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I. INTRODUCTION

By micromechanics we understand analysis of the
macroscale response of materials through investiga-
tion of processes in their microstructure. Here by the
macroscale, we mean the scale of applications, where
we solve engineering problems involving materials.
Examples could be analysis of aircraft constructions
with different composite materials and analysis of rock
behaviour and concrete properties in geo- and civil en-
gineering applications. Analysis of bio-materials with
many medicine applications is also rapidly developing.
Different applications are distinguished by different
characteristic size. At macroscale the materials mostly
look as homogeneous or they are idealized as homo-
geneous or piecewise homogeneous. A substantial
heterogeneity is hidden and appears only after more
detailed zooming view into the material. This hidden
heterogeneity can be called microstructure. In metals
it is created by crystals and grains, in composite ma-
terials by matrix and inclusions, in concrete by gravel
and mortar or iron reinforcement, in rock by mineral
composition and possible grouting, etc. When the ratio
between the characteristic dimensions on macro and
microstructure subjects is sufficiently large, then we say
that the scales are well separated. In this case, it is not
possible to perform the macroscale analysis going into
the microstructure details, but it is possible to analyse
the macroscopic problems with the use of effective (ho-
mogenized) material properties, which are obtained by
testing smaller samples of materials. In computational
micromechanics, the testing of such samples means

solution of boundary value problems on test domains
involving the microstructure with loading provided by
suitable boundary conditions.

In this work, we focus on X-ray CT image based
micromechanics of geomaterials and concrete with the
use of continuum mechanics and finite element (FE)
computations of the microscale strains and stresses,
see [2]. This means that basic information about the
microstructure is provided by the analysis (segmenta-
tion) of 3D images of real samples. This information
should be complemented by information on local mate-
rial properties, i.e. material properties of the individual
material constituents.

There is a strong need for high performance comput-
ing (HPC) at several levels of computational microme-
chanics, namely at:

e analysis of CT scans,

e high resolution finite element solution of bound-
ary value problems,

o solution of inverse problems for determination or
calibration of local material properties.

This contribution deals with the second point, i.e.
solution of high resolution FE systems with tens or
hundreds million degrees of freedom (DOF). We report
about the performance of in-house solvers exploiting
the Schwarz domain decomposition method with aggrega-
tion, c.f. [3], and outline possible future development
in the area of ultrascale computing, which is necessary
for building efficient solution methods for inverse mate-
rial identification problems, see [4] and work in progress.
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II. HicH REsoLUTION FE sYSTEMS

In the analysis of heterogeneous materials with mi-
crostructure (composites) (see [2]), our test sample do-
main () is a cube with a relatively complicated mi-
crostructure. Its FE mesh is constructed from data
obtained from industrial CT scanning, performed at
the CT-lab of the Institute of Geonics. Two types of
composites are considered in this work: A coal-resin
geocomposites and reinforced concrete composites. See
Tab. 1 for the main characteristics of the resulting FE
problems (benchmarks).

[ Benchmark { Discretization { Size in DOF { Data size ‘
GEOC-21 257 x 257 x 1025 203100675 33.5GB
FIBER-3 401 x 401 x 401 193443 603 32.2GB

Table 1: Benchmark problems: Name, discretization, size of
the resulting linear system and storage requirements.

The elastic response of a representative volume (2
is characterized by homogenized elasticity C or com-
pliance S tensors (S = C™!). The elasticity and com-
pliance tensors are basically determined from the rela-
tions

C(e) =Cep= (o) and S(o) =Sop= (), (1)

respectively. Here (o) and (¢) are volume averaged
stresses and strains computed from the solution of
elasticity problem

—div(e) =0, 0=Cpe, e=(Vu+(Vu)T)/2 inQ,
i)

with boundary conditions
u(x) =¢p-x ondQ) and o-n=o0p-n ondQ, (3)

respectively. Above, ¢ and € denote stress and strain
in the microstructure, Cy, is the variable local elasticity
tensor, u and n denote the displacement and the unit
normal, respectively. The use of pure Dirichlet and
pure Neumann boundary conditions allows us to get
a upper and lower bounds for the upscaled elasticity
tensor, see e.g. [4].

III. GEM SOLVERS

GEM is an in-house FE software described in detail
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in [1], which makes use of linear tetrahedral finite
elements for discretization. Arising systems of lin-
ear equations are processed by solvers based on the
preconditioned conjugate gradient (PCG) method, with
stabilization in the singular case [3]. PCG uses overlap-
ping domain decomposition preconditioners. To solve the
benchmarks, we employ two types of GEM solvers:

GEM-DD solver uses one-level additive Schwarz domain
decomposition preconditioner with subproblems
replaced by displacement decomposition incom-
plete factorization, see ref. in [3]. The resulting
preconditioner is symmetric positive definite even
for the singular case.

GEM-DD+CG solver implements two-level Schwarz
domain decomposition preconditioning, arising
from the GEM-DD above by additive involvement
of a coarse problem correction. The coarse problem is
created by a regular aggressive aggregation with
3 DoF’ per aggregation. In the singular case, the
coarse problem is also singular with a smaller null
space containing only the rigid shifts. The coarse
problem is solved only approximately by inner
(not stabilized) CG method with a lower solution
accuracy - relative residual accuracy ¢y < 0.01.

IV. COMPUTING RESOURCES

The computations were performed on two parallel
platforms:

Enna 64-core NUMA multiprocessor, Institute of Geon-
ics AS CR: eight octa-core Intel Xeon E7-8837 /
2.66 GHz processors; 512 GB of DDR2 RAM,; Cen-
tOS 6.3, Intel Cluster Studio XE 2013.

Anselm multicomputer (cluster, 209 compute nodes),
IT4Innovations National Supercomputing Center:
two octa-core Intel E5-2665 / 2.4 GHz processors
per node; 64 GB RAM per node; Infiniband QDR
interconnection, fully non-blocking, fat-tree; Bullx
Linux Server 6.3 (Red Hat clone), Intel Parallel
Studio 13.1.
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V. COMPUTATIONAL EXPERIMENTS

Table 2 shows the timings of the GEM-DD+CG solver
(with coarse grid problem applied) obtained for the
coal-resin geocomposite benchmark GEOC-2I both on
Enna and Anselm, and demonstrates the impact of
the coarse grid size on the time of the solution. The
stopping criterion ||r||/||b|| < e, based on the relative
residual accuracy, was 10~°. On Enna, the best results
(2483.6 s) were observed with aggregation 9 x 9 x 9.

Enna Anselm

#sd DD +CG DD +CG DD +CG DD +CG

9x9x9 9x9x18 9x9x27 9x9x27
#It [ Titer | #1t [ Titer | #1t [ Titer | #1It [ Titer
41751 | 13719.0 | 858 | 15757.6 | 997 | 18518.4 | 997 | 12671.4
8690 | 6237.7 | 800 | 6960.8 | 917 | 8062.9 | 917 | 5803.9
16 | 585 | 27174 | 674 | 4010.6 | 777 | 4815.6 | 777 | 2576.6
32 | 585 | 2483.6 | 622 | 2923.8 | 708 | 34525 |708 | 1157.5
64 627 | 3637.0 | 627 558.8
128 652 358.5
256 631 299.6
512 649 333.5

Table 2: Timings of the GEOC-2I benchmark with pure
Neumann boundary conditions and achieved by the GEM-
DD+CG solver on the multiprocessor Enna and multicom-
puter Anselm: Iteration counts (#1t) and wall-clock time (in
seconds) for the solution time (Tier) are provided now for
different sizes of CG problem involved in computations and
for various numbers of subdomains (# 5d).

The experiments confirm the advantage of multicom-
puters (systems with distributed memory) for greater
number of subdomains, when the multiprocessors in
general suffer from the memory-processor bandwidth
contention. Thus, while on Enna the scalability fades
out at about 32 cores, the turning point on Anselm is
around 256 processing elements, when the small size
of subdomains deteriorates the ratio between computa-
tion and communication. In absolute figures, we were
able to solve the benchmark 8 times faster on Anselm
than on Enna. A part of Anselm’s advantage is to be
credited to its newer Intel Sandy Bridge CPU architec-
ture, which outperforms Enna’s Westmere CPU in our
applications by 20 - 40 % (separate test).

A bit surprising decrease of the number of iterations
with increasing number of subdomains (processors) as

reported in the above Tables, can be explained by the
fact that smaller subdomain problems are solved more
accurately in our implementation.

Anselm/GEOC-21 best time in Table 2 (299.6 s with
256 processing elements and aggregation 9 x 9 x 27)
was surpassed by another experiment (not shown in
the table): aggregation 15 x 15 x 31, 910 iterations, 512
subdomains (32 compute nodes employed), 249.8 s.

The experiments carried out on the fiber-reinforced
concrete FIBER-3 benchmark delivered similar results.
So far, just Enna has been used for computations, con-
firming limited scalability on its multi-processor archi-
tecture. We observed great importance of the coarse
grid and its proper dimensioning for efficient solution
(computing times of GEM-DD are multiples of the
computing times of GEM-DD+CG).

VI. CONCLUSIONS AND FUTURE WORK

Micromechanics leads to large-scale problems, as il-
lustrated by the presented benchmarks. The compu-
tational requirements can be further substantially in-
creased in the case of an inverse analysis for identification
local material properties (see e.g. [4]).

At the IT4Innovations National Supercomputing
Center, there is a new massively parallel computer
available, called Salomon. This multi-computer (clus-
ter) has 1008 compute nodes and we plan to employ it
in future experiments.

The approach described so far employs classical do-
main decomposition philosophy. Both facts, computa-
tional demands and availability of massively parallel
computers, motivate further research in algorithms,
which are efficient from the point of view of arithmetic
operations and (even more important) from the point
of view of communication.

In the future, we plan to test the effect of communi-
cation avoiding (CA) algorithms. For example, using
the same ingredients as in our domain decomposition
solvers, we can employ CA conjugate gradients and
a deflation type implementation of the aggregation
based coarse space.
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