
Proceedings of the First International Workshop on Sustainable
Ultrascale Computing Systems (NESUS 2014)

Porto, Portugal

Jesus Carretero, Javier Garcia Blas
Jorge Barbosa, Ricardo Morla

(Editors)

August 27-28, 2014

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Universidad Carlos III de Madrid e-Archivo

https://core.ac.uk/display/30277082?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

NESUS
Network for Sustainable Ultrascale Computing

IC1305

Book paper template • September 2014 • Vol. I, No. 1

Data parallel algorithm in finding 2-D site
percolation backbones

Biljana Stamatovic*, Roman Trobec+

*University of Donja Gorica, Montenegro biljana.stamatovic@udg.edu.me
+Institut Jozef Stefan, Slovenia roman.trobec@ijs.si

Abstract

A data parallel solution approach formulated with cellular automata is proposed with a potential to become a part of future sustainable
computers. It offers extreme parallelism on data-flow principles. If a problem can be formulated with a local and iterative methodology, so that data
cell results always depend on neighbouring data items only, the cellular automata could be an efficient solution framework. We have demonstrated
experimentally, on a graph-theoretical problem, that the performance of the proposed methodology has a potential to be for two orders of magnitude
faster from known solutions.

Keywords Sustainable computing, Data parallel, Data-flow, Cellular automata, Percolation backbone, Cluster

I. Introduction

Increasing data and processing requirements of applications are con-
stantly pushing for further increases in computational capabilities.
Today, we have reached a point where computational systems are
confronted with physical barriers that limits a significant further
increase of system frequencies. Additionally, excessive energy con-
sumption, limited scalability and complex data management are
obstacles that have to be solved nowadays to enable further increase
of the computing performances.

It seems that massively parallel computing devices on all lev-
els of computing, connected in heterogeneous computing systems,
could counterbalance these difficulties. Multicore systems, graphic
processing units (GPU), dedicated FPGA accelerators are already
widely implemented and investigated options in contemporary high
performance computers. Adaptive combinations of control-flow and
data-flow approaches seems to be able to offer general purpose and
sustainable ultrascale computers that will be able to cope the appli-
cations either with demanding processing power or with complex
analysis of big data sets.

The cellular automata (CA) can be considered as an alternative
way of computation based on local data-flow principles. The concept
of CA was first proposed by John von Neumann in 1950s through
self-reproducing systems (published later in [1]). The formalization
has been improved by various authors [2, 3, 4, 5], emphasizing
different theoretical and practical perspectives. Various application
areas of CAs, ranging from ecology [6], biology [7], diffusion through
soil pores [8], image processing [9], wafer diagnostics [10], sociology
[11] etc., have been investigated later.

A CA can be informally represented as a set of regularly and
locally connected identical elements. The elements can be only in a
finite set of states. The CA evolves in discrete time steps, changing
the states of elements according to a local rule, which is the same for
all elements. The new state of each element depends on its previous
state and on the state of its neighbourhood. The characteristic
properties of CAs are therefore locality, discreetness and synchrony.

The CA can be considered as a computing machine in the sense
that it is able to transform an input configuration, embedded in its

initial state, to an output configuration. The theoretical studies of
the computational capabilities of CA [3, 4] have shown that there
exists CAs that are equivalent to the Turing machine and therefore
can be used as general purpose computers. Our work is relevant
to the practical backward approach in the design of CAs [5], where
transition rules are searched for that result in CA states that match
the physical system.

Many efficient applications have been developed with data-flow
approaches and CAs on problems that have been previously solved
with local numerical methods [12, 13]. The CAs can compete with
classical computers in computational performance and efficient use
of energy because of massive parallelism and relatively low system
clock. The hardware resources of CAs can be implemented with
Systems-on-Chips (SoC) on the wafer level [14], with more gen-
eral Field programmable logic arrays(FPGA) [12], with emulation
on manycore systems or on hybrid architectures mixing all above
options.

A CA can be mapped on the physical system with the method-
ology already established in heterogeneous computing: the initial
problem data and possibly transition rules are mapped from the host
CPU onto the computing array which implements the CA. CA cells
compute in parallel for the required number of computational steps.
After a stopping criteria is met the results are read from the CA into
the host memory and further analysed or visualized on the CPU.
The procedure can be implemented in a loop with an eventual repro-
gramming of the CA. It is evident that such a data-flow approach
could have a striking advantage [15] over the classical crunching
machines in the significantly lower consumption of energy per a
computing operation, which could contribute to the sustainability of
future computers.

The CAs rely on the discreteness, locality, regularity, and syn-
chrony. Their simple definition has several advantages, e.g. CAs are
not limited by the number of elements, their evolution is inherently
parallel, they have a strong resemblance to many important princi-
ples in the nature like: cells that are building blocks for large systems,
elementary particles, etc. However, to approach to real problems,
some additional properties of CAs are necessary, e.g. global com-

1

Biljana Stamatovic, Roman Trobec 65

Book paper template • September 2014 • Vol. I, No. 1

munication (for loading of initial data, implementation of stopping
criteria or reading of final results) and non-homogeneity (for an
adequate treatment of boundary conditions).

The rest of the work is organised as follows. In the next Section
a principal description of the proposed system architecture is de-
scribed focusing on global operations related to data movements.
Section III is an overview of the work related to the identification
of infinite clusters and their percolation backbones. This problem
can be considered as an example of a large class of demanding
tasks that can be solved by parallel iterative operations on local data.
In Section IV a new efficient CA algorithm is proposed that can
efficiently cope with this graph-theoretical problem. The proposed
approach is experimentally tested and evaluated on finding 2-D site
percolation backbones. It was shown that the performance of the
proposed solution has a potential to be for two orders of magnitude
faster than previous known solutions.

II. System architecture

To objectively evaluate a CA algorithm the time needed for data
manipulation has also be considered. Fore example, initial data, e.g.
pixels of images, sites of percolation array, etc. must be loaded into
CA cells. Beside data management capability, each CA cell must
comprise also a processing and memory unit that are tailored to al-
gorithm requirements. All cells usually execute the same operations
with the same system clock.

We can suppose that a CA array is build from rectangular tiles that
incorporate N = (L×M) CA cells. For simplicity, we suppose that
M = L. Each cell is connected directly with a small number of near-
est neighbours d, e.g. d = 4 or d = 8 with a simple communication
switch built in each CA cell [16].

A set of l routers with radix r is connected to a subset of r CA
cells. The radix is here a number of communication ports to the
lower level. Each router has also a single, possibly faster, port to the
higher level. If the number of CA cells is large, p intermittent levels
of routers can be introduced. The routers communicate with a host
computer that manage data transfer to lower layer routers, or to CA
cells if a router is positioned on the lowest level.

The communication among direct d connected cells is performed
in a single communication step (hop). Also the routers can connect
two levels of routers in a single hop. In the case of a single level of l
routers, the data can be transferred from the host computer to all N
CA cells in three hops. For example, if we have a grid of N = 10.000
CA cells arranged in a (100× 100) grid with d = 8 and r = 36 then
dr2 = 10.368 CA cells can be reached with a single level of r routers,
so the whole CA grid can be filled with initial data in three hops.

Note that a certain degree of pipe-lining in the communication
is possible that can further decrease the total communication time.
The ratio between the communication and calculation time limits
the scalability and speed-up of the execution, as usual in all parallel
systems.

III. Related work and problem definition

In percolation theory, one of the fundamental task is to find a span-
ning cluster (termed also infinite cluster) of the same sites that
connect two opposite borders of a simulated square domain. Such
clusters appear if the probability that a site or CA cell is coloured

black is higher than the percolation probability pc [17]. The recur-
sive Hoshen-Kopelman algorithm [18] is a popular algorithm for
the identification of infinite clusters that has been also successfully
parallelized [19] on distributed memory computers. Several other
approaches to the paralellization of graph algorithms are presented
in [20].

The next task, which is computationally more complex and there-
fore still a bottleneck, is the backbone identification in infinite clus-
ters. Informally, all sites in dead ends or loops that can not contribute
to the "transport" of a matter trough the infinite cluster has to be iden-
tified and removed to determine the backbone. Tarjan’s recursive
depth-first-search (DFS) algorithm [21] is well known and often used
for the backbone identification. The key to finding the backbone
is to recognize the articulation sites of the infinite cluster. A local
procedure for recognizing articulation sites along with an improved,
almost four times faster, algorithm for the backbone identification
was proposed in [22].

An interesting approach for the backbone identification in an
infinite cluster, based on the principle of direct electrifying solved
by FEM methodology, is presented in [23]. All of the backbone
finding algorithms are recursive with a risk of stack overflow in
large systems.

As an alternative to the above listed approaches, we propose a CA
algorithm for identification of infinite clusters and their backbones
in 2-D grids with open boundary conditions. The algorithm relays
on local rules and can resolve the problem of stack overflow in large
systems. The inherent data-parallel approach of CA can improve
efficiency and speed-up of the execution.

We consider a CA as a two dimensional lattice network of unite
squares (cells) whose centres are in integer lattice (grid). For simplic-
ity, we suppose that the grid has N = L2 cells (i, j) with positions
determined by indices i, j = 0, ..., L− 1 in x and y directions, where
L ≥ 3. Each cell can exist in a finite number of states. Cells of
the lattice network change their states in discrete moments in time.
Cell’s next state is defined by local transition function, which manages
with altering the states of each cell, based on the present cell state
and states of neighbourhood’s cells. We use Moore neighbourhood
with twenty-four neighbours. A cell has four nearest neighbours
(nn) and four next-nearest neighbours (nnn) and sixteen not next -
nearest neighbours. Two cells (i1, j1) and (i2, j2) are nn-neighbours if
|i1 − i2|+ |j1 − j2| ≤ 1, nnn-neighbours if (i1 − i2)2 + (j1 − j2)2 = 2
and nnnn-neighbours if 2 < (i1 − i2)2 + (j1 − j2)2 ≤ 4.

For a CA A applying the local transition function ϕA to all cells
of a configuration Con f simultaneously, we get the sequence of
configurations con fA(t, Con f), where t = 0, 1, 2, ... is a time step.

The initial configuration is represented by a 2-D grid of square
cells and each cell can exist in two different states, white or black.
On the top and bottom boundaries of the grid are black cells only
while the left and right boundaries are white. All remaining cells
of the grid, are coloured black with probability p and white with
probability 1− p. These probabilities are independent for each cell.
Two examples of grids with p = 0.5 < pc and p = 0.6 > pc are
shown in Figures 2 and 1, respectively. We can see that an infinite
cluster appears in the example from Figure 1.

Two cells (i1, j1) and (in, jn), which are in the same state are nn-
connected if there exists a sequence of cells (ik , jk), 2 ≤ k ≤ n which
are in the same state, such that each pair (ik−1, jk−1) and (ik , jk) are
nn-neighbours. Similarly, they are nnn-connected if the sequence of

2

66 Data parallel algorithm in finding 2-D site percolation backbones

Book paper template • September 2014 • Vol. I, No. 1

Figure 1: Initial grid configuration generated with p = 0.5 without infinite
clusters.

the cells (ik, jk), 2 ≤ k ≤ n which are in the same state, such that
each pair (ik−1, jk−1) and (ik , jk) are nn- or nnn-neighbours.

A black nn-cluster is a group of black cells which are nn-connected.
The infinite cluster is a black cluster which spans from the top to the
bottom row of a grid. The backbone is a subset of the infinite cluster,
which cells are nn-connected with the top or bottom row cells with
at least two disjoint chains. A cell is an articulation cell of an infinite
cluster if removing the cell (i.e. changing its state to white) splits
the infinite cluster into two or more parts, at least one part being
connected to neither the top nor the bottom row.

In the same way, an nnn-cluster is a group of cells in the same
state that are nnn-connected. In particular, white nnn-cluster is a
group of white cells that are nnn-connected.

The proposed CA algorithm for identification of infinite cluster
and its backbone is implemented in four steps. In the Step 1, white
nnn-clusters are labelled with different colors. After finishing this
task the algorithm identified the cells that belong to the infinite
cluster. In Step 2, the algorithm recognizes articulation cells of the
infinite cluster. Some of them are permanently removed, but some
of them are marked by white color. In Step 3, the parts of backbone
are labelled. Finally, in Step 4, some of previously marked white
cells become a part of the backbone and the backbone is identified.

IV. Solution algorithm

Let i, j ∈ {0, 1, 2, ..., L− 1} and t ∈ N, t ≥ 0. Denote by c(i,j)(t) the
state of a cell (i, j) in time step t and by c (t) an argument of a local
transition function, which is an ordered collections of nn- , nnn- and
nnnn- neighbours cell’s states in time step t.

We use the terminology of colors. A cell is in state ’m’ if it is
coloured by color m. 0-color is white, 1-color is black, m-color is a
color with code m, m > 1, e.g. in RGB implementation.

Let C0 be an initial configuration. We will define five CAs Ai
by their local transition functions ϕAi , i = 1, 2, ..., 5. For a CA Ai
applying the local transition function ϕAi to all cells on a configu-

Figure 2: Initial grid configuration generated with p = 0.6 with a single
infinite cluster.

ration Con f simultaneously, we get the sequence of configurations
con fAi (t, Con f), i ∈ {1, 2, ..., 5}, where t = 0, 1, 2, ... is a time step.

Step 1: CA A1 will change states of some white cells in each white
nnn-cluster. These new states will be all different because their
colors are related to their positions. Let a and b are the lowest left
and lowest right cells on the left and right boundaries of the grid in
initial configuration C0. Let LR = {a, b}⋃{
(i, j) ∈ C0|c(i,j)(0) = 0∧ c(i+1,j−1)(0) = c(i+1,j)(0) = c(i,j−1)(0) = 1

}
.

Then ϕA1 (c(t)) = c1
(i,j)(t + 1) where:

c1
(i,j) (t + 1) =

{
i ∗ L + j + 2, t = 0∧ (i, j) ∈ LR
c(i,j) (t) , otherwise.

and t = 0, 1, 2, ... is a time step.
Colour i ∗ L + j + 2 of a cell (i, j) depends on the position of a

cell in the grid. Hence, the CA A1 changes the state of a cell in a
new unique state, different from all other cells. Also, lowest left
cells of any white nn- and nnn-cluster has black nnn-neighbours
(i + 1, j− 1), (i + 1, j), (i, j− 1). Hence, in every white nnn-cluster at
least one cell will have its unique color, different from white. Note,
for t > 1 the CA A1 will remain idle.

CA A2 will colour every white nnn-cluster with unique
color, different from black and white. Let Cols(i,j)(t) ={

c(k,l)(t)|k ∈ {i− 1, i, i + 1} , l ∈ {j− 1, j, j + 1}
}

be the set of all col-

ors of nn- and nnn-neighbours of a cell (i, j). Then ϕA2 (c(t)) =
c2
(i,j)(t + 1) is defined by:

c2
(i,j) (t + 1) =

{
max(Cols(i,j)(t)), c(i,j)(t) 6= 1∧max(Cols(i,j)(t)) > 1
c(i,j) (t) , otherwise.

where t = 0, 1, 2, For the CA A2, after some time step, no cell will
be changed. In implementation of the CA A2 a global variable is
used to identify this.

3

Biljana Stamatovic, Roman Trobec 67

Book paper template • September 2014 • Vol. I, No. 1

If cells a and b have the same colors then left and right boundaries
are in same nnn- cluster. Hence, if cells a and b have the same colors
initial configuration doesn’t have an infinite cluster.

Step 2: CAs Ai , i = 3, 4, 5 will implemented the part of the algo-
rithm from [22].

CA A3 will locally identify articulation cells and color them with
white color, in the first time step. In the second time step, the CA
will label some nn-neighbours of white cells, because some of the
white cells may belong to the backbone. Note, that after Step 1 no
cell remains white. Definition of CA A3 is obtained from discussion
and the corollary in [22].:

Corollary 1 Let a be a cell of the black infinite cluster, and let Ga be a set
of a and its nn and nnn cells then a is an articulation cell if and only if
there are in Ga at least two white cells, referred to as b and c, that belong to
the same nnn-cluster but cannot be connected by the white cells from Ga.

Figure 3: Cases of articulation cells: y is any color different from black and
x and z are any colors with a restriction that z must be different from y.

In figure 3 some cases of Ga are shown. The set of the shown cases
together with their rotated configurations for 90, 180, 270 degrees,
are denoted by Ar. Let Tag is the set of black nn-neighbours of white
cells which are tagged as contact couple. For example, for central
cell (i, j) in figure 3 d) the contact couple is {(i + 1, j), (i, j + 1)}, in
figure 3 e) the contact couple is {(i + 1, j), (i, j− 1)} and in figure 3
f) contact couples are {(i, j + 1), (i + 1, j)} and {(i− 1, j), (i, j− 1)}.
In implementation we will have twelve cases for the tagging and
we will use nnnn-neighbours. Here, we only use one color tag =
L2 + 2, because of a simplified explanation. Now, we define the local
transition function ϕA3 (c(t)) = c3

(i,j)(t + 1) by:

c3
(i,j) (t + 1) =

y, t = 0∧ (i, j) ∈ Ar a), b), c
0, t = 0∧ (i, j) ∈ Ar d), e), f)
tag, t = 1∧ (i, j) ∈ Tag
c(i,j) (t) , otherwise.

where t = 0, 1, 2, ... is a time step and y is from figure 3 a), b), c) .
Note, for t > 2 the CA A3 will remain idle.

Step 3: CA A4 will color black cells from the infinite cluster that
are in its backbone, except some articulation cells.

Let m = L2 + 3. The local transition function ϕA4
will label a part of backbone by a color m. Let TB ={
(i, j)|c(i,j)(t) = 1∧ (j = 0∨ j = L− 1)

}
be the set of top and bot-

tom boundary black cells. Let Nn be a set of black and tag cells
whose at least one of its nn-neighbours is in state m. Let Ntag
be a set of tag cells which have one white nn-neighbour and
one different tagged nnn-neighbour or two white nn-neighbours
and two m nnn-neighbours. Now, the local transition function
ϕA4 (c(t)) = c4

(i,j)(t + 1) is defined by:

c4
(i,j) (t + 1) =

{
m, (i, j) ∈ TB

⋃
Nn

⋃
Ntag

c(i,j) (t) , otherwise.

where t = 0, 1, 2, ... is a time step. For the CA A4, after some time
step, no cell will be changed. In implementation of the CA A4 a
global variable is used to identify this.

Step 4: Here, we will define CA A5 who decide which white cell
from Step3 is in the backbone. We will use the fact "a white cell
should be restored to be a cell of the backbone if either (i) it has at
least two nn-neighbours belonging to the infinite cluster, or (ii) it has
an nn-neighbour of the infinite cluster and a white nn cell which are
nn-connected by another cell of the infinite cluster" from paper [22].

Let B be a set of white cells with two or more m nn-neighbours
and cells with an m nn-neighbour and a white nn-neighbour which
is nn-connected by another m cell. The local transition functions
ϕA5 = c5

(i,j)(t + 1) is defined by:

c5
(i,j) (t + 1) =

{
m, (i, j) ∈ B
c(i,j) (t) , otherwise

where t = 0, 1, 2, ... is a time step. Note, for implementation of the
CA A5 we will use nnnn - neighbours.

Using the described CAs in a loop we can form algorithm 1 for
the identification of infinite clusters and their backbones.

Data: Initial configuration C0
Result: If the infinite cluster does not exist then the algorithm

stops else the obtained set of m cells is backbone.
ϕA1 ;
while exist cell which change its state do

ϕA2 ;
end
if state of lowest left cell == state of lowest right cell then

stop; //no infinite cluster
else

ϕA3 ; // articulation cells become white
ϕA3 ; // nn-neighbours some of white cells are tagged
Let m be an unique color;
while exist cell which change its state do

ϕA4 ;
end
ϕA5 ; // some articulation cells are in backbone

end
Algorithm 1: Algorithm for identification of an infinite cluster
and its backbone.

V. Experimental results and discussion

The implementation of the algorithm is made in NetLogo 5.0.4.
The algorithm was extensively evaluated on various test cases for
different size of grids and percolation probabilities, i.e. densities
of black cells in initial configuration. In Figures 4 and 5 the final
configurations are shown after running the Algorithm 1 on initial
configurations from Figures 1 and 2, respectively.

It is evident from figure 4 that there is no infinite cluster in the
initial configuration from figure 1. However, figure 5 indicates a

4

68 Data parallel algorithm in finding 2-D site percolation backbones

Book paper template • September 2014 • Vol. I, No. 1

backbone of an infinite cluster, which is obviously present on the
initial configuration from figure 2.

Figure 4: Final result after the application of proposed algorithm on the
initial configuration from figure 1.

Figure 5: Yellow backbone for initial configuration from figure 2.

The preliminary numerical results for different sizes of grids and
probability of black cells p = 0.592745 are shown in Table 1. We cal-
culated the average time steps required for 100 initial configurations
of each for grid size. The slope in the number of time steps can be es-
timated as ∆L2/∆M and is significantly smaller as in [22]. However,
the current implementation of the algorithm with NetLogo is limited
with grid sizes. The results still indicate that the proposed algorithm
can be faster than known algorithms for the backbone identification.
For definite confirmation we need a data-flow implementation of
the algorithm, which is a part of our future investigation.

Advantages of the proposed approach are in using data-flow
approaches in Step 1 and Step 3 [24] while the well known algorithms

for labelling components are based on DFS approach, which is
recursive and hard to parallelize [25]. The proposed CA definition
of the proposed data parallel algorithm has several advantages, e.g.
it is not limited by the number of cells, its evolution is inherently
parallel, and it has a strong resemblance to the important approaches
in the nature like principles of cells or elementary particles.

Drawbacks of the algorithm are in using global variables for stop-
ping CA’s work. Lack of global communication, implies problems
related to global synchronization, data manipulation and inability
for calculation of complex mathematical operations, however, these
difficulties can be resolved by dedicated hardware resources. The het-
erogeneous computing, supported today with data-flow approaches,
FPGAs, SoCs, GPUs and manycore systems, are promising platforms
for the implementation of the efficient CA based algorithms.

Dimesions of grid (L) Mean time steps (M)
21x21 26.3
41x41 49.61
61x61 58.81
81x81 73.12

101x101 81.59
121x121 85.49
141x141 93.74
161x161 91.38
181x181 95.6
201x201 97.86

Table 1: Average number of time steps M as a function of grid size L.

References

[1] J. Neumann, Theory of Self-reproducing Automata, University
of Illinois PressNeumann, 1966.

[2] J. Thatcher, Universality in the von neumann cellular model,
Tech. rep., University of Michigan,. 03105-30-T (1964).

[3] E. Codd, Cellular Automata, Academic Press, NewYork, 1968.

[4] E. Burks, Essays on Cellular Automata, University of Illinois
Press, 1966.

[5] S. Wolfram, Theory and Applications of Cellular Automata,
World Scientific Publication, Singapore, 1986.

[6] P. Hogeweg, Cellular automata as a paradigm for ecological
modeling, Appl. Math. Comput. 27 (1988) 81Ű100.

[7] G. Ermentrout, L. Edelstein-Keshet, Cellular automata ap-
proaches to biological modeling, J. Theor. Biol. 160 (1993) 97–
133.

[8] G. Horgan, B. Ball, Simulating diffusion in a boolean model of
soil pores, European Journal of Soil Science 45 (1994) 483–491.

[9] T. Ikenaga, T. Ogura, A DTCNN universal machine based on
highly parallel 2-D cellular automata CAM2, IEEE Transactions
on Circuits and Systems I: Fundamental Theory and Applica-
tions 45 (1998) 538–546.

5

Biljana Stamatovic, Roman Trobec 69

Book paper template • September 2014 • Vol. I, No. 1

[10] R. Trobec, I. Jerebic, Local diagnosis in massively parallel sys-
tems, Parallel Computing 23 (1997) 721–731.

[11] J. Epstein, Generative Social Science, Princeton University Press,
2006.

[12] E. Motuk, R. Woods, S. Bilbao, Implementation of finite dif-
ference schemes for the wave equation on FPGA, in: ICASSP,
IEEE International Conference on Acoustics, Speech and Signal
Processing - Proceedings, Vol. III, 2005, pp. III237–III240.

[13] G. Kosec, P. Zinterhof, Local strong form meshless method
on multiple graphics processing units, Computer Modeling in
Engineering and Sciences 91 (2013) 377–396.

[14] R. Trobec, Evaluation of d-mesh interconnect for SoC, in: Pro-
ceedings of the International Conference on Parallel Processing
Workshops, 2009, pp. 507–512.

[15] M. J. Flynn, O. Mencer, V. Milutinovic, G. Rakocevic, P. Sten-
strom, R. Trobec, M. Valero, Moving from petaflops to petadata,
Commun. ACM 56 (5) (2013) 39–42.

[16] R. Trobec, Two-dimensional regular d-meshes, Parallel Com-
puting 26 (13-14) (2000) 1945–1953.

[17] D. Stauffer, A. Aharony, Introduction to Percolation Theory,
Taylor and Francis, London, 1992.

[18] J. Hoshen, R. Kopelman, Percolation and cluster distribution: I.
cluster multiple labeling technique and critical concentration
algorithm, Phys. Rev. B 14 (1976) 34–38.

[19] J. Teuler, J. Gimel, Direct parallel implementation of the hoshen-
kopelman algorithm for distributed memory architectures,
Computer Physics Communications 130 (2000) 118–129.

[20] S. Hong, T. Oguntebi, K. Olukotun, Efficient parallel graph
exploration on multi-core cpu and gpu, in: Parallel Architec-
tures and Compilation Techniques (PACT), 2011 International
Conference on, 2011, pp. 78–88.

[21] T. Robert, Depth-first search and linear graph algorithms, SIAM
J. Comput. 1 (1972) 146–160.

[22] W.-G. Yin, R. Tao, Algorithm for finding two-dimensional site
percolation backbones, Physica B 279 (2000) 84–86.

[23] C. Li, T.-W. Chou, A direct electrifying algorithm for backbone
identification, J. Phys. A: Math. Theor. 40 (2007) 14679–14686.

[24] L. Biehl, Forest fires, oil spills, and fractal geometry, Mathemat-
ics teacher 92 (1999) 128.

[25] J. H. Reif, Depth-first search is inherently sequential, Informa-
tion Processing Letters 20 (1985) 229–234.

6

70 Data parallel algorithm in finding 2-D site percolation backbones

