leftmost deque is a

dedicated deque holding more than one task.

As explained in Section 5.3.2, pcswsc cpudl and pcswso cpudl are updated by each

CPU whenever their leftmost and pushable deques change, respectively.

pcswsr cpudl is part of the implemented WS mechanism. Its role will be explained in

Sections 5.3.8 and 5.3.9.
11Holding at least 1 deque on its local p-CSWS runqueue.

88

5.3. IMPLEMENTATION

pcswss cpudl allows quick selection of WS victims. As described in Section 5.3.2, it

is updated whenever the local stealable deque changes, and consulted by the WS mechanism

presented in Section 5.3.9.

5.3 Implementation

Having seen how pcsws sched class was defined, and how schedulable p-CSWS units are

represented and organized, we now describe how these units are managed and scheduled for exe-

cution. Most features of SCHED PCSWS are implemented as methods of the pcsws sched class,

following the modular structure of the Linux scheduler.

5.3.1 Launching Tasks and Threads

At creation time, p-CSWS tasks are regular Linux tasks spawned using the fork() and clone()

family of system calls. Tasks can change their scheduling policy through the sched setscheduler()

system call, passing the new policy identifier as a parameter.

Introducing a new p-CSWS to the system implies specifying a new bandwidth reservation

under the form of a p-CSWS DS. When a task changes its policy to SCHED PCSWS, it must define

the reserved amount through a pair of values for the budget and period of the DS. Because this

feature is not permitted by the default sched setscheduler() system call, we require user

processes to transition to SCHED PCSWS using a new system call defined in kernel/sched/

core.c as sched setscheduler pcsws().

The actual policy switch is performed by sched setscheduler() of kernel/sched/

core.c. We have adapted sched setscheduler() to allow initialization of p-CSWS

master tasks, according to the parameters passed from the sched setscheduler pcsws()

system call. If the calling task is switching to SCHED PCSWS, passing the identifier 6 to the

policy parameter of sched setscheduler pcsws(), a call to setparam pcsws()

initializes the sched pcsws entity of the process descriptor. init pcsws ds() config-

ures the DS with the budget and deadline passed from user-space. init pcsws rcs() sets up

the RCS owned by the master task. init pcsws parent() initializes the scheduling entity

and sets up the first server instance via replenish ds(). Back in sched setscheduler(),

once the task is enqueued onto the local p-CSWS runqueue, it is managed and scheduled for exe-

cution as a p-CSWS task.

Child p-CSWS threads are generated via traditional forking of p-CSWS tasks at runtime.

Forking events are handled by the sched fork() routine of kernel/sched/core.c. We

have adapted sched fork() to set the parent pointer of the new sched pcsws entity

instance, before class-specific configurations are delegated to the task forkmethod of pcsws sched class.

In task fork pcsws() the nr threads counter of the parent DS (Section 5.2.3.2) is incre-

mented and the remainder attributes of the sched pcsws entity descriptor are initialized via

init pcsws thread(). Because child threads inherit the timing constraints imposed by the

DS owned by their parent and cannot share residual capacities, the attributes dedicated and

89

CHAPTER 5. THE SCHED PCSWS SCHEDULER

residual of their sched pcsws entity are initialized with ineffectual data and remain in-

operative throughout execution. Once a parallel thread is configured, it is mapped to the group

CPU (Section 5.3.3) and activated via wake up new task() (Section 4.2.5.3).

5.3.2 Activating and Deactivating Tasks

When a p-CSWS task switches to the TASK RUNNING state try to wake up() calls activate task()

to enqueue it onto a runqueue of runnable tasks. On the other hand, as a task switches to a non-

runnable state, deactivate task() removes the task from the list of runnable tasks so that it

cannot be picked for execution. Seeing as runqueue implementation differs between scheduling

classes, these operations are delegated to class-specific functions through the enqueue task

and dequeue task hooks of the scheduling class, respectively.

The enqueue taskmethod of pcsws sched class is implemented by enqueue task pcsws()

(Figure 5.3) in pcsws.c. In Section 5.2.3 we have mentioned that all tasks on a p-CSWS group

must be affined to the same CPU, Here, we allow tasks to be enqueued onto a WS deque only

if they are RCS-bound or on the correct CPU. If the task is found to be on the wrong CPU via

wrong cpu(), it is enqueued onto the boosted runqueue to rejoin its group on the next invoca-

tion of the main scheduler (Section 5.3.4).

Otherwise, we may be dealing with a stolen task that is returning to its group. If the task is on

the stolen list of its DS, we dequeue it from that list and check if any unbounded execution time

needs to be accounted (Section 5.3.10).

Figure 5.3: Control flow diagram for enqueue task pcsws()

A call to enqueue local pcsws() (Figure 5.4) effectuates the enqueue. First, enqueue ready deque()

inserts the task onto its current deque (Section 5.2.3.4) determined by the task curr deque()

function of pcsws.c. Stolen tasks are always enqueued at the bottom of the deque, while in-

90

5.3. IMPLEMENTATION

sertion of DS-bound tasks depends on the chosen WS policy for the deque (Section 5.3.2). If the

help first attribute of ws deque is unset, we simply enqueue the task at the bottom of the

deque. Otherwise, we check if the task being enqueued is a master task that should be enqueued

at the bottom. Threads are either enqueued at the bottom or at the second bottom-most position

of the deque, depending on whether the master task is on the deque or not. Note that regardless

of the position where a task is enqueued, this operation is always subject to O(1) complexity.

Figure 5.4: Control flow diagram for enqueue local pcsws()

Back in enqueue local pcsws(), if the deque is not yet on the local runqueue it is en-

queued onto the deques tree of pcsws rq12, following a call to enqueue local pcsws().

As stated in Section 5.3.9 residual deques remain on the deques tree as long as they hold the

leftmost position. If enqueue local pcsws() enqueues a deque at the leftmost position,

taking the place of a residual deque, the stolen task on the residual deque is deactivated and

boosted (Section 5.3.4). As explained next, this causes the stolen task to automatically relinquish

the RCS and the residual deque to be dequeued from the local runqueue.

dequeue task pcsws() (Figure 5.5) implements the dequeue taskmethod of pcsws sched class,

and dequeues a task from any task queue13 it might reside on.

For now, we will focus on dequeue local pcsws() (Figure 5.6), which calls dequeue ready deque()

to remove a task from its current deque. Any RCS-bound task being dequeued is automatically

freed of the thief RCS by way of relinquish rcs(), switching to an unbound state (section

5.2.3). If deactivating a task causes a deque to become empty, then the deque itself is removed

from the deques tree of the local pcsws rq via dequeue local pcsws().

Apart from stealing operations14, tasks are pushed and popped from the bottom of a deque

in O(1) time. Unless the deque switches from or to an empty state15, tasks are activated and

12This happens when enqueueing a task causes the deque to switch from an empty to a non-empty state.
13A deque, the boosted runqueue, or the deboosted list.
14Stolen tasks are dequeued from the top of a deque in constant time.
15In which case the deque itself must be enqueued or dequeued from the deques tree.

91

CHAPTER 5. THE SCHED PCSWS SCHEDULER

Figure 5.5: Control flow diagram for dequeue task pcsws()

Figure 5.6: Control flow diagram for dequeue local pcsws()

deactivated at a very low computational cost. This seems particularly advantageous when tasks

generate parallel regions with considerably large numbers of threads.In SCHED DEADLINE or

fair sched class for instance, activating or deactivating a task involves the manipulation

of a local red-black tree subject to logarithmic O(log(n)) complexity, which is bound to incur

substantially larger scheduling overhead.

Enqueueing or dequeueing a deque may cause changes on the auxiliary variables of pcsws rq

and on the cpudl attributes of root domain. Updates on the leftmost and earliest dl

attributes of pcsws rq, and on the pcswsc cpudl of root domain, occur whenever there is

a change on the leftmost node of the red-black tree deques. pushable, earliest pushable dl,

and pcswso cpudl, are updated whenever an enqueue or dequeue alters the second highest pri-

92

5.3. IMPLEMENTATION

ority node of the tree (the pushable deque), and unset when the tree holds less than two deques.

stealable and pcswss cpudl are updated whenever the local stealable deque changes.

They are set when a dedicated deque with at least two tasks becomes the leftmost deque, or

when a second task is enqueued onto the leftmost deque. The same attributes are are unset when

the leftmost deque becomes a residual deque, when a dequeue on the leftmost dedicated deque

leaves it with a single task, or when the local runqueue becomes empty.

5.3.3 Mapping Tasks and Deques to CPUs

Having seen how deques and runqueues are operated, we now focus on how tasks and deques are

assigned to CPUs.

In Sections 5.2.3.4 and 5.2.4 we have stated that WS deques are always bound to a specific

CPU through the cpu variable of the corresponding ws deque instance (also called group CPU).

The assignment of deques and tasks to CPUs is initially performed at wake up time of each task

by select task rq pcsws() (Figure 5.7).

Figure 5.7: Control flow diagram for select task rq pcsws()

For pinned tasks there is no choice but to keep them assigned to their current CPU. At enqueue

time, if the task is on the wrong CPU it is boosted and returned to its group as soon as possible

(Sections 5.3.2 and 5.3.4).

RCS-bound tasks do not go through select task rq pcsws(), as they are directly as-

signed to the CPU of the thief RCS by steal task pcsws() (Section 5.3.9).

Other tasks are dispatched to the group CPU, as long as their dedicated deque has runnable

tasks and is currently residing on a p-CSWS runqueue. If the dedicated deque is found empty

at this point, i.e. the awakening task is currently the only runnable task to be served by the as-

sociated DS, and the dedicated deque is not on a p-CSWS runqueue, we compute a new CPU

for the deque based on its priority. In the majority of cases this happens as a new p-CSWS job

is released, and awakening of the master task causes the DS to switch from idle to active. Hav-

93

CHAPTER 5. THE SCHED PCSWS SCHEDULER

ing updated the real-time constraints for the new instance in task waking pcsws() (Section

5.3.7), find best cpu() selects the best CPU for the group according to its absolute dead-

line. First, find idle cpu pcsws() tries to find an idle CPU from the free cpus mask of

pcswsc cpudl (Sections 4.3.7.2 and 5.2.5). If all CPUs are busy, find latest cpu pcsws()

reads the binary heap pcswsc cpudl and returns the lowest priority CPU, if it has a lower prior-

ity than the deque being dispatched, or the current CPU otherwise. Back in select task rq pcsws(),

we lock both the previous and next runqueues (if necessary), and set the new group CPU by as-

signing the returned value to the cpu attribute of the associated ws deque instance (Section

5.2.3.4). The awakening task is later enqueued onto the deque and, as the first runnable task being

enqueued, causes the deque to be enqueued onto the local p-CSWS runqueue. From that point on,

each awakening task of the group going through select task rq pcsws() is dispatched to

the same CPU.

5.3.4 Boosting Tasks

Each p-CSWS runqueue defines a sub-runqueue of individual tasks, called the boosted runqueue

(Section 5.2.4.2).

As explained in Section 5.3.6, boosted tasks take priority over other tasks on the runqueue,

even if they have later absolute deadlines. Once a boosted task is selected for execution it

runs for a single scheduler tick. Upon invocation of task tick pcsws(), the executing

boosted task is removed from the boosted tree, enqueued onto the deboosted queue, and its

TIF NEED RESCHED flag is set to take it off the CPU.

The deboosted queue is a doubly linked list, set up by the deboosted variable of pcsws boosted

(Section 5.2.4.2), containing tasks that have recently switched from the boosted state. As long

as the deboosted queue is not empty, the function post schedule pcsws() of pcsws.c

is directly invoked by the main scheduler (Section 4.2.5.2), after the next context switch16, to

migrate all deboosted tasks to their group CPUs. If a task is still unable to migrate at this point,

it is enqueued back onto the boosted tree to execute for another scheduler tick, before another

migration attempt is performed. Although there is no bound upon the number of scheduler cycles

that a boosted task may consume, test runs showed that boosted tasks seldom fail to migrate after

a single scheduler tick.

Under the described model, although it may appear that migration of deboosted tasks implies

traversal of the deboosted list, subject to linear O(n) complexity, the deboosted list never holds

more than one task. Anticipating future improvements, we have decided to maintain the list

considering that the resulting space overhead is negligible.

5.3.5 Load-balancing

In Section 4.2.6 we have seen several examples of how load-balancing is performed in the native

scheduling classes of the Linux scheduler, where two distinct paradigms stand out. The mecha-

16Seeing as the next context switch effectively reschedules the boosted task, the call to
post schedule pcsws() follows on the control flow of the main scheduler.

94

5.3. IMPLEMENTATION

nism of fair sched class is invoked periodically to balance the workload across scheduling

domains, whereas in rt sched class each CPU actively tries to exchange tasks, with other

units of the root domain, at each local invocation of the core scheduler. Initially proposed by Lelli

[2010], the load-balancing scheme of SCHED DEADLINE follows the same concept, as each

CPU takes the initiative to exchange tasks with other units chosen deterministically. By operating

at each local scheduler tick, such an approach cannot guarantee priority correctness across CPUs

at all times, it can simulate G-EDF scheduling with HZ resolution17.

We have adapted the load-balancing scheme of SCHED DEADLINE (Section 4.3.7.2) to keep

the n highest priority deques (and respective tasks) allotted to the m available CPUs (n ≤ m)

as much as possible. Following the principle of SCHED DEADLINE, in each load-balancing

operation we migrate a deque that is awaiting execution on a given CPU to another runqueue

where it can become the leftmost deque.

To transfer deques between runqueues two alternatives were considered:

1. Move the entire p-CSWS group at once (the deque and all contained tasks).

2. Move the deque between runqueues and migrate each task individually as it became the

bottom-most task on the deque, i.e. the next task to be picked for execution.

Conceptually, 2 should only outperform 1 in the unlikely case when a deque be migrated back

and forth between two CPU. In which case, pending tasks would still be allocated to the first

CPU, and unnecessary migrations would be avoided. For the sake of simplicity we have opted to

keep tasks of the same p-CSWS group together, and move the entire deque in each load-balancing

operation.

5.3.5.1 Pulling a Deque

Figure 5.8: Control flow diagram for pull deque pcsws()

17The local CPU priority is corrected within a maximum interval of one scheduler tick, upon invocation of
pull dl task().

95

CHAPTER 5. THE SCHED PCSWS SCHEDULER

The first load-balancing phase is coded in pull deque pcsws() (Figure 5.8), which at-

tempts to pull the highest priority pushable task in the system to the local CPU. Unlike rt sched class,

we attempt to pull a deque to the local runqueue at each invocation of the main scheduler18.

pull deque pcsws() is called from pre sched balance pcsws() at the beginning of

pick next task pcsws() (Section 5.3.6), so that the bottom-most task of the pulled deque

be immediately selected for execution by the current pick round.

find pullable cpu() first consults the pcswso cpudl variable of root domain

(Section 5.2.5), via the find earliest cpu pcsws() function of cpudl.c, to find the

earliest deadline pullable CPU19 in O(1) time. Then, pick pushable deque pcsws() fol-

lows the pushable pointer of the associated pcsws rq to select the pullable deque.

move pcsws group() (Figure 5.9) completes the operation by moving the deque and all

tasks from the pullable CPU to the local CPU. It begins by testing the affinity of all tasks in the

group via can migrate group(). dequeue local pcsws() dequeues the deque from

the source runqueue, and set task cpu() is called upon each task to migrate it to the local

CPU. Finally, the CPU attribute of the deque is updated, the deque is enqueued onto the local

pcsws rq, via enqueue local pcsws(), and the pull operation returns.

Figure 5.9: Control flow diagram for move pcsws group()

As noted in Section 4.3.7.2, SCHED DEADLINE iterates through overloaded CPUs, identi-

fied by the dlo mask bitmask of root domain, until it finds a pushable task that can become

leftmost on the local runqueue. We find that, although this strategy appears fast and simple, it has

two significant disadvantages:

1. Task selection is not deterministic, i.e. the selected task is not guaranteed to have the highest

priority out of all pushable tasks in the system.

2. The entire set of overloaded CPUs may be traversed before an eligible task is found. In

fact, the selection mechanism cannot predict if an eligible task will ever be found.

18rt sched class calls pull rt task() from pre schedule rt(), which is only invoked by the main
scheduler when a RT task is being deactivated.

19The one with the highest priority pullable task, in the system.

96

5.3. IMPLEMENTATION

Considering these observations, we justify the increased contention overhead of maintaining

pcswso cpudl up to date, with the ability to locate the highest priority pushable deque in the

system and thereby maintain an accurate Earliest Deadline First (EDF) assignment of deques to

CPUs.

5.3.5.2 Pushing a Deque

push deque pcsws() (Figure 5.10) performs the inverse operation, as it tries to move the

local pushable deque to another runqueue where it can become leftmost. It begins by selecting

the pushable deque via pick pushable deque pcsws(). find target cpu() then re-

ceives the absolute deadline of the pushable deque, to find a recipient CPU using the pcswsc cpudl

variable of root domain (Section 5.2.5). In find target cpu(), if an idle CPU cannot be

found via find idle cpu pcsws(), a call to cpudl find() identifies the lowest priority

CPU in the system and checks if its leftmost deque has a later deadline relative to the pushable

deque. find target cpu() returns the recipient CPU if a valid option is found, and -1 oth-

erwise.

Figure 5.10: Control flow diagram for push deque pcsws()

Back in push deque pcsws(), if the returned CPU is valid, it falls upon move pcsws group()

(Figure 5.9) to push the deque to the recipient CPU.

5.3.5.3 Handling Pinned Tasks

Rather than resource efficiency, interactivity, or other performance criteria, the foremost goal of

our load-balancing strategy is to correct the EDF mapping of deques to CPUs.

By choosing to move the entire group in each load-balancing operation, we have stumbled

upon the case of tasks that are temporarily unable to migrate. In an attempt to keep the group

together we first considered aborting the load-balancing operation and trying to move the deque

at a later date, but soon realized that this strategy might cause an intolerable decrease on the

determinism, efficiency, and correctness of the mapping.

97

CHAPTER 5. THE SCHED PCSWS SCHEDULER

Tasks are automatically pinned to a specific CPU when they must respond to a given event20

being issued on that unit, and remain as such until the event is processed to completion. Because

tasks on the pushable deque are unlikely to execute soon21, such impediment may subsist for

an unpredictable, and probably large, amount of time. If we opted to keep the group together,

these tasks would impede migration of the deque, and the system would incur extreme priority

inversion and CPU idling.

After much deliberation, we have devised the alternative of detaching pinned tasks to allow

immediate migration of the group. The affinity test in can migrate group() tests if each

task of the group can migrate to the target CPU by way of can migrate task pcsws(). If,

during a load-balancing operation, one or more tasks in the group are unable to migrate between

CPUs, we dislodge them from the group, boost them to ensure that they rejoin the group as soon

as possible (Section 5.3.4), and proceed to move the deque and the remaining tasks22. In doing

so, we are actually forcing priority inversion on the local CPU, but for a very short period of time

rarely exceeding a scheduler tick. Although it may still have a negative impact on the real-time

correctness of the system, this approach is considerably less detrimental and unpredictable in

comparison with the alternative described above.

5.3.6 Selecting the Next Task

Having seen how tasks and deques are mapped to CPU, we now explain how runnable p-CSWS

tasks are selected for execution, in a process that is greatly simplified by the adopted organiza-

tional design.

When the main scheduler is invoked on each CPU, it traverses the hierarchy of scheduling

classes, calling the pick next task method of each class until a task is returned (Sections

4.2.4 and 4.2.5.2). This enables each scheduling class to define its own task selection pol-

icy, based on the adopted organization of tasks on their class-specific extension of the generic

runqueue. In the case of pcsws sched class, this is performed by the pick next task

method pick next task pcsws() (Figure 5.11).

Before the next task is picked for execution we take the opportunity to bring the local runqueue

up to date. pre sched balance pcsws(), called at the beginning of pick next task pcsws(),

initiates the pulling mechanism described in Section 5.3.5 and the WS routine steal work pcsws()

detailed in Section 5.3.9. To avoid unnecessary preemptions and migrations, pulling operations

are performed preferably by idle units. After calls to account idling() and cleanup rcs rq(),

pre sched balance pcsws() checks if there is pending work on the local runqueue and

there exist idle CPUs in the system. If so, it skips load-balancing and WS, as idle units will

attempt to pull work at their next opportunity.

In the actual selection procedure, boosted tasks have the highest priority. If the local boosted

runqueue is not empty, pick next boosted pcsws() follows the leftmost pointer of

20Examples of this include fork operations and exiting requests (when a task is set to terminate).
21Besides boosted tasks, only tasks leftmost on the leftmost deque are picked for execution.
22If the deque does not become empty as a result.

98

5.3. IMPLEMENTATION

the local pcsws boosted instance23, and the leftmost boosted task is returned to the main

scheduler.

Figure 5.11: Control flow diagram for pick next task pcsws()

If the boosted runqueue is found empty, the ordinary selection policy is put into effect. Having

mapped deques to processors and organized tasks onto deques, this operation is straightforward

and performed inO(1) time. pick next task pcsws() first calls pick next deque pcsws(),

which follows the leftmost pointer of the local pcsws rq instance to fetch the local leftmost

deque. Deques on the local runqueue are guaranteed to hold at least one task, and once the lef-

most deque has been identified, bottom ready task() simply returns the bottom-most task

in accordance with Rule B of the p-CSWS scheduler.

If both the boosted and local runqueues are found empty, no task is returned, and the scheduler

queries the next scheduling class on the hierarchy for runnable tasks.

5.3.7 Releasing the Next Job

At the end of each job, real-time tasks enter a period of inactivity until the next job is released.

The nanosleep() system call provided by mainline Linux enables user-space processes to

voluntarily delay execution until a certain instant of time passed as a parameter and expressed in

nanoseconds. While this system call alone would allow users to implement the repetitive behavior

of real-time tasks, we need to perform specific handling of job termination events signalized via

our own system call sched wait interval().

sched wait interval(), implemented in kernel/sched/core.c, takes two pa-

rameters: *rqtp defines the wake-up instant of the next job, whereas *rmtp gets the time re-

maining until the instant specified by *rqtp. We assume that is always called by master tasks at

the end of each job. After managing the user-space *rqtp parameter through copy from user(),

if the calling process is a p-CSWS task, the wait interval pcsws() function of pcsws.c

23The boosted attribute of the local p-CSWS runqueue (Section 5.2.4).

99

CHAPTER 5. THE SCHED PCSWS SCHEDULER

is invoked with the process descriptor of the calling task, as well as *rqtp and *rmtp, as pa-

rameters.

Figure 5.12: Control flow diagram for the sched wait interval() system call

wait interval pcsws() (Figure 5.12) first invokes test throttle parent() to

ensure that all child threads of the calling task have completed (Section 5.3.11). After updating

execution data, the flag new job of the ws deque owned by the task is set to indicate a new

job. If the value set by *rqtp is in the past, this means that the next job is already delayed. In

this case, according to Rule A of the p-CSWS scheduler, update ds() checks if the timing

parameters of the associated DS need updating, and the DS remains active. If *rqtp sets an

instant in the future, we set the flag to sleep of ws deque to indicate that the current job is

finishing and that the master task is close to being deactivated. A call hrtimer nanosleep(),

which implements the sleeping mechanism of the nanosleep() system call, sets the task to

sleep at least until the absolute instant *rqtp.

To perform final response-time operations, and accurately account for the time expended be-

tween wait interval pcsws() and the deactivation instant, we hook the schedule()

function call that effectively takes the task off the CPU before it sleeps. In put prev task pcsws(),

to sleep pcsws() detects if the task passed as a parameter is being deactivated following a

call to wait interval pcsws()24. If the test in to sleep pcsws() succeeds, a call to

pre sleep pcsws() ensues. Here, update curr pcsws() (Section 5.3.10) accounts the
24to sleep pcsws() tests if the task state has been set to TASK INTERRUPTIBLE and the to sleep() flag

of the dedicated deque is set, indicating that it has just invoked the sched wait interval() system call.

100

5.3. IMPLEMENTATION

elapsed execution time, and release rcs() (Section 5.3.8) releases the unused capacity on

the DS as a new RCS (Section 5.3.8).

A high resolution timer (hrtimer) set up by hrtimer nanosleep fires at release time pre-

viously specified by *rqtp to wake up the task. As the task is being activated, upon invocation of

task waking pcsws(), we call reclaim residual capacity() to try to reclaim back

the previously generated residual capacity, according to the description in Section 5.2.3.3. Finally,

update ds() checks if the DS should be replenished to serve the new job, in conformity with

Rule A of the p-CSWS scheduler.

5.3.8 Sharing Residual Capacities

Each master task owns a pcsws rcs instance established by the residual attribute of sched pcsws entity

(Sections 5.2.3.1 and 5.2.3.3). At job completion, this instance is used to set up an active RCS

with the bandwidth left unused on its sibling DS.

As explained in Section 5.3.7, RCSs are released from pre sleep pcsws() at the end of

each job, by way of a call to release rcs() (Figure 5.13). If the pcsws rcs instance owned

by the calling master task is found active, either awaiting execution or currently executing a master

task, deactivate rcs() deactivates it25 and returns the leftover budget. This value is added

to the budget of the dedicated deque to set the new budget for the RCS, and the absolute deadline

of the dedicated deque is set as the absolute deadline of the RCS. enqueue pcsws rcs()

marks the new RCS as active, by enqueueing it onto the RCS runqueue (Section 5.2.4.1). Finally,

the budget of the DS is set to 0, as stipulated by Rule D of the p-CSWS algorithm.

Figure 5.13: Control flow diagram for release rcs()

25Removing it from the RCS runqueue, abandoning the stolen task, or unsetting the local idling rcs pointer.

101

CHAPTER 5. THE SCHED PCSWS SCHEDULER

The RCS runqueue described in Section 5.2.4.1 actually consists of two distinct red-black

trees of RCSs sorted by increasing order of absolute deadlines. The tree of pushable RCS

rcs root holds RCSs with a budget greater than the value defined by the QRES MIN macro of

pcsws.c, while RCSs with budget lower or equal than QRES MIN are kept on the tree of local

RCSs local rcs root. At activation time, enqueue pcsws rcs() compares the budget

of the RCS with QRES MIN to decide where it should be enqueued. enqueue local rcs()

enqueues a RCS onto local rcs root and sets the local flag of pcsws rcs to 1 to indi-

cate a local RCS. enqueue pushable rcs() enqueues a RCS onto rcs root and sets its

local flag to 0. When the leftmost node of rcs root, enqueue pushable rcs() updates

the pcswsr cpudl instance of root domain (Section 5.2.5, with the absolute deadline of the

leftmost RCS.

RCSs are dequeued from the RCS runqueue by way of dequeue pcsws rcs(), which

follows dequeue pushable rcs() or dequeue local rcs() depending on the local

flag of the pcsws rcs element being dequeued.

5.3.8.1 Accounting Idling Time

According to Rule I of the p-CSWS scheduler, when a local CPU becomes idle it must pull the

highest priority pushable RCS and consume its budget until a p-CSWS task is assigned to the

local runqueue or the residual capacity is either exhausted or expired. We accomplish this, on

each CPU, through the idling rcs pointer of the local pcsws rcs rq.

To implement this feature we had to go beyond natural scheduler activities and track the time

expended by idle CPUs. Because the task tick method is invoked exclusively for the current

task, we hook the periodic scheduler with a direct call to pcsws tick() from scheduler tick(),

regardless of the task that is executing.

pcsws tick() calls update idling() (Figure 5.14) to update the idling rcs pointer

of the local pcsws rcs rq. If update idling() finds the local p-CSWS runqueue empty,

it uses the pcswsr cpudl instance of root domain to find the earliest deadline pushable

RCS in the system, and dequeues if from the pcsws rcs rq where it resides. If the local

idling rcs pointer is set to another RCS, this RCS is enqueued onto the local RCS runqueue26

and idling rcs is set to reference the pulled RCS. Contrariwise, if update idling() finds

the local runqueue busy and idling rcs set, it enqueues the referenced RCS onto the local RCS

runqueue, and calls unset idling() to unset the idling rcs pointer and cancel the timer

idling timer.

Once idling rcs is set, account idling() (Figure 5.15) is invoked at the next sched-

uler tick, also from pcsws tick(), to decrease the budget of idling rcs by the time elapsed

between ticks, given by comparison of the current time with the idling start variable of

pcsws rcs rq. Then, if the residual capacity is exhausted or expired the RCS is deacti-

vated via unset idling(). Otherwise, the current time is stored on idling start and

account idling() returns. Following this call to account idling(), pcsws tick()

26We ensure that the pulled RCS has an earlier deadline than the RCS currently pointed by idling rcs.

102

5.3. IMPLEMENTATION

Figure 5.14: Control flow diagram for update idling()

invokes update idling() to check if another RCS should be pulled, as explained above.

Figure 5.15: Control flow diagram for account idling()

If the local p-CSWS runqueue transitions from an empty state, a call to account idling()

at the beginning of pre sched balance pcsws() ensures that the elapsed idling time is ac-

counted right before the context switch that will assign a p-CSWS task to the local CPU.

5.3.8.2 Removing Exhausted or Expired RCSs

Active RCSs must be deactivated and removed from the system once their capacity is either

exhausted or expired.

103

CHAPTER 5. THE SCHED PCSWS SCHEDULER

As explained in Section 5.3.10, RCSs are automatically deactivated once their capacity is de-

pleted. Expired RCSs are deactivated via cleanup rcs rq(), which simply goes through the

red-black trees of RCSs removing those with a past absolute deadline. If the local p-CSWS run-

queue is empty and the idling rcs pointer is set, a call to account idling() accounts the

elapsed time and checks if the local idling rcs has expired and should be deactivated. Seeing

as both the local and pushable trees of RCSs are sorted by non-decreasing absolute deadlines, we

keep dequeueing the leftmost node of each tree as long as its absolute deadline is in the past. As

the earliest deadline RCS on the tree, if the leftmost RCS has a future absolute deadline, then all

other RCSs on the tree are guaranteed to have not expired.

cleanup rcs rq() is called from task tick pcsws() at every scheduler tick. Other

trigger points are pre sched balance pcsws() (Section 5.3.6) to update the local RCS

runqueue before any WS or load-balancing decisions, and pre sleep pcsws() before a new

RCS is released.

5.3.9 Work-Stealing

According to Rule G once a RCS is selected for execution, it can steal the earliest deadline thread

with an absolute deadline greater than that of the RCS. According to Definition 1 of the original

proposal [Nogueira and Pinho, 2012], any active DS with several runnable threads and an absolute

deadline greater than that of the thief RCS is considered eligible for work-stealing. In each WS

operation, a thread is stolen from the earliest deadline DS from the set of eligible servers.

After careful examination we have found a significant flaw in this stategy since, by the def-

inition, it is possible that a waiting DS be elected for WS if no busy27 servers hold more than 1

runnable task. This would imply preemption of the lowest priority busy server to execute a thread

from a lower priority DS, which is an evident case of priority inversion [Davari and Sha, 1992].

Instead, we restrict the group of DSs eligible for WS to the subset of busy DSs holding

more than one task on their respective deques. Assuming that our load-balancing scheme keeps

the system-wide highest priority deques executing on the available CPU, we use the heap data

structure of SCHED DEADLINE to keep a reference for the leftmost deque executing on each

CPU, as long as it has several pending tasks. In every WS operation, we look at the highest

priority stealable deque from this set, and try to steal its top-most task.

Our WS mechanism is implemented by the function steal work pcsws() (Figure 5.16)

of pcsws.c, called from pre sched balance pcsws() (Section 5.3.6) prior to each schedul-

ing decision. If the local idling RCS is set (Section 5.3.8.1), the thief RCS is chosen as the one

with the earliest absolute deadline between the idling RCS and the the highest priority RCS refer-

enced by pcswsr cpudl (Section 5.2.5). Else, the earliest deadline RCS of pcswsr cpudl

is chosen. WS operations are performed exclusively when the the thief RCS has the highest pri-

ority out of all deques on the local deques tree (Section 5.2.4), thus if the chosen thief RCS

has a later deadline than the leftmost local deque the WS mechanism returns. Otherwise, selec-

tion of the system-wide earliest stealable deque follows, using the pcswss cpudl instance of
27As introduced in Section 3.3.3.2, we use the term busy server in reference to one that is currently executing on a

given CPU.

104

5.3. IMPLEMENTATION

Figure 5.16: Control flow diagram for steal work pcsws()

struct cpudl. In find stealable cpu(), we start with the highest priority CPU and

proceed to the next (in order of priority), until we find a CPU where the local earliest dl

value of pcsws rq is greater than that of the chosen RCS. If such CPU is found, a call to

attempt steal() picks the top-most task of its leftmost deque, and tries to migrate it to the

local runqueue. If the top-most task of the chosen stealable deque is pinned to its CPU, we boost

it and iterate down the deque until an unpinned task is found. The original proposal in Nogueira

and Pinho [2012] clearly states that tasks are to be stolen from the top of a deque, but we prefer

to waste some processing resources trying to find a stealable task than leaving the local CPU idle

or not exploiting parallelism, as failing to find a stealable task would imply. Note that choosing

a stealable task from the top, or any other position in the deque, has no impact on the real-time

correctness of the schedule, because all tasks in the group need to synchronize at the end of the

parallel region and complete before the current job finishes. When a stealable task is found,

steal task pcsws() migrates it to the local CPU and enqueues it onto the stolen list of its

DS. Finally, a call to activate task() enqueues the task onto the residual deque of the thief

RCS, and residual deque onto the local p-CSWS runqueue (Section 5.3.2)28.

28At this time, the thief pointer of the pcsws sched entity has already been set, causing the current deque

105

CHAPTER 5. THE SCHED PCSWS SCHEDULER

5.3.9.1 Returning to a DS-Bound Context

RCS-bound tasks execute as long as they are naturally deactivated, preempted, or returned back

to their DS.

During the execution of a stolen task an overrun may decrease the priority of its DS (Section

5.3.10), making it ineligible for WS and forcing all of its stolen threads to yield the CPU and

return to a DS-bound context. If we were to iterate through all tasks on the stolen list (Section

5.2.3.2) of a DS, migrating each task back to the local CPU, we would impose the resulting

overhead upon the local CPU and delay the execution of the new leftmost deque. Also, because

RCS-bound tasks are always executing on a given CPU, they must yield the CPU before migration

is attempted. For these reasons, RCS-bound tasks verify if their DS remains as the highest priority

active server on its local CPU at every scheduler tick. If the DS is no longer eligible for WS, the

task is relinquished from its RCS, enqueued onto the local deboosted list, and migrated to the

group CPU after the next context switch (Section 5.3.4).

Also, according to [Nogueira and Pinho, 2012], when a DS becomes idle and its stolen list

is not empty, each stolen task is to be reclaimed back and executed until the list becomes empty.

We achieve this through reclaim one stolen(), called from put prev task pcsws()

when last task of the deque is being switched off the CPU. The first task of the stolen list is

fetched, enqueued onto the deboosted list of its local runqueue, and returned to the group CPU by

the boosting mechanism (Section 5.3.4).

5.3.10 Accounting Execution Time

To enforce tardiness isolation among p-CSWS servers, we must track the processing time of each

p-CSWS task and ensure that the reserved processing bandwidth is not exceeded.

Execution time is accounted at every scheduler tick, via invocation of update curr pcsws()

from task tick pcsws(). The se.exec start variable each process descriptor is tradi-

tionally used as a timestamp for the last scheduler tick. We compare the current time with this

value to compute the execution time elapsed since the last tick and, after updating exec start

with the current time, pass the difference onto decrease budget pcsws(), where Rules B,

E, and H, of the p-CSWS algorithm are implemented.

Rule E states that the capacity of a local RCS is to be donated to the next server with a

later deadline executing on the same CPU. To implement this feature, we simply pick the earliest

deadline local RCS and check if it has a shorter deadline than the currently executing task. If

so, its budget is decreased by the execution time calculated before and passed as a parameter. If

the budget is depleted as a result (<0), we retain the execution time in excess and jump to the

beginning of decrease budget pcsws(). If the budget is not exhausted (>0), the function

returns.

We then test if the currently executing task is unbound and executing on the wrong CPU. In

this case, we add the elapsed execution time to the overrun amount attribute of the associ-

of the task to be determined as the residual deque of the thief RCS. For this reason, enqueue task pcsws()
automatically enqueues the task onto the residual deque (Section 5.3.2)

106

5.3. IMPLEMENTATION

Figure 5.17: Control flow diagram for update curr pcsws()

ated sched pcsws entity, and decrease budget pcsws() returns. In Section 5.2.3.4

we have stated that all deque manipulations are protected by the runqueue lock of the cur-

rently associated CPU. If a non-stolen task is currently detached from its group, executing on

another CPU, the execution time cannot be accounted directly on its dedicated deque with-

out locking the remote runqueue. Because every unbound task is a boosted task set to re-

turn to its group very soon29, we avoid locking multiple runqueues and account this execu-

tion time at a later instant, when the task rejoins its group. After writing overrun amount,

decrease budget pcsws() returns. When the boosting mechanism dispatches a task to the

correct CPU, and calls activate task() upon it, enqueue task pcsws() checks the

value on overrun amount and invokes account unbound runtime() to account the ex-

ecution time overdue (Section 5.3.2). In enqueue task pcsws() the value is subtracted to

the budget of the dedicated deque, and task overrun pcsws() checks if the capacity as-

signed to the group has been exhausted or expired, as explained in Section 5.3.10.1.

DS-bound or RCS-bound tasks, executing on the correct CPU, simply decrease the budget of

their current deque conforming to Rules B and H of the theoretical proposal.

29Most likely after a single scheduler tick (Section 5.3.4).

107

CHAPTER 5. THE SCHED PCSWS SCHEDULER

5.3.10.1 Handling Overruns

If the current task is DS-bound or RCS-bound, update curr pcsws() invokes task overrun pcsws()

to check if the timing constraints of its current deque have been violated, i.e. if the absolute dead-

line is in the past or the currently assigned budget is exhausted.

According to Rule B, when a DS-bound task overruns replenish pcsws entity()

recharges the budget and postpones the deadline of the dedicated deque to create new server

instance. Because postponing the absolute deadline of a deque may disarrange the local red-black

tree of WS deques30, reorder group on local rq() dequeues and enqueues31 the deque

back onto the local runqueue to rearrange the tree.

Otherwise, if a RCS-bound task executes past the residual bandwidth of is thief RCS, it is

dequeued from the deque of the RCS and boosted to rejoin its group as soon as possible. The

amount executed in excess is stored onto the overrun amount attribute of the scheduling entity

and accounted when the task returns to its group. As noted in Section 5.3.2, when a stolen task is

dequeued it automatically relinquishes the RCS and switches to an unbound context.

Figure 5.18: Control flow diagram for task overrun pcsws()

5.3.11 Task Termination and Parent Throttling

Under the fork/join real-time model it is expected that parallel threads finish execution before

specific events (such as job completion) occur. Although the fork/join behavior is implemented in

user-space, ordinary scheduler features may cause the parent task to be deactivated before all child
30Recall that the red-black tree deques of each p-CSWS runqueue pcsws rq is sorted by increasing order of

absolute deadlines (Section 5.2.4).
31Via dequeue local pcsws() and enqueue local pcsws() respectively (Section 5.3.2).

108

5.4. SUMMARY

threads complete. To overcome this scenario and account execution time correctly, we implement

a special feature, called parent throttling, to forcefully deactivate the master task until all child

threads terminate.

The test throttle parent() function of pcsws.c checks the number of active threads

counted by the nr threads attribute of pcsws ds (Section 5.2.3.2). If there exist child threads

(runnable or blocked) served by the DS, we set the throttled flag of the master task, its

TIF NEED RESCHED flag, and its state to TASK UNINTERRUPTIBLE, before the main sched-

uler is directly invoked to deactivate the task and switch it off the CPU. Otherwise, the function

returns.

test throttle parent() is called from task dying pcsws() (Section 5.2.2.1) for

each master task that has just called do exit(), to wait for the termination of all child threads.

When task dead pcsws() (Section 5.2.2.1) is invoked for a p-CSWS thread, it decrements

the nr threads counter of the DS. Then, it checks if the exiting thread is the last thread bound

to the DS and if the master task is throttled. If the master task has not yet been taken off the

runqueue the throttling process is canceled via unthrottle parent(). Otherwise, if the

master task is inactive, a call to wake up process() activates the master task just as the last

child thread is being switched off the CPU for the last time.

Another trigger point for test throttle parent() is wait interval pcsws().

When a master task goes to sleep after calling hrtimer nanosleep(), it may release the

capacity left unused on the DS as a new RCS, and force the DS budget to 0 until release time

of the next job. This call ensures that the execution time of all threads is accounted before a

new RCS is released. Otherwise, we could be forcing deactivation of the DS while served tasks

remained active.

5.4 Summary

109

CHAPTER 5. THE SCHED PCSWS SCHEDULER

110

Chapter 6

Experimental Evaluation

“Success represents the 1% of your work which results from the 99%
that is called failure.”

— Soichiro Honda

6.1 Scenario

To evaluate the benefits of the proposed implementation we have initially intended to compare

SCHED PCSWS with SCHED DEADLINE. Unfortunately, SCHED DEADLINE is not suited

for the model of parallel real-time tasks considered in this thesis (Section 5.1), as it does not

support dynamic thread creation. Seeing as each SCHED DEADLINE task runs on a dedicated

Constant Bandwidth Server (CBS) reservation, adapting the implementation to our needs would

either require (i) associating each dynamically generated thread to the bandwidth reservation of

their parent task, (ii) running a sequential version of the user-space parallel test applications on

SCHED DEADLINE, or (iii) specifying a new bandwidth reservation for each forked thread.

None of these approaches seemed viable. Option (i) implied a serious reformulation of the design

and features of the implementation. Option (ii) would compare distinct user-space algorithms,

and completely ignore the overheads of dynamic thread generation. Option (iii) was simply not

viable, as there is no information about the execution requirements of each dynamically generated

thread at runtime. Furthermore, we would need to integrate the SCHED DEADLINE and PRE-

EMPT RT patches on the Linux source tree, to set it on equal grounds with SCHED PCSWS1.

Because we want to evaluate the benefits of parallelism, and seeing that work-first offers the

best opportunities for parallelism, we have employed a work-first Work-Stealing (WS) strategy

(Section 5.2.3.4) on all conducted tests.

1As of Linux v3.8.13, both projects were distributed as Linux source code patches, which were conflicting on
multiple situations.

111

CHAPTER 6. EXPERIMENTAL EVALUATION

6.1.1 SCHED SCBS

For these reasons, and because our base implementation is very similar to SCHED DEADLINE,

we have decided to compare SCHED PCSWS with a simplified version of the algorithm without

Capacity-Sharing (CASH) and WS features (Sections 5.3.8 and 5.3.9), henceforth referred to as

SCHED SCBS.

Each SCHED SCBS tasks is always bound to the same dedicated server and deque, either

set up by itself or by its master task. Tasks and deques are are mapped to processors exactly

like in SCHED PCSWS (Sections 5.3.2 and 5.3.3). All tasks on a deque share the same tim-

ing constraints and execute sequentially on the same Central Processing Unit (CPU), unless

they are migrated by the load-balancing scheme described in Section 5.3.5. In comparison with

SCHED DEADLINE, this approach seems better suited for the model of parallel real-time tasks,

since it is designed to maintain dynamically generated threads on the same CPU and explore

locality of data.

To reduce unnecessary contention overhead, we have gave up caching of the stealable deque

(Section 5.3.2), which involved updating the global pcswss cpudl variable (Section 5.2.5).

6.1.2 Conducted Tests

The experiments expounded in the following Sections were performed on an 8-core machine of

2.0 GHz per-core, with 16 GB of main memory. At compilation of Linux v3.8.13, the following

options were disabled: (i) Group CPU Scheduler, (ii) CPU Frequency Scaling, (iii) SMT (Hyper-

threading) scheduler support, and (iv) Tickless System (Dynamic Ticks). The HZ macro (Section

4.2.5.1) was set to 1000, and the preemption model to Fully Preemptible Kernel2.

We have conducted 3 tests, each involving the execution of 20 randomly generated server

sets. Each test was executed on 2, 4, and 8 cores, on both SCHED PCSWS and SCHED SCBS.

To generate bandwidth servers arbitrarily, the minimum server utilization was defined as

umin = 0.1 and the maximum utilization as umax = 0.5. The minimum server period was

set as Tmin = 700ms, and the maximum period as Tmax = 800ms. The period of each server was

defined as Ti = Tmin + x ∗ (Tmax − Tmin), where x is a random number in the range [0, 1].

A total utilization window [U∏
min, U

∏
max] was defined for each server set as follows:

[0.38, 0.40] for Test 1, [0.58, 0.60] for Test 2, and [0.73, 0.75] for Test 33. The utilization of

each server was dynamically computed as ui = umin + x ∗ (umax − umin), being that
∑n

k uk ∈
[U∏

min, U
∏
max]. The number of bandwidth servers n on each server set was dynamic, based on

the utilization of each individual server, the defined utilization window, and the utilization bounds

set by Equations 5.1.

To simulate Worst-Case Execution Time (WCET) scheduling, for each set of n servers the first

bn/2c execute Hard Real-Time (HRT) tasks, each with a mean execution time of ci = 0.7∗Ci, so

that the real execution requirements of each job are bounded byCi. The last dn/2e servers execute

Soft Real-Time (SRT) tasks with a mean execution time of ci = Ci. The real execution time of

2Provided by PREEMPT RT.
3The tightness of these intervals assures a similar utilization among server sets of a given test.

112

6.2. RESPONSE-TIMES

each job (HRT or SRT) is randomly computed at runtime as ei,j = ci + (0.2 ∗ ci − x ∗ 0.4 ∗ ci),
implying a variation of ±20% on the mean execution time ci.

Each task was a simple fork/join application executing a series of NOP operations to avoid

cache and memory interferences. Having simulated variable execution times for each job, al-

though SCHED PCSWS is designed to schedule tasks with variable parallelism we feel that a

completely dynamic generation of parallel threads is not necessary to assess the performance of

the implementation. The number of parallel threads ni per-job was computed as ni = 1+x(m∗2)
and remained constant for each job of a Parallel Capacity Sharing by Work-Stealing (p-CSWS)

task throughout execution. The real execution requirements for each thread of a job were derived

as ei,j,w =
ei,j
ni+1 . The master executed for a share ei,j

ni+1 of the total execution time ei,j of each

job.

H
HHH

HHm
U∏ Total servers/tasks (n) Total threads per-job (ni)

38-40% 58-60% 73-75% 38-40% 58-60% 73-75%
2 58 79 100 155 199 236
4 99 154 205 442 697 914
8 193 314 404 1774 2769 3543

Table 6.1: Composition of each test

Table 6.1 expounds the number of generated tasks and parallel threads for each test 4. Note

that as we increase the utilization window U∏, and umax remains constant, the number n of

generated tasks scales.

6.2 Response-Times

The main goal of this project lied with improving system throughput and boosting the efficiency

of real-time applications through a heuristic exploitation of parallelism.

To evaluate the performance gains of parallel execution on each test, we have collected exe-

cution metrics on the mean response time of each task τi, given by F (τi) =
∑ki

j fi,j−ri,j
j , where

ki denotes the number of jobs generated by τi. It is important to realize that, by measuring the

time elapsed between the release time ri,j and completion time fi,j of each job, the collected data

accounts not only the execution time ei,j of each job, but also the time spent awaiting execution,

along with the overheads produced within that time frame. In order to compare the metrics ex-

perienced by SCHED PCSWS and SCHED SCBS, we have computed the response time ratio

F ′(τi) =
FSCBS(τi)
FPCSWS(τi)

of each task, as it was scheduled by each algorithm. The average response

time ratio of each experiment was determined as
∑n

i F
′(τi)
n , and compiled on Figure 6.1.

SCHED PCSWS outperformed SCHED SCBS on virtually every experiment 5. Figure 6.1

shows that both algorithms perform very much alike on 2 cores, with minimal superiority for

4The number of parallel threads refers to the execution of a single job.
5Note that values over 1 indicate that, on average, the set of tasks launched by a given test responded faster on

SCHED PCSWS.

113

CHAPTER 6. EXPERIMENTAL EVALUATION

Figure 6.1: Average response-time ratio of each test

SCHED PCSWS, except on the 73-75% utilization test where SCHED SCBS tasks responded

slightly faster. Two factors may have contributed to this outcome. First, the chances for parallel

execution are likely to be scarce on 2 cores. Second, as the system gets saturated and CPUs

become overloaded, stealing operations are more likely to cause preemption of a lower priority

task executing on the thief CPU, improving the response-time of the stolen group, but delaying

execution of the preempted task. In theory the mean execution values of each task should even out

at test completion, but the depicted results are illustrative of the increased migration, preemption,

and scheduling overheads, paid by SCHED PCSWS under 73-75% utilization.

Task throughput is shown to improve steadily as the total utilization grows on 4 cores, and

outperform SCHED SCBS on every experiment regardless of the overheads generated by the WS

mechanism. The benefits of parallelism are clear on the highest utilization test where, on average,

tasks responded 1.1095 times faster than on SCHED SCBS.

The results collected on 8 cores confirm the superior performance and scalability of SCHED PCSWS,

both in terms of the number of available cores, system utilization, and volume of parallel tasks

and threads. Once again SCHED PCSWS is shown to perform particularly better at the highest

utilization window, as tasks responded on average 1,5677 times faster than on SCHED SCBS.

On a final note on WCET Scheduling, although mainline Linux cannot provide predictable

performance guarantees, we have confirmed that no task scheduled by the WCET missed its dead-

line on SCHED PCSWS or SCHED SCBS, attesting to the efficiency and real-time correctness

of both algorithms. By these observations we can only believe that p-CSWS is a viable solution

for HRT scheduling on deterministic environments.

6.3 Overheads

At each test run, we have collected statistic data on migrations and context switches, as two of the

major sources of runtime overhead. First, we present the referring to the experiments conducted

on 8 cores, which launched the higher numbers of parallel tasks and threads. Figure 6.2 compares

114

6.3. OVERHEADS

the total number of migrations triggered by SCHED PCSWS and SCHED SCBS.

Figure 6.2: Total migrations and steals on 8 cores

Table 6.1 shows that, as we raised the utilization window, the number n of tasks increased

linearly, and the volume of dynamically created threads has grown exponentially. Greater volumes

of parallel tasks are bound to upset the global priority scheme more often, increasing the frequency

of load-balancing operations needed to maintain priority correctness across CPUs. Indeed, the

collected results show an increase on the volume of migrations as the system load grows, and a

clear difference between the metrics collected for SCHED PCSWS and SCHED SCBS. However,

the values experienced by SCHED PCSWS appear to be tied with the observed volume of WS

operations, and although migration metrics are to be taken as execution overhead, those coming

from stealing operations are expected to benefit the performance of the system in two ways: (i)

reduce the execution times of the stolen p-CSWS groups, and (ii) improve resource utilization.

By the linear growth on the number of stealing operations (Figure 6.2), the collected results

attest the efficiency and scalability of a WS strategy, bound to generate parallelism as a function

of the available CPUs, rather than the volume of active threads. As the system load increases

and idle CPU become scarce, the rate of WS operations seems to decrease. By this observation

we believe that the bulk of stealing operations are performed by idle cores, as planned by our

implementation (Section 5.3.9).

As Figure 6.3 shows, SCHED PCSWS and SCHED SCBS perform similarly regarding the

number of context switches involving real-time tasks. Because both algorithms ran the same num-

bers of tasks and parallel threads at each utilization window, we must also associate the collected

statistics with the volume of WS operations raised by SCHED PCSWS. Recall that tasks are

stolen only when they are to execute at the highest priority on the target CPU, either preempting

another task executing on the thief CPU, or taking execution on a previously idle unit. Inter-

estingly, SCHED PCSWS exhibits slightly lower context switching metrics than SCHED SCBS

under high utilization.

115

CHAPTER 6. EXPERIMENTAL EVALUATION

Figure 6.3: Total context switches on 8 cores

6.3.1 Scalability

To analyze the scalability of the system, we have compared the migration and context switching

metrics of each test with the base readings obtained by the tests conducted on 2 cores under

SCHED SCBS. The determined scalability ratio expresses how a given metric has changed in

comparison with the base reading. For instance, a scalability ratio of 2 on a 38-40% means that

the metric has doubled in relation with that of the 38-40% utilization test performed on 2 cores

under SCHED SCBS.

Recall that, as shown by Table 6.1, the number of tasks grows linearly and the number of

threads exponentially, as the utilization window and number of cores increase.

m
SCHED SCBS SCHED PCSWS

38-40% 58-60% 73-75% 38-40% 58-60% 73-75%
2 1.00 1.00 1.00 3.18 3.33 3.47
4 0.55 2.96 3.30 11.61 11.51 12.34
8 1.43 5.32 14.10 28.30 25.26 23.41

Table 6.2: Scale up ratios on the number of migrations

Straightforwardly, Table 6.2 shows that SCHED PCSWS incurs a much greater volume of

migrations than SCHED SCBS, resulting from WS operations. However, these values seem to

scale linearly with system utilization, while the scale up ratios of SCHED SCBS keep increas-

ing. Remember that WS operations always choose the highest priority eligible deque as a victim.

Stolen threads immediately raise the priority of the thief CPU, by the absolute deadline of the

thief p-CSWS Residual Capacity Server (RCS). Provided that, on average, each task generate

enough threads to keep all CPUs busy, as parallel threads of the highest priority deques take exe-

cution on several CPU, the later deadline pushable deques are less likely to find a later deadline

CPU to which they might migrate and execute straight away. In essence, this means that each WS

migrations (involving only one task) contributes to reducing group migrations (involving a possi-

116

6.3. OVERHEADS

bly large number of tasks) particularly under high system loads. Surprisingly, SCHED PCSWS

migrations even appear to grow sub-linearly with system utilization on the 8-core tests.

Context switches occur at least twice for each generated task (or thread). Thus, like migra-

tions, context switches are also contingent on the volume of launched tasks and threads.

m
SCHED SCBS SCHED PCSWS

38-40% 58-60% 73-75% 38-40% 58-60% 73-75%
2 1.00 1.00 1.00 1.40 1.31 1.30
4 1.02 1.15 1.31 1.26 1.51 1.45
8 2.89 1.87 1.60 2.95 2.00 1.45

Table 6.3: Scale up ratios on the number of context switches

As expected, because stealing operations always trigger a minimum of two context switches,

the scale up ratios are higher for SCHED PCSWS. However both algorithms seem to scale favor-

ably with the increase on the number of executed tasks and threads. Referring back to Table 6.1,

the volume tasks roughly doubles between tests on 2, 4, and 8 CPUs, while the number of threads

increases several-fold. Regardless, context switches on SCHED PCSWS and SCHED SCBS

grow at a less steeper rate as the number of cores is increased.

117

CHAPTER 6. EXPERIMENTAL EVALUATION

118

Chapter 7

Conclusion

“A problem solved, is a problem caused. That’s the problem with
problems, you sort one out and it makes another.”

— Karl Pilkington

As real-time applications become increasingly prominent in modern day technology, under

the form of Open Real-Time (ORT)

7.1 General Conclusions

The recent outbreak of multi-core chips has turned parallel processing into a main concern. In

an attempt to simplify the development of parallel applications and increase productivity, parallel

programming models allow developers to express parallelism by splitting their programming logic

into concurrent parts, and leaving these parts to be assigned to processors by the underlying

process scheduler. Under this approach known as intra-task parallelism, the scheduler must react

to dynamic changes in the workload at runtime, recognizing the best opportunities for parallel

execution and recomputing the mapping efficiently.

Developing efficient real-time scheduling solutions that sup- port dynamic task-level paral-

lelism is no longer relevant only to the high performance computing niche, but is now a widespread

concern, even in the embedded and real-time do- main.

Modern real-time systems generate increasingly heavy and highly varying workloads and it

is rapidly becoming unreasonable to expect to implement them as single core systems. In fact,

a general shift from single to multi-core processors can be seen both in the general purpose and

embedded domains as an energy-efficient way to boost the performance of individual applications.

Furthermore, real-time systems are no longer restricted to strictly controlled dedicated envi-

ronments. A new concept, formalized in the term of ORTs addresses the scheduling of real-time

tasks and independently developed applications on the same shared resources, requiring addi-

tional heuristics to simultaneously guarantee the timeliness needs of real-time computations and

an acceptable level of interactivity for other executions. In order to achieve these goals, the pro-

119

CHAPTER 7. CONCLUSION

cess scheduler responsible for the assignment of processing time to tasks, must look to utilize the

available resources to the fullest and extract the best performance out of the parallel platform.

Taking advantage of the modular design of the Linux scheduler, we added implemented a new

scheduling policy for dynamic and irregular parallel real-time applications. Although Linux lacks

in real-time predictability, we were able to prove the correctness and efficiency of our scheduler

through execution data collected on extensive experimental tests. Through comparison with a

sequential equivalent of our algorithm, we were able confirm the performance gains resulting

from our heuristic exploitation of parallelism, and legitimate p-CSWS as a viable solution for

real-time scheduling of parallel real-time tasks on open environments.

7.2 Summary of the Main Contributions

Motivated by the recent success of SCHED DEADLINE (Section 4.3.7) and SCHED RTWS

(Section 4.3.8), this thesis undertook the scheduling of dynamic and irregular parallel real-time

tasks without tardiness interferences on the Linux kernel. While SCHED DEADLINE showed

how CBS theory can be applied to the scheduling of real-time tasks without tardiness interferences

on Linux, SCHED RTWS proposed a priority-aware WS strategy to exploit intra-task parallelism

on executions scheduled by the WCET.

Following the theoretical description of the p-CSWS scheduler (Section 3.3.3.2), we have

combined bandwidth reservation with CASH and WS on the implementation of SCHED PCSWS:

a new multiprocessor scheduling class for the Linux kernel able to isolate the overruns of real-time

tasks and scale their performance through parallel processing. To the extent of our knowledge, no

research has ever tackled this issue.

Through simulation tests, SCHED PCSWS has shown to effectively reduce the mean re-

sponse times of real-time applications through parallel processing. Even though Linux is not

designed as a real-time system, and unable to provide HRT determinism, none of the launched

tasks missed their deadlines on the conducted test runs.

7.3 Future Work

On future developments, we intend to collect metrics on several performance hindrances of the

algorithm, and study how they can be improved to benefit the efficiency of the system. Although

the algorithm appeared to scale well with an increasing number of tasks and processors, believe

that some of the implemented features can be refined. For instance, by migrating each task indi-

vidually as a part of the load-balancing mechanism, we may be able to cut down migrations dra-

matically. Another point of concern lies with the 4 cpudl instances declared on root domain

and globally shared by all CPUs. By conducting the experimental tests on a maximum of 8 cores,

we were not able to evaluate the impact of global contention overheads on these data structures,

but we assume that they may cause degrade the performance of the system as the number of CPUs

scales.

120

7.3. FUTURE WORK

Finally, we expect to improve the achievable parallelism by resolving the implementation flaw

resulting from the creation of overlapping RCSs (Section 5.2.3.3).

121

122

Bibliography

Kernel documentation on cgroups. Available at https://www.kernel.org/doc/

Documentation/cgroups/cgroups.txt, a.

Kernel documentation on cpusets. Available at https://www.kernel.org/doc/

Documentation/cgroups/cpusets.txt, b.

Kernel documentation on scheduling domains. Available at https://www.kernel.org/

doc/Documentation/scheduler/sched-domains.txt, c.

Josh Aas. Understanding the linux 2.6.8.1 cpu scheduler. 22:05, 2005.

Luca Abeni and Giorgio Buttazzo. Integrating multimedia applications in hard real-time sys-

tems. In Proceedings of the 19th IEEE Real-Time Systems Symposium, page 4, Madrid, Spain,

December 1998.

Umut A. Acar, Guy E. Blelloch, and Robert D. Blumofe. The data locality of work stealing. In

Theory of Computing Systems, pages 1–12, 2000.

Adeos. Adeos.org. Available at http://home.gna.org/adeos/.

Gene M. Amdahl. Validity of the single-processor approach to achieving large-scale computing

capabilities. In In AFIPS Conference Proceedings, pages 483–485, 1967.

Björn Andersson and Jan Jonsson. Preemptive multiprocessor scheduling anomalies. In Proceed-

ings of the 16th International Parallel and Distributed Processing Symposium, page 271, April

2002.

Björn Andersson, Sanjoy Baruah, and Jan Jonsson. Static-priority scheduling on multiprocessors.

In In Proc. 22nd IEEE Real-Time Systems Symposium, pages 193–202. Society Press, 2001.

AQuoSA Project. AQuoSA - Adaptive Quality of Service Architecture. Available at http:

//aquosa.sourceforge.net/index.php.

OpenMP ARB. Openmp. Available at http://www.openmp.org/.

Nimar S. Arora, Robert D. Blumofe, and C. Greg Plaxton. Thread scheduling for multipro-

grammed multiprocessors. In Proceedings of the 10th annual ACM symposium on Parallel

algorithms and architectures, pages 119–129, New York, NY, USA, 1998. ACM.

123

Theodore P. Baker. A comparison of global and partitioned edf schedulability tests for multipro-

cessors. Technical report, In International Conf. on Real-Time and Network Systems, 2005a.

T.P. Baker. An analysis of edf schedulability on a multiprocessor. Parallel and Distributed Sys-

tems, IEEE Transactions on, 16(8):760 – 768, aug. 2005b.

S. K. Baruah, N. K. Cohen, C. G. Plaxton, and D. A. Varvel. Proportionate progress: A notion of

fairness in resource allocation. Algorithmica, 15:600–625, 1996.

Sanjoy Baruah and Joël Goossens. Scheduling real-time tasks: Algorithms and complexity, 2003.

Sanjoy Baruah, Joël Goossens, and Giuseppe Lipari. Implementing constant-bandwidth servers

upon multiprocessor platforms. In Proceedings of the 8th IEEE Real-Time and Embedded

Technology and Applications Symposium, pages 154–163, September 2002.

Sanjoy K. Baruah. Optimal utilization bounds for the fixed-priority scheduling of periodic task

systems on identical multiprocessors. IEEE Transactions on Computers, 2004.

Evgenij Belikov, Pantazis Deligiannis, Prabhat Totoo, Malak Aljabri, and Hans-Wolfgang Loidl.

A survey of high-level parallel programming models. Technical Report HW-MACS-TR-0103,

Department of Computer Science, Heriot-Watt University, December 2013.

Robert D. Blumofe and Charles E. Leiserson. Space-efficient scheduling of multithreaded compu-

tations. In Proceedings of the 25th ACM symposium on Theory of computing, pages 362–371,

New York, NY, USA, 1993. ACM.

Robert D. Blumofe and Charles E. Leiserson. Scheduling multithreaded computations by work

stealing. Journal of the ACM, 46(5):720–748, September 1999.

Daniel Bovet and Marco Cesati. Understanding The Linux Kernel. Oreilly & Associates Inc,

2005. ISBN 0596005652.

Clay Breshears. The Art of Concurrency: A Thread Monkey’s Guide to Writing Parallel Applica-

tions. O’Reilly Media, Inc., 2009. ISBN 0596521537, 9780596521530.

Eric A. Brewer. Towards robust distributed systems, 2000.

Peter Brucker. Scheduling Algorithms. Springer Publishing Company, Incorporated, 5th edition,

2007. ISBN 9783540695158.

A. Burns. Scheduling hard real-time systems: A review, 1991.

Alan Burns and Andy Wellings. Real-Time Systems and Programming Languages: Ada, Real-

Time Java and C/Real-Time POSIX. Addison-Wesley Educational Publishers Inc, USA, 4th

edition, 2009. ISBN 0321417453, 9780321417459.

Giorgio C. Buttazzo. Rate monotonic vs. edf: judgment day. Real-Time Syst., 29(1):5–26, January

2005.

124

Marco Caccamo, Giorgio Buttazzo, and Lui Sha. Capacity sharing for overrun control. In Pro-

ceedings of 21th IEEE RTSS, pages 295–304, Orlando, Florida, 2000.

Marco Caccamo, Giorgio C. Buttazzo, and Deepu C. Thomas. Efficient reclaiming in reservation-

based real-time systems with variable execution times. IEEE Transactions on Computers, 54

(2):198–213, February 2005.

John Carpenter, Shelby Funk, Philip Holman, Anand Srinivasan, James Anderson, and Sanjoy

Baruah. A categorization of real-time multiprocessor scheduling problems and algorithms. In

Handbook on Scheduling Algorithms, Methods, and Models. Chapman Hall/CRC, Boca, 2004.

David Chase and Yossi Lev. Dynamic circular work-stealing deque. In Proceedings of the 17th

ACM Symposium on Parallelism in Algorithms and Architectures, pages 21–28, 2005.

Sébastien Collette, Liliana Cucu, and Joël Goossens. Integrating job parallelism in real-time

scheduling theory. Information Processing Letters, 106:180–187, May 2008.

F. Cottet, J. Delacroix, C. Kaiser, and Z. Mammeri. Scheduling in Real-Time Systems. Wiley,

2002. ISBN 9780470847664.

Sadegh Davari and Lui Sha. Sources of unbounded priority inversions in real-time systems and

a comparative study of possible solutions. SIGOPS Operating System Reviews, 26:110–120,

April 1992.

Z. Deng and J. W.-S. Liu. Scheduling real-time applications in an open environment. In Proceed-

ings of the 18th IEEE RTSS, page 308, Washington, DC, USA, 1997.

Umamaheswari C. Devi and J. H. Anderson. Tardiness bounds under global edf scheduling on a

multiprocessor. Real-Time Syst., 38(2):133–189, February 2008.

Sudarshan Kumar Dhall. Scheduling periodic-time - critical jobs on single processor and multi-

processor computing systems. PhD thesis, Champaign, IL, USA, 1977. AAI7714943.

Javier Diaz, Camelia Munoz-Caro, and Alfonso Nino. A survey of parallel programming models

and tools in the multi and many-core era. IEEE Transactions on Parallel and Distributed

Systems, 23:1369–1386, 2012.

Xiaoning Ding, Kaibo Wang, Phillip B. Gibbons, and Xiaodong Zhang. Bws: balanced work

stealing for time-sharing multicores. In Proceedings of the 7th ACM European Conference on

Computer Systems, pages 365–378, New York, NY, USA, 2012. ACM.

Jack Dongarra, Ian Foster, Geoffrey Fox, William Gropp, Ken Kennedy, Linda Torczon, and

Andy White, editors. Sourcebook of parallel computing. Morgan Kaufmann Publishers Inc.,

San Francisco, CA, USA, 2003. ISBN 1-55860-871-0.

Hesham El-Rewini and Mostafa Abd-El-Barr. Advanced Computer Architecture and Parallel

Processing. Wiley Interscience, Hoboken, New Jersey, USA, 2005. ISBN 0471467405.

125

D. Faggioli, M. Trimarchi, and F. Checconi. Sched deadline. Available at https://github.

com/jlelli/sched-deadline.

Dario Faggioli, Michael Trimarchi, and Fabio Checconi. An implementation of the earliest dead-

line first algorithm in linux. In Proceedings of the 2009 ACM symposium on Applied Comput-

ing, pages 1984–1989, March 2009.

João Ferreira and Luı́s Nogueira. Supporting server-based scheduling of parallel real-time tasks

in linux. In Proceedings of the 5th INForum, Évora, Portugal, September 2013.

Nathan Fisher, Joël Goossens, and Sanjoy Baruah. Optimal online multiprocessor scheduling of

sporadic real-time tasks is impossible. Real-Time Systems, 45(1-2):26–71, 2010.

M. Flynn. Some computer organizations and their effectiveness. IEEE Transactions on Comput-

ers, c-21:948–960, 1972.

José Fonseca. Supporting intra-task parallelism in real-time multiprocessor systems. Master’s

thesis, Departamento de Engenharia Informática, Instituto Superior de Engenharia do Porto,

September 2012.

Ian Foster. Designing and Building Parallel Programs: Concepts and Tools for Parallel Software

Engineering. Addison-Wesley Longman Publishing Co., Inc., Boston, MA, USA, 1995. ISBN

0201575949.

Matteo Frigo, Charles E. Leiserson, and Keith H. Randall. The implementation of the cilk-5

multithreaded language. ACM SIGPLAN Notices, 33(5):212–223, 1998.

M. R. Garey and David S. Johnson. Computers and Intractability: A Guide to the Theory of

NP-Completeness. W. H. Freeman, 1979. ISBN 0-7167-1044-7.

P. Gerum. The xenomai project, implementing a rtos emulation framework on gnu/linux. 2002.

H. H. Goldstein and J. von Neumann. On the principles of large scale computing machines. John

von Neumann: Collected Works, V:1–32, 1961.

Joël Goossens, Shelby Funk, and Sanjoy Baruah. Priority-driven scheduling of periodic task

systems on multiprocessors. Real-Time Systems Journal, 25:187–205, September 2003.

R.L. Graham. Bounds on the performance of scheduling algorithms. In E.G. Coffman and J.L.

Bruno, editors, Computer and Job-Shop Scheduling Theory, pages 165–227. Wiley, New York,

1976.

Yi Guo, Rajkishore Barik, Raghavan Raman, and Vivek Sarkar. Work-first and help-first schedul-

ing policies for async-finish task parallelism. In Proceedings of the 2009 IEEE International

Symposium on Parallel&Distributed Processing, IPDPS ’09, pages 1–12, Washington, DC,

USA, 2009. IEEE Computer Society.

Susanne E Hambrusch. Models for parallel computation. In ICPP Workshop, pages 92–95, 1996.

126

Danny Hendler, Yossi Lev, Mark Moir, and Nir Shavit. A dynamic-sized nonblocking work

stealing deque. Distributed Computing, 18:189–207, February 2006.

Mark D. Hill and Michael R. Marty. Amdahl’s law in the multicore era. Computer, 41(7):33–38,

July 2008.

Intel Corporation. Parallel building blocks. Available at http://software.intel.com/

en-us/articles/intel-parallel-building-blocks/.

Klaus Jansen. Scheduling malleable parallel tasks: An asymptotic fully polynomial time approx-

imation scheme. Algorithmica, 39(1):59–81, January 2004.

Harry F. Jordan. Shared versus distributed memory multiprocessors. Technical report, Institute

for Compter, 1991.

S. Kato and Y. Ishikawa. Gang edf scheduling of parallel task systems. In Proceedings of the

30th IEEE Real-Time Systems Symposium, pages 459 –468, December 2009.

Michael Kerrisk. The Linux Programming Interface: A Linux and UNIX System Programming

Handbook. No Starch Press, San Francisco, CA, USA, 1st edition, 2010. ISBN 1593272200,

9781593272203.

Christoph Kessler and Jörg Keller. Models for parallel computing: Review and perspectives. In

PROCEEDINGS, PARS, pages 13–29, 2007.

Leonard Kleinrock. Queueing Systems, volume II: Computer Applications. Wiley Interscience,

1976. (Published in Russian, 1979. Published in Japanese, 1979.).

H. Kopetz. Real-Time Systems: Design Principles for Distributed Embedded Applications. Real-

Time Systems Series. Springer, 2011. ISBN 9781441982377.

Ajay D. Kshemkalyani and Mukesh Singhal. Distributed Computing: Principles, Algorithms,

and Systems. Cambridge University Press, New York, NY, USA, 1 edition, 2008. ISBN

0521876346.

Vipin Kumar. Introduction to Parallel Computing. Addison-Wesley Longman Publishing Co.,

Inc., Boston, MA, USA, 2nd edition, 2002. ISBN 0201648652.

Yu-Kwong Kwok and Ishfaq Ahmad. Static scheduling algorithms for allocating directed task

graphs to multiprocessors. ACM Comput. Surv., 31(4):406–471, December 1999.

Oh-Heum Kwon and Kyung-Yong Chwa. Scheduling parallel tasks with individual deadlines.

In Algorithms and Computations, volume 1004 of Lecture Notes in Computer Science, pages

198–207. Springer Berlin / Heidelberg, 1995.

G. Kyriazis. Heterogeneous system architecture: A technical review. Technical report, AMD,

2013.

127

K. Lakshmanan, S. Kato, and R. Rajkumar. Scheduling parallel real-time tasks on multi-core

processors. In Proceedings of the 31st IEEE Real-Time Systems Symposium, pages 259 –268,

December 2010.

Phillip A. Laplante and Seppo J. Ovaska. Real-Time Systems Design and Analysis: Tools for the

Practitioner. Wiley-IEEE Press, 4th edition, 2011. ISBN 0470768649, 9780470768648.

Doug Lea. A java fork/join framework. In Proceedings of the ACM 2000 conference on Java

Grande, pages 36–43, 2000.

Insup Lee, Joseph Y-T. Leung, and Sang H. Son. Handbook of Real-Time and Embedded Systems.

Chapman & Hall/CRC, 1st edition, 2007. ISBN 1584886781, 9781584886785.

Wan Yeon Lee and Heejo Lee. Optimal scheduling for real-time parallel tasks. Transactions on

Information and Systems, E89-D:1962–1966, June 2006.

Juri Lelli. Design and development of deadline based scheduling mechanisms for multiprocessor

systems. Master’s thesis, Facoltá di Ingegneria, Universitá di Pisa, June 2010.

Juri Lelli, Dario Faggioli, and Tommaso Cucinotta. An efficient and scalable implementation of

global edf in linux, 2011.

J. Leung and J. Whitehead. On the complexity of fixed-priority scheduling of periodic real-time

tasks. Performance Evaluation, 2(4):237–250, December 1982.

Caixue Lin and Scott A. Brandt. Improving soft real-time performance through better slack

reclaiming. In Proceedings of the 26th IEEE RTSS, pages 410–421, 2005.

Giuseppe Lipari and Sanjoy Baruah. Greedy reclamation of unused bandwidth in constant-

bandwidth servers. In Proceedings of the 12th EuroMicro Conference on Real-Time Systems,

pages 193–200, Stockholm, Sweden, 2000.

C. L. Liu. Scheduling Algorithms for Multiprocessors in a Hard Real-Time Environment. JPL

Space Programs Summary 37-60, II:28–31, 1969.

C. L. Liu and J. Layland. Scheduling algorithms for multiprogramming in a hard-real-time envi-

ronment. Journal of the ACM, 1(20):40–61, 1973.

Robert Love. Linux Kernel Development. Addison-Wesley Professional, 3rd edition, 2010. ISBN

0672329468, 9780672329463.

B. M. Maggs, L. R. Matheson, and R. E. Tarjan. Models of parallel computation: a survey and

synthesis. In Proceedings of the 28th Hawaii International Conference on System Sciences,

HICSS ’95, pages 61–, Washington, DC, USA, 1995. IEEE Computer Society.

Rajib Mall. Real-Time Systems: Theory and Practice. Prentice Hall Press, Upper Saddle River,

NJ, USA, 1st edition, 2009. ISBN 8131700690, 9788131700693.

128

G. Manimaran, C. Siva Ram Murthy, and Krithi Ramamritham. A new approach for scheduling of

parallelizable tasks inreal-time multiprocessor systems. Real-Time Systems Journal, 15:39–60,

July 1998.

P. Mantegazza, E. L. Dozio, and S. Papacharalambous. Rtai: Real time application interface.

Linux J., 2000(72es), April 2000.

Luca Marzario, Giuseppe Lipari, Patricia Balbastre, and Alfons Crespo. Iris: A new reclaiming

algorithm for server-based real-time systems. In Proceedings of the 10th IEEE Real-Time and

Embedded Technology and Applications Symposium, page 211, Toronto, Canada, 2004.

Timothy Mattson, Beverly Sanders, and Berna Massingill. Patterns for Parallel Programming.

Addison-Wesley Professional, first edition, 2004. ISBN 0321228111.

Wolfgang Mauerer. Professional Linux Kernel Architecture. Wrox Press Ltd., Birmingham, UK,

UK, 2008. ISBN 0470343435, 9780470343432.

Wen mei Hwu, Kurt Keutzer, and Timothy G. Mattson. The concurrency challenge. IEEE Design

& Test of Computers, 25(4):312–320, 2008.

Clifford W. Mercer, Stefan Savage, and Hideyuki Tokuda. Processor capacity reserves: Oper-

ating system support for multimedia applications. In Proceedings of the IEEE International

Conference on Multimedia Computing and Systems, pages 90–99, May 1994.

Microsoft Corporation. Task parallel library. Available at http://msdn.microsoft.com/

en-us/library/dd460717.aspx.

A.K. Mok. Fundamental Design Problems of Distributed Systems for the Hard Real-Time Envi-

ronment. PhD thesis, Massachusetts Institute of Technology, 1983.

Girija J. Narlikar. Scheduling threads for low space requirement and good locality. In In Pro-

ceedings of the Eleventh Annual ACM Symposium on Parallel Algorithms and Architectures

(SPAA), pages 83–95, 1999.

Girija J. Narlikar and Guy E. Blelloch. Pthreads for dynamic and irregular parallelism. In Pro-

ceedings of the 1998 ACM/IEEE conference on Supercomputing (CDROM), Supercomputing

’98, pages 1–16, Washington, DC, USA, 1998. IEEE Computer Society.

C. A. Navarro, N. Hitschfeld-Kahler, and L. Mateu. A survey on parallel computing and its appli-

cations in data-parallel problems using gpu architectures. Communications in Computational

Physics, 15:285–329, 2014.

Geoffrey Nelissen. Efficient Optimal Multiprocessor Scheduling Algorithms for Real-Time Sys-

tems. PhD thesis, Université Libre de Bruxelles, 2013.

Bill Nitzberg and Virginia Lo. Distributed shared memory: A survey of issues and algorithms.

Computer, 24(8):52–60, August 1991.

129

Luı́s Nogueira and Luı́s Miguel Pinho. Server-based scheduling of parallel real-time tasks. In

Proceedings of the Tenth ACM International Conference on Embedded Software, EMSOFT

’12, pages 73–82, New York, NY, USA, 2012. ACM.

OCERA Project. Open components for embedded real-time applications. Available at http:

//www.ocera.org/index.html.

Rodolfo Pellizzoni and Marco Caccamo. M-cash: A real-time resource reclaiming algorithm for

multiprocessor platforms. Real-Time Systems, 40:117–147, 2008.

Cynthia A. Phillips, Cliff Stein, Eric Torng, and Joel Wein. Optimal time-critical scheduling via

resource augmentation (extended abstract). In Proceedings of the twenty-ninth annual ACM

symposium on Theory of computing, STOC ’97, pages 140–149, New York, NY, USA, 1997.

ACM.

PREEMPT RT. CONFIG PREEMPT RT Patch-Set. Available at http://www.kernel.

org/pub/linux/kernel/projects/rt/.

Jelica Protic, Milo Tomasevic, and Veljko Milutinovic, editors. Distributed Shared Memory:

Concepts and Systems. IEEE Computer Society Press, Los Alamitos, CA, USA, 1st edition,

1997. ISBN 0818677376.

M.J. Quinn. Parallel Programming in C with MPI and OpenMP. McGraw-Hill Higher Education.

McGraw-Hill Higher Education, 2004. ISBN 9780072822564.

Thomas Rauber and Gudula Rünger. Parallel Programming - for Multicore and Cluster Systems.

Springer, 2010. ISBN 978-3-642-04817-3.

Mark Roth, Micah J. Best, Craig Mustard, and Alexandra Fedorova. Deconstructing the overhead

in parallel applications. In Proceedings of the 2012 IEEE International Symposium on Work-

load Characterization, IISWC 2012, La Jolla, CA, USA, November 4-6, 2012, pages 59–68.

IEEE Computer Society, 2012.

Politecnico di Milano RTAI, Dipartimento di Ingegneria Aerospaziale. Realtime application in-

terface for linux. Available at http://www.rtai.org/.

Wind River RTLinux. Real-time linux. Available at http://www.windriver.com/

products/platforms/real-time_core/.

Larry Rudolph, Miriam Slivkin-Allalouf, and Eli Upfal. A simple load balancing scheme for

task allocation in parallel machines. In Proceedings of the Third Annual ACM Symposium on

Parallel Algorithms and Architectures, SPAA ’91, pages 237–245, New York, NY, USA, 1991.

ACM.

S. Sahni. Preemptive scheduling with due dates. Technical report, Department of Computer

Science, University of Minnesota, 1977.

130

Abusayeed Saifullah, Kunal Agrawal, Chenyang Lu, and Christopher Gill. Multi-core real-time

scheduling for generalized parallel task models. In Proceedings of the 32nd IEEE Real-Time

Systems Symposium, pages 217 –226, Vienna, Austria, December 2011.

Volker Seeker. Process scheduling in linux. Technical report, University of Endinburgh, 2013.

Michael Short. Improved task management techniques for enforcing edf scheduling on recurring

tasks. In Proceedings of the 2010 16th IEEE Real-Time and Embedded Technology and Ap-

plications Symposium, RTAS ’10, pages 56–65, Washington, DC, USA, 2010. IEEE Computer

Society.

David B. Skillicorn and Domenico Talia. Models and languages for parallel computation. ACM

Comput. Surv., 30(2):123–169, June 1998.

Anand Srinivasan and Sanjoy Baruah. Deadline-based scheduling of periodic task systems on

multiprocessors. Inf. Process. Lett., 84(2):93–98, October 2002.

John A. Stankovic. Misconceptions about real-time computing: A serious problem for next-

generation systems. Computer, 21(10):10–19, 1988.

Kenjiro Taura, Kunio Tabata, and Akinori Yonezawa. Stackthreads/mp: integrating futures into

calling standards. ACM SIGPLAN Notices, 34(8):60–71, 1999.

Sreekrishnan Venkateswaran. Essential Linux Device Drivers. Prentice Hall Press, Upper Saddle

River, NJ, USA, first edition, 2008. ISBN 9780132396554.

A. W. Wilson, Jr. Hierarchical cache/bus architecture for shared memory multiprocessors. In

Proceedings of the 14th Annual International Symposium on Computer Architecture, ISCA

’87, pages 244–252, New York, NY, USA, 1987. ACM.

Xenomai. Real-time framework for linux.

Karim Yaghmour. Adaptive domain environment for operating systems. Technical report, Opersys

Inc.

V. Yodaiken. The rtlinux manifesto. In Proceeding of the Fifth Linux Expo, Raleigh, North

Carolina, Mar. 1999.

131

