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ABSTRACT 

 
While fractional calculus (FC) is as old as integer calculus, its application has been mainly restricted to mathematics. However, many 
real systems are better described using FC equations than with integer models. FC is a suitable tool for describing systems 
characterised by their fractal nature, long-term memory and chaotic behaviour. It is a promising methodology for failure 
analysis and modelling, since the behaviour of a failing system depends on factors that increase the model’s complexity. This 
paper explores the proficiency of FC in modelling complex behaviour by tuning only a few parameters. This work proposes a novel 
two-step strategy for diagnosis, first modelling common failure conditions and, second, by comparing these models with real 
machine signals and using the difference to feed a computational classifier. Our proposal is validated using an electrical motor 
coupled with a mechanical gear reducer. 
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systems 

 

 

1. Introduction 

Competing in the global market  requires  the production of 

high-quality goods with low development and manufac- turing 

periods. New strategies that result in a faster qual- ity control of 

manufactured products, whilst minimising downtime due to 

equipment maintenance, are thus essen- tial (Gonc¸alves, 2011; 

Liu & Makis, 2008; Shikari & Sadi- wala, 2004). A short 

product development time and the integration of several 

technologies require highly trained personnel to carry out 

traditional inspections, quality con- trols and fault diagnoses. 

Recently, there has been the de- mand for analytical techniques  

in signal-issued sensors, to describe the behaviour of devices 

with various compo- nents interacting. This corresponds to a 

demand for a more highly skilled workforce with a deep 

knowledge of differ- ent technologies to be used, supporting their 

diagnoses with computer-recommended  systems. 

A typical condition-based diagnosis system requires a set of 

signals with information concerning the current state of the 

machine, reflecting various phenomena such as vi- bration, 

noise, temperature and lubrication, amongst others (Funk & 

Jackson, 2005; Jayaswal, Wadhwani, & Mulchan- dani, 2008). 

Each signal needs to be treated while discarding irrelevant 

information accordingly to the type of failure to be isolated. The 

resulting signals are analysed by means of one or more 

processing techniques, in order to simplify the 

failure detection process. That set of signals must contain 

sufficient information to identify the machine’s condition, 

allowing an expert to diagnose the device and plan a main- 

tenance action (Bengtsson, Olsson, & Funk, 2004). 

A common computer-aided technique used in fault 

diagnosis identifies the dynamic system of a machine using 

ordinary differential equations (Duvar, Eldem, & Saravanan, 

1990). In the presence of a fault, the system leads to the variation 

of specific parameters, useful not only to diagnose the problem, 

but also to estimate the state of the failure. However, this strategy 

is only useful when the de- vice is simple and its model can be 

satisfactorily identified adopting a reduced number of parameters 

(Ljung, 1987). In this case, the space of parameters is small 

enough to neglect the problem of dimensionality (Kantardzic, 

2003). Unfor- tunately, this is not a common situation as real 

systems typically contain a large number of interactive 

components, as well as phenomena that are difficult to model 

(Wang, Wang, & Han, 2010). 

Fractional calculus (FC) has been applied by researchers from 

different areas, due of its ability to describe complex phenomena 

using a smaller number of parameters, than its integer 

counterpart, so as to say, taking advantage of the additional 

degree of freedom given by the arbitrary order (Espindola, 

Bavastri, & Lopes, 2008; Gutie´rrez-Carvajal, Rosa ŕio,  & 

Machado, 2010; Hartley & Lorenzo,    2003). 
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However, its use has been restricted to some engineering 

problems (Santos, Silva, & Suetake, 2012), mainly due to the 

lack of a simple geometric and physical interpretation 

(Machado, 2013; Podlubny, 1994). In practice, the solution of a 

dynamic model of fractional order approximates com- 

or 

 

   
 

  

plex behaviours emerging from systems with multiple inter- 

actions (Vinagre, 2007). Consequently, many real systems can 

be better approximated using compact fractional order equations 

(Petras, 2006). This is a desirable approach to an automatic 

system for failure identification, since automatic classifiers 

require a balance between informative inputs and the amount of 

entries (Kantardzic, 2011). Therefore, iden- tifying a system using FC results in a set of indicators 

 

An advantage of using this definition is that, unlike 

other definitions, it has a strict definition of the Laplace transformation, 

which facilitates identification algorithms. 

It is formally written as 

 
L{0Dα α 

0
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of the machine’s condition associated with each parameter. This 

work proposes a new methodology based on intelligent 

 

maintenance that continually assesses the condition of the 

system, restricting the amount of required parameters in the 

identification process. The identified model is used in a clas- 

sification algorithm that allows the device to be diagnosed. 

The paper is organised as follows: Section 2 introduces the 

fundamentals of FC; Section 3 demonstrates the ex- perimental 

workbench configuration; Section 4 presents FC implementation 

and the system validation diagnostic; Section 5 illustrates some 

experimental results and Sec- tion 7 outlines the main 

conclusions of this work. 

 

2. Fundamentals of fractional calculus 

FC represents the generalisation of integer calculus to real or 

complex order (Adams, Hartley, & Lorenzo, 2006). One of the 

reasons why derivatives and integrals of fractional order are 

still relatively unknown in engineering is that the calculation 

of fractional order has multiple definitions (Ortigueira, 

Machado, & da Costa, 2005), making it diffi- cult to interpret 

geometrically (Machado, 2003; Moshrefi- Torbaty & Hammond, 

1998; Podlubny, 2002). However, many phenomena are described 

by formulations of frac- tional order, as it has the ability to express 

the past behaviour by means of a limited number of coefficients 

(Magin & Ovadia, 2008; Machado, Galhano, & Trujillo, 2014). In 

this work, we use the Riemman–Liouville formulation, whose 

integral (Jc) and derivative (Dα ) definitions are introduced in the 

following equations, respectively (Cafagna, 2007): 

 t

 
 

3. Experimental workbench configuration 

This section defines the experimental workbench proposed for 

testing and validation. Our experimental bench for test- ing the 

fault-detection algorithm proposed herein consists of 

transmitting power through a gear reduction with mul- tiple 

stages driven by a DC motor, as shown in Figure 1. An accurate 

model of this machine is difficult to obtain analytically, due to 

the large number of interactive compo- nents such as gears and 

bearings. Moreover, the interaction between two gears is still not 

a well-known phenomenon, with many parameters difficult to 

measure or to estimate, since they depend on imperfections in 

the surface of the teeth, the shape of the profile, the contact 

time between teeth, temperature, friction and others. 

The test bench include a voltage source which feeds ac- 

tuators and instrumentation equipment, a DC motor to drive the 

gearbox composed of four gears produced by rapid pro- totyping 

which introduces several types of faults in a simple way. An 

accelerometer measures the bearing vibration, as shown in 

Figure 2. Signals generated by the actuator are measured by a 

resistor (motor current) and a tachometer (speed of the motor 

shaft). The signals from sensors are sent to a central computer 

through the data acquisition interface PCI-6221 of National 

InstrumentsOR  , with a CB-68LP card. The set of acquisition has 

16-bit precision in reading ana- 

Jα 

 

logue signals and a maximum sampling frequency of  2.5 

       MHz. The acquired signals are stored in a database gener- 

 

  

  
 

    
  ated by a control programme acquisition implemented   in 

LabviewOR  . 

Figure 3 shows the workbench operation diagram. It i

with m ∈ Z+ and m − 1 < α ≤ m. The symbol r stands for gamma 
function (Gorenflo & Mainardi, 2008; Vale ŕio, 

Trujillo, Rivero, Machado, & Baleanu, 2013), defined as 

not possible to measure a fault directly from the source, due to the 

transmission path to be physically followed before the signal is 

measured. Figure 2 demonstrates the trans- mission path 

between a localised failure in the fourth gear, the accelerometer 

(vibration sensor) and the resistor (motor 

  current sensor). 



 

 

 

 

Figure 1.    Experimental platform. 

 

This work studies four operating conditions, corre- sponding 

to the transmission path from the failure until the sensor, as 

follows: 

 

• Case 1. Normal operating conditions. The system shows 

no fault and operates as standard. 

• Case 2. Broken tooth in gear 2. The second gear is 

missing one of its nine teeth. The vibration signal 

(related to the failure) propagates through gears 2, 3 and 

4, up to being measured by the accelerometer. This is a 

failure that least affects the signal obtained by the 

accelerometer, since the long transmission path reduces its 

intensity. Moreover, the signal propagates through the 

resistor in the circuit of the motor current. 

• Case 3. Broken tooth in gear 3. The pattern of vibration-
related failure in gear 3 modulates through 

 

 

 

 

Figure 2.   Detail of the gearbox and transmission path associated with failure of one tooth in gear 4. 
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Figure 3.    Block diagram of the experimental bench. 

 

 

gears 3 and 4 (transmission path to the accelerom- eter). 

The fault signal (which affects the motor cur- rent) 

propagates through gears 1, 2, 3, and the motor 

Consequently,  identifying a system can be treated   as a 

problem of minimising the error obtained between the model 

and the actual data. Therefore, one must find the best 

circuit. parameter vector pC    that minimises the objective function 

• Case 4. Broken tooth in gear 4. With the failure of 
missing a cog, the transmission path of the signal 

propagates through gear 4 to reach the accelerometer. 

Moreover, propagation takes place by gears 1, 2, 3, and 

the motor circuit. 

 

 

4. FC implementation and system 

validation diagnostic 

The methodology for the development of the proposed 

strategy is based on the layered model, Open Systems Ar- 

chitecture for Condition-Based Maintenance (OSA-CBM) 

(Bengtsson et al., 2004). Initially, different signals of in- terest 

were acquired to diagnose failures such as vibra- tion, position, 

electric current and others (Layers 1 and 2, OSA-CBM). The 

filtering is performed with the compo- nents of the acquired 

signal and by identifying the model parameters (Layer 3). These 

operations generate a set of indices, which allow the state of 

the machine (Layer 4) to be assessed, before being diagnosed 

by an experienced worker, or by a system with some diagnosis 

analysis tech- nique (Layer 5). 

 

4.1. Adjusting the system gear model 

Identify a model in the following four different steps: 

 

(1) Assume a model structure to be identified. 

(2) Obtain and process the experimental data. 

(3) Identify the model parameters. 

(4) Validate the model by comparing the results to a set of 

data that was not used to find the parameters. 

error fe from the real system Gr(s) and the model Gm( pC, s): 

  

Different approaches may be used to minimise (6) with- out 

losing generality. In this study, we adopt the simplex method 

(Lagarias, Reeds, Wright, & Wright, 1998), which consists of an 

iterative algorithm that searches for a candi- date solution by 

calculating the centroid from three starting points. It subsequently 

analysed whether the centroid is bet- ter than any of the starting 

points, and, if so, it replaces the worst of them. The algorithm 

runs until it converges, or until it reaches a specified number of 

iterations. 

 

 

4.2. Objective function 

The input signals are obtained from an accelerometer lo- cated 

over the output bearing, since it must obtain the vibration 

due to failure. Changes on the vibration signa- tures directly 

affect the motor torque and hence the motor current (output 

signal). For each failure mode presented herein, information was 

acquired from the experimental bench working at different 

speeds. After obtaining accel- eration records, a filtering 

operation was applied using a moving average (MA) to reduce 

the effect of noise. Fur- thermore, the Fourier transformation 

was calculated using the Hanning window with a duration of 

one second to re- duce noise introduced during the scanning 

process. Here the motor current (I) is considered as the system 

output and the voltage generated by the accelerometer as input 

(V). We can define the current state of the device with the 

empirical estimation of the transfer function (EETF) (Ljung,   

1987) 



 

 

as follows: 

 

 

 
 

 

 

 

where 
F (·) is 
the 

Fourier transform, i denotes the ith failure and ω is the angular 
frequency, in the range 100–1000 rad/s, since the beat frequency 
of the gears’ teeth is within that 

bandwidth. 

We propose identifying each EETFi using an FC model, with a 

structure having five parameters: 

 

 

 

 

 
 

The parameters of this model were adjusted using a set of 20 

data-sets for tuning and 10 data-sets for evaluation, with an 

objective function that minimises the error between GEETFi   and 

gi: 

 

  

 

We 

assume that a particular failure behaves close to a specific 

condition model. Therefore, we compute the dif- ference 

between the actual machine system GEETF and each condition 

model Gi, using the mean square error to each model as a 

failure index to be assessed by an automated classification 

system. 

 

 

4.3. Failure diagnosis 

The aim is to evaluate the proposed strategy for failure di- 

agnosis. Our technique enables automated grading testing when 

a particular device is failing, and allows one to lo- cate the part 

with the problem and to assess its state. Faults are classified by 

the kNN algorithm (k-nearest neighbours). This strategy involves 

comparing the model identified in the current state of the 

machine with a database contain- ing known flaws identified 

with models. The classification completes itself with the 

categories of k closest systems, by means of a strategy of choice 

(Cover & Hart, 1967). This method is presented in Algorithm 1. 

 

  

Algorithm 1: k-nearest neighbours, where the type of failure is 
estimated from the more representatives in the k-neighbourhood 

  

Data: systemactual 
Result: kind of failure 
i ← 0; 
while i < number of condition_models stored in the database do 

di ← |condition modeli e systemactual |; 

i ← i  + 1; 
while k-th model is close to systemactual do 

kind of failure ← Type(systemi ) ⊕ Type failure; 

 
 

 
  

 

Figure 4. Approximation model (fractional and integer  order) 
for each EETF failure. 

 

5. Results 

Following the methodology described, we adopted a set of 240 

GEETF data records, not used previously for parameter 

identification of standard Gi(s), introducing four known fault 

conditions. Figure 4 demonstrates the identification results 

using the proposed strategy; the results with the fractional 

order model (FOM) are also compared with a classical 

second integer order model (IOM), i.e. having 

α = 2 and β = 1. 

Note that the fractional order approximation is consis- 

tent with the data and also more accurate than the integer 

approach. Table 1 depicts the average error and standard 

deviation, both for the data used for tuning the model and the 

data used for testing purposes. The FOM fits better for the whole 

data-sets than the IOM. 

 

5.1.   Failure identification 

In order to test the generality of the technique, we adopted a 

strategy of rating 10 subsets, using one as a test set   and 
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Figure 5.    Indices found during failure diagnosis. 



 

 

Table 1. Train and test mean errors ± standard deviation of the 
FOM and the IOM when compared with real data. 

  

Train error ± deviation Test error ± deviation 

FOM IOM FOM IOM 
 

Case 1    1.84 ± 0.15    3.23 ± 0.18    2.06 ± 0.23    3.47 ± 0.27 

Table 2. Diagnosis estimation yielded by the  proposed 
algorithm. 

  

Estimated diagnosis 

  

Case 1 Case 2 Case 3 Case 4 

  

Case 1 56 4 0 0 

Case 2    1.12 ± 0.05    2.26 ± 0.05    1.05 ± 0.02    2.17 ± 0.03 Actual failure 
Case 2 0 48 12 0 

 

 

 

 
nine as training sets. We employed the use of kNN here to 

estimate automatically a diagnostic, varying the number of 

neighbours k. The next step was to constitute another test set, 

repeating this operation until all data had been tested. 

Considering the results obtained during the estimation of the 

FOM, 60 GEETF samples were randomly taken for each case of 

study, with the aim of testing a classification strategy. The indices 

obtained are depicted in Figure 5. Note that, as expected, failure 

types are grouped into different spatial regions making it possible 

to use a very simple classification technique for equipment failure 

diagnosis. 

On average, the classifier obtained similar performances 

independently of the neighbourhood size. Nevertheless, the lower 

data dispersion was achieved using three neighbours, as shown in 

Figure 6. Table 2 presents the results obtained with three 

neighbours. 

 

 

6. Discussion 

Nowadays, it is of paramount importance to quickly evalu- ate 

machinery and product performance in order to improve client 

services. A large part of failures occur due to wear on specific 

pieces of machinery. In fact, many maintenance procedures are 

planned,  based on supplier    requirements 

 

(Endrenyi et al., 2001), due to the existence of a small set of 

known failures exist that affects machine performance. These 

failures could occur before or after a maintenance task, 

unnecessarily stopping the machine in the first case or, 

eventually causing a fatal failure. Herein, we analysed four 

particular machine conditions, being the normal per- formance 

point and three conditions of failure, all affecting different parts of 

the machine and measured using the same set of sensors. Other 

cases and degrees of failure could be considered using the same 

approach without losing gen- erality, that is, considering them as 

new conditions of the machine. For this set of failures, the 

system accurately di- agnoses the location of the failure. 

The algorithm proposed requires two main conditions: first, 

a general, but accurate, model of the system and, sec- ond, a 

known set of frequent failures to identify. In order to meet the first 

condition, we compared integer and fractional order models. The 

results reveal that FOM consistently ob- tains a better system 

than the IOM. It allows the algorithm to finally conform 

disaggregated groups, as presented in Figure 5, where each 

group represents a condition of the machine. This improved 

signal representation is due to the derivative operator that adds 

additional degrees of freedom. Conforming the groups allows a 

simple technique, such as 

 

 

 

 

 

 

 

 
              

 
  

 

    

 

Figure 6.    Effect of increase the number of neighbours k. 

      

      

      

      

      

      

 

Case 3 1.44 ± 0.34 2.43 ± 0.38 1.41 ± 0.09 2.37 ± 0.10  Case 3 0 0 60 0 
Case 4 0.74 ± 0.05 1.36 ± 0.06 0.89 ± 0.07 1.51 ± 0.07  Case 4 0 4 0 56 

 



.  
 

kNN, to accurately diagnose the current condition of the 

machine. The amount of neighbours taken into account for voting 

to identify the machine’s condition, does affect the classifier’s 

performance, reducing the accuracy whilst in- creasing the 

uncertainty of the result, as shown in Figure 6. 

 

7. Conclusions 

FC is used in several scientific areas, but up to now, there have 

been no studies on the use of its adoption for fault prediction in 

the literature. However, fractional order al- gorithms are a 

promising tool for this type of modelling, since the system 

behaviour depends on the machine’s op- eration history and the 

wear of the parts. Starting from a model close to the plant, it 

was possible to extract simple failure rates that are good 

descriptors of the current state of the device. Due to this fact, it 

was possible to use simple classification techniques proposed in 

the literature. 

If we consider industrial requirements, FC is an alter- native  

strategy to obtain the state of a device, by  means of 

identification systems based on the fact that a particular fault 

recurs quite frequently. These failures vary the opera- tion of the 

system in a known manner, which could also be identified using a 

model with few parameters. The proposed strategy generates a 

failure rate, in the frequency domain, that can be used to 

diagnose a particular device. The high accuracy of the 

implemented system in diagnosing failures is basically due to the 

use of a fractional order structure as the basis of the 

identification system. In fact, the use of a single canonical 

structure, using only three coefficients and two orders, was able to 

sufficiently approximate the device’s behaviour for each failure 

under study. 
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