
Proceedings of the Second International Workshop on Sustainable
Ultrascale Computing Systems (NESUS 2015)

Krakow, Poland

Jesus Carretero, Javier Garcia Blas
Roman Wyrzykowski, Emmanuel Jeannot.

(Editors)

September 10-11, 2015

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Universidad Carlos III de Madrid e-Archivo

https://core.ac.uk/display/30277108?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


NESUS
Network for Sustainable Ultrascale Computing

IC1305

Second NESUS Workshop• September 2015 • Vol. I, No. 1

NUMA impact on network storage protocols
over high-speed raw Ethernet

Pilar González-Férez† and Angelos Bilas‡

†Universidad de Murcia, Spain, pilar@ditec.um.es
‡FORTH-ICS and University of Crete, Greece, bilas@ic.forth.gr

Abstract

Current storage trends dictate placing fast storage devices in all servers and using them as a single distributed
storage system. In this converged model where storage and compute resources co-exist in the same server, the
role of the network is becoming more important: network overhead is becoming a main limitation to improving
storage performance. In our previous work we have designed Tyche, a network protocol for converged storage that
bundles multiple 10GigE links transparently and reduces protocol overheads over raw Ethernet without hardware
support. However, current technology trends and server consolidation dictates building servers with large amounts
of resources (CPU, memory, network, storage). Such servers need to employ Non-Uniform Memory Architectures
(NUMA) to scale memory performance. NUMA introduces significant problems with the placement of data and
buffers at all software levels.

In this paper, we first use Tyche to examine the performance implications of NUMA servers on end-to-end
network storage performance. Our results show that NUMA effects have significant negative impact and can
reduce throughput by almost 2x on servers with as few as 8 cores (16 hyper-threads). Then, we propose extensions
to network protocols that can mitigate this impact. We use information about the location of data, cores, and NICs
to properly align data transfers and minimize the impact of NUMA servers. Our design almost entirely eliminates
NUMA effects by encapsulating all protocol structures to a “channel” concept and then carefully mapping channels
and their resources to NICs and NUMA nodes.

Keywords NUMA, memory affinity, network storage, Tyche, I/O throughput

I. Introduction

Technology trends for efficient use of infrastructures
dictate that storage converges with computation by
placing storage devices, such as NVM (Non-Volatile
Memory) based cards and drives, in the servers them-
selves. With converged storage, compute servers are
used as a single distributed storage system, in a depar-
ture from traditional SAN (Storage Area Network) and
NAS (Network Attached Storage) approaches. In this
model, where computation and storage are co-located,
the role of the network becomes more important for
achieving high storage I/O throughput.

For efficiency and scalability purposes modern
servers tend to employ multiple resources of each kind,

namely processors, memories, and storage/network
links, in Non-Uniform Memory Access (NUMA) archi-
tectures (Figure 1).

Scaling networked storage throughput on such
servers is becoming an important challenge. NUMA
servers use multiple processor sockets with memory
attached to each socket, resulting in non-uniform laten-
cies from processor to different memories. In NUMA
architectures each I/O device is attached to a specific
NUMA node via an I/O hub (Figure 1). Processors,
memories, and I/O hubs are connected through high-
speed interconnects, e.g. QPI [1]. I/O requests as
well DMA transfers to and from devices are routed
through the memory-processor interconnect. Access-
ing remote memory (in a different NUMA node) incurs

1

Pilar Gonzalez-Ferez,Angelos Bilas 83



Figure 1: Internal data paths in NUMA servers.

significantly higher latency than accessing local mem-
ory [2, 3], up to a factor of 2x. In addition, it consumes
throughput from the inter-processor link(s). Thus, for
I/O performance and scalability purposes, it is im-
portant to explore how the network protocol can be
designed to cater for affinity among memory, process-
ing cores, and network interfaces (NIC) for data and
protocol data structures.

In our previous work Tyche [4, 5] we examine the
design of network storage protocols over raw Ethernet
to achieve high throughput without hardware sup-
port. We argue that raw Ethernet is cost-effective
and Tyche delivers high I/O throughput and low I/O
latency using several techniques: bundling multiple
NICs transparently, copy-reduction, storage-specific
packet processing, RDMA (remote direct memory
access)-type communication primitives, memory pre-
allocation, and transparent NIC bundling.

In our previous work we observe that NUMA affinity
is an important issue that spans the whole I/O path
and has a significant performance impact.

Therefore, in this work, we use Tyche to analyze in
detail the impact of NUMA affinity on networked stor-
age access. In addition, we examine whether we can
mitigate these performance effects on NUMA servers
by properly re-designing the network protocol.

We evaluate this issue on two Linux servers with 8
cores (16 hyper-threads) and 6 x 10GigE Myricom 10G-
PCIE-8A-C NICs attached to each server. We analyze
the data traffic transferred through the QPI links with
the Intel R© Performance Counter Monitor (PCM) [6].

Our results show that NUMA effects indeed have a
very large negative impact on performance and they

 0

 1

 2

 3

 4

 5

4 8 16 32

T
h

ro
u

g
h

p
u

t 
(G

B
/s

)

Threads

FIO - Writes - 128 kB

Id-1
Wo-1

Id-2
Wo-2

Id-3
Wo-3

(a) 128 kB writes

 0

 1

 2

 3

 4

 5

4 8 16 32

T
h

ro
u

g
h

p
u

t 
(G

B
/s

)

Threads

FIO - Reads - 128 kB

Id-1
Wo-1

Id-2
Wo-2

Id-3
Wo-3

(b) 128 kB reads

Figure 2: FIO [7] throughput with direct I/O, random writes
and reads, 128kB and several threads, with (Id) and without
(Wo) Tyche affinity over and 1, 2 and 3 NICs. Note that
curves for Id-1, Wo-1 and Id-2, Wo-2 are overlapping.

can reduce throughput by almost 2x. Our re-designed
protocol that detects and uses NUMA affinity across
buffers, threads, and NICs, improves I/O throughput
by up to 85%.

This behavior is shown in Figure 2 for two configu-
rations: Ideal (Id) case that allocates all the resources
in NUMA node 0, and Worst (Wo) case that allocates
them in node 1. We use 1, 2, and 3 NICs, all of them
attached to the node 0. For 1 and 2 NICs, there is
no difference in performance between both configura-
tions. However, when using 3 NICs Ideal significantly
outperforms Worst up to 23.7%. When using 6 NICs,
this difference is larger. For instance, when the in-
house micro-benchmark zmIO [8] is run with direct
I/O and random 64kB read requests, Tyche obtains
only 3.61 GB/s when no affinity is applied, whereas it
achieves 6.67 GB/s when NUMA is taken into account.
Additionally, our analysis shows that this difference in
performance is reflected in QPI traffic. With NUMA
affinity, data traffic mainly comes through the local
QPI-1 link. Without NUMA affinity, a large amount of
traffic comes through QPI-0 links or the remote QPI-1,
and performance drops significantly. Sections IV and V
present these results in more detail.

To mitigate these NUMA effects at high network
throughput, we carefully design the send and receive
paths. We encapsulate important structures and flow
control in a “channel” concept that essentially corre-
sponds to the end-to-end I/O path. We map channels
to NICs and to NUMA nodes and allocate their re-
sources in the same node where the NIC is attached.

84 NUMA impact on network storage protocols over high-speed raw Ethernet



Figure 3: Overview of the send and receive path from the
initiator (client) to the target (server).

I/O requests can use any channel. We dynamically
detect the appropriate channel for each request, based
on the location of the request data, and we direct each
request accordingly. This approach aligns buffers and
NICs and almost entirely eliminates NUMA effects.

Overall, results show that network storage protocols
for modern servers with multiple resources need to be
designed for NUMA affinity to achieve high network
throughput. Otherwise, when affinity is not taken into
account, performance is significantly downgraded.

The rest of this paper is organized as follows. Sec-
tion II presents the necessary background on Tyche.
Section III describes how Tyche deals with NUMA
affinity. Sections IV, V and VI present our experimental
results. Finally, we present related work in Section VII
and we draw our conclusions in Section VIII.

II. Background

Tyche [4, 5] is an end-to-end network storage protocol
on top of raw Ethernet that achieves high I/O thro-
ughput and low latency without hardware support
(Figure 3). Tyche presents the remote storage device
locally by creating at the client (initiator) a virtual local
device that can be used as a regular device. Tyche is in-
dependent of the storage device and supports any file
system. It provides reliable delivery, Ethernet-framing,
and transparent bundling of multiple NICs.

To reduce message processing overhead, Tyche uses
a copy reduction technique based on virtual memory
page remapping, reduces context switches, and uses

RDMA-type operations. The server (target) avoids all
copies for writes by interchanging pages between the
NIC receive ring and Tyche. The initiator requires a
single copy for reads, due to OS-kernel semantics for
buffer allocation. Tyche reduces overheads for small
I/O requests by avoiding context switches for low de-
grees of I/O concurrency and by dynamically batching
messages for high degrees of I/O concurrency. Tyche
does not use RDMA over Ethernet, instead our proto-
col uses a similar, memory-oriented abstraction that
allows us to reduce messaging overhead by avoiding
packing and unpacking steps that are required over
streaming-type abstractions, such as sockets. Addition-
ally, there are several optimizations, such as avoiding
dynamic memory allocations, that are typical in net-
work protocol implementations.

Tyche uses small request messages for requests and
completions, and data messages for data pages. A
request message corresponds to a request packet that
is sent using a small Ethernet frame. A data message
corresponds to several data packets that are sent using
Jumbo Ethernet frames of 4 or 8kB.

Tyche uses the concept of a communication “chan-
nel” to establish a connection between initiator and
target. Each channel allows a host to send/receive
data to/from a remote host. A channel is directly asso-
ciated to the NIC that uses for sending/receiving data.
Although a channel is mapped to a single NIC, several
channels can be mapped to the same NIC. Tyche is
able to simultaneously manage several channels, and
it creates at least a single channel per NIC.

Each channel has two pre-allocated buffers, one for
each kind of message, for sending and receiving mes-
sages. The initiator handles both buffers by specifying
in the message header its position on them, and, on its
reception, a message is directly placed on its buffer’s
position. At the target, the buffer for data messages
contains lists of pre-allocated pages for sending and
receiving data messages, and for issuing I/O requests
to the local device. The initiator has no pre-allocated
pages, it uses the pages of the I/O requests.

The initiator send path can operate in two modes. In
the “inline” mode (Figure 3), the application context
issues requests to the target with no context switch. In
the “queue” mode, requests are inserted in a queue
at the block level, and a thread dequeues them and

Pilar Gonzalez-Ferez,Angelos Bilas 85



issues them. There is no other difference. Regarding
performance, the inline mode outperforms the queue
mode for small requests; the queue mode significantly
outperforms the inline mode when there are many
outstanding writes of large size. The target uses a
work queue for sending completions back, because
local I/O completions run in an interrupt context that
cannot block.

At the receive path, a network thread per NIC pro-
cesses packets and messages. When several channels
are mapped to the same NIC, this thread will process
packets for all the channels. At the block layer, several
threads per channel process I/O requests.

III. Protocol design for NUMA affinity

To achieve high throughput in a NUMA architecture
such as the one depicted in Figure 1 we need to con-
sider affinity among different resources [2, 3]. In the
I/O path, there are four resources related to NUMA
affinity: application buffers, protocol data structures,
kernel (I/O and NIC) data buffers, and NIC location
in server sockets. The placement of threads plays a
role as well, and it affects application threads, protocol
threads, work queues, and interrupt handlers. Tyche
orchestrates affinity of memory and threads by consid-
ering the system topology and the location of NICs. It
creates a communication channel per NIC, and asso-
ciates resources exclusively with a single channel.

Each channel allocates memory for all purposes and
pins its threads to the same NUMA node where its NIC
is attached. For instance, in the architecture of Figure 1
a channel mapped to NIC-0 uses memory in Memory-0
and runs its threads in cores within Processor-0.

The NIC driver uses per NIC data structures: a
transmission ring and two receive rings. We force the
allocation of these rings in the same node where the
NIC is attached as well, making them part of the NIC
channel.

We implement a NUMA-aware work queue because
in the Linux kernel we use it is not possible to apply
affinity during assignment of tasks to work queues.
Our work queue launches a thread per core that is
pinned in its corresponding core. The target submits
completion messages to the work queue by using its
NUMA information. Conceptually, there is a work

Figure 4: Affinity-aware scheduler selecting a channel for
two I/O requests in a Tyche system with six NICs, three per
NUMA node, and three channels per NIC.

queue per channel.

There are a few remaining parts of the end-to-end
path that are not affinity-aware: In the Linux kernel (a)
it is not possible to control placement of buffer cache
pages, (b) controlling application thread placement
may have adverse effects on application performance,
and (c) it is not possible to control placement of device
I/O completions (on the target side). Next, we discuss
how we deal with (a) and (b), whereas our results show
that the impact of (c) is not significant.

To deal with affinity of I/O request buffers that are
allocated before the request is passed to Tyche, we
use an “assignment” approach. We allow requests
to arrive with pre-allocated buffers, anywhere in the
system. Then, we dynamically detect where buffers are
allocated, we identify a NIC that is located in the same
NUMA node as the request buffers, and we assign
the request to a channel that uses this NIC. For this
purpose, Tyche implements a scheduler to select a
channel through which the next I/O request will be
issued. If there are several channels on this node, it
uses a fairness metric, by default equal kBs to each
channel, to select one of them. Figure 4 depicts a Tyche
system composed of six NICs, three per NUMA node,
three channels per NIC, and the scheduling of two I/O
requests. Our evaluation contrasts this affinity-based
scheduling to a simple round-robin approach that does
not consider buffer location and merely distributes I/O
requests to channels in a round-robin manner.

86 NUMA impact on network storage protocols over high-speed raw Ethernet



Second NESUS Workshop• September 2015 • Vol. I, No. 1

 0

 1

 2

 3

 4

 5

 6

1
Id

1
W

o

4
Id

4
W

o

8
Id

8
W

o

1
6
Id

1
6
W

o

3
2
Id

3
2
W

o

T
h

ro
u

g
h

p
u

t 
(G

B
/s

)

Threads - NUMA configuration

Target QPI - 1 Nics - Writes - 128 kB

Q1-No0
Q1-No1

Q0-No0
Q0-No1

(a) 128 kB writes

 0

 1

 2

 3

 4

 5

 6

1
Id

1
W

o

4
Id

4
W

o

8
Id

8
W

o

1
6
Id

1
6
W

o

3
2
Id

3
2
W

o

T
h

ro
u

g
h

p
u

t 
(G

B
/s

)

Threads - NUMA configuration

Target QPI - 2 Nics - Writes - 128 kB

Q1-No0
Q1-No1

Q0-No0
Q0-No1

(b) 128 kB writes

 0

 1

 2

 3

 4

 5

 6

1
Id

1
W

o

4
Id

4
W

o

8
Id

8
W

o

1
6
Id

1
6
W

o

3
2
Id

3
2
W

o

T
h

ro
u

g
h

p
u

t 
(G

B
/s

)

Threads - NUMA configuration

Target QPI - 3 Nics - Writes - 128 kB

Q1-No0
Q1-No1

Q0-No0
Q0-No1

(c) 128 kB writes

 0

 1

 2

 3

 4

 5

 6

1
Id

1
W

o

4
Id

4
W

o

8
Id

8
W

o

1
6
Id

1
6
W

o

3
2
Id

3
2
W

o

T
h

ro
u

g
h

p
u

t 
(G

B
/s

)

Threads - NUMA configuration

Target QPI - 1 Nics - Reads - 128 kB

Q1-No0
Q1-No1

Q0-No0
Q0-No1

(d) 128 kB reads

 0

 1

 2

 3

 4

 5

 6

1
Id

1
W

o

4
Id

4
W

o

8
Id

8
W

o

1
6
Id

1
6
W

o

3
2
Id

3
2
W

o

T
h

ro
u

g
h

p
u

t 
(G

B
/s

)

Threads - NUMA configuration

Target QPI - 2 Nics - Reads - 128 kB

Q1-No0
Q1-No1

Q0-No0
Q0-No1

(e) 128 kB reads

 0

 1

 2

 3

 4

 5

 6

1
Id

1
W

o

4
Id

4
W

o

8
Id

8
W

o

1
6
Id

1
6
W

o

3
2
Id

3
2
W

o

T
h

ro
u

g
h

p
u

t 
(G

B
/s

)

Threads - NUMA configuration

Target QPI - 3 Nics - Reads - 128 kB

Q1-No0
Q1-No1

Q0-No0
Q0-No1

(f) 128 kB reads

Figure 5: QPI traffic, in GB/s, for Ideal (Id) and Worst (Wo), with FIO, 128 kB requests, and random writes and reads, and
1, 2 and 3 NICs.

IV. Experimental environment

Our experimental platform consists of two systems
(initiator and target) connected back-to-back. Both
nodes have two, quad core, Intel(R) Xeon(R) E5520
CPUs running at 2.7 GHz. The operating system is
the 64-bit version of CentOS 6.3 testing with Linux
kernel version 2.6.32. The target node is equipped with
48 GB DDR-III DRAM, and the initiator with 12 GB.
The target uses 12 GB as main memory, and 36 GB as
ramdisk. Each node has 6 Myricom 10G-PCIE-8A-C
cards that are capable of about 10 Gbits/s throughput
in each direction.

We use the open-source Intel R© Performance
Counter Monitor (PCM) [6], that provides core-level
CPU information, and supports different kind of met-
rics. We use the estimation of data traffic transferred
through the Intel R© QuickPath interconnect links. For
each node, the tool provides data traffic for “QPI-1”
(inside the same node), and for “QPI-0” (traffic coming
from a remote node). We analyze Q1-No0, Q1-No1,
Q0-No0 and Q0-No1, that correspond to the traffic for
QPI-1 and QPI-0 in NUMA nodes 0 and 1, respectively.
The traffic coming through “QPI-0” link is the traffic

between processors (Figure 1), Q0-No0 corresponds to
the data traffic to Processor-0 from Processor-1, and
Q0-No1 to the traffic in the other direction. The tool
does not provide the traffic between I/O hubs.

We use two micro-benchmarks: FIO (Flexible I/O) is
a workload generator with many parameters, including
number of threads, synchronous and asynchronous
operations, request size, access pattern, etc. [7]. zmIO
is an in-house benchmark that uses the asynchronous
I/O API of the Linux kernel to issue concurrent I/Os
with minimal CPU utilization [8]. In this work we start
from the Tyche version implemented in Linux kernel
2.6.32 [4]. Tyche uses the queue mode (see Section II)
to avoid lock contentions [4].

V. Degradation of I/O throughput due
to NUMA

We first perform an analysis for the impact of NUMA
effects on the throughput of networked storage I/O
and the associated QPI traffic.

We use the baseline version of Tyche that has no
support for NUMA effects. We examine the extent of

5

Pilar Gonzalez-Ferez,Angelos Bilas 87



Second NESUS Workshop• September 2015 • Vol. I, No. 1

NUMA impact on throughput as follows. We attach 1,
2, or 3 NICs to NUMA node 0 and create one channel
per NIC with round-robin scheduler. Given that all
the NICs are on the NUMA node 0, the role of the
scheduler is minimal. Then, we create two extreme
configurations: Ideal and Worst. In Ideal, we manually
allocate memory and threads for Tyche and the bench-
mark in node 0 where the NICs are also attached. In
Worst, we allocate all memory and threads for Tyche
and the benchmark in NUMA node 1.

We use FIO with direct I/O, random reads and
writes of 128kB, and 60s of runtime. We run the test
with 1, 4, 8, 16, and 32 application threads. The storage
device is accessed in a raw manner (no file system). Fig-
ure 2 provides throughput, in GB/s, achieved by Tyche
as a function of the number of application threads.

To analyze the QPI traffic due only to our networked
storage protocol and exclude traffic due to the storage
device, the target does not use the ramdisk during this
test, and it completes the requests without performing
the actual I/O. Figure 5 depicts, in GB/s, the traffic
through each QPI-node link at the target during the test
execution as a function of the number of application
threads.

Regarding performance, with 1 and 2 NICs, both
configurations obtain the same throughput, and there
is no difference between them. With 3 NICs, Ideal
significantly outperforms Worst by up to 23.7%. As we
explain below, the reason is a bottleneck that appears
on the QPI path followed by the data.

Regarding the QPI analysis, with Ideal, since both,
NICs and resources, are in NUMA node 0, the QPI
traffic is only through Q1-No0 (the Q1 link at NUMA
node 0), and the throughput provided by this link is
quite similar to the throughput provided by Tyche.
There is no data traffic through Q0-No0, Q0-No1, and
Q1-No1.

With Worst, the behavior is rather different, and the
QPI traffic is through Q1-No1 (the Q1 link at NUMA
node 1). The data goes through QPI-1 that connects
I/O hub-1 with Processor-1 (Q1-No1) and through the
QPI link that connects the I/O hubs (this traffic is not
reported by the tool).

With 1 or 2 NICs, the data traffic generated does not
saturate this path and the system achieves maximum
performance. With 3 NICs, the amount of data traffic

Table 1: Configuration of the tests run for the NUMA study.
RR stands for round robin scheduling

Test
NUMA affinity Channel

Tyche Application scheduler
Ideal Yes Yes Affinity-aware
TyNuma Yes No RR
Worst No No RR

generated saturates this path and QPI-0 becomes the
bottleneck. QPI and Tyche throughput drop by up to
26.2% and 23.9%, respectively.

VI. Improvement due to protocol NUMA
extensions

We now analyze the impact of NUMA effects depend-
ing on memory placement applied by Tyche and the
application. To perform this analysis, we evaluate three
configurations: Ideal, TyNuma and Worst. Table 1 sum-
marizes these configurations. With Ideal, we manually
configure the NUMA placement of the application:
half of the application threads and their corresponding
resources are allocated in each NUMA node. With
TyNuma and Worst, we run the application without
any affinity hint.

To perform this set of experiments, we use six NICs,
three on each NUMA node, and we open one channel
per NIC. Now, the target uses the ramdisk, and it
performs the actual I/O. Consequently, at the target,
there is data traffic due to the network traffic and due
to the copy of the ramdisk, and we are not able to
distinguish between them. Therefore, we only analyze
the QPI traffic at the initiator.

To achieve maximum performance, NUMA affin-
ity should be applied not only by Tyche but also by
the application. Therefore, the performance achieved
depends also on the placement performed by the ap-
plication. In addition, it is interesting to see if our
protocol extensions can hurt performance for hand-
tuned applications. For this reason, we examine two
cases: (a) Regular applications that are not tuned for
NUMA. For this purpose we use zmIO that allocates
resources (threads and buffers) without any particular
attention to NUMA. (b) Hand-tuned applications. For

6

88 NUMA impact on network storage protocols over high-speed raw Ethernet



Second NESUS Workshop• September 2015 • Vol. I, No. 1

this purpose we use FIO that allocates resources in a
balanced manner.

Do protocol extensions for NUMA help perfor-
mance? We perform the analysis with zmIO, because
when zmIO is run without affinity hint, it allocates 99%
of writes and around 75% of reads to a single NUMA
node (node-0). Therefore, almost all writes issued to
channels allocated in node 1 have their resources allo-
cated in node 0, and for reads, this rate is only 50%.
Consequently, with zmIO, performance also depends
on the request type.

We run zmIO with random reads and writes, direct
I/O, request sizes of 64 kB, 128 kB, and 512 kB, and a
runtime of 60 s. The remote storage device is accessed
as a raw device (no file system). We run 1, 8, 16, and
32 application threads. Since this test is base on time,
each time a different amount of data is read or writ-
ten. Figure 6 provides throughput, in GB/s, achieved
by Tyche as a function of the number of application
threads. Figure 7 depicts the percentage of the total
traffic through each QPI-node link as a function of the
application threads and configuration.

For writes, Figure 6 shows that only by apply-
ing the right placement, Ideal configuration, Tyche
achieves its maximum throughput, being 6.77 GB/s
with 32 threads and 512 kB request size. Figure 7
shows that with Ideal, almost all the data traffic comes
through the QPI-1 link, having a similar amount of
traffic both nodes.

With Worst (the opposite case), Tyche only obtains
up to 4.67 GB/s again with 32 threads and 512 kB
request size. Indeed, by applying affinity, Ideal out-
performs Worst by up to 85%. Figure 7 shows that for
writes, Worst only has data traffic through the QPI-1
link on node 0, since almost all the user requests are
allocated in this node. There is no data traffic through
QPI-1 on node 1, and there is a significant amount of
traffic through QPI-0 as well.

With TyNuma, Tyche only achieves up to 5.00 GB/s
again with 32 threads and 512 kB request size. Ideal
improves throughput up to 37.60%. Figure 7 shows
that TyNuma behaves like Worst, and the data traffic
through the QPI-1 link is mainly on node 0.

For writes, due to the QPI data traffic (see Figure 7),
Worst and TyNuma are not able to provide better per-

formance. TyNuma outperforms Worst because, at the
Target, TyNuma is applying NUMA affinity, whereas
Worst is not.

For reads, Ideal and TyNuma achieve up to
6.86 GB/s and 6.78 GB/s, respectively, whereas, Worst
only up to 4.79 GB/s. Ideal improves throughput by
up to 84.8% comparing with Worst.

As we can see in Figure 7, this difference in per-
formance between Ideal and Worst is due to the QPI
traffic. With reads, Ideal has all the data traffic through
the QPI-1 links, having both nodes the same amount
of traffic. However, Worst has up to 33% of the total
traffic coming through QPI-0.

When comparing Ideal and TyNuma, there only is
a small difference in throughput and they exhibit a
quite similar behavior. However, regarding QPI traffic,
TyNuma behaves more similar to Worst. With TyNuma,
at the initiator the QPI traffic is quite similar to with
Worst, but at the target, the QPI traffic is the same as
with Ideal. At the target, Ideal and TyNuma are ap-
plying memory and threads placement, and having a
quite similar behavior. With Worst, the target does not
apply affinity, so a significant amount of traffic goes
through QPI-0 links and consequently the throughput
drops significantly. At the initiator, since application
buffers are allocated there, QPI traffic with TyNuma be-
haves like with Worst, since, with both, the application
is not applying NUMA affinity, and the application
buffers are only allocated at the initiator.

Note that with only 4 threads, all of them, and their
resources, are allocated in NUMA node 0, for this
reason, with Ideal, there is only data traffic through
the QPI-1 link of node 0.

Do protocol extensions for NUMA hurt performance
for hand-tunned applications? We analyze the QPI
traffic with FIO. When we run FIO with no affinity
hint, FIO, by itself, makes a quite balanced distribution
of resources. Consequently, even selecting the channel
in a round-robin order, around 50% of the requests are
issued through a channel allocated in the same node
where the request’s buffers are allocated.

We use FIO with random reads and writes, direct
I/O, a 256 MB file size, and 4 kB, 128 kB, and 512 kB
request sizes. We run 1, 4, 8, 16, and 32 application
threads. Each thread has its own file and makes 30

7

Pilar Gonzalez-Ferez,Angelos Bilas 89



Second NESUS Workshop• September 2015 • Vol. I, No. 1

 0

 1

 2

 3

 4

 5

 6

 7

4 8 16 32

T
h

ro
u

g
h

p
u

t 
(G

B
/s

)

Threads

zmIO - Writes - 64 kB

Ideal
TyNuma

Worst

(a) 64 kB writes

 0

 1

 2

 3

 4

 5

 6

 7

4 8 16 32

T
h

ro
u

g
h

p
u

t 
(G

B
/s

)

Threads

zmIO - Writes - 128 kB

Ideal
TyNuma

Worst

(b) 128 kB writes

 0

 1

 2

 3

 4

 5

 6

 7

4 8 16 32

T
h

ro
u

g
h

p
u

t 
(G

B
/s

)

Threads

zmIO - Writes - 512 kB

Ideal
TyNuma

Worst

(c) 512 kB writes

 0

 1

 2

 3

 4

 5

 6

 7

4 8 16 32

T
h

ro
u

g
h

p
u

t 
(G

B
/s

)

Threads

zmIO - Reads - 64 kB

Ideal
TyNuma

Worst

(d) 64 kB reads

 0

 1

 2

 3

 4

 5

 6

 7

4 8 16 32

T
h

ro
u

g
h

p
u

t 
(G

B
/s

)

Threads

zmIO - Reads - 128 kB

Ideal
TyNuma

Worst

(e) 128 kB reads

 0

 1

 2

 3

 4

 5

 6

 7

4 8 16 32
T

h
ro

u
g

h
p

u
t 

(G
B

/s
)

Threads

zmIO - Reads - 512 kB

Ideal
TyNuma

Worst

(f) 512 kB reads

Figure 6: Throughput, in GB/s, achieved by Tyche depending on the affinity, with zmIO for 64 kB, 128 kB and 512 kB
requests, and random writes and reads.

 0

 20

 40

 60

 80

 100

 120

4
Id

4
T

y

4
W

o

8
Id

8
T

y

8
W

o

1
6
Id

1
6
T

y

1
6
W

o

3
2
Id

3
2
T

y

3
2
W

o

T
o

ta
l 
T

h
ro

u
g

h
p

u
t 

(G
B

)

Threads vs configurations

Initiator QPI - Writes - 64 kB

Q1-No0
Q1-No1

Q0-No0
Q0-No1

(a) 64 kB writes

 0

 20

 40

 60

 80

 100

 120

4
Id

4
T

y

4
W

o

8
Id

8
T

y

8
W

o

1
6
Id

1
6
T

y

1
6
W

o

3
2
Id

3
2
T

y

3
2
W

o

T
o

ta
l 
T

h
ro

u
g

h
p

u
t 

(G
B

)

Threads vs configurations

Initiator QPI - Writes - 128 kB

Q1-No0
Q1-No1

Q0-No0
Q0-No1

(b) 128 kB writes

 0

 20

 40

 60

 80

 100

 120

4
Id

4
T

y

4
W

o

8
Id

8
T

y

8
W

o

1
6
Id

1
6
T

y

1
6
W

o

3
2
Id

3
2
T

y

3
2
W

o

T
o

ta
l 
T

h
ro

u
g

h
p

u
t 

(G
B

)

Threads vs configurations

Initiator QPI - Writes - 512 kB

Q1-No0
Q1-No1

Q0-No0
Q0-No1

(c) 512 kB writes

 0

 20

 40

 60

 80

 100

 120

4
Id

4
T

y

4
W

o

8
Id

8
T

y

8
W

o

1
6
Id

1
6
T

y

1
6
W

o

3
2
Id

3
2
T

y

3
2
W

o

T
o

ta
l 
T

h
ro

u
g

h
p

u
t 

(G
B

)

Threads vs configurations

Initiator QPI - Reads - 64 kB

Q1-No0
Q1-No1

Q0-No0
Q0-No1

(d) 64 kB reads

 0

 20

 40

 60

 80

 100

 120

4
Id

4
T

y

4
W

o

8
Id

8
T

y

8
W

o

1
6
Id

1
6
T

y

1
6
W

o

3
2
Id

3
2
T

y

3
2
W

o

T
o

ta
l 
T

h
ro

u
g

h
p

u
t 

(G
B

)

Threads vs configurations

Initiator QPI - Reads - 128 kB

Q1-No0
Q1-No1

Q0-No0
Q0-No1

(e) 128 kB reads

 0

 20

 40

 60

 80

 100

 120

4
Id

4
T

y

4
W

o

8
Id

8
T

y

8
W

o

1
6
Id

1
6
T

y

1
6
W

o

3
2
Id

3
2
T

y

3
2
W

o

T
o

ta
l 
T

h
ro

u
g

h
p

u
t 

(G
B

)

Threads vs configurations

Initiator QPI - Reads - 512 kB

Q1-No0
Q1-No1

Q0-No0
Q0-No1

(f) 512 kB reads

Figure 7: Percentage of QPI for Tyche depending on the affinity, with zmIO for 64 kB, 128 kB and 512 kB request size, and
random writes and reads.

iterations over it, thus, with all the request sizes, the
same amount of data is always read or written. We use
XFS as the file system. Figure 8 provides throughput,

in GB/s, achieved by Tyche as a function of the number
of application threads. Figure 9 depicts the percentage
of the total traffic through each QPI-node link as a

8

90 NUMA impact on network storage protocols over high-speed raw Ethernet



Second NESUS Workshop• September 2015 • Vol. I, No. 1

 0

 1

 2

 3

 4

 5

 6

 7

4 8 16 32

T
h

ro
u

g
h

p
u

t 
(G

B
/s

)

Threads

FIO - Writes - 4 kB

Ideal
TyNuma

Worst

(a) 4 kB writes

 0

 1

 2

 3

 4

 5

 6

 7

4 8 16 32

T
h

ro
u

g
h

p
u

t 
(G

B
/s

)

Threads

FIO - Writes - 128 kB

Ideal
TyNuma

Worst

(b) 128 kB writes

 0

 1

 2

 3

 4

 5

 6

 7

4 8 16 32

T
h

ro
u

g
h

p
u

t 
(G

B
/s

)

Threads

FIO - Writes - 512 kB

Ideal
TyNuma

Worst

(c) 512 kB writes

 0

 1

 2

 3

 4

 5

 6

 7

4 8 16 32

T
h

ro
u

g
h

p
u

t 
(G

B
/s

)

Threads

FIO - Reads - 4 kB

Ideal
TyNuma

Worst

(d) 4 kB reads

 0

 1

 2

 3

 4

 5

 6

 7

4 8 16 32

T
h

ro
u

g
h

p
u

t 
(G

B
/s

)

Threads

FIO - Reads - 128 kB

Ideal
TyNuma

Worst

(e) 128 kB reads

 0

 1

 2

 3

 4

 5

 6

 7

4 8 16 32

T
h

ro
u

g
h

p
u

t 
(G

B
/s

)

Threads

FIO - Reads - 512 kB

Ideal
TyNuma

Worst

(f) 512 kB reads

Figure 8: Throughput, in GB/s, achieved by Tyche depending on the affinity, with FIO for 4 kB, 128 kB and 512 kB request
size, and random writes and reads.

 0

 20

 40

 60

 80

 100

 120

4
Id

4
T

y

4
W

o

8
Id

8
T

y

8
W

o

1
6
Id

1
6
T

y

1
6
W

o

3
2
Id

3
2
T

y

3
2
W

o

T
o

ta
l 
T

h
ro

u
g

h
p

u
t 

(G
B

)

Threads vs configurations

Initiator QPI - Writes - 4 kB

Q1-No0
Q1-No1

Q0-No0
Q0-No1

(a) 4 kB writes

 0

 20

 40

 60

 80

 100

 120

4
Id

4
T

y

4
W

o

8
Id

8
T

y

8
W

o

1
6
Id

1
6
T

y

1
6
W

o

3
2
Id

3
2
T

y

3
2
W

o

T
o

ta
l 
T

h
ro

u
g

h
p

u
t 

(G
B

)

Threads vs configurations

Initiator QPI - Writes - 128 kB

Q1-No0
Q1-No1

Q0-No0
Q0-No1

(b) 128 kB writes

 0

 20

 40

 60

 80

 100

 120

4
Id

4
T

y

4
W

o

8
Id

8
T

y

8
W

o

1
6
Id

1
6
T

y

1
6
W

o

3
2
Id

3
2
T

y

3
2
W

o

T
o

ta
l 
T

h
ro

u
g

h
p

u
t 

(G
B

)

Threads vs configurations

Initiator QPI - Writes - 512 kB

Q1-No0
Q1-No1

Q0-No0
Q0-No1

(c) 512 kB writes

 0

 20

 40

 60

 80

 100

 120

4
Id

4
T

y

4
W

o

8
Id

8
T

y

8
W

o

1
6
Id

1
6
T

y

1
6
W

o

3
2
Id

3
2
T

y

3
2
W

o

T
o

ta
l 
T

h
ro

u
g

h
p

u
t 

(G
B

)

Threads vs configurations

Initiator QPI - Reads - 4 kB

Q1-No0
Q1-No1

Q0-No0
Q0-No1

(d) 4 kB reads

 0

 20

 40

 60

 80

 100

 120

4
Id

4
T

y

4
W

o

8
Id

8
T

y

8
W

o

1
6
Id

1
6
T

y

1
6
W

o

3
2
Id

3
2
T

y

3
2
W

o

T
o

ta
l 
T

h
ro

u
g

h
p

u
t 

(G
B

)

Threads vs configurations

Initiator QPI - Reads - 128 kB

Q1-No0
Q1-No1

Q0-No0
Q0-No1

(e) 128 kB reads

 0

 20

 40

 60

 80

 100

 120

4
Id

4
T

y

4
W

o

8
Id

8
T

y

8
W

o

1
6
Id

1
6
T

y

1
6
W

o

3
2
Id

3
2
T

y

3
2
W

o

T
o

ta
l 
T

h
ro

u
g

h
p

u
t 

(G
B

)

Threads vs configurations

Initiator QPI - Reads - 512 kB

Q1-No0
Q1-No1

Q0-No0
Q0-No1

(f) 512 kB reads

Figure 9: Percentage of QPI for Tyche depending on the affinity, with FIO for 4 kB, 128 kB and 512 kB request size, and
random writes and reads.

function of the application threads and configuration.

Figure 8 shows that with Ideal, Tyche obtains its
maximum throughput, being 6.67 GB/s for writes

and reads, with 32 threads and 512 kB request
size. Whereas, with Worst, Tyche obtains only up
to 4.21 GB/s and 4.07 GB/s for writes and reads, re-

9

Pilar Gonzalez-Ferez,Angelos Bilas 91



Second NESUS Workshop• September 2015 • Vol. I, No. 1

spectively, also with 32 threads and 512 kB request
size. Indeed, by applying the right placement (Ideal
configuration), Tyche improves throughput up to 76%
(32 threads and 128 kB writes) when comparing with
the Worst configuration.

As we can see in Figure 9, this difference in perfor-
mance is due to the QPI traffic, as explained for reads
with zmIO. With Ideal, almost all the traffic comes
through the QPI-1 link, and both nodes have a similar
amount of traffic. But with Worst, a significant amount
of traffic, up to 48% of the total, comes through the
QPI-0 link.

Note that although Ideal exhibits perfect placement,
for writes, there is traffic at QPI-0 due to cacheline
invalidations to the remote NUMA node. With reads,
this type of traffic is not present.

TyNuma behaves similar to Ideal due to the QPI
traffic at the target, as explained for zmIO. The target
applies affinity for both Ideal and TyNuma, so they be-
have quite similar. In Worst, the target does not apply
affinity, therefore a significant amount of traffic goes
through QPI-0 and the throughput drops significantly.

This behavior is presented also for small requests.
For 4 kB requests, memory placement has also a sig-
nificant impact, and Ideal improves throughput up to
66.2% and 44.6% for writes and reads, respectively,
compared to Worst. Again, there is a small difference
in performance between Ideal and TyNuma.

VII. Related work

A lot of work has been done for NUMA-aware process
scheduling and memory management in the context
of many-core processors and systems. Regarding I/O
performance, for instance, Mavridis et al. propose
Jericho [9], an I/O stack that consists of a NUMA-
aware file system and a DRAM cache organized in
slices mapped to NUMA nodes. Their results show
that Jericho improves performance up to 2× by doing
more than 95% of memory accesses local. Zheng et
al. [10] propose a scalable user-space cache for NUMA
machines. By partitioning the cache by processors, they
break the page buffer pool into a large number of small
page sets and manages each set independently. Note
that, in this work, we show that NUMA placement
is a key aspect to achieve maximum throughput with

network storage protocols as well.
Regarding NUMA and networking, Moreaud et

al. [11] study NUMA effects on high-speed networking
in multi-core systems and show that placing a task
on a node far from the network interface leads to a
performance drop, and especially bandwidth. Their
results show that NUMA effects on throughput are
asymmetric since only the target destination buffer ap-
pears to need placement on a NUMA node close to the
interface. In our case, NUMA affects both sides, target
and initiator.

Ren et al. [12] propose a system that integrates an
RDMA-capable protocol (iSER), multi-core NUMA tun-
ing, and an optimized back-end storage area network.
They apply NUMA affinity by using the numactl utility
for binding a dedicated target process to each logical
NUMA node, and achieve an improvement of up to
19% in throughput for write operations. In contrast, Ty-
che applies NUMA affinity, at both initiator and target,
by defining channels that are mapped them to NICs
and to NUMA nodes, and their resources are allocated
in the same node where the NIC is attached. This ap-
proach almost entirely eliminates NUMA effects, and
achieves an improvement of up to 85%.

Dumitru et al. [13] also analyze, among other as-
pects, the impact of NUMA affinity on NICs capable
of throughput at the range of 40 GBits/s, without,
however, to propose a solution. Pesterev et al. [14]
analyze NUMA effects on TCP connections by propos-
ing Affinity-Accept that ensures that all processing for
a given TCP connection to occur on the same core.
They reduce time spent in the TCP stack by 30% and
improves overall throughput by 24%. They use the
NICs to spread incoming packets among many RX
DMA rings to ensure packets from a single flow al-
ways map to the same core. However, our study shows
that even the NIC resources should be allocated in the
same NUMA node where the NIC is attached to obtain
maximum performance.

VIII. Conclusions

Here, we analyze and evaluate the impact of NUMA
affinity on the network layer supporting the converged
storage paradigm over high-speed Ethernet. We an-
alyze the impact of memory placement by studying

10

92 NUMA impact on network storage protocols over high-speed raw Ethernet



Second NESUS Workshop• September 2015 • Vol. I, No. 1

the amount of data traffic through the Intel R© QPI
links. This analysis shows that NUMA effects can
have a large negative impact on performance, reducing
network throughput up to 2x.

To mitigate NUMA effects, we encapsulate all pro-
tocol data structures and flow control in “channels”
that essentially correspond to the structures required
to serve a request through the full end-to-end I/O
path. Then, we carefully map channels to NICs and
NUMA nodes to ensure proper affinity. Our approach
improves throughput by up to 85%, to a large extent
eliminating inter-processor QPI traffic and NUMA ef-
fects.

Acknowledgment

We thankfully acknowledge the support of the Euro-
pean Commission under the 7th Framework Programs
through the NanoStreams (FP7-ICT-610509) project,
the HiPEAC3 (FP7-ICT-287759) Network of Excellence,
and the COST programme Action IC1305, ’Network
for Sustainable Ultrascale Computing (NESUS)’.

References

[1] An Introduction to the
Intel R© QuickPath Interconnect.
http://www.intel.com/content/www/us/en/io/quickpath-
technology/quick-path-interconnect-
introduction-paper.html, 2009.

[2] Matthew Dobson, Patricia Gaughen, Michael
Hohnbaum, and Erich Focht. Linux Support for
NUMA Hardware. In Ottawa Linux Symposium,
2003.

[3] Christoph Lameter. Local and Remote Memory:
Memory in a Linux/NUMA System. In Ottawa
Linux Symposium, 2006.

[4] Pilar González-Férez and Angelos Bilas. Ty-
che: An efficient Ethernet-based protocol for con-
verged networked storage. In Proceedings of the
IEEE Conference on MSST, 2014.

[5] Pilar González-Férez and Angelos Bilas. Reducing
CPU and network overhead for small I/O requests

in network storage protocols over raw Ethernet. In
Proceedings of the IEEE Conference on MSST, 2015.

[6] Thomas Willhalm (Intel). Intel R© Performance
Counter Monitor - A better way to measure
CPU utilization. https://software.intel.com/en-
us/articles/intel-performance-counter-monitor,
2012.

[7] FIO Benchmark. http://freecode.com/projects/fio.

[8] zmIO Benchmark.
http://www.ics.forth.gr/carv/downloads.html.

[9] Stelios Mavridis, Yannis Sfakianakis, Anastasios
Papagiannis, Manolis Marazakis, and Angelos
Bilas. Jericho: Achieving Scalability through Op-
timal Data Placement on Multicore systems. In
Proceedings of the IEEE Conference on MSST, 2014.

[10] Da Zheng, Randal Burns, and Alexander S. Szalay.
Toward millions of file system iops on low-cost,
commodity hardware. In Proceedings of the Inter-
national Conference on High Performance Computing,
Networking, Storage and Analysis, 2013.

[11] Stéphanie Moreaud and Brice Goglin. Impact of
NUMA effects on high-speed networking with
multi-opteron machines. In Proceedings of the In-
ternational Conference on Parallel and Distributed
Computing and Systems, 2007.

[12] Yufei Ren, Tan Li, Dantong Yu, Shudong Jin, and
Thomas Robertazzi. Design and Performance
Evaluation of NUMA-aware RDMA-based End-
to-end Data Transfer Systems. In Proceedings of
international conference for High Performance Com-
puting, Networking, Storage and Analysis, 2013.

[13] Cees de Laat Cosmin Dumitru, Ralph Koning. 40
Gigabit Ethernet: Prototyping Transparent End-
to-End Connectivity. In Proceedings of the Terena
Networking Conference, 2011.

[14] Aleksey Pesterev, Jacob Strauss, Nickolai Zel-
dovich, and Robert T. Morris. Improving net-
work connection locality on multicore systems. In
Proceedings of the 7th ACM European Conference on
Computer Systems, 2012.

11

Pilar Gonzalez-Ferez,Angelos Bilas 93




