
Proceedings of the Second International Workshop on Sustainable
Ultrascale Computing Systems (NESUS 2015)

Krakow, Poland

Jesus Carretero, Javier Garcia Blas
Roman Wyrzykowski, Emmanuel Jeannot.

(Editors)

September 10-11, 2015

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Universidad Carlos III de Madrid e-Archivo

https://core.ac.uk/display/30277099?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


NESUS
Network for Sustainable Ultrascale Computing

IC1305

Second NESUS workshop • September 2015 • Vol. I, No. 1

Distributed Parallel Computing for Visual
Cryptography Algorithms

Raimondas Čiegis†, Vadimas Starikovičius†, Natalija Tumanova†,
Minvydas Ragulskis∗, Rita Palivonaitė∗

† Vilnius Gediminas Technical University, Lithuania, ∗ Kaunas Technological University, Lithuania
rc@vgtu.lt

Abstract

The recent activities to construct exascale and ultrascale distributed computational systems are opening a possibil-
ity to apply parallel and distributed computing techniques for applied problems which previously were considered
as not solvable with the standard computational resources. In this paper we consider one global optimization
problem where a set of feasible solutions is discrete and very large. There is no possibility to apply some apriori
estimation techniques to exclude an essential part of these elements from the computational analysis, e.g. applying
branch and bound type methods. Thus a full search is required in order to solve such global optimization problems.
The considered problem describes visual cryptography algorithms. The main goal is to find optimal perfect grat-
ings, which can guarantee high quality and security of the visual cryptography method. The full search parallel
algorithm is based on master-slave paradigm. We present a library of C++ templates that allow the developer to
implement parallel master-slave algorithms for his application without any parallel programming and knowledge
of parallel programming API. These templates automatically give parallel solvers tailored for clusters of comput-
ers using MPI API and distributed computing applications using BOINC API. Results of some computational
experiments are presented.

Keywords Visual Cryptography, Parallel Algorithm, BOINC, Parallel Templates

I. Introduction

The recent activities to construct exascale and ultra-
scale distributed computational systems are opening
a possibility to apply parallel and distributed com-
puting techniques for applied problems which previ-
ously were considered as not solvable with standard
computational resources. In this paper we consider a
global optimization problem, where a set of feasible
solutions is discrete and very large. There is no pos-
sibility to apply some apriori estimation techniques
to exclude an essential part of these elements from
the computational analysis, e.g. applying branch and
bound type methods [1]. Thus a full search is required
in order to solve such global optimization problems.

The given problem describes visual cryptography
algorithms [2]. The main goal of this paper is to

find optimal perfect gratings, which can guarantee
high quality and security of the visual cryptography
method. The full search parallel algorithm is based
on master-slave paradigm [3]. We present a library
of C++ templates that allow the developer to imple-
ment parallel master-slave algorithms for his applica-
tion without any parallel programming and knowl-
edge of parallel programming API. These templates
automatically give parallel solvers tailored for clusters
of computers using MPI API and distributed comput-
ing applications using BOINC API [4]. For application
of such MPI templates see [5].

The rest of this paper is organized as follows. In
Section II, the discrete global optimization problem
is formulated. The optimality criterion for finding
the optimal perfect grating function is defined and
the set of feasible solutions is described. The paral-

1

Raimondas Ciegis 23



Second NESUS workshop • September 2014 • Vol. I, No. 1

lel master-slave type algorithm is presented in Sec-
tion III. Here we also describe a genetic evolutionary
algorithm. Heuristics as an alternative for full search
algorithms are recommended for such type of deter-
ministic global optimization problems. Our aim is
to investigate the efficiency of such algorithms in the
case when the set of feasible solutions is described
by quite complicated non-local requirements. In Sec-
tion IV, templates for master-slave type algorithms are
described. They allow developers to implement paral-
lel master-slave algorithms for their applications with-
out any parallel programming on clusters of comput-
ers using MPI and distributed computing systems us-
ing BOINC technology. Results of computational ex-
periments are given in Section V. They illustrate the
theoretical scalability results. Some final conclusions
are presented in Section VI.

II. Problem Formulation

Here we define the most important details on ad-
vanced dynamic visual cryptography algorithms. The
image hiding method is based on time-averaging
moire gratings [6]. The method generates only one
picture, which is used as a plaintext. The secret image
can be seen by the human visual system only when
the original encoded image is oscillated in a prede-
fined direction at a strictly defined amplitude.

Function F(x) defines a greyscale grating if the fol-
lowing requirements are satisfied

(i) The grating is a periodic function F(x + λ) =
F(x), here λ is the pitch of grating, and 0 ≤
F(x) ≤ 1;

(ii) m-pixels n-level greyscale function Fmn(x) is de-
fined as:

Fmn(x) =
yk
n

,
(k−1)λ

m
≤ x ≤ kλ

m
, k = 1, . . . , m,

where k = 1, . . . , m, 0 ≤ yk ≤ n.

We will consider a subset P of perfect greyscale
step functions, they satisfy the following additional
requirements:

(1) The grating spans through the whole greyscale in-
terval

min yk = 0, max yk = n.

(2) The average greyscale level in a pitch of the grat-
ing equals

γ :=
1
m

m

∑
k=1

yk =
n
2

.

(3) The "norm" of the greyscale grating function must
be at least equal to the half of the norm of the
harmonic grating

‖F‖ ≥ ‖F̃‖ =
1

2π
, ‖F‖ :=

1
λ

∫ λ

0

∣∣∣∣F(x)− 1
2

∣∣∣∣ dx.

(4) The pitch of the grating λ must be strongly identi-
fiable, the main peak of the discrete Fourier ampli-
tude must be at least two times larger compared
to all other Fourier modes

√
a2

1 + b2
1 ≥ 2

√
a2

j + b2
j , j = 2, 3, . . . , m − 1,

where the function F is expanded into the Fourier
truncated series

F(x) =
a0

2
+

m−1

∑
j=1

(
aj cos

2πkx
λ

+ bj sin
2πkx

λ

)
.

Now we formulate the optimality criterion for find-
ing the optimal perfect grating function

δ(F0
mn) = max

Fmn∈P
min
s∈S1

(
σ
(

Hs(Fmn, ξ̃s)
))

, (1)

where the standard deviation of a grayscale step grat-
ing function oscillated harmonically is given by (s is
the oscillation amplitude):

σ
(

Hs(Fmn, ξ̃s)
)
=

√
2

2

√√√√
m−1

∑
j=1

(a2
j + b2

j )J2
0 (2π js/λ),

where J0 is the Bessel function of the first type.

III. Parallel Algorithm

The determination of the optimal perfect grating (1)
requires to test a full set D of gratings in two steps. For
each given grating the following algorithm is applied:

1. First, the testing of grating is done to check if all
conditions of perfect gratings are satisfied.

2

24 Distributed Parallel Computing for Visual Cryptography Algorithms



Second NESUS workshop • September 2014 • Vol. I, No. 1

2. Second, for a perfect grating the value of the stan-
dard deviation of the grating function is com-
puted and the optimal value is updated.

This algorithm is fully parallel and it can be imple-
mented by using the master and slaves paradigm [5].
Thus it is well suited for application of distributed
computing technologies, including BOINC technol-
ogy.

The complexity of the full search algorithm is of or-
der

W = O(m2nm).

Here the factor m2 arises due to application of simple
Fourier summing algorithm instead of FFT algorithm.
For small values of m this approach is more robust
and flexible.

For industrial applications gratings with 12 ≤ m ≤
25 and 15 ≤ n ≤ 127 are considered. In order to
reduce the size of set D two specific modifications are
applied.

1. Due to the first condition of the perfect gratings
we can fix ym = 0.

2. The periodicity condition and the mirror transfor-
mation are applied to exclude the gratings, which
were tested in earlier stages of the full search al-
gorithm.

We note, that such modifications still not change the
asymptotic of the complexity of the full search algo-
rithm.

The presented parallel full search algorithm re-
quires very big computational resources. As an alter-
native heuristic methods can be considered. A natural
selection is to use genetic evolutionary algorithms. We
have applied a modification of the standard genetic
method [7].

• Every chromosome represents one period of a
grayscale function Fmn(x). The initial popula-
tion comprises of N randomly generated chromo-
somes (perfect gratings) with values of genes uni-
formly distributed over the interval [0, n − 1]. We
note, that only perfect gratings are included into
the population.

• The crossover between two chromosomes is done
by using the random roullete method. The chance
that the chromosome will be selected to the mat-
ing is proportional to its fitness value. The main
difficulty of this step is that after crossover be-
tween two perfect gratings in most cases we ob-
tain non-perfect new grating. Thus this step is
continued while the specified number M of new
chromosomes are obtained. It is allowed to in-
clude into the new population more than one
copy of the same chromosome.

• A mutation procedure is used with a slight modi-
fication that if the value of one gene is reduced by
δk, then the value of the other randomly selected
gene is increased by the same amount. Again,
only perfect new chromosomes are included into
the updated population.

In computational experiments we have tested the
quality of solutions obtained by using this heuristic
based on the genetic evolutionary algorithm.

IV. MPI and BOINC Templates

We obtain a parallel solver for the considered prob-
lem using our C++ templates for distributed comput-
ing applications. These templates were designed for
easy and quick development of parallel applications
based on master-slave parallelization paradigm [3]. In
master-slave parallel algorithm, master process reads
the problem input, generates and distributes jobs to
the slave processes. Slave processes receive jobs from
the master, solve them and return back the obtained
results. Finally, master process receives the results
from the slaves and generates a new set of jobs if nec-
essary.

Our C++ templates allow the developer to imple-
ment the parallel master-slave algorithm for his appli-
cation without any parallel programming and knowl-
edge of parallel programing API. The developer needs
only to implement the application-specific parts of the
code for the reading of the problem input, consec-
utive generation of single jobs, solving of the single
job, processing or merging of obtained results. These
application-specific tasks need to be implemented and
placed in appropriate virtual functions of our C++

3

Raimondas Ciegis 25



Second NESUS workshop • September 2014 • Vol. I, No. 1

templates. The workflow of the whole master-slave al-
gorithm (including communication between the mas-
ter and slave processes) is provided by the basic
classes of our C++ templates.

Let us now formulate the special features of our C++
templates for distributed computing applications:

• The templates are built as a hierarchy of C++
classes. Basic classes implement the basic func-
tionality of master-slave algorithm and specify
the pure virtual functions, which need to be im-
plemented in descendant classes to obtain appli-
cation-specific parallel solvers.

• Input parameters and results of the job are ex-
changed between the master and slave using in-
put and output files.

• Design of the templates allows to build a parallel
application using MPI API [8] or distributed com-
puting application using BOINC API [4] apply-
ing the same C/C++ code with implementation
of application-specific tasks.

The usage of technology based on input and out-
put files is not as efficient as a direct message passing
between processes. However, the performance over-
head is negligible for the coarse grained jobs. This
is it the case for our problem. In turn, such an ap-
proach significantly simplifies the template and allows
the communication of input and output data between
the master and slaves without application-specific par-
allel programming.

Such an approach also allows the implementation
of distributed computing applications. Currently, our
programing tool allows easy and quick development
of distributed application for volunteer computing
project based on the Berkeley Open Infrastructure for
Network Computing (BOINC) [4], which is the most
popular middleware for volunteer computing. Using
our C++ templates, application for BOINC project can
be developed without any knowledge of BOINC API.
Moreover, MPI version of application solver is very
useful in testing and debugging implementations of
application-specific tasks.

Application-specific tasks are separated and imple-
mented in different classes:

• WorkGenerator class. It reads the problem input in
the constructor, generates and writes to the file in-
put for the next job by calling application-specific
function GenerateInputForNewJob(FILE *jobInput-
File), which must be provided by the application
developer.

• ClientApplication class. It reads the input file,
solves the job, and writes the results to output file
by calling application-specific function SolveSin-
gleJob(const char* inputFileName, const char* out-
putFileName), which must be provided by the ap-
plication developer.

• ResultsAssimilator class. It is processing results of
the single job and merging them with previous
results by calling application-specific function As-
similateResults(FILE *jobResultsFile), which must
be provided by the application developer.

For our problem we don’t need it, but for BOINC
project application, developer needs also to provide a
separate class for validation of the obtained results.

V. Computational Experiments

Parallel numerical tests were performed on the com-
puter cluster “Vilkas” at the Laboratory of Parallel
Computing of Vilnius Gediminas technical university.
We have used up to eight nodes with Intel R© CoreTM

i7-860 processors with 4 cores (2.80 GHz) and 4 GB
of RAM per node. computational nodes are intercon-
nected via Gigabit Smart Switch.

V.1 Parallel search algorithm

First, we have solved a small benchmark problem in
order to show a very good scalability of such type
of parallel algorithms. They can be implemented ef-
ficiently on very large distributed heterogeneous sys-
tems, including BOINC technology.

We have solved the optimization problem for m =
10, n = 10. In table 1, we present the total wall
time Ts,p×c in seconds, when parallel computations
are done on a cluster with p nodes and c cores per
node, and s slaves have solved computational tasks.

4

26 Distributed Parallel Computing for Visual Cryptography Algorithms



Second NESUS workshop • September 2014 • Vol. I, No. 1

The master is responsible for generation and distribu-
tion of job set and accumulation of results from slaves,
a separate core is used to run this part of the paral-
lel algorithm. Also, we present the values of parallel
algorithmic speed-up

Ss =
Ts,p×c

s
.

1, 2x1 2, 3x1 3, 4x1 7, 2x4 11, 3x4
Ts,p×c 478.0 242.2 160.2 78.2 50.1
Ss 1 1.97 2.98 6.11 9.54

Table 1: The total wall time Ts,p×c and speed-up Ss values
for solving the grading optimization problem with m = 10,
n = 10.

The degradation of the efficiency of the parallel al-
gorithm for s = 7 and s = 11 slaves is explained by
the well-known fact, that in the case of more cores
per node the shared-memory structure becomes a bot-
tleneck when too many cores try to access the global
memory of a node simultaneously [9]. This conclusion
is confirmed also by results of more computational ex-
periments with different configurations of nodes and
clusters:

T2,1×3 = 275.5, T3,2×2 = 166.6, T3,1×4 = 183.0.

The presented estimate of the complexity of the par-
allel search algorithm gives quite accurate estimate
from above for the total computation time. For ex-
ample, using results of previous computational exper-
iments we get prediction that a problem with m = 11,
n = 12 on 4 × 4 cluster will be solved in T = 1195
seconds. The result of computational experiments
is T15,4×4 = 939 seconds. Again, we can note that
the scalability of the parallel search algorithm is very
good, the same problem is solved on 5 × 4 cluster in
T15,4×4 = 746 seconds, this CPU time is very close to
the prediction from the scalability analysis.

V.2 Genetic search algorithm

The full search algorithm requires very big computa-
tional resources and leads to a big challenge even for

ultrascale distributed computational systems. Thus al-
ternatives based on heuristic global optimization algo-
rithms also should be investigated. Next we present
results of computational experiments for the heuristic
search algorithm which is based on genetic evolution-
ary algorithm.

In table 2, we present the standard deviation values
for optimal gratings and gratings computed by using
the genetic algorithm.

m n δoptim δgenetic
8 13 0.06178 0.06178
9 13 0.06310 0.06267
10 13 0.05984 0.05717
11 13 0.06162 0.05808

Table 2: The standard deviation values for optimal gratings
and gratings computed by using the genetic algorithm.

The presented results of computational experiments
show that the classical genetic algorithm is not effi-
cient for this type of problems. Such a behaviour of
the given heuristic is connected to the fact that for per-
fect gratings the mutation of two high-quality gratings
mostly will not produce a new perfect grating. But
exactly this step is most important for obtaining ef-
ficient genetic algorithms for solving discrete global
optimization problems.

VI. Conclusions

In this paper we have described a library of templates
for implementation of parallel master-slave type algo-
rithms. These C++ templates allow to build a paral-
lel solver automatically from the sequential version
of the algorithm. The parallel solvers for clusters us-
ing MPI API or distributed computing applications us-
ing BOINC API are generated using the same C/C++
code. Only application-specific tasks must be pro-
vided by users. These templates are used to generate
a parallel solver for applied problem of visual cryptog-
raphy. The provided results of computational experi-
ments have confirmed theoretical scalability estimates
of the parallel algorithm.

The complexity of the given discrete global op-

5

Raimondas Ciegis 27



Second NESUS workshop • September 2014 • Vol. I, No. 1

timization is very big even for modern distributed
computational systems. Thus as an alternative some
heuristics can be considered. Results of application
of classical genetic heuristic algorithms are showing
that such standard algorithms are not efficient for this
type of problems. In the future paper we will in-
vestigate hybrid genetic algorithm. In these memetic
algorithms the approximations obtained by genetic
method are also subject to local improvement phases.
For such local optimization the modifications of the
full-search algorithm described above can be used.

Acknowledgment

The work presented in this paper has been partially
supported by EU under the COST programme Action
IC1305, ’Network for Sustainable Ultrascale Comput-
ing (NESUS)’.

References

[1] R. Horst, P.M. Pardalos and N.V. Thoai, Introduc-
tion to Global Optimization, Second Edition. Kluwer
Academic Publishers, 2000.

[2] P.S. Revenkar, A. Anjum and W.Z. Gandhare. "Sur-
vey of visual cryptography schemes," Intern. Jour-
nal of Security and Its Applications, vol. 4, no. 2, pp.
56-70, 2010.

[3] V. Kumar, A. Grama, A. Gupta and G. Karypis,
Introduction to Parallel Computing: Design and Anal-
ysis of Algorithms. Benjamin/Cummings, Redwood
City, 1994.

[4] D. P. Anderson, “Boinc: a system for public re-
source computing and storage,” in Proceedings of
the 5th IEEE/ACM International Workshop on Grid
Computing, 2004, pp. 1-7.

[5] M. Baravykaitė and R. Čiegis, “An implementa-
tion of a parallel generalized branch and bound
template”, Mathematical Modelling and Analysis, vol.
12, no. 3, pp. 277–289, 2007.

[6] M. Ragulskis and A. Aleksa, “Image hiding based
on time-averaging moire”, Optics Communications,
vol. 282, no. 14, 2752-2759, 2009.

[7] D. Goldberg, The Design of Innovation: Lessons from
and for Competent Genetic Algorithms. Norwell, MA:
Kluwer Academic Publishers, 2002.

[8] Message Passing Interface Forum, “MPI: A Mes-
sage Passing Interface Standard,” www.mpi-fo-
rum.org, Version 1.1, 1995.

[9] N. Tumanova and R. Čiegis, “Parallel algorithms
for parabolic problems on graphs”, in High-Perfor-
mance Computing on Complex Environments, Chap-
ter 4, pp. 51-71, John Wiley & Sons, Inc, 2014.

6

28 Distributed Parallel Computing for Visual Cryptography Algorithms


