-

View metadata, citation and similar papers at core.ac.uk brought to you by .. CORE

provided by Universidad Carlos Il de Madrid e-Archivo

-dNEsus

Network for Sustainable Ultrascale Computing

Proceedings of the Second International Workshop on Sustainable
Ultrascale Computing Systems (NESUS 2015)
Krakow, Poland

Jesus Carretero, Javier Garcia Blas
Roman Wyrzykowski, Emmanuel Jeannot.
(Editors)

September 10-11, 2015

https://core.ac.uk/display/30277102?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Atanas Hristov 45

Nature-Inspired Algorithm for Solving
NP-Complete Problems

ATANAS HRrisTov

University of Information Science and Technology, Ohrid, Macedonia
atanas.hristov@uist.edu.mk

Abstract

High-Performance Computing has become an essential tool in numerous natural sciences. The modern high-
performance computing systems are composed of hundreds of thousands of computational nodes, as well as deep
memory hierarchies and complex interconnect topologies. Existing high performance algorithms and tools already
require courageous programming and optimization efforts to achieve high efficiency on current supercomputers. On
the other hand, these efforts are platform-specific and non-portable. A core challenge while solving NP-complete
problems is the need to process these data with highly effective algorithms and tools where the computational costs
grow exponentially. This paper investigates the efficiency of Nature-Inspired optimization algorithm for solving
NP-complete problems, based on Artificial Bee Colony (ABC) metaheuristic. Parallel version of the algorithm have
been proposed based on the flat parallel programming model with message passing for communication between
the computational nodes in the platform and parallel programming model with multithreading for communication
between the cores inside the computational node. Parallel communications profiling is made and parallel performance
parameters are evaluated on the basis of experimental results.

Keywords Artificial Bee Colony, High-Performance Computing, Parallel Algorithm, NP-complete problems,
message passing, multithreading

[. INTRODUCTION model with message passing in distributed memory
systems, supported by the MPI standard and parallel
programming model with multithreading in shared
memory systems using the OpenMP programming
interface have been included as a template libraries.
The main disadvantages of the parallel programming
based on conventional programming languages are:
process synchronization, deadlocks, workload balanc-
ing, and thread concurrency. In order to improve this
situation, Intel provides a range of tools specifically
designed to help developers parallelize their applica-
tions. Three sets of complementary models for mul-
tithreading programming in shared memory systems
are supported by Intel: Intel Cilk Plus, Intel Threading
Building Blocks (Intel TBB) and Intel Array Building
Blocks (Intel ArBB). The main purpose of those models
is to increase the reliability, portability, scalability and
the parallel performance of the application during the

Accelerating the development and deployment of ad-
vanced computing systems and cloud computing plat-
forms will require a comprehensive strategy inte-
grating efforts from invention to deployment. The
modern high-performance computing systems (HPCS)
are composed of hundreds of thousands of compu-
tational nodes, as well as deep memory hierarchies
and complex interconnect topologies. Existing high
performance algorithms and tools already require
courageous programming and optimization efforts to
achieve high efficiency on current supercomputers. On
the other hand, these efforts are platform-specific and
non-portable. Currently, most of the HPCS are based
on convectional sequential programming languages
like C, C++, FORTRAN, etc. In order to achieve bet-
ter parallel performance the flat parallel programing

46

multithreading execution [1, 2, 3].

The complexity class of decision problems NP-
complete can be used as a pattern for benchmarking
and parallel performance evaluation of HPCS. This
paper investigates the efficiency of Nature-Inspired
optimization algorithm for solving NP-complete prob-
lems, based on Artificial Bee Colony (ABC) metaheuris-
tic. Highly parallel version of the well-known N-
queens problem has been proposed based on ABC
optimization. The parallel version of the algorithm
have been proposed based on the flat parallel program-
ming model with message passing for communication
between the computational nodes in the platform and
parallel programming model with multithreading for
communication between the cores inside the computa-
tional node. The Intel Threading Building Blocks (TBB)
programming model has been chosen as a standard for
multithreading computations in shared memory sys-
tems. The Message Passing Interface (MPI) has been
chosen as standard for communication in distributed
memory systems.

II. BACKGROUND

The complexity class of decision problems NP-
complete can be used as a pattern for benchmarking
and parallel performance evaluation of HPCS. The
main idea behind using NP-complete problems for
evaluation of the overall parallel performance of the
HPCS is that those problems cannot be solved in poly-
nomial time in any known way which require high
computational power and time. The N-queens prob-
lem belongs to the class of NP-complete problems,
requiring a brute-force algorithm for finding all pos-
sible solutions. The N-queens problem is formulated
as solving the task to place N queens on N x N chess-
board in such way that no queens attack each other,
i.e. on every row, column or diagonal, there is only
one queen. The complexity of this algorithm is O(N!),
which comes from the fact that there are (N2!)/(N!*(N2-
N)!) possible solutions to place the queens on the board
[4, 5, 6]. In order to provide efficient solutions for this
problem and to minimize the time and space complex-
ity, many various optimization techniques have been
proposed. In this paper we provide the experimental
results gained by solving N-Queens problem, using

Nature-Inspired Algorithm for Solving NP-Complete Problems

Artificial Bee Colony (ABC) optimization. The ABC
algorithm belongs to the class of nature-inspired algo-
rithms, which simulate the behavior of the honey bee
swarms in the nature. The main advantage of ABC
algorithm is that uses only common control parame-
ters such as colony size and maximum cycle number.
The ABC algorithm is very powerful optimization tool
which provide a population based search procedure.
The ABC algorithm also combine local search methods,
by using artificial bees which fly around multidimen-
sional search space, with global search methods, by
using another kind of artificial bees which fly and
choose the food source randomly without any expe-
rience and memorize the new position if it is a better
than the one that is already in their memory. Thus lead
to balancing of the exploration and exploitation pro-
cess. The main idea behind using the ABC algorithm
for solving the N-Queens problem is that ABC is very
effective optimization algorithm for finding the best
optimized solution, which is declared according to the
position of the food source, and the amount of nectar
found in that solution. [7, 8, 9].

III. RESOURCE PLANNING WHILE SOLVING
NP-COMPLETE PROBLEMS

During the resource planning process while solving
NP-complete problems two strategies can be applied:
static and dynamic [10]. In the static resource plan-
ning process, each node executes only one part of the
search tree. On Figure 1, an example of static resource
planning on octal-core platform is given.

The main problem with static resource planning
strategy is that the spatial search trees are highly un-
balanced. This can lead to significantly reduce of the
parallel performance of the application. This strategy
can be improved by simultaneously scanning of larger
number of subtrees in order to balance the load of
computational nodes.

Dynamic resource planning strategies for solving
NP-complete problems, allow scanning a large num-
ber of subtrees simultaneously, providing better load
balancing and higher parallel efficiency. In this paper
two dynamic strategies have been proposed. The first
strategy proposed a model in which the main process
searching in depth the spatial search tree and the gener-

Atanas Hristov

Figure 1: Static resource planning while solving NP-
complete problems.

ated subtrees from this process are distributed among
all available processes of the system.

CPU 3 CPU 4 CPU 5

Figure 2: Depth search dynamic resource planning strategy
while solving NP-complete problems.

On Figure 2, an example of dynamic resource plan-
ning by using depth search strategy on octal-core plat-
form is presented. Thus the probability of an unbal-
anced load significantly reduced, while potential par-
allel performance of the system dramatically increases.

Another strategy for dynamic resource planning is
by maintaining a list of nodes of the spatial search tree.

47

All problems and subproblems from the spatial search
tree are placed in the list and each process takes the
last unprocessed knot.

100 SN
66660000060

(17206 314 516 115129 30 10 1 112 |15 1 |15 |16 11718 1920 |21 B8

Figure 3: Maintaining a list of nodes dynamic resource
planning strategy while solving NP-complete problems.

On Figure 3, an example of dynamic resource plan-
ning by using maintaining a list of nodes dynamic strat-
egy is presented. This strategy provides an efficient
way to allocate the workload among computational
nodes of the system even in highly unbalanced trees
of the search space. Thus the efficiency of the parallel
algorithm, as well as the potential parallel performance
of the system does not depend on the balance of the
tree. The main disadvantage of this strategy is that it
requires additional system resources for maintenance
and searching in the list of nodes.

IV. PARALLEL IMPLEMENTATION OF ABC
ALGORITHM

An effective resource utilization of the modern high
performance computing platforms is a subject for many
scientific research investigations. The resource man-
agement optimization for those platforms is an essen-
tial part for optimal resource allocation while solv-
ing NP hard problems. The proposed algorithm for
solving NP-Complete problems is based on Artificial
Bee Colony (ABC) metaheuristic. In this paper we
will present a nature-inspired approach for solving
the N-queens problem which belongs to the class of

48

NP-complete problems. The ABC simulates the col-
lective behavior of the honeybees in nature. The basic
approach during implementation process is building
a computer model which will simulate the collective
behavior of the bees while collecting nectar. Parallel
computing model for solving N-queens problem based
on Artificial Bee Colony (ABC) metaheuristic is present
on Figure 4.

~ Tasks |- -
|
= e MH

12 30

\ ‘\s
7 i s \s
‘\ . L 3 28
1 [N N N
/ ¢ N N N
! RN AN 17 34
1 N . .
s
Wy ¥ YN
> > g p p AN s 18
i | N, N

Figure 4: Parallel computing model for for solving N-queens
problem based on Artificial Bee Colony metaheuristic.

In the proposed parallel model the number of all
possible solutions should be determinate, which tech-
nically is the number of employed bees. Initially, a
random population is generated, followed by repeating
cycles of searching for employed, scout, and onlooker
bees. The employed bee makes a modification of its
initial food source in her memory and therefore finds
a new food source. If the amount and quality of the
nectar from the second position is better than, the em-
ployed bee forgets its initial food source. When the
employed bees finish the search process, they pass their
information to the onlookers located at the base. Then
each onlooker makes a calculation on the received in-
formation and determines the food source. In order
to implement the parallel algorithm for solving the
N-Queens problem, the IntelTBB programming model
and ABC metaheuristic have been used. The proposed
algorithm used dynamic resource allocation. The activ-

Nature-Inspired Algorithm for Solving NP-Complete Problems

ities of each beehive simulate one processor, while the
actions of bees simulate threads. The number of bees
that simulate each thread depends on the architecture
of the target platform. The algorithm supports two
types of global data: table of available resources and a
table of unfinished tasks. The tables should be visible
to all bees as bees carry out direct access to the data
founded in the tables.

In the proposed algorithm, the bees are located in
beehive, so call beehive of the scout bees and beehive
of the onlooker and worker bees. Initially, the main
problem is divided in several sub-problems, which are
stored to the table of outstanding tasks. When the
algorithm is started, the beehive generates N number
of scout bees, where N represents the number of pro-
cessors in the system. Each scout bee checks whether
a processor is free or busy by execution of specific
task on it. If a free resource is found the scout bee
record the ID of the processor into the table of avail-
able resources. Also by executing specific piece of code,
the scout bee determinate the value of the processor,
which basically evaluate the suitability of the processor
to execute specific tasks. Depending of the suitability
of the processor, the scout bee gains a value to the
processor. Once these operations are done, the scout
bee returns to the beehive, where it is terminates. On
the next step, the beehive generates M number of on-
looker bees, where M is the optimal number of parallel
threads. After generation, the onlooker bees search
in to table of available resources. If the onlooker bee
finds a free resource, it takes the ID of the processor
and removes it from the table. The priority is given
to the processor with highest value from the table. If
the onlooker bee didn’t find any free resource in the
table, the bee will return to the beehive and will be
terminate. Once the onlooker bee takes the available
resource it starts to behave as a worker bee. Thus ob-
tained K number of worker bees initially turned to the
table of outstanding tasks where they taking certain
sub-problem, remove it from the table and submit it for
execution by the processor which ID has been taken
from the table of available resources. Once the proces-
sor solves a sub-problem, it provides the solution to a
worker bee. The worker bee with the current solution
returns to beehive 2, where it is terminated.

Atanas Hristov

V. EXPERIMENTAL RESULTS

The proposed algorithm for parallel solving of the
N-queens problem, based on metaheuristic ABC, is
verified and its effectiveness has been studied experi-
mentally based on multithreaded implementation us-
ing Intel Threading Building Blocks (TBB) program-
ming model. The target multiprocessor platform for
conducting experimental results is IBM Blade HS22
server with two quad-core processors Xeon Quad Core
2.00GHz, 6GB RAM, operating system Windows Server
2008. For implementation of the parallel algorithm and
TBB programming model, Intel Parallel Studio 2010
program environment have been used. Experimental
results were conducted for a different workload, i.e.
for different size of the chessboard: 8x8, 12x12, 14x14,
and 16x16. Also, two parallel versions of N-Queens
problem have been tested: the first one based on the
proposed ABC algorithm and the second one based on
well-known backtracking algorithm. On Figure 5 the
executional time while solving the N-Queens problem
using sequential, ABC, and backtracking algorithm is
given.

Execution time (s)

Sequential

Backtracking

Figure 5: Executional time while solving the N-Queens
problem using sequential, ABC, and backtracking algorithm.

From the chart shown on Figure 2 can be concluded
that for size of the chessboard up to 10x10, the execu-
tional times of serial and parallel implementation of
the program are relatively close due to the very short
calculation time of the problem. The overall calculation
time for the mention size of the chessboard is in the
range of few milliseconds up to few seconds. On the
other hand, when the size of the chessboard increases,
the number of possible optimal and suboptimal solu-

49

tions growths exponentially. The execution time of the
sequential algorithm also growths exponentially, but
the potential parallelism of the application increases
for a given factor. This leads to very high executional
time for sequential algorithm, and slightly increases in
the parallel execution of the program.

Speedup

12 Backtracking

Si
e of the chessboard {NXN) ’

Figure 6: Executional time while solving the N-Queens
problem using sequential, ABC, and backtracking algorithm.

On Figure 6 the speedup gained while solving the
N-Queens problem using ABC and backtracking algo-
rithm is given. When the size of the board increases
to 16x16, the speedup gained by program implementa-
tion on octal-core platform using backtracking search
algorithm is 3.68, while using ABC algorithm 5.2. The
main reason behind this is that the ABC algorithm has
better workload balance and better data structure in
the search space through creating tables with tasks
and adequate resources allocation of the relevant sub-
problems implementation.

VI. CONCLUSION AND FUTURE WORK

An effective resource utilization of the modern high
performance computing (HPC) systems is a subject for
many scientific research investigations. The resource
management for those platforms is an essential part for
optimal resource allocation while solving NP complete
problems. An effective parallel algorithm strongly de-
termines the overall parallel performance of the high-
performance computing system. This paper suggests
an innovative algorithm for solving N-queens problem
on multi-processor platforms based on parallel meta-
heuristic "Artificial Bee Colony" (ABC) optimization.
The efficiency of the proposed algorithm was evaluated

50

on the basis of the software tools of Intel Array Build-
ing Blocks build-in Intel Parallel Studio. The proposed
parallel implementation was developed on the basis of
Message Passing Interface (MPI) and Intel Threading
Building Blocks (TBB) programming models. Finally,
we applied the proposed algorithm on IBM Blade HS22
server with two quad-core processors. This allows us
to observe the behavior of the cluster while solving the
N-queens problem. From the experimental results we
conclude that the speedup gained by program imple-
mentation on octal-core platform using backtracking
search algorithm is 3.68, while using ABC algorithm
5.2. Future objectives of this research include imple-
mentation of our algorithm on very large-scale systems
and on the new generation of ExaScale machines.

Acknowledgment

The results reported in this paper are part of the re-
search project, Center of excellence "Supercomputing
Applications" - DCVP 02/1, supported by the National
Science Fund, Bulgarian Ministry of Education and
Science.

REFERENCES

[1] Kristof P, Hongtao Yu, Zhiyuan Li, and Tian X,
“Performance Study of SIMD Programming Mod-
els on Intel Multicore Processors,” in 26th Interna-
tional Symposium in Parallel and Distributed Process-
ing, Shanghai, China, 21-25 May 2012, pp. 2423-
2432.

[2] Wooyoung Kim and Voss M., "Multicore Desk-
top Programming with Intel Threading Building
Blocks," IEEE Software journal , vol. 28, no. 1, pp.
23-31, 2011.

[3] Newburn C.J., Byoungro So, Zhenying Liu, Mc-
Cool M., Ghuloum A., and Toit S.D., “Intel’s Array
Building Blocks: A retargetable, dynamic compiler
and embedded language,” in 9th Annual IEEE/ACM
International Symposium on Code Generation and Op-
timization, Chamonix, France, 02-06 April 2011, pp.
224-235.

[4] Khademzadeh A., Sharbaf M.A., and Bayati A,
“An Optimized MPI-based Approach for Solving

Nature-Inspired Algorithm for Solving NP-Complete Problems

the N-Queens Problem.,” in 7th International Con-
ference on P2P, Parallel, Grid, Cloud and Internet Com-
puting, Victoria, BC,Canada, 12-14 November 2012,
pp- 119-124.

[5] P. Panwar, V. P. Saxena, A. Sharma, and V. Sharma,
" Load Balancing using N-Queens Problem," Inter-
national Journal of Engineering Research Technology ,

vol. 2, no. 1, 2012.

—_

[6

—_

Ayala A., Osman H., Shapiro D., and Des-
marais J.M., “Accelerating N-queens problem us-
ing OpenMP,” in 6th IEEE International Symposium
on Applied Computational Intelligence and Informatics,
Timisoara, Romania, 19-21 May 2011, pp. 535-539.

[7

—_—

Teodorovic D., Lucic P, and Markovic, G., “Bee
Colony Optimization: Principles and Applications,’
in 8th Seminar on Neural Network Applications in Elec-
trical Engineering, Belgrade, Serbia, 25-27 Septem-
ber 2006, pp. 151-15.

7

[8] Banharnsakun A., Achalakul T., and Sirinaovakul
B., “Artificial bee colony algorithm on distributed
environments,” in Second World Congress on Nature
and Biologically Inspired Computing, Fukuoka, Japan,

15-17 December 2010, pp. 13-18.

—_

[

—_—

Marinakis Y., Marinaki M., and Matsatsinis N., “A
hybrid discrete Artificial Bee Colony - GRASP al-
gorithm for clustering,” in International Conference
on Computers Industrial Engineering, Troyes, France,
6-9 July 2009, pp. 548-553.

[10] Xiaozhong G.,Gaochao Xu, and Yuan Z., “Dy-
namic Load Balancing Scheduling Model Based on
Multi-core Processor,” in Fifth International Confer-
ence on Frontier of Computer Science and Technology,
Changchun, Jilin Province, 18-22 August 2010, pp.
398-403.

