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Abstract

Network traffic analysis is important for detecting intrusions and managing application traffic. Low cost, cluster-
based traffic analysis solutions have been proposed for bulk processing of large blocks of traffic captures, scaling
out the processing capability of a single network analysis node. Because of traffic intensity variations owing to
the natural burstiness of network traffic, a network analysis cluster may have to be severely over-dimensioned
to support 24/7 continuous packet block capture and processing. Bursting the analysis of some of the packet
blocks to the cloud may attenuate the need for over-dimensioning the local cluster. In fact, existing solutions
for network traffic analysis in the cloud are already providing the traditional benefits of cloud-based services to
network traffic analysts and opening the door to cloud-based Elastic MapReduce-style traffic analysis solutions. In
this paper we propose a scheduler of packet block network analysis jobs that chooses between sending the job to a
local cluster versus sending it to a network analysis service on the cloud. We focus on map-intensive jobs such
as string matching-based virus and malware detection. We present an architecture for an Hadoop-based network
analysis solution including our scheduler, report on using this approach in a small cluster, and show scheduling
performance results obtained through simulation. We achieve up to more than 50% reduction on the amount of
network traffic we need to burst out using our scheduler compared to simple traffic threshold scheduler and full
resource availability scheduler. Finally we discuss scaling out issues for our network analysis solution.

Keywords Packet Network Traffic Analysis, Hadoop, Cloud Bursting

I. Introduction

Many companies invest in their private IT data cen-
ters to meet most of their needs. However, these pri-
vate data centers might not cope with workload peaks,
leading to delays and lower throughput. Using ex-
tra computing power to handle the unpredictable and
infrequent peak data workloads is expensive and inef-
ficient, since a portion of the resources will be inactive
most of the time. Migrating the whole application to
a cloud infrastructure, though possibly cheaper than
investing in the private data center because servers are
only rented when needed, is still expensive and could
compromise private and important data. A hybrid

model offers the best solution to address the needs for
elasticity when peak workloads appear, while provid-
ing local privacy if needed. In this model, the local
IT data center of an enterprise is optimized to fulfill
the vast majority of its needs, resorting to additional
resources in the cloud when the local data center re-
sources become scarce [1]. This technique is called
Cloud Bursting and enables an enterprise to scale out
their local infrastructure by bursting their applications
to a third-party public cloud seamlessly, if the need
arises [2].

Cloud Bursting could be of use to network man-
agers and security experts. In fact, their need for
more computational power that can perform more
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complex network intrusion detection and application
traffic management is hand in hand with the variabil-
ity of network traffic and of traffic analysis workload.
Big data style analysis software and services using
the open source YARN and Hadoop platform1 are
available both in the research community [3, 4] and
commercially2. Although [3] in particular provides a
range of network analysis jobs from low level packet
and flow statistics to intrusion detection, their perfor-
mance evaluation focuses mainly on the throughput
of the analysis system with different file sizes. In par-
ticular, Map and Reduce run time distributions that
could be helpful for large scale evaluation have not
been characterized.

Three types of network traffic analysis are typical
[5]: 1) real-time analysis, where continuous streams
of data are analyzed and processed as they arrive; 2)
batched analysis, where data is aggregated in batches
and analyzed periodically; and 3) forensics analysis
are analysis that only occur when special events are
triggered, for example, when a major intrusion has
been detected and requires detailed analysis of logged
traffic. This work focuses on 24/7 continuous batch
analyses of consecutive captures of network packet
traffic and on the natural variability that characterizes
such traffic. Because intrusion detection results for
each batch must be delivered as soon as possible to
allow for early detection, traffic variability in a contin-
uous batch processing means either over-dimensioning
the computing cluster or waiting longer to get detec-
tion results. Our proposal is to use Cloud Bursting
to burst some jobs and achieve lower waiting times.
We present an integrated solution in section II that we
have implemented in our networking laboratory. An
important part of this solution is the scheduler that
decides whether to burst a job based on the size of
the file that needs to be analyzed and on the resource
usage in the cluster. We present our Map-intensive job,
job model, scheduler rationale, and cluster capacity
estimation in section III. In section IV we show results
of running our network analysis job in a small Hadoop
cluster. The goal here is to provide an example of
how the scheduler works and to obtain an empirical
distribution for the Map run time to be used in our

1http://hadoop.apache.org
2http://www.pravail.com

Figure 1: Our network topology with port mirroring, PCAP
traffic file capture, cluster for PCAP file processing, and our
control node (INTAS).

simulator in section V. In section V we describe the
simulator, provide a distribution for link load, and
characterize run times of single and continuously ar-
riving jobs. In section VI we show job delay and burst
count for our scheduler and compare it with baseline
schedulers. We conclude with scale out analysis in
section VII, related work analysis in section VIII, and
final remarks in section IX.

II. Cloud Bursting Architecture

Figure 1 shows the topology of our network. Out-
bound traffic from the 172.16.1.0/24 and 172.16.2.0/24
networks is captured via port mirroring and the tcp-
dump application in our Integrated Network Traffic
Analysis Solution (INTAS). INTAS will decide whether
to send each PCAP file created by tcpdump to our
local private cloud or to burst the file to a public cloud,
reachable through the Internet. In this paper we as-
sume the public cloud is provisioned such that an
adequate job performance is achieved.

Figure 2 shows the architecture and modules of our
solution. The Network Traffic Gatherer module uses
tcpdump to capture batches of network traffic from
a pre-specified network interface and generate PCAP
files. Once ready, the PCAP files are copied to a folder

2
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Figure 2: The architecture of INTAS.

where the PCAP File Processor module determines
whether or not the PCAP file is new before delivering
it to the Scheduler/Load Balancer. Using the clus-
ter resource utilization information provided by the
Resource Monitor, the Scheduler decides whether to
launch the job locally or to burst it. In either case, the
PCAP file is first uploaded to HDFS on the destination
cluster through the HDFS Uploader module. After the
upload is complete, the Job Launcher connects to the
Hadoop cluster to launch the map-intensive network
analysis job.

III. Scheduler

III.1 Map-Intensive Network Analysis
Jobs

Map-intensive network analysis jobs such as traffic clas-
sification and virus or malware detection using string
matching can have the following two-phase design.
The Map phase checks packet payload for the presence
of signature keys. This outputs a list of which applica-
tions or viruses were identified on which packets. The
reduce phase merges these results and writes them to
the job’s output file.

The Map phase of this kind of network analysis job

is computationally expensive. Simply put, all possible
string sequences in the packet’s transport layer payload
must be compared to the signature keys of the different
viruses, malware, or specific applications we want to
find. For a signature key with bkey bytes and a string
comparison factor kkey[second/byte], the total process-
ing time of a packet is tpacket = kkey (bpacket − bkey),
with bpacket ≥ bkey. For small keys and relatively large
packets, we can have a close approximation of tpacket
by using its upper bound k bpacket, where k is the sum
of all string comparison factors and which can also be
expressed as k = nkavg with n keys and kavg average
string comparison factor. This upper bound is propor-
tional to the size of the packet. We find an estimate of
k by benchmarking the target cluster as reported later
in the paper.

Under the Map-Reduce paradigm, each traffic cap-
ture file is split into a number of data blocks and each
block is processed by a Map process. Although the
exact number of packets in each block can change ac-
cording to the nature of the network traffic, the size in
bytes of almost all data blocks is pre-configured and
independent of the nature of the traffic. Our estimate
for the Map processing time of a block with bblock bytes
is tblock = k bblock. We assume the switching time be-
tween processing of packets is much smaller than the
actual processing.

The Reduce phase of this kind of network analysis
jobs is much less computationally demanding than the
Map phase. We assume the Reduce processing time to
be zero.

III.2 Job Completion Time Estimate

The number of map tasks that a network analysis
job launches depends on the size of the input traf-
fic capture file and on the Map-Reduce data block
size. A block size of 128 MB is typical, which for
a slightly under 900 MB traffic capture file size b f ile
would yield 7 data blocks on which 7 Map processes
would need to run. More generically, we compute
m = b f ile/bblock and estimate the number of Map pro-
cesses to be M = dme. We disable speculative execu-
tion to improve this estimate.

The container is the unit of resource allocation in
Hadoop YARN. Typically, two containers run per host.

3
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The mapping to containers sets the limit to the number
of Maps that a network analysis task can run simulta-
neously. One Map process runs on a container. Each
Map-Reduce job is managed by an ApplicationMaster
that requires an additional host throughout the com-
plete lifetime of the job. Although Reduces also require
containers, their impact on resource usage in this kind
of network analysis job is much smaller than that of
Maps and we do not consider them.

For a YARN cluster with H hosts, the number of
Maps that can run simultaneously is Ms = 2(H− 1)−
1. Comparing Ms and M takes us to the concept of Map
waves. Each wave of Ms Maps will run simultaneously
for approximately tblock, after which a new wave of Ms
(or fewer) Maps will start. This repeats until all M
Maps have run. We compute n = M/Ms and estimate
the number of waves as N = dne. Our estimate for
the job completion time is tMjob = (N − 1) ∗ tblock +
k(m− bmc)bblock if the last wave has a single Map task
(in which case M− NMs = 1), and tMjob = N ∗ tblock
otherwise, which is the more frequent case.

In addition to TMjob, the scheduler needs have an
estimate of the time it takes the system to upload the
captured traffic file from the capture node to HDFS.
We use a simple estimate Tupload = b f ile/r with r in
[bytes/second]. The total job completion time estimate
is Tjob = TMjob + Tupload.

At any moment in time after the job has been sched-
uled, the estimate for the job completion time Tremaining

job
can be updated as follows:

• TMjob + (b f ile − buploaded
f ile )/r , if the upload not fin-

ished yet. buploaded
f ile is the number of bytes that

have been uploaded so far.

• TMjob − Ndone tblock − twave , if the upload finished.
Ndone is the number of completed waves and twave
is how long the current wave has been running.

This estimate is valid for a single job running in the
cluster.

III.3 Scheduling Concurrent Jobs

An incoming traffic analysis job is scheduled regardless
of the size of the capture file when no job is running

on the cluster. When traffic peaks, it is possible that a
new chunk of traffic is captured and ready for analysis
before the traffic analysis job of the previous chunk is
over. In this case where a job is running in the local
cluster when a new job arrives, the scheduler will have
to decide whether to send the incoming job to the local
cluster or to the cloud.

Our baseline scheduler verifies if there are enough
containers for the job in the local cluster. If there
are, the job is ran locally; otherwise the job is sent to
the public cloud. We assume the connection to the
public cloud and the public cloud cluster itself are
provisioned such that an adequate response time is
achieved. We do not explore public cloud performance
in this paper.

The approach of the baseline scheduler is over sim-
plifying and can send more jobs to the public cloud
than needed: 1) the time it takes to upload the capture
file to the local HDFS can be enough for the current job
to complete and the incoming job to be processed lo-
cally; 2) the last wave of a job may use fewer resources
than the previous waves, which can be used by the in-
coming job. Our proposed scheduler takes advantage
of the job completion time estimate and wave model
presented in the previous section to try to reduce the
number of uploads to the public cloud and reducing
the impact on job completion time.

Our proposed scheduler schedules incoming candi-
date job locally if:

• S0. Local cluster is empty or enough containers
are available to run the incoming job.

• S1. Local cluster has single current job and current
job finishes before or up to Th1 seconds after in-
coming job upload time to local cluster HDFS. For
this we use Tremaining

job of the current job and Tupload

of the incoming candidate job. Th1 provides some
tolerance to the decision and can be chosen to be
a few percent of the wave duration.

• S2. Local cluster has single current job and: 1) the
next to the last wave of current job finishes before
or up to Th1 seconds after incoming job upload
time to local cluster HDFS and 2) the number of
containers of the last wave of the candidate incom-
ing job is smaller than or equal to the number of
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containers not used by last wave of the current
job.

III.4 Benchmarking and Estimating Capac-
ity

Our scheduler requires an estimate of the block execu-
tion time tblock and of the upload to HDFS rate r. Our
approach for estimating these values is to run the net-
work analysis job we are interested in benchmarking
on an sample data set prior to running the job on the
target traffic capture files. This provides samples for
measure Map completion time and file upload time,
which can be averaged or maxed and used as estimate
for tblock and r.

Estimating the capacity of a cluster for this kind
of network analysis is important for: 1) defining
the traffic throughput that a given cluster can sup-
port for analysis and 2) specifying how many and
what kind of nodes there should be in the cluster
for a given traffic throughput that needs to be ana-
lyzed. We estimate the maximum throughput of a
traffic capture that a cluster can support as Thput =
Ms ∗ bblock/tblock = (2(H − 1) − 1)/k. Using this es-
timate, a cluster with 10 nodes, 128 MB block size,
and tblock = 5min (k = 2.23 µs/byte) would support
approximately 60 Mbit/s traffic captures, which yields
a maximum 10 minute traffic capture file of 4.5 GB.

IV. String Matching Job in Small
Physical Clusters

We ran a Map-intensive string matching job with 200
signature keys on H=5 node low-end YARN clusters.
To more easily launch our Hadoop 2.3.0 cluster we use
a private cloud based on Openstack IceHouse3 and
the Sahara Openstack module4 that provisions data-
intensive application clusters like YARN. The bare-
metal operating system is Ubuntu 14.04. Each bare
metal runs a single virtual machine YARN node.

Due to time and lab resource constraints we ran the
two experiments of this section in different hardware.
The scheduling experiment was run on a heteroge-
neous cluster with the following bare-metals: Intel

3https://www.openstack.org/software/icehouse/
4http://docs.openstack.org/developer/sahara/

Core i7-3770 3.40GHz, two Intel Core i7 950 3.07GHz,
Intel E5504 2.00GHz. The map runtime experiment
was run on a homogeneous cluster in which the bare-
metal CPUs are older, 2008 Intel Core 2 Quad Q9300
running at 2.50GHz. CPU names are as reported by
/proc/cpuinfo.

We captured two PCAP files locally on a 100 Mbit/s
link for 10 minutes each. One file (A) is 1.22 GB and
the other (B) is 2.01 GB, corresponding to 17 Mbit/s
and 26 Mbit/s of traffic going out of our local network.
One file has 10 128 MB data blocks and the other 16.

IV.1 Scheduling

For our scheduling experiments we replayed the two
PCAP files A and B into our system every 10 min-
utes according to this sequence: "ABBBBA-ABABAA-
AAAAAA". File A has the cluster running slightly
below capacity whereas file B has the cluster running
above capacity. This means that during the first phase
"ABBBBA" the cluster will be running well above ca-
pacity, during the second phase "ABABAA" the cluster
will be just slightly over capacity, and during the third
phase "AAAAAA" the cluster will be running below
capacity.

Figures 3 and 4 show an example of processing the
first phase "ABBBBA". To produce analysis results as
soon as possible, the Maps for job 6A should start
immediately after the upload is completed, i.e. on
the right side of the small box near 6A. Notice that
without scheduler (figure 3, job id 54), the Maps have
to wait until the previous job completes – which is
a considerable amount of time. In figure 4 with the
scheduler and by bursting job 5B, job 6A can start
immediately after upload.

Figure 5 shows how the job sequence was burst or de-
layed using the three different scheduling approaches:
no scheduler, simple, and advanced. Because we want
to have an idea of the impact of the scheduler on each
job individually, we can compare the run time of a job
Tjob with the sum of the job’s Map run times divided
by the number Ms of Maps that can run simultane-
ously. We define this metric as D = Tjob/Tideal − 1
with Tideal = 1/Ms ∑i ti

block and where ti
block is the run

time of the ith Map of the job. The results confirm our
intuition that by bursting some jobs the job delay can

5
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Figure 3: Example of processing phase "ABBBBA" without
bursting. Horizontal lines are the placeholder for container
utilization through time. "X_Y" labeled boxes represent
Map run Y of job X. Smaller boxes with file sizes and e.g.
"1A" legend represent PCAP file upload to HDFS. Plot
lines on each pair of containers represent traffic in and out of
the network interface in the bare metal where the containers
run.

be reduced. The advanced scheduler only burst 3 jobs
while not causing distinguishable delays compared to
the simple scheduler that burst 5 jobs. Interestingly, the
results for job delay without scheduler suggest some
spillover from phase 1 to phase 2 that seems to make
job delay in phase 2 larger than in phase 1 when in
fact phase 1 is more demanding than phase 2. This
could also be due to the inherent randomness of this
system. This is one of the reasons why we now go to
simulation and better understand the performance of
the bursting approaches.

IV.2 Map run time distribution

Figure 6 shows the distribution of the run time and
throughput of 762 128MB-block Maps that were used
to analyze files A and B. We ran the analysis job on
file A 48 times and on file B 24 times. The Map run
time 50th percentile is 6 minutes and 3 seconds. We
can use this value to estimate the capacity of our clus-
ter as follows: k = 363s/128MB = 2.70µs/byte and
thus Thput = 20.7Mbit/s. With 10 minute captures
this yields a file size of 1.44 GB. We use this value in
our scheduler. A more conservative approach would
choose the 90th percentile and a resource utilization fac-

Figure 4: Example of processing phase "ABBBBA" with
bursting.

Figure 5: Job delay and bursting for different scheduling
options on the example sequence of network analysis jobs.

tor of 2/3 yielding k = 494s/128MB/ 2
3 = 5.52µs/byte

and Thput = 10.64Mbit/s.

V. Simulator

V.1 Design

We built an event-driven simulator in python to
simulate map-intensive traffic analysis jobs. The
simulator keeps a list of jobs to be scheduled
job_launch_schedule, including their randomly gen-
erated file sizes and the times at which they are be
launched in the cluster. This corresponds at the times
at which a PCAP file is ready to be processed in the
YARN cluster. For this paper it’s every 10 minutes.

6
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Figure 6: Empirical CDFs of run time and throughput of
762 Maps of our network analysis job.

This list is populated before the simulation starts and
jobs are popped out and launched as the simulation
progresses. YARN can be configured to allow a max-
imum of simultaneously running applications in the
cluster. To account for this, a job that is popped out
of the job_launch_schedule list will go to a job_waiting
list. If the number of currently running applications is
below the maximum, the oldest job is removed from
the job_waiting list and included in the job_running
list. Jobs in the job_runnig list will compete for avail-
able cluster containers in round-robin. Only the job
at the top of the list will get a container to run a Map.
For every container a running job gets to run a Map
it will be pushed to the back of the list. Container re-
lease events are scheduled according to the randomly
generated Map run time distribution and processed by
the simulation together with job launch events. The
simulation finishes when there are no more events to
process or maximum simulation time is reached. Block
size is 128MB.
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Figure 7: 10 Gbps link load empirical CDF.

V.2 Workload Distributions

Synthetic workload generation requires two compo-
nents. The first is a distribution for the Map run time,
for which we use the Map run time empirical distribu-
tion obtained from our 5 node clusters and shown in
figure 6. The second is the PCAP file size distribution
that determines the number of data blocks and Map
tasks that the job needs to process. As this is directly
related to the amount of traffic through a packet net-
work, we build on publicly available data from the
CAIDA Center for Applied Internet Data Analysis in
San Diego, CA5. We use every month, hour-long av-
erage bitrate on both directions of their 10 Gbps San
Diego links to Chicago and San Jose to build a 247
point empirical link load distribution. We show the
CDF of this distribution in figure 7. Average link load
is 31%.

Figure 8 shows the Q-Q plots for our synthetic data
and the empirical distributions. Notice how close the
Q-Q points are to the y = x line. Because we have
fewer observations in the high link load region the
points there are not as close to the y = x line as the
other points.

Simulation results in the rest of the paper are ob-
tained by running 104 jobs for each link capacity. In
continuously arriving jobs including when the sched-
ulers are used we run each set of 104 jobs 20 times to
get final results.

5 The CAIDA UCSD http://www.caida.org/data/passive/trace_stats/
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Figure 8: Q-Q plots comparing 10k synthetic data points
and the empirical distributions of Map throughput and link
load from figures 6 and 7.

V.3 Single Job

Understanding the performance of a cluster under a
single job workload helps validate the simulator and
can provide insights into the performance analysis of
our scheduler under a continuous workload. Figure
9 shows the run time CDF of a single job for a fixed
link bitrate that we vary from 1 Mbps to 40 Mbps on
our H=5 simulated cluster. The bitrate grows from left
CDF to right CDF. We can notice groups of CDFs that
correspond to waves in our job model. The first group
goes up to 12.53 Mbit/s which yields a 7 128MB block
PCAP file requiring exactly the number of Maps (7)
that can run simultaneously in a wave. We call this the
wave boundary bit rate. With a slight increase to 15
Mbit/s, file size of 1073 MB, and 9 Maps (8 128 blocks
and 1 48 MB block), there is a significant increase in the
50th percentile run time from 495 s at 12.53 Mbit/s to
698 s at 15 Mbit/s, as this file size requires two waves of
Maps. As the link traffic increases to include multiple
waves this difference seems to decrease. Unless stated
otherwise, link throughput values and their linestyle
mapping in figure 9 are used throughout the paper.

As discussed in section V.2, link throughput is not
constant and this has an impact on job runtime and
resource usage CDFs. Figure 10 shows run time for
links with capacity equal to the fixed bitrate values
used in the previous section. Run times are generally
smaller than those in figure 9 as the random workload
distribution is applied to the link capacity and on aver-
age results in smaller bitrates and smaller PCAP files
to process. Notice that the wave phenomenon is no
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Figure 9: CDFs of the run time of fixed workload jobs on
an Ms = 7 cluster. From left to right the link throughput
values in Mbit/s are: (1, 2, 5, 7, 10, 12, 12.53), (15, 17,
20, 22, 24.5, 25.05), (27, 30, 32, 35, 37, 37.58), (40, 42,
45, 47, 50, 100). The 100 Mbit/s line is out of range. The
CDFs for each link throughput form groups according to the
number of waves that our model indicates (1:long dash, 2:
solid, 3:short dash, 4:long-short dash). Line width in each
group increases with link throughput.

longer obvious to observe except for the first two link
capacity values.

V.4 Continuously Arriving Jobs

We now consider the case that we are most interested
in: PCAP files freshly captured and uploaded to be
processed by our network analysis job every 10 min-
utes. Bit rate and Map processing time distributions
will make some jobs last more than 10 minutes, in
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Figure 10: CDFs of the run time of random workload jobs
on an Ms = 7 cluster following our random workload
distribution.
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which case the next job will start later. Because we are
interested in obtaining the results of the analysis as
soon as possible after PCAP file capture and upload to
the cluster, we include this delay in the job run time.
Job run time results for this case are shown in figure
11 and the Q-Q plot comparison with the single job
case is shown in figure 12. The effect of the current job
delaying the next is not noticeable in the lower capacity
links. Above 27 Mbit/s the Q-Q plots get noticeably
away from the y = x line, especially for job run times
higher than 400 s. This means that with these link
capacities a significant number of jobs will be starting
to experience delay because the previous job did not
finish on time. For the 100 Mbit/s link the job run time
will eventually increase monotonically with each in-
coming job at which point the cluster is unable to keep
up. For the range of link capacities that we are study-
ing in our Ms = 7 cluster, our bursting approach and
scheduler will likely only be useful above 27 and below
100 Mbit/s where congestion exists but is moderate.
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Figure 11: CDFs of the run time of random workload jobs
on an Ms = 7 cluster following our random workload
distribution but now with continuously arriving jobs. The
100 Mbit/s line is out of range.

VI. Scheduler Performance Results

In this section we compare four approaches: no sched-
uler, a simple scheduler using S0 from section III.3,
our proposed advanced scheduler using S0, S1, and S2,
and a traffic threshold-based scheduler that bursts all
jobs with more than 50% link load. We compare these
approaches on two aspects for each link bandwidth: 1)
Q-Q job run time distributions with respect to singe
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Figure 12: Q-Q plot comparing the job run time distribu-
tions of each link capacity with a single job (y) and continu-
ously arriving jobs (x).

job as in figure 12 and 2) proportion of traffic that is
burst. We include the run time of burst traffic in our
Q-Q analysis by considering that it will be processed
as a single job on the cloud. Noting that the Q-Q plots
for the simple, advanced, and threshold approaches
are visually similar to each other and to that of the
approach without scheduler shown in figure 12, we
use the following metric T to quantify their differences.
Consider y and x as the Q-Q run time values for the
run time distribution of single jobs (y) and the run
time distribution for a given scheduler approach (x).
We define t = y/x− 1, that is negative for each point
where the run time value of the scheduler approach is
larger than that of the single job. The scheduler perfor-
mance metric we define is T = 1/n ∑ t for an n point
Q-Q plot. Figure 13 shows metric T and the propor-
tion of burst traffic for our set of link capacities. The
four approaches have similar run times just slightly
worse than single job up to 25 Mbit/s link capacity.
From that value the run time T metric of the approach
without scheduler degrades progressively whereas the
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Figure 13: T metric and proportion of traffic burst for differ-
ent scheduler approaches. T metric values are closer to the
top of the graph, traffic burst values closer to the bottom.

other three approaches are reasonably similar and not
much worse than lower link capacities or single job.
Looking at burst traffic, the simple approach bursts
almost twice as much traffic as the advanced approach.
The approach with less burst traffic is the advanced
scheduler up to 45 Mbit/s. At 35 Mbit/s the advanced
scheduler bursts 56% less traffic than the other two
schedulers. Thus for the range of values where burst-
ing could be useful, i.e. from 27 Mbit/s and below 100
Mbit/s, the advanced scheduler yields both the small-
est amount of burst traffic and single-job comparable
run times.

VII. Scaling Out

12 Mbit/s and the other bit rate values used in figure 9
are not link capacities that can be found in typical net-
work links. Four typical link capacities are 10 Mbit/s,
100 Mbit/s, 1Gbit/s, and 10Gbit/s. The conservative
capacity estimation approach in section IV.2 puts our
Ms = 7 cluster at approximately 11 Mbit/s, which is
not enough for the four typical link capacities. With
that in mind, in figure 14 we show job run time for the
four typical link capacities on clusters of 3 different
sizes: our Ms = 7 initial cluster and Ms = 70 and
Ms = 700 clusters.
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Figure 14: CDFs of the run time of random workload jobs
for typical link bitrates on clusters of different sizes. Long
dash: 10 Mbit/s and 100 Mbit/s on an Ms=7 cluster. Solid
line: 10 Mbit/s, 100 Mbit/s, and 1 Gbit/s on an Ms = 70
cluster. Short dash: 10 Mbit/s, 100 Mbit/s, 1 Gbit/s, and 10
Gbit/s on an Ms = 700 cluster.

VIII. Related Work

In the introduction we provided arguments for the
relevance of our approach in the context of the analysis
of network traffic. In summary, cloud bursting of
batched Map-intensive network analysis jobs and the
scheduling of such bursts has not been proposed before
in the traffic analysis literature. In this section we
take a look at different general-purpose cloud bursting
approaches and argue that they are not adequate to
our batched Map-intensive network analysis jobs.

Existing open-source virtualized data center man-
agement tools such as OpenStack and OpenNebula
already support cloud bursting. Their initial focus was
to provide an abstraction layer for the low level de-
tails of transitioning VMs (Virtual Machines) between
data centers [1]. Throughout recent years, continuous
improvements have been made to the amount of pro-
vided features and configurable parameters to better
suit the users’ needs. Today, many available solutions
including Seagull [1] and the OPTIMIS Project [2] of-
fer scheduling policies that determine if and when
to burst to the cloud. However, these solutions are
typically geared towards web applications and do not
adequately support applications that need to process
large amounts of data.

As the world embraces the ever-growing paradigm
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of Big Data, Cloud Bursting can also be used in the con-
text where cloud resources are used to store additional
data if local resources become scarce. In fact, the use
of Cloud Bursting for data-intensive computing has
not only been proved feasible but scalable as well. [6]
presents a middleware that supports a custom MapRe-
duce type API and enables data-intensive computing
with Cloud Bursting in a scenario where the data is
split across a local private data center and a public
cloud data center. Data is processed using computing
power from both the local and public cloud data cen-
ters. Furthermore, data on one end can be processed
with computing power from the other end, albeit low-
ering the overall job execution time. BStream [7] is
a Cloud Bursting implementation that uses Hadoop
YARN with MapReduce in the local data center and
the Storm stream processing engine in the cloud to
process MapReduce jobs instead of using YARN. The
use of Storm allows the output of Maps to be streamed
to Reduces in the cloud. Both [6] and [7] are better
suited for forensic jobs for which a large data set must
be analyzed and outputs from local Maps need to be
processed on the cloud, than for batched analysis of
smaller yet still computationally demanding data sets.
In our case jobs can fit both in the local data center
or the public cloud and the challenge is to process
continuously arriving jobs.

IX. Conclusion

We have set out to explore cloud bursting for Map-
intensive network traffic analysis jobs. Using our pro-
posed architecture for collecting, cloud bursting, and
processing traffic on Hadoop clusters, we character-
ized the run times of Maps on our physical clusters
and used it to drive a simulation assessment of our
job model and cloud bursting scheduler. Our sched-
uler bursts out up to more than 50% less traffic than
other schedulers we compared. We plan to extend
the traffic analysis modeling to other types of network
traffic analyses and on platforms such as Spark using
GPUs and to understand heterogeneity and energy
consumption issues of scaling out the traffic analysis.
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