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ABSTRACT 

In a two node tandem network, customers decide to join or balk by maximizing a given profit function whose costs are proportional to the sojourn time 
they spend at each queue. Assuming that their choices are taken without knowing the complete state of the system, we show that a pure threshold 
equilibrium policy exists. In particular we analyze the case when the partial information consists in informing the arrival customers of the total 
number of users in the network. 
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1. Introduction

Queueing literature is recently devoting an increasing attention
to the economic analysis of queueing systems. Indeed in real 
applications it is not uncommon that the input to a queueing 
system is not exogenously defined and is the result of the combined 
effect of the decisions made by the arriving customers. They 
may decide whether to join or balk the system according to 
their convenience and these choices in general lead to a final 
equilibrium. This phenomenon is mathematically modeled by 
assuming they are rationally optimizing a given individual profit 
function. This research, started in the ’70s by [8,4], now has reached 
a good maturity, two central monographs are [6,11]. Most of the 
literature focuses on a single server system, while we focus here 
on network models, in particular a series of two M/M/· queues.
Previous studies have looked at parallel queues [12,5,7] and for 
more general topologies extensive studies have been done in the 
field of telecommunications, see [3,9]. A close model is [1], where 
a series of queues of M/M/m types is analyzed and the form of 
the symmetric customer equilibrium is derived together with the 
explicit socially optimal strategies. The main difference with our 
model is that there customers make their decisions without getting 
any information on the state of the system, while here they know 
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the total number of customers already inside. Usually network 
models show an intrinsic difficulty in getting explicit results, and 
this partially explains a relatively scarcer literature. The two node 
tandem network that we study has the advantage of being simpler 
and allowing a complete analysis. Customers make the decisions 
to balk or join after knowing how many customers are already 
in the network. In real applications, it is common that people do 
not know the complete information on the state of the system, 
as usually this information is shortly summarized to simplify the 
decision process. Examples may be found in healthcare systems, 
where treatment requires two different steps, such as a first queue 
to get a doctor reservation and a second queue to be attended by 
the doctor. The interesting result is that the partial information 
setting simplifies drastically the analysis, allowing to get for this 
specific case explicit results. 

The model is introduced in Section 2, we compute in Section 3 
the expected sojourn time of an arriving customer assuming that 
the full state of the system is known. In Section 4 the same analysis 
is done when the arriving customers are informed about the total 
number of customers in the network. Finally we compute the 
equilibrium strategy in Section 5. 

2. The model

We  consider  a  tandem  network  with  two  single  server
nodes with infinite buffers and service times independent and 
exponentially distributed. Using the index l, with l  = 1 or 2, to
refer to the first or the second node, we denote by µl the service 
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rate at node l. Customers arrive to the systemaccording to a Poisson
process with rate λ and before joining the network they receive
partial information about the state of the system. The state space
is N2, that is all possible pairs (Q1,Q2) with Ql the queue length
at node l. A tagged customer that just arrives, gets a reword R for
joining the network, and pays for each unit of sojourn time at node
l a cost Cl with a resulting random profit given by P = R − C1 S1 −

C2 S2, where Sl denotes the sojourn times shewould spend at node l.
The tagged user makes her decision by optimizing the expected

profit given the information she receives at her arrival time, k =

Q1 + Q2, that is

PK (k) = R − C1 TK ,1(k) − C2 TK ,2(k), (1)

with TK ,l = EK [Sl|Q1 + Q2 = k]. The subindex K tells that the rest
of the population is using a pure threshold strategy with threshold
K in joining the queue. That is all users besides the tagged one join
the network if and only if it contains less than K customers.

Themain result of the paper is to show that the tandemnetwork
admits a pure threshold K , that is there exists a K ∈ N such that

PK (k) ≥ 0 as k < K and PK (k) < 0 as k ≥ K .

Remark 1. By using the subindex K , we are implicitly assuming
that the rest of the population is not allowed to use strategies
different from a pure threshold one. This assumption is not
restrictive for our purposes, but it does not preclude the existence
of policies (even of equilibrium type) that are of a different form.

Remark 2. We always assume that R > C1/µ1 +C2/µ2. Being this
relation false, a user would get negative net profit even joining an
empty network implying a unique equilibrium given by the empty
system.

Before analyzing the described model, we first study the
case when the complete information is available to the arriving
customers. This is done in the next section.

3. Mean sojourn times

Let Sl(n,m) be the sojourn time spent at queue l by a tagged
customer that joins a system being in state (n − 1,m), that is she
is going to occupy position n in the first queue. Let Tl(n,m) =

E[Sl(n,m)] be the corresponding expectation and T (n,m) =

T1(n,m) + T2(n,m) the total expected sojourn time. The sojourn
time in the first queue is Erlang distributed, that is S1(n,m) ∼

Erlang(n, µ1) with mean T1(n,m) = n/µ1. The total sojourn time
can be computed recursively by applying a first step analysis, that
leads to the following formula,

T (n,m) =
1

µ1 + µ2
+

µ1

µ1 + µ2
T (n − 1,m + 1)

+
µ2

µ1 + µ2
T (n,m − 1), n, m > 0. (2)

The second term on the right hand side of (2) considers a 
potential departure from the first queue and the last term a 
potential departure from the second queue. These events occur 
with probability µl/(µ1 + µ2), l = 1, 2 respectively. To complete 
the recursion the following boundary conditions are needed

T (0,m) =
m
µ2

; T (n + 1, 0) =
1
µ1

+ T (n, 1), n, m > 0. (3)

Using (2) we get a recursive formula to compute T2(n, m) as shown 
in the following lemma.
Lemma 3. The expected sojourn time at the second queue, T2(n,m),
can be computed with the following recursive formula

T2(n,m) =


µ2

µ1 + µ2

m

T2(n − 1, 1)

+
µ1

µ1 + µ2

m−1
k=0


µ2

µ1 + µ2

k

T2(n − 1,m + 1 − k) (4)

valid for n > 0 and T2(0,m) = m/µ2, with m ≥ 0.

Proof. By (2), we get that T2(n, m) satisfies the following recursive 
equation

T2(n,m) =
µ1

µ1 + µ2
T2(n − 1,m + 1)

+
µ2

µ1 + µ2
T2(n,m − 1), n, m > 0,

and by (3), similar boundary conditions are satisfied. By induction 
argument it is then straightforward to verify that (4) holds 
true. �

The following lemma characterizes the conditions under which 
the T -functions are monotone non-decreasing in the variable n. 
These conditions are important for the analysis of Section 5.

Lemma 4. The functions T1(n,m) and T (n, k−n) are non decreasing
in n. The function T2(n,m) is non decreasing in n if and only if µ1 ≥

µ2.

Proof. The statement is obvious for T1(n,m) that does not depend
onm.

Oneway to show that the function T (n, k−n) is non decreasing
in n, for n ≤ k is by proving that T (n + 1,m) ≥ T (n,m +

1) by induction using Eqs. (2)–(3). We prefer to use a coupling
argument. Using the same probability space, we construct two
networks starting respectivelywith (n+1,m) and (n,m+1) initial
users. The proof follows by comparing the waiting times of the
customers that are the last ones in the first queue of both networks,
and showing that the one in the former network waits more than
the corresponding one in the latter. To construct the coupling we
assume that the service times for all customers are the same in
both networks but we move the customer in service at the first
queue of the first network at the end of the queue of the second
node of the second network. Since the exit times are ordered by
the FIFO discipline and because the moved customer reduces its
sojourn time by her service time in the first node, the result holds.

Finally to show that T2(n, m) is non decreasing in n we prove 
that ∆1T2(0, m) ≥ 0 for all m where ∆1T2(n, m) = T2(n + 1, m) − 
T2(n, m). From (4), the following holds for any n > 0 and m ≥ 0,

∆1T2(n,m) =


µ2

µ1 + µ2

m

∆1T2(n − 1, 1) +
µ1

µ1 + µ2

×

m−1
k=0


µ2

µ1 + µ2

k

∆1T2(n − 1,m + 1 − k). (5)

If ∆1T2(0, m) ≥ 0 the same holds for n > 0 as all the coefficients in 
(5) are positive. In the opposite case T2(n, m) is clearly decreasing 
for some value of (n, m). Let α = µ1/µ2, one can check that

∆1T2(0,m) =
1
µ2


α − 1 + (α + 1)−m

α


.

The quantity above is decreasing in m. To check that it would be
non negative for any value of m we take m → ∞ and get the
required condition α ≥ 1. �



4. Expected sojourn times under the K -strategy

We assume that all arriving customers receive the partial 
information about the state of the network and decide to join only 
if the number of customers in the system, say k, is less than a 
given threshold K ≥ 0. Under the K -strategy the tandem network 
behaves as a semiopen Jackson network, see [2, Section 2.3]. Let
Ql

∗ be the stationary random number of customers at node l and 
Q ∗ 

= Q1
∗ 
+ Q2

∗ be the stationary total number of customers in the 
queue. The stationary distribution is given by, see [2, Theorem 2.5],

πK (n,m) = PK (Q ∗

1 = n,Q ∗

2 = m) = cK ρn
1ρ

m
2 , n + m ≤ K (6)

where ρl = λ/µl and c−1
K =


n+m≤K ρn

1ρ
m
2 is the normalization

constant.
Assuming n ≤ K , the conditional probability PK (Q ∗

l = n|Q ∗
=

k) = ρn
l ρ

k−n
3−l /

k
h=0 ρh

l ρ
k−h
3−l does not depend on K . Let pl(n|k) =

PK (Q ∗

l = n|Q ∗
= k), after algebraic manipulation, we get

pl(n|k) =


µk−n

l µn
3−l(µ1 − µ2)/(µ

k+1
1 − µk+1

2 ) µ1 ≠ µ2

1/(1 + k) µ1 = µ2.
(7)

The independence from K allows to consider the random variables
Q ∗

l (k), l ∈ {1, 2}, having distributions pl(·|k) and not depending on
the pure threshold strategy employed by all customers.

Remark 5. The assumption that the rest of the population follows 
a threshold policy is necessary in order to have the steady state 
distribution expressed in the form given in (7).

Let us define by Tl(k) = E[Sl|Q ∗
= k] the expected sojourn time

at queue l of a tagged customer that enters a system containing k
customers.

Lemma 6. Assuming µ1 ≠ µ2, it holds that

T1(k) =
1

µ1 − µ2
−

k + 1
µ1

µk+1
2

µk+1
1 − µk+1

2

(8)

T2(k) =


1 −

µ2

µ1


µk+1

1

µk+1
1 − µk+1

2

k
n=0

T2(n + 1, k − n)


µ2

µ1

n

(9)

and for µ1 = µ2, T1(k) = 1/µ1(1 + k/2) and T2(k) = 1/(k +

1)
k

n=0 T2(n + 1, k − n). k
n=0(n+1) p1(n|k), thereforeProof. By definition T1(k) = 1/µ1 

(7) with µ1 ≠ µ2 implies

T1(k) =
1
µ1

µ1 − µ2

µk+1
1 − µk+1

2

k
n=0

(n + 1)µk−n
1 µn

2

=
1
µ1

µk
1(µ1 − µ2)

µk+1
1 − µk+1

2

µ2+k
1 − (2 + k)µ1µ

1+k
2 + (k + 1)µ2+k

2

µk
1(µ1 − µ2)2

.

Simplifying the expression above we get (8). The formula for T2(k)
is obtained similarly by the expression T2(k) =

k
n=0 T2(n+1, k−

n) p1(n|k). The results for µ1 = µ2 can be obtained in a similar
way or more directly by noticing that in this case the random
variables Ql

∗ are discrete uniformly distributed on {0, 1, . . . , k}. 
One could also compute the limit of the expressions (8) and (9) as 
µ1 → µ2. �

5. Threshold equilibrium strategy

By Lemma 6 the expected profit of a tagged customer receiving 
the information k, given in (10), does not depend on the strategy
K employed by the rest of customers. We can therefore compute
it as

P(k) = R − C1 T1(k) − C2 T2(k). (10)

The tagged customer decides to enter only if P(k) ≥ 0. In the sequel
we show under what conditions the expected net profit function
is decreasing in k, moreover since this function is constant with
respect to the strategy K , we obtain that the equilibrium strategy is
in addition a dominant strategy in the class of threshold strategies.
Before stating the main result we require the following lemma on
the stochastic monotonicity of the random variables Q ∗

l (k).

Lemma 7. The random variables Q ∗

l (k) are increasing stochastically
ordered in k ≥ 0.

Proof. In order to show that Ql
∗(k + 1) ≥st Ql

∗(k) it is enough to 
prove the stronger condition given by the likelihood ratio ordering, 
see [2]. This last condition can be checked by proving that

P{Q ∗

l (k + 1) = n + 1}P{Q ∗

l (k) = n}

≥ P{Q ∗

l (k + 1) = n}P{Q ∗

l (k) = n + 1} (11)

for any n ≥ 0. It is easy to check that (11) holds as equality for any 
n < k and is a strict inequality for n = k where the second term is
0 and therefore the result holds true. �

Remark 8. We explicitly note that the result of Lemma 7 is
different from requiring that the variables Ql

∗ are stochastically 
ordered with respect to the strategy K . This result refers to non 
conditional quantities and could be proved by a coupling argument 
similar to the one used in [10].

Lemma 7 implies the following monotonicity result to the mean 
sojourn functions.

Lemma 9. The functions T1(k) and T (k) are non decreasing for all
values of the ratio µ1/µ2. The function T2(k) is non decreasing when
this ratio is greater than 1.

Proof. The function T1(k) is non decreasing by Lemma 7 and 
because T1(n, m) is non decreasing in n as well. For T (k), it follows 
by the following

T (k + 1) = E[T (Q ∗

1 (k + 1), k + 1 − Q ∗

1 (k + 1))]
≥ E[T (Q ∗

1 (k + 1), k − Q ∗

1 (k + 1))]

≥ E[T (Q ∗

1 (k), k − Q ∗

1 (k))] = T (k) (12)

where in the last equality we used the fact that T (n, k − n) is non 
decreasing, see Lemma 4, and the stochastic monotonicity of the

variables Q1
∗(k), proved in Lemma 7. A similar argument works for 

the function T2(k). Assuming µ1 ≥ µ2, we have

T2(k + 1) = E[T2(k + 1 − Q ∗

2 (k + 1),Q ∗

2 (k + 1))]
≥ E[T2(k − Q ∗

2 (k + 1),Q ∗

2 (k + 1))]

≥ E[T2(k − Q ∗

2 (k),Q ∗

2 (k))] = T2(k). (13)

The first inequality follows by Lemma 4 under the assumption 
on the service rates, the second inequality follows by the
monotonicity of Q2

∗(k), shown in Lemma 7, and the fact that T2(k− 
m, m) is non decreasing in m for any fixed k > 0. �

To see that T2(k) may decrease when µ1 < µ2, let us consider
µ1 = 0.1 and µ2 = 1, then

k = 1 k = 2 k = 3 k = 4 k = 5
T2(k) 0.198347 0.0313319 0.00438963 0.000573903 0.0000717892.

Corollary 10. If µ1 > µ2 or if C1 ≥ C2 the expected net profit, P(k),
is non increasing.



Proof. The result follows from Lemma 9 if µ1 > µ2. If C1 ≥ C2, it is 
enough to rewrite the profit function as P(k) = R−(C1−C2) T1(k)− 
C2 T (k), and use the monotonicity of T1(k) and T (k). �

Finally we state themain result that gives the conditions to find
the strategy that induces the Nash equilibrium.

Theorem 11. When the information known by the arriving cus-
tomers is the total number of customers in the network only, then the
equilibrium strategy is given by the threshold K such that

K = argmin{k ∈ N : P(k) < 0}. (14)

According to this strategy a tagged customer enters only if she finds
less than K customers in the system. The K-strategy is a dominant
strategy in the class of threshold strategies.

Proof. Let the index K be the one obtained by formula (14), 
including K = ∞. We show that the strategy K is the best response 
against itself. The system is always ergodic, therefore with no 
loss of generality we assume it starts empty. Since all customers 
employ the K -strategy the tagged user will never find more than K 
customers in the system and according to (14), she will follow the 
same strategy, and the result follows.

The actions that the tagged customer may take for the values 
of k > K are irrelevant as she will never find the system in these 
states. However if the monotonicity conditions given in Lemma 9 
hold, the K -strategy leads to a subgame perfect equilibrium, 
see [6].

The K -strategy is dominant because it is the best response to 
any other possible threshold strategy. This holds because the net 
profit function does not depend neither on the arrival rate nor on 
the threshold employed by other customers. Assuming that the 
system is working under a pure strategy with a threshold different 
from K , if at some point in time customers start to behave selfishly, 
they will all adopt the K -strategy. If the monotonicity conditions 
of Lemma 9 are not satisfied, this statement uses the fact that the 
Markov chain is ergodic and it hits almost surely the null state. �

The expression (10) depends on the values of the function 
T2(n, m) given in (9) and as such we cannot expect to obtain a 
closed formula for the equilibrium threshold strategy. However we 
can always compute it numerically by (9).
6. Conclusions

This work analyzes the equilibrium behavior of a tandem
network when customers may choose the actions of balking or
joining the systemby taking into account economic considerations.
This paper is the first to look at queues in series, and the surprising
result is that if users only receive partial information on the status
of the network, in particular the total number of customers in the
system, a pure strategy exists. It may be the case that such result
may be extended to more general network topologies, this will be
the subject of future research.
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